This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-96SR18500 with the U. S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

WSRC-TR-2003-00064, REVISION 0 SRT-RPP-2003-00019, REVISION 0

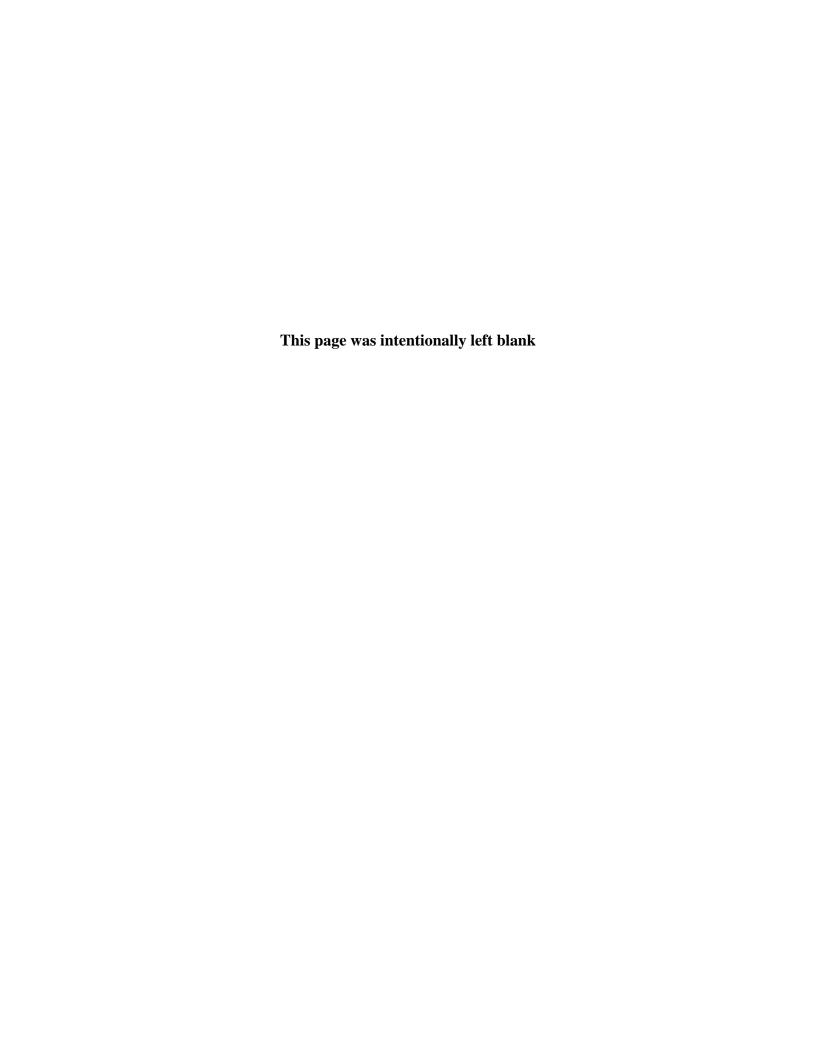
Key Words:

River Protection Project, Crossflow Filter, Envelope C Waste, Hanford Tank 241-AN-107

Retention: Permanent

Key WTP R&T References:

Test Plan SRT-RPP-2000-00050, Rev. 0 Test Scoping Statement S-51


PILOT-SCALE PRECIPITATION TESTS OF ENVELOPE C SIMULANTS (U)

Michael R. Williams, 786-5A Timothy J. Steeper, 786-5A

APRIL 2004

Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808

TABLE OF CONTENTS

LIST OF FIGURES	v
LIST OF TABLES	vi
LIST OF ACRONYMS AND INITIALS	vii
1.0 TESTING SUMMARY	1
1.1 OBJECTIVES	1
1.1.1 Design, Fabricate, and Install Pilot Precipitation Facilities Coupled to	
Crossflow Filtration	1
1.1.2 Precipitate and Filter a Series of Batches at Varying Conditions to Examin	ne
the Effect of Feed Material, Reaction Temperature, Degree of Mixing, and	d
Amount of Reagent Used.	1
1.1.3 Determine the Amount of Strontium and Lanthanide Surrogates for	
Radioactive Isotopes that were Removed by Precipitation	3
1.1.4 Determine If Volatile/Flammable Gases are Produced by the Precipitation	ì
Reaction	3
1.1.5 Determine if Post-Filtration Precipitation Occurs	3
1.2 TEST EXCEPTIONS	3
1.3 RESULTS AND PERFORMANCE AGAINST SUCCESS CRITERIA	4
1.4 QUALITY REQUIREMENTS	4
1.5 R & T TEST CONDITIONS	5
1.6 SIMULANT USE	6
1.7 DISCREPANCIES AND FOLLOW-ON TESTS	6
2.0 CD-ROM ENCLOSURES	7
3.0 DISCUSSION	9
3.1 BACKGROUND	
3.2 BATCH NOMENCLATURE	10
3.3 PRIOR WORK	10
3.3.1 AN-107 Simulant	10
3.3.2 AN-102 Large C Supernatant Liquid	11
3.3.3 AN-102 Small C Liquid	
3.3.4 AN-107 Simulant Pilot-Scale Precipitation	11
3.3.5 AN-107 Diluted Waste	
3.4 EQUIPMENT DESCRIPTION	13
3.4.1 Pilot Scale Precipitation Test Rig	13
3.4.2 Pulse Jet Mixer	
3.4.3 Pilot-Scale Crossflow Filter Test Rig Description	18
3.4.4 Crossflow Filter	
3.4.5 Instrumentation and Data Acquisition System	23
3.5 SIMULATED WASTE DESCRIPTION	27
3.5.1 AN-107 Simulant	27
3.5.2 AN-102 Simulant	29
3.6 TESTING	
3.6.1 General test procedure	
3.6.2 Specific Test Summaries	
3.7 SAMPLE HANDLING CONCERNS	

WSRC-TR-2003-00064, REVISION 0 SRT-RPP-2003-00019, REVISION 0

3.7.1 Deadend Filtration Times	42
3.7.2 Sample Stability	43
3.8 TYPICAL CALCULATIONS	44
3.9 DISCUSSION OF RESULTS	48
3.9.1 Precipitation	48
3.9.2 Filtration	
3.9.3 Post Precipitation Solids	70
3.9.4 Pulse jet Mixing	
4.0 FUTURE WORK	
5.0 REFERENCES	77
APPENDICES A – K	81

LIST OF FIGURES

Figure 3-1.	Mechanically Agitated Pilot-Scale Precipitation Test Rig	14
Figure 3-2.	Pulse-Jet-Mixed Pilot-Scale Precipitation Test Rig	15
Figure 3-3.	Pulse Jet and Tank Details	19
Figure 3-4.	Pilot-Scale Crossflow Filter Test Rig	20
Figure 3-5.	Cerium Concentrations for All Batches	57
Figure 3-6.	Lanthanum Concentrations for All Batches	57
Figure 3-7.	Neodymium Concentrations for All Batches	58
	Strontium Concentrations for All Batches	
Figure 3-9.	Calcium Concentrations for All Batches	59
	Lead Concentrations for All Batches	
Figure 3-11.	Iron Concentrations for Batches #1 and #2	60
	Iron Concentrations for Batches #3 and #4	
Figure 3-13.	Manganese Concentrations for Batches #1 and #2	61
Figure 3-14.	Manganese Concentrations for Batches #3 and #4	61
Figure 3-15.	Copper Concentrations for Batches #3 and #4	62
Figure 3-16.	Filtrate Production Rate Data for Batch #1	65
Figure 3-17.	Filtrate Production Rate Data for Batch #2	65
Figure 3-18.	Crossflow Filter Filtrate Production with Batch #1 Precipitated Simulant Slu	rry
Figure 3-19.	Crossflow Filter Filtrate Production with Batch #2 Precipitated Simulant Slu	rry
Early Du	uring Dewatering	68
Figure 3-20.	Crossflow Filter Filtrate Production with Batch #2 Precipitated Simulant Slu	rry
at the Er	nd of Dewatering	68
Figure 3-21.	Crossflow Filter Flux with Clear Water Prior to Batch #2 Processing	70
Figure 3-22.	Crossflow Filter Flux with Clear Water After Batch #2 Processing	70
Figure 3-23.	Typical Pulse before Reagent Addition	73
Figure 3-24.	Typical Pulse after Reagent Addition	73

LIST OF TABLES

Test Matrix Evolution	. 2
Test Matrix and Results	. 5
PSP DAS Channel List for Pilot-Scale Precipitation Test Facility	24
PJM DAS Channel List for Pulse jet Mixed Tank	24
Xflow DAS Channel List for Crossflow Filter Test Rig During Batches 1 and 2	2
	25
Xflow DAS Channel List for Crossflow Filter Test Rig During Batches 3 and 4	4
	26
AN-102 Recipe Quantities Before Precipitating Reagents Added	31
Batch 1 Test Summary	34
Batch 2 Test Summary	35
Batch 3C Test Summary	36
Batch 3B Test Summary	37
Batch 3A Test Summary	38
Batch 4A Test Summary	40
Concentration of Selected Elements in Batch #1 Liquid Samples	51
Concentration of Selected Elements in Batch #2 Liquid Samples	52
Concentration of Selected Elements in Batch #3C Liquid Samples	53
Concentration of Selected Elements in Batch #3B Liquid Samples	54
Concentration of Selected Elements in Batch #3A Liquid Samples	55
Concentration of Selected Elements in Batch #4A Liquid Samples	56
Summary of Particles-Size Distributions after Batch Precipitation	62
Crossflow Filter Operations Data with Batch #1 Precipitated Slurry	64
Crossflow Filter Operations Data with Batch #2 Precipitated Slurry	64
	Test Matrix and Results

LIST OF ACRONYMS AND INITIALS

ADS Analytical Development Section

AN-102 Refers to waste in Hanford tank 241-AN-102. This waste is one of the

Envelope C type wastes.

AN-107 Refers to waste in Hanford tank 241-AN-102. This waste is another of the

Envelope C type wastes.

ARA After Reagent Addition. This is a shorthand way to say "after the last reagent

was added to the simulant batch."

DIF Deionized and Filtered (0.2 micron)

EDL Engineering Development Laboratory, SRTC, WSRC

FBRM Focused Beam Reflectance Measurement

HLW High Level Waste
LAW Low Activity Waste
PJM Pulse Jet Mixer

RCRA Resource Conservation and Recovery Act of 1976

RPP River Protection Project

SRTC Savannah River Technology Center Sr/TRU Strontium and Transuranic elements

TMP Transmembrane Pressure (the average pressure drop across the thickness of

the filter medium – perpendicular to the slurry flow.)

TRU Transuranic

WGI Washington Group International

WSRC Westinghouse Savannah River Company WTP Waste Treatment and Immobilization Plant

WSRC-TR-2003-00064, REVISION 0 SRT-RPP-2003-00019, REVISION 0

This page intentionally left blank.

1.0 TESTING SUMMARY

1.1 OBJECTIVES

The objectives of this test program were specified in the original task plan (1). During the course of the task, new information resulting from other test programs and maturing plant design led to changes in the specific conditions tested. These changes are documented in two task plan revisions and test exceptions. The net result of these changes is discussed below.

1.1.1 Design, Fabricate, and Install Pilot Precipitation Facilities Coupled to Crossflow Filtration

This objective was met by designing and installing a precipitation facility in the EDL next to and connected to an existing crossflow filter facility. The crossflow filter facility was modified to meet the requirements of this task.

Originally, testing was to use batches of about 650 liters, approximately 1/300 scale of the batch to be treated by the WTP Pretreatment Ultrafiltration System. Actual batch sizes ranged from 570 liters to 880 liters, the varying sizes being determined by factors such as quantity needed to obtain sufficient solid content after filtration or dimensional constraints associated with pulse jet sizing.

The pilot-scale work was intended to provide data that could be compared to the very small, well-mixed actual waste precipitation experiments, and to the slightly larger actual waste and simulant filtration studies conducted in separate tasks. The WTP plans to use pulse jet mixers that will not require maintenance for the life of the plant, but also may not provide the vigorous mixing provided by a mechanical agitator. Since it is not possible to conduct the small real waste experiments with pulse jet mixing, they were done under well-mixed conditions. For comparison, most of the pilot-scale testing was done using a mechanical agitator mounted vertically inside a baffled tank to provide uniform and vigorous mixing. The last batch was run with a pulse jet mixer to help evaluate the effect of mixing on the precipitation.

1.1.2 Precipitate and Filter a Series of Batches at Varying Conditions to Examine the Effect of Feed Material, Reaction Temperature, Degree of Mixing, and Amount of Reagent Used.

This objective was met by precipitating a series of batches of simulant to specified conditions, then filtering the resultant slurry. The test matrix was revised several times as the work progressed. Table 1-1 shows the test matrix evolution.

Table 1-1. Test Matrix Evolution

						19M Nac	OHor						
g					Solid NaOH 1 M SrNO3			1M NaMnO₄					
Reference									0		<u>'</u>	11131111	
l 🧸 l			Batch			OH-		Wait	Final	Add	Wait	Final	Add
ď	Batch	(1)	size	Т	(2)	Addition	Free	time	Conc.	rate	time	Conc.	rate
	#	Simulant	(liters)	(°C)	Agitation	(M)	ОН	(min)	(M)	(l/min)	(min)	(M)	(l/min)
	1	AN-107	600	50	High	None		N/Α	0.075	8	10	0.050	8
Plan	2	AN-107	600	20	High	None		N/A	0.075	8	10	0.050	8
*	3	AN-102	600	50	High	None		N/A	0.075	8	10	0.050	8
Task	4	AN-102	600	20	High	None		N/A	0.075	8	10	0.050	8
 	5	AN-102	600	50	Low	None		N/A	0.075	8	10	0.050	8
Original	6	AN-102	600	50	High	None		N/A	0.038	8	10	0.025	8
181	7	AN-102	600	50	High	None		N/A	0.075	8	60	0.050	8
	8	AN-102	600	50	Hiah	None		N/A	0.075	23	10	0.050	23
	1	AN-107	650	50	High	None	0.04	N/A	0.075	8	10	0.050	8
Rev 1 Task Plan	2	AN-107	650	20	High	1	0.8	60	0.075	8	10	0.050	8
0	3	AN-102	650	50	High	0.7	1	60	0.075	8	30	0.050	8
8 8	4	AN-102	650	25	High	0.7	1	60	0.075	8	30	0.050	8
-	5	AN-102	650	25	Low	0.7	1	60	0.075	8	30	0.050	8
>	6	AN-102	650	25	High	0.7	1	60	0.020	8	30	0.025	8
ا گا	7	AN-102	650	25	High	None	0.3	N/A	0.075	8	60	0.050	8
	8	AN-102	650	35	High	0.7	1	60	0.075	23	30	0.050	23
×o	1	AN-107	650	50	High	None	0.04	N/A	0.075	8	10	0.050	8
#@	2	AN-107	650	20	High	1	0.8	60	0.075	8	10	0.050	8
Test Ex 02-060	3	AN-102	880	25	High	None	0.3	N/A	0.030	2	30	0.030	2
	4	AN-102	880	25	PJM	None	0.3	N/A	0.030	2	30	0.030	2
× m	1	AN-107	650	50	High	None	0.04	N/A	0.075	8	10	0.050	8
19,51	2	AN-107	650	20	High	1	0.8	60	0.075	8	10	0.050	8
Test Ex 02-076	3	AN-102	As rq'd	25	High	None	0.3	N/A	0.030	2	30	0.030	2
	4	AN-102	As rg'd	25	PJM	None	0.3	N/A	0.030	2	30	0.030	2
_	1	AN-107	650	50	High	None	0.04	N/A	0.075	8	10	0.050	8
<u>_</u>	2	AN-107	650	20	High	1	0.8	60	0.075	8	10	0.050	8
Task Plan	3C	AN-102	880	20	High	None	0.3	N/Α	0.030	2	30	0.030	2
ا تق	3B	AN-102	880	50	High	0.7	1	60	0.075	2	30	0.050	2
N	3A	AN-102	815	25	High	0.7	1	60	0.075	2	30	0.050	2
Rev	4A	AN-102	590	50	PJM	0.8	1	60	0.075	2	30	0.050	2
Щ	4B	AN-102	590	50	PJM	0.8	1	60	0.075	2	30	0.050	2

Batch 4B was not run since sufficient solids were produced in 4A to complete filtration tests.

The conduct of the experiment was essentially the same for all batches, with the detailed variations as shown in the test matrix. The appropriate simulant was mixed and maintained at the desired reaction temperature in a tank with the desired degree of mixing. (Mixing was either the maximum mechanical agitation possible without splashing or vortex formation, or pulse jet mixing at conditions attempting to represent the mixing planned for the plant.) Caustic adjustment of the batch was made when desired by adding either 50 wt % (19M) or solid sodium hydroxide in sufficient quantity to raise the free hydroxide concentration to the level desired in the resultant mixture. The resultant batch was allowed to mix for about an hour as planned for the plant process. One molar strontium nitrate was then added at the volumetrically scaled rate. This was followed a specified time later by the addition of one molar sodium permanganate, again at the volumetrically scaled rate. Sufficient reagents were added to increase the concentration in the precipitation tank to the desired levels.

Filterability of the precipitated slurry was determined by measuring the filtrate production rates while operating the crossflow filter under varying conditions of slurry flow and filter transmembrane pressure. The plant operating conditions were not established at the time Batches 1 and 2 were run, and the filtration portion of the study was much more abbreviated than desirable. The filtration work for later batches was done under a separate task plan and was more complete.

1.1.3 Determine the Amount of Strontium and Lanthanide Surrogates for Radioactive Isotopes that were Removed by Precipitation

This objective was met by taking slurry samples before reagent addition and periodically after reagents addition and analyzing the samples. Some of the samples were filtered quickly to obtain separate liquid and solid analysis.

1.1.4 Determine If Volatile/Flammable Gases are Produced by the Precipitation Reaction

This objective was met by taking vapor samples within six inches of the liquid surface as quickly as possible (within a couple of minutes) after all reagents were added and analyzing the samples. The mechanically agitated tank had a cover to prevent dilution of gaseous products by the room air. The pulse-jet-mixed tank had to be open to the room. During the pulse-jet-mixed run, the vapor sample was collected from inside the pulse jet during the vacuum/vent period. No measurable quantities of volatile/flammable gases were found during the precipitation of any batch.

1.1.5 Determine if Post-Filtration Precipitation Occurs

This objective was met by collecting filtrate samples from the filtrate loop on the crossflow filter test rig and/or from the composite filtrate storage tank. These samples were examined by various means during time periods extending up to several weeks for evidence of post-filtration solids formation. Some post-filtration solids formed in the filtrate from each batch with sufficient time. The filtrate from the pulse-jet-mixed batch had 4 grams of solid per liter of filtrate one week after filtration was completed.

1.2 TEST EXCEPTIONS

Test Exception	Description
24590-WTP-TEF-RT-02-060	Changed the number of experiments from eight to four and specified pulse-jet mixing for the last experiment.
24590-WTP-TEF-RT-02-076	Specified running multiple batches as necessary to obtain sufficient solids for concentration to at least 15 wt%.
24590-WTP-TEF-RT-03-027	Added requirements for a mini-precipitation to confirm acceptability of simulant prior to each pilot-scale run; eliminated running a 13-point filtration test matrix on the dilute-feed slurry.

1.3 RESULTS AND PERFORMANCE AGAINST SUCCESS CRITERIA

The Pilot-Scale Precipitation Test Facility established the test conditions and processed the simulants to produce slurry for subsequent filtration. It provided the samples required to determine the amount of strontium and lanthanide surrogates removed and if volatile gases were produced by the precipitation reaction. Surrogates were used for Strontium-90 and transuranic material present in the AN-102 and AN-107 radioactive waste. Non-radioactive strontium was used as a surrogate for Strontium-90. Cesium, Lanthanum, and Neodymium were used as surrogates for other transuranics such as Curicum-242, Americium-241, and Plutonium-239. These surrogates were the same as used by Nash et al. (10) for bench-scale studies. The Crossflow Filter measured the filterability and provided filtrate samples for evaluation of post-filtration solid formation.

Table 1-2 summarizes the test matrix (as finally evolved) and the results of all batches processed. All batches had a large percentage of strontium and the lanthanide surrogates removed from the liquid. In particular, the pulse-jet-mixed batch at the baseline chemistry and temperature (4A) performed very well in amounts removed. On the other hand, the filterability of the slurry showed significant variability depending on processing conditions. Although the pulse-jet-mixed batch (4A) met the minimum acceptable filtration rate of 0.02 gpm/ft² of filter area, the mechanically mixed batch processed at the same baseline chemistry (3B) filtered much better.

Vapor samples were collected and analyzed for volatile gases evolving near the liquid surface. No trace of volatile gas was found during processing of any batch.

The filtrate from all batches produced some solids with time.

1.4 QUALITY REQUIREMENTS

This work was conducted in accordance with the RPP-WTP QA requirements specified for work conducted by SRTC as identified in DOE IWO M0SRLE60. SRTC has provided matrices to WTP demonstrating compliance of the SRTC QA program with the requirements specified by WTP. Specific information regarding the compliance of the SRTC QA program with RW-0333P, Revision 10, NQA-1 1989, Part 1, Basic and Supplementary Requirements and NQA-2a 1990, Subpart 2.7 is contained in these matrices.

A Test Specification was not written specifically for the pilot precipitation work. The approved Task Technical and Quality Assurance Plan (1) specified the WSRC QA requirements that would be applied. These requirements were followed.

Table 1-2. Test Matrix and Results

Batch (1) Simulant (2) Simulant (3) Simulant (3) Simulant (4) Simulant (4) Simulant (5) Simulant (7) Simulant			Solids				19M Nat Solid N			I M SrN	O_3	11	И NaMr	nO ₄	Perc	(3 ent Re	3) moved	/ DF	e wt% (5)	Aver Filtrate Reach	rage Flux to														
1 AN-107 0.5 647 50 High None 0.04 N/A 0.075 4.8 10.0 0.05 7.0 5.2 8.4 7.1 1013 3.2 0.03 2 AN-107 0.5 634 20 High 1 0.8 60 0.075 4.8 10.0 0.05 7.0 9.4 11 7.5 36 3.5 0.03 0.02 3C AN-102R2 0.1 880 25 High None 0.3 N/A 0.03 17.3 30.0 0.03 17.3 80.7 84.7 82.0 99.2 3B AN-102R2 0.1 880 50 High 0.74 0.96 60 0.075 43.2 30.0 0.05 28.8 80.8 82.8 74.6 99.4 1.2 0.060 0.049 3A AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 83.8 90.4 77.0 97.4 6.2 10 4.3 38 1.6 0.026 0.020 4A AN-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 20.6 90.1 95.5 91.7 98.6 1.5 0.021 0.020		. ,	Entrainec (wt%)	size			Addition		time	Conc.	to add	time	Conc.	to add	Ce	La	Nd		Precipitat	-		Final Conc wt%													
2 AN-107 0.5 634 20 High 1 0.8 60 0.075 4.8 10.0 0.05 7.0 89.4 91 86.6 97.2 9.4 11 7.5 36 3.5 0.03 0.02 3C AN-102R2 0.1 880 25 High None 0.3 N/A 0.03 17.3 30.0 0.03 17.3 80.7 84.7 82.0 99.2 5.2 6.5 5.6 126 3.8 AN-102R2 0.1 880 50 High 0.74 0.96 60 0.075 43.2 30.0 0.05 28.8 80.8 82.8 74.6 99.4 5.2 5.8 3.9 128 3.4 AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 83.8 90.4 77.0 97.4 6.2 10 4.3 38 40.4 4.8 AN-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 26.6 90.1 95.5 91.7 98.6 1.5 0.021 0.020	4	AN 407	0.5	647	F0	Lliab	None	0.04	NI/A	0.075	4.0	10.0	0.05	7.0	80.7	88.1	85.9	99.9	2.2	0.00															
2 AN-107 0.5 634 20 High 1 0.8 60 0.075 4.8 10.0 0.05 7.0 9.4 11 7.5 36 3.5 0.03 0.02 3C AN-102R2 0.1 880 25 High None 0.3 N/A 0.03 17.3 30.0 0.03 17.3 80.7 84.7 82.0 99.2 5.2 6.5 5.6 126 3.5 0.03 0.03 3B AN-102R2 0.1 880 50 High 0.74 0.96 60 0.075 43.2 30.0 0.05 28.8 80.8 82.8 74.6 99.4 5.2 5.8 3.9 128 3.4 AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 83.8 90.4 77.0 97.4 6.2 10 4.3 38 40.006 0.020 40.2 40.2 40.2 40.2 40.2 40.2 40.	ı	AIN-107	0.5	047	50	nign	None	0.04	IN/A	0.075	4.0	10.0	0.05	7.0	5.2	8.4	7.1	1013	3.2	3.2	3.2	3.2	3.2	0.03											
3C AN-102R2 0.1 880 25 High None 0.3 N/A 0.03 17.3 30.0 0.03 17.3 80.7 84.7 82.0 99.2 0.8 0.013 3B AN-102R2 0.1 880 50 High 0.74 0.96 60 0.075 43.2 30.0 0.05 28.8 80.8 82.8 74.6 99.4 1.2 0.060 0.049 3A AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 83.8 90.4 77.0 97.4 6.2 10 4.3 38 40.4 80.0 0.020 0	0	ANI 407	٥.	00.4	00	I II ada	4	0.0	00	0.075	4.0	10.0 0.05	0.05	89.4 91	86.6	97.2	2	000	0.00																
3C AN-102R2 0.1 880 25 High None 0.3 N/A 0.03 17.3 30.0 0.03 17.3 5.2 6.5 5.6 126 0.8 0.013 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17	2	AN-107	0.5	634	20	High	1	0.8	60	0.075	4.8		10.0 0.05	10.0 0.05	10.0	10.0 0.05 7.	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	7.0	7.0	7.0	05 7.0	9.4	11	7.5	36	3.5	0.03	0.02
3B AN-102R2 0.1 880 50 High 0.74 0.96 60 0.075 43.2 30.0 0.05 28.8 80.8 82.8 74.6 99.4 5.2 5.8 3.9 128 3.4 AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 83.8 90.4 77.0 97.4 6.2 10 4.3 38 40.4 8N-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 26.6 90.1 95.5 91.7 98.6 1.5 0.021 0.020	20	AN 400D0	0.1	000	25	Lliab	None	0.3	NI/A	0.03	17.0	20.0	0.03	17.0	80.7	84.7	82.0	99.2	0.0	0.10		8.3													
3B AN-102R2 0.1 880 50 High 0.74 0.96 60 0.075 43.2 30.0 0.05 28.8 5.2 5.8 3.9 128 1.2 0.060 0.049 3A AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 83.8 90.4 77.0 97.4 6.2 10 4.3 38 1.6 0.026 0.020 4A AN-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 20.6 90.1 95.5 91.7 98.6 1.5 0.021 0.020	3C	AIN-102R2	0.1	000	25	nign	None	0.5	IN/A	0.03	17.3	30.0	0.03	17.3	5.2	6.5	5.6	126	0.6	0.013		0.3													
3A AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 83.8 90.4 77.0 97.4 6.2 10 4.3 38 4 AN-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 20.6 90.1 95.5 91.7 98.6 1.5 0.021 0.020	an.	AN 400D0	0.4	000	-	I II ada	0.74	0.00	00	0.075	40.0	20.0	0.05	00.0	8.08	82.8	74.6	99.4	4.0	000	0.040	0.040	04.7												
3A AN-102R2 0.1 815 25 High 0.74 1.0 60 0.075 40.2 30.0 0.05 26.6 6.2 10 4.3 38 1.6 0.026 0.020 4A AN-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 20.6 6.2 10 4.3 38 1.5 0.021 0.020	3B	AN-102R2	0.1	880	50	High	0.74	0.96	60	0.075	43.2	30.0	0.05	28.8	5.2	5.8	3.9	128	1.2	0.060	0.049	21.7													
4A AN-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 20.6 90.1 95.5 91.7 98.6 1.5 0.021 0.020	24	AN 400D0	0.4	045	0.5	I II ada	0.74	4.0	00	0.075	40.0	20.0	0.05	00.0	83.8	90.4	77.0	97.4	4.0	0.000	0.000	25.0													
4A AN-102R2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 20.6	3A	AN-102R2	0.1	815	25	High	0.74	1.0	60	0.075	40.2	30.0	0.05	26.6	6.2	10	4.3	38	1.6	5 0.026	0.020	25.3													
4A AN-102K2 0.1 572 50 PJM 0.74 1.0 60 0.075 31.2 30.0 0.05 20.6 10 22 12 72 1.5 0.021 0.02C	4.0	ANI 400E0	0.4	570		DIM	0.74	4.0	-00	0.075	24.0	20.0	0.05	20.0	90.1	95.5	91.7	98.6	4.5	0.021 0.020	0.000	40.0													
	4A	AN-102R2	0.1	5/2	50	PJM	0.74	1.0	60	0.075	31.2	30.0	0.05	∠0.6	10	22	12	72	1.5		18.3														
Notes 1 AN-107 simulant was mixed and used at 5.5 M Na. AN-102R2 simulant was mixed at 6.5 M Na by combining a partial simulant with additional che		Notes																																	

aged at least 1 week, then diluted to 6 M Na just prior to using.

- 3 The amounts removed were based on analysis of samples obtained during processing of each batch. It became apparent as work progressed that these samples were not stable, and the analysis varied depending on how much time elapsed before the analysis was made. Continuous improvement was made with each batch in sample handling, with the analysis of the last batch run (4A) being the most reliable. Some of the variation in amount removed may be due to sampling handling rather than actual processing conditions. The removal values for Batch #3B had to be based on the 2 hr samples because the ICP-ES instrument broke before the 3 & 4 hr samples could be run.
- 4 The pilot scale work cannot actually measure the amount of Sr-90 that would be removed as no radioactive isotopes could be used. The percent of Sr removed and DF shown are based on the recipe amount and assume 100% isotopic dilution by the nonradioactive Sr added as part of the process. This represents the theoretical maximum that can be obtained. It is important to note that the results of small scale experiments with radioactive strontium have not reached this theoretical maximum.
- 5 The solids amount increased from the entrained wt% amount in the stimulant feed to the Precipitate wt% after the Sr/TRU reaction and to the Final Conc wt% after concentration in the crossflow filter. The wt% for batches 1 & 2 must be considered maximum values only. The material collected by simple filtration contained some dissolved salts that were left behind as contaminates to the insoluble solids. The wt% for batches 3 & 4 were obtained with an analytical technique that accunted for the dissolved salts so are the true insoluble solid content.
- 6 Units are gpm/ft² of filter area at an axial velocity of 12 ft/sec and TMP of 40 psi for batches 3 & 4. Batch 1 was only filtered for a few hours; the flux shown was obtained at V=12 & TMP=33 at a solid content <5 wt%. The wt% solids for Batch 2 was not measured during filtration: 0.03 gpm/ft² was obtained at V=16 & TMP=45 early during dewatering, 0.02 was obtained at V=15.4 & TMP=49 near the end of dewatering when the slurry had been concentrated by a factor of 10. Batch 3C was only concentrated to 8.3 wt% as the test was stopped due to poor filtration.

1.5 R & T TEST CONDITIONS

A Test Specification was not issued for this task. The Test Specification TSP-W375-01-0001, Revision 0, Sr/TRU Precipitation Reaction Rate, dated January 23, 2001, was used as a reference in the preparation of the Task Technical and QA Plan, WSRC-TR-2000-00496, Revision 0, dated June 12, 2001 (1) and Revision 1 dated November 30, 2001 (25). Table 1-2 provides a summary of test conditions implemented in the Task technical and QA Plan. The Task plan was written against the RPP WTP Test Scoping Statement S-51.

High = 12.8" Lightnin A-310 style impeller in a 42" diameter baffled tank turning at 327 rpm for batches 1 & 2, and 508 rpm for batch 3. PJM = pulse jet mixer pulsing 6% of the tank volume with a 1.6 second drive pulse repeated every 77 seconds.

1.6 SIMULANT USE

This pilot-scale testing was done entirely with simulants. No facilities were available that could test this process at the pilot scale with the highly radioactive real waste. Also, the required quantity of real waste would have been prohibitively expensive to obtain and handle. In a separate task (Eibling, 23), non-radioactive simulants were developed containing metal salts, organic compounds, and entrained solids providing a good elemental match based on analysis of small samples of the real waste. The organic compounds in the real waste are a complicated mix of chemicals used in processes that produced the wastes originally, and their breakdown/recombination products resulting from long-term storage in a highly radioactive environment. Organic compounds included in the simulant were selected to be representative of major species present in the real waste and believed to be significantly involved in the reactions of interest. Some elements such as plutonium and americium have no non-radioactive isotopes, but knowing their behavior during the process is vital. Lanthanide surrogates (15) for these key radioactive isotopes of interest were included in the simulants.

Numerous beaker-scale real waste precipitation studies have been made by others. Several real waste and simulated waste studies have been made in several-liter-sized precipitation tanks connected to Cell Ultra Filtration (CUF) units. The results of the several-hundred-liter-sized pilot-scale tests of this task should be compared to the smaller-scale experiments.

1.7 DISCREPANCIES AND FOLLOW-ON TESTS

None

2.0 CD-ROM ENCLOSURES

The report is contained on a CD-ROM in Acrobat format. Excel files of the raw data collected by the data acquisition systems during precipitation and filtration of these batches, the reported results of sample analysis, and calculations made for the report are also contained on the CD-ROM. The following file formats were used:

Adobe Acrobat, Version 6.0 Microsoft Excel, Version 97

WSRC-TR-2003-00064, REVISION 0 SRT-RPP-2003-00019, REVISION 0

This page intentionally left blank.

3.0 DISCUSSION

3.1 BACKGROUND

The River Protection Project (RPP) is an effort by DOE to process approximately 190 million curies in 54 million gallons of highly radioactive and mixed hazardous waste stored in underground storage tanks at the Hanford Site. The tank waste includes solids (sludge), liquids (supernate), and salt cake (dried salts that will dissolve in water forming supernate). The waste tanks will be remediated through treatment and immobilization to protect the environment and meet regulatory requirements. DOE determined that the preferred alternative to remediate the Hanford Tank Site Waste is to:

- Pretreat the waste to separate it into two fractions, Low-Activity Waste (LAW) and High-Level Waste (HLW)
- Immobilize the LAW for onsite disposal
- Immobilize the HLW for ultimate disposal in a national repository

LAW is a mixed, characteristic, and listed waste regulated under the Resource Conservation and Recovery Act of 1976 (RCRA), and must meet certain treatment standards and performance standards for onsite disposal of the waste form. LAW is comprised of the tank waste liquids (and dissolved saltcake) containing the bulk of the tank waste chemicals and certain radionuclides (e.g., cesium, technetium, strontium, and transuranics) that must be at least partially removed prior to immobilizing the waste. The Sr/TRU is precipitated by the addition of strontium nitrate and sodium permanganate. The Sr/TRU precipitate and entrained solids are collected by filtration with the concentrated product routed to HLW for vitrification.

HLW is comprised of the long half-life elements contained in the tank waste solids and high activity radionuclides separated from the LAW fraction. HLW is a mixed, characteristic, and listed waste regulated under RCRA, and must meet specific treatment and performance standards for storage and repository disposal of the final waste form.

The scope of SRTC pilot-scale precipitation testing per Test Scoping Statement S-51 is to demonstrate operability and determine throughput for the Sr/TRU precipitation process by investigating the precipitation process with strontium nitrate and sodium permanganate on a significantly larger scale than has been done previously. Six batches of simulated waste were processed through the Pilot-Scale Precipitation Test Facility and coupled Crossflow Filter Test Rig under various process parameters including those of temperature, amount of reagent addition, and type of mixing. Non-radioactive simulants of tank AN-102 and AN-107 wastes were used. Results from this testing are compared to bench-scale testing previously performed with real and simulated wastes.

3.2 BATCH NOMENCLATURE

Naming the batches is not intended to be confusing, but a little explanation will be helpful in understanding the nomenclature. Batches 1 and 2 are straightforward. Batch 1 was mixed and precipitated, and then Batch 2 was mixed and precipitated.

Originally we intended to run Batch 3 at one set of conditions, but expected to need a large quantity of simulant to obtain the necessary amount of precipitated solids to reach the desired wt% solids after concentration by the crossflow filter. Because of limited tank size, the simulant had to be mixed in sub-batches. Three sub-batches of chemicals were mixed, nominally identically except for quantity, but labeled batches 3A, 3B, and 3C so we could keep the samples straight in case there was some significant variation discovered after analysis. These batches were mixed and numbered sequentially with the first two batches drummed off to empty the tank for the next batch. Batch 3C was the last batch in the tank when it came time to run the precipitation. Therefore, Batch 3C was the first of the three batches to be precipitated. That batch turned out to have considerable more solids than expected, but very poor filtration characteristics. In an attempt to improve the filterability, the conditions were changed before running the next batch, 3B. Batch 3B also had sufficient solids for the filtration portion of the experiment, and it filtered well. The decision was made to again change the conditions before precipitating the next sub-batch in order to learn more about the process.

When Batch 3A was originally mixed, some of it was provided to others to run separate small-scale experiments. That made the quantity of Batch 3A remaining small enough that there was again concern that there would be insufficient solids. Batch 3B was the largest batch mixed, and a drum of it remained unused. A new Batch 3A was made by mixing the original Batch 3A and the remaining Batch 3B simulant. All Batch 3A samples prior to loading the batch into the tank for the precipitation refer to the original batch; all samples afterward refer to the new Batch 3A.

Batch 4 is also straightforward. It was to be precipitated with pulse jet mixing instead of mechanical mixing. The pulse jet mixed tank was smaller than the mechanically agitated tank, so we expected to need two batches of simulant to have sufficient solids. Batch 4A was the first pulse jet mixed precipitation to be run. It had sufficient solids and Batch 4B was not needed and is still stored in drums.

3.3 PRIOR WORK

3.3.1 AN-107 Simulant

Bench-scale work by Nash et al. (10) used AN-107 simulant with additional caustic added and precipitated with 0.075 M strontium nitrate and 0.04 M sodium permanganate to produce decontamination factors of 91 for strontium, 2.8 for cerium, >4.2 for lanthanum, and 3.4 for neodymium.

3.3.2 AN-102 Large C Supernatant Liquid

Sr/TRU precipitation reactions performed on 16.5 liters of Tank 241-AN-102 Large C supernatant liquid containing entrained solids were also reported by Nash et al. (11). Strontium decontamination factors ranging from 40 to 50 were achieved in this study. They concluded that strontium-90 levels are reduced by simple isotopic dilution with non-radioactive strontium nitrate addition through precipitation of strontium carbonate, and that strontium decontamination factors can be predicted *a priori*. Transuranic elements including plutonium, curium, and americium were reported to have decontamination factors between 2.9 and 12.4. They concluded that addition of permanganate destroys organics that form soluble complexes with TRU elements, thus precipitating lanthanides and TRU elements. The concentrations of Tc and Cs in the liquid were unaffected by the Sr/TRU reaction. They reported some discoloration of the high sodium filtrate bottles after several days, which could be attributed to trace amounts of post-filtration solid formation. Free solids were observed in the lower sodium content filtrate from washing operations after the filtrate was allowed to stand for two days.

3.3.3 AN-102 Small C Liquid

A 1.2 liter Small C sample from Tank 241-AN-102 was caustic adjusted and strontium and permanganate precipitated, as reported by Nash et al (13), to produce a filtrate product decontamination factor of 30 for Sr-90, 9.2 for Am-241, and 7.2 for Cm-244.

3.3.4 AN-107 Simulant Pilot-Scale Precipitation

Duignan (17) reported on a pilot scale precipitation of a 6M sodium AN-107 simulant at 50 °C by the addition of sodium hydroxide, strontium nitrate, and sodium permanganate. Target levels were 0.075M strontium and 0.05M manganese. He reported filtrate production rates of: 0.03 gpm/ft² at 9 ft/sec axial velocity and 32 psid transmembrane pressure, 0.04 gpm/ft² at 12 ft/sec and 51 psid, and 0.07 gpm/ft² at 15 ft/sec and 30 psid. He found the filtrate flux was strongly affected by the slurry velocity, but only weakly by the transmembrane pressure in the 30 to 55 psid range. During dewatering of his slurry, the filtrate rate gradually decreased from about 0.07 gpm/ft² at 2 wt% to 0.01 gpm/ft² at 22 wt% insoluble solids. Although not the major focus of Duignan's work, decontamination factors were calculated as follows: 69 for Sr, 20 for La, 22 for Fe, 2 for Cu and Ca, and approximately 1 for P, S, Ni, and Al.

3.3.5 AN-107 Diluted Waste

Hallen et al (18) treated a 1.4 liter sample of diluted actual AN-107 tank waste by adding sodium hydroxide, strontium nitrate, and sodium permanganate. Target concentrations for the final treated waste were 6.0 M sodium, 1.0 M hydroxide, 0.075 M strontium, and 0.05 M permanganate. The waste was thoroughly mixed between each reagent addition. After adding the permanganate, the waste was mixed for 30 minutes at ambient conditions, then heated for 4 hours at 50 °C. Filtration was carried out in a Cell Unit Filtration (CUF) system equipped with a 0.1-µm filter element. Their filtrate sample number DF-11 had decontamination factors of 82 for Sr-90, 28 for Am-241, and 22 for Cm-242. Their composite filtration sample DF-20 supernate had decontamination factors of 78 for Sr-90, 38 for Am-241, 32 for Cm-242, and 24 for Pu-239. They reported that 74% of the neodymium was removed based on their DF-20 filtrate composite sample. [Although not reported directly by them, the DF for Nd can be calculated based on their results as (1/(1-0.74)) = 3.9.] Filtration was first conducted with the filtrate returned to the slurry feed tank to maintain a constant concentration. The plot of the first CUF run at 12 ft/sec axial velocity and 49 psid transmembrane pressure showed the filtrate flux starting at about 0.07 gpm/ft², rapidly dropping to 0.037 gpm/ft² within 10 minutes, then gradually falling off to about 0.025 gpm/ft² after an hour of filtration. In their Table 3.10, the average flux for Test #1 was reported as 0.030 gpm/ft². Further examination of their tabulated data for filtration at constant concentrations shows trends.

Test #1 and Test #1 were run at similar velocities, but TMP = 49 and 30 respectively, a decrease of 19 psid with a corresponding decrease of 0.005 gpm/ft² in average flux. Test #3 and Test #4 were run at similar velocities, but TMP = 69 and 50 respectively, a decrease of 19 psid with a corresponding decrease of 0.003 gpm/ft². The average flux appears to decrease with a decrease in TMP, but the effects seem to be less at higher TMPs. Test #1 and Test #4 were run at similar TMPs, but V = 12.0 and 9.0 respectively, a decrease of 3 ft/sec with a corresponding decrease of 0.011 gpm/ft² in average flux. Test #6 and Test #4 were run at the same TMP, but V = 11.0 and 9.0 respectively, a decrease of 2.9 ft/sec with a corresponding decrease of 0.003 gpm/ft² in average flux. The average flux appears to decrease with a decrease in velocity. Test #1 and Test #6 were run at nearly identical TMPs and velocities, but showed a decrease of 0.008 gpm/ft² in average flux. This result appears to show a decrease in filter performance from accumulated use, which complicates the interpretation of the data.

3.4 EQUIPMENT DESCRIPTION

3.4.1 Pilot Scale Precipitation Test Rig

The originally planned 650-liter batch size approximates a 1/300 scale of the full-size batch, 48,383 gallons per Bergman (16), precipitated in the Ultrafiltration Preparation Vessel by the WTP Ultrafiltration System. Actual batch sizes varied from 650 to 880 liters in the mechanically agitated tank and 572 liters in the pulse-jet-mixed tank. Batch sizes were raised in the mechanically agitated tank to provide enough slurry for concentration to at least 15 wt% insoluble solids. The batch size in the pulse-jet-mixed tank was limited by dimensional constraints associated with matching the pulse tube to one used in previous studies by others, and meeting related tank dimension ratios.

Figure 3-1 is a schematic of the Mechanically Agitated Pilot Scale Precipitation Test Rig assembled in the rear of the Engineering Development Laboratory, Building 786-A. The rig was fabricated utilizing PVC and CPVC plastic pipe with tubing made of stainless steel and polypropylene. A 938-liter polypropylene tank with baffles was provided for mixing the simulants and performing the precipitation. A vertically mounted Lightnin agitator with 12-inch diameter A-310 style impeller provided vigorous uniform mixing of the simulant in the tank without splashing. (Note: The interim Batch 1 report incorrectly stated an 8.4-inch impeller was used.) A speed controller allowed agitator speed to be adjusted depending on batch size. This tank was used for Batches 1-3 to provide vigorous mixing to match the smaller-scale real waste studies performed by others. WTP is planning to precipitate in an unbaffled tank with pulse jet mixers. Figure 3-2 is a schematic of the Pulse Jet Mixed Pilot Scale Precipitation Test Rig used for Batch 4 to evaluate the mixing issue. The two rigs shared most of the auxiliary equipment.

The temperature of a batch was raised to the desired level by pumping the contents of either tank through a large recirculation loop containing an electric heater and a chilled water heat exchanger. The large recirculation loop pump had a speed controller to vary the flow as necessary. The large loop is also used with the mechanically agitated tank to maintain the temperature during the precipitation and to provide additional mixing as the tank is drained while feeding the Crossflow Filter Rig. A separate smaller recirculation loop with its own heater was provided for the pulse jet mixed tank to maintain the temperature during precipitation. A separate recycle system was needed because the large pump exceeded the scaled down prototypical plant recycle flow at its lowest setting and provided excessive, non-prototypic mixing. A single heater control unit was manually switched between heaters as necessary.

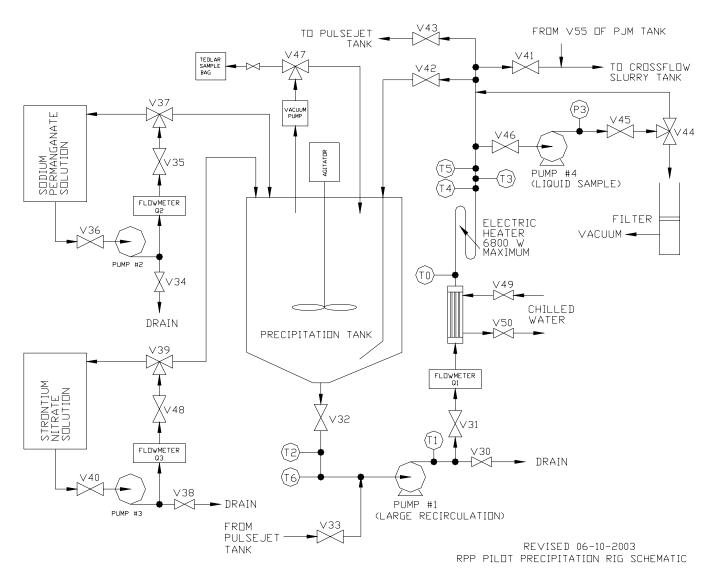


Figure 3-1. Mechanically Agitated Pilot-Scale Precipitation Test Rig

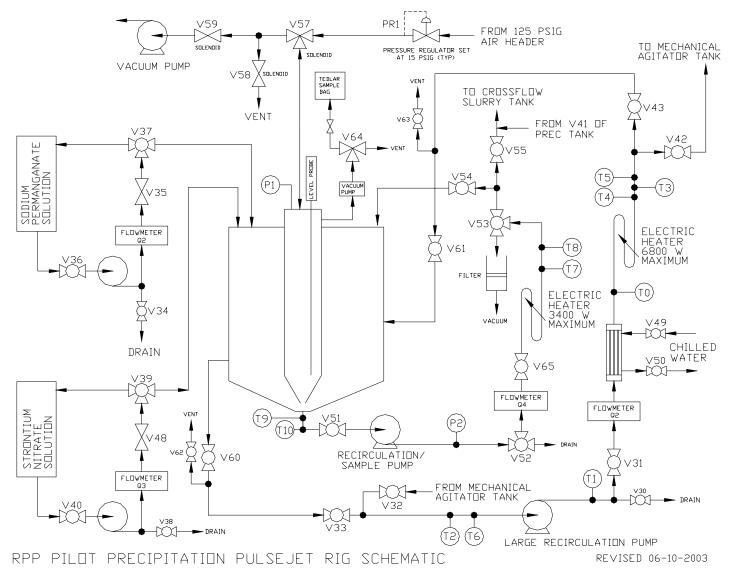


Figure 3-2. Pulse-Jet-Mixed Pilot-Scale Precipitation Test Rig

Dilution water was manually poured through an access port in the mechanically agitated tank cover or into the open top of the pulse jet mixed tank. Sodium hydroxide as either solid beads or 50 wt% solution was also added directly to the mechanically agitated tank through the access port when caustic adjustment was made as shown in the test matrix. For the pulse jet mixed tank the sodium hydroxide was gravity fed from an overhead carboy to the open top of the tank at the scaled prototypic addition rate. (When 50 wt% sodium hydroxide was used the dilution water was decreased accordingly to allow for the water content.)

An individual addition system including a tank, recirculation pump, and flowmeter was provided for each of the reagents. The sodium permanganate tank is opaque because the reagent is light sensitive. Typically, the reagents were mixed in the tanks by recirculating the solution at the desired flow rate. Then the aqueous solution was valved over to the precipitation tank for addition. The strontium nitrate was added first and allowed to mix throughout the tank before adding the sodium permanganate. For the first two batches the sodium permanganate was not standardized, but was prepared from new, sealed regent stock immediately prior to use. For the later batches, the sodium permanganate was standardized prior to use and the flow rate adjusted slightly to compensate for reagent strength. (Little variation in reagent strength was found when it was stored in the opaque, closed reagent tank for a week or so.)

A sample of the mechanically agitated precipitation tank contents could be drawn off with a pump connected to the main recirculation loop. The take-off from the recirculation line was a thin-wall, small-diameter tube about a foot long installed concentrically inside the recirculation pipe and pointing into the flow. The tube and recirculation pipe were sized to have identical flow velocities at a recirculation flowrate of 9.64 gpm and a sample rate of one liter every 20 seconds. Typically, flow was established through the sample pump and returned to the recirculation loop to ensure the line was full and flushed with fresh material. The flow was then quickly valved to the collection container, then valved back to the recirculation loop when approximately one liter of sample was collected. Trial runs were used to preset throttle valve V45 to deliver one liter in 20 seconds. Some slurry samples were submitted directly for certain analysis, others were dead-end filtered to separate the solids from the liquid portion for separate analysis. For the pulse jet mixed tank the prototypical recycle flow was small enough that it could be valved completely to the container for sample collection.

The mechanically agitated tank had a cover that rests on a lip at the top of the tank with only a small annulus opening around the agitator shaft. (The previously mentioned access port was covered when not in use.) A diaphragm pump was connected to a tube that passed through the cover to within six inches of the liquid surface. The discharge of the vapor sampling pump was connected to a 3-way valve with tubing leading to a sample port or back to the tank vapor space. Flow was normally routed from the vapor space through the pump and returned to the vapor space to keep the lines flushed. Either a sample syringe or flattened Tedlar sample bag could be connected to the sample port through its own isolation valve.

When a sample was desired the sample container isolation valve was opened, the three-way valve was switched to the port, the pump filled the container, the 3-way valve was switched back to the vapor space, and the sample container isolation valve was closed. The sample port was very close-coupled to the 3-way valve to minimize contamination of the sample with ambient air. For Batch 4, the vapor sampling system was relocated to the pulse jet mixed tank with connections made to draw the sample from the interior of the pulse jet tube.

3.4.2 Pulse Jet Mixer

The pulse jet mixer used a pulse of pressurized air to force liquid rapidly out through a nozzle at the bottom, then refilled due to the difference in hydrostatic pressure inside and outside the partially empty tube. A vacuum could be applied to speed up the refill, or to raise the level inside the tank above the outside level providing a larger pulsed volume. The discharge/refill cycle was repeated at some regular frequency to mix the tank contents.

The pulse jet drive is shown in Figure 3-2. Compressed air was supplied from a large 125-psig plant air header through 1" S/S tubing, through a pressure regulator to reduce and stabilize the pressure, and through a 3-way solenoid valve to a 1" NPT port on top of the pulse jet. The other port of the 3-way solenoid valve could be either simply vented, or connected to a blower capable of exhausting large quantities of air at a maximum 60-inch water vacuum. The vent and blower lines had individual solenoid valves for control selection purposes. A capacitance-type level probe sent the level inside the pulse jet to a control computer.

The control computer switched the 3-way solenoid valve to the air supply until the liquid level dropped to the specified level, then switched the 3-way solenoid valve to the vacuum/vent line and opened the vacuum solenoid until the level rose to the specified level, then closed the vacuum and opened the vent solenoid valves until time to repeat the entire cycle. When the 3-way valve was switched to apply vacuum, the level in the pulse jet did not immediately stop dropping. The air inside the pulse jet continued to expand and discharge the liquid until the combination of increasing air volume and air being removed by the vacuum pump lowered the pressure below that of the outside liquid. Likewise, the level did not stop rising immediately when the vacuum was shut off and the system vented. If the total cycle time was too short, the level in the pulse jet could not reach equilibrium with the outside tank level. (This was still a stable operating mode, however.) If the pressure stop level was set too low, the pulse jet emptied completely, and the remaining air blew out with an audible boom and considerable tank vibration.

The length of time the 3-way valve was switched to the air supply, or drive time, was displayed for each cycle by the computer. The pressure-drive stop level, vacuum refill stop level, and overall cycle time could be changed at any time during operation. Changing these settings allowed the drive time and percent pulsed to be adjusted as desired. The computer logged these settings and the status of the solenoid valves. Also logged were the pulse jet interior pressure, pulse jet interior liquid level, recycle flow rate, tank exit temperature, and heater exit temperature.

Although not logged directly, the length of the drive pulse could be determined if the data logging rate was very rapid. The data logging rate could be changed at any time. The regulator output pressure was adjusted manually and the setting recorded in the task logbook.

The dimensions and other details of the pulse jet and tank used for Batch 4A are shown in Figure 3-3. At the request of the customer, the pulse jet was made essentially identical in size to one used in previous studies by others. A one-to-one height-to-diameter ratio after reagent addition was specified to match the ratio in the plant design. Finally, the pulse jet was to pulse about 6% of the tank liquid volume. These requirements fixed the dimension shown, along with the batch size of 572 liters.

High air flow rates were required to meet the short discharge time required for Batch 4A mixing (1.6-second drive time). We used a ¾" body size Fisher 95L regulator with adjustment springs sized for 13 to 30 psig operation. This regulator could deliver 133 scfm @ 20 psig from a 100 psig supply with only a 10% offset. The 3-way solenoid valve was an ASCO 8316G34 (1" NPT ports, 1" orifice, 12.5 Cv). The 2-way solenoid valves were older models we had on hand. The normally closed vacuum valve was equivalent to the currently available ASCO 8210G95 (3/4" NPT ports, 3/4" orifice, 5.0 Cv); the normally open vent valve was equivalent to the currently available ASCO 8210G35 (3/4" NPT ports, 3/4" orifice, 5.5 Cv). We used a GAST Mfg Corp. Regenair R5325A-2 blower (2.5 hp, 145 cfm open flow, maximum 60 inches water vacuum).

3.4.3 Pilot-Scale Crossflow Filter Test Rig Description

Figure 3-4 is the schematic of an existing Pilot-Scale Crossflow Filter Test Rig that was located in the rear of the Engineering Development Laboratory, Building 786-A. The filter and most of the 300 series stainless steel piping used for the rig was still in place from previous testing by Duignan (17). The slurry loop pumps, some instrumentation, and other minor equipment had been removed from the rig for reuse on other tasks and had to be replaced. Otherwise, only relatively minor alterations were needed for these tests.

For Batches 1 and 2, PVC and CPVC plastic pipe were used to quickly connect two 3-hp stainless steel centrifugal pumps in place of the three pumps previously used. Although these pumps were not built specifically to handle slurry, they had proved adequate in the past for low wt% solid slurries. (Their primary drawback was the need for frequent seal replacement when used with high wt% solid slurries.) The decision to concentrate the slurry to the maximum wt% possible for Batch 2 (gaining important filtration data) caused the pump seals to become the limiting factor during filtration. We also were unable to provide adequate cooling of the slurry at the maximum flow and maximum transmembrane pressure desired. Finally, maturing plant design led to the decision to replace the filter with a larger unit requiring more pumping power to operate.

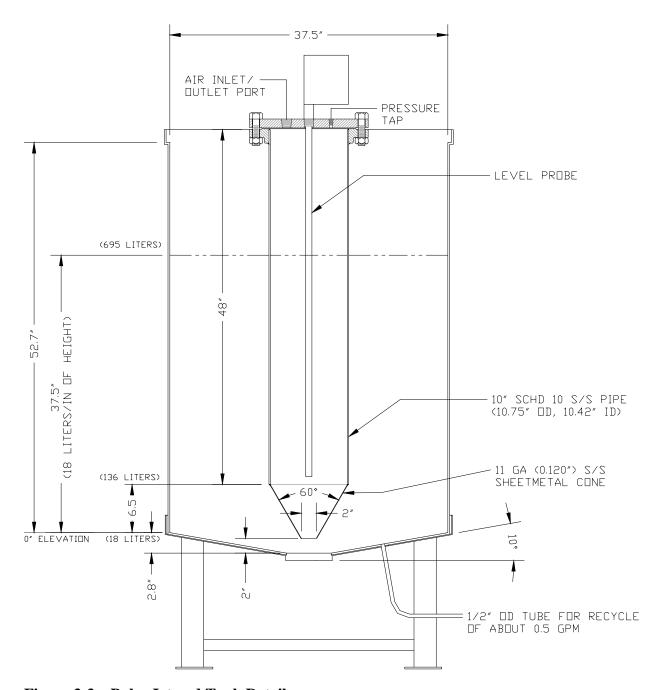


Figure 3-3. Pulse Jet and Tank Details

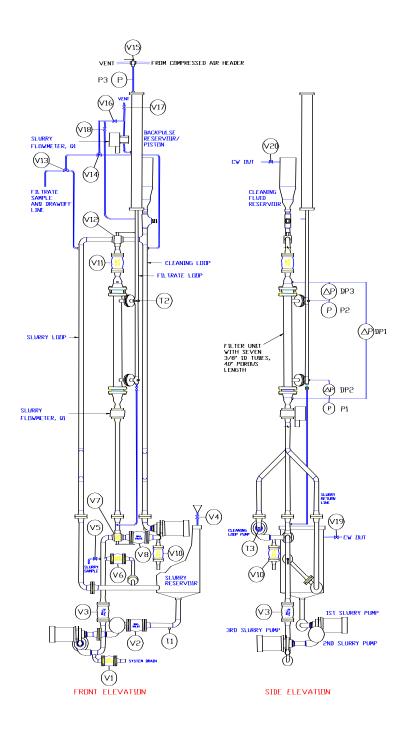


Figure 3-4. Pilot-Scale Crossflow Filter Test Rig

For Batches 3 and 4, the pumps were replaced by larger, slurry rated EPDM lined centrifugal pumps installed with 304 stainless piping. The new pumps incorporated double mechanical shaft seals with pressurized water between them. A closed loop seal water system (not shown in the schematic) consisting of a pump, tank, and cooling coil was installed for these two slurry pumps and the large recirculation loop pump on the precipitation rig. Throttle valves and rotameters were provided at each pump to allow appropriate setting of flow and pressure to the seals. During shakedown, the 5-hp, 208V, 3-phase motors originally provided for these new pumps were shown to be slightly undersized and unable to simultaneously provide the maximum flowrate at the maximum transmembrane pressure desired while using the larger filter. The motors were replaced with 10-hp, 480V, 3-phase motors. A heat exchanger was installed in the slurry loop to provide the necessary cooling for the high flow, high transmembrane pressure test matrix points.

For all batches, the slurry pump motors were manually controlled by variable frequency drives, providing excellent control of the flow.

The rig is approximately 25 feet tall and is serviced by a two-level mezzanine. The Crossflow Test Rig is made up of three basic flow loops:

- Slurry loop, which contains the two centrifugal pumps previously described, flowmeter, throttle valve, and crossflow filter. This loop serves as the primary flow path for circulating slurries. This loop has an internal volume of approximately 20 liters, excluding the slurry reservoir.
- Filtrate loop, which begins at the filter housing and allows the separated filtrate liquid to flow up through the backpulse system before returning to the top of the slurry loop to close the circuit. This loop has an internal volume of approximately six liters. Note that this loop has a three-way valve that can be positioned to draw off the filtrate to a collection tank rather than returning it to the slurry loop. This option is used during dewatering to concentrate the slurry.
- Cleaning loop, which enables cleaning of the crossflow filter in place without having to remove the slurry from the test rig. This loop has an internal volume of approximately 15 liters and contains its own a 3-hp centrifugal pump.

Two other flow circuits that are subsections of the other loops are the backpulse and the bypass loops:

• The backpulse loop is part of the filtrate loop and functions to reverse the flow of filtrate back through the filter. A pulse forces filtrate back through the filter elements in order to knock off built-up slurry cake on the inside diameter of the porous tubes.

For Batches 1 and 2, an air-driven backpulse piston assembly controlled the amount of filtrate used for a backpulse. The piston was adjusted to deliver a constant pressure pulse of 0.036 gal per ft² of filter tube inside surface area. This pulse was sufficient to generate a significant improvement in filtrate flux immediately following a backpulse generated by opening the V15 valve. The filtrate flow was interrupted for only about ten seconds during the backpulse operation. (The actual backpulse had a duration of only a few seconds.)

For Batches 3 and 4, the backpulse piston was replaced with a system more prototypical of the plant design. The new system used a flow-through pulsepot that could be isolated and pressurized with air just prior to backpulsing. When the pressurized pot was valved back to the crossflow filter housing, there was an initial high pressure pulse with a rapidly increasing flow. As the air in the pot expanded and dropped in pressure, the flow rate peaked then gradually dropped off to zero. A detailed discussion of the design and operational experience with this backpulse system is covered in a separate crossflow filter report (Duignan, 21) so it won't be discussed further in this report.

• The bypass loop is part of the slurry loop and routes part of the flow through valve V6 back to the reservoir. This loop was used to better control the slurry flow during slurry pump startup, improve mixing, and ensure the slurry remained well-mixed when the flow through the filter needed to be stopped.

The slurry reservoir is a 110-liter plastic tank that receives feed from the RPP Pilot Precipitation System. When necessary, direct addition to the slurry reservoir was made via the funnel attached to the V4 valve. The precipitated waste simulant in the slurry reservoir was kept well mixed utilizing the slurry pumps in the slurry loop drawing from the bottom of the tank.

3.4.4 Crossflow Filter

The crossflow filter is the primary component in the Crossflow Test Rig, used to establish filterability of the precipitate and associated operational characteristics under various flow conditions. Successful past operating experience (9), similarity to the planned RPP filter, and availability dictated the utilization of an existing Mott crossflow filter for Batches 1 and 2. The specifications for the filter unit tubes were:

Material 316 stainless steel (sintered metal)

Porosity nominal rated 0.1 micron

Length 40 inches

Diameter ³/₈-inch ID, ¹/₂-inch OD

Number of tubes 7

This filter is thoroughly described in Reference 9.

Plant design had matured while Batch 1 and 2 testing was being conducted, and we were asked to replace this filter with a similar but larger filter for Batches 3 and 4. The new Mott filter also had seven nominal rated 0.1 micron porous tubes, but the tubes were \(^{1}/_{2}\)-inch ID, \(^{5}/_{8}\)-inch OD, and 90 inches long. This filter is thoroughly described in a separate crossflow filter report (Duignan, 21) so it won't be discussed further in this report.

3.4.5 Instrumentation and Data Acquisition System

Most of the data collected during the precipitation reaction was recorded by either the Pilot Scale Precipitation Data Acquisition System (PSP DAS) as listed in Table 3-1 or the Pulse jet Mixed Tank Data Acquisition System (PJM DAS) as listed in Table 3-2. A few instruments were not connected to either DAS, so their readings were recorded manually in the logbook when appropriate.

A specific gravity hydrometer was used to measure the ratio of the density of the slurry sample compared to the density of pure water at 60 $^{\circ}$ F (15.6 $^{\circ}$ C) with a range of 1.000 to 1.600 g/ml and an accuracy of ± 0.005 g/ml. Readings from this instrument were recorded manually.

A variable frequency drive (VFD) was provided for the agitator with a range of 60 to 550 rpm with 5% accuracy. The speed was set manually and recorded in the logbook.

A VFD was also used with the large recirculation loop pump setup for 0 to 60 Hz with a stated accuracy of 0.010 Hz. A PID control loop on the DAS takes input from magnetic flow meter TR-03661 and outputs a signal to this VFD to control flow in the range of 0 to 50 gpm. Although the VFD setting was not recorded, the measured flow was recorded by the DAS as noted in Table 3-1.

Table 3-1. PSP DAS Channel List for Pilot-Scale Precipitation Test Facility

Chan	Instrument Label	Instrument Location	Range	Uncertainty	M&TE Number
0	HX Outlet TC T0	HX OUTLET	0 to 100°C	<u>+</u> 1.1°C	TR- 02953
1	Recirc Pump Outlet TC T1	PUMP DISCH	0 to 100°C	<u>+</u> 1.2°C	TR- 02948
2	Tank Bottom TC T2	TANK	0 to 100°C	±1.3°C	TR- 02947
3	Heater Outlet TC T3	HEATER OUT	0 to 100°C	<u>+</u> 0.9°C	TR- 02955
6	Recirc Pump Flow Q1	RECIRC FLOW	0-50gpm	<u>+</u> 0.2 gpm	TR- 03661
7	NaMnO ₄ Tank Flow Q2	REAGENT FLOW1	0-5gpm	<u>+</u> 0.3 gpm	TR- 03563
8	Sr(NO ₃) ₂ Tank Flow Q3	REAGENT FLOW2	0-6.2gpm	<u>+</u> 0.02 gpm	TR- 03670
9	Ammeter	TEMPERATURE CONTROLLER	0-200 amps	*	3-1982
10	Voltmeter	TEMPERATURE CONTROLLER	0-200 volts	*	3-1981

^{*} Uncertainty not determined. The ammeter and voltmeter information were recorded in the raw PSP DAS data simply to show when the heater was on or off.

Table 3-2. PJM DAS Channel List for Pulse jet Mixed Tank

Chan	Instrument Label	Instrument Location	Range	Uncertainty	M&TE Number
0	Pulse jet tube pressure	Pulse jet Flange	-3 to +24	<u>+</u> 0.08 psid	TR-03496
	P1		psid		
1	Pulse jet level L1	Inside Pulse jet	0 to 48"	<u>+</u> 0.14"	TR-03686
2	Recirc Pump Flow Q4	RECIRC FLOW	0-1.6 gpm	<u>+</u> 0.02 gpm	TR-03680
3	Tank Bottom TC-T10	TANK	0 to 100°C	<u>+</u> 1.6°C	TR-01517
4	Heater Outlet TC-T8	HEATER OUT	0 to 100°C	<u>+</u> 1.6°C	TR-02973

The uncertainty introduced through the use of the 16-bit data acquisition systems (DAS) was insignificant (<0.1% reading) and was not included in Table 3-2 values.

There was a temperature controller that could be connected either to the 6.8 kw heater or the 3.6 kw heater as required. It was controlled based on the output from an uncalibrated type E thermocouple, and had a safety shutdown based on the output from a separate uncalibrated type E thermocouple. Although the settings on this controller were not recorded, the actual temperature of the tank measured by calibrated thermocouples was recorded as noted in Table 3-1.

Most of the measurement equipment used to collect data during filtration was recorded by the Crossflow Data Acquisition System (Xflow DAS) as listed in Table 3-3 and Table 3-4.

Table 3-3. Xflow DAS Channel List for Crossflow Filter Test Rig During Batches 1 and 2

Chan	Instrument Label	Instrument Location	Range	Uncertainty	M&TE Number
D I/O	V15 Solenoid	Solenoid Control	Open or closed	N/A	Solenoid
0	Filtrate TC T2	FLTRT (°C)	0 to 100 °C	±1.0 °C	TR-02927
1	Cleaning Loop TC T3	CL LOOP (°C)	0 to 100 °C	±1.2 °C	TR-02930
2	Slurry Loop TC T1	SL LOOP (°C)	0 to 100 °C	<u>+</u> 1.4 °C	TR-02929
3	Upper Ambient TC T4	UP AMB (°C)	0 to 100 °C	±1.3 °C	TR-02925
4	Bottom Ambient TC T5	BOT AMB (° C)	0 to 100 °C	<u>+</u> 1.4 °C	TR-02926
6	Bottom DP DP2	BOT DP (psid)	0-100 psid	<u>+</u> 0.1 psid	TR-00532
7	Filter Pressure-P1	FLTR (psig)	0-100 psig	<u>+</u> 0.1 psig	TR-02917
8	Filter DP-DP1	FLTR DP (psid)	0-26 psid	<u>+</u> 0.03 psid	TR-03495
9	Top DP-DP3	TOP DP (psid)	0-100 psid	<u>+</u> 0.8 psid	TR-03115
10	Filtrate Pressure P2	FLTRATE (psig)	0-91 psig	<u>+</u> 0.2psig	TR-03109
11	Piston Pressure P3	PISTON (psig)	0-151 psig	<u>+</u> 0.3 psig	TR-02145
12	Filter Flow Q2	FLTR FLOW (gpm)	0-1.21 gpm	<u>+</u> 0.01 gpm	TR-20353
13	Slurry Flow Q1	SL FLOW (gpm)	0-100 gpm	<u>+</u> 0.4 gpm	TR-20350
14	HI Filter Flow Q3	FLTR FLOW (gpm)	0-5 gpm	<u>+</u> 0.01gpm	TR-03562

Table 3-4. Xflow DAS Channel List for Crossflow Filter Test Rig During Batches 3 and 4

Chan	Instrument Label	Instrument Location	Range	Uncertainty	M&TE Number
D I/O	V15 Solenoid	Solenoid Control	Open or closed	N/A	Solenoid
0	Filtrate TC T2	FLTRT (°C)	0 to 100 °C	<u>+</u> 1.0 °C	TR-02927
1	Cleaning Loop TC T3	CL LOOP (°C)	0 to 100 °C	±1.0 °C	TR-02930
2	Slurry Loop TC T1	SL LOOP (°C)	0 to 100 °C	<u>+</u> 0.9 °C	TR-02929
3	Upper Ambient TC T4	UP AMB (°C)	0 to 100 °C	±1.0 °C	TR-02925
4	Bottom Ambient TC T5	BOT AMB (° C)	0 to 100 °C	±1.0 °C	TR-02926
6	Bottom DP DP2	BOT DP (psid)	0-100 psid	<u>+</u> 0.11 psid	TR-03553
7	Filter Pressure-P1	FLTR (psig)	0-100 psig	<u>+</u> 0.1 psig	TR-02917
8	Filter DP-DP1	FLTR DP (psid)	0-26 psid	<u>+</u> 0.045 psid	TR-03495
9	Top DP-DP3	TOP DP (psid)	-11-91 psid	<u>+</u> 0.14 psid	TR-03109
10	Filtrate Pressure P2	FLTRATE (psig)	0-151 psig	<u>+</u> 0.39psig	TR-03115
11	Piston Pressure P3	PISTON (psig)	0-151 psig	<u>+</u> 0.18 psig	TR-00532
12	Filter Flow Q2	FLTR FLOW (gpm)	0-1.21 gpm	<u>+</u> 0.01 gpm	TR-20353
13	Slurry Flow Q1	SL FLOW (gpm)	0-100 gpm	<u>+</u> 0.5 gpm	TR-20350
14	HI Filter Flow Q3	FLTR FLOW (gpm)	0-5 gpm	<u>+</u> 0.02gpm	TR-03562
15	Quickpulse Q4	BACKPULSE FLOW (gpm)	0-5 gpm	<u>+</u> 0.02gpm	TR-03276

Instruments not connected to the Xflow DAS, but used during the experiment include the following:

- A Type J thermocouple with accuracy of 1.1 °C used for the Sample Drying Oven with local indication
- A VFD for each Slurry Pump manually controlled from 0 to 60 Hz with an accuracy of 0.010 Hz

The uncertainties in the instrument readings were based on multiple point calibrations with reference standards. Calibration sheets are included in the task logbook (4).

The velocity through the crossflow filter tubes is calculated based on the slurry loop flow measured by magnetic flowmeter Q1 divided by the cross-sectional area of seven tubes with 3/8" nominal ID. The uncertainty in this calculated value is the combination of the instrument uncertainty and the uncertainty in the flow area. A typical flow in the slurry loop exceeds 10 gpm. The uncertainty in the instrument is therefore $\pm 3.6\%$ or less. An accurate measurement of the average inside diameter of the filtrate tubes was impossible since it may vary down the length of each filter tube and may vary from tube to tube. Even measuring the diameter at the filter tube ends is difficult because of the weldments to the tube sheets. For these reasons, the uncertainty in flow area will be based on the manufacturer's stated tolerances. For a Mott 3/8" tube the diameter tolerances are stated to be +0.025 inch and -0.005 inch. The diameter of the filter tubes can presumably vary anywhere between those tolerances; therefore, for this task the diameter uncertainty will be taken as ± 0.015 inch, or 4% of the nominal diameter. The combined uncertainty is $(3.6\%^2 + 4.0\%^2)^1/2 = +5.4\%$.

The transmembrane pressure is calculated by averaging the differential pressure between the slurry side and the filtrate side at the top (DP3) and bottom (DP2) of the filter. The uncertainty for these instruments at about 40 psid is 0.74 psid or about $\pm 1.8\%$. The combined uncertainty would be about $(1.8\%^2 + 1.8\%^2)^{1/2} = +2.5\%$.

The filtrate flow is calculated based on either magnetic flowmeters Q2 or Q3, depending on the range of flow, divided by the inside surface area of the filtrate tubes. A typical flow rate is 0.5 gpm. The instrument uncertainty is about ± 0.014 gpm, or $\pm 2.8\%$. The uncertainty of the inside diameter of the filter tubes has already been addressed above. The uncertainty of the length of the filter tubes was estimated from in-house measurements as $\pm 1/8$ inch, or $\pm 0.3\%$ of the nominal 40" length. The combined uncertainty is about $(2.8\%^2 + 4.0\%^2 + 0.3\%^2)^1/2 = +4.9\%$.

3.5 SIMULATED WASTE DESCRIPTION

3.5.1 AN-107 Simulant

Approximately 650-liter volumes of Envelope C (Eibling and Nash, 15) Tank AN-107 simulant were used for the initial feed of Batch 1 and 2. The non-radioactive AN-107 simulant recipe was chemically similar to the radioactive waste characterized in Hanford Tank AN-107 and included transition metals, complexing agents, other organic compounds and entrained solids. An approved recipe from Eibling and Nash (15) was used per the Task Plan (1).

Optima Chemical was selected as the vendor to supply 1300 liters of AN-107 simulant supernate according to the recipe shown in Table 3-5. A miscommunication in the form (hydrated vs. anhydrous) of sodium EDTA specified resulted in the partial simulant obtained from Optima containing 12% more sodium EDTA than desired. (See Appendix A for a more complete explanation.) Small deviations in the water content caused the volume to be about 1.5% less than specified resulting in correspondingly higher density and chemical concentrations.

Table 3-5. AN-107 Recipe Quantities Before Precipitating Reagents Added

AN-107 Supernate Sim	ulant (based on AN-107	· Sr/Tru	C-5 5M recir	ne)				
		, 0.,				4200 1:40		
Vessel 1			Camanaunad		amounts for		rs	
		Famouda	Compound	Water		on-water	0	Na
Compounds	Formula	Formula Weight	mass, grams	mass, grams	mass, grams	Conc., mg/mL	Conc., Molar	Content, grams
Water charged to tank	Tomula	vveignt	260000.00	260000.00	grams	mg/mc	IVIOIAI	granis
Calcium Nitrate	Ca(NO ₃) ₂ .4H ₂ O	236.15	2838.93	865.56	1973.36	1 518	0.00925	
Cerium Nitrate	Ce(NO ₃) ₃ .6H ₂ O	434.22	133.40	33.18	100.22		0.00024	
Cesium Nitrate		194.91	22.25	33.10	22.25		0.00024	
Copper Nitrate	CsNO ₃			20.05			0.00030	
_ ' '	Cu(NO ₃) ₂ .3H ₂ O	241.6	93.30	20.85	72.45			
Ferric Nitrate	Fe(NO ₃) ₃ .9H ₂ O	403.99	9967.23	3996.86	5970.37		0.01898	
Lanthanum Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	115.64	28.84	86.80		0.00021	
Lead nitrate	Pb(NO ₃) ₂	331.2	505.64		505.64		0.00117	
Magnesium Nitrate	Mg(NO ₃) ₂ .6H ₂ O	256.41	215.02	90.57	124.45		0.00065	
Manganous Chloride	MnCl ₂ .4H ₂ O	197.9	1653.44	601.55	1051.89		0.00643	
Neodymium Nitrate	Nd(NO ₃) ₃ .6H ₂ O	438.34	237.60	58.54	179.06	0.138	0.00042	
Nickel Nitrate	Ni(NO ₃) ₂ .6H ₂ O	290.81	2141.06	795.14	1345.92	1.035	0.00566	
Potassium Nitrate	KNO ₃	101.11	3754.22		3754.22	2.888	0.02856	
Strontium Nitrate	Sr(NO ₃) ₂	211.63	13.01		13.01	0.010	0.00005	
Zinc Nitrate	Zn(NO ₃) ₂ .6H ₂ O	297.47	168.04	61.01	107.03	0.082	0.00043	
Zirconyl Nitrate	ZrO(NO ₃) ₂ .XH ₂ O	249.23	155.92	11.27	144.65	0.111	0.00048	
EDTA	Na ₂ EDTA	372.24	5917.79	572.32	5345.47		0.01223	809
HEDTA	HEDTA	278.26	1763.87	0.2.02	1763.87		0.00488	
Sodium Gluconate	CH ₂ OH(CHOH) ₄ COONa	218.14	3201.21		3201.21		0.01129	337
Glycolic Acid	HOCH ₂ COOH	76.05	21954.11		21954.11		0.22206	
Citric Acid	HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	7696.54		7696.54		0.03081	
Nitrilotriacetic Acid	N(CH ₂ COOH) ₃	191.14	464.72		464.72		0.00187	
Iminodiacetic Acid		133.1	4923.03		4923.03		0.02845	
	HN(CH ₂ CO ₂ H) ₂		163.21					
Boric acid	H ₃ BO ₃	61.83			163.21		0.00203	500
Sodium Chloride	NaCl	58.44	1482.80		1482.80		0.01952	583
Sodium Fluoride	NaF	41.99	239.66		239.66		0.00439	131
Sodium Chromate	Na ₂ CrO ₄	161.97	446.98		446.98		0.00212	127
Sodium Sulfate	Na ₂ SO ₄	142.04	9945.79		9945.79		0.05386	3220
Potassium Molybdate	K ₂ MoO ₄	238.14	72.45		72.45	0.056	0.00023	
Total Weights in vessel	1		340286.84	267135.70	73151.15			5208
Vessel 2 (added to cont	ents of vessel 1 after mixi	ng)		Recipe a	amounts for	1300 liter	rs	
, l		O,	Compound	Water		on-water		Na
		Formula	mass,	mass,	mass,	Conc.,	Conc.,	Content,
Compounds	Formula	Weight	grams	grams	grams	mg/mL	Molar	grams
Water charged to tank			260000.00	260000.00				
Sodium Hydroxide	NaOH	40	20596.52		20596.52	15.843	0.39609	11838
Aluminum Nitrate	AI(NO ₃) ₃ .9H ₂ O	375.13	4375.31	1889.48	2485.83	1.912	0.00897	
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	3622.08	2058.22	1563.86	1.203	0.00733	657
Sodium Formate	NaHCOO	68.01	12809.40		12809.40	9.853	0.14488	4330
Sodium Acetate	NaCH ₃ COO.3H ₂ O	136.08		766.49			0.01092	326
Sodium Oxalate	Na ₂ C ₂ O ₄	134			1025.21		0.00589	352
Sodium Carbonate	Na ₂ CO ₃	105.99	120865.25		120865.25		0.87719	52433
Water used to clean ves								
Total added from vesse			425225.33	264714.19	160511.14			69936
Vessel 3 (added to com						1200 84	re	
`	DILIEU VESSEI I dIIU Z		Compound	Water	amounts for		3	NI-
after mixing)		Formula	Compound mass,	mass,	mass,	on-water Conc.,	Conc.,	Na Content,
Compounds	Formula	Weight	grams	grams	grams	mg/mL	Molar	grams
Water charged to tank			130000.00	130000.00	-	-		,
Sodium Nitrate	NaNO ₃	84.99	242371.35		242371.35	186.440	2.19366	65562
Sodium Nitrite	NaNO ₂		74589.14		74589.14			24852
	_	69.00	74309.14		14009.14	31.316	0.83154	24002
Water used to clean ves		404004.00	404004.00					
Water added at end to b	• .		404364.00		240000 42			0011
Total added to previous	mixture		851324.49		316960.49			90414
Overall totals			1616836.66	1066213.88	550622.78			165558
Volume, ml	 		1300000.00					
Calculated density, gm/s	mı		1.2437					

Table 3-5. AN-107 Recipe Quantities Before Precipitating Reagents Added - continued

Complete /	AN-107 Sim	nulant before reagent add	dition						
Entrained S	Solids and P	errhenate added in EDL (1)		Recipe	amounts for	650 liters	S	
				Compound	Water	Non-water			
							(3)	(3)	Na
			Formula	mass,	mass,	mass,	Conc.,	Conc.,	Content,
Compounds		Formula	Weight	grams	grams	grams	mg/mL	Molar	grams
Sodium Per		NaReO ₄	273.2	11.16		11.16		0.00006	
Aluminum (` '	Al ₂ O ₃	101.96	225.30		225.30		0.00340	
Calcium Ph		Ca ₃ (PO ₄) ₂	310.18	2.93		2.93		0.00001	
Chromic Ox		Cr ₂ O ₃	151.99	15.47		15.47		0.00016	
Ferric Oxide	е	Fe ₂ O ₃	159.69	192.75		192.75	0.297	0.00186	
Manganese	Dioxide	MnO ₂	86.94	124.78		124.78	0.192	0.00221	
Silicon Diox	kide (2)	SiO ₂	60.09	21.10		21.10	0.032	0.00054	
Sodium Ox	alate	Na ₂ C ₂ O ₄	134	1381.39		1381.39	2.125	0.01586	474
Sodium Ca	rbonate	Na ₂ CO ₃ .H ₂ O	124.01	1306.38	189.62	1116.76	1.718	0.01385	484
Sodium Flu	oride	NaF	41.99	202.10		202.10	0.311	0.00740	111
Sodium Sul	lfate	Na ₂ SO ₄ .10H ₂ O	322.2	166.97	93.28	73.69	0.113	0.00035	24
Sodium Pho	osphate	Na ₃ PO ₄ .12H ₂ O	380.12	373.97	212.51	161.46	0.248	0.00065	68
Total EDL a	additions to	supernate simulant, grams	5	4024.30	495.41	3528.89			1162
Mass of sur	pernate sim	ulant used per batch, gran	าร	808418	533107	275311			82779
Volume of s	supernate s	imulant used, ml		650000					
Sodium mo	larity of sup	ernate simulant							5.54
Total super	nate simula	nt and EDL additions, grar	ns	812443					83941
Calculated	density of fi	nal simulant (neglecting sr	nall						
	•	adding solids), gm/ml		1.2499					1
Notes: (1)	All solids a	dded were less than or equ	ual to 5 m	nicrons in size	9				
(2)	The recipe	specified 0.1754 moles of	sodium a	aluminosilicat	e, Na ₂ .Al ₂ O ₃ .	(SiO ₂) ₂ .5H ₂	O that wa	s unavaila	able
, ,		iers. The author of the rec							
0.3058 moles = 21.08 grams of SiO2 and 0.1754 moles = 17.88 grams of Al_2O_3 instead. The 17.88 grams of									
	Al ₂ O ₃ was added to the 207.38 grams Al ₂ O ₃ in the original entrained solids recipe for a total of 225.26 grams								
	Al_2O_3 to be		2 0	9		,			•
(3)	(3) An error was made when the regine concentrations were reported in the previous interim reports. The								

⁽³⁾ An error was made when the recipe concentrations were reported in the previous interim reports. The concentrations had been calculated using the double batch size of 1300 liters rather than the half batch size of 650 liters.

Entrained solids (0.5 w%) and sodium perrhenate were added to the purchased partial supernate simulant in the Precipitate Tank at the EDL to complete the AN-107 simulant. The recipe for the EDL additions is included in Table 3-5.

3.5.2 AN-102 Simulant

Originally several tests were planned using Envelope C Tank AN-102 simulant. A recipe was developed by Eibling based on Chemical Characterization of an Envelope C Sample from Hanford Tank 241-AN-102 (22) and approved for use. Optima Chemical was selected as the vendor to supply 4700 liters of the supernate; EDL would add the entrained solids shortly before adding the reagents.

To develop a simulant, small samples of the actual radioactive waste are collected and analyzed. Generally, the analyses of multiple samples do not agree completely, and an average composition is determined. The types and amounts of inorganic salts are determined to provide the proper mix of elements. Some compromise must be made because the final solution cannot contain an excess of either positive or negative ions, the charges must balance. Balancing the charges is most easily done by making a small adjustment in the amount of some cation that is present in a large amount. This technique generally minimizes the impact on the simulant properties. In the original simulant development the decision was made to balance the charges by adjusting the carbonate content.

During one of the pilot precipitation review meetings there was considerable discussion of the simulant factoring in results of ongoing research at other sites. These discussions concluded that the amount of carbonate in the simulant could be a more significant factor during precipitation than originally thought. It was decided to rework the recipe, balancing the charges by adjusting the nitrite and nitrate concentrations rather than the carbonate concentration. A new recipe was developed by Eibling (23) and approved as AN-102 R2 simulant. This recipe required adjustment, or remediation, of the simulant purchased from Optima. Table 3-6 shows the original simulant formulation, the remediation recipe, and the combined total.

Entrained solids (0.1 w%) were added to the remediated partial supernate simulant in the Precipitate Tank at the EDL to complete the AN-102 simulant. The recipe for the EDL additions is included in Table 3-6.

Nonradioactive surrogates for the transuranic compounds were cerium nitrate, lanthanum nitrate, and neodymium nitrate. These surrogates were selected in sufficient quantity to be comparable to those selected by Nash et al. (10) for bench scale studies. This selection assumes that the lanthanides react chemically in the same manner as the actinides. The decision had been made to eliminate the technetium ion exchange from the WTP by the time Batch 3 was to be run. Therefore, sodium perrhenate was not added to the simulant.

Detailed comparison between the recipe and actual simulant formulations for both Batch 3 and 4 are shown in Appendix B.

Table 3-6. AN-102 Recipe Quantities Before Precipitating Reagents Added

AN-102R2 Simulant			Optima	Recipe	Remediati	ion Recipe			Combined					
			Chemical	Chemical	Chemical	Chemical	Chemical							
			including	without	including	without	including							
			water	water	water	water	water	Chemica	al without y	water	Na co	ntent		
		Formula	mass,	mass.	mass.	mass.	mass.	mass.	Conc	Conc	mass.	Conc		
Compounds	Formula	Weight	grams	grams	grams	grams	grams	grams	mg/mL	Molar	grams	Molar		
Total water (excluding	water of hydration)	- 3	320717.44		283241.14	ű	603958.58	-						
Cadmium Nitrate	Cd(NO ₃) ₂ .4H ₂ O	308.48	0.00	0.00	110.83	84.96	110.83	84.96	0.105	0.00034				
Calcium Nitrate	Ca(NO ₃) ₂ .4H ₂ O	236.15	767.92	533.79	1149.42	798.97	1917.34	1332.76	1.641	0.01000				
Cerium Nitrate	Ce(NO ₃) ₃ .6H ₂ O	434.22	0.00	0.00	91.76	68.94	91.76	68.94	0.085	0.00020				
Cesium Nitrate	CsNO ₃	194.91	11.34	11.34	4.13	4.13	15.47	15.47	0.019	0.00010				
Cobalt Nitrate	Co(NO ₃) ₃ .6H ₂ O	353.03	0.00	0.00	10.93	7.59	10.93	7.59	0.009	0.00003				
Copper Nitrate	Cu(NO ₃) ₂ .2.5H ₂ O	241.60	23.62	19.22	35.23	28.67	58.85	47.89	0.059	0.00030				
Ferric Nitrate	Fe(NO ₃) ₃ .9H ₂ O	403.99	67.21	40.26	133.24	79.81	200.45	120.07	0.148	0.00061				
Lanthanum Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	11.26	8.45	68.31	51.27	79.57	59.73	0.074	0.00023				
Lead nitrate	Pb(NO ₃) ₂	331.20	77.15	77.15	119.57	119.57	196.72	196.72	0.242	0.00073				
Manganous Chloride	MnCl ₂ .4H ₂ O	197.90	16.73	10.65	53.10	33.78	69.83	44.43	0.055	0.00043				
Neodymium Nitrate	Nd(NO ₃) ₂ .6H ₂ O	376.36	0.00	0.00	163.46	116.55	163.46	116.55	0.144	0.00039				
Nickel Nitrate	Ni(NO ₃) ₂ .6H ₂ O	290.81	537.11	337.64	833.55	523.99	1370.66	861.63	1.061	0.00580				
Potassium Nitrate	KNO ₃	101.11	1462.79	1462.79	1883.58	1883.58	3346.37	3346.37	4.121	0.04076				
Rubidium Nitrate	RbNO ₃	147.48	0.00	0.00	9.55	9.55	9.55	9.55	0.012	0.00008				
Strontium Nitrate	Sr(NO ₃) ₂	211.63	6.63	6.63	0.00	0.00	6.63	6.63	0.008	0.00004				
Zinc Nitrate	Zn(NO ₃) ₂ .6H ₂ O	297.47	6.69	4.26	8.44	5.38	15.13	9.64	0.012	0.00006				
Zirconyl Nitrate	ZrO(NO ₃) ₂ .H ₂ O	249.23	11.99	11.12	12.25	11.37	24.24	22.49	0.028	0.00012				
EDTA	Na ₂ C ₁₀ H ₁₄ N ₂ O ₈ .2H ₂ O	372.24	1002.34	905.41	1373.63	1240.78	2375.97	2146.19	2.643	0.00786	293	0.016		
HEDTA	C ₁₀ H ₁₈ N ₂ O ₇	278.26	0.00	0.00	194.19	194.19	194.19	194.19	0.239	0.00100	48			
Trisodium HEDTA	Na ₃ C ₁₀ H ₁₅ N ₂ O ₇	344.21	64.55	64.55	0.00	0.00	64.55	64.55	0.079	0.00023	13	0.001		
Sodium Gluconate	CH ₂ OH(CHOH) ₄ COONa	218.14	280.49	280.49	810.73	810.73	1091.22	1091.22	1.344	0.00616	115	0.006		
Citric Acid	HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	180.69	180.69	3250.38	3250.38	3431.07	3431.07	4.225	0.02199				
Nitrilotriacetic Acid	N(CH ₂ COOH) ₃	191.14	67.13	67.13	107.47	107.47	174.60	174.60	0.215	0.00112				
Iminodiacetic Acid	HN(CH ₂ CO ₂ H) ₂	133.10	1189.74	1189.74	1830.68	1830.68	3020.42	3020.42	3.720	0.02795				
Succinic Acid	C ₄ H ₆ O ₄	118.04	9.45	9.45	14.80	14.80	24.25	24.25	0.030	0.00025				
Glutaric Acid	C ₅ H ₈ O ₄	132.12	0.00	0.00	43.82	43.82	43.82	43.82	0.054	0.00041		ĺ		
Adipic Acid	C ₆ H ₁₀ O ₄	146.14	0.00	0.00	164.93	164.93	164.93	164.93	0.203	0.00139				
Azelaic Acid	C ₉ H ₁₆ O ₄	188.22	0.00	0.00	689.69	689.69	689.69	689.69	0.849	0.00451				
Suberic Acid	C ₈ H ₁₄ O ₄	174.20	0.00	0.00	1213.14	1213.14	1213.14	1213.14	1.494	0.00858				
Ammonium Acetate	NH ₄ CH ₃ COO	77.08	0.00	0.00	416.09	416.09	416.09	416.09	0.512	0.00665		ĺ		

AN-102R2 Simulant			Optima	Recipe	Remediati	ion Recipe			Combined	d		
			Chemical	Chemical	Chemical	Chemical	Chemical					
			including	without	including	without	including					
			water	water	water	water	water	Chemical	without H	ydration	Na coi	ntent
									_			_
Compounds	Formula	Formula Weight	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	Conc., mg/mL	Conc., Molar	mass, grams	Conc., Molar
Boric acid	H ₃ BO ₃	61.83		60.52	79.02	79.02	139.54	139.54	٠	0.00278	grams	Wolai
Sodium Chloride	NaCl	58.44	1653.53	1653.53	3535.58	3535.58		5189.11		0.10935	2041	0.109
Sodium Fluoride	NaF	41.99	1283.45	1283.45	1235.85	1235.85	2519.30	2519.30		0.07389	1379	
Sodium Sulfate	Na ₂ SO ₄	142.04	5068.08	5068.08	7317.24	7317.24	12385.32	12385.32		0.10738	4009	
Potassium Molybdate	K ₂ MoO ₄	238.14	37.80	37.80	36.55	36.55	74.35	74.35	0.092	0.00038		
Sodium Hydroxide	NaOH	40.00	37961.38	37961.38	26654.63	26654.63	64616.01	64616.01	79.576	1.98941	37138	1.989
Aluminum Nitrate	AI(NO ₃) ₃ .9H ₂ O	375.13	53931.28	30641.04	59274.31	33676.68	113205.59	64317.72	79.209	0.37165		
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	5280.63	2279.96	9376.45	4048.36	14657.08	6328.32	7.793	0.04749	2659	0.142
Sodium Tungstate	Na ₂ WO ₄ .2H ₂ O	329.86	0.00	0.00	199.52	177.74	199.52	177.74	0.219	0.00074		
Sodium Metasilicate	Na ₂ SiO ₃ .9H ₂ O	284.14	0.00	0.00	67.18	28.88	67.18	28.88	0.036	0.00029		
Sodium Formate	NaHCOO	68.01	3119.22	3119.22	5314.92	5314.92	8434.14	8434.14	10.387	0.15273	2851	0.153
Sodium Glycolate	HOCH₂COONa	98.01	3708.63	3708.63	5361.59	5361.59	9070.22	9070.22	11.170	0.11397	2128	0.114
Sodium Acetate	NaCH ₃ COO.3H ₂ O	136.08	446.70	269.44	0.42	0.25	447.12	269.69	0.332	0.00405	76	0.004
Sodium Oxalate	Na ₂ C ₂ O ₄	134.00	200.38	200.38	267.24	267.24	467.62	467.62	0.576	0.00430	160	0.009
Sodium Chromate	Na ₂ CrO ₄	161.97	208.22	208.22	311.57	311.57	519.79	519.79	0.640	0.00395	148	0.008
Sodium Carbonate	Na ₂ CO ₃	105.99	34207.58	34207.58	30115.85	30115.85	64323.43	64323.43	79.216	0.74739	27904	1.495
Sodium Nitrate	NaNO ₃	84.99	31044.24	31044.24	40472.77	40472.77	71517.01	71517.01	88.075	1.03630	19346	1.036
Sodium Nitrite	NaNO ₂	69.00	32780.27	32780.27	32945.07	32945.07	65725.34	65725.34	80.943	1.17308	21899	1.173
Total before dilution			537504.20	189744.50	520603.80	205384.61	1058108.00	395129.11			122208	6.544
Volume, ml							812308.00					
Calculated density, gm/ml						1.303						
Water to dilute to 6.0 M Na						67692.00					1	
Total after dilution							1125800.00					6.041
Volume, ml							880000.00					
Calculated density, gm/ml						1.279						

Table 3-6. AN-102 Recipe Quantities Before Precipitating Reagents Added - continued

AN-102R2 Entrained solids								
			Recipe a	mounts for	812 liters			
			Compound	Water	Non-water			
		Formula	mass,	mass,	mass,			
Compounds	Formula	Weight	grams	grams	grams			
Aluminum Oxide	Al_2O_3	101.96	174.3	0.00	174.30			
Barium Sulfate	BaSO ₄	233.4	0.23	0.00	0.23			
Calcium Oxalate	CaC ₂ O ₄ .	146.11	1.5	0.00	1.50			
Calcium Tungstate	CaWO ₄	287.93	1.27	0.00	1.27			
Cerium Oxalate	Ce(C ₂ O ₄	544.29	0.23	0.00	0.23			
Chromic Oxide	Cr ₂ O ₃	151.99	10.72	0.00	10.72			
Ferric Hydroxide	FeO(OH	88.85	7.84	0.00	7.84			
Lanthanum Oxalate	$La_2(C_2O_2)$	722.03	0.23	0.00	0.23			
Lead Sulfate	PbSO ₄	303.25	0.92	0.00	0.92			
Manganese Dioxide	MnO ₂	86.94	1.73	0.00	1.73			
Neodymium Oxalate	Nd ₂ (C ₂ O	732.69	0.46	0.00	0.46			
Nickel Oxide	NiO	74.71	0.12	0.00	0.12			
Silicon Oxide	SiO ₂	60.09	0.58	0.00	0.58			
Sodium Carbonate	Na ₂ CO ₃ .	124.01	492.36	0.00	492.36			
Sodium Fluoride	NaF	41.99	36.31	0.00	36.31			
Sodium Oxalate	Na ₂ C ₂ O ₄	134.00	185.60	0.00	185.60			
Sodium Phosphate	Na ₃ PO ₄ .	380.12	141.56	0.00	141.56			
Sodium Sulfate	Na ₂ SO ₄ .	322.04	96.26	0.00	96.26			
Zinc Oxalate	ZnC ₂ O ₄ .:	189.45	0.23	0.00	0.23			
Zirconium Oxide	ZrO ₂	60.09	0.23	0.00	0.23			
Total solids added			1152.68	0.00	1152.68			

3.6 TESTING

Complete testing details for each batch are documented in the test matrix (shown in Table 1-2), the test procedures, the laboratory logbooks, and the Data Acquisition System logs. The operating procedures and the logbooks will be retrievably archived by WSRC for inspection as needed. The DAS logs are stored in Excel format and are included on the report CD-ROM. The first page of each log is included in Appendix J to show the file name and format.

3.6.1 General test procedure

The correct amount and type of supernate simulant was loaded into the clean precipitation tank and dilution water added as required to make up the quantities shown in Table 1-2. Entrained solids were added according to the recipe. The mixer was adjusted to the appropriate level and the recirculation pump flow was adjusted to the proper rate. The tank contents were heated if necessary. A sample of the simulant was collected.

If a caustic adjustment was needed, either solid or 50% sodium hydroxide was added in the proper amount. (When 50% caustic was used the dilution water was reduced appropriately due to the water content of the caustic solution.) The temperature was brought to that specified in Table 1-2 and stabilized. A sample of the caustic adjusted simulant was collected.

The recycle flow of the previously mixed strontium nitrate was adjusted to the specified rate. At the correct time the reagent was valved to the precipitation tank and the flow rate quickly adjusted for the minor deviations due to changing the flow path. After the correct time, the reagent flow to the precipitation tank was stopped. After a sufficient wait time to ensure the strontium nitrate was fully mixed into the precipitation tank, a sample was collected.

The recycle flow of the previously mixed sodium permanganate was adjusted to the specified rate. At the correct time the reagent was valved to the precipitation tank and the flow rate quickly adjusted for the minor deviations due to changing the flow path. After the correct addition time, the reagent flow to the precipitation tank was stopped.

The tank was maintained at the specified temperature for the specified duration. Samples were collected periodically from the tank and filtered as quickly as possible. After the specified reaction time, the crossflow filter feed tank was filled. The slurry was cooled to about 25 °C and filtration was started. (An 18-hour slurry cooldown rate was imposed for Batch 4A.)

While dewatering the slurry, the crossflow filter tank was maintained between about 60 and 100 liters by transferring slurry from the precipitation tank as needed. The precipitation tank was continually mixed during filtering.

3.6.2 Specific Test Summaries

Table 3-7 through Table 3-12 provide a chronological summary of the actions during testing of each precipitation batch.

 Table 3-7. Batch 1 Test Summary

Time	M/D, 2001	Action	Condition/Comment
10:36	9/25	Filled Precipitate Tank w/AN-107 simulant supernate, solids and Sodium Perrhenate	Well mixed at 50 °C and Task Plan Conditions for Batch #1
10:10	9/26	Test Conditions reestablished and first Slurry Sample (1L+1S) taken	Sample vacuum filtered and solids dried before reagent addition completed.
13:17	9/26	Started strontium nitrate addition	Addition of 11910 gms of strontium nitrate in 53370 gms of water completed at 13:25 hours
13:35	9/26	Started sodium permanganate addition	Addition of 5415 gms of sodium permanganate in 36395 gms of water completed at 13:39 hours
13:40	9/26	First vapor sample 1G completed	Sample to ADS for analysis.
13:47	9/26	Second Slurry Sample (2L+2S) taken 7.5 minutes ARA	Sample vacuum filtered and solids dried
13:50	9/26	Second vapor sample 2G completed	Sample to ADS for Analysis
13:54	9/26	Third Slurry Sample (3L+3S) taken 15 minutes ARA	Sample vacuum filtered and solids dried
14:09	9/26	Fourth Slurry Sample (4L+4S) taken 30 minutes ARA	Sample vacuum filtered and solids dried
14:32	9/26	Fifth Slurry Sample (5L+5S) taken 1 hour ARA	Sample vacuum filtered and solids dried
14:34	9/26	Third vapor sample 3G completed	Sample to ADS for Analysis
15:34	9/26	Sixth Slurry Sample (6L+6S) taken 2 hours ARA	Sample vacuum filtered and solids dried
16:32	9/26	Seventh Slurry Sample (7L+7S) taken 3 hours ARA	Sample vacuum filtered and solids dried
16:37	9/26	Fourth vapor sample 4G completed	Sample to ADS for Analysis
17:35	9/26	Eighth Slurry Sample (8L+8S) taken 4 hours ARA	Sample vacuum filtered and solids dried
17:48	9/26	Stopped Temperature Controller	Precipitate Tank starts cooling naturally at about 1.5 °C per hour
18:00	9/26	Feed from Precipitate Tank to Slurry Reservoir commences	Precipitated slurry cooled to 25 °C using chilled water through cooling coils in Slurry Reservoir
18:29	9/26	Began filtering slurry at various velocities and TMPs	Initial Backpulse performed
19:40	9/26	Ninth Slurry Sample (9L+9S) taken from crossflow slurry loop 6 hours ARA	Sample vacuum filtered and solids dried
21:08	9/26	Two one liter filtrate samples (PF1-1 & PF1-2) taken for Lasentec analysis.	7.5 hours reaction time after reagent addition completed
21:35	9/26	Tenth Slurry Sample (10L+10S) taken from crossflow slurry loop 480 minutes after reagent addition completed.	Sample vacuum filtered and solids dried.
10:13	9/28	Established filtrate production of 0.05 gpm per ft ² of filter inside surface area.	V=16.3 ft/sec, TMP=42.2 psi
12:53	9/28	Took third filtrate sample (PF1-3) for Lasentec.	47.2 hours reaction time after reagent addition completed
15:43	10/1	Took fourth filtrate sample (PF1-4) for Lasentec.	122 hours reaction time after reagent addition completed
15:08	10/2	Took fifth filtrate sample (PF1-5) for Lasentec.	145 hours reaction time after reagent addition completed
14:00	11/13	Completed pulling a 100 ml ADS Sample 3-172181 from AN-107 Slurry Drum Batch #1	Sample submitted to ADS for Microtrac Analysis of slurry solids
11:30	11/20	Collected several liters of the Batch #1 Filtrate from the drum in storage for ADS Sample 172483 solids analysis	The samples collected were vacuum filtered and dried to produce approximately one gram of solids for XRD, ICPMS and ICP-ES analysis.

Table 3-8. Batch 2 Test Summary

Time	M/D, 2001 UOS	Action	Condition/Comment
12:45	10/11	Filled Precipitate Tank w/AN-107 simulant supernate, solids and Sodium Perrhenate	Well mixed at 20 °C and Task Plan Conditions for Batch #2
08:54	10/23	Started caustic addition of 34 liters at 19 M NaOH to raise NaOH concentration by 1M.	Test Conditions for one hour before caustic addition include Recirculation Pump flow 9.64 gpm, Agitator 327.6 rpm, TCs 20 °C.
09:15	10/23	Caustic adjustment completed and first Slurry Sample (1L+1S) taken	Sample vacuum filtered and solids before reagent addition completed.
09:25	10/23	Started strontium nitrate addition	Addition of 11910 grs strontium nitrate in 53365 gms of water completed at 09:32
09:43	10/23	Started sodium permanganate addition	Addition of 5389 gms of sodium permanganate in 37271 gms of water completed at 09:47
09:47	10/23	First vapor sample 1G completed	Sample to ADS for analysis.
09:54	10/23	7.5 minute ARA Slurry Sample (2L+2S) collected	Sample vacuum filtered and solids dried
09:57	10/23	Second vapor sample 2G completed	Sample to ADS for Analysis
10:03	10/23	15 minute ARA Slurry Sample (3L+3S) collected	Sample vacuum filtered and solids dried
10:18	10/23	30 minute ARA Slurry Sample (4L+4S) collected	Sample vacuum filtered and solids dried
10:48	10/23	1 hour ARA Slurry Sample (5L+5S) collected	Sample vacuum filtered and solids dried
11:00	10/23	Third vapor sample 3G completed	Sample to ADS for Analysis
11:47	10/23	2 hour ARA Slurry Sample (6L+6S) collected	Sample vacuum filtered and solids dried
12:45	10/23	3 hour ARA Slurry Sample (7L+7S) collected	Sample vacuum filtered and solids dried
12:55	10/23	Fourth vapor sample 4G completed	Sample to ADS for Analysis
13:00	10/23	First filtrate sample (PF2-1) taken for Lasentec.	3.2 hours ARA
13:44	10/23	4 hour ARA Slurry Sample (8L+8S) collected	Sample vacuum filtered and solids dried
14:44	10/23	Filled Crossflow Filter Slurry Reservoir and started filtering	V=10.25 ft/sec, TMP=48.74 psid
15:44	10/23	6 hour ARA Slurry Sample (9L+9S) collected	Sample vacuum filtered and solids dried
17:44	10/23	8 hour Slurry Sample (10L+10S) collected	Sample vacuum filtered and solids dried.
00:15	10/24	Took second filtrate sample (PF2-2) for Lasentec.	14.5 hours ARA
07:30	10/24	Took third filtrate sample (PF2-3) for Lasentec.	21.7 hours ARA
16:00	10/24	Took fourth filtrate sample (PF2-4) for Lasentec.	30.2 hours ARA
00:05	10/25	Took fifth filtrate sample (PF2-5) for Lasentec.	38.3 hours ARA
07:30	10/25	Took sixth filtrate sample (PF2-6) for Lasentec.	45.7 hours ARA
14:00	11/13	Completed pulling a 100 ml ADS Sample 172182 from AN-107 Slurry Drum Batch #2	Sample submitted to ADS for Microtrac Analysis of slurry solids
11:30	11/20	Completed pulling several liters of Coliwasa samples from the Batch #2 Filtrate in drums #2 and #3 in storage for ADS Sample 172484 solids analysis	The samples collected were vacuum filtered and dried to produce approximately one gram of solids for XRD, ICP-MS and ICP-ES analysis.
11:00	01/22 2002	Completed pulling a one liter liquid sample from AN- 107 Batch #2 Filtrate Drum for Analysis by the Mobile Lab	ICP-ES elemental analysis performed for comparison with ADS 170454

 Table 3-9. Batch 3C Test Summary

Time	M/D, 2002	Batch 3C Action	Condition/Comment
10:30	9/30	Filled Precipitate Tank w/AN-102R2 simulant supernate, entrained solids and 68 liters of DIF water.	Initial and one week aged simulant samples were pulled for Batch 3C.
10:52	10/1	Confirmed test conditions established for thirty minutes.	Test Conditions before reagent addition include Recirculation Pump flow 9.64 gpm, Agitator 508 rpm, TCs 25±2 °C.
11:00	10/1	Started strontium nitrate addition	Addition complete at 11:18
11:33	10/1	Slurry Sample taken	Sample vacuum filtered and solids dried
11:48	10/1	Started sodium permanganate addition	Addition complete at 12:05
12:03	10/1	Vapor sample 1GC and 2VOA completed	Sample to ADS for analysis.
12:14	10/1	7.5 min ARA Slurry Sample collected	Sample vacuum filtered and solids dried
12:25	10/1	15 minute ARA Slurry Sample collected	Sample vacuum filtered and solids dried
12:39	10/1	30-minute ARA Slurry Sample collected	Sample vacuum filtered and solids dried
13:09	10/1	1 hr ARA Slurry Sample collected	Sample vacuum filtered and solids dried
14:08	10/1	2 hr ARA Slurry Sample collected	Sample vacuum filtered and solids dried
15:08	10/1	3 hr ARA Slurry Sample collected	Sample vacuum filtered and solids dried
16:15	10/1	4 hr ARA Slurry Sample collected	Sample vacuum filtered and solids dried
16:30	10/1	Filled Crossflow Filter Slurry Reservoir and started	Feed and Bleed established to maintain Slurry
		filtering	Reservoir
17:00	10/1	4 hr ARA crossflow filtrate sample collected	Lasentec analysis showed no significant solids
00:05	10/2	12 hr ARA crossflow filtrate sample collected	For Lasentec determination of solids
00:55	10/2	12 hr ARA Composite Filtrate Tank sample collected	For Lasentec determination of solids
06:15	10/2	Completed filling Auxiliary Feed Tank from Precipitate Tank	Lag storage for Slurry Reservoir while Batch 3B formulated
08:25	10/2	Completed Batch 3C transfer from the Precipitate Tank	Stopped logging precipitation data
09:00	10/2	21 hr ARA crossflow filtrate sample collected	Lasentec analysis showed no significant solids
09:23	10/2	21 hr ARA Composite Filtrate Tank sample collected	Lasentec analysis showed very few solids
11:48	10/2	24 hr ARA Composite Filtrate Tank sample collected	For Lasentec determination of solids
13:08	10/3	50 hr ARA Concentrated slurry sample collected	For Microtrac ADS 3-18695 at RPP request
13:50	10/3	50 hr ARA Composite Filtrate Tank sample collected	Submitted to mobile lab for analysis
11:10	10/4	73 hr ARA Composite Filtrate Tank sample collected after vigorous agitation	Lasentec analysis showed no significant solids
07:30	10/7	105 hr ARA Composite Filtrate Tank sample collected	Submitted to mobile lab for analysis
06:45	10/8	128 hr ARA Composite Filtrate Tank sample collected	Submitted to mobile lab for analysis
06:45	10/9	152 hr ARA Composite Filtrate Tank sample collected	Submitted to mobile lab for analysis
12:00	10/9	159 hr ARA Composite Filtrate Tank sample collected	Lasentec analysis showed few solids
15:00	10/9	162 hr ARA Composite Filtrate Tank sample collected	Filtered sample, submitted filtrate to mobile lab
11:00	10/10	Turbidity Sample taken from Composite Filtrate Tank	Dark stored sample Turbidity=0.159
		for comparison with samples stored exposed to light.	Light stored sample Turbidity=0.279
15:23	10/10	186 hr ARA Composite Filtrate Tank sample collected	Filtered sample, submitted filtrate to mobile lab
14:20	10/11	208 hr ARA Composite Filtrate Tank sample collected	Filtered sample, submitted filtrate to mobile lab
06:30	10/14	272 hr ARA Composite Filtrate Tank sample collected	Lasentec analysis showed few solids

 Table 3-10. Batch 3B Test Summary

Time	M/D, 2002	Batch 3B Action	Condition/Comment
14:10	10/21	Filled Precipitate Tank w/AN-102R2 simulant supernate, entrained solids and 68 liters of DIF water.	Initial and one week aged simulant samples were pulled for Batch 3B. 5 liters to CUF
07:00	10/22	Completed addition of 32.2 kg of NaOH with chiller on and sample taken	Sample vacuum filtered slowly due to reverse solubility SrCO3 and solids dried
08:04	10/22	Test conditions established for thirty minutes.	Test Conditions before reagent addition include Recirculation Pump flow 9.64 gpm, Agitator 508 rpm, TCs 50±2 °C.
09:00	10/22	Started strontium nitrate addition	Addition complete at 09:43
09:58	10/22	Slurry Sample taken	Sample vacuum filtered and solids dried
10:13	10/22	Started sodium permanganate addition	Addition complete at 10:41
10:43	10/22	Vapor sample 1GC and 2VOA completed	Sample to ADS for analysis.
10:49	10/22	7.5 minute ARA Slurry Sample collected	Sample vacuum filtered and solids dried
10:57	10/22	15 minute ARA Slurry Sample collected	Sample vacuum filtered and solids dried
11:12	10/22	Slurry Sample taken at 30 minutes ARA	Sample vacuum filtered and solids dried
11:45	10/22	Slurry Sample taken at 60 minutes ARA	Sample vacuum filtered and solids dried
12:44	10/22	Slurry Sample taken at 120 minutes ARA	Sample vacuum filtered and solids dried
13:44	10/22	Slurry Sample taken at 180 minutes ARA	Sample vacuum filtered and solids dried
14:48	10/22	Slurry Sample taken at 240 minutes ARA	Sample vacuum filtered and solids dried
14:49	10/22	Valved in chiller to cool slurry	Cooling slurry from 50±2 °C to 25±2 °C.
15:02	10/22	Filled Crossflow Filter Slurry Reservoir and started filtering	Feed and Bleed established to maintain Slurry Reservoir
16:35	10/22	Initial Lasentec Sample taken from filtrate line on Cross-flow Test Rig	5 hours reaction time ARA
17:00	10/22	Precipitate Tank Agitator speed reduced to 327 rpm.	% load compares with Batch 1 and 2 Agitator
17:55	10/22	Started loading Auxiliary Feed Tank with 300 liters	Auxiliary feed to slurry reservoir Precip Batch 3A as lag storage
18:35	10/22	Loaded carboys with 40 liters of slurry for CUF	CUF filter operation support.
19:15	10/22	All tanks empty of Batch 3B slurry	Precip Tank filled for Batch 3A
14:06	10/23	Sample taken from Composite Filtrate Tank	Sample to Mobile Lab
15:23	10/23	Lasentec Sample taken from Composite Filtrate Tank	25 hours reaction time ARA
06:19	10/24	Sample taken from Composite Filtrate Tank	Sample to Mobile Lab
13:50	10/25	Sample taken from Composite Filtrate Tank	Sample to Mobile Lab
11:00	10/26	Sample taken from Composite Filtrate Tank	Sample to Mobile Lab
12:10	10/27	Sample taken from Composite Filtrate Tank	Sample to Mobile Lab
07:00	10/28	Sample taken from Composite Filtrate Tank	Sample to Mobile Lab
06:40	10/29	Sample taken from Composite Filtrate Tank	Sample to Mobile Lab
08:00	10/29	Lasentec Sample taken from Composite Filtrate Tank	167 hours reaction time ARA
15:25	11/4	Three 20 ml samples of solids from Filtrate Composite Tank	Sample to Mobile Lab
10:33	11/5	Post-filtration sample of solids from Filtrate Composite Tank	Sample to ADS for XRD

 Table 3-11.
 Batch 3A Test Summary

Time	M/D, 2002	Batch 3A Action	Condition/Comment
13:14	10/23	Filled Precipitate Tank w/AN-102R2 simulant supernate, entrained solids and 62.7 liters of DIF water.	Initial and one week aged simulant samples were pulled for Batch 3A.
14:30	10/23	Completed addition of 26.1 kg of NaOH with chiller on and sample taken	Sample vacuum filtered and solids dried
16:42	10/23	Confirmed test conditions matching Batch 3B established for thirty minutes.	Test Conditions before reagent addition include Recirculation Pump flow 9.64 gpm, Agitator
18:00	10/23	Ct	507 rpm, TCs 50±2 °C. Tank contents allowed to cool
08:15	10/23	Stopped Temperature Controller, pump and Agitator Batch 3A reheating to 50±2 °C started	Reestablish test conditions
09:50	10/24	Test conditions matching Batch 3B established	Test Conditions before reagent addition include
09.30	10/24	Test conditions matching Batch 3B established	Recirculation Pump flow 9.64 gpm, Agitator 507 rpm, TCs 50±2 °C.
10:40	10/24	Stopped Temperature Controller, pump and Agitator	Tank contents allowed to cool
13:45	11/5	Obtained 5 gallon container for hourly filtrate samples	Proportional samples based on filtrate flow
06:30	11/6	Establishing new test conditions at customer direction (identical to 3B except for lower temperature)	Test Conditions before reagent addition include Recirculation Pump flow 9.64 gpm, Agitator 507 rpm, TCs 25±2 °C.
08:00	11/6	Confirmed test conditions established for thirty minutes.	Test Conditions before reagent addition include Recirculation Pump flow 9.64 gpm, Agitator 507 rpm, TCs 25±2 °C.
09:00	11/6	Started strontium nitrate addition	Addition complete at 09:40
09:45	11/6	Slurry Sample taken	Sample vacuum filtered and solids dried
10:10	11/6	Started sodium permanganate addition	Addition complete at 10:39
10:46	11/6	Slurry Sample taken at 7.5 minutes ARA	Sample vacuum filtered and solids dried
10:53	11/6	Slurry Sample taken at 15 minutes ARA	Sample vacuum filtered and solids dried
11:08	11/6	Vapor sample 1GC and 2VOA completed	Sample to ADS for analysis.
11:08	11/6	Slurry Sample taken at 30 minutes ARA	Sample vacuum filtered and solids dried
11:39	11/6	Slurry Sample taken at 60 minutes ARA	Sample vacuum filtered and solids dried
12:39	11/6	Slurry Sample taken at 120 minutes ARA	Sample vacuum filtered and solids dried
13:39	11/6	Slurry Sample taken at 180 minutes ARA	Sample vacuum filtered and solids dried
14:39	11/6	Slurry Sample taken at 240 minutes ARA	Sample vacuum filtered and solids dried
14:41	11/6	Fill of Crossflow Filter Slurry Reservoir commenced and started filtering	Feed and Bleed established to maintain Slurry Reservoir
16:20	11/6	631 ml sample taken for Composite Filtrate Tank	Put into 5 gallon container storage
16:20	11/6	Initial Lasentec Sample taken from filtrate line on Cross-flow Test Rig	6 hours reaction time after reagent addition completed
17:23	11/6	1167 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
18:11	11/6	1003 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
19:11	11/6	857 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
20:11	11/6	730 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
20:11	11/6	Lasentec Sample taken from filtrate line on Cross-flow Test Rig	10 hours reaction time after reagent addition completed
21:11	11/6	601 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
22:11	11/6	565 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
23:11	11/6	529 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
24:11	11/6	456 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
24:11	11/6	Lasentec Sample taken from crossflow filtrate line	14 hours reaction time ARA
06:11	11/7	2400 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
06:11	11/7	Lasentec Sample taken from crossflow filtrate line	20 hours reaction time ARA
07:11	11/7	347 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
08:11	11/7	328 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
09:11	11/7	347 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage

Table 3-11. Batch 3A Test Summary - continued

Time	M/D, 2002	Batch 3A Action	Condition/Comment
10:11	11/7	383 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
10:11	11/7	Lasentec Sample taken from crossflow filtrate line	24 hours reaction time ARA
11:11	11/7	383 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
12:11	11/7	364 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
13:11	11/7	347 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
14:11	11/7	310 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
14:11	11/7	Lasentec Sample taken from crossflow filtrate line	28 hours reaction time ARA
15:11	11/7	292 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
16:11	11/7	292 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
17:00	11/7	292 ml sample taken for Composite Filtrate Tank	Added to 5 gallon container storage
10:25	11/13	Lasentec Sample taken from 5 gallon composite filtrate	168 hours reaction time ARA
		storage container	
08:16	11/20	Lasentec Sample taken from 5 gallon composite filtrate	335 hours reaction time ARA
		storage container	

 Table 3-12.
 Batch 4A Test Summary

Time	M/D, 2003	Batch 4A Action	Condition/Comment
15:43	3/10	Filled Precipitate Tank w/AN-102R2 simulant supernate, entrained solids and 14 liters of DIF water.	Initial and one week aged simulant samples were pulled for Batch 4A. Press Regulator at 16.5 psig, Pressure Stop at 22.00 inches, Pulse Tube Pressure Time is 1.49 sec
07:03	3/11	Confirmed test conditions established for thirty minutes.	Test Conditions before reagent addition include Pulse Tube pressure time 1.46 sec, Pressure Regulator at 17 psig, Recirc flow 0.5 gpm and Tank Bottom TC 50±2 °C.
07:11	3/11	Completed addition of 23 liters of 50 wt% NaOH with heater on	Pulse Tube Pressure Time is 1.51 sec with Pressure stop set at 22.4 inches
07:31	3/11	Reagent Tank Recirc pumps started	Flow adjusted to 0.45 gpm
07:53	3/11	Vapor sampling syringe attached to V64	Preparation for vapor sampling complete
08:11	3/11	Caustic addition sample removed from V53	Sample stabilized
08:15	3/11	Started strontium nitrate addition	Addition complete at 08:47
08:57	3/11	Pressure Stop Set changed to 23.4 inches	Pulse Tube Pressure Time is 1.63 sec
09:04	3/11	Slurry Sample taken	Sample stabilized
09:16	3/11	Pressure Stop Set changed to 24.4 inches	Pulse Tube Pressure Time is 1.63 sec
09:17	3/11	Started sodium permanganate addition	Addition complete at 09:38
09:23	3/11	Pressure Stop Set changed to 24.9 inches	Pulse Tube Pressure Time is 1.63 sec
09:30	3/11	Pressure Stop Set changed to 25.4 inches	Pulse Tube Pressure Time is 1.63 sec
09:33	3/11	Pressure Stop Set changed to 26.4 inches	Pulse Tube Pressure Time is 1.63 sec
09:35	3/11	Pressure Stop Set changed to 26.5 inches	Pulse Tube Pressure Time is 1.63 sec
09:40	3/11	Vapor sample 1GC and 2VOA completed	Sample to ADS for analysis.
09:49	3/11	Stopped heater due to exothermic precip reaction	Bottom Tank Temp 54.42 °C
09:50	3/11	Slurry Sample taken at 7.5 minutes ARA	Sample stabilized
09:57	3/11	Slurry Sample taken at 15 minutes ARA	Sample stabilized
10:01	3/11	Pressure Stop Set changed to 27 inches	Pulse Tube Pressure Time is 1.62 sec
10:12	3/11	Slurry Sample taken at 30 minutes ARA	Sample stabilized
10:18	3/11	Recorded observations during sodium permanganate addition about 09:17	Recycle from bottom of tank yellow (strontium carbonate solids) until about 20 seconds after the first pulse. It then quickly changed to an orange color. Meanwhile, the purple sodium permanganate spread rapidly across the top of the tank, initially changing to a dark green around the edges. About 20 seconds after the second pulse, the recycle stream darkened abruptly. After each pulse, the recycle stream darkened until at the fifth and sixth pulse, the color was a steady brown.
10:30	3/11	Pressure Stop and Vacuum Stop at 27 inches	Pulse Tube Pressure Time is 1.64 sec
10:40	3/11	Slurry Sample taken at 1 hour ARA	Sample stabilized
10:44	3/11	Started Temperature Controller	Tank Bottom TC 50±2 °C.
11:39	3/11	Slurry Sample taken at 2 hours ARA	Sample Stabilized
12:26	3/11	Connected V55 valve to discharge line	Preparation for Slurry Reservoir transfer
12:39	3/11	Slurry Sample taken at 3 hours ARA	Sample stabilized
13:33	3/11	Temperature Controller off	Tank Bottom TC 50±2 °C.
13:39	3/11	Slurry Sample taken at 4 hours ARA	Sample stabilized. Commencing 18 hour cool down.
15:03	3/11	Observed Pulse Tube Pressure Time increase to 1.71 sec as PJM Tank contents cooled.	Tank Bottom temperature at 49 °C. Pressure Regulator reset to 18 psig and Press Stop reset to 27.5 inches. Pulse Tube Pressure Time is 1.62 sec

 Table 3-12.
 Batch 4A Test Summary - continued

Time	M/D, 2003	Batch 4A Action	Condition/Comment
17:24	3/11	Fan installed	Cool down accelerated
19:08	3/11	Pressure Stop Set changed to 26.6 inches	Pulse Tube Pressure Time is 1.6 sec
22:28	3/11	Recirc Pump leak observed	Recirc flow secured. Pump flow had been restricted by bent metal ball seal and not slurry accumulation. Estimated maximum leakage of 4.5 liters slurry.
24:00	3/11	Recirc Pump replaced	Tank Bottom temperature at 36.7 °C.
01:34	3/12	Pressure Stop Set changed to 25.6 inches	Pulse Tube Pressure Time is 1.6 sec. Tank Bottom temperature at 35.1 °C.
02:52	3/12	Control Program stopped reading data.	PJM Tank blow out during program restart. Pressure Stop Set changed to 26.6 inches
03:01	3/12	Pressure Stop Set changed to 26 inches	Tank Bottom temperature at 32.98 °C. Fan speed increased to maximum. Pulse Tube Pressure Time is 1.58 sec.
03:17	3/12	Pressure Stop Set changed to 25.7 inches	Tank Bottom temperature at 32.6 °C. Pulse Tube Pressure Time is 1.58 sec.
03:27	3/12	Pressure Stop Set changed to 25.6 inches	Pulse Tube Pressure Time is 1.62 sec.
04:16	3/12	Pressure Stop Set changed to 25.4 inches	Tank Bottom temperature at 31.24 °C. Pulse Tube Pressure Time is 1.6 sec.
04:24	3/12	Pressure Stop Set changed to 25.3 inches	Pulse Tube Pressure Time is 1.63 sec.
06:46	3/12	Pressure Stop Set changed to 25.0 inches	Pulse Tube Pressure Time is 1.6 sec.
07:28	3/12	Slurry Sample number 11 pulled	Sample stabilized. Tank Bottom temperature at 27.9°C. Commenced transfer to Surry Reservoir in Cross flow Test Rig.
07:37	3/12	Pressure Regulator setting reduced to 15 psig. Pressure Stop Set changed to 22.0 inches	Pulse Tube Pressure Time is 1.59 sec.
07:44	3/12	Pressure Stop Set changed to 21.8 inches	Pulse Tube Pressure Time is 1.56 sec.
07:46	3/12	Pressure Stop Set changed to 21.6 inches	Pulse Tube Pressure Time is 1.60 sec.
07:54	3/12	Pressure Stop Set changed to 19.6 inches and Vacuum Stop Set changed to 26.0 inches	Pulse Tube Pressure Time is 1.65 sec.
07:58	3/12	Vacuum Stop Set changed to 24.0 inches	Pulse Tube Pressure Time is 1.55 sec.
08:06	3/12	Pressure Stop Set changed to 18.6 inches and Vacuum Stop Set changed to 20.0 inches	Pressure Regulator reduced to 12 psig. Pulse Tube Pressure Time is 1.66 sec.
08:14	3/12	Vacuum Blower off. Pressure Stop Set changed to 19.6 inches	Pressure Regulator reduced to 9 psig. Pulse Tube Pressure Time is 1.71 sec.
08:15	3/12	Pressure Stop Set changed to 20.6 inches	Pulse Tube Pressure Time is 1.54 sec.
08:18	3/12	Pressure Stop Set changed to 19.6 inches	Pulse Tube Pressure Time is 1.71 sec.
09:11	3/12	Pressure Regulator reduced to 8 psig. Pressure Stop Set changed to 19.0 inches	Pulse Tube Pressure Time is 1.71 sec. Tank level by tape is 23.8 inches versus level probe indicating 22.2 inches.
09:12	3/12	Pressure Stop Set changed to 20.0 inches	Pulse Tube Pressure Time is 1.46 sec.
09:13	3/12	Pressure Stop Set changed to 19.5 inches	Pulse Tube Pressure Time is 1.58 sec.
10:11	3/12	Pressure Stop Set changed to 15.5 inches	Pulse Tube Pressure Time is 2.05 sec. Tank level by tape is 21.75 inches versus level probe indicating 20.4 inches.
10:13	3/12	Pressure Stop Set changed to 18.5 inches	Pulse Tube Pressure Time is 1.46 sec. Blow out
10:14	3/12	Pressure Regulator reduced to 8.5 psig. Pressure Stop Set changed to 19.5 inches	Pulse Tube Pressure Time is 1.06 sec.

Table 3-12. Batch 4A Test Summary - continued

Time	M/D, 2003	Batch 4A Action	Condition/Comment
10:16	3/12	Pressure Stop Set changed to 18.5 inches	Pulse Tube Pressure Time is 1.41 sec.
10:18	3/12	Pressure Stop Set changed to 18.0 inches	Pulse Tube Pressure Time is 1.29 sec.
11:00	3/12	Pressure Stop Set changed to 17.9 inches	Pulse Tube Pressure Time is 1.26 sec.
11:01	3/12	Pressure Stop Set changed to 17.8 inches	Pulse Tube Pressure Time is 1.30 sec.
11:03	3/12	Pressure Stop Set changed to 17.8 inches	Pulse Tube Pressure Time is 1.32 sec.
11:04	3/12	Pressure Stop Set changed to 17.0 inches	Pulse Tube Pressure Time is 1.30 sec.
11:06	3/12	Pressure Stop Set changed to 16.5 inches	Pulse Tube Pressure Time is 1.58 sec.
11:07	3/12	Pressure Stop Set changed to 16.4 inches	Pulse Tube Pressure Time is 1.55 sec.
11:10	3/12	Pressure Stop Set changed to 16.2 inches	Pulse Tube Pressure Time is 1.74 sec.
11:12	3/12	Pressure Stop Set changed to 16.3 inches	Pulse Tube Pressure Time is 1.72 sec.
12:07	3/12	Pressure Stop Set changed to 15.85 inches	Pulse Tube Pressure Time is 1.26 sec.
13:02	3/12	Pressure Stop Set changed to 15.95 inches	Pulse Tube Pressure Time is 1.07 sec.
13:36	3/12	Pressure Stop Set changed to 15.85 inches	Pulse Tube Pressure Time is 0.68 sec.
13:43	3/12	Stopped pulse and vented tube	Tank Level 14.26 inches per probe. Recirc
			flow reduced to 0.84 gpm to reduce foaming.
00:14	3/13	Stopped recirc Pump	Unable to maintain recirc flow as too little
			slurry remaining.
01:30	3/13	Disconnected transfer line from V55 and capped end.	Used JABSCO pump to suck out foam from
		Opened drain and pumped 3 liters out of PJM Tank for	PJM Tank for feed to Slurry Reservoir. Filled
		final feed to Slurry Reservoir.	Post Filtration Tank with agitator running.

3.7 SAMPLE HANDLING CONCERNS

3.7.1 Deadend Filtration Times

Collecting representative samples from tanks containing slurries is always problematical. One-liter samples were collected from the precipitation tank. Although these were very large in comparison to the amount needed for analysis, they were small in comparison to the contents of the tank. In an attempt to collect a representative sample, the sample lines were continually flushed back to the tank through three-way valves, so they would continually contain fresh sample. As described in the equipment section of this report, an isokinetic sample takeoff was provided. Since the pump recycle line was a 1½-inch pipe, the ½-inch OD sample tube was actually small in comparison, but still large in terms of sample flow rate. The greatest variation in sample contents will occur when the sample line is opened and closed, because the velocities will not be matched until full flow is established. The one-liter samples were intended to help minimize the chance of unintentional separation of solids from the liquid during these flow transitions.

Experience was gained as experimentation progressed leading to improved sample handling and pretreatment prior to analysis. For Batch 1, the one-liter samples were collected and filtered through 0.2 micron filter papers placed into 0.2 micron filter cups. The use of filter paper was intended to allow more accurate weight determinations since the solids could be easily removed on the filter paper for drying. However, it turned out that the deadend filtration was much slower than anticipated, in some cases taking many hours to complete. A sample collected 7.5 minutes after reagent addition, but requiring hours to filter, can certainly not be considered to provide the snapshot of precipitating reaction kinetic conditions that was desired.

For Batch 2, the filter paper was eliminated and the entire filter cup was placed in the oven for drying. This speeded up the filtration, but a sample could still take a few hours to filter completely.

For Batch 3 experiments, a much bigger vacuum line was used to attach the filter cups to the pump. This speeded up the filtration so most of them could be completed in about 30 minutes. The sample collected after addition of the strontium nitrate was a notable exception. It still took many hours to filter that sample.

An additional complication was that samples collected from heated precipitation batches cooled down as filtration took place. This was especially significant for the slowly filtering sample collected after strontium nitrate addition. Strontium carbonate has a strong solubility dependence on temperature. This dependence is opposite that of most salts, with the solubility being higher in cool solutions. As hot samples were being filtered, the solids content in the liquid above the filter changed visually from as much as 50% of the volume to less than 5% as the solution cooled. Clearly, the initial filtrate that passes through the filter will have a significantly lower amount of strontium carbonate than the filtrate that is collected after the sample has cooled.

For Batch 4, a one-liter sample was still collected, but only the first 200 ml of filtrate was collected and submitted for analysis.

3.7.2 Sample Stability

It became apparent as experimentation progressed that the samples were not stable. Archived samples of filtrate formed precipitants that settled to the bottom, and crystals that adhered to the sides of the bottle. These changes occurred even in samples placed in cardboard boxes to shield them from light. The light was considered a catalyst for further precipitation with the permanganate over time.

Variations in the length of time between collection and analysis could result in significant variations in the analysis. When this instability became apparent after the Batch 2 experiment, attempts were made to minimize the time delay before analysis. This was not always possible. During the analysis of the Batch 3B samples, the ICP-ES machine broke down. The 3 and 4 hour ARA filtrate samples could not be run for a few days after the other samples. Comparison of the analytical results clearly shows that this delay had a marked effect. Likewise, the archived samples could not be used to improve the analysis since they had the same instability problem.

For Batch 4 the filtrate samples were immediately diluted and acidified in preparation for the ICP-ES machine before being submitted to the analytical groups. Arrangements were made to analyze slurry samples immediately after collection, even if it required someone to be held over on overtime.

In general, the analysis of samples from the later experiments can be considered to be more reliable than the earlier experiments. Most importantly, the Batch 4 samples taken from the most critical pulse jet mixed precipitation were all either acid-stabilized prior to submittal, or run immediately by the analytical group.

3.8 TYPICAL CALCULATIONS

For Batch 1, the solids filtered out of one-liter samples increased from 4.0 grams before precipitation to 41.4 grams after precipitation. Based on a filtrate density of 1.24, the solids content was 41.4 / (1240 + 41.4) * 100% = 3.2 wt%. For Batch 2 the solids filtered out of one-liter samples increased from 4.0 grams before precipitation to 45 grams after precipitation, for a calculated solids content of 3.5 wt%. Note that these solids included soluble salts left behind when the damp filtrate was dried.

For Batches 3 & 4 the solids analysis was done by the analytical group. A portion of the slurry sample was dried to determine the total solid content. The remaining slurry was filtered and the filtrate dried to determine the soluble solid content. These two values were then used to calculate the insoluble solid content.

The concentrations of elements in the treated liquid as a function of time after reagent addition were determined by collecting and analyzing samples as shown in Appendix C through Appendix H. In order to make an accurate comparison, the concentrations after reagent additions need to be corrected for the effect of dilution by the reagents. To make this correction, all concentrations after reagents were added must be multiplied by the appropriate mass dilution factor MD defined in Equation 1:

Equation 1
$$MD = \frac{(\text{mass of simulant} + \text{mass of all additions})}{(\text{mass of simulant})}$$

Using Batch 2 for example, after the caustic addition the mass dilution factor was

MD = (795691 grams simulant + 51860 grams caustic) / (795691 grams simulant) = 1.07.

After all reagents were added the mass dilution factor was

MD = (795691 grams + 51860 grams caustic + 65275 grams strontium nitrate solution + 42660 grams sodium permanganate solution) / (795691 grams simulant) = 1.20.

A substantial step change occurs in strontium concentration when the reagents are added. There were 11910 grams of strontium nitrate containing 4931 grams of strontium added to the simulant in Batch 2. By calculation, the dilution-corrected concentration of strontium would approach (4931) / (795691) = 6200 μ g/gm if it remained in solution. Similarly, there were 5389 grams of sodium permanganate containing 2086 grams of manganese added. By calculation, the dilution-corrected concentration of manganese would approach (2086) / (795691) = 2622 μ g/gm. However, since the precipitation reactions are very rapid, these very high concentrations were not captured by any of the samples.

As a common measure of the removal efficiency for an element, the initial mass of the element in the feed is divided by the mass remaining in the treated liquid. This measure is called the decontamination factor (DF).

DF Element "A" =
$$\frac{\text{(mass of element "A" in simulant)}}{\text{(mass of element "A" in treated liquid)}}$$

DF Element "A" =
$$\frac{\text{(mass concentration of element "A" in simulant)}}{\text{(mass concentration of element "A" in treated liquid)(MD)}}$$

Again, use Batch 2 for example. The ADS-measured cerium concentration in the simulant before precipitation was 26.4 μ g/gm. Four hours after all the precipitating reagents were added, the concentration dropped to 2.33 μ g/gm.

The 4-hour DF_{Ce} =
$$(26.4) / ((2.33)(1.20)) = 9.4$$
.

An alternate measure of the decontamination is the percent removed calculated as follows:

% Removed =
$$\frac{\text{(mass of element in simulant) (mass of element in treated liquid)}}{\text{(mass of element in simulant)}} \times (100\%)$$

% Removed =
$$\frac{\text{(concentration in simulant) (concentration in treated waste)(MD)}}{\text{(concentration in simulant)}} \times (100\%)$$

For cerium in Batch 2 the 4 hour % Removed = $((26.4)-(2.33)(1.20)) / (26.4) \times (100\%) = 89.4\%$.

The removal of the radioactive isotope strontium-90 from the real waste is primarily due to the isotopic dilution that occurs because of the large addition of non-radioactive strontium as a reagent. The pilot precipitation experiments used non-radioactive simulants, so the isotopic dilution effect cannot be experimentally determined. However, the maximum possible decontamination will be obtained if complete mixing occurs, so that the isotopic concentration in the precipitated strontium solids is the same as the isotopic concentration in the dissolved strontium remaining in solution. This maximum decontamination can be calculated.

Pretend for the moment that a portion of the strontium in the simulant was the radioactive isotope Sr-90. The mass fraction of strontium 90, f_{Sr-90} , equals (mass of Sr-90 isotope)/(mass of all Sr isotopes).

Define a strontium mass dilution factor as shown below:

$$MDSr = \frac{(mass of Sr in simulant + mass of Sr in all additions)}{(mass of Sr in simulant)}$$

Assume there is 100% isotopic dilution, so that the mass fraction of Sr-90 in the precipitated solids equals the mass fraction of Sr-90 in the dissolved strontium remaining in the treated liquid.

Mass fraction of Sr-90 in treated liquid

The decontamination factor for the strontium-90 isotope is then:

$$DF_{Sr-90} = \underbrace{(mass \text{ of } Sr-90 \text{ in } simulant)}_{(mass \text{ of } Sr-90 \text{ in } treated \text{ liquid})}$$

$$= \underbrace{(f_{Sr-90}) \text{ (mass } of \text{ all } Sr \text{ in } simulant)}_{(f_{Sr-90}) \text{ (1/MD}_{Sr}) \text{ (mass } of \text{ all } Sr \text{ in } treated \text{ liquid})}$$

$$= \underbrace{(mass \text{ concentration } of \text{ } Sr \text{ in } simulant) \text{ (MD}_{Sr})}_{(mass \text{ concentration } of \text{ } Sr \text{ in } treated \text{ liquid}) \text{ (MD)}}$$

$$= (DF_{Sr}) \text{ (MD}_{Sr})$$

Note that this result is independent of the value of the "pretended" mass fraction of Sr-90 in the simulant. (In fact, the Sr-90 decontamination factor will also be independent of the mass fraction of Sr-90 in the real waste as well, assuming 100% isotopic dilution.)

For Batch 2 there were 2.66 grams of strontium deliberately added as part of the makeup of the simulant. (Note: The amount of strontium added was erroneously reported as 2.69 in the Batch #2 interim report. It was originally believed that exactly half of the AN-107 simulant was added to each of Batch #1 and #2. A careful review of the logbook showed that very slightly more than half of the available simulant went into Batch #1, with the remainder going into Batch #2.) There were 4931 grams of strontium added in the strontium nitrate reagent solution. The Sr concentration added by recipe was therefore (2.66 gms) / (795691 gms) = 3.35 μ g/gm. The ADS-measured concentration four hours after the last reagent was added was 144 μ g/gm.

$$\begin{split} MD_{Sr} &= (2.66 \text{ gm} + 4931 \text{ gm}) / 2.66 \text{ gm} = 1854 \\ DF_{Sr} &= (3.35) / \left[(144) (1.20) \right] = 0.0194 \\ DF_{Sr-90} &= (0.0194) (1834) = 36 \end{split}$$

Note that this calculation used the recipe value of strontium in the simulant rather than the ADS values. Typical small levels of impurities in some of the chemicals added in large amounts could easily increase the strontium in the simulant from the theoretical 2.66 grams to 4 or 5 grams. In other words, the actual amount of strontium in the simulant is primarily a function of the purity of the other chemicals used in its makeup. But such a large amount of strontium is added as a reagent and precipitated out that the amount of strontium remaining dissolved in the liquid is solely dependent on the solubility of strontium carbonate in the treated liquid, not the amount originally in the simulant. The 2.66 grams of strontium deliberately added to the simulant to represent the strontium levels in the real waste must be used in the calculation if the DF_{Sr-90} is to have any meaning relative to this precipitation process applied to the real waste.

Assuming 100% isotopic dilution, the % Removed for the "pretended" strontium-90

=
$$(\underline{f_{Sr-90}})$$
 (mass of Sr in simulant) – $(\underline{f_{Sr-90}} / \underline{MD_{Sr}})$ (mass of Sr in treated liquid) x (100%)
($\underline{f_{Sr-90}}$) (mass of Sr in simulant)

= (Sr concentration in simulant) - (Sr concentration in treated liquid)(MD/MD_{Sr}) x (100%)(Sr concentration in simulant) Again, this result is independent of the value of the "pretended" mass fraction of Sr-90 in the simulant, and the recipe value for the strontium in the simulant should be used in the calculation. For Batch 2,

the % Removed_{Sr-90} =
$$[(3.35) - (144)(1.20/1834)] / (3.35) \times (100\%) = 97.2 \%$$

Since the amount of final glass product that has to be made depends on the amount of sodium added to the waste during processing as well as the amount originally in the waste, it is useful to introduce a waste sodium mass dilution factor defined as:

$$MD_{Na} = \underline{\text{(mass of Na in simulant + mass of Na in all additions)}}$$

(mass of Na in simulant)

For the process used in Batch 2, $MD_{Na} = \left(84317 \text{ grams} + 14907 + 873 \text{ grams}\right) / \left(84317 \text{ grams}\right) = 1.19.$

The reagents added nineteen percent of the sodium in the treated liquid, requiring nineteen percent more glass to be made.

3.9 DISCUSSION OF RESULTS

3.9.1 Precipitation

Table 1-2 (shown previously) summarizes the key results and the major process variables. Following the discussion below, Table 3-13 through Table 3-18 detail the effects of the precipitation process on the cations and some anions that make up the simulants for batches 1 through 4. Figure 3-5 through Figure 3-15 plot the concentrations of the TRU surrogates, strontium, and other elements that changed significantly during the precipitation. As mentioned previously, no sample captured the rapid transient concentration of the reagents during addition. No attempt has been made to show these concentrations in the plots.

The precipitation process worked as expected to convert soluble ions to insoluble solids that could be filtered out of the resultant slurry. Based on the amount of dried solids collected from one-liter samples, the maximum insoluble solids content after precipitation for the AN-107 simulant was about 3.5 wt%. Based on slurry samples collected after precipitation of batches 3 & 4 and submitted for immediate solids content analysis, the insoluble solid contents after precipitation ranged from 0.8 wt% to 1.5 wt% for the AN-102 simulant.

² The solids contents for Batches 3 & 4 were obtained with an analytical technique that accounted for the dissolved salts so are more accurate results of the true insoluble solids contents.

¹ The solids content for Batches 1 &2 must be considered maximum values only. The material collected by simple filtration contained dissolved salts that were left behind as contaminants to the insoluble solids and were included in the weight of solids after drying.

The effectiveness of the AN-107 simulant Sr/TRU precipitation reaction with strontium nitrate and sodium permanganate (with or without addition of caustic) was determined by the reduction in concentration of strontium and non-radioactive surrogate TRU elements Ce, La, and Nd in the slurry liquid four hours after the reagents were added.³ All of the batches had over 80% of the Ce, La, and Nd removed from the initial slurry; the pulse jet mixed batch (4A) had over 90% of these elements removed.⁴ The corresponding decontamination factors ranged from 5.2 to 10 for Ce, 5.8 to 22 for La, and 4.3 to 12 for Nd. The pulse jet mixed batch 4A at test conditions in Table 1-2 had the highest DF values.

The surrogate TRU element decontaminations found in this series of experiments are similar to those found in bench scale studies. Wilmarth et al. (19) previously reported correlations between La, Nd, and Am decontaminations that were discussed in the previous Batch #1 and #2 interim reports. Further work has shown that those correlations may not have been valid. At present, there is no direct correlation between the decontaminations of the surrogate TRU elements and the decontaminations of Am, Cm, or Pu.

The precipitation process will be very effective in removing the strontium-90 if there is a high degree of exchange between the strontium in the waste and the strontium added as a reagent. Assuming 100% isotopic mixing, calculations show at least 97% of the strontium-90 will be removed with any of the processing conditions studied in this series of experiments. The calculated strontium-90 DFs ranged from 36 to over 1000.⁵ Lower levels of free hydroxide decrease the solubility of strontium carbonate, limiting the amount of strontium that remains in the treated liquid. The effect was fairly small with only one or two percent change in the calculated amount of strontium-90 that was removed.

Previous bench-scale experiments measured strontium-90 decontamination factors in the range of 30 to 100. Prior work by Nash et al. (11) found that complete isotopic mixing occurs even though the strontium carbonate precipitates very rapidly. This implies a very high degree of dynamic equilibrium allowing the strontium atoms in solution and the precipitated strontium atoms to exchange. It seems likely that in a large, completely unmixed tank, the physical separation of the precipitated solids from the majority of the liquid would slow down this exchange. There is no way to determine if complete isotopic mixing occurred in our much larger pilot scale experiments. However, the calculated removal of strontium in all batches was much higher than required to meet the immobilization regulatory requirements. The strontium-90 removal should be adequate even if there is limited isotopic mixing.

³ The four hour results should be viewed in conjunction with Tables 3-12 through 3-17, as scatter in the analytical results is not readily apparent with a single point calculation.

⁴ Note that these results are dependent upon the measured levels in samples. As discussed previously, samples for earlier batches 1 through 3 may have been compromised by delays in analysis due to innate instability. The samples for Batch 4A were stabilized or analyzed immediately to prevent errors due to instability.

⁵ The reader is cautioned that a very large DF can be misleading. A DF of 100 represents removal of 99% of an element; a DF of 1000 represents removal of 99.9%, only an additional 0.9%.

WSRC-TR-2003-00064, REVISION 0 SRT-RPP-2003-00019, REVISION 0

The behavior of highly radioactive elements cesium-137 and technetium-99 are also of interest in waste treatment processes. Cs-132 is a non-radioactive isotope chemically identical to Cs-137 and would be expected to behave the same. It was included in the AN-107 simulant. Based upon the work of Darab and Smith (14), rhenium was selected as a nonradioactive surrogate for Tc-99 in the AN-107 simulant. The results of the Batch #1 and #2 experiments using the AN-107 simulant indicated the technetium and cesium in the real waste will be unaffected by the precipitation process.

⁶ Rhenium and cesium were added to allow use of the pilot precipitation filtrate in pilot scale ion exchange column tests by others. The planned testing was changed, so these elements were not added to the AN-102 simulant.

Table 3-13. Concentration of Selected Elements in Batch #1 Liquid Samples

								Total	Na	Sr			
Initial Mass of Si	mulant :	Slurrv. ar	ams					811974	86004	2.7			
Caustic Adjust:	None							0	0	0			
Reagents:		grams s	trontium nitr	ate in	53370	grams w	ater	65280	0	4931			
		-	odium perma			grams w		41810	877	0			
MD = Mass Diluti						granne n		1.13	1.01	1815			
					: Concentra	i ation (μg/g	am)	1.10	1.01				
			AN-107	AN-107									
			Supernate	Simulant									
			Expected	Supernate						Amo	ount	Amo	ount
			based on Mixed	after dilution and						Rem		Remo	
			Amounts	solids only	AN-107	Simulant	-	e after R	eagents	Based		based	
Sample Descript	tion			·			Added			hrsa	•	hrsa	
EDL Sample No.				1L	2L*MD	4L*MD	6L*MD	8L*MD	10L*MD	%	DF	%	DF
Time after Reag		(hrs)	N/A	N/A	0.125	0.5	2	4	8				
ADS Sample No		Modlend		169600	169627	169629	169631	169633	169635				
Idenity		Method	400	200	070	404	64.4	4.40	747				
Al		ICP-ES	196	386	670	134	61.1	148	74.7				
B D-		ICP-ES	17.7	56.0	83.8	23.8	<23	<23	<23				
Ba o-		ICP-ES	0	<1.5	<1.7	<1.7	<1.7	<1.7	<1.7				
Ca		ICP-ES	300	129	70.2	43.0	23.8	23.8	26.0				
Cd		ICP-MS	0	<1	<1.1	<1.1	<1.1	<1.1	<1.1				
Ce		ICP-MS	26.8	26.4	7.55	5.48	5.58	5.09	4.72	80.7	5.2	82.1	5.6
Cr		ICP-ES	89.3	93.0	82.6	70.2	75.8	75.8	75.8				
Cs		ICP-MS	9.42	10.4	10.4	8.51	9.72	10.1	10.0				
Cu		ICP-ES	15.3	22.0	101	128	29.4	60.0	120				
Fe		ICP-ES	857	1005	525	508	309	297	292				
K		ICP-ES	918	1420	1471	1200	1404	1381	1437				
La		ICP-MS	23.1	23.2	3.78	2.93	2.85	2.75	2.51	88.1	8.4	89.2	9.2
Mg		ICP-ES	12.7	51.0	18.1	17.0	12.5	14.7	13.6				
Mn		ICP-ES	285	294	318	287	384	411	440				
Na		ICP-ES	129326	110000	109340	86476	104813	106284	106398				
Nd		ICP-MS	48.6	43.5	10.0	7.47	6.78	6.11	5.22	85.9	7.1	88.0	8.3
Ni		ICP-ES	269	296	341	367	297	315	349				
P		ICP-ES	183	205	140	119	143	141	134				
Pb		ICP-ES	197	204	141	105	108	106	77.0				
Re		ICP-MS	9.37	11.0	11.5	9.10	11.1	11.1	10.6				
S		ICP-ES	1397	1650	1585	1347	1562	1573	1585				
Si		ICP-ES	12.1	47.0	38.5	44.1	<11	<11	23.8				
Sr		ICP-ES	3.35	5.00	22.2	8.26	6.00	6.00	4.53	99.9	1013	99.9	1342
Zr		ICP-ES	35.5	33.0	29.4	23.8	28.3	28.3	28.3				
Acetate		IEC		737	791	758	896	876	922				
Chloride (Cl')		IC		1011	1241	1255	953	1259	1289				
Citric Acid		IEC		4910	5259	4967	4838	4679	5002				
EDTA		IPC		2270	1939	1846	2319	2126	1771				
Fluoride		IC		2880	2587	2650	1962	2603	2689				
Formate (HCOO)	IEC		5862	9870	9825	8274	9924	10067				
Formate (HCOO)	IC		8453	7141	7057	8069	7755	8015				
Glycolic Acid		IEC		12857	13408	13317	13246	12932	13260				
HEDTA		IPC		579	422	394	499	431	380				
Nitrate (NO₃)		IC		105156			105778						
Nitrite (NO _z)		IC		35659	35847	36713	27593	36322	37265				
Oxalate (C _z O _•)		IC		880	2045	2065	1572	1985	2057				
Phosphate (PO	5	IC		1147	878		662	723	831				
Sulfate (SO,)		IC		4477	4852		3795	4904	5146				
Note (4)	Sy DE i		on recine ar	nount and as:									

Table 3-14. Concentration of Selected Elements in Batch #2 Liquid Samples

BATCH #2 ANA								Total	Na	Sr				
Initial Mass of Si	mulant	grams.						795691	84317	2.66				
Caustic Adjust:		liters@	1.5253	grams/ml				51860	14907	0				
MD = (G _{Initial} + G			1.0200	91 4111011111				1.07	1.18	0				
			⊥ trontium nitra	ate in	53365	grams w	eter	65275	0	4931				
reagents.			odium perma			grams w		42660	873	0				
MD = (G _{initial} + G				anganate in	31211	grams w	ator	1.20	1.19	1852				
···- (-IIIIa -	MAU NYIEA	MELIES			Conce	ı ntration (,	natam)	1.20	1.13	1032				
			AN-107	AN-107	AN-107	nu auon (,	ug/giii)							
			Supernate Expected based on Mixed Amounts	Simulant Supernate after dilution and solids only	Simulant Supernate after caustic addition	AN-107	Simulant	Supernat	e after R	eagents	Amo Remo	oved I on 4	Amo Remo	oved d on (
Sample Descript	ion		Amounts		addition			Added			hrsa	mple	hrsa	mple
EDL Sample no.			N/A	0L	1L*MD	2L*MD	4L*MD	6L*MD	8L*MD	10L*MD				
Time after Reage	ent Add	(hrs)	N/A	N/A	N/A	0.125	0.5	2	4	8	%	DF	%	DF
ADS Sample No.				169600	170445	170446	170448	170450	170452	170454				
Identity		Method												
Al		ICP-ES	156	386	209	353	245	214	201	239				
В		ICP-ES	14.1	56.0	<22	<24	<24	<24	<24	111				
Ва		ICP-ES	0	<1.5	<1.6	<1.8	<1.8	<1.8	<1.8	<1.8				
Ca		ICP-ES	300	129	323	193	197	184	185	183				
Cd		ICP-ES	0	<5.0	<5.4	<6.0	<6.0	<6.0	<6.0	<6.0				
Ce		ICP-MS	26.8	26.4	26.2	3.81	3.43	2.94	2.80	2.41	89.4	9.4	90.9	1
Cr		ICP-ES	89.3	93.0	83.1	75.7	75.7	72.0	72.0	75.7				
Cs		ICP-MS	0	10.4	10.8	10.3	15.6	9.68	10.0	10.1				
Cu		ICP-ES	15.3	22.0	72.4	155	133	19.2	<10	63.6				
Fe		ICP-ES	857	1005	803	120	151	93.7	96.1	120				
К		AAK	918	1620	1404	1427	1407	1383	1418	1403				
к		ICP-ES	918	1420	1321	1393	1417	1381	1381	1357				
La		ICP-MS	23.1	23.2	23.9	2.62	2.43	2.19	2.09	1.93	91.0	11	91.7	1:
Mg		ICP-ES	12.7	51.0	<11	<12	<12	<12	<12	<12				
Mn		ICP-ES	285	294	279	98.5	102	107	113	121				
Na		AANA	132009	95829	118017	120293	105174	108601	110822	108286				
Na		ICP-ES	132009	110000	125691	126087	129689	126087	127288	127288				
Nd		ICP-MS	48.6	43.5	47.2	7.39	6.81	6.12	5.82	5.51	86.6	7.5	87.3	7.5
Ni		ICP-ES	269	296		360	341	304	288	310				
Р		ICP-ES	183	205		210	201	204	211	216				
Pb		ICP-MS	197	201	186	59.6	57.3	54.8	53.9	52.8				
Pb		ICP-ES	197	204	199	<96	<96	<96	<96	<96				
Re		ICP-MS	9.56	11.0	9.78	10.3	10.0	9.85	10.0	9.74				
S		ICP-ES	1396	1650		2077	1981	1969	2077	2149				
Si		ICP-ES	12.39	47.0		31.2	32.4	<24	<24	<24				
Sr		ICP-ES	3.35	5.00		209	208	187	173	132	97.2	36	97.9	4
Zr		ICP-ES	35.5	33.0		<48	<48	<48	<48	<48				
Acetate		IEC	55.5	737	792	832	726	739	745	716				
Carbonate (CO ₃	'n			34411	44294	39400	40227	39028	39571	38336				
Chloride (CI)		IC		1011	973	997	967	987	1004	971				
Citric Acid		IEC		4910		5458	4884	4956	5107	5021				
EDTA		IPC		2270		2121	2406	2025	2151	1978				
Fluoride		IC		2880		2079	2063	2025	2101	2056				
Formate (HCOO)	IC		5862		5434	5178	5381	5374	5207				
Glycolic Acid		IEC		12857		11937	10924	10956	11811	11600				
HEDTA		IPC		579		381	572	429	425	405				
Nitrate (NO₃)		IC		105156				108060		115750				
Nitrite (NO ₂)														
Oxalate (C _Z O _• Z)		IC		35659		28610	27761	28285	28905	28090				
Phosphate (PO	ħ	IC		880		1314	1347	1416	1303	1267				
Sulfate (SO, ²)	,	IC		1147		1215	1126	1064	1098	1069				
		IC	fore caustic	4477		4690	4573	4644	4686	4533				

Table 3-15. Concentration of Selected Elements in Batch #3C Liquid Samples

							Total	Na	Sr			
Initial Mass	s of Si	mulant Slurry, g	rams				1127198		2.8			
Caustic A			ano				0	0	0			
		· G _{Nao H}) / (G _{Instal}	1				1.00					
		grams strontium		26635.07	areme w	oter	32579	0	2461			
rteagerits.			permanganate in	26293.56	_		30785	728	0			
MD = (G				20233.30	grams w	atci	1.06	1.01	894			
WD - (Oin	ila T C	Hao H+reagens) / (C	7inilai/	Conc	entration	(valam)	1.00	1.01	034			
			AN-102R2	AN-102R2		(Agram)					Amo	ount
			Supernate Expected based on Mixed	Simulant Supernate after dilution and	0.51.4	-4	Amo Remo based hr sa	oved d on 4				
		ampla Dascriptio	0.00.000	solids only	AN-1		rry Filtrate	aπer	%	DF	%	DF
Time :		ample Descriptio	711	N/A	0.5	reagen 2	t addition 4	50	,0		7.0	
ime 8	anter M	eagent Add (hr: ML Sample N	-			_	02-9858					
Identity		ML Sample N Method		02-305/	02-1226	02-1229	02-3000	02-1220				
Al		ICP-ES		7040	7881	7881	6918	7873				
В		ICP-ES		36.9	72.9	70.4	28.8	71.8				
- Ва		ICP-ES		<0.01	<0.008	<0.008	<0.011	<0.008				
Ca		ICP-ES	_	187	93.4	102.4	70.4	112				
Cd		ICP-ES		37.1	28.1	29.7	27.7	28.0				
Ce		ICP-ES		24.2	5.20	5.18	4.68	3.95	80.7	5.2	83.7	6.
Со		ICP-ES		1.18	<0.008	<0.008	<0.011	<0.008				
Cr		ICP-ES		121	110	123	121	120				
Cu		ICP-ES		11.3	1.85	1.97	1.61	1.88				
Fe		ICP-ES		24.7	1.49	2.06	1.00	0.61				
K		ICP-ES		1970	2332	2259	1774	2088				
La		ICP-ES		18.4	3.77	3.62	2.82	2.38	84.7	6.5	87.1	7.3
Mg		ICP-ES	0	3.83	<0.033	<0.033	<0.011	<0.033				
Mn		ICP-ES		13.5	2.96	3.95	4.08	5.72				
Мо		ICP-ES		29.8	24.9	25.8	23.7	24.8				
Na		ICP-ES		89500	88559	90184	89039	106434				
Nd		ICP-ES		40.7	10.2	9.59	7.31	6.58	82.0	5.6	83.8	6.3
Ni		ICP-ES		161	163	171	147	162				
Р		ICP-ES	1056	632	577	634	609	559				
Pb		ICP-ES	109	65.8	12.3	14.2	15.6	16.5				
S		ICP-ES	2486	13600	2689	2624	6591	2421				
Si		ICP-ES	5.89	30.8	27.1	30.6	27.4	27.9				
Sr		ICP-ES	2.44	0.135	40.6	41.5	17.3	20.3	99.2	126	99.1	10
W		ICP-ES	98.8	110	86.1	91.8	85.7	90.2				
Zn		ICP-ES	2.96	3.40	<0.008	<0.008	<0.581	<0.008				
Zr		ICP-ES	7.90	6.84	1.85	1.95	2.31	1.66				
Chloride (CI)	IC-ANIC	N	2420	2470	2437	2292	2413				
Fluoride		IC-ANIC	N	1110	1113	1113	1009	1064				
Formate (I) IC-ANIC	N	5000	4891	4915	4626	4875				
Nitrate (N	03)	IC-ANIC	N	88600	96684	95059	88299	95059				
Nitrite (NO		IC-ANIC	N	36100	37455	36561	34327	36561				
Oxalate (0			N	<380	886	<385	<380	869				
Phosphate		C-ANIC	N	1610	1641	1568	1352	1454				
Sulfate (S	$(0, \frac{7}{2})$	IC-ANIC	N	7110	7231	7150	6760	7069				

⁽²⁾ The last sample shown (50 hrs) was collected from the composite filtrate tank after the slurry had been concentrated to the maximum extent possible.

Table 3-16. Concentration of Selected Elements in Batch #3B Liquid Samples

								Total	Na	Sr			
Initial Mass of	Simulant	Sharro ar	ome.					1141253	121806	2.78			-
riiliai wass or Caustic Adjus		712		n budrovido				32200	18512	2.70			
Caustic Adjus MD _{Na} = (G _{inita}		_		ii riyaroxiae				1.03	10312				
				de ie	74504	grams w	-4	87497	0	6609			-
Reagents:		_	ontium nitra			-							-
MD = (G _{inital} 4			dium perma	inganate in	4/0/6	grams w	ater	55121	1303	0			
MID - (GININA	C MacOH+re	agens)/(G	inita)		_			1.15	1.16	2377			-
					Concer	tration (<i>μ</i> ς	g/gm)						
	De	escription	AN-102R2 Supernate Expected based on Mixed Amounts	AN-102R2 Slurry Filtrate after dilution and solids only	Slurry filtrate after Caustic addition	AN-102l	R2 Slurry F add	iltrate afte	r Reagent	Rem base	ount oved d on 2 ample	Rem based	ount loved I on 2 ample
Time after f	Reagent /	Add (hrs)	N/A	N/A	N/A	0.5	2	4	27				
lalandii.	Sŧ	ample No.		02-1190 & 02-1544 averaged	02-1545	02-1228	02-1229	02-1858 Rerun	02-1226	N/A		N/A	
Identity Al	+	Method	7020	71.40	7907	9605	9605	7700	8596				
Al	+	ICP-ES	7230	7142	7897	8605 70.6	8605	7796					
B	-	ICP-ES	21.7	33.6	36.2	79.6	76.8	30.3	78.4				
Ba		ICP-ES	0	<0.01	<0.1	<0.01	<0.01	<0.1	<0.2				-
Ca		ICP-ES	289	281	290	102	112	73	122				-
Cd C-		ICP-ES	35.8		25.2	30.7	32.4	22.6	30.6	00.0		05.4	0.0
Ce		ICP-ES	26.3	29.5	23.0	5.7	5.7	<0.12	4.3	80.8	5.2	85.4	6.8
Co	-	ICP-ES	1.62	0.86	<1	<0.01	<0.01	<1	<0.01				-
Cr	-	ICP-ES	148		114	121	134	119	131				-
Cu	-	ICP-ES	13.8		13.6	2.02	2.15	3.11	2.1				-
Fe	-	ICP-ES	24.6	26.4	25.4	1.62	2.24	<0.23	0.7				-
K	-	ICP-ES	1171	2228	2540	2546	2466	2479	2280	00.0		00.7	
La		ICP-ES	22.6	22.9	16.9	4.12	3.95	<0.46		82.8	5.8	88.7	8.8
Mg 	-	ICP-ES	0		<0.1	<0.03	<0.03	<0.1	<0.03				-
Mn 	-	ICP-ES	17.2	10.3	9.4	3.2	4.3	<0.12	6.2				-
Mo 	-	ICP-ES	26.6	15	26.5	27.1	28.2	27.0	27.1				-
Na	-	ICP-ES	106542	101920	116188	96690	98464	121084	116205	740		00.0	
Nd		ICP-ES	55.6	41.2	40.3	11.1	10.5	<0.12		74.6	3.9	82.6	5.7
Ni -		ICP-ES	246		196		187	186	177				
P 		ICP-ES	1059		355	630	692	630	610				_
Pb -		ICP-ES	109		89.2	13.5	15.5	26.3	18.0				
S	-	ICP-ES	2490	4282	2776	2936	2865	2814	2643				
Si C.	-	ICP-ES	5.90		32.1	29.5	33.4	30.2	30.5	00.4	400	00.7	004
Sr		ICP-ES	2.44		25.5		45.3	55.7		99.4	128	99.7	261
W	-	ICP-ES	98.7		100		100.2	101	98				
Zn -z:	-	ICP-ES	2.96		<0.1	<0.01	<0.01	<0.1	<0.01				
Zr Chlorida (CD)		ICP-ES	7.88		2.32		2.1	<0.12	1.8				
Chloride (CI)	-	IC-Anion		2415	2492		2661	2564	2635				
Fluoride		IC-Anion		1194	1227	1215	1215	612	1162				
Formate (HCC	.U)	IC-Anion		5154	5202		5367	5251	5322				
Nitrate (NO ₃)	-	IC-Anion		88881	89288		103786	112657	103786				
Nitrite (NO ₂)	Z ₂	IC-Anion		35402	35250		39918	41160	39918				
Oxalate (C _z O ₄		IC-Anion		<390	<389		<444	<444	949				
Phosphate (Po		IC-Anion		2086	2663		1712		1588				
Sulfate (SO ₄ 2	Л	IC-Anion		7206	7213	7895	7806	7327	7717				

Notes (1) Sr removals are based on recipe amount and assume 100% isotopic dilution

⁽²⁾ Due to equipment problems, there was a several day delay in analyzing the 4 hour sample. During the delay the sample formed solids that could not be resuspended.

⁽³⁾ The last sample shown (27 hrs) was collected from the composite filtrate tank after the slurry had been filtered to the maximum extent possible.

Table 3-17. Concentration of Selected Elements in Batch #3A Liquid Samples

								Total	Na	Sr	
Initial Mass of Simulant	grams							1049968	131776	6.2	
Caustic Adjust:			olid sodium h	vdrovide				26100	7502	0.2	
MDNa = (G _{Initial} + G _{Nao}			olia ocalalii i	ry ar oxiao				1.02	1002		
Reagents:			ntium nitrate	in	66293.5	grams w	ater	81087	0	6125	
roagorito.		-	um permana		43628.99	_		51082.5	1207	0.20	
MD = (G _{initial} + G _{NaOH+re}		-				3		1.15	1.07	991	
The Mark III	- Carrier				Concentra	tion (vala	m)	1.10	1.51		
			(1) AN-102R2 Supernate	AN-102R2 Slurry	AN-102R2 Slurry		,			(2))
			Expected based on Mixed	Filtrate after dilution and	Filtrate after Caustic	AN-1	02R2 Slur	ry Filtrate	after	Amo Remo	ount oved lon
	Sample	Description	Amounts	solids only	addition		Reagent	addition		hrsa	mple
Time after Reagent Ad	d (hrs)		N/A	N/A	N/A	0.5	2	4	5	%	DF
ML Sample No.			N/A	02-1553	02-1555	02-1862	02-1863	02-1859	02-1860		
Identity		Method									
Al		ICP-ES	7230	6800	7779	7744	7526		6950		
В		ICP-ES	21.7	23.9	29.4	29.5	29.1	21.6	22.1		
Ва		ICP-ES	0	<0.10	<0.1	<0.12	<0.12	<0.12	<0.12		
Ca		ICP-ES	289	297	313	60.0	64.4	70.2	81.6		
Cd		ICP-ES	35.8	20.7	25.9	20.1	20.4	17.0	17.0		
Ce		ICP-ES	26.3	23.7	21.3	1.59	1.68		3.82	83.8	6.
Co		ICP-ES	1.62	<1.0	<1.02	<1.2	<1.2		<1.2		
Cr		ICP-ES	148	103	117	116	116	107	106		
Cu -		ICP-ES	13.8	13.9	14.0	1.02	1.02	2.49	3.12		
Fe		ICP-ES	24.6	30.9	29.6	0.73	1.01	0.35	3.25		
K		ICP-ES	1171	2280	2439 15.4	2497	2405	2394	2382	00.4	4.0
La		ICP-ES	22.6	17.8		<0.46	<0.46			90.4	10
Mg		ICP-ES	0	<0.10	<0.1	<0.12	<0.12		<0.12		
Mn		ICP-ES	17.2	9.01	7.80	<0.12	<0.12		0.222		
Mo		ICP-ES	26.6 106542	104000	26.5	26.8	26.8		118526		
Na Nd		ICP-ES	55.6	25.2	114784 27.0	117375 7.13	119677 6.26	119677 5.80		77.0	4.3
Ni		ICP-ES	246	174	201	188	188	165	161	11.0	7.
P		ICP-ES	1059	454	360	849	800	644	483		
Pb		ICP-ES	109	73.9	89.8	8.45	8.54	10.3	16.5		
S		ICP-ES	2490	2160	2736	2635	2612		2209		
Si		ICP-ES	5.90	37.3	34.3	29.6	29.5	26.6	29.9		
Sr		ICP-ES	2.44	13.2	10.7	186	174	152	120	97.4	38
W		ICP-ES	98.7	92.1	98.9	95.7	96.0		93.0		
Zn		ICP-ES	2.96	<0.10	<0.1	<0.12	<0.12		<0.12		
Zr		ICP-ES	7.88	2.41	2.69	<0.12	<0.12	<0.12	<0.12		
Chloride (Cl')		IC-Anion		2162	2539	2560	2578	2560	2624		
Fluoride (Fl')		IC-Anion		1132	<415	<446	<446	532	490		
Formate (HCOO ⁻)		IC-Anion		4860	5094	4987	4897	4897	5091		
Nitrate (NO ₃ *)		IC-Anion									
, ,				83824	89336		99909	97233	98503		
Nitrite (NO ₂ *)		IC-Anion		33750	35813	36663	36663	35593	36639		
Oxalate (C ₂ O ₄ ² -)		IC-Anion		<368	<391	<446	<446	1508	1003		
Phosphate (PO ₄ 3-)		IC-Anion		2066	2954	2426	1793	1624	1482		
Sulfate (SO ₄ ² ')		IC-Anion		6581	7170	7261	7226	7136	7356		
		values were									

Table 3-18. Concentration of Selected Elements in Batch #4A Liquid Samples

									Na			
1-9:-1 144 0:								Total		Sr		
Initial Mass of Si			(1) to 400 (20)	4 5050	·			749173		1.83		
Caustic Adjust:			0 wt%@	1.5253	grams/ml				10084	0		
MDNa = (Ginitial								1.05	1.10			
Reagents:	_	-	ontium nitra			grams w		60639	0	4580		
MD ZOGERGE			dium perma	nganate in	32627	grams w	ater	38201	903	0		
MD = (Ginitial +	GNaOH+	reagents) 	7 (Ginitial)		L			1.18	1.11	2509		
			(1) AN-102R2 Supernate Expected		ncentration	r (μg/gm)			Amo		Amo Rem	ount
			based on	after					based		based	
			Mixed	dilution and	AN-1	02R2 Slur	rry Filtrate	after	hrsa		hrsa	
S	ample De	escription	Amounts	solids only			ts added		%	DF	%	DF
Time after F	Reagent /	Add (hrs)	N/A	0	0.5	2	4	22				
		ample No.		03-0579	03-0580	03-0581	03-0582	03-0583				
Identity		Method										
Al		ICP-ES	7230	7097	7647	7707	7758	8697				
В		ICP-ES	21.7	26.2	27.3	28.2	27.8	37.7				
Ва		ICP-ES	0									
Са		ICP-ES	289	348	120	127	124	63.4				
Cd		ICP-ES	35.8									
Ce		ICP-ES	26.3	17.8	3.19	2.32	1.77	1.81	90.1	10	89.8	9.8
Co		ICP-ES	1.62									
Cr		ICP-ES	148	103	108	111	110	124				
Cu		ICP-ES	13.8	18.3	2.08	4.14	6.25	9.40				
Fe		ICP-ES	24.6	18.3	1.11	0.95	1.05	1.03				
K		ICP-ES	1171	1894	2096	2095	2098	2119				
La		ICP-ES	22.6	16.4	1.44	1.00	0.74	0.79	95.5	22	95.2	21
Mg		ICP-ES	0									
Mn		ICP-ES	17.2	13.6	8.39	11.2	13.7	15.3				
Мо		ICP-ES	26.6	19.7	21.0	21.4	21.4	25.1				
Na		ICP-ES	106542	101721	92830	120913	120563					
Nd		ICP-ES	55.6	30.8	5.05	3.38	2.55	2.50		12	91.9	12
Ni		ICP-ES	246	112	109	111	112	129				
P		ICP-ES	1059	915	956	969	966	1023				
Pb		ICP-ES	109	48.5	6.65	11.0	11.8	11.9				
S		ICP-ES	2490		2794	2852	2779	2764				
Si		ICP-ES	5.90	27.7	26.1	27.2	26.5	33.4				
Sr		ICP-ES	2.44	30.3	132	102	84.9	90.3	98.6	72	98.5	68
W		ICP-ES	98.7									
Zn		ICP-ES	2.96	5.35	5.16	4.69	4.55					
Zr		ICP-ES	7.88		1.56							
				to be identic						ed expli	city.	
				ount and ass								
(3)		-	-	nrs) was coll started. It wa		-	-		ne 18 ho	our cool	down	perio

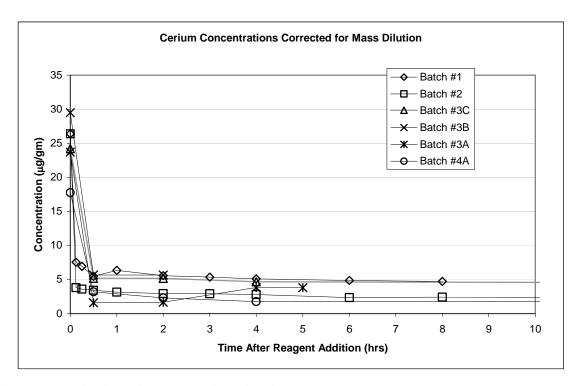


Figure 3-5. Cerium Concentrations for All Batches

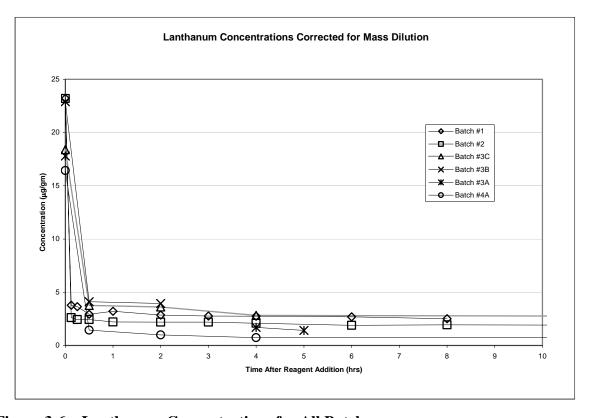


Figure 3-6. Lanthanum Concentrations for All Batches

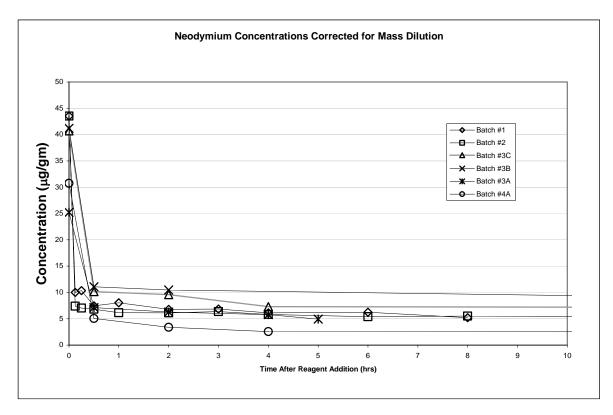


Figure 3-7. Neodymium Concentrations for All Batches

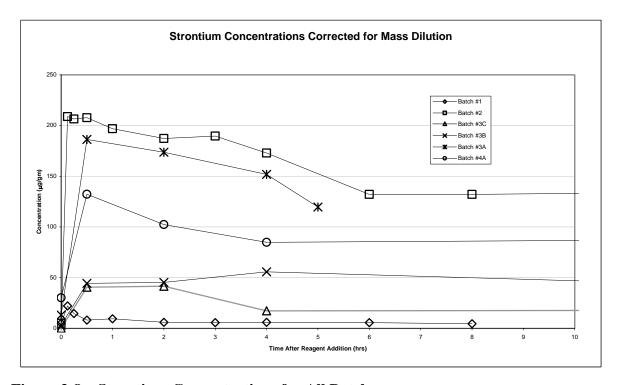


Figure 3-8. Strontium Concentrations for All Batches

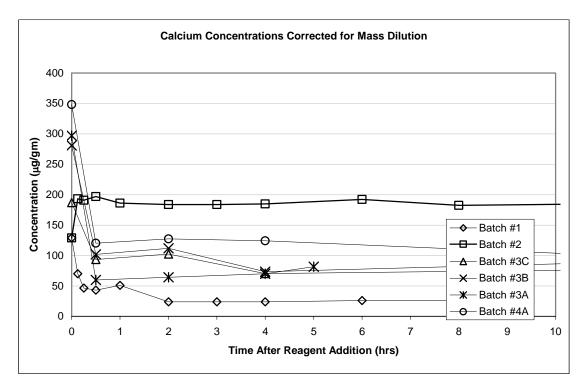


Figure 3-9. Calcium Concentrations for All Batches

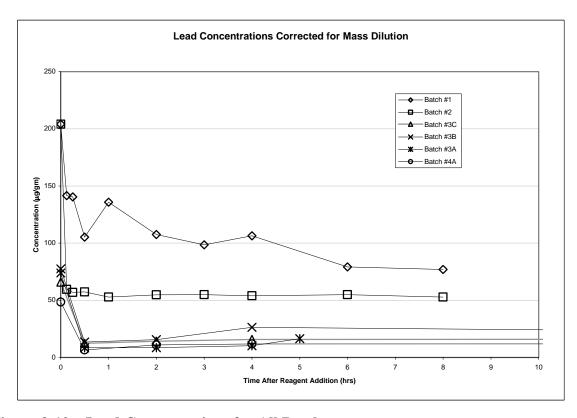
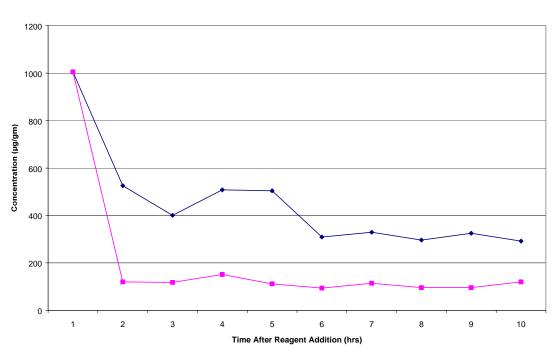



Figure 3-10. Lead Concentrations for All Batches

Iron Concentrations Corrected for Mass Dilution

Figure 3-11. Iron Concentrations for Batches #1 and #2

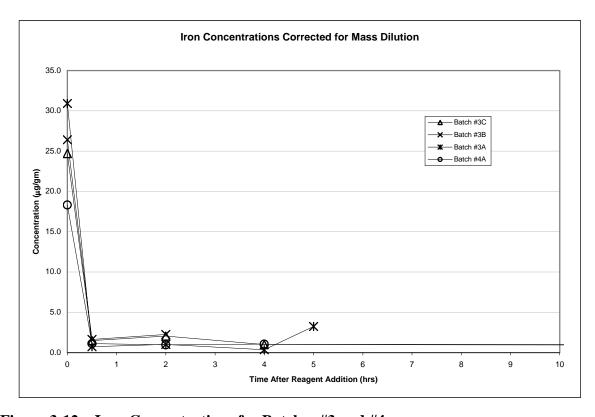


Figure 3-12. Iron Concentrations for Batches #3 and #4

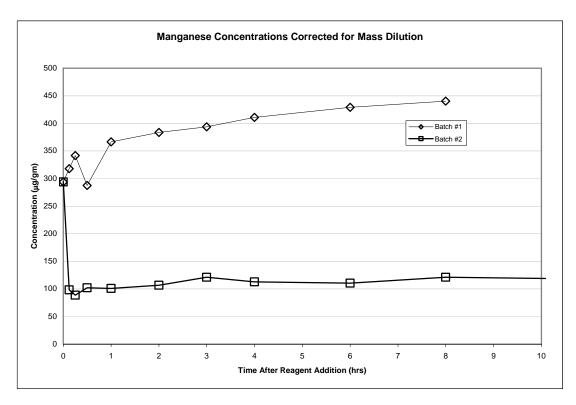


Figure 3-13. Manganese Concentrations for Batches #1 and #2

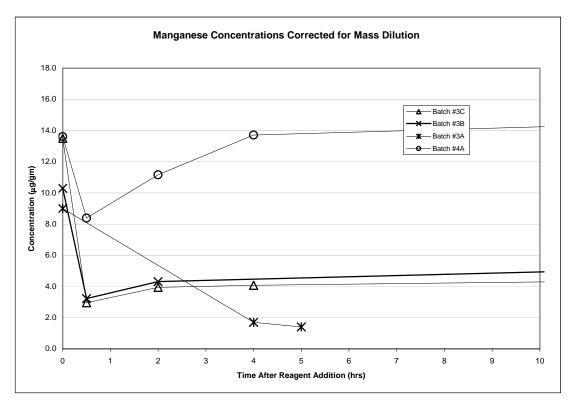


Figure 3-14. Manganese Concentrations for Batches #3 and #4

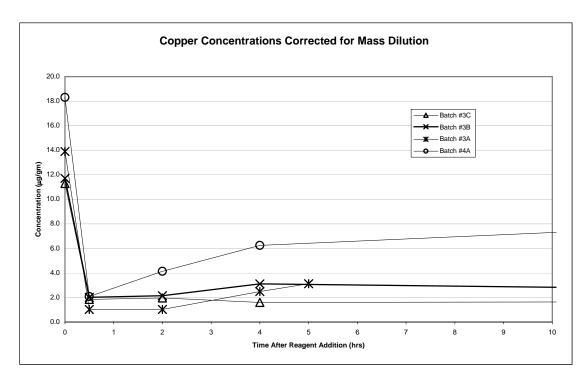


Figure 3-15. Copper Concentrations for Batches #3 and #4

A sample of the Batch #1 slurry⁷ collected in a drum for later use in other experiments was taken about 2 months after precipitation and sent for particle size analysis. The microtrac analysis (Appendix I Fig. I-1) showed that only 10 v% of the particles were less than 1.14 micron, 50 v% were less than 2.92 micron, and 95 v% were less than 12.5 micron. Table 3-19 summarizes the particle distributions obtained after precipitation for other batches. Plots of all microtrac data obtained are included in Appendix I.

Table 3-19. Summary of Particles-Size Distributions after Batch Precipitation

Batch	10 v%	50 v%	95 v%	Appendix I Figure
1	1.14	2.92	12.5	I-1
2	1.04	2.15	5.50	I-2
3C	1.89	10.3	36.9	I-14
3B	2.30	5.43	25.1	I-23
3A	2.51	8.73	27.3	I-39
4A	Microtrac of slurr	y sample not perfor	med.	

⁷ The Batch #1 interim report incorrectly stated that this sample was collected from a filtrate drum instead of a slurry drum.

3.9.2 Filtration

A Test Specification was not provided for the pilot precipitation work. The approved Task Plan simply stated that the crossflow filter would be used to demonstrate filterability of the slurry, and a filtration matrix was not specified. At the time Batch #1 and #2 were run, firm operating conditions for the crossflow filter were not established. In a previous study, Duignan (17) recommended an axial velocity of at least 12 ft/sec and a transmembrane pressure of 30 to 55 psid. The conditions chosen for filtration of Batch #1 and #2 bracketed these conditions. In hindsight the filtration conditions chosen by the task leader were not maintained long enough to obtain definitive data in the ranges best matching currently planned plant operation conditions of 12 ft/sec and 40 psid. The limited amount of data shown in the plots below had to be extrapolated appreciably to provide the values reported in the tables for Batch #1 and #2.

Later batches were precipitated and filtered after plant design and operating conditions were much more firm, and the filtration studies were more complete. After precipitation, the resultant slurry from Batches #3C, #3B, #3A, and #4A were handed over to Duignan for filtration under a separate task plan written to meet a RPP test specification. The filtering behavior for Batches #3C, #3B, #3A, and #4A was thoroughly reported by Duignan (21) and won't be discussed further here.

For Batches #1 and #2, the precipitated feed was transferred to the Crossflow Filter Test Rig and an abbreviated filtration study was made using the following feeds:

- DIF water before filtering simulant slurry
- AN-107 precipitated simulant slurry
- DIF water after cleaning to confirm that the cleaning performed was adequate to restore filter function

The results of filtration tests with the AN-107 precipitated simulant slurry are shown in Table 3-20 and Table 3-21. The velocity shown is based on seven tubes with a nominal ID of 3/8 inch and the slurry loop (SL) flow measured with a magnetic flow meter. Differential pressures are measured between the filter slurry headers and filtrate ports at both the top and bottom ends of the filter. The transmembrane pressure (TMP) is the calculated average of these two differential pressure measurements. The filtrate flow (flux rate) is the total flow from the filtrate housing (measured by a magnetic flow meter in gpm) divided by the 2.29 ft² inside surface area of the filter. The filtrate flow rates shown were corrected to a filtration temperature of 25 °C by multiplying by the correction factor $CF = e^{[(2500)(1/(273+Slurry\ Temperature)-1/298)]}$. The raw data collected during filtration is included

 $CF = e^{\{(2500)(17(275+Sturry\ Temperature)-17(298)\}}$. The raw data collected during filtration is included in Excel format on the report CD-ROM. The first page of each filtration data file is included in Appendix K to describe what data is logged and to show the file format.

A Test Specification was not provided for the pilot precipitation work. The approved Task Plan simply stated that the crossflow filter would be used to demonstrate filterability of the slurry, and a filtration matrix was not specified. In hindsight the filtration conditions chosen by the task leader were not maintained long enough to obtain definitive data in the ranges best matching planned plant operation. The limited amount of data shown in Figure 3-16 and Figure 3-17 had to be extrapolated appreciably to provide the values reported in Table 3-20 and Table 3-21.

Table 3-20. Crossflow Filter Operations Data with Batch #1 Precipitated Slurry

Velocity (ft/sec)	TMP (psi)	Filtrate Flow (gpm/ft²)
4.3	36.2	0.02
4.3	50.7	0.02
12.2	33.5	0.03
20.8	29.2	0.05

Table 3-21. Crossflow Filter Operations Data with Batch #2 Precipitated Slurry

Velocity (ft/sec)	TMP (psi)	Filtrate Flow (gpm/ft ²)
9.8	51.2	0.026
13.2	45.2	0.035
17.4	44.2	0.038
18.3	21.1	0.028

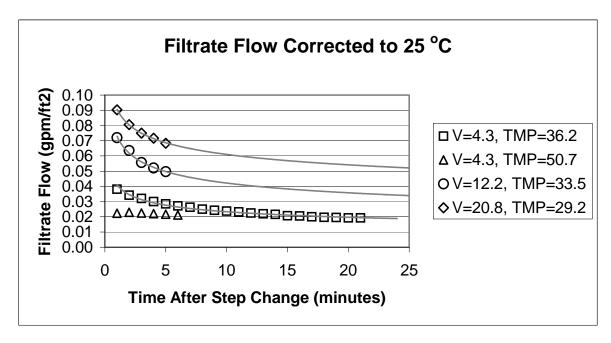


Figure 3-16. Filtrate Production Rate Data for Batch #1

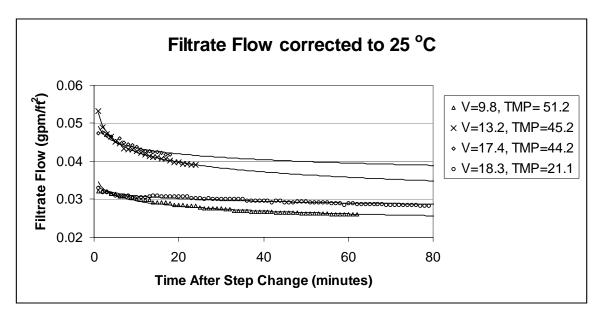


Figure 3-17. Filtrate Production Rate Data for Batch #2

These filtrate rates are similar to those reported by Duignan (17), especially considering the insoluble solids content of about 3% in this study was higher than the 2% in his study. He measured 0.03 gpm/ft² at V=8.9 ft/sec and TMP=32.1 psid. The lower values of 0.02 gpm/ft² at V=4.3 and TMP=36.2 measured in the Batch #1 experiment would be expected because of the effect of lower velocity. He found the flux to be fairly insensitive to the transmembrane pressure in the 30 to 55 psid range; the filtrate flow rates measured at V=4.3 ft/sec in this study were the same even though the transmembrane pressure varied from 36 to 51 psid.

The 0.026 gpm/ft² at V=9.8 and TMP=51.2 measured in the Batch #2 experiment is in good agreement with Duignan's data considering the higher solids content. The Batch #1 experiment measured a flux of about 0.03 gpm/ft² at 12.2 ft/sec and TMP=33.5 psid and the Batch #2 experiment measured a flux of about 0.035 gpm/ft² at V=13.2 ft/sec and TMP = 45.2 psid. These results compare well to Duignan's 0.04 gpm/ft² at V=12.3 ft/sec and TMP=51.1 psid. The 0.05 gpm/ft² flux for Batch #1 at V=20.8 and TMP=29.2 is a little lower than expected compared to his 0.07 gpm/ft² flux at the lower velocity of 15.4 ft/sec and similar TMP of 30.0 psid. Likewise, the 0.038 gpm/ft² flux for Batch #2 at V=17.4 and TMP=44.2 is lower than expected compared to his 0.052 gpm/ft² flux at the lower velocity of 15.3 ft/sec and lower TMP of 29.6 psid. These flux differences are in the right direction considering the difference in solids concentration.

The filtrate fluxes found in the Batch #1 experiment were consistent with the study of Hallen et al. (18). The filtrate fluxes found in the Batch #2 experiment were slightly higher than obtained in the study of Hallen et al. (18) under similar but not exactly the same conditions. The fluxes reported in their work are averages over the period from 10 minutes to 60 minutes after starting filtration; they were: 0.019 gpm/ft² at 9.0 ft/sec and 50 psid, 0.025 gpm/ft² at 12.2 ft/sec and 30 psid, and 0.024 gpm/ft² at 13.1 ft/sec and 49 psid.

After collecting the abbreviated filter performance data in the Batch #1 experiment, filtration was continued on the day shifts primarily to collect a drum of filtrate for subsequent use in other RPP studies. Although filter fluxes of about 0.05 gpm/ft² were achieved during the brief filter performance testing, long-term operation at the high axial flow-high transmembrane pressure conditions was not possible due to pump heat buildup. (Additional heat removal capacity was added to the rig for Batches #3 and #4.) Sustained operation at 25 °C could be maintained with the filter tube velocity set at about 16 ft/sec and the transmembrane pressure set at about 42 psid. The filtrate production achieved with AN-107 precipitated simulant under these conditions and with infrequent backpulsing was about 0.02 gpm/ft². Figure 3-18 shows a typical set of data taken during dewatering. Hallen et al. (18) also measured 0.021 gpm/ft² average flux during dewatering with similar conditions of 11.6 ft/sec velocity and 48 psid transmembrane pressure.

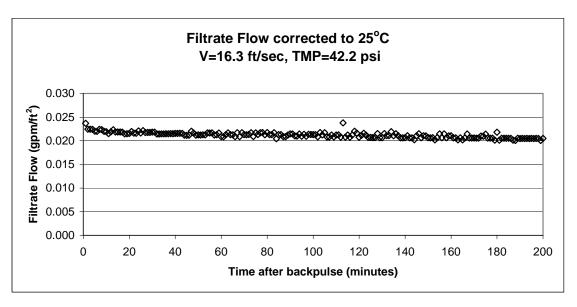


Figure 3-18. Crossflow Filter Filtrate Production with Batch #1 Precipitated Simulant Slurry

After collecting the abbreviated filter performance data in the Batch #2 experiment, filtration was continuous until the volume of slurry was reduced to about 70 liters. Operation at 25 °C was maintained with the filter tube velocity set at about 16 ft/sec and the transmembrane pressure set at about 45 psid. The filtrate production achieved with Batch #2 precipitated simulant under these conditions and with infrequent backpulsing was about 0.03 gpm/ft². Figure 3-19 shows a typical set of data taken early during dewatering. Figure 3-20 shows typical data taken after the slurry volume was reduced from 764 liters to about 70 liters. The flux with the concentrated slurry dropped to about 0.018 gpm/ft².

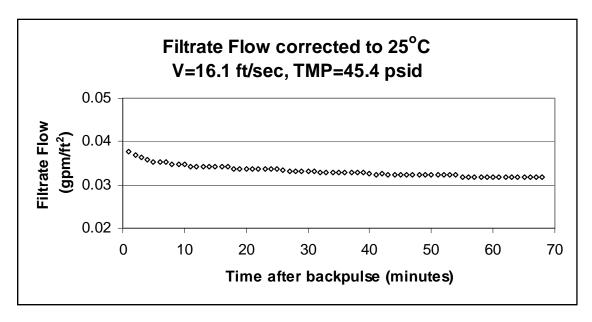


Figure 3-19. Crossflow Filter Filtrate Production with Batch #2 Precipitated Simulant Slurry Early During Dewatering

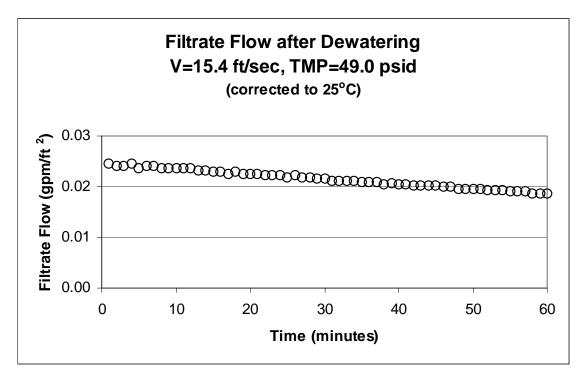


Figure 3-20. Crossflow Filter Filtrate Production with Batch #2 Precipitated Simulant Slurry at the End of Dewatering

After sufficient filtrate was collected in the Batch #1 experiment, the Crossflow Filter Rig was drained and cleaned. It was filled with DIF water and run to compare the performance of the cleaned filter to the performance obtained during DIF water runs in shakedown prior to operation with Batch #1. The shakedown fluxes were: 0.675 gpm/ft² @ 12.5 ft/sec and 23.9 psid, 0.384 gpm/ft² @ 20.6 ft/sec and 17.4 psid, and 0.630 gpm/ft² @ 20.8 ft/sec and 28.4 psid. The water runs after Batch #1 and cleaning were: 0.396 gpm ft² @ 12.5 ft/sec and 23.1 psid, 0.409 gpm/ft² @ 20.9 ft/sec and 19.1 psid, and 0.600 gpm/ft² @ 20.7 ft/sec and 27.6 psid. There is excellent agreement at the higher velocities, but poorer comparison at the lower velocity.

After completing the Batch #2 filtration, a set of DIF water runs was made after cleaning the filter to compare with the water runs made after cleaning the filter following the Batch #1 experiment. In hindsight the runs were not maintained at constant conditions long enough to obtain definitive fluxes. The available data for two sets of runs at similar conditions before and after Batch #2 are plotted in Figure 3-21 and Figure 3-22. Raw data collected during the DIF water runs is included in Excel format on the report CD-ROM.

Figure 3-21. Crossflow Filter Flux with Clear Water Prior to Batch #2 Processing

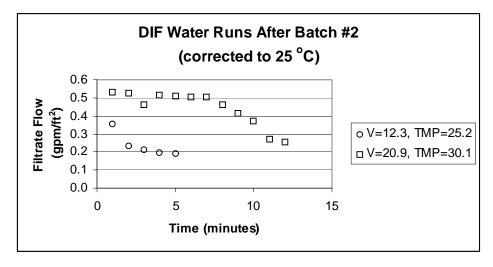


Figure 3-22. Crossflow Filter Flux with Clear Water After Batch #2 Processing

3.9.3 Post Precipitation Solids

Two filtrate samples taken about 8 hours after completion of reagent addition in the Batch #1 experiment were analyzed 18 hours after collection by Lasentec. Even though the samples were visually clear, the analysis indicated the presence of solids with a mean chord length of 6.7 microns measured at a concentration of 3500 counts/sec. Another filtrate sample was taken 47 hours after completion of reagent addition and analyzed 24 hours later. It contained larger particles (75 microns), but at a much lower count rate (55 counts/sec). Subsequent filtration samples taken at 122 hours and 145 hours after the reagent addition had insignificant amounts of solids. Lasentec analysis of all Batch #1 filtration samples was repeated after five months of storage with little change in the relative amounts of solids.

The filtrate collected from slurry precipitated with the Batch #2 process appeared to be more stable. After several months of storage some solids were formed, but there were very little solids formed in filtrate allowed to stand a day or two.

The filtrate from the Batch #3C slurry was collected in a large black plastic tank covered to prevent light exposure. None of the samples from the composite filtrate tank, or samples collected directly from the filtrate line and allowed to sit, showed significant solid formation after several days.

The filtrate from the Batch #3B slurry was also collected in the large black covered tank. A sample collected from the composite filtrate tank 29 hours after reagent addition showed no significant solids. A sample collected 142 hours after reagent addition showed a small amount of solids (154 counts/sec) of about 16 micron chord length.

Due to a lack of storage drums and readily available storage tanks, the filtrate from the Batch #3A slurry was added to the composite filtrate collected from the Batch #3B slurry. However, after every hour, a sample of filtrate proportional to the filtrate flow rate was obtained during dewatering and added to a 5-gallon carboy to generate a small composite sample. (The carboy was stored in a cardboard box to eliminate exposure to light.) The carboy was sampled 169 hours after reagent addition and showed very few solids present. It was sampled again 335 hours after reagent addition. Lasentec analysis showed about 46 counts/sec of 13 micron average chord length particles. The entire 12.6 liters of composite sample was filtered to recover 16 grams of dried solids, or about 1.3 grams of solids per liter of filtrate.

When the tank containing the combined Batch #3B and #3A filtrate was uncovered there was a substantial amount of light yellow solids adhering to the tank walls and bottom. The tank agitator was unable to remove these solids from the surfaces.

The filtrate from the Batch #4A slurry was split into 4 approximately equal streams and put into blue plastic drums. Lasentec analysis was not done on the Batch #4A filtrate. The drums were allowed to stand for 215 hours after reagent addition (about a week after filtration was completed). One of the drums containing 208 kg of filtrate was then carefully decanted down to about 4 liters. The last 4 liters were vacuum-filtered and dried at 105 °C to recover 648 grams of solids. Since the filtrate density was about 1.28 gm/ml, the solid content was (648 gms)(1.28 gm/ml)/(208 kg) = 4.0 grams of solids per liter of filtrate. Some of the solids were sent off for microtrac particle size analysis. Most of the particles were between 2 and 5 microns with the mean (by number distribution) being 2.64 micron. The detailed microtrac results are shown in Appendix I.

3.9.4 Pulse jet Mixing

As described in 3.4.2, Batch #4A was mixed using pulse jet mixer. There was considerable discussion about what type of pulse should be used to provide representative mixing. The plant design at that time called for pulsing 6% of the tank volume every 77 seconds, using a 19-second duration pressure pulse. Work done by others in a large tank with multiple pulse jets indicated the tank was well mixed when there was visible motion of the surface with a velocity of about 1 ft/sec. Experimentation in the pulse jet mixed pilot precipitation tank showed that surface motion of about 1 ft/sec could be obtained with a pulse of 6% of the tank volume if a 1.6-second pressure pulse duration was used. The total cycle time was set at 77 seconds to match the plant design of 6% pulsed every 77 seconds.

During shakedown with water, we found the pulse jet control system to be quite stable and provide repeatable pulses. However, with slurry we had to continually adjust the controls to maintain the desired pulse as the precipitation reaction progressed. Apparently the properties of the slurry changed enough to affect the pulse significantly. Without careful adjustments we would get blow out of air from the nozzle. Of course, the control problems were aggravated once the feed to the crossflow slurry reservoir was started and the tank level dropped steadily.

Typical cycles before and after reagent addition are shown in Figure 3-23 and Figure 3-24.

The mixing during the reagent addition was better than generally expected. After the strontium nitrate was added the slurry had the typical yellowish color due to the strontium carbonate solids formed. Once the sodium permanganate was added the liquid at the surface became a dark brown/purple. The recycle stream pumped from the bottom of the tank to the top remained the yellow color until about 20 seconds after the first pulse after permanganate addition started. It then quickly turned a reddish-orange color and remained that color until about 20 seconds after the next pulse. Then it turned a dark orange/brown. Within a few more cycles the color of the recycle stream from the tank bottom matched the color at the top where permanganate was being added.

We had a camera looking at the inside of the pulse tube during the precipitation. With such a short duration pulse it was difficult to make detailed observations, but it was clear that a foam or bubble layer formed inside the tube with each cycle and persisted until the next pressure pulse. At each pressure pulse the bubbles appeared to collapse. A digital video of a few pulses is included on the CD-ROM.

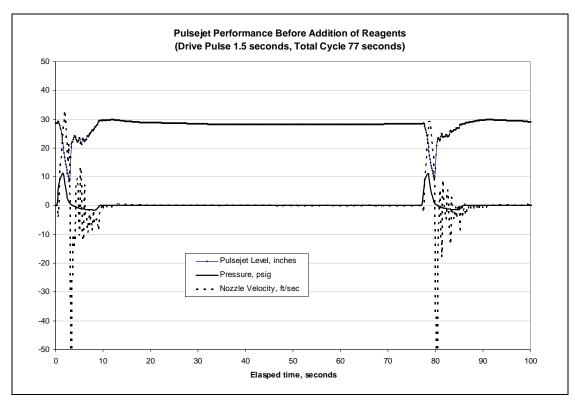


Figure 3-23. Typical Pulse before Reagent Addition

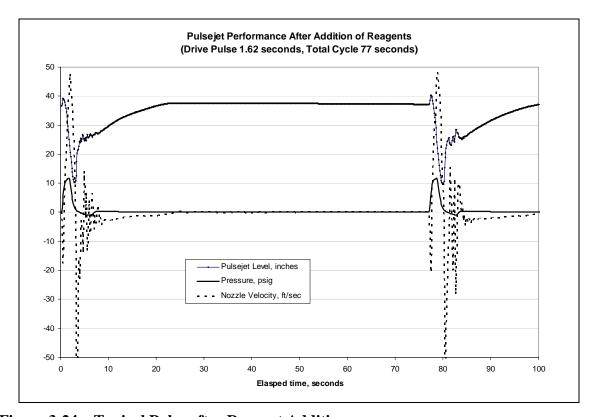


Figure 3-24. Typical Pulse after Reagent Addition

This page intentionally left blank.

4.0 FUTURE WORK

It is noted that all pilot-scale precipitations were performed with waste tank simulant feed without recycle streams indicated in the current process flowsheets for WTP. Thus it is recommended that pilot-scale precipitation be performed with recycle streams added to accurately reflect their effect on the precipitation and subsequent filterability of material per the WTP process flowsheet.

Calcium and nitrate are in the HLW SBS Recycle, which is fed with Sr/TRU precipitate to the crossflow filters. Prior testing by SRTC (Rosencrance, 33) has shown that calcium nitrate present in recycle streams increases the TRU DF, but decreases the filter flux. Table 1-2 shows that the filtrate flux is marginal at 0.02 gpm/ft² of filter area with Envelope C waste without recycle streams. Table 1-2 also shows that reduced caustic caused by acid recycle streams may also impede filter flux.

The difficulty of the Pilot Pulse Jet Control System to respond to the rapidly changing slurry properties during the precipitation reaction is also noted. Thus, it is recommended that precipitation be performed in a scaled UFP Tank of current design with recycle streams and actual AEA Technology PJM control System. This testing will ensure the ability to provide repeatable pulses throughout the anticipated level changes, changes in slurry properties during precipitation, and subsequent cooldown with transfer to the crossflow filter.

This page intentionally left blank.

5.0 REFERENCES

- 1. Williams, M. R., "Task Technical and Quality Assurance Plan In Support of RPP-WTP Pilot-Scale Precipitation Testing," SRT-RPP-2000-00050, Rev. 0, approved on June 19, 2001.
- 2. Williams, M. R., Screening Process Review Report, approved on Jan. 3, 2001.
- 3. Williams, M. R., Environmental Evaluation Checklist, EEC Document No. TC-A-2000-073, Rev. 1, approved on January 23, 2001.
- 4. Williams, M. R., "RPP Job Folder 22806 Pilot Scale Precipitation Testing," Laboratory Notebook, Document No. WSRC-NB-2001-00078. [Construction, shakedown and Batch 1, 2, 3C, 3B, and 3A test activities are documented.]
- 5. Steeper, T. J., WSRC Drawing No. EES-22806-M6-001, "RPP-WTP Pilot Scale Precipitation Testing Test Rig Setup," Rev. B, May 5, 2001.
- 6. Steeper, T. J., WSRC Drawing No. EES-22699-M6-003, "RPP Part B2 Pilot Scale Crossflow Filter Tests Test Rig Assembly with 40" Filter and New Pumps," Rev. A, May 1, 2001.
- 7. Williams, M. R., "RPP-WTP Pilot Scale Precipitation Testing Procedure," EDS Field Procedure, Document No. FP-882, Rev. 0, Effective September 24, 2001.
- 8. Williams, M. R., Operational Instructions No. 1-4, starting from No. 1: "Determination of Cleanliness of the Pilot Scale Precipitation System and Crossflow Test Rig per FP-882," October 2, 2001 to No. 4: "Caustic Addition to 1M NaOH of Batch #2 AN-107 simulant in the Pilot Scale Precipitation and additional Filtrate samples," October 15, 2001.
- 9. Duignan, M. R., "Final Report: Pilot-Scale Cross-flow Ultrafiltration Test Using a Hanford Site Tank 241-AN-105 Waste Simulant Envelope A + Entrained Solids," BNF-003-98-0221, February 23, 2000.
- 10. Nash, C. A., Rosencrance, S. W., Walker, B. W., Wilmarth, B. R., "Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow Filtration," BNF-003-98-0171, Revision 0, April 18, 2000.
- 11. Nash, C. A., Saito, H. H., Wilmarth, B. R., "Strontium-Transuranic Precipitation and Crossflow Filtration of 241-AN-102 Large C," BNF-003-98-0317, Revision 0, December 5, 2000.
- 12. Benedict, M., Pigford, T. H., Levi, H. W., "Nuclear Chemical Engineering", Second Edition, McGraw-Hill Book Company, New York, 1981, pp. 407-420.

- 13. Nash, C. A., Rosencrance, S. W., Wilmarth, B. R., "Entrained Solids, Strontium-Transuranic Precipitation and Crossflow Filtration of 241-AN-102 Large C," SRT-RPP-2000-00003, Revision 0, August, 2000.
- 14. Darab, J. G. and Smith, P. A., "Chemistry of Technetium and Rhenium Species during Low-Level Radioactive Waste Vitrification," Chem. Mater. 1996, 8, 1004-1021, March 5, 1996.
- 15. Eibling, R. E. and Nash, C. A. "Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project Waste Treatment Plant," SRT-RPP-2000-00017, Revision 0, February 2001.
- 16. Bergmann, L. M. "WTP Material Balance and Process Flowsheet Bases, Requirements, and Results," 24590-WPT-RPT-ENG-01-004, Rev. 0, October 15, 2001.
- 17. Duignan, M. R., "Final Report: Pilot-Scale Cross-flow Ultrafiltration Test Using a Hanford Site Tank 241-AN-107 Waste Simulant Envelope C + Entrained Solids + Strontium-Transuranic Precipitation," BNF-003-98-0226, Rev. 0, March 24, 2000.
- 18. Hallen, R. T., Bredt, P. R., Brooks, K. P., and Jagoda, L. K. "Combined Entrained Solids and Sr/TRU Removal from AN-107 Diluted Feed," BNFL-RPT-027, Rev. 0, August 2000.
- 19. W. R. Wilmarth, V. H. Dukes, J. T. Mills, F. F. Fondeur, C. C. DiPrete and D. P. DiPrete, "Optimization Study for Strontium and Actinide Removal from 241-AN-107 Supernate," WSRC-TR-2002-00258, September 18, 2002.
- 20. Williams, Michael R. and Steeper, Timothy J., "Pilot Scale Precipitation Test of AN-107 Simulant Without Caustic Adjustment at 50 °C," WSRC-TR-2002-00122, Rev. 0, SRT-RPP-2002-00064, Rev. 0, August 19, 2002.
- 21. Duignan, M. R., "Final Report: Pilot-Scale Cross-flow Ultrafiltration Test Using a Hanford Site Tank 241-AN-102 Waste Simulant," WSRC-TR-2003-00202, Rev. 0, SRT-RPP-2003-00087, Rev. 0, May 6, 2003.
- Hay, M. S., Bronikowski, M. G., Hsu, C. W., White, T. L., "Chemical Characterization of an Envelope C Sample from Hanford Tank 241-AN-102," USDOE Report BNF-003-98-0250, Rev. 0, Savannah River Site, Aiken, SC 29808 (July 31, 2000).
- 23. Eibling, R. E. "Development of a Supernate Simulant for Hanford Tank 241-AN-102 Waste," WSRC-TR-2002-00040, Rev. 0, Draft B, SRT-RPP-2002-00012, Rev. 0, Draft B, May 1, 2002.
- 24. Williams, Michael R. and Steeper, Timothy J., "Pilot Scale Precipitation Test of AN-107 Simulant with Caustic Adjustment at 20 °C," WSRC-TR-2002-00459, Rev. 0, SRT-RPP-2002-00221, Rev. 0, October 31, 2002.

- Williams, M. R., "Task Technical and Quality Assurance Plan In Support of RPP-WTP Pilot-Scale Precipitation Testing," SRT-RPP-2000-00050, Rev. 1, approved on November 30, 2001.
- 26. Williams, M. R., "Task Technical and Quality Assurance Plan In Support of RPP-WTP Pilot-Scale Precipitation Testing," SRT-RPP-2000-00050, Rev. 2, approved on January 17, 2003.
- 27. Abodishish, Hani, Test Exception Number: 24590-WTP-TEF-RT-02-060, 8/27/02
- 28. Abodishish, Hani, Test Exception Number: 24590-WTP-TEF-RT-02-076, 10/4/02
- 29. Townson, Paul, Test Exception Number: 24590-WTP-TEF-RT-03-027, 5/27/03
- 30. Williams, M. R., "RPP Job Folder 22806 Pilot Scale Precipitation Testing," Laboratory Notebook, Document No. WSRC-NB-2003-00026. [Shakedown of PJM Tank, Batch 4A test activities and Post Testing Instrument Calibration are documented.]
- 31. Williams, M. R., "RPP-WTP Pilot Scale Precipitation Testing Procedure", EDS Field Procedure, Document No. FP-882, Rev. 1, Effective September 30, 2002.
- 32. Williams, M. R., "WTP Pilot Scale Precipitation Mixing Procedure," EDS Field Procedure, Document No. FP-934, Rev. 0, Effective August 30, 2002.
- 33. Rosencrance, Scott, "Sr and TRU Precipitation Results for 241-AN-102," BNF-003-98-0161, Savannah River Technology Center, Aiken, South Carolina.

This page intentionally left blank.

APPENDICES A - K

Appendix A AN-107 Simulant Formulations

Appendix B AN-102R2 Simulant Formulations

Appendix C Batch 1 Analytical Data

Appendix D Batch 2 Analytical Data

Appendix E Batch 3C Analytical Data

Appendix F Batch 3B Analytical Data

Appendix G Batch 3A Analytical Data

Appendix H Batch 4A Analytical Data

Appendix I Particle Size Distribution

Appendix J Experimental Data: Precipitation Test Rig Operations

Appendix K Crossflow Filtration Data

APPENDIX A

AN-107 Simulant Formulations

Excess EDTA in simulant

The calculations used in the formulation sheet submitted to the vendor for preparation of the AN-107 supernatant simulant presumed use of disodium ethylenediaminetetraacetic (EDTA) acid dihydrate, but the chemical formula specified on the sheet did not include the two waters of hydration. The compound in question is only available as the dihydrate. The vendor made the appropriate adjustment to use the dihydrate material based upon the specified chemical formula and hence the shipped material appeared to meet the requested recipe, but it actually contained 12% additional EDTA. The error was an internal one made when the simulant recipe sheet was prepared, it should have included the two waters of hydration in the reagent formula because this is what was used in the calculations and included in the approved recipe.

The vendor was given a recipe to follow that included the mass and order of addition of each reagent in the simulant recipe, including the chemical formula of the reagent to use. It did not include the molecular weights of the reagents used in the calculations.

The simulant received was not analyzed because it represented only a portion of the final recipe. The remaining reagents and entrained solids were added to the simulant in the precipitate reactor prior to the start of the pilot run. Following completion of the additions, a final simulant sample was taken and submitted for analysis. Since the EDTA method is one of the more difficult analyses, it was not received for some time following the pilot experiments. This analysis is only good to \pm 10%, thus the preparation error was within the combined experimental and reagent purity uncertainty (Na₂EDTA·2H₂O is not a primary standard material) and would not have been detected had the measurement been received prior to the start of precipitation.

The increased level of EDTA would result in greater Sr solubility in the simulant and potentially a lower decontamination factor. Since the EDTA measurements in the actual waste samples used to prepare the simulant recipe differ by $\pm 20\%$ (one standard deviation), the uncertainty in what the actual value should be exceeds the discrepancy found in the simulant preparation. The experimentally calculated Sr DF exceeds the process requirements, so the impact appears to be negligible.

Simulant Formation Details

The AN107 simulant for Batch 1 and 2 is similar before reagent addition for each Batch processed. The actual material used and entrained solids is different due to slight variation in Batch sizes. The formulation of each Batch using AN-107 simulant is provided in the spreadsheets that follow.

AN-107 Su	pernate Sin	nulant (based on AN-107	7; Sr/Tru C-	5.5M recipe)											i	П
Vessel 1	ĺ				Recipe amou	nts for 1300	liters	•		Actual	amounts ad	ded by O	ptima			N
				Compound	Water		on-water		Compound	Water		Non-wa			Na	, O
			Formula	mass,	mass,	mass,	Conc.,	Conc.,	mass,	mass,	mass,	Conc.,	Conc.,	%	content,	e
Compounds		Formula	Weight	grams	grams	grams	mg/mL	Molar	grams	grams	grams	mg/mL	Molar	Extra	grams	s
	ged to tank			260000.00	260000.00				250927.32	250927.32						
Calcium Nit	trate	Ca(NO ₃) ₂ .4H ₂ O	236.15	2838.93	865.56	1973.36	1.518	0.00925	2839.49	865.73	1973.75		0.00938	1.4		
Cerium Nitr	rate	Ce(NO ₃) ₃ .6H ₂ O	434.22	133.40	33.18	100.22	0.077	0.00024	133.40	33.18	100.22	0.078	0.00024	1.4	ı	
Cesium Nit	rate	CsNO ₃	194.91	22.25		22.25	0.017	0.00009	22.20		22.20	0.017	0.00009	1.2	1	
Copper Niti	rate	Cu(NO ₃) ₂ .3H ₂ O	241.6	93.30	20.85	72.45	0.056	0.00030	93.30	20.85	72.45	0.057	0.00030	1.4	i	
Ferric Nitra	te	Fe(NO ₃) ₃ .9H ₂ O	403.99	9967.23	3996.86	5970.37	4.593	0.01898	9965.43	3996.14	5969.29	4.656	0.01924	1.4	Ī	
Lanthanum	Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	115.64	28.84	86.80	0.067	0.00021	115.60	28.83	86.77	0.068	0.00021	1.4	·	
Lead nitrate	Э	Pb(NO ₃) ₂	331.2	505.64		505.64	0.389	0.00117	505.60		505.60	0.394	0.00119	1.4	i	П
Magnesium	Nitrate	Mg(NO ₃) ₂ .6H ₂ O	256.41	215.02	90.57	124.45	0.096	0.00065	215.00	90.56	124.44	0.097	0.00065	1.4	i	
Manganous	s Chloride	MnCl ₂ .4H ₂ O	197.9	1653.44	601.55	1051.89	0.809	0.00643	1653.00	601.39	1051.61	0.820	0.00652	1.4	i	
Neodymiun	n Nitrate	Nd(NO ₃) ₃ .6H ₂ O	438.34	237.60	58.54	179.06	0.138	0.00042	237.60	58.54	179.06	0.140	0.00042	1.4	ī	T
Nickel Nitra	ate	Ni(NO ₃) ₂ .6H ₂ O	290.81	2141.06	795.14	1345.92	1.035	0.00566	2141.00	795.12	1345.88	1.050	0.00574	1.4	i	
Potassium	Nitrate	KNO ₃	101.11	3754.22		3754.22	2.888	0.02856	3755.75		3755.75	2.930	0.02897	1.4		
Strontium N	Vitrate	Sr(NO ₃) ₂	211.63	13.01		13.01	0.010	0.00005	13.00		13.00	0.010	0.00005	1.3	ī	
Zinc Nitrate	9	Zn(NO ₃) ₂ .6H ₂ O	297.47	168.04	61.01	107.03	0.082	0.00043	168.00	60.99	107.01	0.083	0.00044	1.4	i	
Zirconyl Nit	rate	ZrO(NO ₃) ₂ .XH ₂ O	249.23	155.92	11.27	144.65	0.111	0.00048	155.90	11.27	144.63	0.113	0.00049	1.4	i	
EDTA		Na ₂ EDTA	372.24	5917.79	572.32	5345.47	4.112	0.01223	6536.27	632.13	5904.13	4.605	0.01370	12.0	807	(1)
HEDTA		HEDTA	278.26	1763.87		1763.87	1.357	0.00488	1764.00		1764.00	1.376	0.00494	1.4	i	П
Sodium Glu	uconate	CH ₂ OH(CHOH) ₄ COONa	218.14	3201.21		3201.21	2.462	0.01129	3202.36		3202.36	2.498	0.01145	1.4	338	
Glycolic Ac	id	HOCH₂COOH	76.05	21954.11		21954.11	16.888	0.22206	31361.38	9408.41	21952.96	17.124	0.22516	1.4	·	(2)
Citric Acid		HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	7696.54		7696.54	5.920	0.03081	7697.92		7697.92	6.004	0.03125	1.4	i	
Nitrilotriace	tic Acid	N(CH ₂ COOH) ₃	191.14	464.72		464.72	0.357	0.00187	464.70		464.70	0.362	0.00190	1.4	Ī	
Iminodiacet	tic Acid	HN(CH ₂ CO ₂ H) ₂	133.1	4923.03		4923.03	3.787	0.02845	4921.48		4921.48	3.839	0.02884	1.4		
Boric acid		H ₃ BO ₃	61.83	163.21		163.21	0.126	0.00203	163.20		163.20	0.127	0.00206	1.4	i	
Sodium Ch	loride	NaCl	58.44	1482.80		1482.80	1.141	0.01952	1483.00		1483.00	1.157	0.01979	1.4	583	
Sodium Flu	ıoride	NaF	41.99	239.66		239.66	0.184	0.00439	239.70		239.70	0.187	0.00445	1.4	131	
Sodium Ch	romate	Na ₂ CrO ₄	161.97	446.98		446.98	0.344	0.00212	447.00		447.00	0.349	0.00215	1.4	127	
Sodium Su	lfate	Na ₂ SO ₄	142.04	9945.79		9945.79	7.651	0.05386	9947.28		9947.28	7.759	0.05463	1.4	3220	
Potassium	Molybdate	K ₂ MoO ₄	238.14	72.45		72.45	0.056	0.00023	72.50		72.50	0.057	0.00024	1.5	i	
Total Weigl	hts in vessel	1		340286.84	267135.70	73151.15			341242.36	267530.47	73711.89				5206	П
Notes (1)	The formula	in the recine sent to Ont	ima ahawa	l anhudraua E	DTA No ED	TA Ontim		باميرطنام مطا	ناما مم ممامیر	lotod thou on	adad 11 11	lha of tha	dibudrida	to 00		

Notes (1) The formula in the recipe sent to Optima showed anhydrous EDTA, Na₂EDTA. Optima added the dihydride, so calculated they needed 14.44 lbs of the dihydride to get 14.41*453.59*[336.24/2*18)] = 5917 g of anhydrous Na₂EDTA. They also decreased the amount of water they used by 14.41*453.59*(2*18)/(336.24+2*18) = 633 g. Unknown to Optima, the recipe was based on adding 5917 g of the dihydride, so Optima's adjustments actually caused the addition of too much EDTA.

(2) Optima substituted 70 w% Glycolic Acid for the Anhydrous Glycolic Acid shown in the recipe.

AN-107 Supernate Sin	nulant (based on AN-107	7; Sr/Tru C-	5.5M recipe)											
Vessel 2 (added to con	ents of vessel 1 after mix	ting)		Recipe amou	ints for 1300) liters			Actual	amounts ad	ded by C	ptima			N
Ì			Compound	Water	N	on-water		Compound	Water		Non-wa	ter		Na	0
		Formula	mass,	mass,	mass,	Conc.,	Conc.,	mass,	mass,	mass,	Conc.,	Conc.,	%	content,	e
Compounds	Formula	Weight	grams	grams	grams	mg/mL	Molar	grams	grams	grams	mg/mL	Molar	Extra	grams	s
Water charged to tank			260000.00	260000.00				163610.78	163610.78						
Sodium Hydroxide	NaOH	40	20596.52		20596.52		0.39609	41617.10	20808.55	20808.55	16.231	0.40577	2.4	11960	
Aluminum Nitrate	AI(NO ₃) ₃ .9H ₂ O	375.13	4375.31	1889.48	2485.83	1.912	0.00897	7293.77	4806.59	2487.17	1.940	0.00910	1.5	ii	(6
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	3622.08	2058.22	1563.86	1.203	0.00733	1560.36		1560.36	1.217	0.00742	1.2	656	(4
Sodium Formate	NaHCOO	68.01	12809.40		12809.40	9.853	0.14488	12809.45		12809.45	9.992	0.14691	1.4	4330	Г
Sodium Acetate	NaCH ₃ COO.3H ₂ O	136.08	1931.56	766.49	1165.07	0.896	0.01092	1165.73		1165.73	0.909	0.01108	1.5	327	(5
Sodium Oxalate	Na ₂ C ₂ O ₄	134	1025.21		1025.21	0.789	0.00589	1025.12		1025.12	0.800	0.00597	1.4	352	Г
Sodium Carbonate	Na ₂ CO ₃	105.99	9 120865.25 120865.25 92.973 0.87719		120882.37		120882.37	94.290	0.88961	1.4	52441	T			
Water used to clean ve-	ssel 2 & flush hose					75296.34	75296.34						T		
Total added from vesse				264714.19	160511.14			425261.02	264522.26	160738.76				70064	
Vessel 3 (added to com	bined vessel 1 and 2			Recipe amou	ints for 1300) liters			Actual	amounts ad	ded by C	otima			N
after mixing)			Compound	Water	N	on-water		Compound	Water		Non-wa			Na	0
Ĭ		Formula	mass,	mass,	mass,	Conc.,	Conc.,	mass,	mass,	mass,	Conc.,	Conc.,	%	content,	e
Compounds	Formula	Weight	grams	grams	grams	mg/mL	Molar	grams	grams	grams	mg/mL	Molar	Extra	grams	s
Water charged to tank			130000.00	130000.00				478539.98	478539.98					<u> </u>	
Sodium Nitrate	NaNO ₃	84.99	242371.35		242371.35	186.440	2.19366	242354.42		242354.42	189.040	2.22426	1.4	65557	
Sodium Nitrite	NaNO ₂	69	74589.14		74589.14	57.376	0.83154	74570.59		74570.59	58.166	0.84299	1.4	24846	Г
Water used to clean ve-	ssel 3 & flush hose							37648.17	37648.17						T
Water added at end to I	oring volume up to total		404364.00	404364.00					0.00						(7
Total added to previous	mixture		851324.49	534364.00	316960.49			833113.16	516188.15	316925.01				90404	Ė
Overall totals			1616836.66	1066213.88	550622.78			1599616.54	1048240.88	551375.66				165674	Г
Volume, ml			1300000.00					1282027.00							(8
Calculated density, gm/	Iculated density, gm/ml							1.2477							Ė
Calculated density, gm/ml 1.2437 1.2437 1.2437 1.2477 1.2477															

- Notes: (3) Optima substituted 50 w% Sodium Hydroxide for the Anhydrous Sodium Hydroxide shown in the recipe.

 (4) Optima substituted Anhydrous Sodium Phosphate for the hydrated Sodium Phosphate shown in the recipe.

 (5) Optima substituted Anhydrous Sodium Acetate for the hydrated Sodium Acetate shown in the recipe.

 - (6) The aluminum nitrate was added as a 60 w% of Al(NO₃)3.9H₂O in water, or a 34.1 w% solution of alumina nitrate. Optima added 7294*0.341 = 2487 grams of aluminum nitrate and 7294*0.659 = 4807 grams of water.
 - (7) One of the last steps in the Optima procedure called for flushing out the tank and hoses with 40 lb of water and loading it into a drum. This drum was not delivered to SRS, making the simulant 40*453.95 = 18158 g short of water. This caused the concentrations to be about 1.4% high.
 - (8) Optima volume was estimated by substracting 1 ml per gram of water not added to the supernate.

Complete I	Datch #1 Al	N-107 Simulant before re	ition												\Box	
Complete	batti #1 Al	N-107 Simulant before re	eagent auu	tion										ш		-
Entrained S	Solids and P	errhenate added in EDL (1)		Recipe amou	ints for 650	liters			Actual ar	mounts for E	Batch 1 s	imulant			N
				Compound	Water	N	on-water		Compound	Water		Non-wa	ter			0
							(3)	(3)				(4)	(4)	(5)	Na	t
		L .	Formula	mass,	mass,	mass,	Conc.,	Conc.,	mass,	mass,	mass,	Conc.,	Conc.,	_%	content,	е
Compounds		Formula	Weight	grams	grams	grams	mg/mL	Molar	grams	grams	grams	mg/mL	Molar	Extra	grams	S
Sodium Per		NaReO ₄	273.2	11.16		11.16		0.00006			11.16		0.00006	0.4	1	
Aluminum (Oxide	Al ₂ O ₃	101.96	225.30		225.30	0.347	0.00340	225.3		225.30	0.348	0.00341	0.4		(2)
Calcium Ph	osphate	Ca ₃ (PO ₄) ₂	310.18	2.93		2.93	0.005	0.00001	2.93		2.93	0.005	0.00001	0.4		
Chromic Ox	kide	Cr ₂ O ₃	151.99	15.47		15.47	0.024	0.00016	15.47		15.47	0.024	0.00016	0.4		
Ferric Oxide	е	Fe ₂ O ₃	159.69	192.75		192.75	0.297	0.00186	192.8		192.80	0.298	0.00186	0.4		
Manganese	Dioxide	MnO ₂	86.94	124.78		124.78	0.192	0.00221	124.7		124.70	0.193	0.00222	0.3		
Silicon Diox	ride	SiO ₂	60.09	21.10		21.10	0.032	0.00054	21.1		21.10	0.033	0.00054	0.4		(2)
Sodium Ox	alate	Na ₂ C ₂ O ₄	134	1381.39		1381.39	2.125	0.01586	1381.4		1381.40	2.133	0.01592	0.4	474	
Sodium Ca	rbonate	Na ₂ CO ₃ .H ₂ O	124.01	1306.38	189.62	1116.76	1.718	0.01621	1306.4	189.62	1116.78		0.01627	0.4	484	
Sodium Flu	oride	NaF	41.99	202.10		202.10	0.311	0.00740	202.1		202.10	0.312	0.00743	0.4	111	
Sodium Sul	fate	Na ₂ SO ₄ .10H ₂ O	322.2	166.97	93.28	73.69	0.113	0.00080	167	93.30	73.70	0.114	0.00080	0.4	24	
Sodium Pho	osphate	Na ₃ PO ₄ .12H ₂ O	380.12	373.97	212.51	161.46	0.248	0.00151	374	212.52	161.48	0.249	0.00152	0.4	68	
Mass of cor	mpounds ac	lded to supernate simular	nt	4024.30	495.41	3528.89			4024.36	495.44	3528.92				1162	
Mass of sup	pernate sim	ulant used per batch, gran	ns	808418					807950						84842	
Calculated	Calculated volume of supernate simulant (based on mas															
used and ca	sed and calculated density), ml			650000					647539							
Sodium mo	larity of sup	ernate simulant													5.70	
grams	, , ,			812443					811974						86004	
Calculated	density of fir	nal simulant (neglecting si	mall												-	П
volume incr	olume increase due to adding solids), gm/ml								1.2539							
Notes: (1)	All solids ar	ded were less than or eq	ual to 5 mic	rons in size				•				•				

- - (2) The recipe specified 0.1754 moles of sodium aluminosilicate, Na₂.Al₂O₃.(SiO₂)₂.5H₂O that was unavailable from suppliers. The author of the recipe was contacted and recommended the substitution of 2*0.1754 = 0.3058 moles = 21.08 grams of SiO2 and 0.1754 moles = 17.88 grams of Al₂O₃ instead. The 17.88 grams of Al₂O₃ was added to the 207.38 grams Al₂O₃ in the original entrained solids recipe for a total of 225.26 grams Al₂O₃ to be added.
 - (3) An error was made when the recipe concentrations were reported in the previous interim reports. The concentrations had been calculated using the double batch size of 1300 liters rather than the half batch size of 650 liters.
 - An error was made when the actual concentrations were previously reported in the Batch 1 interim report. The concentrations had been calculated using the double batch size of
 - 1282 liters rather than the approximately half batch size of 648 liters actually used in Batch 1.
 (5) Solids were weighed out and added based on a 650 liter batch. The simulant was added to the tank by weight, not volume. The actual volume was slightly less than expected when the solids were added resulting in a small excess of solids.

Complete	Datab #2 AB	N-107 Simulant before re	anant add	itian I			1			-		1				_
Complete	Batch #2 Ar	N-107 Simulant before re	eagent add	tion												-
Entrained S	Solids and Pe	errhenate added in EDL (1)		Recipe amou	unts for 650	liters		Act	ual amounts	for Batch 2	simulant		i l	i	N
				Compound	Water	N	on-water		Compound	Water		Non-wa	ter			0
														(5)	Na	t
		<u>_</u> .	Formula	mass,	mass,	mass,	(3) Conc.,		mass,	mass,	mass,	(4) Conc.,		_%	content,	е
Compounds		Formula	Weight	grams	grams	grams	mg/mL	Molar	grams	grams	grams	mg/mL	Molar	Extra	grams	S
Sodium Pe		NaReO ₄	273.2	11.16		11.16		0.00006			11.16		0.00006	2.4	1	
Aluminum (Oxide	Al ₂ O ₃	101.96	225.30		225.30		0.00340			225.20	0.355	0.00348	2.4		(2)
Calcium Ph	osphate	Ca ₃ (PO ₄) ₂	310.18	2.93		2.93	0.005	0.00001	2.93		2.93	0.005	0.00001	2.4		
Chromic Ox	xide	Cr ₂ O ₃	151.99	15.47		15.47	0.024	0.00016	15.47		15.47	0.024	0.00016	2.4		
Ferric Oxid	е	Fe ₂ O ₃	159.69	192.75		192.75	0.297	0.00186	192.7		192.70	0.304	0.00190	2.4		
Manganese	Dioxide	MnO ₂	86.94	124.78		124.78	0.192	0.00221	124.6		124.60	0.196	0.00226	2.3		
Silicon Diox	kide	SiO ₂	60.09	21.10		21.10	0.032	0.00054	21.09		21.09	0.033	0.00055	2.4		(2)
Sodium Ox	alate	Na ₂ C ₂ O ₄	134	1381.39		1381.39	2.125	0.01586	1381.4		1381.40	2.177	0.01625	2.4	474	
Sodium Ca	rbonate	Na ₂ CO ₃ .H ₂ O	124.01	1306.38	189.62	1116.76	1.718	0.01621	1306.4	189.62	1116.78	1.760	0.01660	2.4	484	
Sodium Flu	oride	NaF	41.99	202.10		202.10	0.311	0.00740			202.10	0.319	0.00759		111	
Sodium Su	lfate	Na ₂ SO ₄ .10H ₂ O	322.2	166.97	93.28	73.69		0.00080		93.30	73.70	0.116	0.00082	2.5	24	
Sodium Ph	osphate	Na ₃ PO ₄ .12H ₂ O	380.12	373.97	212.51	161.46	0.248	0.00151	374	212.52	161.48	0.255	0.00155	2.5	68	П
Mass of co	mpounds ad	ded to supernate simular	t	4024.30	495.41	3528.89			4024.05	495.44	3528.61				1162	П
Mass of su	pernate simu	lant used in Batch #2, gr	ams	808418					791667						83156	П
Calculated	volume of su	upernate simulant (based	on mass													
used and c	alculated de	nsity), ml		650000					634488							
		ernate simulant													5.70	
		e simulant and EDL addit		812443		·			795691		·				84317	
			mall											i	i	
volume inci	ated density of final simulant (neglecting small increase due to adding solids), gm/ml			1.2499					1.2541					i l	i	1

- Notes: (1) All solids added were less than or equal to 5 microns in size
 - (2) The recipe specified 0.1754 moles of sodium aluminosilicate, Na₂.Al₂O₃.(SiO₂)₂.5H₂O that was unavailable from suppliers. The author of the recipe was contacted and recommended the substitution of 2*0.1754 = 0.3058 moles = 21.08 grams of SiO2 and 0.1754 moles = 17.88 grams of Al₂O₃ instead. The 17.88 grams of Al₂O₃ was added to the 207.38 grams Al₂O₃ in the original entrained solids recipe for a total of 225.26 grams Al₂O₃ to be added.
 - (3) An error was made when the recipe concentrations were previously reported in the Batch 2 interim report. The concentrations had been calculated using the double batch size of 1300 liters rather than the half batch size of 650 liters.
 - (4) An error was made when the actual concentrations were previously reported in the Batch 2 interim report. The concentrations had been calculated using the double batch size of 1282 liters rather than the approximately half batch size of 634 liters actually used in Batch 2.
 - (5) Solids were weighed out and added based on a 650 liter batch. The simulant was added to the tank by weight, not volume. The actual volume was slightly less than expected when the solids were added resulting in a small excess of solids.

APPENDIX B

AN-102R2 Simulant Formulations

The AN102 simulant for Batch 3C, 3B, 3A and 4A is the same before remediation for each Batch processed. The remediation and addition of entrained solids is different due to varying Batch sizes. The formulation of each Batch using AN-102R2 simulant is provided in the spreadsheets that follow.

Purchased simulant formulation:

AN-102 Sim	nulant befo	re remediation (AN-102	with Su	fate; 6.5 M N	a recipe)							
Mixed in Ves	ssel 1			Recipe a	mounts for 4	700 liters	Ac	tual amounts	added by Opt	ima		Ν
				Compound	Water	Non-water	Compound	Water	Non-wate	er		0
Compounds		Formula	Formula Weight	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	% Extra	Na content, grams	t e s
Water chard			- 3	940000.00	940000.00	, 3	2172163.29	_	9 11 1		3	Ů
Calcium Nitr		Ca(NO ₃) ₂ .4H ₂ O	236.15	8685.65	2648.18	6037.47	8663.61	2641.46	6022.16	-0.3		
Cesium Nitra		CsNO ₃	194.91	128.25		128.25	128.30		128.30	0.0		
Copper Nitra	ate	Cu(NO ₃) ₂ .2.5H ₂ O	241.60	267.11	49.75	217.36	267.10	49.75	217.35	0.0		
Ferric Nitrate	е	Fe(NO ₃) ₃ .9H ₂ O	403.99	760.21	304.84	455.37	760.20	304.84	455.36	0.0		
Lanthanum	Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	127.40	31.78	95.62	127.40	31.78	95.62	0.0		
Lead nitrate		Pb(NO ₃) ₂	331.20	872.56		872.56	872.60		872.60	0.0		
Manganous	Chloride	MnCl ₂ .4H ₂ O	197.90	189.28	68.86	120.42	189.30	68.87	120.43	0.0		
Nickel Nitrat	te	Ni(NO ₃) ₂ .6H ₂ O	290.81	6074.99	2256.11	3818.88	6078.14	2257.28	3820.86	0.1		
Potassium N	Vitrate	KNO₃	101.11	16545.01		16545.01	16556.12		16556.12	0.1		
Strontium N	itrate	Sr(NO ₃) ₂	211.63	75.00		75.00	75.00		75.00	0.0		
Zinc Nitrate		Zn(NO ₃) ₂ .6H ₂ O	297.47	75.70	27.48	48.22	75.71	27.49	48.22	0.0		
Zirconyl Nitr	ate	ZrO(NO ₃) ₂ .H ₂ O	249.23	135.58	9.79	125.79	135.60	9.79	125.81	0.0		
EDTA		Na ₂ C ₁₀ H ₁₄ N ₂ O ₈ .2H ₂ O	372.24	11337.07	1096.43	10240.64	11339.81	1096.69	10243.12	0.0	1401	
HEDTA		Na ₃ C ₁₀ H ₁₅ N ₂ O ₇	344.21	730.13		730.13	1750.87	1033.01	717.86	-1.7	144	(1)
Sodium Glu	conate	CH ₂ OH(CHOH) ₄ COONa	218.14	3172.50		3172.50	3172.43		3172.43	0.0	334	
Citric Acid		HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	2043.70		2043.70	2043.89		2043.89	0.0		
Nitrilotriacet	ic Acid	N(CH ₂ COOH) ₃	191.14	759.30		759.30	759.31		759.31	0.0		
Iminodiaceti	c Acid	HN(CH ₂ CO ₂ H) ₂	133.10	13456.58		13456.58	13471.69		13471.69	0.1		
Succinic Aci	id	C ₄ H ₆ O ₄	118.04	106.91		106.91	106.90		106.90	0.0		
Boric acid		H ₃ BO ₃	61.83	684.55		684.55	684.47		684.47	0.0		
Sodium Chlo		NaCl	58.44	18702.37		18702.37	18688.01		18688.01	-0.1	7352	
Sodium Fluc		NaF	41.99	14516.51		14516.51	14514.96		14514.96	0.0	7947	
Sodium Sulf		Na ₂ SO ₄	142.04	57322.85		57322.85	57334.08		57334.08	0.0	18560	
Potassium N			238.14	427.50		427.50	427.50		427.50	0.0		
Total Weigh		l 1 bstituted 41 w% solution o	of Tricodi	1097196.71	946493.22	150703.48		2179684.24	150702.04		35737	
140162 (1)	Optima Su	DSITULEU 41 W /0 SUIUIIOIT (n Hisoul	um HEDTA III	oceau or allily	urous misoult	ani riedia.					

AN-102 Simulant befo	re remediation (AN-102	with Sul	fate; 6.5 M N	a recipe)							N
Vessel 2 (added to ves	sel 1 after mixing)		Recipe a	mounts for 4	700 liters	Ac	tual amounts	added by Opt	ima		0
			Compound	Water	Non-water	Compound	Water	Non-wate	er	Na	t
Compounds	Formula	Formula Weight	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	% Extra	content,	e s
Water charged to tank			940000.00	940000.00		93077.16	93077.16			J	Ť
Sodium Hydroxide	NaOH	40.00	429364.44		429364.44	858196.82	429098.41	429098.41	-0.1	246624	(2)
Aluminum Nitrate	AI(NO ₃) ₃ .9H ₂ O	375.13	609992.97	263425.64	346567.33	1016682.01	669993.44	346688.56	0.0		(3)
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	59726.86	33939.29	25787.57	25764.05		25764.05	-0.1	10827	
Sodium Formate	NaHCOO	68.01	35280.10		35280.10	35289.49		35289.49	0.0	11929	Ė
Sodium Glycolate	HOCH₂COONa	98.01	41946.69	0.00	41946.69	41957.30		41957.30	0.0	9842	П
Sodium Acetate	NaCH₃COO.3H₂O	136.08	5052.48	2004.95	3047.53	5034.88		5034.88	65.2	1410	(5)
Sodium Oxalate	Na ₂ C ₂ O ₄	134.00	2266.45		2266.45	2266.60		2266.60	0.0	778	
Water used to clean ta	nk & flush lines					45359.24	45359.24				
Sodium Chromate	Na ₂ CrO ₄	161.97	2355.13		2355.13	2355.05		2355.05	0.0	669	
Sodium Carbonate	Na ₂ CO ₃	105.99	386906.87		386906.87	386914.32		386914.32	0.0	167849	
Total Weights added fr	om vessel 2		2512891.99	1239369.88	1273522.11	2512896.91	1237528.25	1275368.65		449928	N
Vessel 3 (added to comb	ined vessel 1 and 2 after		Recipe a	mounts for 4	700 liters	Ac	tual amounts	added by Opt	ima		0
mixing)			Compound	Water	Non-water	Compound	Water	Non-wate	r	Na	t
Compounds	Formula	Formula Weight	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	% Extra	content, grams	e s
Water charged to tank			470000.00	470000.00		470012.44	470012.44				Ī
Sodium Nitrate	NaNO ₃	84.99	351127.68		351127.68	351125.88		351125.88	0.0	94980	
Sodium Nitrite	NaNO ₂	69.00	370763.19		370763.19	370766.43		370766.43	0.0	123535	
Water used to clean ve	ssel 3 and flush hose					27215.54	27215.54				
Water used to clean ve	ssel 1 and flush hose after	er loading	drums			0.00	0.00				(6)
Water added at end to	bring volume up to total		1277493.77	1277493.77							
Total Weights added to	previous mixture		2469384.64	1747493.77	721890.87	1219120.29	497227.99	721892.30		218515	
Overall totals			6079473.34	3933356.88	2146116.46		3914440.48	2147963.00		704181	
Volume, ml			4700000.00			4681083.61					(7)
Calculated density, gm.			1.2935			1.2951					_
(2) Optima sub	stituted 50 wt% Sodium Hyd	roxide for	the Anhydrous	Sodium Hydro	xide shown in t	he recipe.					

⁽³⁾ The Aluminum Nitrate was added as a 60 w% of Al(NO₃)₃.9H₂O in water, or a 34.1 w% solution of Aluminum Nitrate. Optima added 1016682*0.341 = 346689 grams of Aluminum Nitrate and 1016682*0.659 = 669993 grams of water.

⁽⁴⁾ Optima substituted anhydrous Sodium Phosphate for the hydrated Sodium Phosphate shown in the recipe.

⁽⁵⁾ Optima substituted anhydrous Sodium Acetate for the hydrated Sodium Acetate shown in the recipe.
(6) One of the last steps in the Optima procedure called for flushing out vessel 1 and hoses with 40 lb of water and loading it into a final drum. This drum was not shipped to SRTC.

⁽⁷⁾ Optima volume was estimated by substracting 1 ml per gram of water not added to the supernate.

Batch #3C simulant remediation and entrained solids:

Batch #3C S	Simulant F	Remediation] ,.
				Recipe	amounts for 8	312 liters	Α	ctual amoun	ts added by El	DL		N o
				Compound	Water	Non-water	Compound	Water	Non-wate	er	Na	t
Compounds		Formula	Formula Weight	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	mass, grams	% Extra	content, grams	e
Water charg	ed to tank		- 3	283241.14	283241.14	, J	283300.00	283300.00	J		g	Ť
Aluminum N		AI(NO ₃) ₃ .9H ₂ O	375.13	59274.31	25597.63	33676.68	59300.00	25608.72	33691.28	0.0		
Cadmium Ni	itrate	Cd(NO ₃) ₂ .4H ₂ O	308.48	110.83	25.87	84.96	110.70	25.84	84.86	-0.1		
Calcium Nitr	ate	Ca(NO ₃) ₂ .4H ₂ O	236.15	1149.42	350.45	798.97	1149.40	350.44	798.96	0.0		
Cerium Nitra	ate	Ce(NO ₃) ₃ .6H ₂ O	434.22	91.76	22.82	68.94	91.70	22.81	68.89	-0.1		
Cesium Nitra	ate	CsNO ₃	194.91	4.13		4.13	4.12		4.12	-0.3		
Cobalt Nitrat	te	Co(NO ₃) ₃ .6H ₂ O	353.03	10.93	3.34	7.59	10.90	3.33	7.57	-0.3		
Copper Nitra	ate	Cu(NO ₃) ₂ .2.5H ₂ O	241.60	35.23	6.56	28.67	35.30	6.57	28.73	0.2		
Ferric Nitrate	е	Fe(NO ₃) ₃ .9H ₂ O	403.99	133.24	53.43	79.81	133.20	53.41	79.79	0.0		
Lanthanum	Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	68.31	17.04	51.27	68.30	17.04	51.26	0.0		
Lead nitrate		Pb(NO ₃) ₂	331.20	119.57		119.57	119.70		119.70	0.1		
Manganous	Chloride	MnCl ₂ .4H ₂ O	197.90	53.10	19.32	33.78	53.10	19.32	33.78	0.0		
Neodymium	Nitrate	Nd(NO ₃) ₂ .6H ₂ O	376.36	163.46	46.91	116.55	163.50	46.92	116.58	0.0		
Nickel Nitrat	:e	Ni(NO ₃) ₂ .6H ₂ O	290.81	833.55	309.56	523.99	833.60	309.58	524.02	0.0		
Potassium N	Vitrate	KNO ₃	101.11	1883.58		1883.58	1883.60		1883.60	0.0		
Rubidium Ni	itrate	RbNO ₃	147.48	9.55		9.55	9.53		9.53	-0.2		
Zinc Nitrate		Zn(NO ₃) ₂ .6H ₂ O	297.47	8.44	3.06	5.38	8.47	3.08	5.39	0.4		
Zirconyl Nitra	ate	ZrO(NO ₃) ₂ .H ₂ O	249.23	12.25	0.88	11.37	12.27	0.89	11.38	0.2		
EDTA		Na ₂ C ₁₀ H ₁₄ N ₂ O ₈ .2H ₂ O	372.24	1373.63	132.85	1240.78	1373.60	132.84	1240.76	0.0	170	
HEDTA		C ₁₀ H ₁₈ N ₂ O ₇	278.26	194.19		194.19	216.70		194.18	0.0	29	(8
Sodium Glud	conate	CH ₂ OH(CHOH) ₄ COONa	218.14	810.73		810.73	810.70		810.70	0.0	85	
Citric Acid		HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	3250.38		3250.38	3250.30		3250.30	0.0		
Nitrilotriaceti	ic Acid	N(CH ₂ COOH) ₃	191.14	107.47		107.47	107.40		107.40	-0.1		
Iminodiaceti	c Acid	HN(CH ₂ CO ₂ H) ₂	133.10	1830.68		1830.68	1830.60		1830.60	0.0		
Succinic Aci	d	C ₄ H ₆ O ₄	118.04	14.80		14.80	14.81		14.81	0.1		
Glutaric Acid	t	C ₅ H ₈ O ₄	132.12	43.82		43.82	43.82		43.82	0.0		
Adipic Acid		C ₆ H ₁₀ O ₄	146.14	164.93		164.93	164.90		164.90	0.0		
Azelaic Acid		C ₉ H ₁₆ O ₄	188.22	689.69		689.69	689.70		689.70	0.0		
Suberic Acid	t	C ₈ H ₁₄ O ₄	174.20	1213.14		1213.14	1213.10		1213.10	0.0		
Ammonium	Acetate	NH₄CH₃COO	77.08	416.09		416.09	416.10		416.10	0.0		

Notes: (8) Only 99.16 grams of HEDA was available for mixing this batch. Trisodium HEDTA (Na₃C₁₀H₁₅N₂O₇ with formula weight 344.21) was available, so (194.19-99.16)*(344.21/278.26) = 117.54 grams of Trisodium HEDTA was substituted.

Batch #3C Simulant I	Remediation										N
			Recipe a	amounts for 8	12 liters	А	ctual amoun	ts added by El	DL		0
			Compound	Water	Non-water	Compound	Water	Non-wate	r		t
		Formula	mass,	mass,			mass,	mass,	%	Na	е
Compounds	Formula	Weight	grams	grams	mass, grams		grams	grams	Extra	content	s
Boric acid	H ₃ BO ₃	61.83	79.02		79.02	79.00		79.00	0.0		
Sodium Chloride	NaCl	58.44	3535.58		3535.58	3535.60		3535.60	0.0	1391	
Sodium Fluoride	NaF	41.99	1235.85		1235.85	1235.50		1235.50	0.0	676	
Sodium Sulfate	Na ₂ SO ₄	142.04	7317.24		7317.24	7317.30		7317.30	0.0	2369	ĺ
Potassium Molybdate	K ₂ MoO ₄	238.14	36.55		36.55	36.50		36.50	-0.1		
Sodium Hydroxide	NaOH	40.00	26654.63		26654.63	26700.00		26700.00	0.2	15346	
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	9376.45	5328.09	4048.36	9300.00	5284.65	4015.35	-0.8	1687	
Sodium Tungstate	Na ₂ WO ₄ .2H ₂ O	329.86	199.52	21.78	177.74	199.50	21.77	177.73	0.0	28	
Sodium Metasilicate	Na ₂ SiO ₃ .9H ₂ O	284.14	67.18	38.30	28.88	67.10	38.26	28.84	-0.1	11	
Sodium Formate	NaHCOO	68.01	5314.92		5314.92	5314.90		5314.90	0.0	1797	
Sodium Glycolate	HOCH₂COONa	98.01	5361.59	0.00	5361.59	5361.60		5361.60	0.0	1258	
Sodium Acetate	NaCH ₃ COO.3H ₂ O	136.08	0.42	0.17	0.25	0.43	0.17	0.26	2.4	0	
Sodium Oxalate	Na ₂ C ₂ O ₄	134.00	267.24		267.24	267.20		267.20	0.0	92	
Sodium Chromate	Na ₂ CrO ₄	161.97	311.57		311.57	311.60		311.60	0.0	88	
Sodium Carbonate	Na ₂ CO ₃	105.99	30115.85		30115.85	30100.00		30100.00	-0.1	13058	
Sodium Nitrate	NaNO ₃	84.99	40472.77		40472.77	40400.00		40400.00	-0.2	10928	
Sodium Nitrite	NaNO ₂	69.00	32945.07		32945.07	32900.00		32900.00	-0.1	10962	
Totals added during re	mediation		520603.80	315219.19	205384.61	520545.35	315245.64	205277.19		59975	
Optima Simulant used	for Batch 3C		537504.20	347759.70	189744.50	537500.00	347059.01	190440.988		62434	
Total Remediated Sim	ulant for Batch 3C		1058108.00	662978.90	395129.11	1058045.35	662304.65	395718.18		122408	
Expected density, gm/	ml		1.3026			1.3036					
Water charged to tank			67692	67692		68000	68000				
Batch 3C Supernate a			1125800.00			1126045.35					
Expected density after	dilution, gm/ml		1.2793			1.2801					

Batch #3C Entraine	d solids										N
			Recipe a	amounts for 8	12 liters	А	ctual amount	s added by El	DL		0
			Compound	Water	Non-water	Compound	Water	Non-wate	er		t
		Formula	mass,	mass,			mass,	mass,	%	Na	е
Compounds	Formula	Weight	grams	grams	mass, grams		grams	grams	Extra	content	s
Aluminum Oxide	Al ₂ O ₃	101.96	174.3	0.00	174.30	174.3	0.00	174.30	0.0		
Barium Sulfate	BaSO ₄	233.4	0.23	0.00	0.23	0.24	0.00	0.24	4.3		1
Calcium Oxalate	CaC ₂ O ₄ .H ₂ O	146.11	1.5	0.18	1.32	1.5	0.18	1.32	0.0		
Calcium Tungstate	CaWO ₄	287.93	1.27	0.00	1.27	1.27	0.00	1.27	0.0		
Cerium Oxalate	Ce(C ₂ O ₄) ₃ .9H ₂ O	544.29	0.23	0.07	0.16	0.23	0.07	0.16	0.0		
Chromic Oxide	Cr ₂ O ₃	151.99	10.72	0.00	10.72	10.72	0.00	10.72	0.0		_
Ferric Hydroxide	FeO(OH)	88.85	7.84	0.00	7.84	7.85	0.00	7.85	0.1		
Lanthanum Oxalate	La ₂ (C ₂ O ₄) ₃ .10H ₂ O	722.03	0.23	0.06	0.17	0.23	0.06	0.17	0.0		
Lead Sulfate	PbSO ₄	303.25	0.92	0.00	0.92	0.93	0.00	0.93	1.1		_
Manganese Dioxide	MnO ₂	86.94	1.73	0.00	1.73	1.74	0.00	1.74	0.6		
Neodymium Oxalate	Nd ₂ (C ₂ O ₄) ₃ .10H ₂ O	732.69	0.46	0.11	0.35	0.46	0.11	0.35	0.0		_
Nickel Oxide	NiO	74.71	0.12	0.00	0.12	0.13	0.00	0.13	8.3		
Silicon Oxide	SiO ₂	60.09	0.58	0.00	0.58	0.58	0.00	0.58	0.0		
Sodium Carbonate	Na ₂ CO ₃ .H ₂ O	124.01	492.36	71.47	420.89	492.40	71.47	420.93	0.0	183	_
Sodium Fluoride	NaF	41.99	36.31	0.00	36.31	36.30	0.00	36.30	0.0	20	
Sodium Oxalate	Na ₂ C ₂ O ₄	134.00	185.60	0.00	185.60	185.60	0.00	185.60	0.0	64	
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	141.56	80.44	61.12	141.60	80.46	61.14	0.0	26	
Sodium Sulfate	Na ₂ SO ₄ .10H ₂ O	322.04	96.26	53.80	42.46	96.30	53.83	42.47	0.0	14	
Zinc Oxalate	ZnC ₂ O ₄ .2H ₂ O	189.45	0.23	0.04	0.19	0.24	0.05	0.19	4.3		
Zirconium Oxide	ZrO ₂	60.09	0.23	0.00	0.23	0.23	0.00	0.23	0.0		_
Total solids added			1152.68	206.18	946.50	1152.85	206.23	946.62		306	
Totals in simulant ba	tch 3C		1126952.68	730877.07	396075.61	1127198.20	730510.88	396664.80		122714	

Batch #3B simulant remediation and entrained solids

											_
Batch #3B Simulant	Remediation										
			Recipe a	mounts for 92	27 liters	A	ctual amounts	added by E	DL		N o
			Compound	Water	Non-water	Compound	Water	Non-wat	er		t
_		Formula	mass,	mass,	mass,		mass,	mass,	_%	Na	е
Compounds	Formula	Weight	grams	grams	grams	mass, grams	grams	grams	Extra	content	s
Water charged to tank			323339.73	323339.73		323400.00	323400.00				-
Aluminum Nitrate	AI(NO ₃) ₃ .9H ₂ O	375.13	67665.89	29221.53	38444.36	67700.00	29236.26	38463.74	0.1		_
Cadmium Nitrate	Cd(NO ₃) ₂ .4H ₂ O	308.48	126.52	29.53	96.99	126.50	29.53	96.97	0.0		
Calcium Nitrate	Ca(NO ₃) ₂ .4H ₂ O	236.15	1312.15	400.06	912.09	1312.10	400.05	912.05	0.0		
Cerium Nitrate	Ce(NO ₃) ₃ .6H ₂ O	434.22	104.75	26.05	78.70	104.90	26.09	78.81	0.1		_
Cesium Nitrate	CsNO ₃	194.91	4.72		4.72	4.71		4.71	-0.2		
Cobalt Nitrate	Co(NO ₃) ₃ .6H ₂ O	353.03	12.48	3.82	8.66	12.48	3.82	8.66	0.0		
Copper Nitrate	Cu(NO ₃) ₂ .2.5H ₂ O	241.60	40.22	7.49	32.73	40.30	7.51	32.79	0.2		
Ferric Nitrate	Fe(NO ₃) ₃ .9H ₂ O	403.99	152.10	60.99	91.11	152.10	60.99	91.11	0.0		_
Lanthanum Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	77.98	19.45	58.53	77.80	19.40	58.40	-0.2		
Lead nitrate	Pb(NO ₃) ₂	331.20	136.50		136.50	136.50		136.50	0.0		
Manganous Chloride	MnCl ₂ .4H ₂ O	197.90	60.62	22.05	38.57	60.70	22.08	38.62	0.1		
Neodymium Nitrate	Nd(NO ₃) ₂ .6H ₂ O	376.36	186.61	53.55	133.06	186.70	53.58	133.12	0.0		
Nickel Nitrate	Ni(NO ₃) ₂ .6H ₂ O	290.81	951.56	353.39	598.17	951.60	353.40	598.20	0.0		
Potassium Nitrate	KNO ₃	101.11	2150.24		2150.24	2150.30		2150.30	0.0		· ·
Rubidium Nitrate	RbNO ₃	147.48	10.90		10.90	10.87		10.87	-0.3		
Zinc Nitrate	Zn(NO ₃) ₂ .6H ₂ O	297.47	9.64	3.50	6.14	9.65	3.50	6.15	0.1		
Zirconyl Nitrate	$ZrO(NO_3)_2.H_2O$	249.23	13.99	1.01	12.98	13.99	1.01	12.98	0.0		
EDTA	Na ₂ C ₁₀ H ₁₄ N ₂ O ₈ .2H ₂ O	372.24	1568.10	151.65	1416.45	1568.20	151.66	1416.54	0.0	194	
HEDTA	Na ₃ C ₁₀ H ₁₅ N ₂ O ₇	344.21	221.68		221.68	221.70		221.70	0.0	44	
Sodium Gluconate	CH ₂ OH(CHOH) ₄ COONa	218.14	925.51		925.51	925.50		925.50	0.0	98	
Citric Acid	HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	3710.54		3710.54	3710.50		3710.50	0.0		
Nitrilotriacetic Acid	N(CH ₂ COOH) ₃	191.14	122.69		122.69	122.60		122.60	-0.1		_
Iminodiacetic Acid	HN(CH ₂ CO ₂ H) ₂	133.10	2089.85		2089.85	2089.90		2089.90	0.0		
Succinic Acid	C ₄ H ₆ O ₄	118.04	16.89		16.89	16.80		16.80	-0.5		
Glutaric Acid	C ₅ H ₈ O ₄	132.12	50.03		50.03	50.10		50.10	0.1		
Adipic Acid	C ₆ H ₁₀ O ₄	146.14	188.28		188.28	188.30		188.30	0.0		
Azelaic Acid	C ₉ H ₁₆ O ₄	188.22	787.34		787.34	787.40		787.40	0.0		
Suberic Acid	C ₈ H ₁₄ O ₄	174.20	1384.89		1384.89	1384.90		1384.90	0.0		
Ammonium Acetate	NH₄CH₃COO	77.08	475.00		475.00	475.00		475.00	0.0		
Boric acid	H ₃ BO ₃	61.83	90.20		90.20	90.20		90.20	0.0		
Sodium Chloride	NaCl	58.44	4036.12		4036.12	4036.10		4036.10	0.0	1588	
Sodium Fluoride	NaF	41.99	1410.82		1410.82	1410.90		1410.90	0.0	1545	_
Sodium Sulfate	Na ₂ SO ₄	142.04	8353.16		8353.16	8400.00		8400.00	0.6		
Potassium Molybdate	K_2MoO_4	238.14	41.73		41.73	41.70		41.70	-0.1		

Batch #3B	Simulant	Remediation										
				Recine	amounts for 92	7 liters	Δ	ctual amounts	s added by F	DI.		N
				Compound	Water	Non-water	Compound	Water	Non-wat			0
			Formula	mass.	mass.	mass.	Compound	mass.	mass.	%	Na	t e
Compounds		Formula	Weight	grams	grams	grams	mass, grams	grams	grams	Extra	content	s
Sodium Hyd	droxide	NaOH	40.00	30428.17		30428.17	30400.00		30400.00	-0.1	17472	
Sodium Pho	osphate	Na ₃ PO ₄ .12H ₂ O	380.12	10703.89	6082.40	4621.49	10700.00	6080.19	4619.81	0.0	1941	
Sodium Tur	ngstate	Na2WO ₄ .2H ₂ O	329.86	227.77	24.86	202.91	227.70	24.85	202.85	0.0	32	
Sodium Met	tasilicate	Na ₂ SiO ₃ .9H ₂ O	284.14	76.69	43.72	32.97	76.70	43.73	32.97	0.0	12	
Sodium For	mate	NaHCOO	68.01	6067.36		6067.36	6067.20		6067.20	0.0	2051	
Sodium Gly	colate	HOCH₂COONa	98.01	6120.65	0.00	6120.65	6120.60		6120.60	0.0	1436	
Sodium Ace	etate	NaCH ₃ COO.3H ₂ O	136.08	0.48	0.19	0.29	0.48	0.19	0.29	0.0	0	
Sodium Oxa	alate	Na ₂ C ₂ O ₄	134.00	305.08		305.08	305.00		305.00	0.0	105	
Sodium Chr	romate	Na ₂ CrO ₄	161.97	355.68		355.68	355.60		355.60	0.0	101	
Sodium Car	bonate	Na ₂ CO ₃	105.99	34379.41		34379.41	34400.00		34400.00	0.1	14923	
Sodium Nitr	ate	NaNO ₃	84.99	46202.57		46202.57	46200.00		46200.00	0.0	12497	
Sodium Nitr	ite	NaNO ₂	69.00	37609.16		37609.16	37600.00		37600.00	0.0	12528	
Totals adde	d during re	mediation		594306.34	359844.99	234461.35	594424.28	359917.84	234506.43		66567	
Optima Sim	ulant adde	d		613599.70	396992.713	216606.99	613900.00	397038.845	216861.16		70474	
Total Reme	diated Sim	ulant		1207906.04	756837.70	451068.34	1208324.28	756956.69	451367.59		137041	
Calculated of	density			1.3090			1.3093					
Less Remed	diated sim	ulant used with Batch 3A		118500			118500.00					
Less materi	al to CUF	and samples		17724			17724.00					
Total remed	diated simu	lant used in Batch 3B		1071682.04			1072100.28				121591	
Water charg	ged to tank	to dilute to 6.0 M Na		67692	67692		68000.00	68000				
Batch 3B St	upernate a	fter dilution		1139374.04			1140100.28					
Expected de	ensity after	dilution, gm/ml		1.2854		-	1.2856					

Batch #3B Entrained	I solids										_
			Recipe a	mounts for 8	12 liters	A	ctual amounts	s added by E	DL		N
			Compound	Water	Non-water	Compound	Water	Non-wat	er		0 t
		Formula	mass,	mass,	mass,	·	mass,	mass,	%	Na	ė
Compounds	Formula	Weight	grams	grams	grams	mass, grams	grams	grams	Extra	content	s
Aluminum Oxide	Al_2O_3	102	174.3	0.00	174.30	174.30	0.00	174.30	0.0		
Barium Sulfate	BaSO ₄	233.4	0.23	0.00	0.23	0.23	0.00	0.23	0.0		
Calcium Oxalate	CaC ₂ O ₄ .H ₂ O	146.1	1.5	0.18	1.32	1.51	0.19	1.32	0.6		
Calcium Tungstate	CaWO ₄	287.9	1.27	0.00	1.27	1.27	0.00	1.27	0.1		
Cerium Oxalate	Ce(C ₂ O ₄) ₃ .xH ₂ O	544.3	0.23	0.07	0.16	0.23	0.07	0.16	-0.8		
Chromic Oxide	Cr ₂ O ₃	152	10.72	0.00	10.72	10.73	0.00	10.73	0.1		
Ferric Hydroxide	FeO(OH)	88.85	7.84	0.00	7.84	7.85	0.00	7.85	0.1		
Lanthanum Oxalate	La ₂ (C ₂ O ₄) ₃ .10H ₂ O	722	0.23	0.06	0.17	0.23	0.06	0.18	1.7		
Lead Sulfate	PbSO ₄	303.3	0.92	0.00	0.92	0.93	0.00	0.93	0.7		
Manganese Dioxide	MnO ₂	86.94	1.73	0.00	1.73	1.74	0.00	1.74	0.6		
Neodymium Oxalate	Nd ₂ (C ₂ O ₄) ₃ .10H ₂ O	732.7	0.46	0.11	0.35	0.46	0.11	0.35	0.0		
Nickel Oxide	NiO	74.71	0.12	0.00	0.12	0.13	0.00	0.13	6.8		
Silicon Oxide	SiO ₂	60.09	0.58	0.00	0.58	0.59	0.00	0.59	1.2		
Sodium Carbonate	Na ₂ CO ₃ .H ₂ O	124.01	492.36	71.47	420.89	492.40	71.47	420.93	0.0	91	
Sodium Fluoride	NaF	41.99	36.31	0.00	36.31	36.30	0.00	36.30	0.0	20	
Sodium Oxalate	Na ₂ C ₂ O ₄	134.00	185.60	0.00	185.60	185.60	0.00	185.60	0.0	64	
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	141.56	80.44	61.12	141.60	80.46	61.14	0.0	26	
Sodium Sulfate	Na ₂ SO ₄ .10H ₂ O	322.04	96.26	53.80	42.46	96.30	53.83	42.47	0.0	14	
Zinc Oxalate	ZnC ₂ O ₄ .2H ₂ O	189.5	0.23	0.04	0.19	0.24	0.04	0.19	2.7		
Zirconium Oxide	ZrO ₂	60.09	0.23	0.00	0.23	0.23	0.00	0.23	1.0		
Total solids added			1152.68	206.18	946.50	1152.85	206.23	946.62		214	
Total material in simu	lant		1140526.72			1141253.13				121806	

Batch #3A simulant remediation and entrained solids

Batch #3A Simulant R	- Illeulation		Pacino	mounts for 75	57.1 litore		Actual amount	s added by E	DI		-
			Compound	Water	Non-water	Compound	Water	Non-wate			+
		Formula	mass,	mass,	Non-water	Compound	mass,	mass,	%		
Compounds	Formula	Weight	grams	grams	mass, grams	mass, grams	grams	grams		Na content	t
Water charged to tank			263990.83	263990.83		264090.05	264090.05				Ť
Aluminum Nitrate	AI(NO ₃) ₃ .9H ₂ O	375.13	55245.77	23857.90	31387.87	55262.45	23865.11	31397.34	0.0		T
Cadmium Nitrate	Cd(NO ₃) ₂ .4H ₂ O	308.48	103.30	24.11	79.19	103.34	24.12	79.22	0.0		T
Calcium Nitrate	Ca(NO ₃) ₂ .4H ₂ O	236.15	1071.30	326.63	744.67	1072.36	326.95	745.41	0.1		1
Cerium Nitrate	Ce(NO ₃) ₃ .6H ₂ O	434.22	85.04	21.15	63.89	85.56	21.28	64.28	0.6		1
Cesium Nitrate	CsNO ₃	194.91	3.85		3.85	3.87		3.87	0.4		1
Cobalt Nitrate	Co(NO ₃) ₃ .6H ₂ O	353.03	10.19	3.12	7.07	10.19	3.12	7.07	0.0		1
Copper Nitrate	Cu(NO ₃) ₂ .2.5H ₂ O	241.60	32.83	6.11	26.72	33.06	6.16	26.90	0.7		1
Ferric Nitrate	Fe(NO ₃) ₃ .9H ₂ O	403.99	124.18	49.80	74.38	124.06	49.75	74.31	-0.1		1
Lanthanum Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	63.30	15.79	47.51	63.63	15.87	47.76	0.5		1
Lead nitrate	Pb(NO ₃) ₂	331.20	111.44		111.44	111.53		111.53	0.1		1
Manganous Chloride	MnCl ₂ .4H ₂ O	197.90	49.49	18.01	31.48	49.49	18.01	31.48	0.0		
Neodymium Nitrate	Nd(NO ₃) ₂ .6H ₂ O	376.36	151.48	43.47	108.01	152.86	43.86	109.00	0.9		
Nickel Nitrate	Ni(NO ₃) ₂ .6H ₂ O	290.81	776.90	288.52	488.38	776.75	288.47	488.28	0.0		
Potassium Nitrate	KNO ₃	101.11	1755.56		1755.56	1755.26		1755.26	0.0		
Rubidium Nitrate	RbNO ₃	147.48	8.90		8.90	8.90		8.90	0.0		
Zinc Nitrate	Zn(NO ₃) ₂ .6H ₂ O	297.47	7.87	2.86	5.01	7.86	2.85	5.01	-0.1		
Zirconyl Nitrate	ZrO(NO ₃) ₂ .H ₂ O	249.23	11.43	0.83	10.60	11.43	0.83	10.60	0.0		
EDTA	Na ₂ C ₁₀ H ₁₄ N ₂ O ₈ .2H ₂ O	372.24	1280.27	123.82	1156.45	1280.08	123.80	1156.28	0.0	158	
HEDTA	Na ₃ C ₁₀ H ₁₅ N ₂ O ₇	344.21	223.89		223.89	181.06		181.06	-19.1	36	
Sodium Gluconate	CH ₂ OH(CHOH) ₄ COONa	218.14	755.63		755.63	755.58		755.58	0.0	80	
Citric Acid	HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	3029.47		3029.47	3029.06		3029.06	0.0		
Nitrilotriacetic Acid	N(CH ₂ COOH) ₃	191.14	100.17		100.17	100.09		100.09	-0.1		1
Iminodiacetic Acid	HN(CH ₂ CO ₂ H) ₂	133.10	1706.26		1706.26	1706.04		1706.04	0.0		1
Succinic Acid	C ₄ H ₆ O ₄	118.04	13.79		13.79	13.86		13.86	0.5		1
Glutaric Acid	C ₅ H ₈ O ₄	132.12	40.84		40.84	40.83		40.83	0.0		1
Adipic Acid	C ₆ H ₁₀ O ₄	146.14	153.73		153.73	153.68		153.68	0.0		1
Azelaic Acid	C ₉ H ₁₆ O ₄	188.22	642.82		642.82	642.74		642.74	0.0		1
Suberic Acid	C ₈ H ₁₄ O ₄	174.20	1130.69		1130.69	1130.75		1130.75	0.0		
Ammonium Acetate	NH ₄ CH ₃ COO	77.08	387.81		387.81	387.93		387.93	0.0		_
Boric acid	H ₃ BO ₃	61.83	73.65		73.65	73.62		73.62	0.0		
Sodium Chloride	NaCl	58.44	3295.29		3295.29	3294.84		3294.84	0.0		_
Sodium Fluoride	NaF	41.99	1151.86		1151.86	1151.74		1151.74	0.0	631	
Sodium Sulfate	Na ₂ SO ₄	142.04	6819.93		6819.93	6809.43		6809.43	-0.2		
Potassium Molybdate	K ₂ MoO ₄	238.14	34.07		34.07	34.10		34.10	0.1		

Batch #3A	Simulant R	emediation										N
				Recipe a	mounts for 75	7.1 liters	Ä	Actual amoun	ts added by E	DL		0
				Compound	Water	Non-water	Compound	Water	Non-wate	er		t
			Formula	mass,	mass,	mass,		mass,	mass,	%		е
Compounds		Formula	Weight	grams	grams	grams	mass, grams	grams	grams	Extra	Na content	S
Sodium Hyd	droxide	NaOH	40.00	24843.06		24843.06	24874.03		24874.03	0.1	14296	
Sodium Pho	osphate	Na ₃ PO ₄ .12H ₂ O	380.12	8739.19	4965.97	3773.22	8756.89	4976.03	3780.86	0.2	1589	
Sodium Tur	ngstate	Na2WO4.2H2O	329.86	185.96	20.30	165.66	186.00	20.30	165.70	0.0	26	
Sodium Met	tasilicate	Na ₂ SiO3.9H2O	284.14	62.62	35.70	26.92	62.62	35.70	26.92	0.0	10	
Sodium For	mate	NaHCOO	68.01	4953.69		4953.69	4940.75		4940.75	-0.3	1670	
Sodium Gly	colate	HOCH₂COONa	98.01	4997.20	0.00	4997.20	4945.99		4945.99	-1.0	1160	
Sodium Ace	etate	NaCH ₃ COO.3H ₂ O	136.08	0.39	0.15	0.24	0.39	0.15	0.24	0.0	0	
Sodium Oxa	alate	Na ₂ C ₂ O ₄	134.00	249.08		249.08	249.00		249.00	0.0	85	
Sodium Chr	romate	Na ₂ CrO ₄	161.97	290.40		290.40	290.37		290.37	0.0	82	
Sodium Car	rbonate	Na ₂ CO ₃	105.99	28069.05		28069.05	28054.14		28054.14	-0.1	12170	
Sodium Nitr	rate	NaNO ₃	84.99	37722.06		37722.06	37738.86		37738.86	0.0	10208	
Sodium Nitr	rite	NaNO ₂	69.00	30705.98		30705.98	30663.83		30663.83	-0.1	10217	
Totals adde	ed during rer	mediation		485262.51	293795.06	191467.45	485270.95	293912.40	191358.55		53716	
Optima Sim	nulant added	i		500973.07	324124.436	176848.634	500929.02	323975.044	176953.976		77777	
Total Reme	diated Simu	lant		986235.58	617919.50	368316.09	986199.97	617887.45	368312.52		131492	
Expected de	ensity, gm/n	nl		1.3090			1.3090					
Water charg	ged to tank	to dilute to 6.0 M Na		62700.00	62700.00		62700.00	62700.00				
Batch 3A Si	upernate aft	er dilution		1048935.58			1048899.97					
Expected de	ensity after	dilution, gm/ml		1.2853			1.2853					

Batch #3A Entrained	solids										N
			Recipe a	amounts for 8	12 liters	,	Actual amoun	ts added by E	DL		0
			Compound	Water	Non-water	Compound	Water	Non-wate	er		t
		Formula	mass,	mass,	mass,		mass,	mass,	%	Na	е
Compounds	Formula	Weight	grams	grams	grams	mass, grams	grams	grams	Extra	content	S
Aluminum Oxide	Al2O3	101.96	161.53		174.3	161.5		174.3	0.0		
Barium Sulfate	BaSO4	233.4	0.21		0.23	0.21		0.24	4.3		
Calcium Oxalate	CaC2O4.H2O	146.11	1.39	0.17	1.5	1.39	0.17	1.5	0.0		
Calcium Tungstate	CaWO4	287.93	1.18		174.3	1.18		174.3	0.0		
Cerium Oxalate	Ce(C2O4)3.9H2O	544.29	0.21		174.3	0.21		174.3	0.0		
Chromic Oxide	Cr2O3	151.99	9.94		174.3	9.94		174.3	0.0		
Ferric Hydroxide	FeO(OH)	88.85	7.26		174.3	7.26		174.3	0.0		
Lanthanum Oxalate	La2(C2O4)3.10H2O	722.03	0.21	0.05	174.3	0.21	0.05	174.3	0.0		
Lead Sulfate	PbSO4	303.25	0.85		0.23	0.85		0.24	4.3		
Manganese Dioxide	MnO2	86.94	1.6		174.3	1.6		174.3	0.0		
Neodymium Oxalate	Nd2(C2O4)3.10H2O	732.69	0.43	0.11	174.3	0.43	0.11	174.3	0.0		
Nickel Oxide	NiO	74.71	0.11		174.3	0.11		174.3	0.0		
Silicon Oxide	SiO2	60.09	0.53		174.3	0.53		174.3	0.0		
Sodium Carbonate	Na2CO3.H2O	124.01	456.29	66.23	390.06	456.30	66.23	390.07	0.0	169	
Sodium Fluoride	NaF	41.99	33.65		33.65	33.60		33.60	-0.1	18	
Sodium Oxalate	Na ₂ C ₂ O ₄	134.00	172.00		172.00	172.00		172.00	0.0	59	
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	131.19	74.55	56.64	131.20	74.55	56.65	0.0	24	
Sodium Sulfate	Na2SO ₄ .10H ₂ O	322.04	89.21	49.86	39.35	89.20	49.86	39.34	0.0	13	
Zinc Oxalate	ZnC2O4.2H2O	189.45	0.21	0.04	1.5	0.21	0.04	1.5	0.0		
Zirconium Oxide	ZrO2	60.09	0.21		174.3	0.21		174.3	0.0		
Total solids added			1068.21	191.01	2612.46	1068.14	191.01	2612.44		283	
Total material in simula	ant		1050003.79	680810.51	370928.55	1049968.11	680778.46	370924.96		131776	

Batch #4A simulant remediation and entrained solids

Batch #4A	Simulant R	temediation										Τ.,
				Recipe a	mounts for 8	12 liters	A	ctual amoun	its added by E	DL		N o
				Compound	Water	Non-water	Compound	Water	Non-wate	er		t
			Formula	mass,	mass,	mass,	mass,	mass,	mass,	%	Na	е
Compounds		Formula	Weight	grams	grams	grams	grams	grams	grams	Extra	content	s
Water charg	ged to tank			283241.13	283241.13		283000	283000				
Aluminum N	litrate	AI(NO ₃) ₃ .9H ₂ O	375.13	59274.31	25597.63	33676.68	59300	25608.72	33691.28	0.0		
Cadmium N	itrate	Cd(NO ₃) ₂ .4H ₂ O	308.48	110.83	25.87	84.96	110.9	25.84	84.86	-0.1		
Calcium Niti	rate	Ca(NO ₃) ₂ .4H ₂ O	236.15	1149.42	350.45	798.97	1149.3	350.44	798.96	0.0		
Cerium Nitra	ate	Ce(NO ₃) ₃ .6H ₂ O	434.22	91.76	22.82	68.94	91.8	22.81	68.89	-0.1		
Cesium Nitra	ate	CsNO ₃	194.91	4.13		4.13	4.13		4.13	0.0		
Cobalt Nitra	te	Co(NO ₃) ₃ .6H ₂ O	353.03	10.93	3.34	7.59	10.9	3.33	7.57	-0.3		
Copper Nitra	ate	Cu(NO ₃) ₂ .2.5H ₂ O	241.6	35.23	6.56	28.67	35.2	6.57	28.73	0.2		
Ferric Nitrat	е	Fe(NO ₃) ₃ .9H ₂ O	403.99	133.24	53.43	79.81	133.2	53.41	79.79	0.0		
Lanthanum	Nitrate	La(NO ₃) ₃ .6H ₂ O	433.01	68.31	17.04	51.27	68.3	17.04	51.26	0.0		
Lead nitrate		Pb(NO ₃) ₂	331.2	119.57		119.57	119.6		119.6	0.0		
Manganous	Chloride	MnCl ₂ .4H ₂ O	197.9	53.1	19.32	33.78	53.1	19.32	33.78	0.0		
Neodymium	Nitrate	Nd(NO ₃) ₂ .6H ₂ O	376.36	163.46	46.91	116.55	163.5	46.92	116.58	0.0		
Nickel Nitrat	te	Ni(NO ₃) ₂ .6H ₂ O	290.81	833.55	309.56	523.99	833.6	309.58	524.02	0.0		
Potassium N	Vitrate	KNO ₃	101.11	1883.58		1883.58	1883.6		1883.6	0.0		
Rubidium N	itrate	RbNO ₃	147.48	9.55		9.55	9.58		9.58	0.3		
Zinc Nitrate		Zn(NO ₃) ₂ .6H ₂ O	297.47	8.44	3.06	5.38	8.44	3.08	5.39	0.2		
Zirconyl Nitr	ate	ZrO(NO ₃) ₂ .H ₂ O	249.23	12.25	0.88	11.37	12.3	0.89	11.38	0.1		
EDTA		Na ₂ C ₁₀ H ₁₄ N ₂ O ₈ .2H ₂ O	372.24	1373.63	132.85	1240.78	1373.6	132.84	1240.76	0.0	170	
HEDTA		Na ₃ C ₁₀ H ₁₅ N ₂ O ₇	344.21	216.73		216.73	216.7		216.7	0.0	43	
Sodium Glu	conate	CH ₂ OH(CHOH) ₄ COONa	218.14	810.73		810.73	810.7		810.7	0.0	85	
Citric Acid		HOC(CH ₂ CO ₂ H) ₂ CO ₂ H	192.13	3250.38		3250.38	3250.3		3250.3	0.0		
Nitrilotriacet	ic Acid	N(CH ₂ COOH) ₃	191.14	107.47		107.47	107.5		107.5	0.0		
Iminodiaceti	c Acid	HN(CH ₂ CO ₂ H) ₂	133.1	1830.68		1830.68	1830.7		1830.7	0.0		
Succinic Aci	id	C ₄ H ₆ O ₄	118.04	14.8		14.8	14.8		14.8	0.0		
Glutaric Acid	t	C ₅ H ₈ O ₄	132.12	43.82		43.82	43.8		43.8	0.0		
Adipic Acid		C ₆ H ₁₀ O ₄	146.14	164.93		164.93	164.9		164.9	0.0		
Azelaic Acid		C ₉ H ₁₆ O ₄	188.22	689.69		689.69	689.7		689.7	0.0		
Suberic Acid	t	C ₈ H ₁₄ O ₄	174.2	1213.14		1213.14	1213.1		1213.1	0.0		
Ammonium	Acetate	NH ₄ CH ₃ COO	77.08	416.09		416.09	416.1		416.1	0.0		ı
Boric acid		H ₃ BO ₃	61.83	79.02		79.02	79		79	0.0		
Sodium Chlo	oride	NaCl	58.44	3535.58		3535.58	3535.6		3535.6	0.0	1391	T
Sodium Fluo		NaF	41.99	1235.85		1235.85	1235.8		1235.8	0.0	1353	
Sodium Sulf		Na ₂ SO ₄	142.04	7317.24		7317.24	7300		7300	-0.2		
Potassium N	Molybdate	K ₂ MoO ₄	238.14	36.55		36.55	36.5		36.5	-0.1		T

Batch #4A Simular	t Remediation										Ν
			Recipe amou	nts for 812 lit	ers	F	Actual amoun	its added by E	DL		0
			Compound	Water	Non-water	Compound	Water	Non-wate			t
		Formula	mass,	mass,	mass,	mass,	mass,	mass,	%	Na	е
Compounds	Formula	Weight	grams	grams	grams	grams	grams	grams	Extra	content	s
Sodium Hydroxide	NaOH	40	26654.63		26654.63	26700		26700	0.2	15346	
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	9376.45	5328.09	4048.36	9400	5284.65	4015.35	-0.8	1706	
Sodium Tungstate	Na ₂ WO ₄ .2H ₂ O	329.86	199.52	21.78	177.74	199.5	21.77	177.73	0.0	28	
Sodium Metasilicate	Na ₂ SiO ₃ .9H ₂ O	284.14	67.18	38.3	28.88	67.2	38.26	28.84	-0.1	11	
Sodium Formate	NaHCOO	68.01	5314.92		5314.92	5300		5300	-0.3	1792	
Sodium Glycolate	HOCH₂COONa	98.01	5361.59	0	5361.59	5400		5400	0.7	1267	
Sodium Acetate	NaCH ₃ COO.3H ₂ O	136.08	0.42	0.17	0.25	0.42	0.17	0.26	4.0	0	
Sodium Oxalate	Na ₂ C ₂ O ₄	134	267.24		267.24	267.2		267.2	0.0	92	
Sodium Chromate	Na ₂ CrO ₄	161.97	311.57		311.57	311.6		311.6	0.0	88	
Sodium Carbonate	Na ₂ CO ₃	105.99	30115.85		30115.85	30100		30100	-0.1	13058	
Sodium Nitrate	NaNO ₃	84.99	40472.77		40472.77	40500		40500	0.1	10955	
Sodium Nitrite	NaNO ₂	69	32945.07		32945.07	32900		32900	-0.1	10962	
Totals added during	remediation		520626.33	315219.19	205407.14	520452.17	314945.64	205406.34		58346	
Optima Simulant us	ed to mix Batch #4A		537504.2	347759.70	189744.50	537500	347627.27	189872.73		83473	
Total Remediated S	imulant available for Batch #	4A	1058130.53	662978.89	395151.64	1057952.17	662572.91	395279.074		141819	
Expected density, g	m/ml		1.3090			1.3094					
Remediated simular	nt actually used for Batch #4/	4	718661.00	450281.95	268379.05	720400.00	451171.17	269160.604		96570	
Volume of simulant	for Batch #4A, liters		549			550					
Water charged to tank	to dilute to 6.0 M Na		27880	27880		28000	28000				
Batch 4A Supernate			746541.00	478161.95	268379.05	748400.00	479171.17	269160.60		96570	
Expected density af			1.2941			1.2945					

Batch #4A Entrained	solids										N
			Recipe amou	nts for Batch	4A	A	ctual amoun	ts added by E	DL		О
			Compound	Water	Non-water	Compound	Water	Non-wate	er		t
		Formula	mass,	mass,	mass,	mass,	mass,	mass,	%	Na	е
Compounds	Formula	Weight	grams	grams	grams	grams	grams	grams	Extra	content	s
Aluminum Oxide	Al_2O_3	101.96	116.86	0.00	116.86	116.9	0.00	116.90	0.0		
Barium Sulfate	BaSO ₄	233.4	0.15	0.00	0.15	0.1561	0.00	0.16	4.1		
Calcium Oxalate	CaC ₂ O ₄ .H ₂ O	146.11	1.0	0.12	0.88	1.0154	0.13	0.89	1.5		Π
Calcium Tungstate	CaWO ₄	287.93	0.85	0.00	0.85	0.8528	0.00	0.85	0.3		
Cerium Oxalate	Ce(C ₂ O ₄) ₃ .xH ₂ O	544.29	0.15	0.04	0.11	0.1509	0.04	0.11	0.6		
Chromic Oxide	Cr ₂ O ₃	151.99	7.19	0.00	7.19	7.1938	0.00	7.19	0.1		
Ferric Hydroxide	FeO(OH)	88.85	5.26	0.00	5.26	5.2638	0.00	5.26	0.1		
Lanthanum Oxalate	La ₂ (C ₂ O ₄) ₃ .10H ₂ O	722.03	0.15	0.04	0.11	0.1565	0.04	0.12	4.3		
Lead Sulfate	PbSO ₄	303.25	0.62	0.00	0.62	0.627	0.00	0.63	1.1		
Manganese Dioxide	MnO ₂	86.94	1.16	0.00	1.16	1.1613	0.00	1.16	0.1		Τ
Neodymium Oxalate	Nd ₂ (C ₂ O ₄) ₃ .10H ₂ O	732.69	0.31	0.08	0.23	0.3133	0.08	0.24	1.1		
Nickel Oxide	NiO	74.71	0.08	0.00	0.08	0.0862	0.00	0.09	7.8		
Silicon Oxide	SiO ₂	60.09	0.39	0.00	0.39	0.399	0.00	0.40	2.3		
Sodium Carbonate	Na ₂ CO ₃ .H ₂ O	124.01	330.11	47.92	282.19	330.1	47.91	282.19	0.0	122	Π
Sodium Fluoride	NaF	41.99	24.35	0.00	24.35	24.4	0.00	24.40	0.2	13	
Sodium Oxalate	Na ₂ C ₂ O ₄	134	124.44	0.00	124.44	124.5	0.00	124.50	0.0	43	
Sodium Phosphate	Na ₃ PO ₄ .12H ₂ O	380.12	94.91	53.93	40.98	94.9	53.93	40.97	0.0	17	
Sodium Sulfate	Na ₂ SO ₄ .10H ₂ O	322.04	64.54	36.07	28.47	64.5	36.05	28.45	-0.1	9	
Zinc Oxalate	ZnC ₂ O ₄ .2H ₂ O	189.45	0.15	0.03	0.12	0.1587	0.03	0.13	5.8		Π
Zirconium Oxide	ZrO ₂	60.09	0.15	0.00	0.15	0.1582	0.00	0.16	5.5		
Total solids added			772.82	138.23	634.59	772.99	138.21	634.79		205	1
Totals in simulant bate	ch 4A		747313.82	478300.18	269013.64	749172.99	479309.38	269795.39		96775	

APPENDIX C

Batch 1 Analytical Data

Appendix Contents

- Liquid, Solid, and Gas Sample Analyses
- Comparison of ADS Analysis of simulant to theoretical composition, including a discussion of uncertainties
- Lasentec Data

Special Notes:

- An uncertainty analysis for the formulation of the simulant and the analysis of the sample of the simulant collected before precipitation reagents were added. This analysis is included following the analytical results. Uncertainties for other samples should be similar.
- Each Solid Sample was divided into four segments for various dissolutions and analyses except the post-filtration solids which were not subdivided due to their small quantity.
- < values indicate below detection limits.
- The simulant sample that was separated into the 1L liquid and 1S solid samples was actually taken 210 minutes before reagent addition. This sample is considered the "0" time sample for comparison purposes.
- The post-filtration solid sample 172483 was obtained using a coliwasa from the filtrate drum at 1130 hours on 11/20/01, which is 49 days after the filtering was completed at 1508 on 10/2/01. The filtrate was filtered and the solids dried. Analyses performed on this sample included XRD, ICPMS, and ICP-ES.
- SVOC Analysis of Solid Samples was performed on ADS 300169784 through ADS 300169793, which are also identified as 169784 through 169793 in the data pages.
- VOC Gas Analysis was performed on ADS 3-169701 through ADS 3-169704, ADS 3-169600 through ADS 3-169635, and ADS 3-169784 through ADS 3-169793, which are also identified as 169701 through 169704, 169600 through 169635, and 169784 through 169793 in the data sheets.
- The identification of materials by the X-ray Diffraction (XRD) method was performed in accordance with the International Center for Diffraction Data at www.icdd.com using the Powder Diffraction Database of PDF cards.

Batch #1 ANALYT	ICAL R	ESULTS	3									
Daton #17474211												
							Liquid A	nalysis				
EDL Sample No.		Ļ	1L	2L	3L	4L	5L	6L	7L	8L	9L	10L
Time after Reagen ADS Sample No.	t Add (hr	s)	0 169600	0.125 169627	0.25 169628	0.5 169629	1 169630	2 169631	3 169632	4 169633	6 169634	8 169635
Identity	Method	Units	169600	109027	109020	109029	109030	109031	109032	109033	109034	109033
K	AAK	μg/gm	1620	1349	1322	1061	1293	1282	1649	1261	1262	1256
AIO ₂		molar	0.0156	0.0168	0.0134	0.0162	0.01	0.015	0.0126	0.0136	0.05	0.05
CO ₃ ²⁻		molar	0.7032	0.6362	0.5568	0.5752	0.5725	0.5955	0.6288	0.629	0.612	0.5672
Free OH		molar	0.036	0.0108	<0.002	0.0141	0.005	0.0182	0.02	0.0234	0.01	0.01
Total OH ⁻		molar	0.767	0.631	0.625	0.585	0.626	0.627	0.6404	0.6299	0.6292	0.63
Na	AANA	μg/gm	95829	97006	98070	77851	95676	94983	94235	94332	93443	94286
Specific Gravity			1.267	1.245	1.242	1.24	1.245	1.241	1.244	1.246	1.246	1.246
pH Total Carbon		μg/ml	10.2 33800	10.014 29300	10.013 27300	10.016 27100	10.02 27800	10.02 28200	10.02 28100	10.02 28793	10.02 26932	10.02 28240
TOC		μg/ml	19050	16600	15220	15346	15235	15243	15514	15069	14292	15445
TIC		μg/ml	14700	12600	12740	12780	12660	12900	13050	13106	13334	12800
Acetate	IEC	mg/kg	737	699	684	670	838	792	805	774	773	815
Glycolic Acid	IEC	mg/kg	12857	11846	11888	11765	12537	11703	11504	11425	10890	11715
Citric Acid	IEC	mg/kg	4910	4646	4652	4388	4519	4274	4449	4134	3974	4419
Succinic acid	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
D ₂ EHPA	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Gluconate NTA	IEC	mg/kg mg/kg	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
IDA	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A
Formate (HCOO ⁻)	IEC	mg/kg	8453	6309	6684	6235	7923	7129	6882	6851	6466	7081
Fluoride	IC	μg/gm	2880	2286	1926	2341	2075	1733	2417	2300	2066	2376
Formate (HCOO ⁻)	IC	μg/gm	5862	8720	7541	8680	7817	7310	8833	8768	4058	8894
Nitrite (NO ₂)	IC	μg/gm	35659	31670	27099	32435	29142	24378	33266	32090	26980	32923
Phosphate (PO ₄ ³⁻)	IC	μg/gm	1147	776	645	748	514	585	768	639	722	734
Oxalate (C ₂ O ₄ ²⁻)	IC	μg/gm	880	1807	1548	1824	1581	1389	1845	1754	1415	1817
Chloride (Cl ⁻)	IC	μg/gm	1011	1096	935	1109	974	842	1137	1112	900	1139
Nitrate (NO ₃)	IC	μg/gm	105156	116665	103842	121459	94362	93453	122314	117102	109236	122565
Sulfate (SO ₄ ² -)	IC	μg/gm	4477	4287	3701	4375	3961	3353	4531	4333	3968	4546
HEDTA	IPC	mg/l	734	464	438	432	435	547	429	475	426	418
EDTA	IPC	mg/l	2876	2133	2032	2022	2032	2542	2225	2340	2300	1950
Cd	ICP-MS		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ce	ICP-MS		26.4	6.67	6.14	4.84	5.61	4.93	4.73	4.5	4.3	4.17
Cs La	ICP-MS		10.4 23.2	9.15 3.34	8.89 3.22	7.52 2.59	10.1 2.84	8.59 2.52	8.62 2.44	8.88 2.43	9.16 2.37	8.81 2.22
Nd	ICP-MS		43.5	8.84	9.14	6.6	7.09	5.99	6.06	5.4	5.51	4.61
Re	ICP-MS		11	10.2	10.3	8.04	10.1	9.79	9.67	9.8	9.5	9.4
Pb	ICP-MS	μg/gm	201	132	127	98.6	120	103	93.3	83.7	70.4	73.5
Al	ICP-ES		386	592	83	118	223	54	145		157	66
В	ICP-ES		56	74	28	21	23	<20	<20	<20	<20	<20
Ba Ca	ICP-ES	μg/gm μg/gm	<1.5 129	<1.5 62	<1.5 41	<1.5 38	<1.5 45	<1.5 21	<1.5 21	<1.5 21	<1.5 23	<1.5 23
Cd	ICP-ES		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cr	ICP-ES	μg/gm	93	73	74	62	77	67	68	67	67	67
Cu	ICP-ES	μg/gm	22	89	131	113	531	26	43	53	143	106
Fe	ICP-ES	μg/gm	1005	464	354	449	445	273	291	262	287	258
K	ICP-ES		1420	1300	1300	1060	1260	1240	1300	1220	1280	1270
Mg Mn	ICP-ES	μg/gm μg/gm	51 294	16 281	13 302	15 254	18 324	11 339	12 348	13 363	12 379	12 389
Na	ICP-ES		110000	96600	97000	76400	94900	92600	92400	93900	92600	94000
Ni	ICP-ES		296	301	308	324	851	262	272	278	333	308
P	ICP-ES	μg/gm	205	124	133	105	132	126	125	125	120	118
Pb	ICP-ES		204	125	124	93	120	95	87	94	70	68
Si	ICP-ES		47	34	18	39	33	<10	<10	<10	<10	21
Sr Zr		μg/gm	5	19.6	13	7.3	8.3	5.3	5	5.3	5	4
Zr S	ICP-ES	μg/gm μg/gm	33 1650	26 1400	26 1450	21 1190	26 1390	25 1380	24 1390	25 1390	25 1390	25 1400
	IOI -ES	μg/gIII	1000	1400	1400	1190	1380	1360	1380	1380	1380	1400
Note: N/A means r	nethod n	ot availa	ble.									

Batch #1 ANALYTICA	L RESI	JLTS											
							Sol	lids Anal	ysis				
EDI. Cample No			40	20	20	40			70	00	00	400	Post-
EDL Sample No. Time after Reagent Ad-	d (bro)		1S 0	2S 0.125	3S 0.25	4S 0.5	5S 1	6S 2	7S 3	8S 4	9S 6	10S 8	Filtration 1318
Identity	Units	Method	U	0.125	0.25	0.5	- 1		3	4	0	0	1310
Quantity collected	grams		3.98	39.2	39.8	40.7	38.0	42.0	40.6	41.4	43.3	34.4	
ADS Sample No.								169769				169773	172483
Pretreatment: 0.25 gm													
Cd		ICP-MS	<1	<1	<1	<1	<1	<1	<1	<1	0.54	1.32	<15
La		ICP-MS	528	516	551	507	587	530	533	548	549	600	768
Ce Nd		ICP-MS	843 1720	515 956	544 1030	527 966	588 1110	550 1020	549 1040	567 1060	583 1080	627 1170	946 1510
Re	. 0 0	ICP-MS	2.1	14	12.5	12.8	1110	14.4	1040	14.1	1060	11.8	26.2
Pb		ICP-MS	413	1530	1650	1730	2090	2230	2360	2690	2840	2940	2850
Al		ICP-ES	30100	3930	4340	3660	4230	3900	3800	4100	4230	4590	3200
В		ICP-ES	910	2110	563	376	334	298	608	215	<205	603	59
Ва		ICP-ES	21	1090	1150	1060	1200	1070	1070	1080	1110	1190	850
Ca		ICP-ES	87900	7700	8350	7500	8520	7650	8110	8050	8510	8760	7170
Cd		ICP-ES	<15	<15	<15	<15	<15	<15	<15	<15	<15	<15	<4.0
Cr		ICP-ES	925	389	409	381	427	457	454	521	554	550	458
Fe	μg/gm	ICP-ES	48600	16900	18200	17200	19800	18300	18900	19300	20000	21500	17300
Mg		ICP-ES	2880	954	1010	930	1060	963	976	1020	1050	1120	975
Mn		ICP-ES	26000	60200		573000	64100	56800	56600	57000	58300	61200	35000
Na	. 5	ICP-ES				153000	140000		156000		162000		180000
Ni		ICP-ES	<70	328	282	278	221	306	281	340	294	250	354
P		ICP-ES	1140	2040	1960	1650	2390	2610	2350	2020	2600	2080	1960
Pb		ICP-ES	<700	1367	1651	1694	1913	1947	2020	2603	2664	2745	2840
Si		ICP-ES	2250	321	313	403 151000	407	218	326	364 155000	437	496	251
Sr Zr		ICP-ES	743 378	155000 150	163000	151000	170000	153000	153000	134	159000	170000 139	
K		ICP-ES	<500	2690	2080	2550	1870	1990	1900	1790	2040	1610	<10 2620
S		ICP-ES	1190	2780	3090	2060	1580	2220	1830	2350	2330	1860	3270
Nd		ICP-ES	1071	683	1014	723	765	737	757	827	844	931	1570
Cu		ICP-ES	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	27
Zn		ICP-ES	100	100	400	100	100	100	100	100	100	100	116
ADS Sample No.	1.0.0		169774	169775	169776	169777	169778	169779	169780	169781	169782	169783	
Pretreatment: 0.25 gram	of solids	fused wit											
Al		ICP-ES	28300	8080	7860	8710	7530		7840	8760	7690	8080	
В		ICP-ES	247	<250	<250	<250	<250	<250	<250	<250	<250	<250	
Ва	μg/gm	ICP-ES	50	1160	1140	1160	1110	1150	1120	1220	1100	1180	
Ca	μg/gm	ICP-ES	86100	9270	9250	9550	9890	11700	9560	10200	10400	11100	
Cd		ICP-ES	<15	<20	<20	<20	<20	<20	<20	<20	<20	<20	
Cr		ICP-ES	2161	718	819	738	761	820	763	897	818	876	
Fe		ICP-ES	26600	17300	18700	20600	18800	18700	18900	21500	18200	20600	
Mg		ICP-ES	1430	975	998	1060	1050	1070	1010	1130	1140	1100	
Mn		ICP-ES	16800	62000	60100	58900	56000	59000	55700	60900	52500	58100	
Ni P		ICP-ES	270 681	321 1690	383 1550	300 1790	376 1740	350 1750	381 2050	311 2240	378 2090	343 2060	
Si		ICP-ES	7090	1360	1060	1790	1030	1010	1530	1160	920	1060	
Sr		ICP-ES	810		163000		166000		158000		163000		
K		ICP-ES	1460	3480	3960	3130	3370	3190	3260	3940	3970	3640	
S		ICP-ES		2030	1910	1980	2190	2080	2110	1980	2090	2050	
Nd		ICP-ES	778	897	879	886	880	1128	925	984	892	1102	
ADS Sample No.			169754	169755	169756	169757	169758	169759	169760	169761	169762	169763	
Pretreatment: 0.25 gra	m of so	olids fuse											ml
Fluoride	μg/ml	ICA	<198	818	1059	911	981	834	859	779	764	768	
Formate (HCOO ⁻)	μg/ml	ICA	<989	<974	<1001	<963	<975	<995	<989	<957	<968	<997	
Nitrite (NO ₂ ⁻)	μg/ml	ICA	<989	<974	<1001	<963	<975	<995	<989	<957	<968	<997	
Phosphate (PO ₄ ³⁻)	μg/ml	ICA	<989	2344	2544	2562	3171	2860	2965	3023	3014	3271	
Oxalate (C ₂ O ₄ ²⁻)	μg/ml	ICA	<989	<974	<1001	<963	<975	<995	<989	<957	<968	<997	
Chloride (Cl ⁻)	μg/ml	ICA	989	5741	5734	2398	1909	3266	2000	2485	2278	2087	
Nitrate (NO ₃)	μg/ml	ICA	2966	137977							153065		
Sulfate (SO ₄ ²⁻)	μg/ml	ICA		7776	6943	7012	5646	6697	7611	7181	7803	6364	

Batch #1 ANALYTICA	L RESU	JLTS											
							Sol	ids Analy	/sis				
EDI. Campia Na			40	28	3S	40			70	88	20	10S	Post-
EDL Sample No.	d /b ==\		1S			4S 0.5	5S 1	6S 2	7S 3	4	9S 6	8	Filtration
Time after Reagent Add	Units	Method	0	0.125	0.25	0.5	1		3	4	ь	8	1318
ADS Sample No.	OTILO	Wictriod	169784	169785	169786	169787	169788	169789	168790	169791	169792	169793	172483
Solids microwave dried													
% moisture			3.377	2.21	3.7	6.004	6.452	2.71	2.96	2.03	6.95	4.29	
Total Carbon	μg/ml		39996	17400	16100	15180	14000	16720	16840	17240	17200	16800	
TOC	μg/ml		16362	6780	6720	6240	5560	7080	6960	6980	7000	6340	
TIC	μg/ml		23634	10720	9300	8900	8400	9700	9880	10260	10160	10400	
Fluoride	μg/ml		147	802	1000	854	704	1152	1033	990	1757	922	
Formate (HCOO ⁻)	μg/ml		170	14131	12072	11616	11507	14215	14511	13380	18223	14805	
Nitrite (NO ₂ ⁻)	μg/ml		169	29979	30918	30848	27650	34941	33065	34818	39934	30998	
Phosphate (PO ₄ ³⁻)	μg/ml		81	340	847	677	542	162	941	433	689	99	
Oxalate (C ₂ O ₄ ²⁻)	μg/ml		31269	13950	10168	9337	9347	12691	12979	13965	17278	14276	
Chloride (Cl ⁻)	μg/ml		5533	2069	1805	1989	1798	1621	2033	2579	2394	2071	
Nitrate (NO ₃)	μg/ml		897	85751	87859	85375	88470	83389	81381	81950	68963	87160	
Sulfate (SO ₄ ² -)	μg/ml		278	6026	5230	5666	5408	6338	7002	6622	10251	6581	
Al ₂ O ₃ (corundrum)		XRD	74-1081										
MnO ₂ (pyrolusite)		XRD	24-0735										
Fe ₂ O ₃ (Hermatite)		XRD	72-0469										
C ₂ CaO ₄ !H ₂ O(Whewelite	e)	XRD	20-0231										
CaCO ₃ (calcite)		XRD	86-0174										
SiO ₂ (Quartz)		XRD	46-1045										83-2465
Mn(SO ₃)H ₂ O(Mang Sul	lf Hyd)	XRD	82-0764										
C ₂ Na ₂ O ₄ (Natroxalate)		XRD	20-1149										
NaNO ₃ (Sodium Nitrate))	XRD		79-2056	79-2056	79-2056	79-2056	79-2056	79-2056	79-2056	79-2056	79-2056	36-1474
SrCO ₃ (Strontianite)		XRD		71-2393	71-2393	71-2393	71-2393	71-2393	71-2393	71-2393	71-2393	71-2393	71-2393
Na ₄ Sr(SiO ₃) ₃ -Na,Sr, Sil	licate	XRD		76-0416	76-0416	76-0416	76-0416	76-0416	76-0416	76-0416	76-0416	76-0416	76-0416
(Ca _{0.8} Sr _{0.2})MnO ₃ -Ca,Sr	,Mn	XRD		50-1747	50-1747	50-1747	50-1747	50-1747	50-1747	50-1747	50-1747	50-1747	

SRT-ADS-02-0031

SVOC Analysis of Solid Samples

Results

Eleven samples were submitted for semivolatile organic compound (SVOC) analysis. No SVOC analytes were detected and the method detection limit (MDL) for the samples in this study was 10 mg/L.

Experimental

The samples were extracted with methylene chloride and analyzed.

Gas Chromatography / Mass Spectrometry (GC/MS) analysis was employed to identify organic compounds in the sample. Analysis were carried out in building 773-A, laboratory B-123. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 30 m DB-5 column, with 0.25 mm diameter and 0.25 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine.

	Batch #1 G	∂as Analys	is							
compound (%)	1G	2G	3G	4G						
ADS Sample No.	169701	169702	169703	169704						
H2	0	0	0	0						
02	20.8	20.7	20.6	20.6						
 N2	79	79.4	77.8	78.4						
GC/MS Analysis Results	s-VOC									
solid, liquid, gas samples		/OC analyt	es							
ena, ndara, gas earnbre										
Results										
Ten solid, ten liquid, and	four das sample	s were sub	mitted for v	olatile orga	nic compo	ounds (VOC	analysis.			
The samples did not cont								ulated belo	W.	
<u>'</u>							Τ΄			
Sample Matrix			MDL		units					
Gas			0.2		ppmv					
Liquid (Aqueous)			1		ug/L					
Solid			10		ug/kg					
20114			10		agritg					
									-	
Experimental										
Experimental										
	mples were analy	zed using	purge and t	rap Gas Cl	nromatogr	aphy / Mas	Spectrom	etry (GC/MS	S).	
Solid, liquid, and gas san										ratory
Solid, liquid, and gas san GC/MS analysis was em	ployed to identify	y organic c	ompounds i	n the samp	oles. Ana	lysés were	carried out			ratory
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted	ployed to identify I that ADS is not	y organic co certified by	ompounds i	n the sam NPDES di	oles. Ana scharge c	lyses were ompliance i	carried out nonitoring.	n building 7	73-A, labo	ratory
Solid, liquid, and gas san 3C/MS analysis was em 8-159. It should be noted Samples were concentra	ployed to identify I that ADS is not ted using a Tekn	y organic co certified by nar 2016 Po	ompounds i y DHEC for urge and Tr	n the samp NPDES di ap concent	oles. Ana scharge c rator, usir	lyses were ompliance i ng a three s	carried out nonitoring age (10 cm	n building 7 Carbopack	73-A, labo B / 6 cm	
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentra Carboxen 1000 / 1 cm Ca	ployed to identify I that ADS is not ted using a Tekn arboxen 1001) tra	y organic c certified by nar 2016 Pi ap. Analyti	ompounds i y DHEC for urge and Tr cal separat	n the samp NPDES di ap concent ions were (oles. Ana scharge c rator, usir carried out	lyses were ompliance i ng a three s on a Hewli	carried out nonitoring age (10 cm	n building 7 Carbopack	73-A, labo B / 6 cm	
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentra Carboxen 1000 / 1 cm Ca equipped with a 20 m DB	ployed to identify I that ADS is not ted using a Tekn arboxen 1001) tra 3-624 column, wit	y organic c certified by nar 2016 Pi ap. Analyti th 0.18 mm	ompounds i y DHEC for urge and Tr cal separat diameter a	n the samp NPDES di ap concent ions were o and 1.0 um	oles. Ana scharge c rator, usir carried out film thick	lyses were ompliance ing a three s on a Hewli ness.	carried out nonitoring age (10 cm	n building 7 Carbopack	73-A, labo B / 6 cm	
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Ca aquipped with a 20 m DB Quantification was perfor	ployed to identify I that ADS is not ted using a Tekn arboxen 1001) tra I-624 column, wit med using a Hev	y organic co certified by nar 2016 Pi ap. Analyti th 0.18 mm vlett Packa	ompounds i y DHEC for urge and Tr cal separat diameter a rd 5973 ma	n the samp NPDES di ap concent ions were d ind 1.0 um ss selectiv	oles. Ana scharge c rator, usir carried out film thick e detecto	lyses were ompliance ing a three something the something on a Hewliness.	carried out nonitoring. age (10 cm att Packard	n building 7 Carbopack 6890 gas c	73-A, labo B / 6 cm	
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Ca equipped with a 20 m DB Quantification was perfor The mass spectrometer t	ployed to identify that ADS is not ted using a Tekn arboxen 1001) tra 8-624 column, wit med using a Hev tuning was confir	y organic co certified by nar 2016 Po ap. Analyti th 0.18 mm vlett Packa med within	ompounds in the property of th	n the samp NPDES di ap concent ions were (ind 1.0 um ss selectiv rior to each	oles. Ana scharge c rator, usir carried out film thick e detector n measure	lyses were ompliance ing a three something the something on a Hewliness.	carried out nonitoring. age (10 cm att Packard	n building 7 Carbopack 6890 gas c	73-A, labo B / 6 cm	
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Ca equipped with a 20 m Da Quantification was perforn The mass spectrometer to Some VOC samples for tems.	ployed to identify I that ADS is not ted using a Tekn arboxen 1001) tra 8-624 column, wit med using a Hev tuning was confir this study were a	y organic co certified by nar 2016 Pi ap. Analyti th 0.18 mm vlett Packa med within inalyzed or	ompounds in the property of th	n the samp NPDES di ap concent ions were (ind 1.0 um ss selectiv rior to each ng instrum	oles. Ana scharge c rator, usir carried out film thick e detector n measure ent.	lyses were ompliance ing a three s on a Hewliness. f. ment using	carried out monitoring. age (10 cm ett Packard perfluorotril	n building 7 Carbopack 6890 gas c butylamine.	73-A, labo	
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm DB quipped with a 20 m DB Quantification was perfor The mass spectrometer to Some VOC samples for to Volatile organic analyses	ployed to identify that ADS is not ted using a Tekn arboxen 1001) tra 8-624 column, and med using a Hev tuning was confir this study were as s were performed	y organic c certified by nar 2016 Pi ap. Analyti th 0.18 mm vlett Packa med within inalyzed or by Gas Ch	ompounds y DHEC for urge and Tr cal separat diameter a rd 5973 ma 24 hours p the followi	n the samp NPDES di ap concent ions were d and 1.0 um ss selectiv rior to each ng instrum ohy - Mass	oles. Ana scharge c rator, usir carried out film thick e detector n measure ent.	lyses were ompliance ing a three s on a Hewliness. f. ment using	carried out monitoring. age (10 cm ett Packard perfluorotril	n building 7 Carbopack 6890 gas c butylamine.	73-A, labo	
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Caquipped with a 20 m DB Quantification was pectrometer to Some VOC samples for totalile organic analyses (Contract Laboratory Programs (Contract Laboratory	ployed to identify that ADS is not ted using a Tekn arboxen 1001) tra 8-624 column, wit med using a Hev tuning was confir this study were a s were performed gram SOW 7-93	y organic co certified by nar 2016 Pi ap. Analyti th 0.18 mm vlett Packa med within inalyzed or by Gas Ch for Volatile	ompounds y DHEC for urge and Tr cal separat diameter a rd 5973 ma 24 hours p the followi bromatograp	n the samp NPDES di ap concent ions were d and 1.0 um ss selectiv rior to each ng instrum ohy - Mass	oles. Ana scharge c rrator, usir carried out film thick e detector n measure ent. Spectrom	lyses were ompliance in g a three s on a Hewliness. ment using metry (GC-M	carried out nonitoring. age (10 cm ett Packard perfluorotrib S), using th	n building 7 Carbopack 6890 gas c butylamine.	73-A, Iabo B / 6 cm hromatogra hod 2656	iph,
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Ca equipped with a 20 m DB Quantification was perfor The mass spectrometer Some VOC samples for t Volatile organic analyses (Contract Laboratory Programples were concentral	ployed to identified that ADS is not sted using a Tekn arboxen 1001) trans-64 column, with med using a Heve tuning was confir this study were as were performed gram SOW 7-93 ted using an OI at the study and the study was a were as were a swere agam SOW 7-93 ted using an OI at the study and the s	y organic co certified by nar 2016 Pi ap. Analyti th 0.18 mm vlett Packa med within inalyzed or by Gas Ch for Volatile Analytical r	ompounds y DHEC for urge and Tr cal separat diameter a rd 5973 ma 24 hours p the followi romatograp Organics).	n the samp NPDES di ap concent ions were (and 1.0 um ss selectiv rior to each ng instrumo by - Mass	oles. Ana scharge c rrator, usir carried out film thick e detector n measure ent. Spectrom	lyses were ompliance in g a three s on a Hewliness. ment using metry (GC-M	carried out nonitoring. age (10 cm ett Packard perfluorotrib S), using th	n building 7 Carbopack 6890 gas c butylamine.	73-A, Iabo B / 6 cm hromatogra hod 2656	iph,
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Ca equipped with a 20 m DB Quantification was perfor The mass spectrometer Some VOC samples for t Volatile organic analyses (Contract Laboratory Programples were concentral (10 cm Carbopack B / 6 of the concentral co	ployed to identified that ADS is not sted using a Tekn arboxen 1001) trained using a Heve tuning was confir this study were as were performed gram SOW 7-93 ted using an OI acm Carboxen 100 cm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using an OI acm Carboxen 100 in the study was some confired using a Carboxen 100 in the study was some confired using a Carboxen 100 in the study was some confired using a Carboxen 100 in the study was some confired using a Carboxen 100 in the study was some confired using the study was some confired	y organic concertified by nar 2016 Priap. Analytich 0.18 mm whett Packa med within by Gas Chor Volatile Analytical r	ompounds y DHEC for urge and Tr cal separat diameter a rd 5973 ma 24 hours p the followi iromatograp Organics). carboxen 10	in the samp NPDES di ap concent ions were o ind 1.0 um iss selective rog instrumi ohy - Mass A Dynamic 001) trap.	oles. Ana scharge c rator, usir carried out film thick e detector measure ent. Spectrom Headspa	lyses were ompliance in a three sit on a Hewliness. ment using ment using of GC-Miles concential in the concential in t	carried out nonitoring. age (10 cm ttt Packard perfluorotrib S), using th ator (Purge	n building 7 Carbopack 6890 gas c butylamine. e ADS met and Trap),	73-A, labo	aph, ee stage
Solid, liquid, and gas san GC/MS analysis was em 3-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Ca equipped with a 20 m DB Quantification was perforn The mass spectrometer to Some VOC samples for to Volatile organic analyses (Contract Laboratory Pro Samples were concentral (10 cm Carbopack B / 6 of Beparation was performe	ployed to identification of that ADS is not ted using a Tekn arboxen 1001) trained using a Heve tuning was confirmed using a Heve tuning was confirmed by the series were performed gram SOW 7-93 ted using an Olacm Carboxen 101d with a Hewlett	y organic concertified by nar 2016 Priap. Analytich 0.18 mm whett Packa med within in alyzed or for Volatile Analytical rook / 1 cm (Packard 56	ompounds y DHEC for urge and Tr cal separat diameter a rd 5973 ma 24 hours p the followin romatograp Organics) nodel 4460. Carboxen 10 390 series I	n the samp NPDES di ap concent ions were o ind 1.0 um ss selectiv rior to each ng instrum ohy - Mass A Dynamic 001) trap. I gas chror	oles. Ana scharge control out film thick to detect on measure ent. Spectrom Headspa	lyses were compliance in g a three s con a Hewliness. ment using the concentification of a 105m con a 105m	carried out monitoring. lage (10 cm ett Packard perfluorotrib S), using th ator (Purge	n building 7 Carbopack 6890 gas c butylamine. e ADS met and Trap),	73-A, labo	aph, ee stage y columr
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Caequipped with a 20 m DB Quantification was perforn The mass spectrometer to Some VOC samples for the Volatile organic analyses (Contract Laboratory Programment of Comment and the Carbopack B / 6 of Separation was performent with 3 um film thickness.	ployed to identification of that ADS is not ted using a Tekn arboxen 1001) trained using a Hevituning was confir this study were a sewere performed gram SOW 7-93 ted using an OL cm Carboxen 101 d with a Hewlett Quantitation was	y organic concertified by nar 2016 Priap. Analytich 0.18 mm whett Packa med within in alyzed or for Volatile Analytical rook / 1 cm 0 Packard 58 as performe	ompounds y DHEC for urge and Tr cal separat diameter a 24 hours p the followin Organics) nodel 4460. Carboxen 10 390 series I ad with a He	in the samp NPDES di ap concent ions were d ind 1.0 um ss selectiv rior to each ing instrum ohy - Mass A Dynamic 001) trap. I gas chror ewlett Pack	oles. Ana scharge c rator, usir carried out film thick e detector n measure ent. Spectrom Headspa matograph card mode	lyses were ompliance in g a three s on a Hewliness. ment using the concentry (GC-M on a 105m I 5971 quad	carried out monitoring. lage (10 cm ett Packard perfluorotrit S), using th ator (Purge x 0.32 mm rupole mas	n building 7 Carbopack 6890 gas c butylamine. e ADS met and Trap), VOCOL glass spectrome	73-A, labor B / 6 cm hromatogra hod 2656 using a threater. Internation	iph, ee stage y column
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Caequipped with a 20 m DB Quantification was perforn The mass spectrometer to Some VOC samples for to Volatile organic analyses (Contract Laboratory Programples were concentration of Company of Company of Company of Contract Laboratory Programples were concentration was performed with 3 um film thickness.	ployed to identify that ADS is not ted using a Tekn a-624 column, wit med using a Hev tuning was confir this study were a s were performed gram SOW 7-93 ted using an Ol cm Carboxen 10t d with a Hewlett Guantitation wa urrogate compou	y organic concertified by nar 2016 Property and	ompounds y DHEC for urge and Tr cal separat diameter a 24 hours p the followin omatograp Organics) nodel 4460. Carboxen 10 390 series 1 dd with a He dded as spi	in the samp NPDES di ap concent ions were di ind 1.0 um iss selectiv rior to each ing instrum- iohy - Mass A Dynamic 001) trap. I gas chror ecified in the	oles. Ana scharge c rator, usir carried out film thickle e detector n measure ent. Spectron Headspa natograph card mode e Contrac	lyses were ompliance in grafthrees on a Hewliness. ment using metry (GC-Marce concenting on a 105mm is 5971 quad t Laborator)	carried out nonitoring. age (10 cm ett Packard perfluorotrit S), using th ator (Purge x 0.32 mm rupole mas	n building 7 Carbopack 6890 gas c outylamine. e ADS met and Trap), VOCOL gla s spectromor volatile or	73-A, labor B / 6 cm hromatogra hod 2656 using a thread ass capillar eter. Interriganics (SC	iph, ee stage y column
Solid, liquid, and gas san GC/MS analysis was em 3-159. It should be noted samples were concentral Carboxen 1000 / 1 cm Capuipped with a 20 m DB Quantification was perforn the mass spectrometer to some VOC samples for the Volatile organic analyses (Contract Laboratory Programples were concentral (10 cm Carbopack B / 6 in 15 cm Carbopack B / 6 in 15 cm Carbopack B / 6 in 15 cm and recovery sut the mass spectrometer the mass spectrometer the supplements of the mass spectrometer the supplements of the mass spectrometer the supplements of the	ployed to identify that ADS is not ted using a Tekn arboxen 1001) tre 3-624 column, was duning a Hev tuning was confir this study were a swere performed gram SOW 7-93 ted using an Olv cm Carboxen 101 Quantitation wa urrogate compout tuning was confir	y organic concertified by nar 2016 Peap. Analytich 0.18 mm wheth Packa med within inalyzed or by Gas Chor Volatile Analytical roo / 1 cm Ceapard 56 as performed within med within	ompounds by DHEC for urge and Tr cal separat diameter a 24 hours p the followin omatograp Organics) nodel 4460. Carboxen 10 390 series 1 dd with a He dded as spi 12 hours p	in the samp NPDES di ap concent ions were of ind 1.0 um iss selective rior to each ing instrum- iohy - Mass A Dynamic 001) trap. I gas chror ewlett Pack ecified in the rior to each	oles. Ana scharge c rator, usir carried out film thickle e detector n measure ent. Spectrom Headspa natograph rard mode e Contrac n measure	lyses were ompliance in a three side on a Hewliness. ment using ment using cetry (GC-Market on a 105mm is 5971 quad t Laborator; ment using ment using ment using	carried out nonitoring. age (10 cm ett Packard perfluorotril S), using th ator (Purge x 0.32 mm rupole mas r Program fi 4-bromoflue	n building 7 Carbopack 6890 gas c outylamine. e ADS met and Trap), VOCOL gla s spectromor volatile or	73-A, labor B / 6 cm hromatogra hod 2656 using a thre ass capillar eter. Intern	ee stage y columr al
Solid, liquid, and gas san GC/MS analysis was em B-159. It should be noted Samples were concentral Carboxen 1000 / 1 cm Caequipped with a 20 m DB Quantification was perforn The mass spectrometer to Some VOC samples for the Volatile organic analyses (Contract Laboratory Programment of Comment and the Carbopack B / 6 of Separation was performent with 3 um film thickness.	ployed to identify that ADS is not ted using a Tekn arboxen 1001) tra 8-624 column, a wit tuning was confir this study were a s were performed gram SOW 7-93 ted using an OI a cm Carboxen 10 id with a Hewlett urrogate compoun tuning was confir performed against	y organic concertified by nar 2016 Property Analytich 0.18 mm within unalyzed or by Gas Chefor Volatile Analytical rook / 1 cm Cheformends were acmed within to CLP tunin	ompounds by DHEC for urge and Tr cal separat diameter a 74 hours p the followinomatograp Organics). nodel 4460. Carboxen 10 390 series 1 dd with a He dded as spi 12 hours p g requiremi	n the samp NPDES di ap concent ions were o and 1.0 um ss selectiv rior to each ng instrum ohy - Mass A Dynamic 001) trap. I gas chror I gas chror welett Pack ecified in the rior to each ents, speci	oles. Ana scharge c rator, usir carried out film thick le e detector n measure ent. Spectrom Headspa natograph card mode e Contrac n measure	lyses were ompliance in a three sit on a Hewliness. ment using ment using metry (GC-Marce concentry) 1 5971 quad t Laborator; ment using ptimize CL	carried out nonitoring. lage (10 cm tt Packard perfluorotril S), using th ator (Purge x 0.32 mm rupole mas r Program fi 4-bromofluo	n building 7 Carbopack 6890 gas c outylamine. e ADS met and Trap), VOCOL gla s spectromor volatile or	73-A, labor B / 6 cm hromatogra hod 2656 using a thre ass capillar eter. Intern	ee stage y columnal

Light Sulfator Computed C	Appendix A, Combined		AN107	+Entrair	d Solids ac	according to	AN10;	7+ Entrain	AN107+ Entrained Soilds according to Sample 1L (Taken before precipitation	ccording to	Sample 1	L (Taken be	ofore precipi	tation -				
ADS	ACC Based Color		Limit	Solids	- 1 -	hined	Lignid	nortion of	Samule	Solid	A, Col. 11 Portion of	L) sample	Com	hined				
ADS	ADS		Baced	+			i	Bacad			Bacad		9		Difference			
Mary	10				Total in	uncertainty	ADS		uncertainty	ADS		uncertainty			(a) - (b)	Uncertainty		Uncertainty
23000 254 195 19	23000 924 125 4614 835 115 900 102	\neg	+	+	mixture	(2)	analysis a/am	mixture	9	analysis	mixture	£ 20		uncertainty	(2)	in (Q) - (F)	_	n Q/F
100 23 0.4 69.9 10.2 41.3 10.3 3.35 101 23 0.4 69.9 10.2 10.9 13.9 102 6.4 6.4 6.5 4.1 1.1 4.2 1.10 103 2.2 0.4 2.9 4.1 1.1 4.2 1.10 104 6.5 0.0 0.0 0.0 0.0 0.0 0.0 10	100 23 24 25 25 26 26 26 26 26 26	1		146 9	100 d	33.6	11 og	386	888	30100	1 8 E	13.5	A81.4	83.5	115	U U	1 17	18.8%
10 10 10 10 10 10 10 10	10	- c	\dagger	140.5	17.6	5.5	3 6	3 4	2000	9 0	± 60	200	† 6 6 6 7	10.2	41.9	10.00	- c	18.7%
September Sept	9 925 29 0.9 659 418 111 424 1.10 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+	t	\perp	298.6	21.3	3 5	3 52	13.0	87900	778 F	39.4	407 F	70.7	109.0	73.9	1.37	18.8%
9 925 29 09 959 418 111 424 1001 2 00 00 00 220 66 6 69 173 10 086 3 0 0 00 00 00 2200 7791 8451 8101 073 0 000 00 00 5846 8451 8101 073 0 000 00 00 5846 8451 8101 073 0 000 00 00 1420 443 7124 87 1159 1 384.6 2511 412 124 2 0 0 00 0 0 1420 473 122 124 125 126 126 126 127 127 128 117 128 128 129 129 127 129 129 129 127 129 129 129 129 129 129 129 129 129 129	9 925 29 09 959 418 111 424 1001 2 00 00 00 2206 66 69 67 146 2 0 00 0 00 0 00 5200 7791 645 10 078 2 0 00 0 00 0 00 5290 7791 645 10 073 0 00 00 00 00 5290 7791 645 120 073 0 00 00 00 1420 426 510 696 709 2 2 0 00 0 0 0 1420 426 5110 4312 156 3 580 17 29 601 28 67 109 3 580 17 29 601 28 7707 412 109 3 580 17 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-	26.5	1.9	26.4	92	2.7	843	2.7	0.4	29.1	5.0	2.6	5.4	1.10	18.7%
10	10			6.5	94.9	6.8	83	88	27.9	925	2.9	6.0	95.9	41.8	1	42.4	10.1	44.2%
10	1.0				9.3	0.7	8	8	0.8	0	0:0	0.0	8.0	9.0	-1.3	1.0	98:0	12.3%
1 0 0 0.0 0 0.0 52906 7791 8451 8101 0.73 0 48600 155.1 48.7 1179.1 38.4 6 55.0 15.4 2 0 0 0.0 0.0 142.0 4.86.2 511.0 431.2 1.56 3 528 1.7 0.2 2.9 4.5 2.0 4.6 1.09 4 9 15000 82.4 1.7 2.9 60.1 26.2 2.0 4.6 1.09 4 1752.0 55.0 0.8 6.1 1.0 36.2 36.2 3.2 7.0 7 0.99 4 1750.0 5.5 0.8 49.0 8.5 0.8 3.2 7.0 7 0.99 5 140 150.0 5.2 0.8 49.0 8.5 0.8 3.2 7.0 7 0.99 5 1 110 0.0 0.0 0.0 26.0 29.7 2.99 3.5.2 1.11 5 1 1 0.0 0.0 0.0 110 19 1.6 2.90 1.0 0.45 5 1 110 0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 5 1 110 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1	1	7 C			15.1	1.1	22	22	9.9	0	0.0	0.0	22.0	9.9	6.9	6.7	1.46	30.8%
8 0 0 0.0 0.0 6546 688 5610 867 0.54 2 0 0.0 0.0 154.1 487 1159.1 386.9 5610 867 0.54 2 0 0.0 0.0 0.0 1420.0 426.2 511.0 431.2 156 3 280 17 0.2 24.9 4.3 2.0 46 1.09 4 120 0.0 0.0 0.0 1420.0 366.3 2.0 46 1.09 4 1720 65 0.0 82.4 11.7 376.4 66.3 3.3 2.3 77.7 106 4 1720 6.5 0.0 0.0 0.0 286.0 36.2 2.99 3740.4 1.06 4 1720 6.5 0.0 0.0 0.0 286.0 36.2 2.29 3740.4 1.06 5 1140 36 0.5 2.0 16.6 4 1105.3 36.1 1.6 37.7 1.04 5 2260 7.1 2.3 54.1 18.0 4.0 14.6 7 2250 7.1 2.3 54.1 18.0 4.0 32. 2.22 8 178 1.2 0.2 34.2 5.9 4.0 3.2 2.2 9 37.7 1.0 0.0 0.0 0.0 1.0 1.0 1.9 1.6 1 1190 3.8 0.5 165.3 28.9 1.6 1 177.7 288.7 1208.8 34.2 6.9 0.9 6.4 0.97 2 250 7 1 23 54.1 18.0 4.0 3.2 2.2 3 3 12 0.0 0.0 0.0 1.0 1.0 1.9 1.6 5 9 gams 1 177.7 288.7 1208.8 26.9 250.7 303.9 1.18 1 177.7 288.7 1208.8 26.9 250.7 303.9 1.18 2 1 1 100 3.8 0.5 120.8 26.9 250.7 303.9 1.18 2 1 1 101 11.0 10.0 1.0 1.0 1.0 1.0 1.0 1	Barrier Barr	H	Н		3135.7	221.7	2290.61	2291	779.1	0	0.0	0.0	2290.6	779.1	-845.1	810.1	0.73	34.7%
0 48600 154.1 48.7 1159.1 384.6 227.7 380.3 12.4 2 0 0 0 0 1.420 4.52 5.11.0 4.6 1.5 1.56 1.5 1.56 1.5 <	0 48600 154.1 48.7 1159.1 384.6 227.7 390.3 124 2 0 0 0 0 4.82 5.11.0 4.81 1.26 1.56 1.56 1.56 1.56 1.56 1.56 1.56 1.50 1.56 1.50 1.56 1.50 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.56 1.70 1.50	\dashv	\dashv	_	1086.2	76.8	584.60	288	58.8	0	0:0	0:0	584.6	28.8	-501.6	296.7	0.54	12.3%
2.2 1.0 0.0	2.	4	+	+	931.3	66.5	1005	1005	101.0	48600	154.1	48.7	1159.1	384.6	227.7	390.3	1.24	33.9%
28	2		\dagger		908.0	64.9	1420	1428	426.2	0 8	0.0	0.0	1420.0	426.2	511.0	431.2	35.	30.9%
1.00 1.00	5 2000 82.4 1.7.7 376.4 65.3 3.7.2 2.0.2 4.7.7 4.7.7 4.9 165000 623.0 165.4 1105.30 38673.0 6407.9 37404.7 1.06 4.9 165000 623.0 165.4 1105.30 386.7 0.99 9.7 1.10 5 1140 36 0.5 208.7 29.9 35.7 1.04 1 1.0 2.0 20.2 29.7 25.9 37.7 1.04 1 1.0 1.0 2.0 20.2 36.1 4.9 0.45 2 4.13 1.3 0.2 20.2 36.1 4.9 0.45 1 2.1 0.2 20.2 36.1 4.2 37.7 1.10 1 2.250 7 3.2 2.5 3.3 1.18 3.2 1.18 1 2.250 7 3.2 2.5 3.2 1.18 3.2 1.18 </td <td></td> <td></td> <td></td> <td>12.8</td> <td>0.0</td> <td>23.2</td> <td>2 2</td> <td>15.3</td> <td>2520</td> <td>7.1</td> <td>2.0</td> <td>24.9</td> <td>76.3</td> <td>7.U 17.E</td> <td>4.b</td> <td>20 P</td> <td>18.7%</td>				12.8	0.0	23.2	2 2	15.3	2520	7.1	2.0	24.9	76.3	7.U 17.E	4.b	20 P	18.7%
4.9 165000 623.0 165.4 110623.0 36673.0 6407.9 37404.7 1.06 4.0 1720 6.5 0.8 49.0 8.5 0.8 9.1 1.02 5 1.0 0.0 0.0 0.0 28.0 28.7 1.10 2 413 1.3 0.2 202.3 36.1 7.5 37.7 1.04 2 413 1.3 0.2 202.3 36.1 7.5 37.7 1.04 7 2.1 0.0 0.0 11.0 1.9 1.6 3.2 1.17 1.04 8 1.25 0.0 0.0 1.10 1.9 1.6 3.2 1.17 1.04 8 7.43 2.4 0.7 7.4 3.2 4.0 3.2 2.2 2.2 8 378 1.2 0.2 34.0 1.49 3.2 3.2 2.2 2.2 9 378 1.2	49 165000 523.0 165.4 110523.0 3673.0 6407.9 3744.7 1.06 7 1720 5.5 0.8 49.0 85.0 0.8 9.1 1.02 7 0 0.0 0.0 29.7 29.7 29.9 35.2 1.11 8 1140 3.6 0.0 0.0 11.0 1.9 1.6 0.45 1 1.3 0.2 202.3 35.1 7.5 37.7 1.04 1 1.10 3.6 1.0 1.0 1.9 1.6 2.0 1.17 1 2.1 0.0 0.0 1.10 3.6 1.0 1.17 1.04 1 2.2 2.4 0.7 7.4 3.2 4.0 3.2 2.2 3.0 1.18 3.0 3.0 1.18 3.0 3.0 1.18 3.0 3.0 3.0 3.0 3.0 3.0 1.18 3.0 3.0 3.0	\perp		97.0	379.6	27.1	767	757	29.5	25000	82.4	11.7	376.4	2.02	5.5	70.7	90	18.8%
4 1720 6.5 0.8 49.0 8.5 0.8 9.1 1.02 7 0 0.0 0.0 296.0 29.7 29.9 35.2 1.11 2 1.140 3.6 0.5 20.8 36.2 -250.1 4.0 0.04 2 4.13 0.2 20.2 36.1 7.5 37.7 1.04 1 2.1 0.0 0.0 11.0 1.9 1.6 2.0 1.17 8 1.190 3.8 0.5 163.8 286.9 250.7 303.9 1.18 5 7.4 3.2 4.0 3.2 2.2 2.2 2.2 5 7.4 3.2 4.0 3.2 2.2 2.2 3.2 3.2 4.0 3.2 2.2 2.2 3.2 3.2 4.0 3.2 2.2 2.2 3.2 3.2 3.2 4.0 3.2 3.2 3.2 3.2 3.2 3.2<	4 1720 6.5 0.8 49.0 8.5 0.8 9.1 1.02 7 0 0.0 0.0 296.0 29.7 29.9 35.2 1.11 2 1.140 3.6 0.5 0.05 0.00 1.10 1.9 0.250.1 43.0 0.04 0.04 0.05 1.17 1.17 1.17 1.17 1.17 1.10 1.10 1.10 1.10 1.17 1.11 1.17 1.11	+	T	\perp	104115.2	Ľ	110000	110000	11054.9	165000	523.0	165.4	110523.0	36673.0	6407.9	37404.7	108	33.9%
1140 36 0.00 0.00 296.0 29.7 29.9 35.2 1.11 1140 3.6 0.5 202.3 36.2 -250.1 49.0 0.45 1140 3.6 0.5 202.3 36.2 1.56 2.0 1.17 1190 3.8 0.5 1653.8 286.9 250.7 303.9 1.18 1190 3.8 0.5 1653.8 286.9 250.7 303.9 1.18 1190 3.8 0.5 1.2 0.2 34.2 5.9 4.0 32.2 1190 3.8 0.5 1.2 0.2 34.2 5.9 4.0 3.2 1190 3.8 0.5 1.2 0.2 34.2 5.9 4.0 3.2 1110 3.8 0.5 1.2 0.2 34.2 5.9 4.0 3.2 1111 1.2 0.2 34.2 5.9 4.0 6.4 0.37 1111 1.2 0.2 34.2 5.9 4.0 6.4 0.37 1111 1.3 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1111 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1111 1.4	1140 36 0.00 0.00 296.0 29.7 29.9 35.2 1.11 1140 36 0.55 202.3 36.1 7.56 1.04 1140 3.6 0.5 202.3 36.1 7.5 2.0 1.17 1190 3.8 0.5 1653.8 286.9 250.7 303.9 1.18 1190 3.8 0.5 1653.8 286.9 250.7 303.9 1.18 1190 3.8 0.5 1.2 0.2 34.2 5.9 4.20 38.0 4.46 110 2.3 1.2 0.2 34.2 5.9 4.0 3.2 1177.7 288.7 1.2068.0 39061.8 264.3 1653.7 1.49 1177.7 288.7 1.2068.0 39061.8 254.3 1653.7 1.49 1177.8 1.2 1.2 1.2 1.2 1.2 1.4 1177.9 1.2 1.2 1.2 1.2 1.4 1177.9 1.2 1.2 1.2 1.2 1.4 1177.1 288.7 1.2 1.2 1.2 1.4 1177.1 288.7 1.2 26.3 1.4 1177.2 288.7 1.2 26.3 1.4 1177.3 288.7 1.2 2.3 1.4 1177.4 1.2 2.4 1.2 1.4 1177.5 2.4 1.2 1.2 1177.6 1.3 1.4 1.4 1177.7 2.4 1.4 1.4 1177.8 1.4 1.4 1.4 1177.9 1.4 1.4 1.4 1.4 1177.9 1.4 1.4 1.4 1.4 1178.9 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1179.9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1179.9 1.4				48.1		43.5	44	4.4	1720	5.5	0.8	49.0	8.5	0.8	9.1	1.02	18.7%
140 36 0.5 2086 36.2 -250.1 49.0 0.45 1413 1.3 0.2 202.3 35.1 1.5 2.0 2	140 36 0.5 2086 36.2 -250.1 49.0 0.45 1413 1.3 0.2 202.3 35.1 1.5 2.0 2				266.1	18.8	296	296	29.7	0	0.0	0.0	296.0	29.7	29.9	35.2	1.11	12.3%
2 413 13 0.2 202.3 36.1 7.5 37.7 1.04 1 2.1 0.0 0.0 11.0 1.0 0.1 1.18 2 1.19 0.0 0.0 1.16.38 286.9 250.7 30.3 9 1.18 2 2.250 7.1 2.3 54.1 18.0 4.20 18.0 4.46 5 7 2.4 0.7 7.4 3.2 4.0 3.2 2.22 3 7 4.0 7 4.0 3.2 2.22 2.22 3 7 4.0 3.2 4.0 3.2 1.49 3.0 1.1 7 4.0 3.2 1.49 1.49 3.0 1.1 7 4.0 3.0 4.46 1.49 3.0 1.1 7 4.0 3.0 4.46 1.46 3.0 4.0 3.2 3.0 4.0 3.2 1.	2 413 13 02 2023 36.1 75 37.7 104 1 100 38 0.0 0.0 11.0 1.9 1.6 38 26.0 1.17 2 250 7.1 2.3 64.1 18.0 4.0 32.0 1.18 2 250 7.1 2.3 64.1 18.0 4.0 32.0 1.03 3 743 2.4 0.7 7.4 3.2 6.9 0.0 3.2 2.22 3 78 1.24 0.7 7.4 3.2 6.9 0.0 3.2 2.22 3 78 1.17 2.88.7 120058 0 39061.8 26.4 0.97 1 177.7 288.7 120058 0 39061.8 26.4 3.6 3.7 1.49 1 177.7 288.7 120058 0 39061.8 26.4 3.6 3.7 1.49 1 177.7 288.7 120058 0 39061.8 26.4 3.6 3.7 1.49 1 177.7 288.7 120058 0 39061.8 26.4 3.6 3.7 1.49 2 18 0 on the Al attate, 2.2 1.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3.2 3.2 3		Н	0.7	458.7	33.1	205	205	20.6	1140	3.6	0.5	208.6	36.2	-250.1	49.0	0.45	18.8%
1100 110	1100 0.0 0.0 1.10 1.	4	+		194.8	13.8	201	201	20.2	413	1.3	0.2	202.3	35.1	7.5	37.7	1.04	18.7%
1150 35	1190 38		1		9.4	0.7	= !	= !	1.1	2.1	0:0	0	11.0	1.9	1.6	2.0	1.17	18.7%
10	10	4	+		1403.0	7.00.	1 20	1 22	165.8	1190	0 +	6.0	1653.8	200.9	7:057	303.9	2 4	18.8%
3 378 1.2 0.2 34.2 5.9 0.9 6.4 0.97 3 3 78 1.2 0.2 34.2 5.9 0.9 6.4 0.97 3 3 78 1.2 0.2 34.2 5.9 0.9 6.4 0.97 3 1177.7 288.7 120058.0 39051.8 254.3 1653.7 1.49 5 5 7 7 7 7 7 7 7 5 5 7 7 7 7 7 7 5 5 7 7 7 7 7 5 5 7 7 7 7 5 5 7 7 7 7 5 7 7 7 7 7 5 7 7 7 7 5 7 7 7 7 5 7 7 7 7 6 7 7 7 7 7 7 7 7 7	3 378 1.2 0.2 34.2 5.9 0.9 6.4 0.97 3 3 3 1.2 0.2 34.2 5.9 0.9 6.4 0.97 3 3 1.2 1.2 0.2 34.2 1.49 3 1177 288.7 120058 0 390518 254.3 1663.7 1.49 5 4 5.2 1.49 6 7 1 1 1 1 1 1 7 1 1 1 1 1 1 8 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1			17.1	3.3	5.0	4 u	¥ 4	7.4	UC27	- / /	2.3	7.4	3.2	42.U	3.3	4.45 C.C.	33.3%
1177.7 288.7 120058 0 39061.8 254.3 1663.7 1.49 1177.7 288.7 120058 0 39061.8 254.3 1663.7 1.49 15 g/mole Al = 323.1 grams	177.7 288.7 120058 0 39061.8 254.3 1663.7 1.49 177.7 288.7 120058 0 39061.8 254.3 1663.7 1.49 177.7 288.7 120058 0 39061.8 254.3 1663.7 1.49 15.9 24.0 223.1 21.0 21.0 21.0 2.9 23.3 21.0 21.0 21.0 2.9 23.3 21.0 21.0 2.9 23.3 21.0 21.0 2.9 23.3 21.0 21.0 2.9 23.3 23.3 2.9 23.3 23.3 2.9 23.3 23	1	+		2,5	2.5	· 8	· 83	. e.	2 82	1.7	2	34.2	5.9	65 57	5.4 6.4	0.97	18.7%
1777 288.7 120058.0 39061.8 254.3 1683.7 1.49 5 g/mole AI = 323.1 grams 14.00 6 g/mole AI = 323.1 grams 14.00 7 cmall Weights 1.00 8 g/mole AI = 323.1 grams 1.00 9 g/mole AI = 323.1 grams 1.00 1 cmination of all measured quantities 1.00 1 cmination of all measured quantities 1.00 1 cmination of all measured quantities 2.00 2 cmination of all measured quantities 2.00 3 cmination of all measured quantities 2.00 4 cmination of all measured quantities 2.00 5 cmination of all measured quantities 2.00 5 cmination of all measured quantities 2.00 6 cmination of all measured quantities 2.00 1 cmination of all measured quantities 2.00 1 cmination of all measured quantities 2.00 2 cmination of all measured quantities 2.00 3 cmination of all measured quantities 2.00 4 cmination of all measured quantities 2.00 7 cmination of all measured quantities 2.00 2 cmination of all measured quantities 2.00 3 cmination of all measured quantities 2.00 3 cmination of all measured quantities 2.00 4 cmination of all measured quantities 2.00 5 cmination of all measured quantities 2.00 6 cmination of all measured quantities 2.00 7 cmination of all measured quantities 2.00 9 cmination of all measured quantities	1777 288.7 120058.0 39061.8 254.3 1683.7 1.49	1	t	Total	Total	Total	3	S Total	Lotol L	5	Total	Total	Total	LotoF	Average	Average	Avorage	Average
Individual Measurement Uncertainties Small Weights 1	Individual Measurement Uncertainties Individual Measurement Uncertainties Small Weights 1		113606.8		113955.0	8061.6		118880	12813.9		1177.7	288.7	120058.0	39061.8	254.3	1663.7	1.49	24.7%
5.9 grams 5.9 grams 6.9 grams 7.9 grams 7.9 grams 8.9 gr	59 grans from 6 Al = 323.1 grams from of 489.90 ppm mbination of all measured quantities a 1% on the Al nitrate, by 2+(1%)+2 +(1/2) = 3 +(1/2) x1% = 1/73% from pounds then the overall from pounds then the overall from 60 detection limit when 30% will be used per Frank Pennebaker from soids in the liter sample (1%), that the sample was one liter soids in the liter sample (1%), that the sample was one liter soids in the (0) data from ADS will from																	
Small Weights	Small Weights	(1) Each ei	ement comes	from 1 or n	nore compu	ounds therefo	re for Alum	inum:							Individual Mea	surement Un	certainties	
Small Weights Small Weights	Small Weights Small Weights	3646.89 gr	ams of AI(NO.	3)3.9H ₂ O or	3646.89g/c	375.13g/g-mo	le = 9.7217	moles x.	26.9815 g/m	H	23.1 grams						Percent	
Large Weights Large Weights	Large Weights Large Weights Large Weights	225.3 gram	s of Al ₂ O ₃ or	(2 x 225.3g,) / 101.96g.	/g-mole = 4.4	194 moles	x 26.981£	5 = 146.9 gre						Small Weight:	-	-	
mbination of all measured quantities Combined Wigts I won the AI nitrate, I won the AI nitrate, I won the AI nitrate, I would be a like of the aim of the compounds then the overall I would be a like of the aim of the sample (1%), that the sample was one liter (5%), Therefore, the (0) data from ADS will	mbination of all measured quantities Combined Wgts 1% on the AI nitrate, 1/2	for a total c	f 323.1 + 146		g of Al per		g simulant	for a conc	entration of	469.90 ppr	٤				Large Weight		-	
Small Volumes Small Volumes Small Volumes	momation of all measured quantities Small Volumes 1% on the Al nitrate, 5/2-4(1%)*2[A(1/2) = [3]A(1/2)x1% = 1.73% ADS IPC_Liquid ADS IPC_Liquid ADS close to Det ADS close to Det ADS close to Det ADS close Solid m to detection limit when 30% will be used per Frank Pennebaker. The solids in the liter sample (1%), that the sample was one liter (5%), as 811974 grams(7%) Therefore, the (Q) data from ADS will	į	-			-			1:	-	1				Combined Wg	ţ	~ ı	
1% on the AI nitrate, 3/2+(1%)/2/P(1/2) = [3]/(1/2)x1% = 1.73% ADS_IPC_Liquid ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Solid The solids in the liter sample (1%), that the sample was one liter (5%), Therefore, the (0) data from ADS will	1% on the AI nitrate, 3/2+(1%)/2/P(1/2) = [3]Y(1/2)x1% = 1.73% ADS IPC Liquid ADS close to Det ADS	(Z) Since e	ach element (can come fr	om several	compounds	the uncerta	anty will b	e a combina	tion of all r	neasured	duantities			Small Volume	s	Ω.	
ADS IPC Liquid \$\text{3.2-t}(1\%)\times \text{An intate}, ADS ince Liquid ADS close to Det ADS close to Det ADS close to Det ADS close to Det ADS close solid m to detection limit when 30% will be used per Frank Pennebaker. the solids in the liter sample (1\%), that the sample was one liter (5\%), Therefore, the (0) data from ADS will	ADS IPC_Liquid \$\text{3.2+(1\%)^2P\(1/2)} = \text{3}\(\text{1.73\%}\) ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Liquid ADS_icpes_Solid m to detection limit when 30% will be used per Frank Pennebaker. Therefore, the (Q) data from ADS will Therefore, the (Q) data from ADS will	tor instance	you have:			. f 01. 10/ -	- In the second		40,	10 - 44	1				Large Volume		۵	
ing up all 49 compounds then the overall ADS close to Det ADS close solid Density Corr. In detection limit when 30% will be used per Frank Pennebaker. If the solids in the liter sample (1%), that the sample was one liter (5%), that the sample was one liter (5%). Therefore, the (Q) data from ADS will	mm and the compounds then the overall and and another another and another another and another anot	1% on the	Alloyide and	1% on the	ammes wer	diving a total	in weigni in	of [CI%)×	7+(1%)v2+(1		11 ate, 13 = 1314/17	71% = 17	3%		ADS IDC Lin	Pil	76	
ding up all 49 compounds then the overall ADS close to Det ADS close Solid Density Corr. To detection limit when 30% will be used per Frank Pennebaker. If the solids in the liter sample (1%), that the sample was one liter (5%), Therefore, the (Q) data from ADS will	ding up all 49 compounds then the overall ADS close to Det ADS close Solid Density Corr. In Density Corr. To detection limit when 30% will be used per Frank Pennebaker. Therefore, the (Q) data from ADS will Therefore t	or 340 64 ×	0.017 = 5.79	J nom		5		2	. = (0.1). =			2010/	8		ADS icnes	guid	; =	
ding up all 49 compounds then the overall To detection limit when 30% will be used per Frank Pennebaker. If the solids in the liter sample (1%), that the sample was one liter (5%), Therefore, the (Q) data from ADS will	ding up all 49 compounds then the overall Density Corr. M to detection limit when 30% will be used per Frank Pennebaker. The solids in the liter sample (1%), that the sample was one liter (5%), Therefore, the (Q) data from ADS will Therefore, the (Q) data from ADS will														ADS close to	Det	8	
nto detection limit when 30% will be used per Frank Pennebaker (1%), that the sample was one if as 811974 grams(7%) Therefore, the (Q) data from ADS will	no detection limit when 30% will be used per Frank Pennebaker. The solids in the liter sample (1%), that the sample was one lives 811974 grams(7%). Therefore, the (Q) data from ADS will	However, if	your total wei	ight was no	t measured	at once and	your state.	d overall ju	ust adding up	o all 49 cor	mpounds to	hen the over	rall		ADS_icpes_S	olid	2	
(3) This is an ADS generated number. For this example it is set at 10% unless close to detection limit when 30% will be used per Frank Pennebaker. (3) This is an ADS generated number. For this example it is set at 10% unless close to detection limit when 30% will be used per Frank Pennebaker. (4) This assumed uncertainty include that of the ADS concentration (5%), the weight of the solids in the liter sample (1%), that the sample was one liter (5%), that the total volume of batch was 646.702 liters (5%, and that total mass batch was 811974 grams(7%) (5) Differences in (F) and (G) totals are due to contaminants in the compounds added. Therefore, the (G) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	(3) This is an ADS generated number. For this example it is set at 10% unless close to detection limit when 30% will be used per Frank Pennebaker. (4) This assumed uncertainty include that of the ADS concentration (5%), the weight of the solids in the liter sample (1%), that the sample was one liter (5%), that the total volume of batch was 646.702 liters (5%), and that total mass batch was 811974 grams(7%) (5) Differences in (F) and (Q) totals are due to contaminants in the compounds added. Therefore, the (Q) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	uncertainty	would be [49	M(1/2) × 1%	6 = 7% whi	ch would mak	ke your ove	rall uncert	ainty:						Density Corr.		-	
(3) This is an ADS generated number. For this example it is set at 10% unless close to detection limit when 30% will be used per Frank Pennebaker. (4) This assumed uncertainty include that of the ADS concentration (5%), the weight of the solids in the liter sample (1%), that the sample was one liter (5%), that the total volume of batch was 646.702 liters (5%), and that total mass batch was 811974 grams(7%) (5) Differences in (F) and (G) totals are due to contaminants in the compounds added. Therefore, the (Q) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	(3) This is an ADS generated number. For this example it is set at 10% unless close to detection limit when 30% will be used per Frank Pennebaker. (4) This assumed uncertainty include that of the ADS concentration (5%), the weight of the solids in the liter sample (1%), that the sample was one liter (5%), that the total volume of batch was 646.702 liters (5%), and that total mass batch was 811974 grams(7%) (5) Differences in (F) and (Q) totals are due to contaminants in the compounds added. Therefore, the (Q) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	1)+7,/(%,1)]	[7,/(%,/)+7,/(%	"(1/2) = [3] ²	= % Lx(7/L),	10 << %1.7	34U.64 × U	.071 = 24.	Te ppm									
(4) This assumed uncertainty include that of the ADS concentration (5%), the weight of the solids in the liter sample (1%), that the sample was one liter (5%), that the total volume of batch was 646.702 liters (5%), and that total mass batch was 811974 grams(7%) (5) Differences in (F) and (G) totals are due to contaminants in the compounds added. Therefore, the (Q) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	(4) This assumed uncertainty include that of the ADS concentration (5%), the weight of the solids in the liter sample (1%), that the sample was one liter (5%), that the total volume of batch was 646.702 liters (5%), and that total mass batch was 811974 grams(7%) (5) Differences in (7) and (9) totals are due to contaminants in the compounds added. Therefore, the (3) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	(3) This is:	an ADS gener	ated numbe	er. For this	example it is	s set at 109	% unless (close to dete	action limit	when 30%	6 will be use	d per Frank	. Pennebake	- 5			
that the total volume of batch was 646.702 liters (5%), and that total mass batch was 811974 grams(7%) (5) Differences in (F) and (Q) totals are due to contaminants in the compounds added. Therefore, the (Q) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	that the total volume of batch was 646.702 liters (5%), and that total mass batch was 811974 grams(7%) (5) Differences in (F) and (Q) totals are due to contaminants in the compounds added. Therefore, the (Q) data from ADS will be used for DF calculations, except for strontium which will be based on the recipe.	(4) This as:	sumed uncert:	ainty includ	e that of th	e ADS conce	intration (5%	%), the we	ight of the s	olids in the	liter sam	ple (1%), th	at the samp	le was one l	liter (5%),			
		that the tot	al volume of b	atch was	646.702	liters (5%), a	and that tot:	al mass b	atch was	811974	grams(7%)							
		(5) Differen	ces in (F) and	(Q) totals	are due to o	contaminants	in the com	nbounds at		fore, the ((⊋) data from	m ADS will						
		be used for	DF calculation	ns, except	for strontiu	ım which will	be based o	in the reci										

Lasentec Chord Length Data for Pilot-Scale Precipitation Batch #1

Post Filtration Samples

Hanford AN-107 simulant samples were received from Engineering Development Laboratory personnel for analysis of post filtration solids. The samples were precipitate filtrate samples which were isolated at various times after the completion of precipitate reagent additions (on 9-26-01 at 13:39 hours) as indicated in Table C-1 below. Each sample had been filtered through a 0.1 micron Mott Crossflow Filter to yield approximately 1 L of filtrate. The samples were stored in 1L wide-mouth, amber polypropylene bottles to minimize interactions with light during storage. This bottle type allowed for Lasentec chord length analysis without removing the sample from the storage container. Samples were analyzed with the Lasentec within 24 hours of receipt to determine whether any solids were present.

The Lasentec FBRM is a laser-based technique, which utilizes back-scattered signal from particles within the detector measurement zone to obtain chord length data for a population of The FBRM is a highly sensitive technique due to the fact that it measures particles. backscattered laser intensity from individual particles within the sample. In addition, the method requires no sample preparation and is suitable for in-process analysis. These are significant advantages over traditional methods for the analysis of suspended solids in liquid media. The FBRM method requires that the particles be passed across the probe surface. This is generally achieved by placing the probe within a flowing liquid stream or (in the case of individual samples) by stirring the liquid using an appropriately designed and positioned impeller blade. A particle chord length is defined as the diameter of the particle as it is presented to the detector. For a given non-spherical particle, the particle may be presented to the detector in a number of orientations and a number of unique chords may be measured. Since the AN-107 simulant composition is complex, post-filtration solids may contain a mixture of particles with different compositions and morphologies (shapes). This adds to the complexity of the measured chord length distribution. In addition, as particle counts increase, the FBRM response may not be linear and the data cannot be considered to be highly quantitative unless suitable standards can be prepared and a calibration curve generated. Nonetheless, general comparisons of particle counts can be made between samples of the same type.

Table C-1 AN-107 Filtrate Sample Isolation Times

Sample ID	Sample Collection Date/Time	Reaction Time Before Filtration (hr)
PF1-1	9-26-01/21:08	7.5
PF1-2	9-26-01/21:08	7.5
PF1-3	9-28-01/12:53	47.2
PF1-4	10-1-01/15:43	122
PF1-5	10-2-01/15:08	145

Figures C-1 and C-2 show the chord length data obtained for the samples from pilot scale precipitation batch #1 within 24 hours after filtration. Samples PF1-1 and -2 were duplicate samples isolated only 7.5 hours after the initiation of precipitation. The remaining samples were isolated after significantly longer reaction times (from 2-6 days) and were not collected in As indicated in Table C-2 and Figure C-2, samples PF-1 and -2 contained significantly greater particle counts than any of the remaining samples. Note that the counts per second provided in Table C-2 cannot be directly related to weight % solids in the samples, since this measurement was not conducted. Visible solids could not be observed in either of these samples and it is unlikely that the total mass of solid material was high enough to be isolated and measured accurately. As indicated in Figure C-1, the chord length distributions obtained for the PF-1 and -2 samples were very similar. The mean chord lengths measured for the two samples were 6.6 and 6.8 microns, respectively (Table C-2). Extremely low particle counts were measured for samples PF1-3 and -4, although particles were present with the chord length distributions indicated in Figure C-1. The mean chord length was considerably larger and the distribution more broad for the PF1-3 and -4 samples than was observed for the -1 and -2 samples. Sample PF1-5 contained no measurable particles. The instrumental background signal is typically around 15 counts per second.

Table C-2 Chord Length Data Obtained Within 24 Hours After Filtration

Sample	Total	Mean Chord	Measurement
	Counts/sec	Length (µm)	Time After
			Filtration (hr)
PF1-1	3846	6.6	18
PF1-2	3160	6.8	18
PF1-3	55	75	21
PF1-4	38	41	24
PF1-5	15	90	1.1

Figure C-1 Pilot Scale Run #1 Chord Length Data Within 24 Hours After Filtration (Chord Length vs. %/Channel)

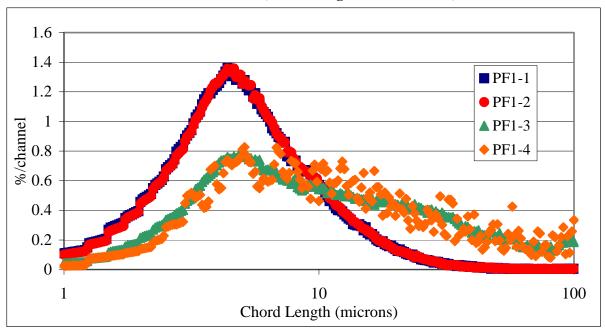
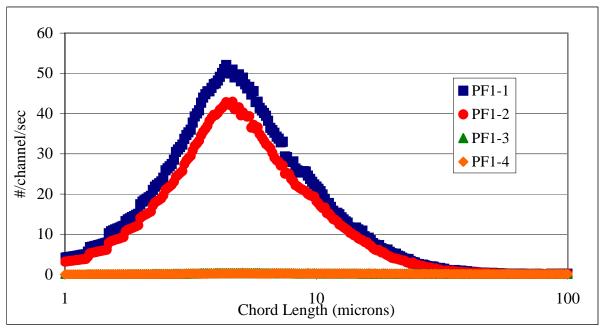



Figure C-2 Pilot Scale Run #1 Chord Length Data Within 24 Hours After Filtration (Chord Length vs. #/channel/sec)

The samples were stored after analysis for over 5 months at ambient temperature in the amber bottles. The air headspace above the samples was <10% of the total volume. Figures C-3 and C-4 and Table C-3 provide the chord length data for the samples after storage. The samples were all analyzed on 3-6-02. Samples PF1-1 and -2 contained films of solids on the container bottoms and sides. Approximately 75% of the solids were removed from the container walls by shaking the bottles. Results for the duplicate samples (-1 and -2) were similar. The mean chord lengths for the two samples (11 µm) were shifted to slightly larger values than the mean values reported above for these samples just after filtration. The shift toward larger chord lengths presumably results from aggregation of particles during the formation of the film. The distribution was also considerably more broad for the samples after storage. The PF1-3 sample contained some solids on the container bottom after storage which were easily suspended. The chord length distribution was sharper and the mean chord length value was much smaller as compared to the distribution immediately after filtration. Samples PF1-4 and -5 contained no measurable amounts of solids. The small amount of solids that was present in the PF1-4 sample immediately after filtration apparently either redissolved over time or formed a thin film on the container walls that was not visually observable.

Table C-3 Chord Length Data Obtained After Storage for Several Months

	Total	Mean Chord
Sample	Counts/sec	Length (µm)
PF1-1	1637	11
PF1-2	1353	11
PF1-3	204	10
PF1-4	15	57
PF1-5	7.9	92

Figure C-3 Pilot Scale Run #1 Chord Length Data After Storage (Chord Length vs. %/channel)

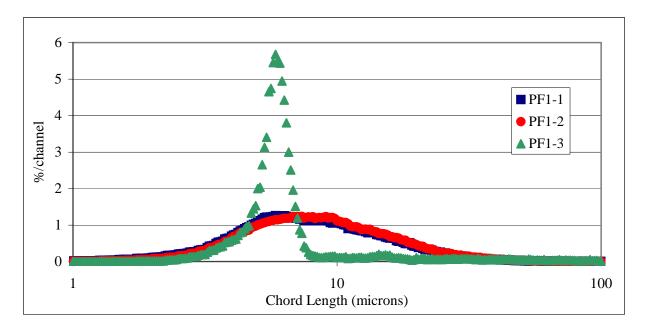
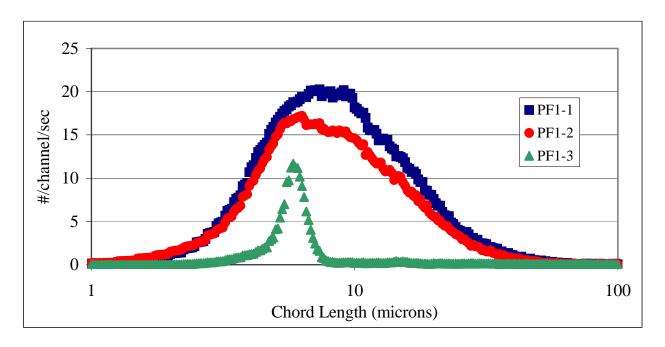



Figure C-4 Pilot Scale Run #1 Chord Length Data After Storage (Chord Length vs. #/channel/sec)

APPENDIX D

Batch 2 Analytical Data

Appendix Contents

- Liquid, Solid, and Gas Sample Analyses
- Lasentec Data

- Each Solid Sample was divided into four segments for various dissolutions and analyses except the post-filtration solids which were not subdivided due to their small quantity.
- < values indicate below detection limits.
- The simulant samples 0L and 0S are actually the analysis of the simulant sample collected during the Batch #1 experiment prior to adding any reagents. The mixing procedure for Batch #1 and #2 were identical, so an additional sample was not thought to be necessary.
- The simulant sample that was separated into the 1L liquid and 1S solid samples was actually taken about an hour minutes before reagent addition. This sample is considered the "0" time sample for comparison purposes.
- The post-filtration solid sample 172483 was obtained using a coliwasa from the filtrate drum on 11/20/01, which is 26 days after the filtering was completed on 10/25/01. The filtrate was filtered and the solids dried. Analyses performed on this sample included XRD, ICPMS, and ICP-ES.
- SVOC Analysis of Solid Samples was performed on ADS 300170474 through ADS 300170483, which are also identified as 170474 through 1170483 in the data pages.
- VOC Gas Analysis was performed on ADS 3-170441 through ADS 3-170454 and ADS 3-170474 through ADS 3-170483, which are also identified as 170441 through 170454, and 170474 through 170483 in the data sheets.
- The identification of materials by the X-ray Diffraction (XRD) method was performed in accordance with the International Center for Diffraction Data at www.icdd.com using the Powder Diffraction Database of PDF cards.

BATCH #2 ANALY	VTICAL F	DESIII .	TS											
BATCH #2 ANAL	TICALI	LSUL						Liquid A	Analysis					
EDL Sample No.			0L	1L	2L	3L	4L	5L	6L	7L	8L	9L	10L	Post- Filtration
Time after Reager	nt Add (hr	re)	0	0	0.125	0.25	0.5	1	2	3	4	6	8	2184
ADS Sample No.	11 7144 (111			-	170446	170447		170449						(3)
Identity	Method	Units	(1)	(2)										,
K	AAK	μg/gm	1620	1318	1188	1159	1172	1120	1152	1157	1181	1219	1168	
AlO ₂		molar	0.0156	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
CO ₃ ²⁻		molar	0.7032	0.8585	0.6668	0.6622	0.6808	0.6465	0.6605	0.6602	0.675	0.695	0.6488	
Free OH		molar	0.036	0.7545	0.646	0.636	0.651	0.627	0.658	0.643	0.65	0.661	0.623	
Total OH		molar	0.767	1.681	1.408	1.4	1.397	1.359	1.36	1.38	1.405	1.427	1.419	
Na	AANA	μg/gm	95829	110796	100175	98536	87585	84000	90439	89766	92288	98193	90176	
Specific Gravity			1.267	1.280	1.260	1.260	1.260	1.260	1.260	1.260	1.270	1.280	1.260	1.280
рН			10.2	12.34	12.38	12.38	12.32	12.37	12.32	12.31	12.29	12.27	12.28	
Total Carbon		μg/ml	33800	25400	21600	21400	20100	22000	21800	22000	23000	24200	22800	
TOC		μg/ml	19050	14780	12980	12540	12340	12980	12700	12860	13480	13980	13320	
TIC	IEC	μg/ml	14700	10400 744	8720 693	8900 660	8740 605	9000 583	9120 615	9200 601	9440 620	10160 610	9480 596	
Acetate Glycolic Acid	IEC	mg/kg mg/kg	737 12857	12017	9941	10786	9097	9315	9124	9600	9836	9980	9660	
Citric Acid	IEC	mg/kg	4910	3498	4545	4235	4067	4076	4127	4013	4253	4390	4181	
Succinic acid	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
D ₂ EHPA	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Gluconate	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
NTA	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
IDA	IEC	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Fluoride	IC	μg/gm	2880	2108	1731	1708	1718	1722	1736	1727	1750	1782	1712	
Formate (HCOO ⁻)	IC	μg/gm	5862	4807	4525	4449	4312	4418	4481	4403	4475	4607	4336	
Nitrite (NO ₂)	IC	μ g /gm	35659	25968	23825	23260	23118	23464	23555	23299	24071	24589	23392	
Phosphate (PO ₄ ³ -)	IC	μg/gm	1147	1222	1012	1012	938	914	886	858	914	958	890	
Oxalate (C ₂ O ₄ ²)	IC	μg/gm	880	533	1094	1174	1122	1079	1179	117	1085	833	1055	
Chloride (Cl ⁻)	IC	μg/gm	1011	913	830	820	805	818	822	811	836	864	809	
Nitrate (NO ₃)	IC	μg/gm	105156	96682		99283	98630		89988	94617		103836	96392	
Sulfate (SO ₄ ² -)		μg/gm												
	IC		4477	4308	3906	3852	3808	3834	3867	3806	3902	4038	3775	
HEDTA EDTA	IPC IPC	mg/l	734	420 2158	400 2225	425 2200	600 2525	425 2450	450 2125	450 2175	450 2275	475 2275	425 2075	
Ce	ICP-MS	mg/l μg/gm	2876 26.4	24.6	3.17	2.99	2.86	2.63	2.45	2.43	2.33	1.95	2.01	1.05
Cs	ICP-MS		10.40	10.10	8.58	8.52	13.00	8.73	8.06	8.12	8.30	8.67	8.38	1.00
La	ICP-MS	μg/gm	23.2	22.4	2.18	2.02	2.02	1.84	1.82	1.82	1.74	1.58	1.61	0.81
Nd	ICP-MS	μg/gm	43.5	44.3	6.15	5.85	5.67	5.12	5.1	5.31	4.85	4.48	4.59	2.95
Re	ICP-MS	μg/gm	11	9.18	8.56	8.21	8.36	7.83	8.2	8.17	8.31	8.51	8.11	
Pb	ICP-MS	μg/gm	201	175	49.6	47.4	47.7	44	45.6	45.8	44.9	45.8	44	
Al	ICP-ES	μg/gm	386	196	294	214	204		178	160	167	170	199	173
В	ICP-ES	μg/gm	56	<20	<20	<20	<20 <1.5	<20	<20	<20	<20	33	111	27
Ba Ca	ICP-ES	μg/gm μg/gm	<1.5 129	<1.5 303	<1.5 161	<1.5 159	164	<1.5 155	<1.5 153	<1.5 153	<1.5 154	<1.5 160	<1.5 152	0.12 214
Cd	ICP-ES		<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0		<5.0		
Cr	ICP-ES		93	78	63	61	63			62		59		60
Cu	ICP-ES		22	68	129	152	111	117	16	<10		17	53	12
Fe	ICP-ES		1005	754	100	98	126	93	78	95	80	80	100	50
K	ICP-ES		1420	1240	1160	1120	1180			1170	1150	1180		
Mg	ICP-ES		51	<10	<10	<10	<10		<10	<10	<10	<10		-
Mn	ICP-ES		294	262	82	74	85	84	89	101	94	92	101	18
Mo	ICP-ES		110000	110000	105000	105000	100000	100000	105000	100000	100000	100000	100000	15
Na Ni	ICP-ES	μg/gm											106000	
Ni P	ICP-ES		296 205	281 197	300 175	304 158	284 167	270 155	253 170	235 168	240 176	248 182	258 180	
Pb	ICP-ES		203	187	<80	<80	<80	<80	<80	<80	<80	<80	<80	
Si	ICP-ES		47	38	26	23	27	22	<20	<20	<20	<20		
Sr	ICP-ES		5	4.2	174	172	173	164	156	158	144	110	110	
Zn	ICP-ES													19.0
Zr	ICP-ES		33	<40	<40	<40	<40		<40	<40	<40	<40	<40	4.2
S	ICP-ES		1650	1720	1730	1660	1650			1780		1900		1383
	Sample 0L is before caustic addition and is actually the analysis of sample 1L collected during Batch #1.													
	2) Sample 1L was taken after caustic addition but prior to other reagent additions.													
(3)		Mobile Lab Sample RPP-WP-PREC2-FILTRATE collected from filtrate drum on Jan 22, 2002 (91 days after precipitation). The method of analysis is ICP-ES in all cases.												
KI/A	precipita Method i			od of an	aiysis is	ICP-ES	ın alı cas	es.						
IN/A	METHOD	not ava	iiabie.											

BATCH #2 ANALYTIC	AL RE	SULTS												
							So	lids Anal	ysis					Post-
EDL Sample No.			08	1S	28	38	48	5S	6S	7S	88	98	10S	Filtration
Time after Reagent Ad	ld (hrs)		0	0	0.125	0.25	0.5	1	2	3	4	6	8	674
Identity	Units	Method												
Quantity collected	grams		3.98	5.27	44.26	40.46	43.51	50.78	47.06	45.51	41.71	67.36	84.78	
ADS Sample No.				170431								170439	170440	172484
Pretreatment: 0.25 gm				<u> </u>										
Cd		ICP-MS	<1	<4 150	<4 383	<4 512	<4	<4 529	<4 557	<4 535	<4 597	<4	<4	<2 12.9
La Ce			528 843	170	422	567	486 550		624	606	671	618 703	492 560	22.7
Nd	μg/gm μg/gm	ICP-MS	1720	291	778	1040	993	1060	1140	1080	1220	1260	1010	32.2
Re	μg/gm	ICP-MS	2.1	14.5	12.7	18.2	19.8		17.7	18.3	15.2	15.6	20.8	9.35
Pb	μg/gm	ICP-MS	413	1080	2520	3410	3230	3410	3660	3490	3910	4090	3230	479
Al	μg/gm	ICP-ES	30100	5030	547	549	473		851	720	1010	1410	649	3220
В	μg/gm	ICP-ES	910	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	3450
Ва	μg/gm	ICP-ES	21	22	1270	1050	989	1070	1170	1110	1220	1240	989	2540
Ca	μg/gm	ICP-ES	87900	3720	4680	3800	3710	4180	4500	4140	4470	4960	3960	1650
Cd	μg/gm	ICP-ES	<15	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<4.0
Cr	μg/gm	ICP-ES	925	1780	525	488	522	457	528	462	553	701	446	163
Fe	μg/gm	ICP-ES	48600	58500	26700	22400	21300		24500	23500	26000	27000	21400	3410
Mg	μg/gm	ICP-ES	2880	12400	1410	1150	1130		1280	1240	1320	1390	1090	201
Mn	μg/gm	ICP-ES	26000	33900	75300		58600			65200	71200	72500	58300	12100
Na Ni	μg/gm	ICP-ES	165000			182000			187000	174000		166000		
Ni P	μg/gm	ICP-ES	<70 1140	243 <750	247 <750	306 <750	318 <750	417 <750	376 <750	304 <750	227 <750	322 <750	408 <750	189 184
Pb	μg/gm	ICP-ES	<700	983	3730	3240	3170	3290	3710	3330	3740	3960	3180	492
Si	μg/gm μg/gm	ICP-ES	2250	1120	274	427	145	485	490	233	259	423	378	225
Sr	μg/gm	ICP-ES	743						167000			-		459
Zr	μg/gm	ICP-ES	378	265	709	610	544	627	657	652	703	729	591	16
K	μg/gm	ICP-ES	<500	1040	1400	1800	1880	-	2010	1720	1620	1680	2200	3940
S	μg/gm	ICP-ES	1190	1150	1280	1880	1740		1950	1760	1490	1900	2230	773
Nd	μg/gm	ICP-ES	1071	<300	1180	972	960	921	1040	959	1150	1210	1040	<100
Cu	μg/gm	ICP-ES	<50	58	110	85	76	94	96	106	96	99	103	18
Zn	μg/gm	ICP-ES												3740
ADS Sample No.			160774	170421	170/22	170423	170424	170425	170426	170427	170/28	170420	170/30	
Pretreatment: 0.25 gram	of solids	l s fused wit											170430	
Al		ICP-ES	28300	46400	4600	4700	5100	5200	5100	5000	4800	5200	5000	
В	μg/gm		247	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	
Ва	μg/gm		50	89	1132	1104	1269	1126	1130	1258	1188	1224	1136	
Ca	μg/gm	ICP-ES	86100	4862	5034	5398	5718	6346	6774	5780	6488	5823	5573	
Cd	μg/gm	ICP-ES	36	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	
Cr	μg/gm	ICP-ES	2161	5515	820	854	880		824	859	919	991	845	
Fe	μg/gm	ICP-ES	26600	64600	24000	23300	26800			26500	25400	26200	24200	
Mg	μg/gm	ICP-ES	1430	14000	1190	1230	1350		1250	1410	1340	1330	1130	
Mn	μg/gm	ICP-ES	16800	37600	67200	64900	75600			74300	70700	71700	65900	
Ni	μg/gm	ICP-ES	270	343	282		316		417	297	294	380		
P		ICP-ES	681	<700	<700	<700	<700		<700	<700	<700	<700	<700	
Si Sr		ICP-ES	7090 810	7860 7210	1160	1130 150000	1300		1140 144000	1100	1100	1030	1050	
Zn		ICP-ES	610	<400	<400	<400	<400		<400	<400	<400	<400	<400	
K		ICP-ES	1460	595	1940		1700		2100	1610				
S		ICP-ES	1950	909	1170		1020		1440	1020		1580		
Nd		ICP-ES	778	528	1410		1440		1310	1350		1560	1160	
ADS Sample No.				170374										
Pretreatment: 0.25 gra														
Fluoride	μg/ml	ICA	<198	869	130		207	1		282		280	225	
Formate (HCOO ⁻)	μg/ml	ICA	<989	4009	16743		12542			11221	15455	15850		
Nitrite (NO ₂ -)	μg/ml	ICA	<989	16081	23743		28874		44908	33768		35380	31862	
Phosphate (PO ₄ ³⁻)	μg/ml	ICA	<989	<88>	<94	150	<93	180	226	<93	<99	140	152	<u></u>
Oxalate (C ₂ O ₄ ²⁻)	μg/ml	ICA	<989	226039	36806	42505	42992	45231	49436	47859	44101	48548	45106	
Chloride (Cl ⁻)	μg/ml	ICA	989	639	1068	1490	1174		1940	1289	986	1551	1358	
Nitrate (NO ₃)	μg/ml	ICA	2966	63840		153814			175323		109304			
Sulfate (SO ₄ ² -)	μg/ml	ICA				-		-	-	5251	4635			
Guilate (GO4)	μу/пп	ICA	2966	2598	3521	8505	5683	4373	5509	5251	4035	4759	5701	

BATCH #2 ANALYTIC	AL RES	SULTS												
								Solids A	nalysis					
														Post-
EDL Sample No.			0S	1S	2S	3S	4S	5S	6S	7S	8S	9S	10S	Filtration
Time after Reagent Ad	. ,		0	0	0.125	0.25	0.5	1	2	3	4	6	8	674
Identity ADS Sample No.	Units	Method	160704	170171	170475	170476	170177	170470	170470	170490	170401	170482	170402	170407
Solids microwave dried	1		109704	170474	170473	170476	170477	170476	170479	170460	170461	170402	170463	172404
Total Carbon	μg/ml		39996	102600	35800	58600	38800	45400	37800	40800	21400	48800	48600	
TOC	μg/ml		16362	92000	22800	39000	24000	30800	23600	25000	15180		31800	
TIC	μg/ml		23634	10400	12960	19500	14800	14400		15960	6340		16600	
Fluoride	μg/ml		147	842	157	239	222	277	470	255	179	285	198	
Formate (HCOO ⁻)	μg/ml		170	4410	15859	19150	14471	18436	16662	11298	16634	14766	13064	
Nitrite (NO ₂)	μg/ml		169	15823	21879	37332	32929	36607	38391	34951	26248	27271	30652	
Phosphate (PO ₄ ³⁻)	μg/ml		81	<92	<95	136	<95	188	262	84	<95	104	142	
Oxalate (C ₂ O ₄ ²⁻)	μg/ml		31269	198880	39924	43363	48354	43951	40128	57243	39756	27271	49182	
Chloride (Cl ⁻)	μg/ml		5533	878	902	1610	1173	1637	1538	1288	1037	1199	1267	
Nitrate (NO ₃ -)	μg/ml		897	72872	94864	152580	120504	155045	192328	135608	110163	128537	121881	
Sulfate (SO ₄ ²⁻)	μg/ml		278	2807	4558	4983	6493	5191	9302	7838	4349	5050	4845	
Al ₂ O ₃ (corundrum)		XRD	74-1081	46-1212										
MnO ₂ (pyrolusite)		XRD	24-0735	24-0735										
Fe ₂ O ₃ (Hermatite)		XRD	72-0469	86-2368										
C ₂ CaO ₄ !H ₂ O(Wheweli	te)	XRD	20-0231											
CaCO ₃ (calcite)		XRD	86-0174											
SiO ₂ (Quartz)		XRD	46-1045	46-1045										
Mn(SO ₃)H ₂ O(Mang Su	If Hyd)	XRD	82-0764											
C ₂ Na ₂ O ₄ (Natroxalate)		XRD	20-1149	20-1149	49-1816	49-1816	49-1816	49-1816	49-1816	49-1816	49-1816	49-1816	49-1816	
NaNO ₃ (Sodium Nitrate)	XRD		72-0025	72-0027	72-0027	72-0027	72-0027	72-0027	72-0027	72-0027	72-0027	72-0027	
SrCO ₃ (Strontianite)		XRD			84-1778	84-1778	84-1778	84-1778	84-1778	84-1778	84-1778	84-1778	84-1778	
Na ₄ Sr(SiO ₃) ₃ -Na,Sr, Si	ilicate	XRD			06-0392	06-0392	06-0392	06-0392	06-0392	06-0392	06-0392	06-0392	06-0392	
NiMn ₂ O ₃ (OH) ₄ !H ₂ O(Asbo	olane)	XRD												42-1319
Note: Batch #2 0S is b	efore ca	austic add	dition whi	ch is the	same s	amnle ar	nalvsis a	s Batch ±	#1 1S ar	nd Batch	#2 1S is	sample	analysis	
following caustic additi		addite duc	ALCOLI WILL	5.7 15 1716	Janie 3	ampic ai	iaryolo a	Daton 7	, , , o, ai	Daton		Cample	ananyono	
Tollowing caustic additi	UII.													

SRT-ADS-02-0031	SVOC Analysis of Solid Samples

ADS Number	Customer ID
300170474	RPP-WTP-PREC2-1S
300170475	RPP-WTP-PREC2-2S
300170476	RPP-WTP-PREC2-3S
300170477	RPP-WTP-PREC2-4S
300170478	RPP-WTP-PREC2-5S
300170479	RPP-WTP-PREC2-6S
300170480	RPP-WTP-PREC2-7S
300170481	RPP-WTP-PREC2-8S
300170482	RPP-WTP-PREC2-9S
300170483	RPP-WTP-PREC2-10S

Results

Ten samples were submitted for semivolatile organic compound (SVOC) analysis. The only SVOC analytes that were detected were phthalates, as well as adipate and maleate, commonly used as commercial plasticizers, as shown in the table below. The method detection limit (MDL) for the samples in this study was 1 mg/kg.

Sample ID	DEP	DBF	DOA	DOM
RPP-WTP-PREC2-1S RPP-WTP-PREC2-2S RPP-WTP-PREC2-3S RPP-WTP-PREC2-4S RPP-WTP-PREC2-5S RPP-WTP-PREC2-6S RPP-WTP-PREC2-7S RPP-WTP-PREC2-7S RPP-WTP-PREC2-9S RPP-WTP-PREC2-10S	252 8.3 _ 9 _ 9.6 _ 8 _ 6.5 _ 6.7 _ 6 _ 5.8 _ 5.1 _	17	15 -	7.3
DEP = Diethylphthalate DBP = Dibutylphthalate DOA = Diisooctyadipate DOM = Diisooctylmaleate				

Experimental

The liquid samples were extracted with methylene chloride and analyzed.

Gas Chromatography / Mass Spectrometry (GC/MS) analysis was employed to identify organic compounds in the sample. Analysis were carried out in building 773-A, laboratory B-123. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 30 m DB-5 column, with 0.25 mm diameter and 0.25 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine.

GC/MS Analysis Results-VOC solid, liquid, gas samples no detectable VOC analytes

SRT-ADS-01-0537

Sample ID

ADS Number	EDL Sample No.
3-170441	RPP-WPT-PRECIP2-1G
3-170442	RPP-WPT-PRECIP2-2G
3-170443	RPP-WPT-PRECIP2-3G
3-170444	RPP-WPT-PRECIP2-4G
3-170445	(RPP-WTP-PREC2-1L)
3-170446	(RPP-WTP-PREC2-2L)
3-170447	(RPP-WTP-PREC2-3L)
3-170448	(RPP-WTP-PREC2-4L)
3-170449	(RPP-WTP-PREC2-5L)
3-170450	(RPP-WTP-PREC2-6L)
3-170451	(RPP-WTP-PREC2-7L)
3-170452	(RPP-WTP-PREC2-8L)
3-170453	(RPP-WTP-PREC2-9L)
3-170454	(RPP-WTP-PREC2-10L)
3-170474	(RPP-WTP-PREC2-1S)
3-170475	(RPP-WTP-PREC2-2S)
3-170476	(RPP-WTP-PREC2-3S)
3-170477	(RPP-WTP-PREC2-4S)
3-170478	(RPP-WTP-PREC2-5S)
3-170479	(RPP-WTP-PREC2-6S)
3-170480	(RPP-WTP-PREC2-7S)
3-170481	(RPP-WTP-PREC2-8S)
3-170482	(RPP-WTP-PREC2-9S)
3-170483	(RPP-WTP-PREC2-10S)

Results

Ten solid, ten liquid, and four gas samples were submitted for volatile organic compounds (VOC) analysis. The samples did not contain any detectable VOC analytes, and the limits of detection for this study are tabulated below.

Sample Matrix MDL

 Gas
 0.2 ppmv

 Liquid (Aqueous)
 1 ug/L

 Solid
 10 ug/kg

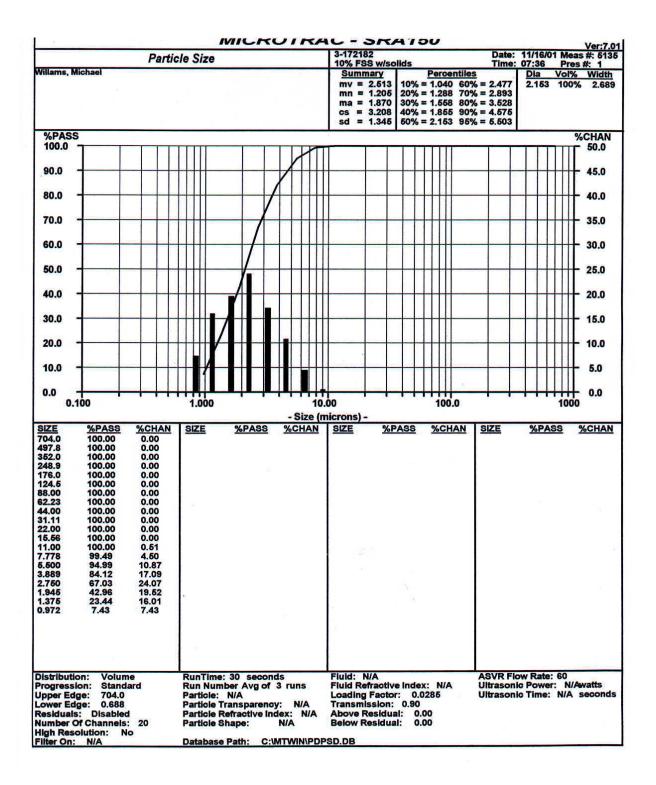
Experimental

Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). GC/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory B-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring.

Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness.

Quantification was performed using a Hewlett Packard 5973 mass selective detector.

The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine.


Some VOC samples for this study were analyzed on the following instrument.

Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 (Contract Laboratory Program SOW 7-93 for Volatile Organics).

Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap.

Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary column with 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-93). The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.

Tuning verification was performed against CLP tuning requirements, specifically to optimize CLP requirements for high mass sensitivity. 50/95 ratios which are between 8%-15%, may require appropriate flagging if used for other purposes.

Lasentec Chord Length Data for Pilot-Scale Precipitation Run #2 Post Filtration Samples

Hanford AN-107 simulant samples were received from Engineering Development Laboratory personnel for analysis of post filtration solids. The samples were isolated at various times after the completion of precipitate reagent additions (on 10-23-01 at 9:47 hours) as indicated in Table 1 below. Each sample was immediately filtered through a 0.45 micron disposable Nalgene Nylon filter unit to yield approximately 1 L of filtrate. The samples were stored in 1L widemouth, amber polypropylene bottles to minimize interactions with light during storage. This bottle type allowed for Lasentec chord length analysis without removing the sample from the storage container. Samples were initially analyzed with the Lasentec within 24 hours of the filtration to determine whether any solids were present.

The Lasentec FBRM is a laser-based technique, which utilizes backscattered signal from particles within the detector measurement zone to obtain chord length data for a population of particles. The FBRM is a highly sensitive technique due to the fact that it measures backscattered laser intensity from individual particles within the sample. In addition, the method requires no sample preparation and is suitable for in-process analysis. These are significant advantages over traditional methods for the analysis of suspended solids in liquid media. The FBRM method requires that the particles be passed across the probe surface. This is generally achieved by placing the probe within a flowing liquid stream or (in the case of individual samples) by stirring the liquid using an appropriately designed and positioned impeller blade. A particle chord length is defined as the diameter of the particle as it is presented to the detector. For a given non-spherical particle, the particle may be presented to the detector in a number of orientations and a number of unique chords may be measured. Since the AN-107 simulant composition is complex, post-filtration solids may contain a mixture of particles with different compositions and morphologies (shapes). This adds to the complexity of the measured chord length distribution. In addition, as particle counts increase, the FBRM response may not be linear and the data cannot be considered to be highly quantitative unless suitable standards can be prepared and a calibration curve generated. Nonetheless, general comparisons of particle counts can sometimes be made between samples of the same type.

Table 1. AN-107 Filtrate Sample Isolation Times

Sample	Sample	Reaction
ID	Collection	Time Before
	Date/Time	Filtration (hr)
PF2-1	10-23-01/13:00	3.2
PF2-2	10-24-01/00:15	14.5
PF2-3	10-24-01/07:30	21.7
PF2-4	10-24-01/16:00	30.2
PF2-5	10-25-01/00:05	38.3
PF2-6	10-25-01/07:30	45.7

Figure 1 shows the chord length data obtained for selected samples from pilot scale precipitation test #2 after filtration. Table 2 provides the total chord length counts measured per second, the mean chord length for each sample, and the time that after filtration that each sample was analyzed. Sample PF2-2 was analyzed on two successive days (PF2-2-A and –B). Measurable solids were observed for samples PF2-5 and –6, although the total counts did not exceed 65 for either sample. The counts observed for samples PF2-2-A, -3, and –4 were below normal instrumental background levels (typically around 15 counts per second). Note that the counts per second provided in Table 2 cannot be directly related to weight % solids in the samples, since this measurement was not conducted. Visible solids could not be observed in any of these samples and it is unlikely that the total mass of solid material was high enough to be isolated and measured accurately. Significantly higher counts were observed for sample PF2-2-B approximately 23 hours after the initial analysis of this sample (PF2-2-A) although the total solid content was still very low and no solids were visually observed. The analysis of the –2-B sample does provide an idea of the formation time scale and size of the initial precipitate.

Table 2. Chord Length Data Obtained Following Filtration

Sample	Total	Mean Chord	Measurement
	Counts/sec	Length (µm)	Time After
			Filtration (hr)
PF2-1	Not measured	Not measured	Not measured
PF2-2-A	9	139	18.8
PF2-2-B	187	21	41.6
PF2-3	8	145	11.6
PF2-4	9	141	2.9
PF2-5	59	29	17.7
PF2-6	62	28	10.1

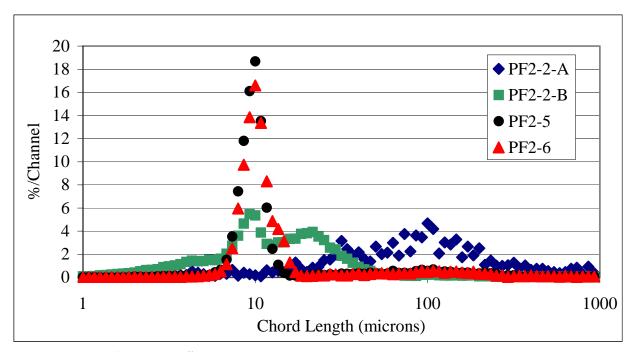


Figure 1. Pilot Scale Run #2 Chord Length Data After Filtration (Chord Length vs. %/Channel)

The samples were stored after analysis for nearly 5 months at ambient temperature in the amber bottles. The air headspace above the samples was <10% of the total volume. Table 3 provides the chord length data obtained for the samples after storage. The samples were all analyzed on 3-6-02. Visible solids were observed for all samples on the container bottoms and sides. Approximately 75% of the solids were removed from the container walls by shaking the bottles. The total counts and mean chord lengths for all measured samples were similar (average counts: 2040; average mean chord length: 27 μ m). The chord length distribution shown in Figure 2 for sample PF2-2 is typical of the distributions observed for the other samples.

Table 3. Chord Length Data Obtained After Storage for Several Months

Sample	Total	Mean Chord
	Counts/sec	Length (µm)
PF2-1	2013	33
PF2-2	1972	28
PF2-3	2030	23
PF2-4	2256	24
PF2-5	1931	27
PF2-6	Not measured	Not measured

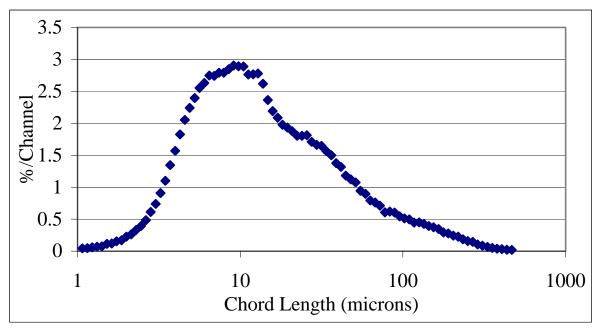


Figure 2. Pilot Scale Run #2 Chord Length Data for Sample PF2-2 After Storage (Chord Length vs. %/channel)

APPENDIX E

Batch 3C Analytical Data

Appendix Contents

- Liquid, Solid, and Gas Sample Analyses
- Lasentec Data

- Each Solid Sample was divided into four segments for various dissolutions and analyses except the post-filtration solids which were not subdivided due to their small quantity.
- < values indicate below detection limits.
- Slurry supernate from Batch 1 stored for one year was used to condition the Cross-flow filter prior to processing Batch 3C precipitated slurry.
- Batch 3A material was processed through the CUF as a mini-precipitation (29) prior to Batch 3C processing on the pilot scale.
- The identification of materials by the X-ray Diffraction (XRD) method was performed in accordance with the International Center for Diffraction Data at www.icdd.com using the Powder Diffraction Database of PDF cards.

Sauth	22 de 20																							
gent II. Search No. 19 of M. Acid Lee funds of M. Search No. 19 of	AN-102R2	AN-103P2 simulant at 6 SM Na AN-102R2 simulant at 6 SM Na after aging one wrest.	M Na	-102R2 simulant at 6.55 after aging one week	nt at 6 5M Na ne wrek	AN 102R2	simulant at 6 with solids	AN-102R2 I Na min. after ad	10	8 4 4	AM-10 hours	AN-102R2 fittate 4 hours te 2 after ents reagents added	AN-11 hours	Ba Shrry 4 at reagents co	Batch 3A AN-102R2 Simulant run in CUF at newfy optimized conditions, 4 hours after reagents added		AN-102R2 filtrate composite Lank after filtration complete	AN-102R2 filtrate composite tank 1 day after filtration complete		AN-102R2 fibrate composite tank 2 days after concentration complete		L102R2 slury after cercentration in crossflow filter	AN-100R2 stury after 1 yr old AN-107 stury cencentration used to condition crossificm filter Man for 3C	48.8
gent collection (min) gent with with with with with with with wit	3C-1SL	30.15L	m	30-28L	3C-2SL	3C-3SL	7	3031 3031		30-51, 30-51,	3C.7L	30.9	30.451	S	****					+	ĕ	3C.7SL.?	90000	30-48
with with with with with with with with		5	9	2			e/A	5		n	7			.0.		5			5				B/B	9
wrfs,	ļ		87.0	ľ	200	4		1.32		130	8.0	1.30		200		8:	S. C. C.	130	3 9	3.5	130	8 5		1.08
wrs. wrs. wrs. wrs. wrs. wrs. wrs. wrs.		9.73	979	1		0		3,01		/UL /UL	10.7	70.7	0.11	n'u	11.4	1.4			10.8		0.7			E'
wf%		20.00			39.7			32.1		37.6	37.6	24			37.3	75	97				4	2		
9576 21.7 0.125 289		35.4		1	35.6			40.500		0090	40.500 40.500	84			32.3	8	000				22	0		
9676 21.7 0.125 289		0.310		0	m			32.7		32.6	32.6	40.11	99:		-	ri	5.6					0.		
9576 21.7 0.125 289	185683	02-9806 02-9	02:9806 185	8	112 02-9812	185685	8	357 02-1227	02-1227 02	7 02-1228 02-1228	02:12	0	02-9658	02-9858 02	02-9811 02-9811	11 02:1226 02:	92-1226	02-1225 0	02:1225 00		0 02-1231 02-1;	02-1231	05-	9669 185686
21.7 0.125 289					1.8	Slamv	Slumy	9 BO	itrate	DE Fitrate	٩	DE Filtra	Slu		1.2	Filtrats	o Filtrato							
Memod Units (ICP-ES payigm 9576 (ICP-ES payigm 217 (ICP-ES payigm 289 (ICP-ES payigm 289	Mo	Na	Yes	No No		No	No Yee	No	You	No Yes		Ne	Ne	You	No Yee		You			No Yes	Ne	Vac		
pg/gm 9576 pg/gm 21.7 pg/gm 0.125 pg/gm 289																								
pg/gm 21.7 pg/gm 0.125 pg/gm 289		8120	8360					7349			7349													
pg/gm 0 125 pg/gm 289		30.6	35.5						68.2		42.5													
99,6m 289	•	D:010 →	-0.010		<0.500 <0.010	0 40.5	40.500 ◆	0.010 <0.385	<0.008	40.305 <0.008	40.385	<0.008 <0.100	005:0> 00	<0.010	13.7 <0.0	< 0.010 < 0.385	900 0> 900	€0.385	<0.008	40.385 ⊲0	<0.000	34 <0.100		<0.008
			358						85.4		988													
35.8			37.9						26.5		<1.154													
26.2 January 26.2			24.0						512		<12.378													
agiem 161	30	0.610	1 16	30	500				9000		982													
10/om 166	C#1 871	CFS	301						118		100													
o co			804						0 0		8 6													
0000	200		2 2	0 2					0.4	8 :														
nez made			24						0.000		0000													
m8/6d			2560						Subs		2434													
p9/gm 22.7			201						3.73		<3.846													
0 w8/6#			40.010						40.031		21,538													
18.2 mg/gm	7.2 18		13.4						3.34		988										_			
ICP-ES µ9/gm 26.6 26.6		27.7	39.4					298 265	23.4	23.5	18													
#9/gm 108883	723 113000			114000 96					96395		103077						-							
1996m 66.7									10.2		<7.692													
346 mg/gm 246					224 159				154		214													
948 u5/6d									610		627													
011 mg/6d									11.5		€7.692													
19/gm 2492									2385		2596													
1.9 mg/gm			34.7						25.2		43.2													
2.44 2 au	44 2.7	8.61	4.05	2.9	500 0.067				36.5		883								19.2					
7 66 us/6th	3.8	108	216						82.3		988								84.6					
ICP-ES pg/gm 3.03 2.96	96 <10	<0.010	306	<10 <0.5	<0.500 2.7	201>		3.40 <0.385	00000>	40.305 <0.008	<0.385	<0.008 <0.10	005:0> 00			823 <0.385	300.00	<0.385	\$00.0°	<0.385 <0				
8 20		8.61	7.22		16.2 6.8	52			1.79		697.0>								1.68					
m8/6r/	1228			1536		176																		
mg/6r	101549		#	00000		93114																		-
	37.3			39.0		35.5																		
	27.6			78.4		190																		+
	23.7			24.5		22.4																		
ICP-MS payem 55.7	48.7			2005		46.4																		45.2
	/11/			2			10000	Access to the same		The same of the same of	100 1000	COLUMN COLUMN	1000000	THE REAL PROPERTY.	000 000			944 4 1000		100 000	900 1000	\rightarrow		-
Anabosis Memos Units	1000/3	6-70 9096-70	9096-70	1656/4 02-9612	7196-70 71		/000/	/771-70 /GD	UZ-122/ UL	Uc-965v Uc-122/ Uc-122/ Uc-122/ Uc-1228 Uc-1228	02/12/20 02/12/20	KS81-70 627	9996-70 5691-70	1196-70 9996-70	26-70 1196-7	0771-70 1196-70	0771-770 Q	971-70	02:120	0521-20 0521-20	1871-70 0	04-1231	182966	9/9981 6996-70
Teration	0 238			0.234		0000																	CU >	cuus
	181			1 61		12.5		-	ļ										ŀ	-			V830	
	9			0					ļ										t			ļ	500	ł
	2040		2600	5	200			0000	2300	3330			9	0430	ć	020	3000		20.00	č	12.2	2444		210
Charles for 10 Acres 10/100	0000		1,700	1 8	1340			0110	1000	1054		1054	2.5	000	4 =	3 8	1000		0000	-	300	000		1000
ALCO OUT	4040		0103	919	900			0000	4600	1000			1	4300		9	AESE		90.30		3 5	4000		4420
CACA TO A CONTRACTOR	000000		0000		01.10			000	10000	010				00000	- 20	90	0000		OCCUPATION OF THE PERSON	8				00000
	000001	9	00000	410	2/10		5 1	2000	16260	2000				00000	8	3 1	20000		00400	8 8	3 5	100000		00000
	38100		39200	334	37100		ಶ	2100	34846	3546			100	32500	R	902	34615		34154	re re	297	32667		23438
Oxalate (C ₂ O ₄ ²) IC-Anion µ9/gm	38		<400	MA	F			380	838	836			15	380	-	361	823		<386		338	<370		225
Phosphate (PO ₄ ²)IC.Anion µ9/gm	3080		1507	<100 100	150			1610	1631	1554			9.	1280	4	.60	1377		1346	-	346	1000		89
Sulfate (SO, ²) IC. Anian dolem	UE43		9050	450	7750			7110	6699	RRAG		6769 7063	5	Rum	8	6750	5999		8624	G	2222	8758		3030
	10901			23400					*****					2	1	1				'				
	6370		ľ	13200		2340			ļ				ļ						H			ļ		ł
TIC/TOC na/mi	Wan was			9680		1670			ļ										ŀ			ļ		ŀ

BATCH 3C ANALYTICAL RESU	RESULTS							
						Solids	Solids Analysis	
					Batch 3A CUF AN-	Ä V		
		AN-102R2	AN-102R2 simulant	AN-102K2 simulant at	102R2 slurry 4	102R2 slurry 4	AN-107	
		simulant	at 6.5M	æ	hours	hours	slurry	
		at 5.5M Na hefore	Na affer	after after after	affer	affer	atter one	
EDL Sample No.		aging	week	solids	added	added		
Time after Reagent Add (hrs)	_	. 0	0	0	Þ	₽	+0008	
Identity	ts Method							
Quantity collected grams Mobile Lab Sample No	2	02-9806	02-9812	02-9857	02-9811 02-9858 02-9669	17.9858	02-9669	
Pretreatment: 0.25 am of solids	solids disol	ved in aguar	egia (HCI:H	n d	uted with	water to 2	250 ml	
Al kg/g	wg/gm ICP-ES	8120	7840	7510	7060	6840	267	
	wg/gm ICP-ES	30.6	40.1	38.9	27.1	36.2	24.8	
	mg/gm ICP-ES	<0.010	<0.500	8	13.7	<0.500	36.9	
	kg/gm ICP-ES		498	274	394	253	438	
	kg/gm ICP-ES	m	12	9.33	31.5	7.3	<0.040	
	kg/gm ICP-ES		17.1	14.9	20.3	13.7	19.7	
	kg/gm ICP-ES		<0.500	Q	0.010	<0.500	<0.010	
	kg/gm ICP-ES		136		114	123		
	μg/gm ICP-ES		14.4		4.1	11.5		
	kg/gm ICP-ES		Ж		37.8	4.14	716	
Κ μg/ς	kg/gm ICP-ES		2840	2560	2310	2420		
	kg/gm ICP-ES		9.1	ស	19.5	5.4	17.7	
	kg/gm ICP-ES		<0.500			<0.500		
	øg/gm ICP-ES		Q.500	V		1310		
	wg/gm ICP-ES		20.2		24.5	17.2		
	wg/gm ICP-ES	Ξ	96100	<u></u>	10300	92700	00	
	wg/gm ICP-ES		31.9			24.2		
	kg/gm ICP-ES		224			139		
P	kg/gm ICP-ES		1190		875	1120		
	kg/gm ICP-ES		114		86.7	91.4		
	#g/gm ICP-ES		3090		7880	2730	1600	
	kg/gm ICP-ES		Q.500	\forall	2740	2040	6530	
Si saga	wg/gm ICP-ES		22	31.2	27.1	13.8	25.4	
	øg/gm ICP-ES		107	108	96.3	103	<0.500	
Zn	wg/gm ICP-ES	\forall	Q.500	<0.500	0.010	0.500		
	#g/gm ICP-ES	9.61	16.2	15.5	7.38	14.8	27.5	

SRT-ADS-	02-0529											
Discussion	of Results											
One samn	le ADS 3-11	 36616 (RPE	-WTP-PRE	C3C-1VOA	O was subr	mitted for w	latile organ	nic compour	id (VOC) ai	nd nermane	nt das anal	lvsis
								for this stud				y 010.
Analyte		Concentra	tion									
Oxygen		21%										
Nitrogen Hydrogen		78% < 0.1 %										
rij diogon												
Decane		0.12 ppmv										
Undecane		0.22 ppmv										
Experimen	tal - VOA											
GC/MS an It should b Analytical diameter a	alysis was e noted tha separations nd 1.0 um t	employed t ADS is no were carri film thickne	o identify o ot certified b ed out on a ss. Quanti	y DHEC fo Hewlett Pa tation was p	pounds in t r NPDES d ckard 6890 performed (he sample ischarge c) gas chror using a Hev	s. Analysis ompliance r natograph, vlett Packa	were carrie	th a 20 m l	DB-624 colu	ımn, with O	
Experimen	tal - perma	nent gas ai	nalysis									
Permanent	i gas analγ:	sis were ca	rried out on	a Hewlett I	ackard m	odel 5890 g	i jas chromat	tograph (GC) equipped	with a mole	cular sieve	column
				alibration wa mples were				e sample ar of results.	ialyses usi	ng Scott Ga	as Mix 218,	as well
SRT-ADS-	02-0529, R	evision 1										
Discussion	of Results											
and ADS 3	-186614 (R	PP-WTP-F	REC3C-1G		anent gas	analysis. 1		-1VOA) for on limit for p				
Analyte		Concentra	tion									
Gases												
Oxygen		21%										
Nitrogen Hydrogen		78% < 0.1 %										
VOA		10.170										
Decane		0.12 ppmv										
Undecane		0.22 ppmv										
Experimen	tal - VOA											
GC/MS an It should be Analytical diameter a spectrome	alysis was be noted that separations nd 1.0 um t ter tuning v	employed t at ADS is n s were carri film thickne vas confirm	o identify o ot certified ed out on a ss. Quanti ed within 24	by DHEC fo Hewlett Pa tation was j	pounds in t or NPDES ockard 6890 performed (he sample: discharge o) gas chror using a Hev	s. Analysis ompliance natograph, vlett Packa	were carrie	th a 20 m l	DB-624 colu	ımn, with O	
⊏xperimen	tal - perma	nent gas ai	nalysis									
and therma	al conductiv	ity detecto	r (TCD). Ca		s carried o	ut prior to	and after the	tograph (GC e sample ar of results.				
Experimen	tal											
Solid, liqui GC/MS an B-159. It s	d, and gas alysis was hould be no	employed to	o identify o OS is not ce	rganic com ertified by D	pounds in t HEC for NF	he sample: PDES discl	s. Analyse narge comp	/ / Mass Sp s were carri liance moni three stage	ed out in bi toring.	uilding 773-/		ry
								a Hewlett P				
equipped v	vith a 20 m	DB-624 co	lumn, with (0.18 mm di:	ameter and	1.0 um filr	n thickness					
				tt Packard 5				t using perf	unroteile - 4	lamina		
				ed within 24 lyzed on th				i using pert	aurotributy	iarriifie.		
								(GC-MS), u	sing the A	DS method	2656	
(Contract L	aboratory l	⊃rogram Ś	DW 7-93 for	Volatile Or	ganics).				_			
							eadspace c	oncentrator	(Purge and	Trap), usin	g a three s	tage
				/1 cm Carl ickard 5890			l ngranh on s	a 105m x 0.3	32 mm ∨∩	COL nlace	canillary co	ilumn
								71 quadrupo				
standard a	nd recovery	surrogate	compounds	were adde	d as speci	fied in the (Contract Lal	boratory Pro	gram for vo	olatile organ		7-93).
								t using 4-br nize CLP red			ee eeneitiid	tu
								ier purposes		or mgil illa	oo oenaniyi	· y .

Lasentec Data

A single large black plastic tank was covered with a thick white plastic sheet to eliminate light penetration. The filtrate from the crossflow filter was accumulated in the tank to represent the conditions that would exist in the filtrate receipt tanks in the plant. An agitator was provided to mix the tank, and a small pump was provided to obtain a sample from this composite tank whenever desired. A draw off from the crossflow filter also allowed samples to be obtained immediately after filtration. Both types of samples were collected and analyzed with the Lasentec particle analyzer.

The Lasentec analyzer was relocated to the EDL and operated by EDL personnel for Batch #3. Unfamiliarity with the instrument caused some difficulty in interpreting the readings. The small air bubbles entrained when collecting the samples had to be allowed to dissipate before valid readings could be taken. Small particles that stuck to the probe tip gave large counts at a single particle size; these results were meaningless simply indicating the probe needed to be cleaned. The data extracted from the logbook below has been edited slightly based on subsequent experience with the instrument.

At 1700 hours on 10/1/02, initial Lasentec data was taken from a filtrate sample collected in a gray container four hours after the reagents were added. Several one minute counts measured 60.5 microns at 18.8 counts/sec, 66.3 microns at 66.3 counts/sec, 70.8 microns at 13.2 counts/sec, 87.1 microns at 8.7 counts/sec and 101.4 microns at 6.0 counts/sec. Since the background count for the instrument is about 8 counts/sec (with 0.2 filtered deionized water), the above readings indicate very few solids in the filtrate (as would be expected immediately after crossflow filtration).

At 0923 hours on 10/2/02, a Lasentec sample was taken from the Composite Filtrate Tank twenty-one hours after reagents were added. The Lasentec measured subsequent one minute counts of 51.9 microns at 17.2 counts/sec, 53.7 microns at 15.4 counts/sec and 54.7 microns at 14.6 counts/sec.

At 1115 hours on 10/2/02, the initial Lasentec samples were re-measured with counts indicated at background levels. Similarly, the Lasentec sample taken from the Composite Tank at twelve hours after reagent addition measured counts at background levels. (In other words, the stored samples did not appear to be developing solids as they sat.)

At 1148 hours on 10/3/02, a Lasentec sample taken from the Composite Filtrate Tank measured close to background. The mean chord length of the sample measured was 50 to 110 microns at 6 to 12 counts/sec. Lasentec samples taken at four, twelve, and twenty-one hours after reagents added were re-measured and determined to have counts at the background level.

At 1110 hours on 10/4/02, the Composite Filtrate Tank was vigorously agitated and a sample taken for Lasentec measurement. The sample was allowed to stand until bubbles dissipated. Lasentec measurements were at background levels.

At 1528 hours on 10/9/02, a Lasentec sample removed from the Composite Filtrate Tank at 1200 hours was measured after bubbles dissipated. The mean chord length was 28.8 microns at 27.4 counts/sec, 30.3 microns at 31.0 counts/sec, 23.0 microns at 32.8 counts/sec and 32.7 microns at 25.0 counts/sec.

At 0825 hours on 10/14/02, the final Composite Tank sample was measured by the Lasentec for Batch 3C filtrate collected. The measurement showed a sharp peak at 14-15 microns at 79 counts/sec, 14.04 microns at 78.98 counts/sec, 14.11 microns at 78.73 counts/sec, 14.09 microns at 78.69 counts/sec, 14.18 microns at 78.59 counts/sec and 14.95 microns at 78.58 counts/sec. (Repeated sharp peaks like these were later shown to be caused by contamination on the probe, not by actual particles in the sample. The lack of measurements at other micron sizes indicates there were actually no significant particles present in the sample.)

APPENDIX F

Batch 3B Analytical Data

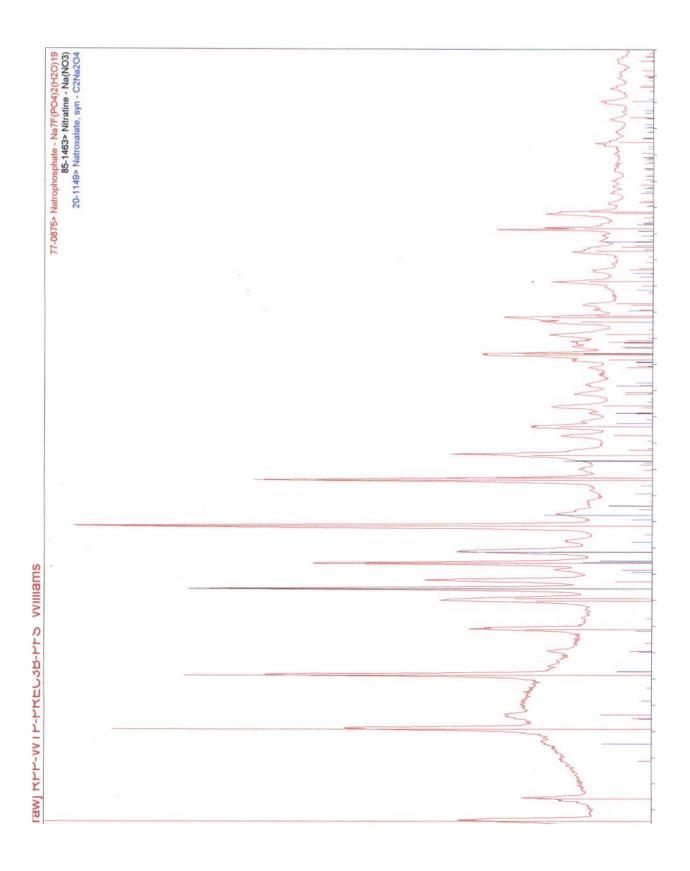
Appendix Contents

- Liquid, Solid, and Gas Sample Analyses
- Lasentec Data
- Post-Filtration XRD

- Each Solid Sample was divided into four segments for various dissolutions and analyses.
- < values indicate below detection limits.
- The identification of materials by the X-ray Diffraction (XRD) method was performed in accordance with the International Center for Diffraction Data at www.icdd.com using the Powder Diffraction Database of PDF cards.

\$ " 8 B	8	02-1633 02-1634 XF Filhste XF Filhste No No	1.4	52		-															8									
Total AN-102R2 A Shuke composite com		822	13 14	8	46	3 8	252	43	40000	0 01173077	9	748	2038.5	8 23	90 (3)	0.70					02:1633			2200	422	83846	31231	742	1454	0.70
	8	02-1639 XF Filtrate XI	23.1	8 8 9	333	8	286	2423	9000	0 000	4 0	623	18	M 929	98.16	990					02-1638			2216	307	63046	31538	704	1323	6000
- E - E - E	130	25 da o		00 00 00 00 00 00 00 00 00 00 00 00 00						11		7.00	3360	30.1	800	Q 100					75			2195	823	63077	31077	1186	2015	9
Tetal Tet AN-10282 AN-10 fibrate filtr composite comp tank final tank	9 9	226	7108	821	623	8 2 3	426	3875	41538	36.2	47.7	8 2	2840	29.85	8 8 9	40 769					1226 00			2286	9001	00006	34615	823	1377	2000
AN-102R2 AN- fittable fits composite com tank final tank	8.8	75 Fibrate		023																	228 02			2295	9001	0000	34815	823	1377	2000
Figure Comp	8	1639 00:1		8 % E											114						1639 02-1								1877	
8.8	8	02-1639 02-1 Slumy No Ye		3500										74.1							02:1539 02:1					-	54			
Datch 3B precipitated simulant after Conceptration in Crossflow 16 16		195340 02-1 Slumy No N		3120													5 8900	8	5 F8	1100	195350 02:1									
reagents Batc affer 3B-	131	00-1549 195 Slumy Slu Yes N		00100										23.9			1001				02:1549 186			20023	273	60163	9160	6901	27.2	26.63
dea age	225 325 104			283										28.7												-	-			
Batch 3B precipitated simulant 4 hours after added 36,75L 3B-10L 8-10L	8	on 02:1549 trate Slumy No		63.7																9	m 02:1549									
lated simulant 4 added N. 38-10L	99	02-1858 Revun DE Fibrate DE Fibrate No No		Ø 100 66.2										516						D3.1969	1958 Renun			223	12 1	000	200	302	1523	ž.
38 precipital				800													885	32	23	6.0	8	29	28							2100
	1.36 36.6 36.6 0.00	o 185339 No No															.00	7	মে ল	K	185349	0.7	~ 2			_				
B 8 2 5 x x	130	DE Filtrate		0110																	0.02-1970								7801 86	
- 1		00:1229 Fabrate Yes		100 100 100 100 100 100 100 100 100 100										5 39.31	·						02.1229			23	0 :	900	38	0	1486	ð
Strate agents a	130	02-1229 DE F		R 25 5																	02:1229				10.1	0.0		10		
	107	CO-1550 Filtrate No		858																	02-1550					-			2146	
	130	02-1228 Brate Yes		98																	02:1228			2338	108	90516	35462	808	20 M	8
o fitte	130	00-1228 00-12 DE Filtrate No Yes																			02.1228									
Batch 38 ns 38-64.	701	02-1548 DE Filtrate No		988																	02-1548			2292	4	9639	31538	382	6077	000
d din	000	02-1227 Fibratio Yes		58																	02.1227			2269	1023	68231	34846	808	1631	2000
38 fitrate 7.5 min neagents added 38-4L 0.126	8 8	02:1227 No		88											00 00						02.1227									
38.4	108	02-1547 DE Filtrate No	29.4	67.5	0.362	100	0 200	0.400	do 100	23.6	357	684	2450	77.5	00.00	Ø 100					02:1547			2286	412	9009	32231	474	6308	9200
10075M	8.0	Q-1546 Yes	30.1	0 100	189	9.0	2 2	3.59	40.100	230	285	£ 8	2470	27.6	690	181					02-1546			2323	146	90,000	33615	980	2462	8
Srivolant after (Srivola addition L. 38-35A N.A.	386	02-1546 0 Slumy No	302	9 1630	277	166	28	175.0	41.6	113	283.5	2010	12700	137	477	7					02:1546									
Sefth 3B sa Sefth 3B 6St.		Sharry No	6830	2 Z S	2 12 2	32	2 4	8 12	22	22.5	8 8	80.4	2380 98	200	E 9	59	00000	24.4	43.4	88.3	195348	0.882	2.05	3860	8	94700	36200	422	2000	17800
er O DM	8 8	02-1545 77 Yes	7680	0 100 200 200 200 200 200 200 200 200 200	12.5	100	24.7	2470	9.18	25.8	39.2	36.5	2700	31.2	00100	2.76					02:1545			2424	1193	90909	34282	9778	2880	0007
38 simulant att caustic addion 38.23 NRA	25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	02:1545 0 Shmy	7400	8 5 S	186	90	16.3	323	9 100	23.5	33.5	1080	2807	47.9	6000	0 10					02:1545			П	Ī	Π	П		Τ	1
Bach 38 smulare after 0 BM Blach 38 smulare after 0 0°5M centric addres 36 50 10 36 50 4 38 50 4 MA NA		Shury No	98	020	886	38	2 5	22	28	28.2	9 9	9,2	3580	R 16	8 9	9 9	138000	27.1	E 28	113	186347	0.964	2.62	2760	1140	104000	37200	ž	1900	13800
g .	0.00	02:1190 Y Yes	33.0	184	22.2	107	217	16.4	0000	27.2	37.3	88	12000	3.12	266	5.47					05:1190	Ī	Ī	2474	1911	20000	36107	400	7290	100
38-45	33.7 0.33.3 0.376	02-1130 No	7400	0000	154	12	38.7	2880	40.500	19.5	28.8	1000	588 2882	0.500	40 500	14.9					02:1190			П	Ī	Τ	П		Τ	ı
rulant disk ds added NA	81	02-1544 Yes	30.0	2.82	8 8	8	23.4	2380	00 100 B B	406000	80.4	8 8	2080	310	00 100	8					02:1544			2365	1197	60,809	34697	625	7121	1717
AN-102R2 simulant disa entramed solids added 3B-4SL NVA	81	02-1544 serun Slumy No	7270	90,100	98.9	110	22.8	250	40.100	27.4	41.6	3.5	30.6	32.6	90,00	2.60				10.5544				П	Ī	Γ	П		Τ	ı
mulant A	33.4 0.220	02:1544 No	24.5	00.100	380	101	25 M	2330	00.100	10000	38.1	200	2750	31.9	16 004 004	328					02.1544									
Batch 3B S 3B 4St. NA		196336 Slumy No	0.00	388	R 12	12.5	28	55 E	28	50000	9	18	2880	81	-80	9 9	0000	98.1	48.5 48.5 5	113	186346	0.186	28	22	8	£ G	8	NA.	86	2000
S SM Na	85	2-9668 Yes	31.1	247	198	108	23.7	2410	0000	256	310	2 4	3140	30.4	2 80 2	8					02.9668	Ī	Ī	2402	1236	60,603	34924	373	71212	191
0092 smulant at 6.5 after aging one week 351. 38.351. NA	8118	02-9668 0 Slumy	7842	379	989	124	39.5	13.9	40000	27.4	30.9	683	3180	888	40 000	6.17					02.9668									
AN 10292 s after a 38-35L		Slumy No	7410	23,0	3 25 6	122	37.2	1330	425	29	E S	9.9	2740	2 18	410	3	100506.7	Ñ	40.4	112	98345	0.141	181	33	8	1190	423	ź	25	20800
103R2 simulant 6.5M Na before A aging 15t. 38-15t. N/A	23.54 4 20	Slumy Yes	7480	9000	5 20 5	28	R -	2410	1.12	22.6	387	460	2690	28.6	308		ĺ				02-9558			3800	687	10400	41300	<770	2900	8
AN 100R2 simulant at 6.5M Na before aging 38-15L 38-15L NA		Sluny No	31	0.88	280	3.62	92 95	922	20 20	8 8	18	1099	2830	E E	clo	100	101587 1	27.6	238	113	186343 0	0.203	2 2	3380	1380	117000	49100	98	3860	21000
⊋ ø 3	34833	CC-9659 s Shamy Yes	7210	0.277	0 000	100	16.7	2160	0.354	22.3	0000	30.0	2150	6.50	3.94	631	-				699670			1960	773	97000	41200	c770	6300	0000
OPTIMA input a Alt 10092 38-251 38-2 NA		195334 0. Slumy No	82.83	0.25	419	121	47.3	1200	96 S	30	470	8 8	2270	6 -4	410	7.6	104467.2	40.02	40.02	668	00 775	0.546	2.15	1900	1130	100000	45800	314	2320	17700
6.0	[1444		m6,64	m6,64	10,64	10,64	m6,64	mg/gar	mg/gg/	miles.	10,00	16,64	m6/6#	m6,6#	mg/gar	10.00	10,64	16,64	militar o	ud/dir s	ple No.	n molar	firston molar	C-Arion µg/gm	C.Anion jogism	C-Arion Jiggm	C.Anton Joylan	udjár s	C-Anion #9'9m	C Jughmi
riple Der DL San sagent A		8 2 10	CPES	CPES	Cores	100.65	CPES	IOP-ES	1CP-65	100 ES	OPES	Ches	00 ES	ICP-ES ICP-ES	COPES	KP-ES	AAMA	ICP-MS	ICP-MS ICP-MS	ICP-MS	Sam	Teration	Teration	IC-Arion			IC-Anion			TIC/TOC
The steer San	ensity H etal Solids otuble Solids scoluble Solids	ADS MADS																				HO OH		Monde (CT)	- 1	drate (NO ₂)	(FON) assi	ixalate (C ₂ O ₄ ²)	Thosphate (POL)	Carbon

				Sc	lids Analys	sis			
			COTINA	AN- 102R2	AN- 102R2 simulant	AN- 102R2 simulant	AN-102R2		
			OPTIMA	simulant	at 6.5M	at 6.5M	simulant	D	Б.,
			input into AN-	at 6.5M	Na after	Na after	after	Post-	Post- Filtration
	mala Da	aarintian	102R2	Na before	aging 1	aging 1 week	dilution and solids	Filtration Solids	Solids
Time after R		scription	102K2	aging N/A	week N/A	N/A	N/A	50 iius	>50 >50
Tillle alter R		. Sample		IWA	INA	IWA	IWA	30	/30
Mohile		nple No.	02-9559	02-9558	02-9668	02-1552	02-1190	02-1833	02-1640
INIODIIC	Units	Method	02 0000	02 0000	02 0000	02 1002	02 1100	02 1000	02 1040
Sample quanity	grams			0.7678				0.5817	
Al	μg/gm	ICP-ES	5320	6640	7842	46400	7400	3740	6700
В		ICP-ES	344	47.2	31.5	143	38.3	41.5	25.0
Ba	μg/gm	ICP-ES	81.4	11.7	<0.010	<0.100	<0.500	<0.100	<0.100
Ca		ICP-ES	12600	2040	379	40500		50.2	70.9
Cd		ICP-ES	<10.0	<10.0	35	<0.400	9.51	<0.100	19.0
Се		ICP-ES	<10.0	110	20.3	663		<0.100	<0.100
Co		ICP-ES	<10.0	<10.0	<0.010	116		<0.100	<1.00
Cr		ICP-ES	325	54.4	124	1000		52.7	101
Cu		ICP-ES	456	107	14.4	693		13.2	2.26
Fe		ICP-ES	1460	193	29.4	6400	38.7	<0.100	<0.200
K		ICP-ES	953	316	2670	2150		1620	2140
La		ICP-ES	602	250	13.9	2930	5.8	<0.100	<0.400
Mg		ICP-ES	3370	289	<0.010	7450		<0.100	<0.100
Mn		ICP-ES	335	47.5	22.2	4930	2.9	<0.100	<0.100
Mo		ICP-ES	139	21.9	27.4	3.68		100000	23.2
Na Nd		ICP-ES	177000	54400	109000	156000	103000 28.8	166000	104000
Ni		ICP-ES	<10.0 3490	286 326	30.9 203	2190 7850		<0.100	<0.100
P		ICP-ES	40900	12000	587	20800		81.1 38900	156 835
Pb		ICP-ES	507	324	91.8	2720		6.68	18.9
S		ICP-ES	<500	440	3180				2430
Si		ICP-ES	382	105	25.6	1120		59.7	26.4
Sr		ICP-ES	232	27.4	53.7	9660		63.7	55.0
W		ICP-ES	<500	43.6	104	363		62.2	85.4
Zn		ICP-ES	<10.0	34.5	<0.010	649		<0.100	<0.100
Zr		ICP-ES	250	74.6	6.17	315		<0.100	<0.100
Chloride (Cl')	μg/ml	ICA						1350	2920
Fluoride	μg/ml	ICA						12300	534
Formate (HCOO ⁻)	μg/ml	ICA						2720	6000
Nitrate (NO ₃)	μg/ml	ICA						49100	111000
Nitrite (NO ₂ -)	μg/ml	ICA						17500	40900
Oxalate (C ₂ O ₄ ² ·)	μg/ml	ICA						20900	815
Phosphate (PO ₄ ³⁻)	μg/ml	ICA						97300	1780
Sulfate (SO ₄ ² ·)	μg/ml	ICA							
Sullate (2041)	μg/IIII	ICA						4030	8290


SRT-ADS-02-0594	
Discussion of Results	
One sample ADS 3-186617 (RPP-WI	One sample ADS 3-186617 (RPP-WTP-PREC3B-1VOA) was submitted for volatile organic compound (VOC) and permanent gas analysis.
The detection limit for permanent gase	ses was 0.1%, and for VOC analysis was 0.1 ppmv for this study. Results are tabulated below.
Analyte	Concentration
Oxygen	21%
Nitrogen	76%
Hydrogen	< 0.1%
D-Limonene	0.20 ppmv
Experimental - VOA	
The sample was analyzed by purge a	The sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS).
GC/MS analysis was employed to ide	GC/MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory B-159.
It should be noted that ADS is not ce	It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring.
Analytical separations were carried o diameter and 1.0 um film thickness.	Analytical separations were carried out on a Hewlett Packard bögU gas chromatograph, equipped with a ZU m UB-624 column, with U.16 mm diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass
spectrometer tuning was confirmed with	ithin 24 hours prior to each measurement using perfluorotributylamine.
Experimental - permanent gas analysis	99
Permanent gas analysis were carried	Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve
column and thermal conductivity detection Mix 218, as well as calibration verificat	column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results.

Lasentec Data

At 1635 hours on 10/22/02, a Batch 3B filtrate sample was taken from the Cross-flow Test Rig filtrate line five hours after reagents were added. The Lasentec measured 20.6 microns mean chord length at 36.5 counts/sec, 19.1 microns at 2.1 counts/sec, 19.6 microns at 33.0 counts/sec, 19.03 microns at 50.7 counts/sec, 18.68 microns at 13 counts/sec, and 19.58 microns at 11.8 counts/sec. These readings included air bubbles in the sample. Another sample was taken and air bubbles allowed to dissipate. After a few minutes, the Lasentec measured 19.0 microns at 0.8 counts/sec and 18.6 microns at 0.8 counts/sec.

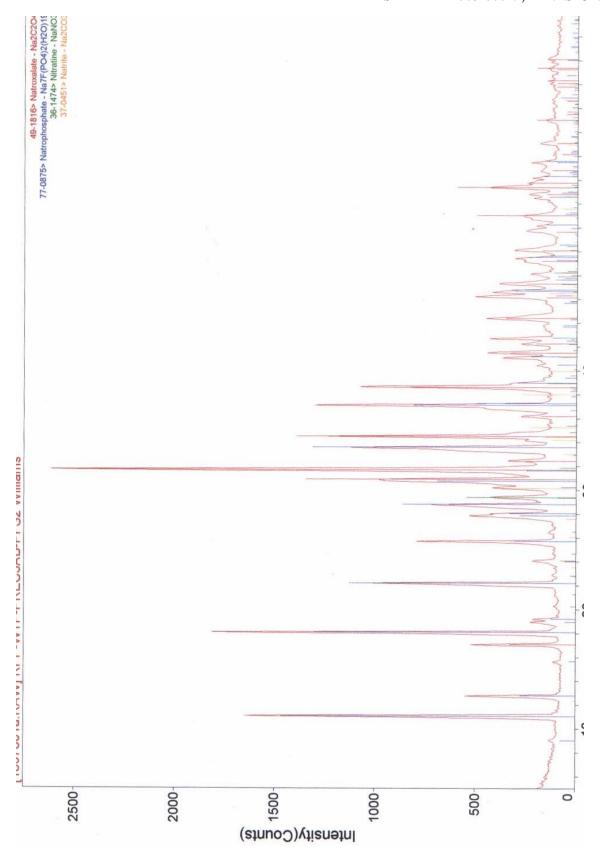
At 1523 hours on 10/23/02, a composite filtrate sample from 1100 hours (29 hrs after reagent addition) was allowed to dissipate air bubbles while the prior collected sample was re-measured. The Lasentec measured 11 microns at about 17 counts/sec on the re-measured sample. The composite filtrate sample measured less than 20 microns at just slightly above background counts/sec.

At 0800 hours on 10/28/02 (142 hrs ARA), the composite filtrate tank was agitated and a 300 ml sample was taken for Lasentec measurement. A blank sample of 0.01 micron DIF water was first tested and found to indicate 5 or less counts/sec in the 0-30 micron range. The filtrate sample had a mean chord length of about 16 microns at about 190 counts/sec for four successive measurements. Each measurement had a sharp peak at about 12 microns. The sharp peak at 12 microns disappeared after cleaning the Lasentec measuring head with 6M sulfuric acid. Another sample was taken from the composite filtrate tank and the Lasentec did not measure the 12 micron peak. The Lasentec measured 16.1 microns at 195.3 counts/sec, 16.7 microns at 178.8 counts/sec, 14.4 microns at 159.7 counts/sec, 16.0 microns at 204.4 counts/sec, 13.6 microns at 171.9 counts/sec, and 13.7 microns at 167.6 counts/sec. The distribution was bimodal with peaks at 6 and 20 microns.

APPENDIX G

Batch 3A Analytical Data

Appendix Contents


- Liquid, Solid, and Gas Sample Analyses
- Lasentec Data
- Post-Filtration XRD

- Each Solid Sample was divided into four segments for various dissolutions and analyses.
- < values indicate below detection limits.
- Lasentec samples were taken at ten hours, 14 hours, twenty hours and twenty-eight hours after reagents were added.
- The identification of materials by the X-ray Diffraction (XRD) method was performed in accordance with the International Center for Diffraction Data at www.icdd.com using the Powder Diffraction Database of PDF cards.

			AN is	O	AN-102R2 simulant at 6.5 M Na	imulant at	6.5 M Na							AN- 102R2 102R2	AN- 102R2	AN- 102R2	102R2	AN- 102R2	AN- 102R2		Total	Filtered NN-102R2	Total AN-1026
		AN-102R2 simulant at 6.5 M Na before		at 6.5M Na after (aging 1 3	after aging 1 week (added remaining 118.5 kg of 3B simulant to 867.7 kg of 3A	aging 1 we naining 11E t to 867.7 I		AN-102R2 simulant at 6.0 M Na with		.N-102R2 s	AN-102R2 simulant after 0.8	Σ	AN-102R2 simulant after 0.075M	tiltrate / int min. after reagents	nitrate 15 min. after reagents	Itrate 30 iin. after eagents	filtrate 1 hr. after reagents			102R2 slumy 4 hrs after	filtrate 4 slurry 5 slurry 5 hrs after hrs after hrs after reagents reagents	slurry 5 hrs after reagents	slurry 5 hrs after reagents
Sample D	Sample Description FDL Sample No	aging 3A-1SI	-		0) (1.	simulant)	_	solids 3A-1S/I		3A-4SI	caustic add		Sr(NO3)2 3A-5SI 3A-3I	added 3A-4I	added added	added 3A-61	added 3A-71	_	_	_		added ac	
Time after Reagent Add (hrs)	Add (hrs)			N/A		ΑN					N/A		N/A		0.25	0.5	-	2	6	ব		5	
Density	g/ml		1.320	1.32	1.32	1.35	1.35		1.36		1.3	1.31		1.29	6	1.29		1.29			1.29	1.25	_
	핑		10.5		11.3	10.8	10.8		10.5		10.5	10.5		10.5	LC.	10.5		10.5			10.4	10.5	÷
Total Solids	wt%		36.7		36.7		40.1		34.0			36.0											m
Soluble Solids	wt%		35.4		36.5		34.0		34.0			35.3											CT.
Insoluble Solids	wt%		0.359		0.207		0.620		Q.100			0.621											9.0
ADS or ML Sample No.	ample No.				-	02-1551	8	02-1553	02-1553	185315	02-1555 0	2-1555				02-1862		02-1862 02-1863			02-1859 02-1860	02-1860	02-1860
Material submitted for ICP analysis	o analysis	>		>-	Slumy	Slur	ту	Slumy		Slurry	ᇷ		Slurry DE FiltrateDE		Filtrate DE Filtrate DE	DE Filtratel	DE Filtrate,	DE FiltrateC	E Filtrate	Slumy	DE Filtrate	ഗ	πy
ered by ADS or ML o	pefore ICP	≻ ®	Yes	S.	Yes	Yes	2	Yes	2	2	Yes	2	e S	2 N		2		2		2	2	Yes	ž
sis Methoc	- Pults	1000	000	1,000	0011	0000			0010	0000	0011			0.100		00100	C	9 10	c	0000	0000	9	L
2 CP-1		7390	DD 50	- A€	/38	8260			0/90	0870	/99G			6/50		b/3U	0	854U	<i>y</i> 0 •	977 p	9 S	5040	ಪ ಕ
5 6			0.00	5	6.72	32.4			73.7	5 0	7.07			6, 6	1	0.620	< :	6.00	< :	0.7	0.00	2.5	- 6
7 5		20.0	0.010	0.15	0.328	24.100		9 E	DI 120	9.7 0.00	B %		29 C	0.100	2 0	8.1W	≥ 0	BU.100	≥ c	ស <u>គ</u>	B 5	B 2	. L. C
7 5	mg/gm	323	000	8 8	200	ŧ 0			5 6	25.7	200			17.00		175	_	17.7	L -	5 - 20	0.0	0.07	1
7 0	16/6m	i c	21.02	3 2	20.02	23.8			2.1.2	9 9	2.00		28.0 D 0.0 T T	200	П	2 5	л п	1.46	л п	5 6	3,40	23.50	- 0
100			0.841	2.5	1 30	A 100			15	0.0	2.5			20.7	,	3 5	1	2 5	J	1 40	5 5	25.5	1 2
1 4 6		176	117	125	114	107			100	118	114			100		1010	4	1010	٧	9	200	9 6	5
100		14.8	7 33	15.8	200	7.74			2 4	140	13.7		13.0	1 2	0.00	0.101	c ox	0.890	0	8 6	2.15	27.0) -
CPL		41.2	25.3	44.1	22.7	27.5			44.2	54	5.00			A 201		0.636		0.874		310	0.306	282	
ICP-E		1330	1920	1280	2430	2580			2280	1270	2380			2130		2170	I	2090	I	1180	2080	2070	73
ICP-E			20.2	23	20.6	16.9			21.2	21.0	15.0			<0.400	-	<0.400	-	<0.400	-	15.0	1.48	1.22	-
ICP-E			0.402	15	0.473	Ø.100			3.13	16.0	0.100			<0.10C		<0.100	>	Ф.100	>	9.00	Ø.100	Q.100	Ö
ICP-ES	S µg/gm	18.2	14.1	19	12.3	8.77			24.9	33.0	7.61		29.0 E	0.10	ш	0.100	ш	0.100	ш	1380	Ø.10	0.19	22
OP-E				R	22.3	29.1			00000	29.7	25.9	1		23		23.3		23.3	٥	23.0		-	1
CP-h				mmu	108000	106000			104000	121000	112000	-		105000		102000	(104000	(108000	104000	103000	EDL
200		72	55.3	2 2	27.3	30.4 4.05	78.7	7.5.7	9.02	28.0	26.3	87.7	0.2	8.51	0 2	6.20	0 2	5.44	0 2	7.7.D	5.U4	87.4	23.2
2 2	16/6m	1030	792	720	251 554	453			3 8	918	35.1			945		738	z _	39.5	z _	707	2 2	420	4
1 400		111	517	112	507	76.4			78.2	107.0	87.6			10.0	>	7.34	>	7 42	1 >	9	8 8	14.3	1
SP-FIS		2770	2420	2700	264N	2860			2170	2550	2670		2400	239		7290	-	2270	ŀ	2340	1920	1920	- =
ICP-ES		25	32.3	18	29.9	30.9			40.2	25.0	93.5		22.0	25.5		25.7		25.6		21.0	23.1	26.0	
ICP-E			0.396	3.0	4.53	11.7			71.3	37.0	10.4		5220	162	2	162		151		3450	132	104.0	ف
ICP-ES			99.2		76.5	106			92.5	96.0	96.5		98.0	86	LC	83.2		83.4		95.0	90.6	80.8	00
IOP-ES		<15	1.42	<10	4.18	<0.100			©.100	9	<0.100		<10	<0.100		Ф.100		Ф.100		C10	0.100	0.100	Ö
ICP-E		7.2		1.4	96.9	3.42			3.23	9.80	2.62		6.10	<0.10C		<0.100		Ф.100		4.30	0.100	<0.100	14
AAK	mg/gπ	236.4		1261.4						1160			1040							100			
AANA	mg/gm	104833.4	=	110937.1						124000			10000							113000			
CP-MS		37.8		500						9 6			32.4							E 6			
		0.72	+	4.0.5						20.5			20.00							0.0			
CP-MO	ng/gm	32.5		21.8						32.7			20.5							- 6			
OF GO	16/6m C)	118		113						111			3 5							20.17			
e có	ιĒ		02-9466 18		02-9603	02-1551	02-1551	02-1553	02-1553	185325	02-1555 0	02-1555 18	185326	02-1861		02-1862		02-1863		185327	02-1859	02-1860	02-1860
Meth	Units	Н	Н	Н	Н					Н	Н	Н											
	Titration molar	0.271		0.267						1.02			0.948							0.865			
	Titration molar	1.62		1.85						2.25			2.21							2.09			
	Titration molar	0.53		0.52									0.427							0.432			
Chloride (Cf) IC-Ani	C-Anion µg/gm	2960	7800	3070	2591	2420	T	2162		8 5	2477		2760	2248		2225		2240	Ī	2540	2225	2280	
Š	C-Anion µg/gm			8 8	671.	350		7011	T	<u>D</u> =	<4U5	+	706	9	m /	98	Ī	8 5	Ī	200	70to	074	
Nitrate (NOs) IC-Ani	IC-Anion agam	115000 10	104000	111000	105303	92,43		83824		145	87169		33600	8587,		87597		86877			96778	85500	
Nitrite (NO ₅) IC-Ani	IC-Anion #d/dm			46900	38939	37120		33750		411	34944		37.400	32016		31860		31860		34600	30930	31840	
Ç	IC-Anion #g/gm		790	343	89/>	§ [5]		88		ž	387		444	Ÿ		8		8		1590	1310	872	
	on Mg/gm		1490	3340	1523	802		2066		8	2883		3660	1457	1	2109		1558		2700	1411	1288	
Sulfate (SO ₄ *) IC-Ani	IC-Anion µg/gm	0896	7850	0068	9/9/	7283		6581		29	9669		0269	6275	-	6310		6279		5490	6202	6392	
Total Carbon TIC/TC	TIC/TOC µg/ml	20700		21000						19600			18000							18700			
TOC TIC/TC	DC wa/ml	12100		00,00																			
				12400						11500			11000							10600			

Solids Analysis	BATCH 3A ANALYSIS	3					
AN-102R2 Simulant at 6.5M Na before aging AN-102R2 AN-102R2 Simulant at 6.5M Na before aging AN-102R2 AN-102R2 Simulant at 6.5M Na before aging AN-102R2 AN-102R2 Simulant at 6.5M Na 6.5M AN-102R2 AN-					Solids A	Analysis	
AN-102R2 Simulant at 5.5M Na before aging Sample Description N/A							
AN-102R2 Simulant at 5.5M Na before aging Sample Description N/A							
AN-102R2 Simulant at 5.5M Na before aging Sample Description N/A							
AN-102R2 Simulant at 5.5M Na before aging Sample Description N/A					Filtored	Filtered	
Sample Description Sample Description Sample Description Sample Description Sample Description Solids Solids Solids Time after Reagent Add (hrs) N/A N/A N/A N/A N/A				∆NL102₽2			
Sample Description Sample Description Sample Description Sample Description Sample Description Sample Description Solids Time after Reagent Add (hrs) N/A N/A N/A N/A N/A N/A N/A N/A N/A Description							
Sample Description Before aging 1 week And solids Solids							Poet
Sample Description aging 1 week and solids Solids							
Time after Reagent Add (hrs)	Sar	nnle De	ecrintion				
Mobile Lab Sample No. 02-9466 02-9603 02-1641 03-091 Identity							Oolida
Mobile Lab Sample No. 02-9466 02-9603 02-1641 03-091 Identity	Time and its			14/74	14/74	14/74	
Identity	Mohile			02-9466	02-9603	02-1641	03-0913
Sample quanity				02 3400	02 3003	02 1041	00 0010
All ng/gm ICP-ES 2370 8840 5810 2388 B ng/gm ICP-ES 69.3 373 172 218 B ng/gm ICP-ES 5080 5520 7570 50 Ca ng/gm ICP-ES 5080 5520 7570 50 Cd ng/gm ICP-ES 20.0 116 <0.100				0.1328			
B ng/gm ICP-ES 69.3 373 172 21 Ba ng/gm ICP-ES <1.00		•	ICP-ES		8840	5810	2380
Ba ng/gm ICP-ES <1.00 60.6 <0.100 <0.20 Ca ng/gm ICP-ES 5080 5520 7570 50 Cd ng/gm ICP-ES <1.00				69.3	373	172	219
Ca ng/gm ICP-ES 5080 5520 7570 50 Cd ng/gm ICP-ES <1.00	Ва			<1.00	60.6	<0.100	<0.200
Cd ng/gm ICP-ES <1.00 <0.400 <0.30 Ce ng/gm ICP-ES 20.0 116 <0.100	Ca			5080	5520	7570	50.0
Co ηg/gm ICP-ES 30.1 170 <1.00 Cr ηg/gm ICP-ES 97.9 300 <0.100	Cd	ηg/gm	ICP-ES	<1.00	<10.0	<0.400	<0.300
Cr ηg/gm ICP-ES 97.9 300 <0.100 34 Cu ηg/gm ICP-ES 65.5 434 128 3.4 Fe ηg/gm ICP-ES 260 1310 931 19 K ηg/gm ICP-ES 573 1180 1140 78 La ηg/gm ICP-ES 84.3 497 48.9 Mg ηg/gm ICP-ES 350 2300 767 <0.40	Ce	ηg/gm	ICP-ES	20.0	116	<0.100	
Cu ng/gm ICP-ES 65.5 434 128 3.4 Fe ng/gm ICP-ES 260 1310 931 19 K ng/gm ICP-ES 573 1180 1140 78 La ng/gm ICP-ES 84.3 497 48.9 Mg ng/gm ICP-ES 350 2300 767 <0.40	Co	ηg/gm	ICP-ES	30.1	170	<1.00	
Fe ng/gm ICP-ES 260 1310 931 19 K ng/gm ICP-ES 573 1180 1140 78 La ng/gm ICP-ES 84.3 497 48.9 Mg ng/gm ICP-ES 350 2300 767 <0.40	Cr	ηg/gm	ICP-ES	97.9	300	<0.100	34.3
K	Cu	ηg/gm	ICP-ES	65.5	434	128	3.45
La ng/gm ICP-ES 84.3 497 48.9 Mg ng/gm ICP-ES 350 2300 767 <0.40	Fe	ηg/gm	ICP-ES	260	1310	931	197
Mg ng/gm ICP-ES 350 2300 767 <0.40 Mn ng/gm ICP-ES 70.0 281 1140 7.4 Mo ng/gm ICP-ES 48.9 145 <0.100	K	ηg/gm		573	1180		785
Mn ng/gm ICP-ES 70.0 281 1140 7.4 Mo ng/gm ICP-ES 48.9 145 <0.100	La	ηg/gm			497	48.9	
Mo	· ·	ηg/gm			2300		<0.400
Na ng/gm ICP-ES 208000 173000 426000 20000 Nd ng/gm ICP-ES 63.2 458 <0.100							7.43
Nd ηg/gm ICP-ES 63.2 458 <0.100 Ni ηg/gm ICP-ES 338 2420 1350 39 P ηg/gm ICP-ES 64000 41200 95100 8780 Pb ηg/gm ICP-ES 98.6 523 143 8.4 S ηg/gm ICP-ES 1220 1930 1930 Si ηg/gm ICP-ES 297 448 558 28 Sr ηg/gm ICP-ES 202 <10.0							
Ni							200000
P							
Pb							39.2
S		ηg/gm					87800
Si							8.49
Sr ηg/gm ICP-ES 202 <10.0 4070 12 W ηg/gm ICP-ES 80 <10.0	S						
W ng/gm ICP-ES 80 <10.0 <0.100 Zn ng/gm ICP-ES <1.00							280
Zn ηg/gm ICP-ES <1.00 114 <0.100 <0.10 Zr ηg/gm ICP-ES 246 235 <0.100							123
Zr							.0.400
Chloride (Cl⁻) ηg/gm ICA 1100 Fluoride (Fl⁻) ηg/gm ICA 18500 Formate (HCOO⁻) ηg/gm ICA 2170 Nitrate (NO₃⁻) ηg/gm ICA 29700 Nitrite (NO₂⁻) ηg/gm ICA 12000 Oxalate (C₂O₄²⁻) ηg/gm ICA <1000							
Fluoride (Fl') ng/gm ICA 18500 Formate (HCOO') ng/gm ICA 2170 Nitrate (NO ₃ ') ng/gm ICA 29700 Nitrite (NO ₂ ') ng/gm ICA 12000 Oxalate (C ₂ O ₄ ²⁻) ng/gm ICA <1000					235	<0.100	11.9
Formate (HCOO') ng/gm ICA 2170 Nitrate (NO ₃ ') ng/gm ICA 29700 Nitrite (NO ₂ ') ng/gm ICA 12000 Oxalate ($C_2O_4^{2-}$) ng/gm ICA <1000	` ,						
Nitrate (NO3) $\eta g/gm$ ICA 29700 Nitrite (NO2) $\eta g/gm$ ICA 12000 Oxalate (C2O42) $\eta g/gm$ ICA <1000	` '						
Nitrite (NO ₂ ⁻) $\eta g/gm$ ICA 12000 Oxalate (C ₂ O ₄ ²⁻) $\eta g/gm$ ICA <1000	` ,		ICA	2170			
Oxalate $(C_2O_4^{-2})$ $\eta g/gm$ ICA <1000	Nitrate (NO ₃ -)	ηg/gm	ICA	29700			
Oxalate $(C_2O_4^{-2})$ $\eta g/gm$ ICA <1000	Nitrite (NO ₂)	ηg/gm	ICA	12000			
	Oxalate (C ₂ O ₄ ²)						
Phosphate (PO ₄ °) ηg/gm ICA 187000	Phosphate (PO ₄ ³ -)	ηg/gm	ICA	187000			
Sulfate (SO ₄ ²⁻) ηg/gm ICA 4600							

BATCH 3A ANALYTICAL RESULTS	CAL RE	SULTS									
								Batch 3A	Batch 3A Solids Analysis	lysis	
			AN-		AN-102R2	AN-102R2 AN-102R2	AN- 102R2	AN- 102R2	Ą		AN-102R2
Description of Mobile			102R2	AN-102R2	simulant	simulant et 6.5M	simulant	simulant	102R2	AN-102R2	slurry 5 bours
Lab Solid Sample			at 6.5M	at 6.5M	Na after	Na after	Na after	dilution	after	hours after	after
microwave dried at 150C overnight			Na before aging	Na before aging	aging 1 week	aging 1 week	aging 1 week	and solids	caustic add	reagents added	reagents added
Identity	Units	Method	02-9466A	02-9466B	02-9603A	02-9603B	02-1551	02-1553	02-1555	02-1859	02-1860
Empty Crucible Wft.	grams	scale	44.1844	44.8115							
Crucible Wt. + Wet Sample	grams	<u>a</u>	57 0191	67 778							
Crucible Wt. + Dry											
Wt.	grams	scale	48.7588	49.4483							
Total Solids	%		35.6	35.8	35.7	35.7	40.1	34	R	R	33.2
Wet Weight	grams	scale	12.8347	12.9675							
Dry Weight	grams	scale	4.574								
Insoluble Solids	%		0.511	0.206	0.206	0.208	9	<0.100	0.621	R	0.67
Empty Crucible Wt.	grams	scale	43.5298	42.4391							
Crucible Wt. + Wet	0 0 0 0	9000	49 5557	48 8381							
Crucible Wt. + Dry	5										
Wf.	grams	scale	45.6574	44.7187							
Uncorrected	%		35.31	35.6							
Soluble Solids	%		35.1	35.6	35.5	35.5	34	34	35.3	R	32.5
NR=Not Required											

Lasentec Data

At 1025 hours on 11/13/02 (169 hrs after reagent addition), a 300 ml sample was taken for Lasentec measurement from the Composite Filtrate Carboy after shaking it well. Measurements were 13.09 microns mean chord length at 12.36 counts/sec, 13.03 microns at 12.49 counts/sec, 12.93 microns at 12.01 counts/sec and 13.04 microns at 11.89 counts/sec. The Lasentec was checked before and after these measurements with 0.01 micron filtered de-ionized water (DIF).

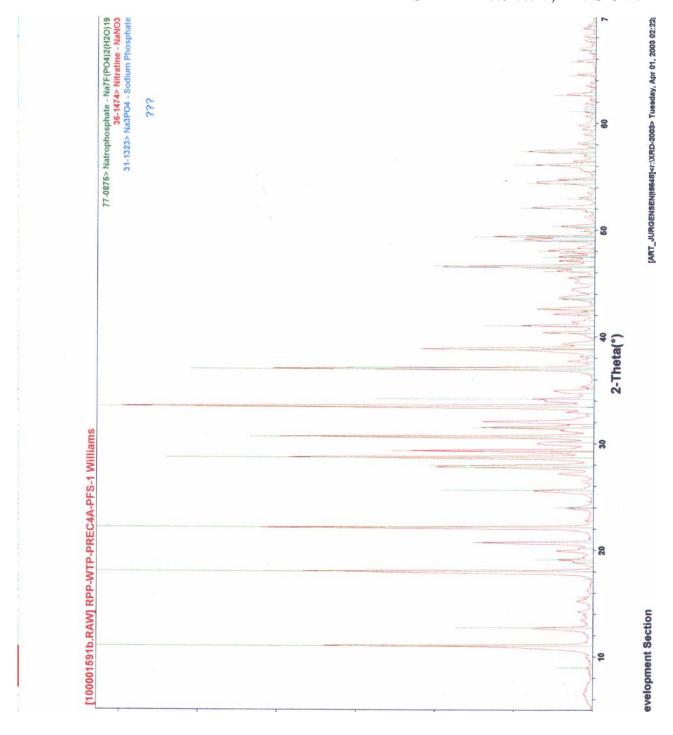
At 0816 hours on 11/20/02 (335 hrs ARA), the Lasentec probe was cleaned and 0.01 micron DIF water was measured. The measurement was 1 to 5 counts/sec in the 1 to 30 micron range. A 300 ml sample was measured by the Lasentec. Measurements were 13.98 micron mean chord length at 47.61 counts/sec, 13.18 microns at 47.78 counts/sec, 13.58 microns at 46.78 counts/sec, and 13.4 microns at 45.62 counts/sec. All counts were very low.

APPENDIX H

Batch 4A Analytical Data

Appendix Contents

- Liquid, Solid, and Gas Sample Analyses
- Post-Filtration XRD


- Each Solid Sample was divided into four segments for various dissolutions and analyses except the post-filtration solids which were not subdivided due to their small quantity.
- < values indicate below detection limits.
- The identification of materials by the X-ray Diffraction (XRD) method was performed in accordance with the International Center for Diffraction Data at www.icdd.com using the Powder Diffraction Database of PDF cards.

BATCH 4A ANAL	.1313									ANI	ANI	ANI			
			AN-102R2 at 6.5 M I		AN-102R2 at 6.5 M		AN-102R2 simulant after dilution	AN-102R2 simulant after caustic	AN- 102R2 simulant after Sr(NO ₃) ₂	AN- 102R2 simulant 30 min. after NaMnO4	AN- 102R2 simulant 1 hour after NaMnO4	AN- 102R2 simulant 2 hours after NaMnO4	AN-102R2 simulant 3 hours after NaMnO4	AN-102R2 simulant 4 hours after NaMnO4	AN- 102R2 simulant after 18 hour cool
Sai	mple Des	cription	agi		aging 1		and solids	addition	addition	addition	addition	addition	addition	addition	down
	L Slurry :		4A-1SL	4A-1L	4A-2SL	4A-2L	4A-3L	4A-4L	4A-5L	4A-6L	4A-7L	4A-8L	4A-9L	4A-10L	4A-11L
Time after R			N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.5	1	2	3	4	22
Density		g/ml		1.29		1.32		1.31	1.28		1.28	1.28		1.28	1.28
pН		pН		10.6		10.8									
Total Solids		wt%		35.1		35.6				34.5		34.5		34.4	35.0
Soluble Solids		wt%		35.1		35.6				33.5		33.6		33.7	33.9
Insoluble Solids	N. 41 . Co	wt%	400044	<0.100	400040	<0.100				1.00		0.900		0.700	1.10
	r ML Sam		189211	02-1948 DE Filtrate	189212 Slurry	02-1966	03-0579	DE Eiltroto	DE Ellerata	03-0580	DE Elltroto	03-0581	DE Filtrate	03-0582	03-0583
/laterial submitted Filtered by ADS			Slurry No	No Pillrate	No	No No	No No	DE FIIITALE	DE FIIITALE	No No	DE FIIITALE	No No	DE FIIIrate	No No	No No
Analysis	Method	Units	INU	140	140	INU	140			INU		INU		140	140
Al	ICP-ES	μg/gm	7360	7570	7180	7690	7097	S	S	6487	S	6538	S	6582	7378
В	ICP-ES	μg/gm	29	34.6	24	35.2		Т	Т	23.2	T	24.0		23.6	32.0
Ba	ICP-ES	μg/gm	<1.0	<0.100	<1.0	0.192		A	A		A		A		
Ca	ICP-ES	μg/gm	252	344	278	314		В	В	102	В	108	В	105	53.8
Cd	ICP-ES	μg/gm	37	20.8	37	30.5		1	1	2.74	1	1.07	1	1.50	4.50
Ce Co	ICP-ES	μg/gm	28 2.7	24.9 <1.00	28 2.7	21.9 0.860		L	L	2.71	L	1.97	L	1.50	1.53
Cr	ICP-ES	μg/gm μg/gm	140	119	138	133		Z	Z	92.0	Z	94.0	Z	93.7	106
Cu	ICP-ES	μg/gm	15	13.4	14	17.6		E	E	1.76	E	3.52		5.30	7.97
Fe	ICP-ES	μg/gm	39	25	39	27.3		D	D	0.943	D	0.807		0.890	0.875
K	ICP-ES	μg/gm	1340	2490	1350	2450	1894			1778		1777		1780	1798
La	ICP-ES	μg/gm	23	15.1	22	15.5	16.4	Α	Α	1.22	Α	0.846	Α	0.625	0.672
Mg	ICP-ES	μg/gm	15	<0.100	15	<0.040		N	N	<0.031	N	<0.031		<0.031	<0.031
Mn	ICP-ES	μg/gm	25	8.65	25	14.2		D	D	7.12	D	9.47		11.6	13.0
Mo	ICP-ES	μg/gm	29	22.6	28	30.4				17.9		18.2		18.1	21.3
Na Nd	ICP-ES	μg/gm	111000 47	115000 37.8	110000 47	70000 36.5		A R	A R	78752 4.28	A R	102576 2.87		102280 2.16	2.12
Ni	ICP-ES	μg/gm μg/gm	253	187	246	205		C	C	92.8	C	94.0		95.3	109
P	ICP-ES	μg/gm	959	415	1070	462		H	Н	811	H	822		820	868
Pb	ICP-ES	μg/gm	114	79.6	107	89.1		ï	I	5.64	Ī	9.32		10.0	10.1
S	ICP-ES	μg/gm	2770	2640	2690	2920	2621	V	V	2370	V	2420	V	2358	2345
Si	ICP-ES	μg/gm	25	24.7	23	25.0		E	E	22.1	Е	23.1		22.5	28.3
Sr	ICP-ES	μg/gm	22	19.2	27	28.5		D	D	112	D	86.9	D	72.1	76.6
W	ICP-ES	μg/gm	102	96.4	104	105		0	0	4.37	0	2.00	0	2.00	4.47
Zn Zr	ICP-ES	μg/gm	<10 7.6	<0.100 0.237	<10 7.8	3.94 7.29		N	N	1.33	N	3.98 1.06		3.86 0.98	4.47 1.06
K	AAK	μg/gm μg/gm	1180	0.237	1169	7.23	3.37	L	L	1.33	L	1.00	L	0.30	1.00
Na	AANA	μg/gm	103000		103000			Y	Y		Y		Ϋ́		
Cd	ICP-MS	μg/gm	36.4		36.9										
Ce	ICP-MS	μg/gm	27.2		27.0										
La	ICP-MS	μg/gm	23.4		23.1										
Nd	ICP-MS	μg/gm	48.7		48.1										
Pb	ICP-MS		112	00.4040	111	00.4005		400075		400070		400074		400070	400071
Analysis	Sam Method	ple No. Units	189040	02-1948	189041	02-1966		192875		192870		192871		192872	192874
Free OH-	Titration		0.277		0.268			0.924		0.775		0.781		0.78	0.779
Total OH-	Titration		1.69		1.62			2.51		1.93		1.92		2.00	1.95
Other Base	Titration	molar	0.463		0.477			0.493		0.508		0.528		0.509	0.471
Chloride (Cl')	IC-Anion	μg/gm	2940	2643	2760	2606									
Fluoride (Fl')	IC-Anion	μg/gm	668	454	568	402									
Formate (HCOO ⁻)			NA	5618	NA	5530									
Nitrate (NO ₃ *)	IC-Anion		10100	95819	93500	96970									
Nitrite (NO ₂ *)	IC-Anion		42900	39332	41900	40303	_								
Oxalate (C ₂ O ₄ ² ·)				<388		289									
Phosphate (PO ₄ ³			3480	1391	2930	1576									
Sulfate (SO ₄ ² ·)	IC-Anion		7220	7642	6900	8106									
0 polysis	Sam	ple No.								192867		192868		192869	192873
Analysis Total Carbon	Method TIC/TOC	Units	22500		21800					16700		16600		16600	16900
TOC	TIC/TOC		13900		13820					9380		9280		9220	9310
TIC	TIC/TOC	1.0	8590		7980					7320		7320		7380	7590

BATCH 4A ANALYTIC	CAL DES	III TS				1					1		
Solids Analysis	CAL KES	OLIS											
Sulus Allalysis													
					Solids from								
			Solids from	Solids from	AN-102R2								
			AN-102R2	AN-102R2	slurry 30	slurry 1	slurry 2	slurry 3	slurry 4	slurry 4	slurry 22	slurry 22	
			slurry after	slurry after	min after	hour after	hours after	hours after	hours after	hours after	hours after	hours after	Post
			caustic	Sr(NO ₃) ₂	reagents	Filtration							
S	ample De	scrintion	addition	added	added	added	added	added	added	added	added	added	Solids
	EDL Sa		4A-4S	4A-5S	4A-5S	4A-7S	4A-8S	4A-9S		108		118	Collas
Time after F			4A-45 N/A	4A-55 N/A	0.5	4A-75	4A-85	4A-95	44-	4	22	22	
Identity	Units	Method	IN/A	IN/A	0.5	'		3	4	4	22	22	
Quantity collected	grams	Motrica											
Sample No.									03-0589 A	03-0589 B	03-0592 A	03-0592 B	194334
Al	ng/gm	ICP-ES	S	S	S	S	S	S	3690	3670	3880	3720	9021
В	ηg/gm	ICP-ES	Α	Α	Α	Α	Α	Α	<100	<100	<100	<100	1018
Ва	ηg/gm	ICP-ES	М	М	М	M	M	М					2075
Ca	ηg/gm	ICP-ES	Р	Р	Р	Р	Р	Р	13700	13500	14100	13300	14056
Cd	ηg/gm	ICP-ES	L	L	L	L	L	L					153.4
Ce	ηg/gm	ICP-ES	E	E	E	E	E	E	1190	1150	1210	1170	
Со	ηg/gm	ICP-ES											
Cr		ICP-ES	Α	Α	Α	Α	Α	Α	100	100	450	390	639.5
Cu	ηg/gm	ICP-ES	R	R	R	R	R	R	470	460	420	400	617.9
Fe	ηg/gm	ICP-ES	С	С	С	С	С	С	2370	2330	2610	2380	2797
K	ηg/gm	ICP-ES	Н	Н	Н	Н	Н	Н	630	610		580	517.4
La	ηg/gm	ICP-ES	ı			I	I	I	1050	1020	1100	1040	
Mg		ICP-ES	V	V	V	V	V	V					792.2
Mn	ηg/gm	ICP-ES	Е	Е	Е	E	E	E	174000	173000		163000	145582
Mo	ηg/gm	ICP-ES	D	D	D	D	D	D	<100	<100		<100	
Na	15 5	ICP-ES							48500	54000		48600	70722
Nd	ηg/gm	ICP-ES	0	0	0	0	0	0	2190	2140		2200	
Ni		ICP-ES	N	N	Ν	N	N	N	1650	1670		1640	11867
P	ηg/gm	ICP-ES	L	L	L	L	L	L	2300	2370	2340	2150	1987
Pb	ηg/gm	ICP-ES	Y	Y	Υ	Υ	Υ	Υ	4790	4730		4860	4869
S	ηg/gm	ICP-ES							620	680		590	
Sr	25	ICP-ES							266000	267000		243000	288860
Si	ηg/gm	ICP-ES							380	340	390	390	4855
W		ICP-ES											
Zn		ICP-ES							<100	<100		<100	370.0
Zr	ηg/gm	ICP-ES							300	220	250	230	479.8

WSRC-TR-2003-00064, REVISION 0 SRT-RPP-2003-00019, REVISION 0

ADS No. Customer ID ADS No. Customer ID ADS No. Customer ID AT RPP-WTP-PREC4A-1VOA Discussion of Results One sample was submitted, for volatile organic compound (VOC) and permanent gas analysis. The detection limit for permanent gases 0.1%, and for VOC analysis was 0.1 ppm for this study. Neither VOC analytes nor hydrogen were detected in sample RPP-WTP-PREC4A-1VOA. Results are tabulated below. Analyte Concentration Oxygen 21 % +/- 10% Nitrogen 78 % +/- 10% Nitrogen 78 % +/- 10% NOC Analytes Col. 1 % +/- 10% VOC Analytes COL 1 mpm +/- 10% Experimental - VOA The sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). GC/MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory for the sample was analyzed by DHC for NDCES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 859 gas chromatography, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Experimental Experimental Experimental and analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory B-159. It should be noted that AIOS is not certified by DHEC for NPDES discharge compliance monitoring. Solid, liquid, and gas samples were analyzed using purge and trap Cas Chromatography / Mas	OS-03-0369							
iscussion of Results incursion of Results incursion of Results incursion of Results incursion of Results iscussion of Results iscussion of Results incursion	: ID							
iscussion of Results me sample was submitted, for volatile organic compound (VOC) and permanent gas analysis. The detection limit for permanent gases 1.1%, and for VOC analysis was 0.1 ppmv for this study. Neither VOC analytes nor hydrogen were detected in sample PP-WTP-PREC4A-1VOA. Results are tabulated below. Concentration PP-WTP-PREC4A-1VOA Results are tabulated below.	0.	Customer ID						
Discussion of Results								
The sample was submitted, for volatile organic compound (VOC) and permanent gas analysis. The detection limit for permanent gases 11%, and for VOC analysis was 0.1 pmm for this study. Neither VOC analytes nor hydrogen were detected in sample. IPP-WFP-RECAA-IVOA. Results are tabulated below. Vinalyte Concentration Syrgen 21 % +/- 10% Vigtorgen 78 % +/- 10% Vigtorgen 78 % +/- 10% Vigtorgen (0.1 % +/- 10%) Vigtorgen (0.	37	RPP-WTP-PREC4A-	1V0A					
2.1 %, and for VOC analysis was 0.1 ppmv for this study. Neither VOC analytes nor hydrogen were detected in sample PPP-WTP-PREC4A-IVOA. Results are tabulated below. Analyte Concentration Syzgen 21 % +/ 10% Illitrogen 78 % +/ 10% Yord Grallytes < 0.1 % +/ 10% Yord CAnalytes < 0.1 ppmv +/- 10% Concentration Pydrogen / 20 % +/ 10% Yord CAnalytes < 0.1 ppmv +/- 10% Consider of the sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Consider of the sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Consider of the sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Consider of the sample was analysis were carried out on a Hewlett Packard 6890 gas chromatograph (apulped with a 20 m DB-624 column, with 0.16 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass pectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve olumn and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas fix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, Iquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). CoMS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory. 1559. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, quipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness.	sion of Results							
0.1 %, and for VOC analysis was 0.1 ppmr for this study. Neither VOC analytes nor hydrogen were detected in sample RPP-WTP-PREC4A-1VOA. Results are tabulated below. Analyte	mnle was submitted fo	r volatile organic com	nound (VOC) and	nermanent das	analysis. The de	tection limit for a	nermanent nases v	was
Orygen 21 % 4-/ 10% 78 % +/ 10% 78 % +/ 10% 78 % +/ 10% 99	and for VOC analysis w	vas 0.1 ppmv for this	study. Neither VO					
Daygen 21 % 4/- 10% 78 % 4/- 10		Concentry	tion					
vitrogen 78 % +/- 10%								
Analytical separations were carried out on a Hewlett Packard model 5890 gas chromatography / Mass Spectrometry (GC/MS). Sexperimental - VOA The sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). So/MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory it is should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas with 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Experimental Solid, liquid, and gas samples were analyzed using purge and Trap Concentrator, using a three stage (10 cm Carbopack B / 6 cm Carbopack B								
Contract of the sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Contract of the sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Contract of the sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5990 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Sc/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap Concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. V								
Experimental - VOA The sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). SC/MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory E is should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 597 analyses were carried out on a Hewlett Packard 597 analyses were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve production of the packard for the packard 597 analyses were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve production of the packard for the packard	en	< U.1 % +	-/- 1U%					
The sample was analyzed by purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 36C/MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory E t should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 6973 mass selective detector. The mass sepectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. In emass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. 10 cm	nalytes	< 0.1 ppm	nv +/- 10%					
36.7MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory Et should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 36/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Ana	nental - VOA							
SC/MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory Et should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). GC/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory. B-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Some VOC samples for this study were analyzed on the following instrument. Clo cm Carboxen 1000 / 1 cm								
36.7MS analysis was employed to identify organic compounds in the samples. Analysis were carried out in building 773-A, laboratory Et should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 36/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Ana	mple was analyzed by r	ourge and trap Gas C	hromatography / N	lass Spectrome	try (GC/MS).			
t should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.16 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass experimental permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). EC/C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer funing was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an Ol Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage of the Carbo						out in huilding 77	73-A Jahoratory B-	159
Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 31-59. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m D8-624 column, with 0.18 mm diameter and 1.0 um film thickness. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three star 10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen								
diameter and 1.0 um film thickness. Quantitation was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve solumn and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas wix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory garbos were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. All of the properties of the prop						- 20 m DB 624 :	column with 0.19	mm
Experimental - permanent gas analysis Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas dix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). SC/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Duantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. //olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columits and and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5 the mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.								111111
Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). GC/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. //olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columith 3 um film thickness. Quantitation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columith 3 um film thickness. Quantitation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columith 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole m							or. The mass	
Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas with 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory. Bamples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Newlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage to cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VoCOL glass capillary columits and film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal 100 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1000	meter tuning was confir	med within 24 hours	prior to each meas	surement using	perfluorotributylar	mine.		
Permanent gas analysis were carried out on a Hewlett Packard model 5890 gas chromatograph (GC) equipped with a molecular sieve solumn and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas dix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). SC/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, requipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage of the Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCCL glass capillary coluwith 3 um film thickness. Quantification was performed with a Hewlett Packard 5971 quadrupole mass spectrometer. Internal trandard and recovery surrogate compounds were added as specified in the Contract Laboratory Pro								
column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). Solid, liquid, and gas samples were analyzed using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stagent on the following instrument. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columits 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Pr	nental - permanent gas	analysis						
column and thermal conductivity detector (TCD). Calibration was carried out prior to and after the sample analyses using Scott Gas wix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage of the concentration of the				5000			<u> </u>	
Mix 218, as well as calibration verification using blank air. Samples were run in duplicate for confirmation of results. Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3C/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage 10 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columith 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-9 file mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.								
Experimental Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). GC/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage of the concentration was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columit 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) (The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.							ng Scott Gas	
Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge contentrate using the ADS method 2656. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge contentrate, using a three stage (IO cm Carbovan 1001) trap. 3-159	3, as well as calibration	verification using bla	nk air. Samples we	ere run in duplic	ate for confirmation	on of results.		
Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge contentrate using the ADS method 2656. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge contentrate, using a three stage (IO cm Carbovan 1001) trap. 3-159								
Solid, liquid, and gas samples were analyzed using purge and trap Gas Chromatography / Mass Spectrometry (GC/MS). 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge concentrator (Purge and Trap), using a three stage to concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage to concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stage	nental							
SC/MS analysis was employed to identify organic compounds in the samples. Analyses were carried out in building 773-A, laboratory 3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. /olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an Ol Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stages of the contract Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columits and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) (SOW 7-5).								
3-159. It should be noted that ADS is not certified by DHEC for NPDES discharge compliance monitoring. Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 (Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stag (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columith 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) (The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.	quid, and gas samples	were analyzed using	purge and trap Ga	s Chromatogra	phy / Mass Spect	trometry (GC/MS	S).	
Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. /olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stages of the contract of t	analysis was emploγe	d to identify organic (compounds in the	samples. Analy	ses were carried	out in building 7	73-A, laboratory	
Samples were concentrated using a Tekmar 2016 Purge and Trap concentrator, using a three stage (10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. /olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stages of the contract of t	It should be noted that	ADS is not certified b	y DHEC for NPDE	S discharge co	mpliance monitori	ing.		
Carboxen 1000 / 1 cm Carboxen 1001) trap. Analytical separations were carried out on a Hewlett Packard 6890 gas chromatograph, equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. /olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stat 10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary colur with 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) the mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.							B/6cm	
equipped with a 20 m DB-624 column, with 0.18 mm diameter and 1.0 um film thickness. Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. /olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three star 10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columits 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) the mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.								
Quantification was performed using a Hewlett Packard 5973 mass selective detector. The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. Volatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three star 10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columits and film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.							l l l l l l l l l l l l l l l l l l l	
The mass spectrometer tuning was confirmed within 24 hours prior to each measurement using perfluorotributylamine. Some VOC samples for this study were analyzed on the following instrument. /olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three star 100 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columits and film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.								
Some VOC samples for this study were analyzed on the following instrument. /olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three star 10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary colur with 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) the mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.					nent using nerflug	rotributylamine		
/olatile organic analyses were performed by Gas Chromatography - Mass Spectrometry (GC-MS), using the ADS method 2656 Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stat 10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary columits 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) he mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.					.c.n doing poindo			
Contract Laboratory Program SOW 7-93 for Volatile Organics). Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three stat 10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary colur with 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5 he mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.					rtry (GC-MS) Tusir	ng the ADS met	hod 2656	
Samples were concentrated using an OI Analytical model 4460A Dynamic Headspace concentrator (Purge and Trap), using a three start of the Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary coluing with 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) he mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.				.ass opectionie	, (00 (100), dali	ng morabo men		
10 cm Carbopack B / 6 cm Carboxen 1000 / 1 cm Carboxen 1001) trap. Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary coluwith 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5) he mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.				amic Headenac	n concentrator (Di	urne and Tran)	Ising a three stee	
Separation was performed with a Hewlett Packard 5890 series II gas chromatograph on a 105m x 0.32 mm VOCOL glass capillary colu with 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5 The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.					concentrator (F	ango ama map), t	Joing a tillee stay	_
with 3 um film thickness. Quantitation was performed with a Hewlett Packard model 5971 quadrupole mass spectrometer. Internal standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-5). The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.					n a 105m v 0 30	mm VOCOL -da	oo canillary calum	ın.
standard and recovery surrogate compounds were added as specified in the Contract Laboratory Program for volatile organics (SOW 7-9 The mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene								111
he mass spectrometer tuning was confirmed within 12 hours prior to each measurement using 4-bromofluorobenzene.								Λ.
							ganics (SUVV 7-93	i).
Tuning verification was performed against CLP tuning requirements, specifically to optimize CLP requirements for high mass sensitivity. 50/95 ratios which are between 8%-15%, may require appropriate flagging if used for other purposes.						rements for high	mass sensitivity.	

APPENDIX I

PARTICLE-SIZE DATA

Note on measurement uncertainties of the included data:

No measurement uncertainties are listed because the measurement uncertainties for analytical data are beyond the scope and control of this task. There is reason to believe that all analytical data can be at least 15% accurate but no quantitative data are given to support this assertion.

Particle Size Distribution

Samples were taken before the precipitating reagents were added to each batch, at least 4 hours after they were added and others as directed by RPP such as after concentration of the slurry by the cross-flow filter. This section shows graphical representation of the microtrac particle size analysis with volumetric and numerical particle distribution results.

Slurry samples analyzed are:

Fig. I-

- 1. Batch 1 AN107 slurry 57 days after precipitation (VOLUME Distribution)
- 2. Batch 2 AN107 slurry 30 days after precipitation (VOLUME Distribution)
- 3. Batch 1 AN107 slurry 1 year after precipitation (NUMBER Distribution)
- 4. Batch 1 AN107 slurry 1 year after precipitation (NUMBER Distribution)
- 5. Batch 1 AN107 slurry 1 year after precipitation (NUMBER Distribution)
- 6. Batch 1 AN107 slurry 1 year after precipitation (NUMBER Distribution)
- 7. Batch 1 AN107 slurry 1 year after precipitation (VOLUME Distribution)
- 8. Batch 1 AN107 slurry 1 year after precipitation (VOLUME Distribution)
- 9. Batch 1 AN107 slurry 1 year after precipitation (VOLUME Distribution)
- 10. Batch 1 AN107 slurry 1 year after precipitation (VOLUME Distribution)
- 11. Batch 3C AN102R2 simulant before precipitation (NUMBER Distribution)
- 12. Batch 3C AN102R2 simulant before precipitation (VOLUME Distribution)
- 13. Batch 3C AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 14. Batch 3C AN102R2 slurry four hours after precipitation (VOLUME Distribution)
- 15. Batch 3C AN102R2 slurry after precipitation and dewatering to 8.4% Insoluble Solids by the Cross-flow Filter (NUMBER Distribution)
- 16. Batch 3C AN102R2 slurry after precipitation and dewatering to 8.4% Insoluble Solids by the Cross-flow Filter (VOLUME Distribution)
- 17. Batch 3B AN102R2 simulant before precipitation (NUMBER Distribution)
- 18. Batch 3B AN102R2 simulant before precipitation (VOLUME Distribution)
- 19. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 20. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 21. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 22. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 23. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)
- 24. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)
- 25. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)

- 26. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)
- 27. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)
- 28. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)
- 29. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)
- 30. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)
- 31. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)
- 32. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)
- 33. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)
- 34. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)
- 35. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 36. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 37. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 38. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 39. Batch 3A AN102R2 slurry four hours after precipitation (VOLUME Distribution)
- 40. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)
- 41. Batch 3A AN102R2 slurry four hours after precipitation (VOLUME Distribution)
- 42. Batch 3A AN102R2 slurry four hours after precipitation (VOLUME Distribution)
- 43. Batch 4A AN102R2 post filtration precipitation solids (VOLUME Distribution)
- 44. Batch 4A AN102R2 post filtration precipitation solids (NUMBER Distribution)
- 45. Batch 4A AN102R2 post filtration precipitation solids (VOLUME Distribution)
- 46. Batch 4A AN102R2 post filtration precipitation solids (NUMBER Distribution)

Note on Particle Size Distribution Method

Three of the methods available at the Savannah River Site to evaluate the particle size distribution utilize Microtrac equipment. They are:

Mono-laser diffraction analysis:

- a. SRA150 standard range. 20 channels: 0.7 to 700 microns
- b. SRA150 extended range, 40 channels:0.2 to 700 microns

Tri-laser diffraction analysis

a. X100 high resolution, 40 channels: 0.04 to 700 microns

Each method has limitations.

SRA150 standard range

No knowledge of particle transparency is needed and it gives immediate results. There is not enough resolution to discriminate between particle sizes and it is on the threshold of detection at the range of interest.

SRA150 extended range

This covers the particle size near the pore size of the cross-flow filter. Knowledge of particle transparency is needed for sub-micron particles, however the instrument will make an educated guess if not known.

X100 high resolution

This covers very small particles. The accuracy of the results is highly dependent on the knowledge of particle transparency and the index of refraction of the slurry. The measurement is very sensitive with more measurement uncertainty imparted to results determined without a detailed knowledge of slurry and solid optical properties.

The best method available when the sample was submitted was used. Previous measurements (21) indicate that for tests with one slurry sample using all three methods gave similar results. Specifically, particle size averages did not vary more than 15% and distribution characteristics remain the same.

Minimum size for SRA150 extended range

The stated range for this method, as given above, is 0.2 to 700 micron. However, as seen in the following Microtrac data sheets, it appears that the lower setting was set at 0.688 microns for an unknown reason. The 0.688 micron cutoff was sufficient to adequately portray the particle size distribution.

Note on Sample Preparation to perform a Microtrac Evaluation

Besides the methods to choose in evaluating samples, the sample must be prepared properly to obtain accurate results.

Diluent

The slurry sample is suspended in a large volume (>300ml) of diluent. The standard diluent is distilled water but due to the neutral pH and the solubility of solids in water, the Batch 3 and 4 slurry samples were suspended in the filtrate. Optically transparent filtrate free of solids was used. Batch 1 and 2 samples used a diluent solution of 1.5M NaNO3 and 0.5M NaOH which was the same pH as the filtrate, optically transparent and was free of solids.

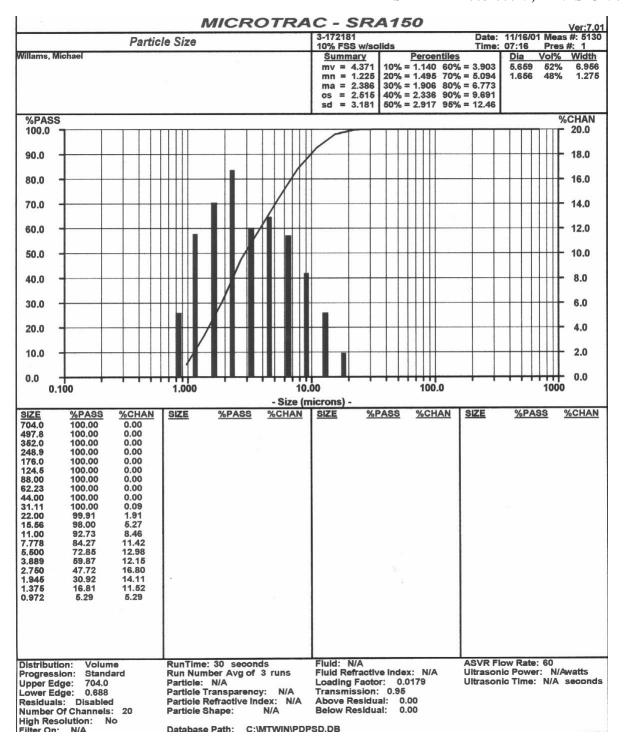


Figure I-1. Batch 1 AN-107 slurry 57 days after precipitation (VOLUME Distribution)

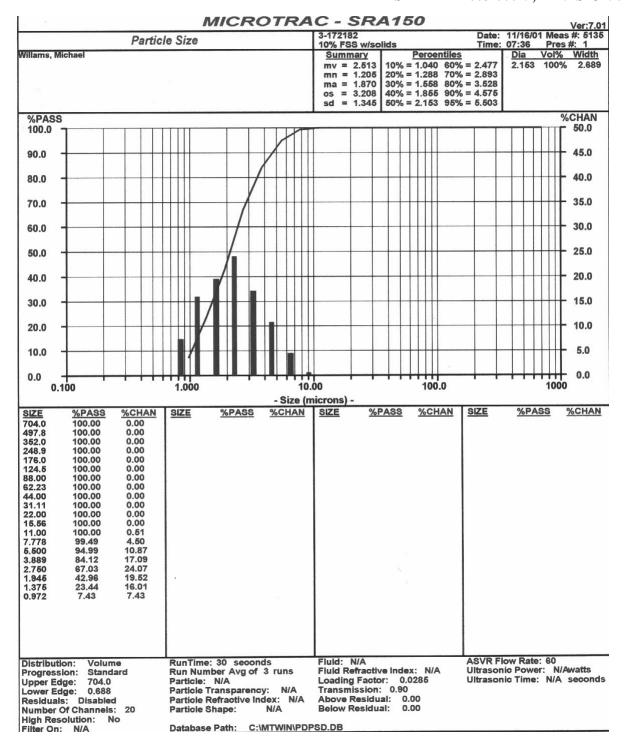


Figure I-2. Batch 2 AN-107 slurry 30 days after precipitation (VOLUME Distribution)

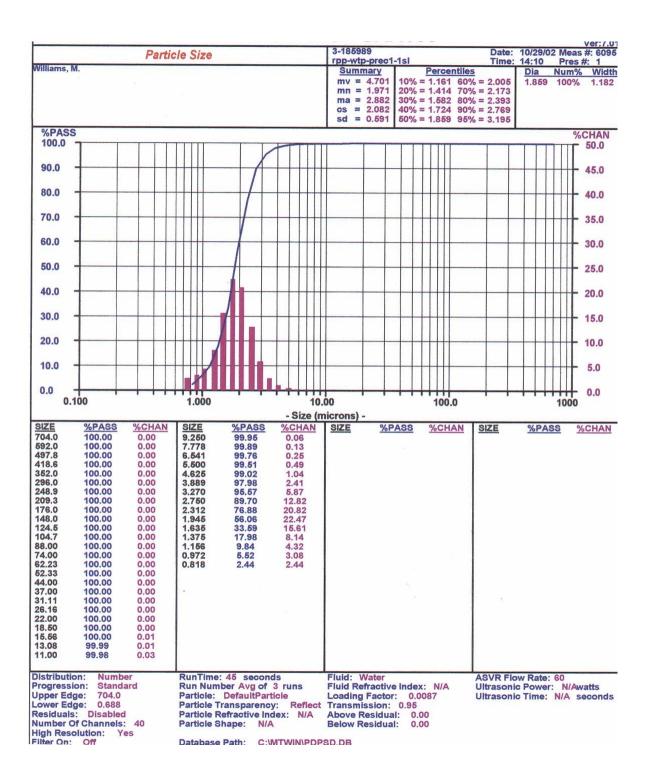


Figure I-3. Batch 1 AN-107 slurry 1 year after precipitation (NUMBER Distribution)

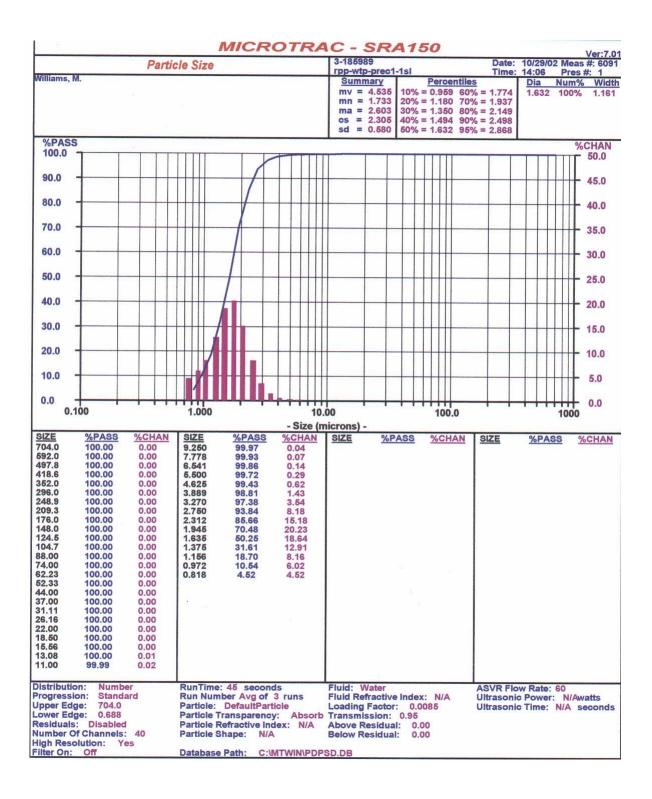


Figure I-4. Batch 1 AN-107 slurry 1 year after precipitation (NUMBER Distribution)

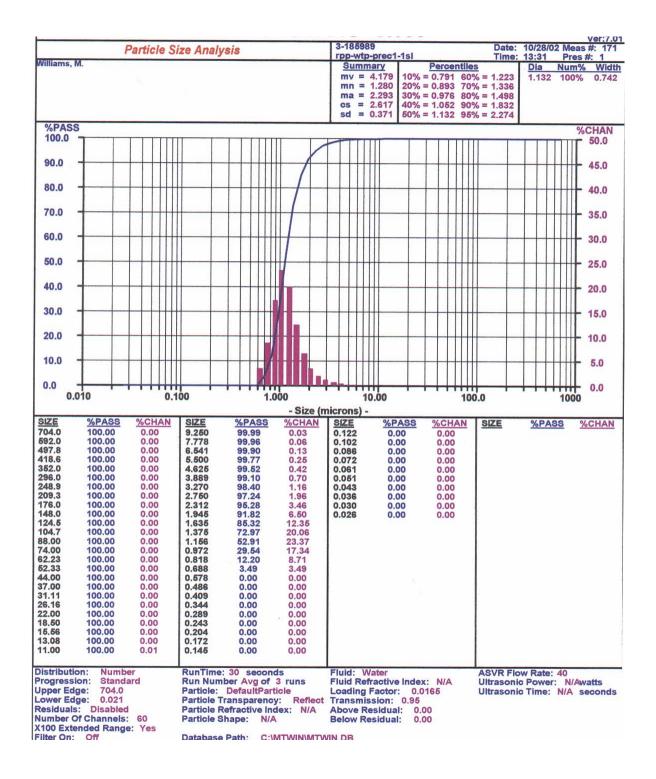


Figure I-5. Batch 1 AN-107 slurry 1 year after precipitation (NUMBER Distribution)

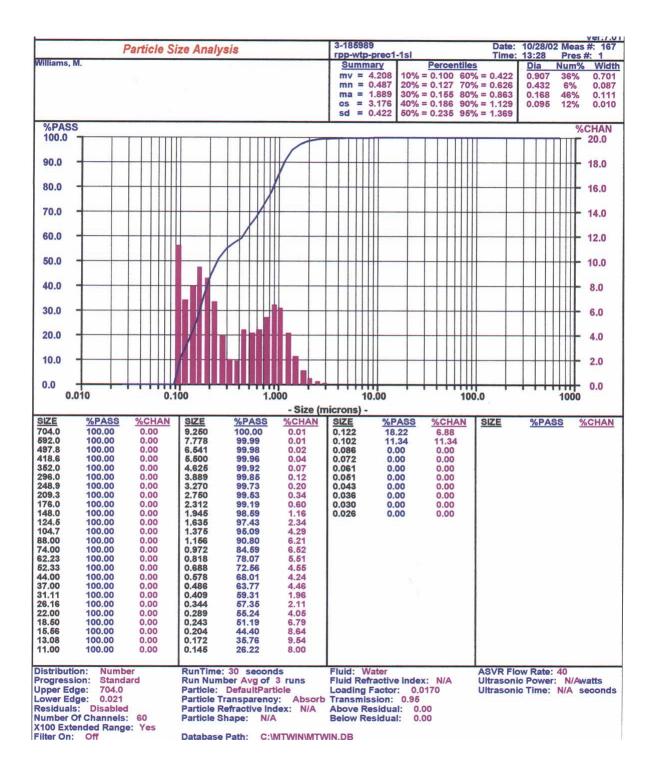


Figure I-6. Batch 1 AN-107 slurry 1 year after precipitation (NUMBER Distribution)

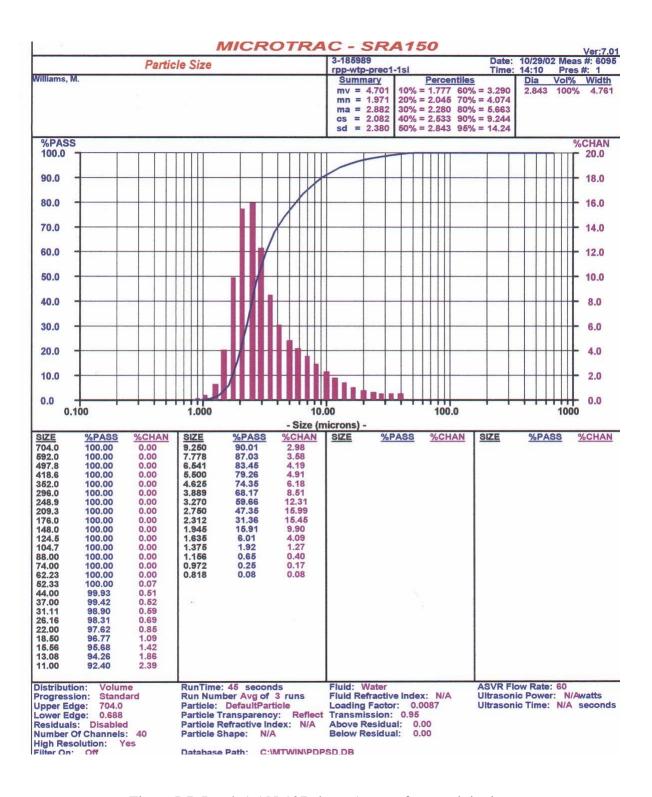


Figure I-7. Batch 1 AN-107 slurry 1 year after precipitation (VOLUME Distribution)

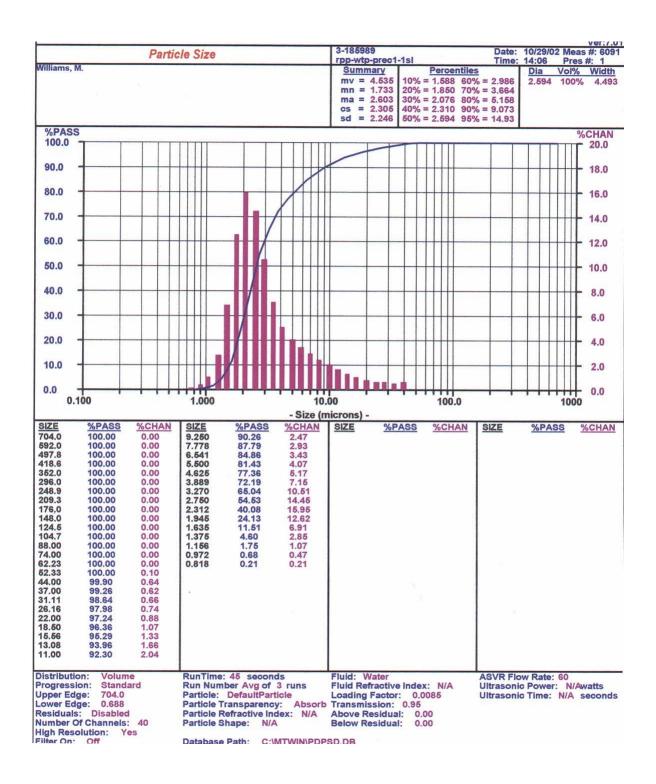


Figure I-8. Batch 1 AN-107 slurry 1 year after precipitation (VOLUME Distribution)

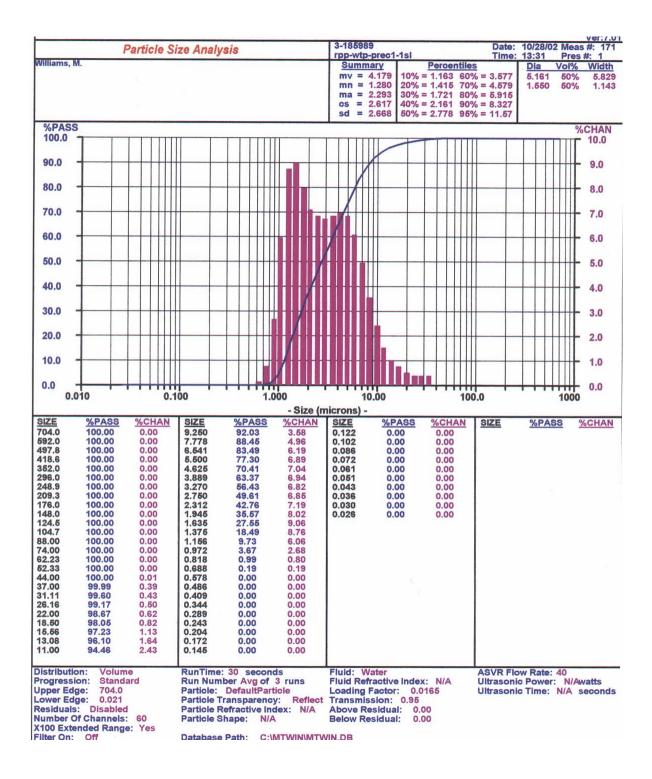


Figure I-9. Batch 1 AN-107 slurry 1 year after precipitation (VOLUME Distribution)

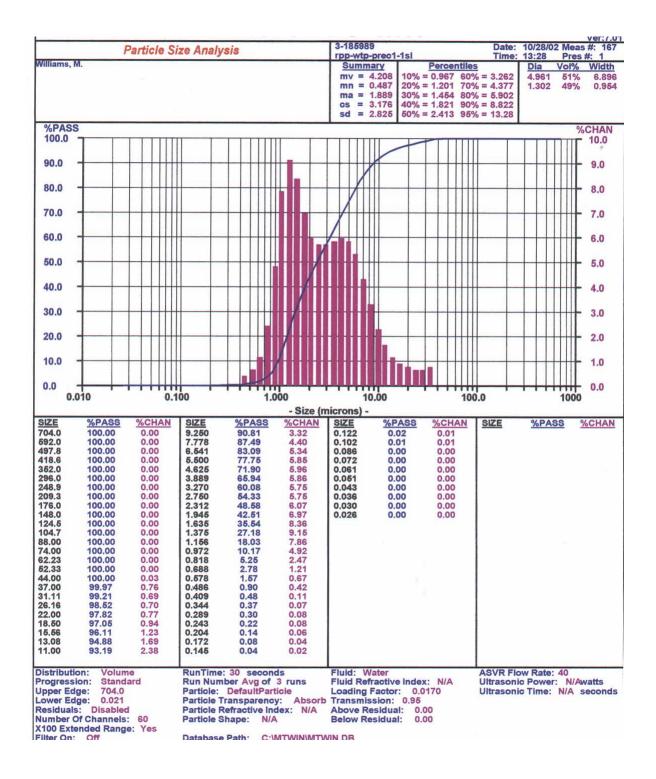


Figure I-10. Batch 1 AN-107 slurry 1 year after precipitation (VOLUME Distribution)

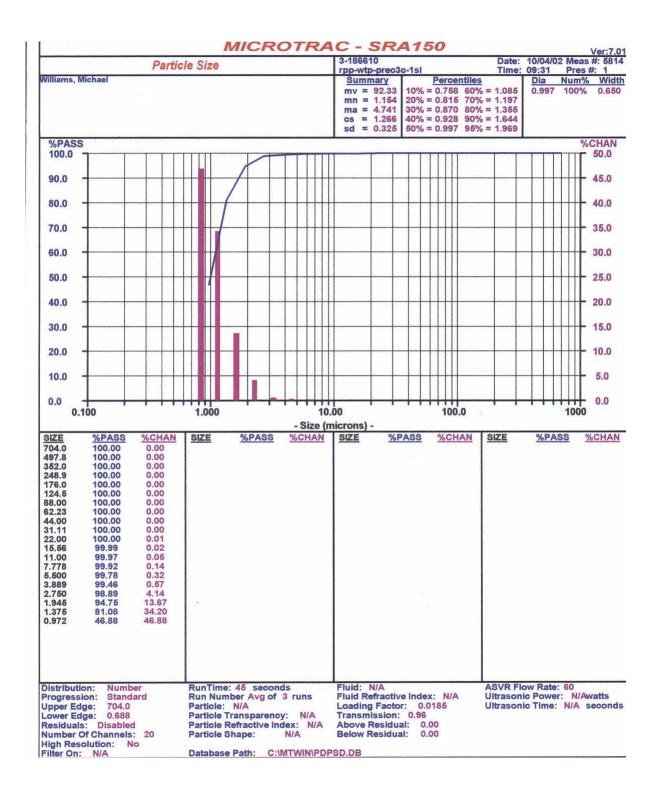


Figure I-11. Batch 3C AN102R2 simulant before precipitation (NUMBER Distribution)

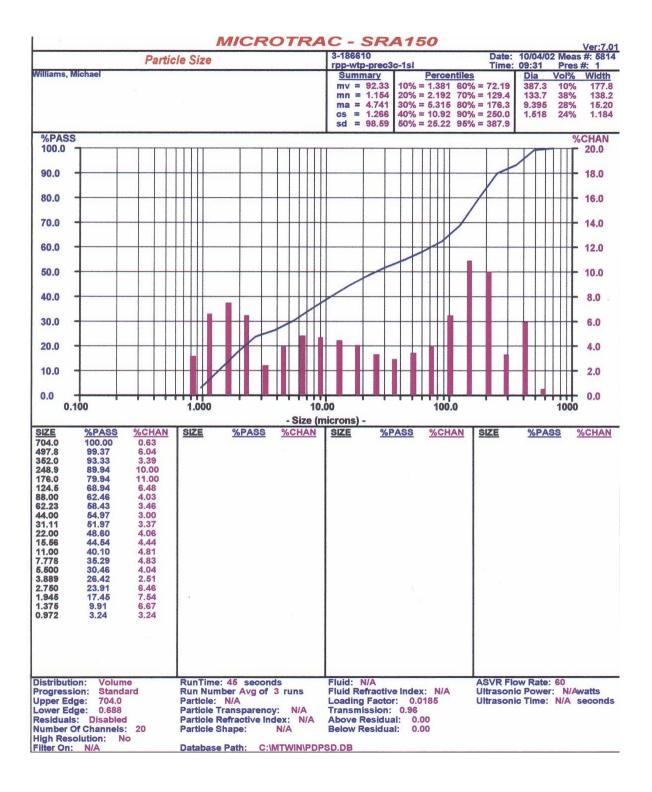


Figure I-12. Batch 3C AN102R2 simulant before precipitation (VOLUME Distribution)

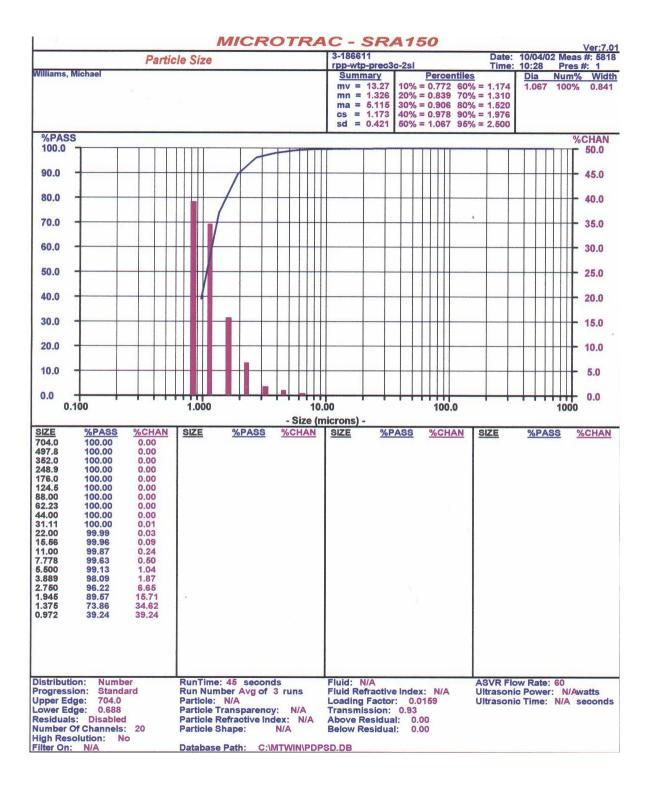


Figure I-13. Batch 3C AN102R2 slurry four hours after precipitation (NUMBER Distribution)

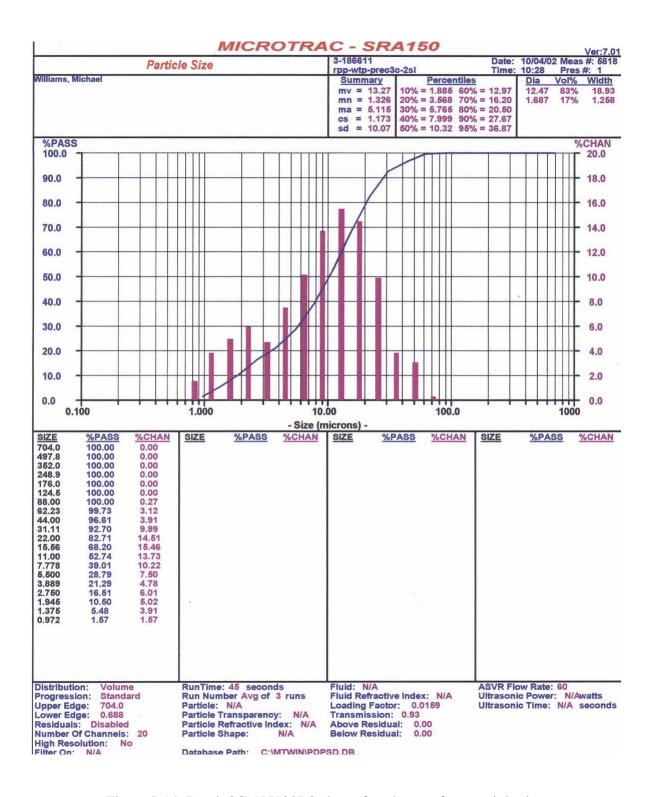


Figure I-14. Batch 3C AN102R2 slurry four hours after precipitation (VOLUME Distribution)

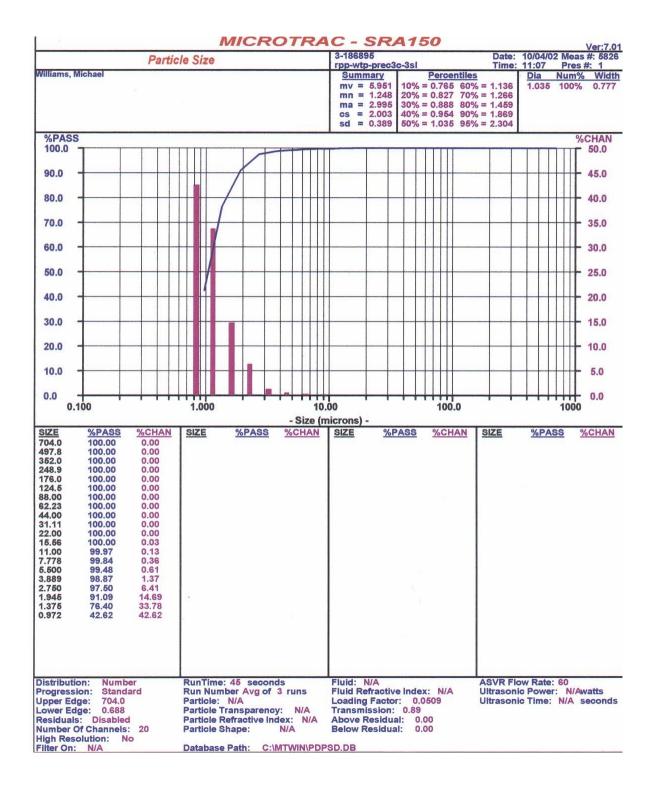


Figure I-15. Batch 3C AN102R2 slurry after precipitation and dewatering to 8.4 wt% Insoluble Solids by the Cross-flow Filter (NUMBER Distribution)

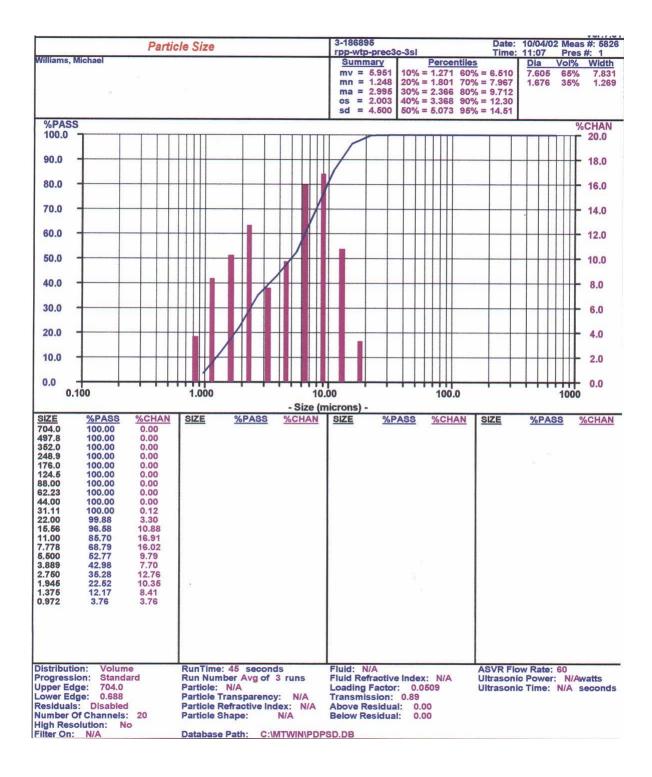


Figure I-16. Batch 3C AN102R2 slurry after precipitation and dewatering to 8.4 wt% Insoluble Solids by the Cross-flow Filter (VOLUME Distribution)

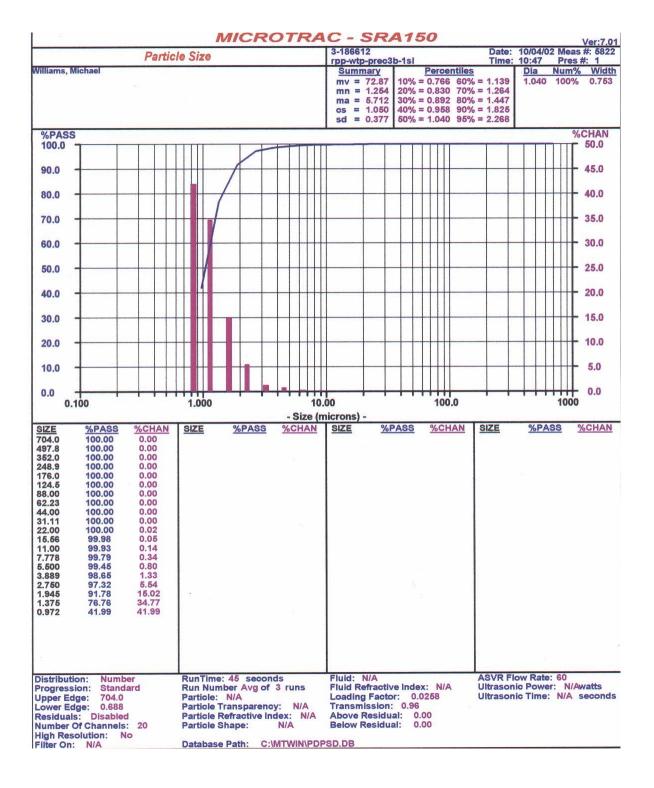


Figure I-17. Batch 3B AN102R2 simulant before precipitation (NUMBER Distribution)

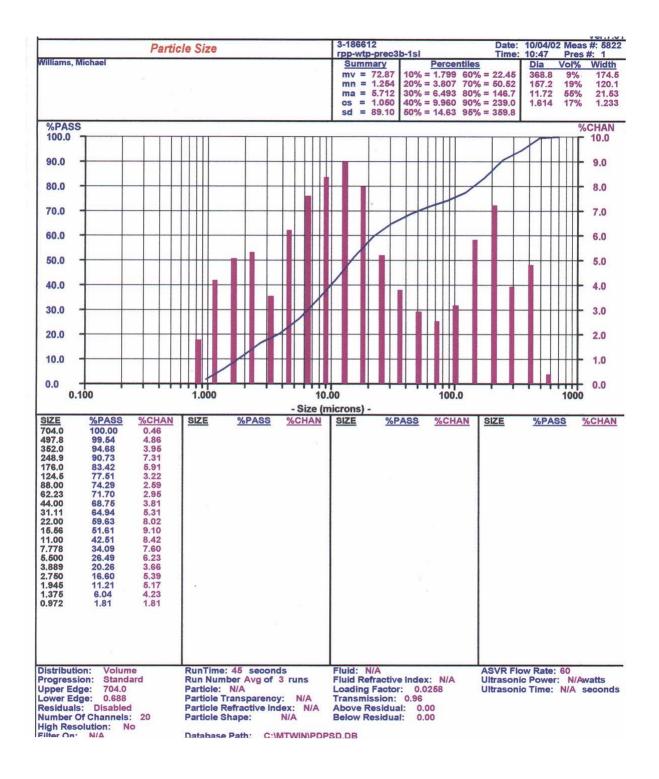


Figure I-18. Batch 3B AN102R2 simulant before precipitation (VOLUME Distribution)

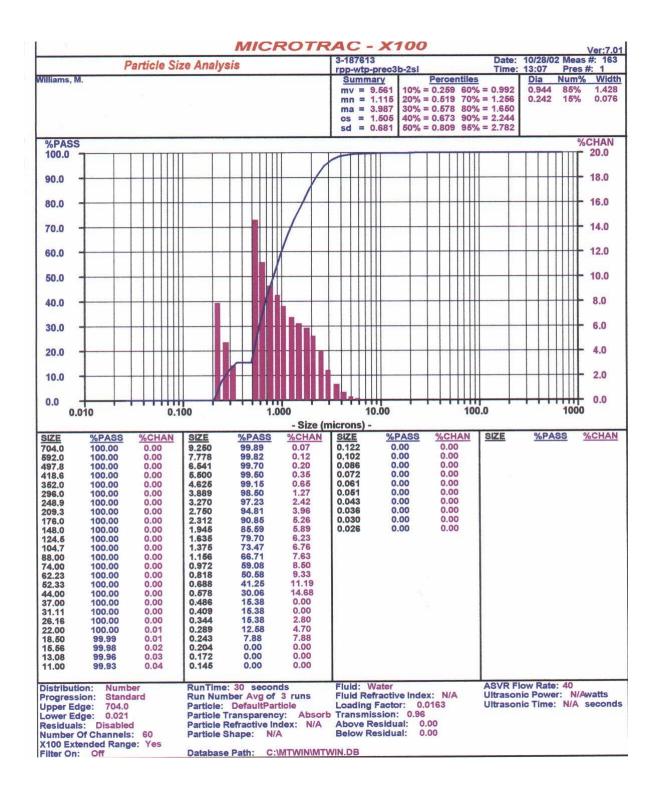


Figure I-19. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)

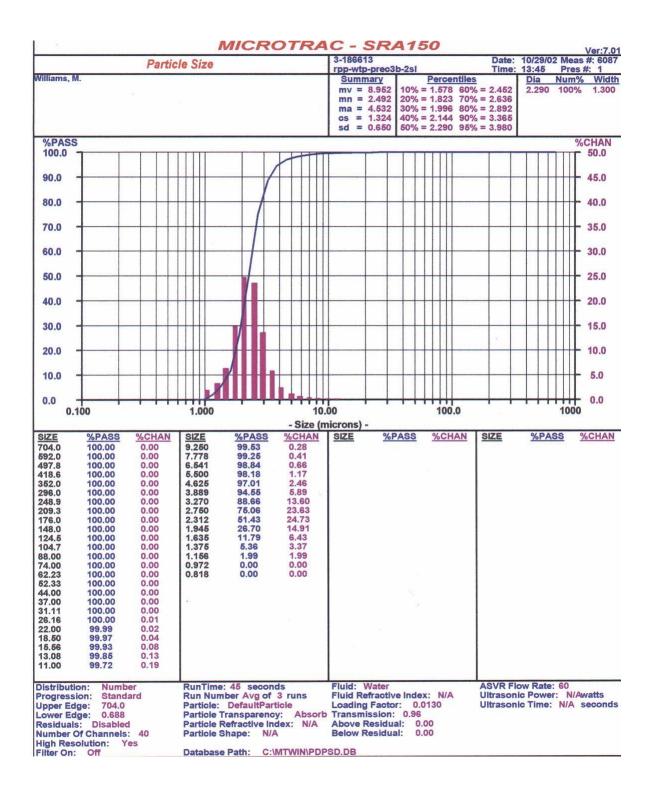


Figure I-20. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)

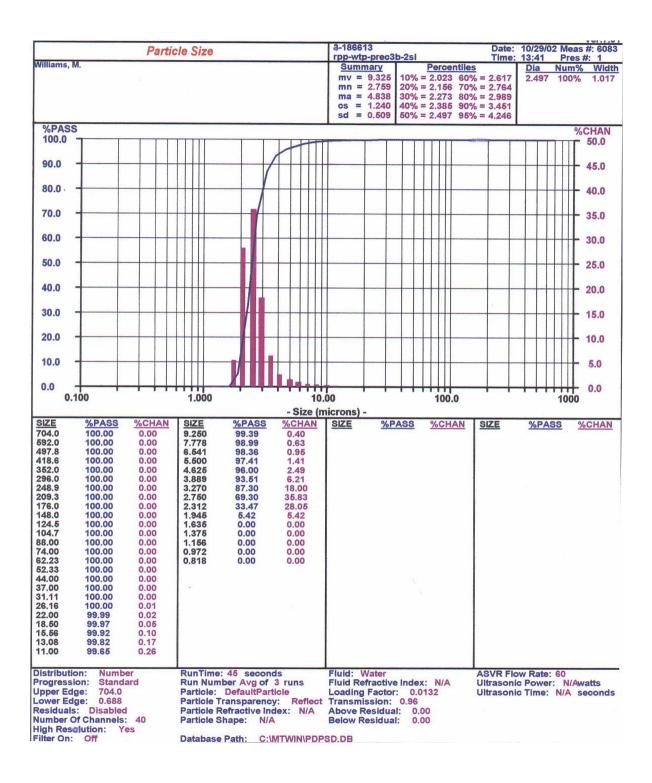


Figure I-21. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)

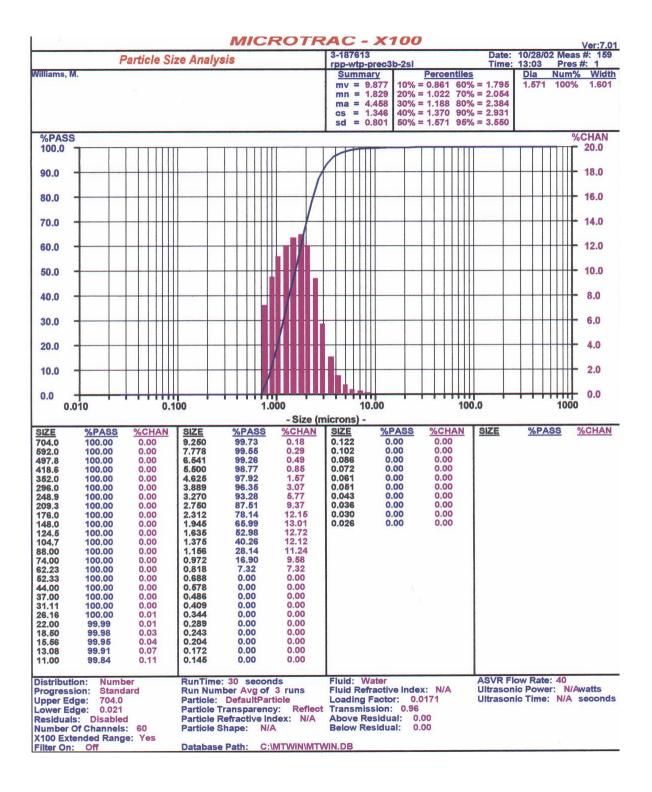


Figure I-22. Batch 3B AN102R2 slurry four hours after precipitation (NUMBER Distribution)

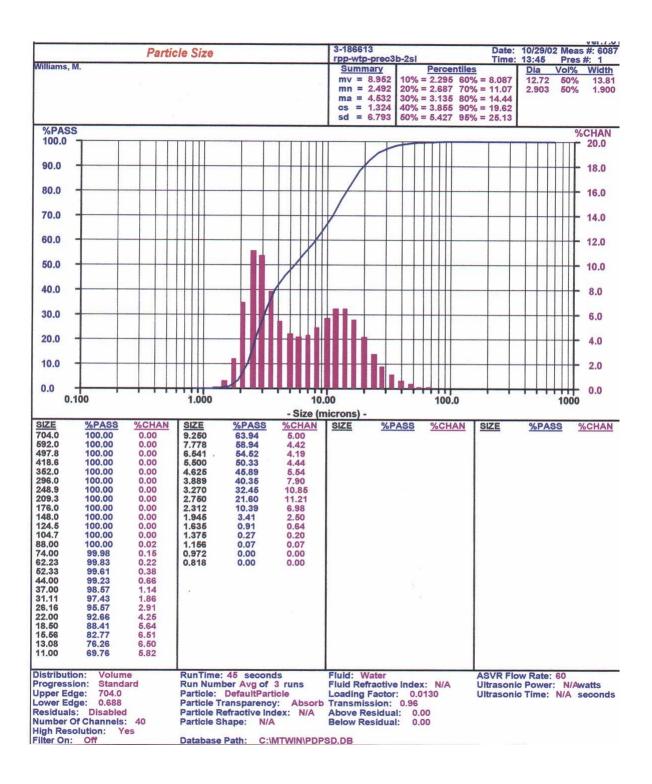


Figure I-23. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)

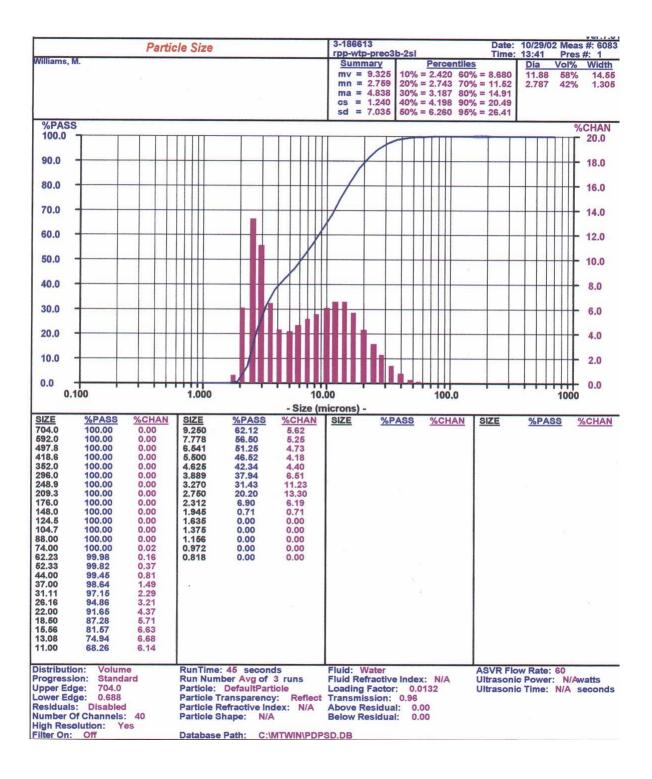


Figure I-24. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)

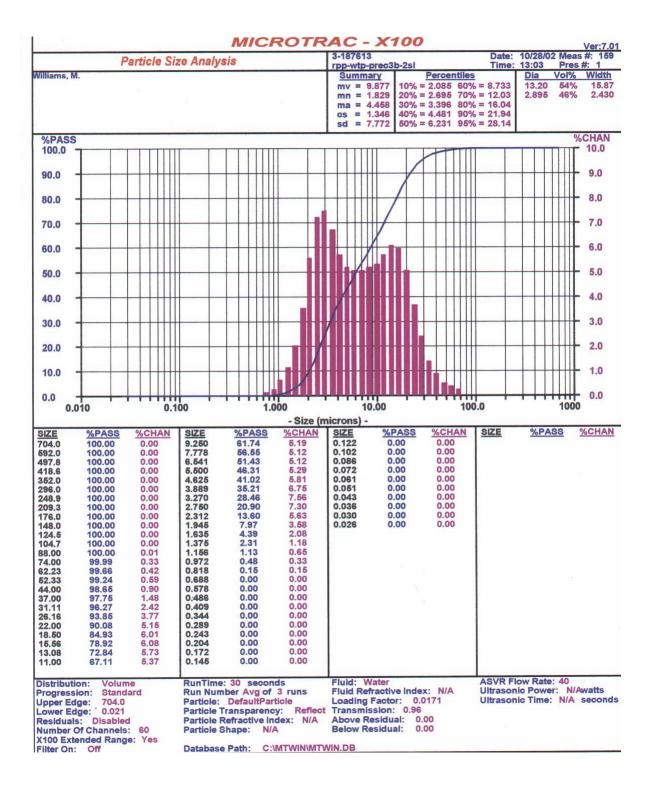


Figure I-25. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)

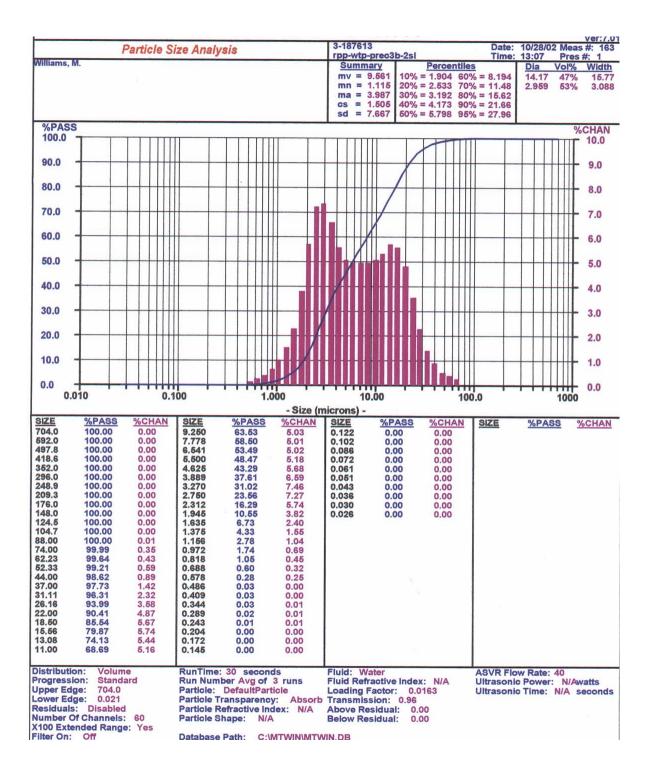


Figure I-26. Batch 3B AN102R2 slurry four hours after precipitation (VOLUME Distribution)

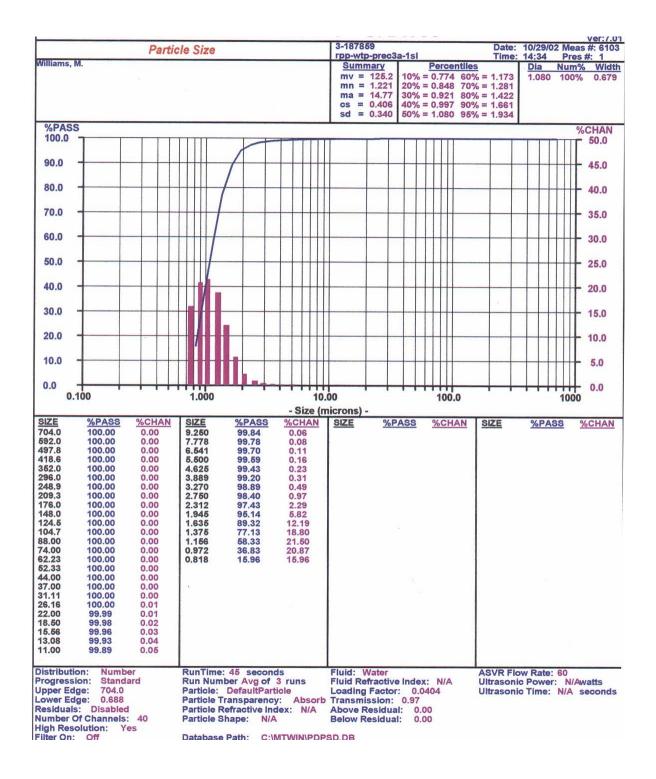


Figure I-27. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)

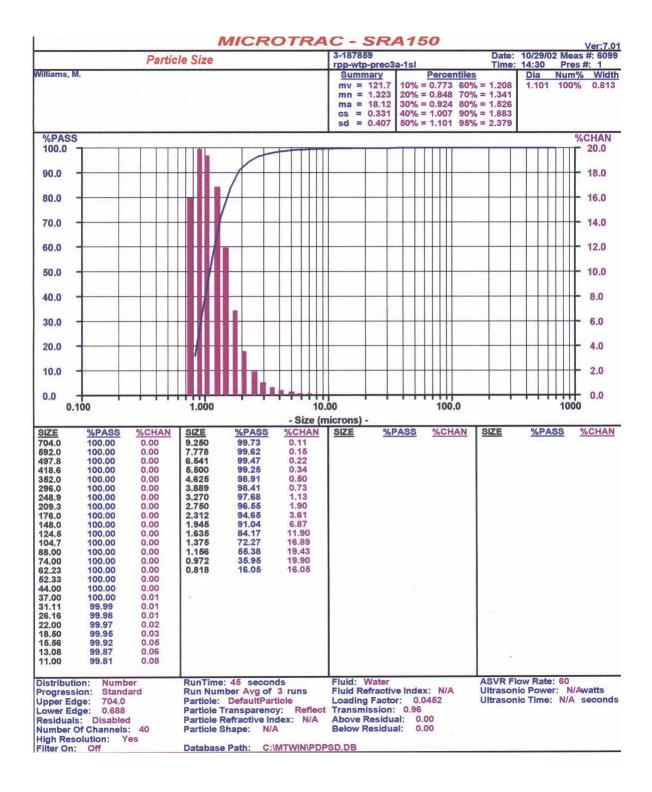


Figure I-28. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)

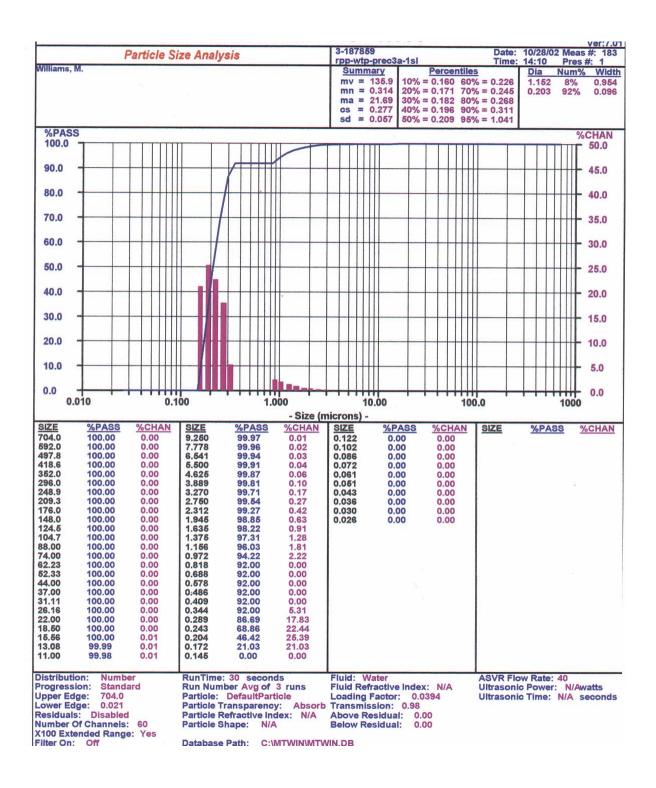


Figure I-29. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)

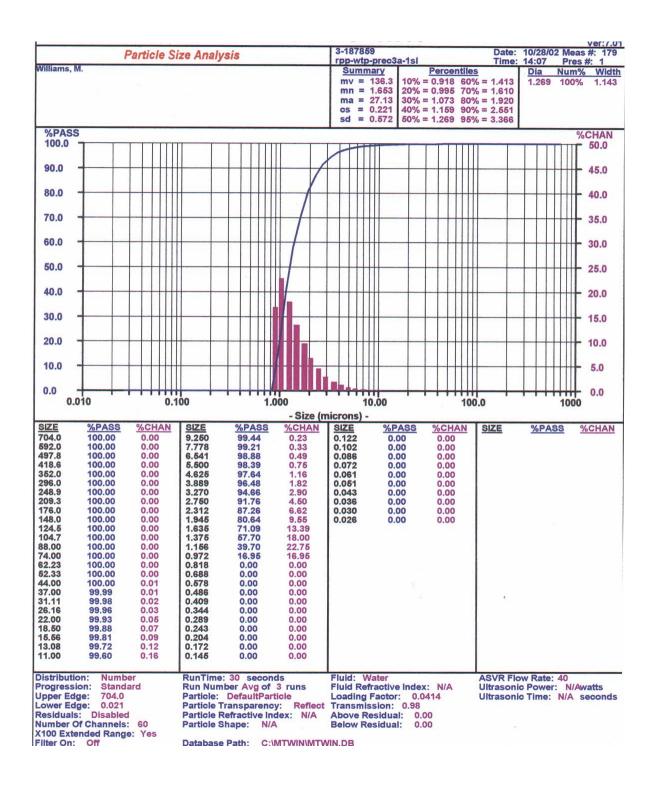


Figure I-30. Batch 3A AN102R2 simulant before precipitation (NUMBER Distribution)

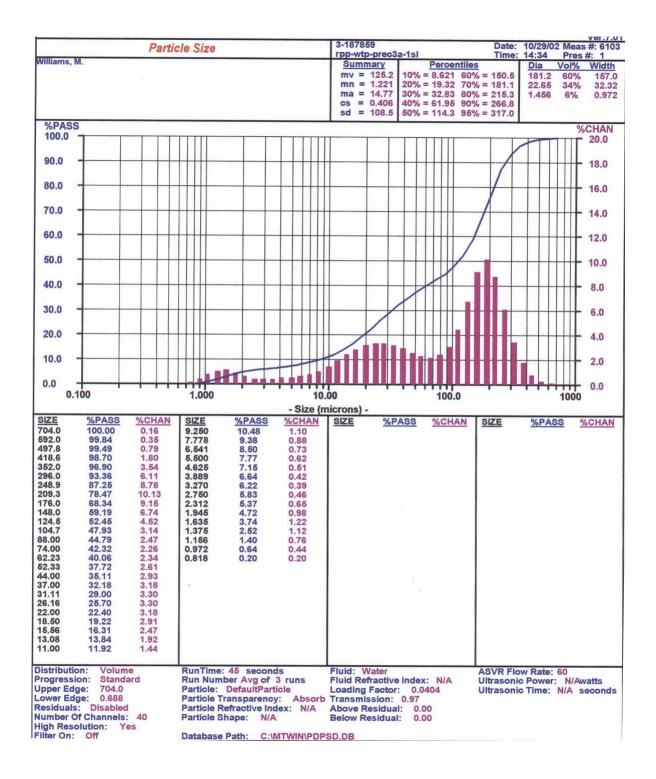


Figure I-31. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)

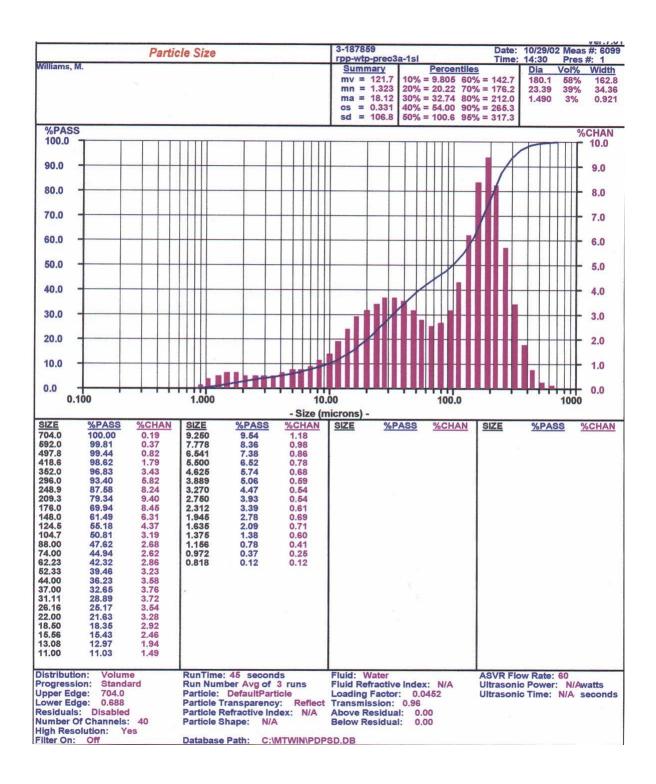


Figure I-32. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)

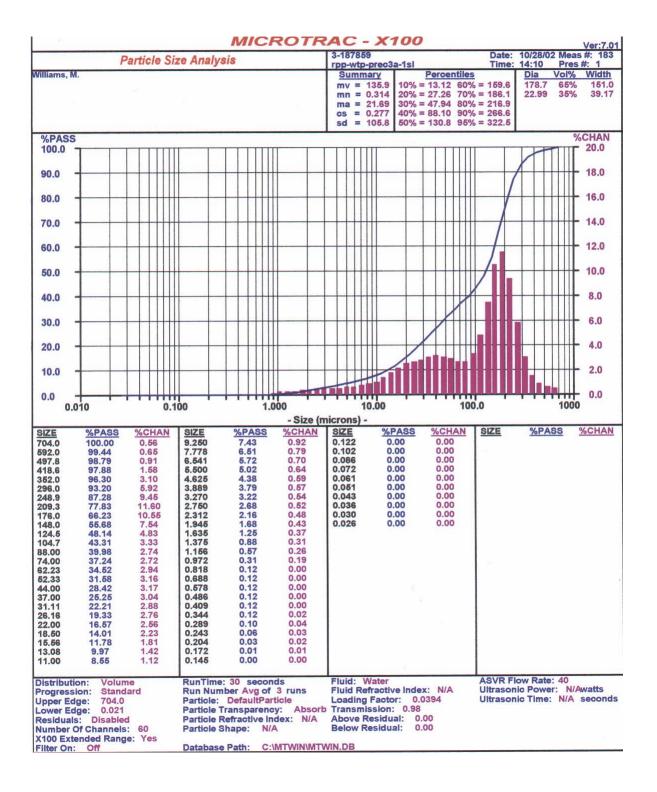


Figure I-33. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)

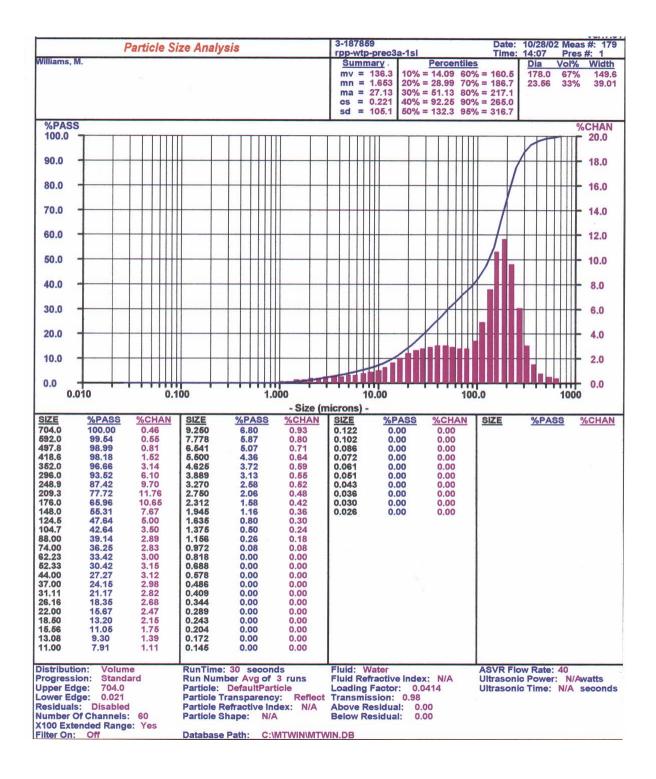


Figure I-34. Batch 3A AN102R2 simulant before precipitation (VOLUME Distribution)

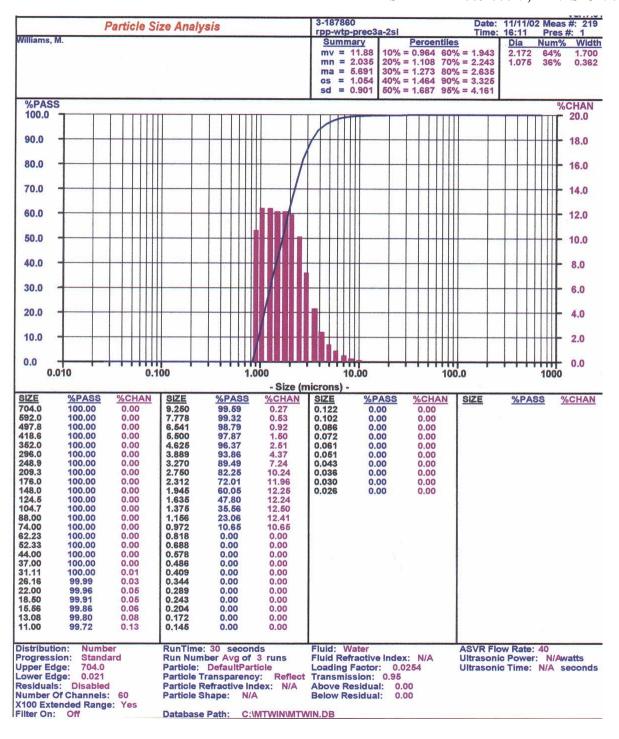


Figure I-35. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)

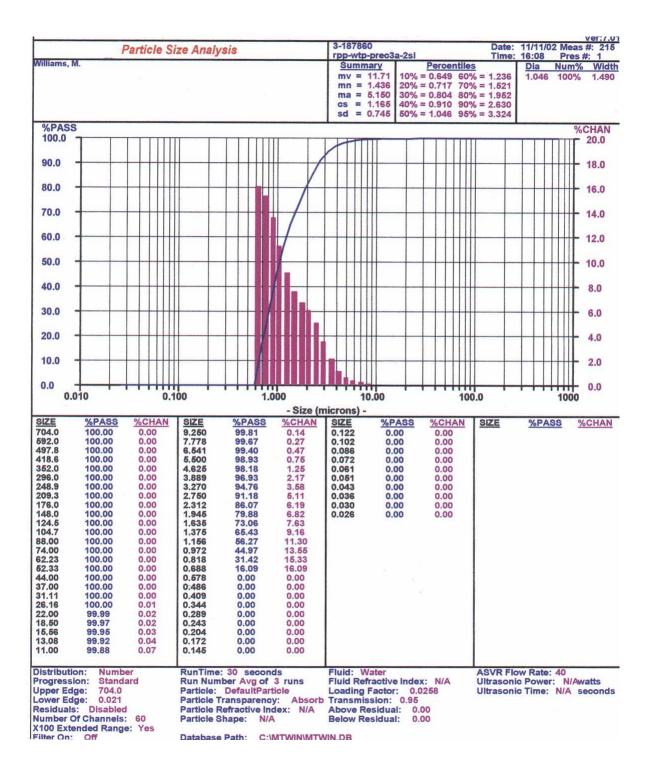


Figure I-36. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)

Figure I-37. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)

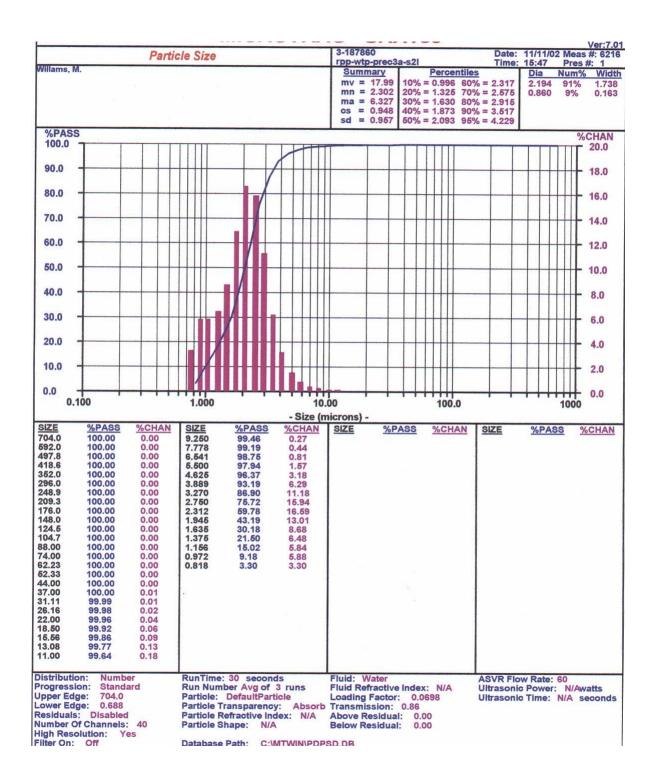


Figure I-38. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)

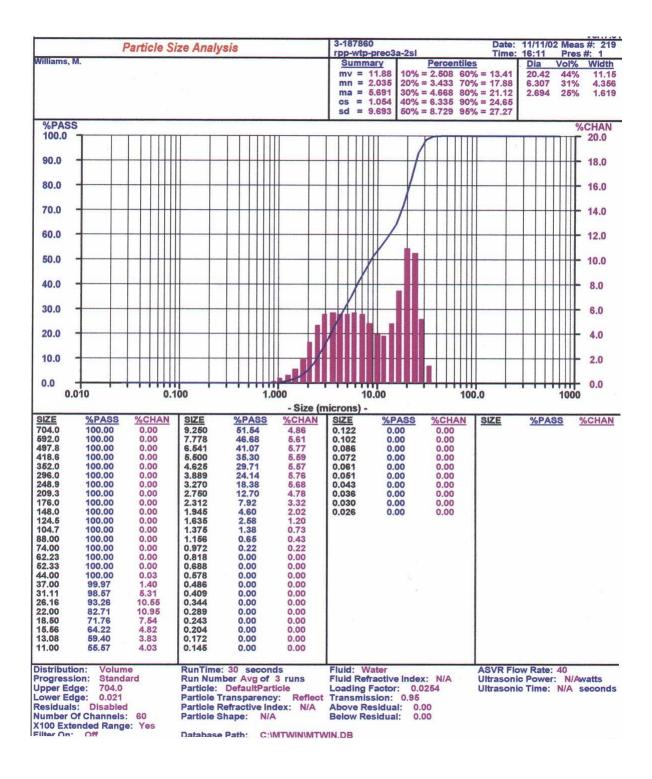


Figure I-39. Batch 3A AN102R2 slurry four hours after precipitation (VOLUME Distribution)

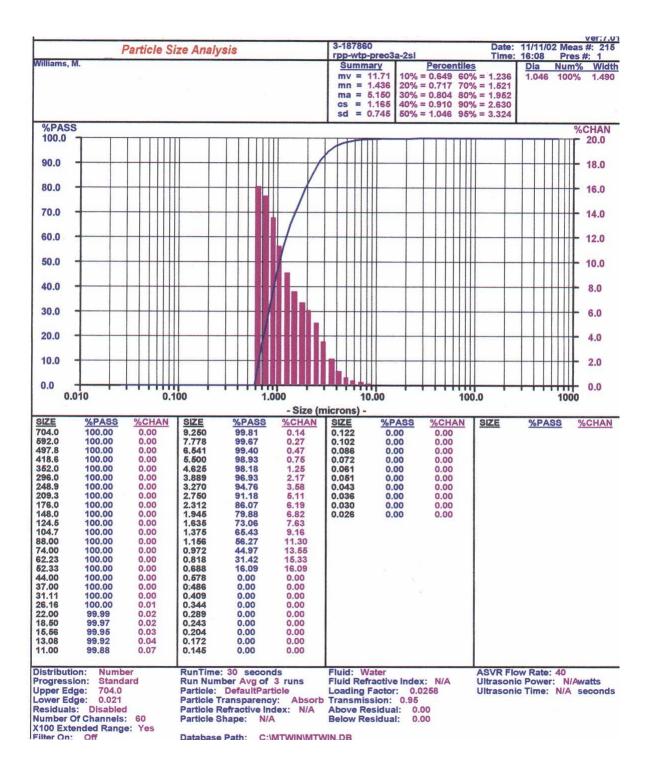


Figure I-40. Batch 3A AN102R2 slurry four hours after precipitation (NUMBER Distribution)

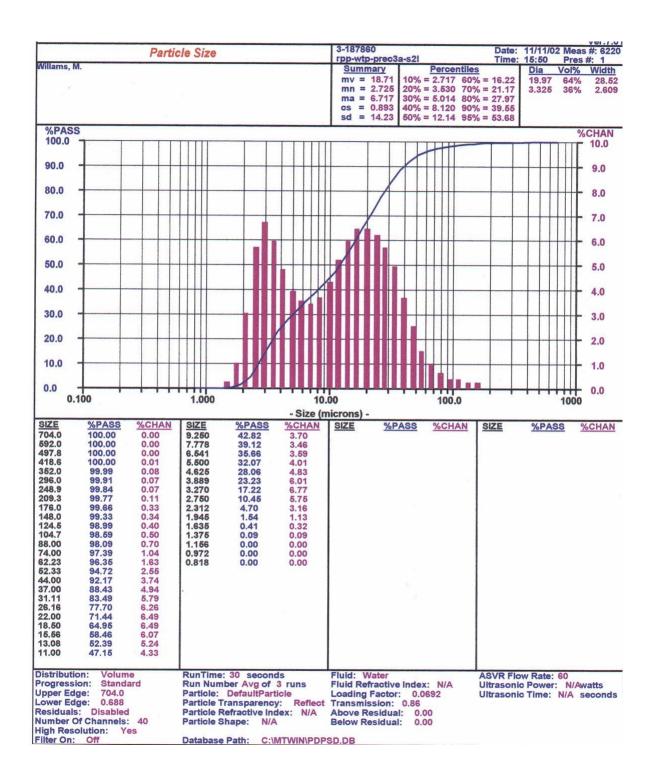


Figure I-41. Batch 3A AN102R2 slurry four hours after precipitation (VOLUME Distribution)

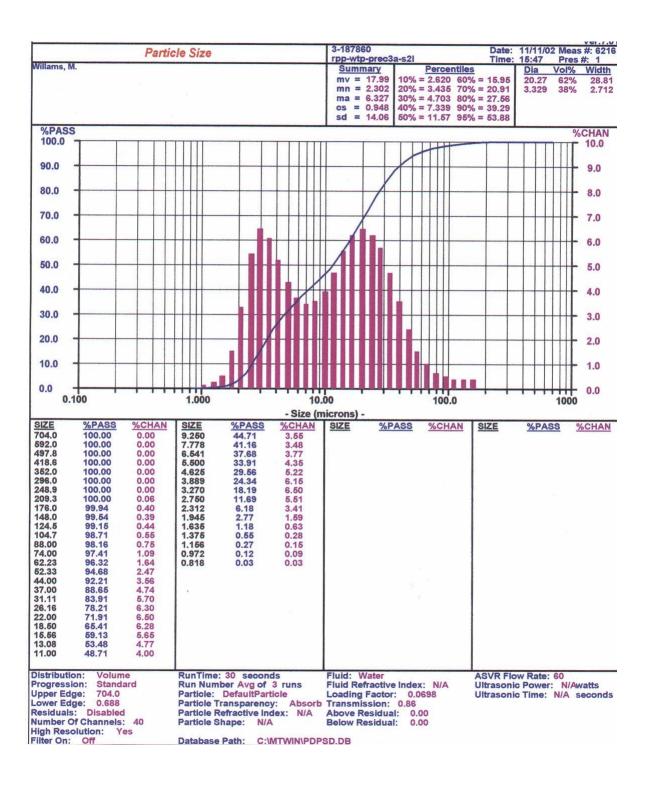


Figure I-42. Batch 3A AN102R2 slurry four hours after precipitation (VOLUME Distribution)

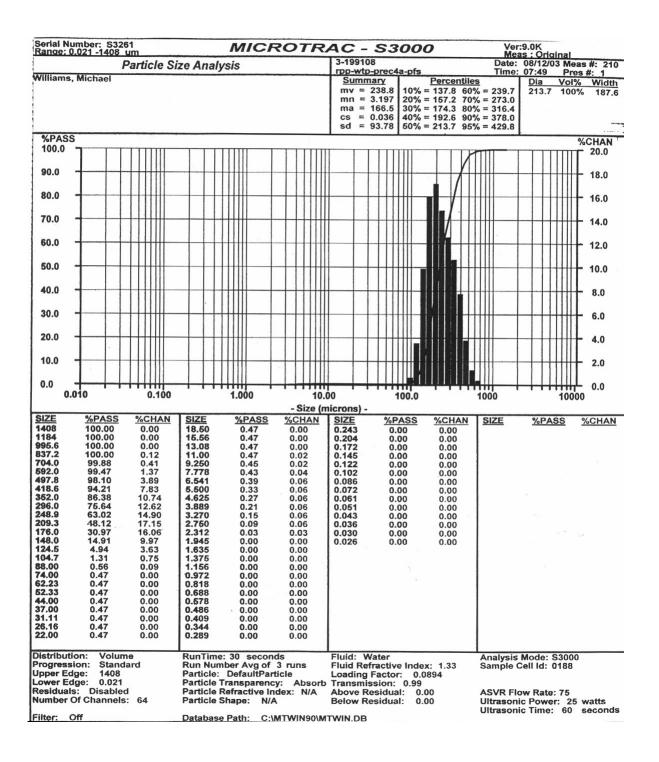


Figure I-43. Batch 4A AN102R2 post filtration precipitation solids (VOLUME Distribution)

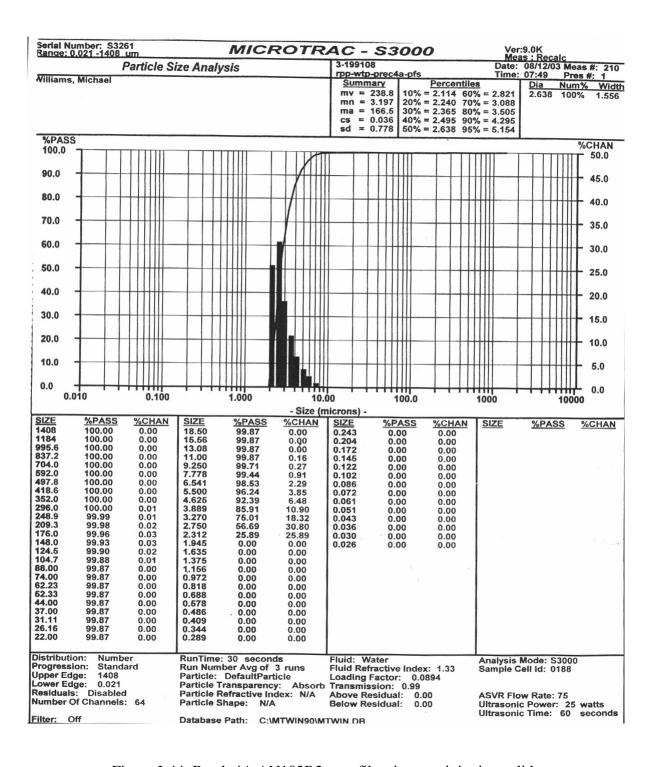


Figure I-44. Batch 4A AN102R2 post filtration precipitation solids (NUMBER Distribution)

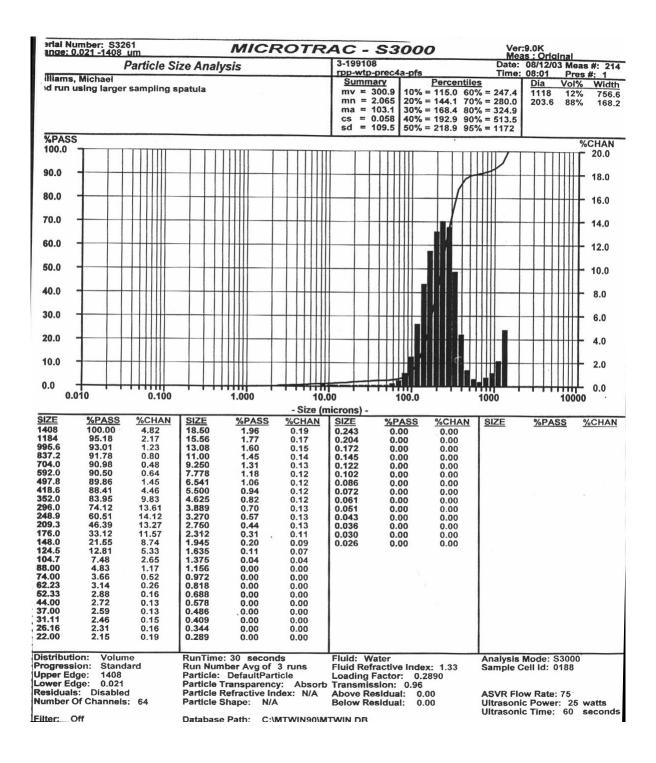


Figure I-45. Batch 4A AN102R2 post filtration precipitation solids (VOLUME Distribution)

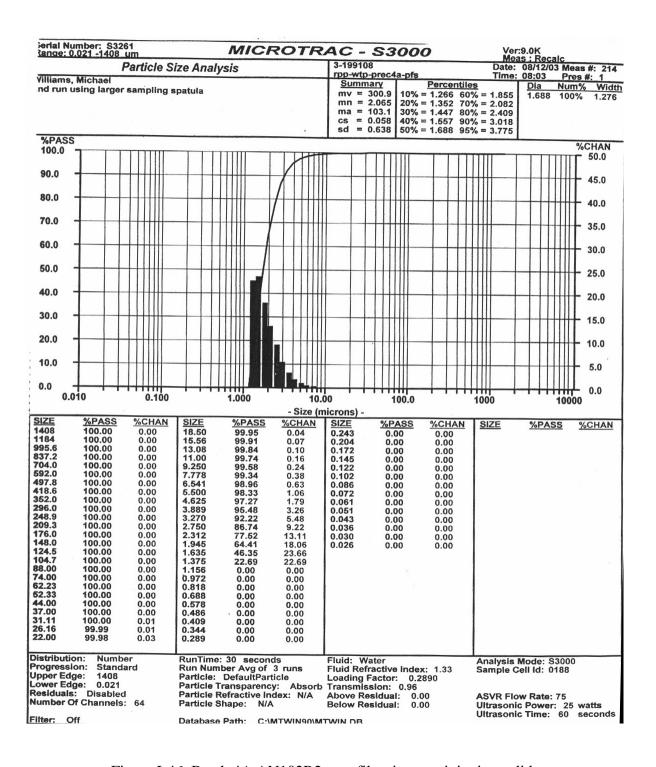


Figure I-46. Batch 4A AN102R2 post filtration precipitation solids (NUMBER Distribution)

APPENDIX J

Experimental Data: Precipitation Test Rig Operations Data

Appendix Contents

Nomenclature for Data Sheets

- HX Outlet Temp TC0 (°C), Temperature of the liquid at the outlet of the heat exchanger in the large recirculation loop
- Recir Pump Outlet Temp TC1 (°C), Temperature of the liquid at the discharge of the pump in the large recirculation loop
- Tank Bottom Temp TC2 (°C), Temperature of the liquid exiting the bottom of the mechanically agitated precipitation Tank
- Heater Outlet Temp TC3 (°C), Temperature of the liquid at the outlet of the heater in the large recirculation loop
- Recir Pump Flow (gpm), Flow of liquid through the pump in the recirculation loop
- Heater Current (amps), Current on one phase of heater in the recirculation loop
- Heater Voltage (volts), Voltage applied to heater in the recirculation loop
- NaMnO₄ Flow (gpm), Flow of 1M NaMnO₄ reagent through reagent recirculation loop for mixing, or directed to precipitation tank
- Sr(NO₃)₂ Flow (gpm), Flow of 1M Sr(NO₃)₂ reagent through reagent recirculation loop for mixing, or directed to precipitation tank
- PJM Tank Level (inches), The height of liquid inside the pulsejet mixer referenced to the transition from the bottom conical portion to the cylindrical portion of the tank
- Pulse Tube Pressure (psig), pressure inside the pulse tube measured at a dedicated fitting in the top flange of the pulsejet
- Heater Outlet Temp TC8 (°C), Temperature of the liquid at the outlet of the heater in the small recirculation loop of the pulsejet mixed precipitation tank
- Tank Bottom Temp TC10 (°C), Temperature of the liquid exiting the bottom of the pulsejet mixed precipitation tank
- Pressure solenoid position, 0 = switched to vacuum/vent position, 1 = switched to compressed air supply

- Vacuum solenoid position, 0 = valve closed, 1 = valve opened to blower
- Vent solenoid position, 0 = valve closed, 1 = valve opened to room air
- Pressure Stop Set (inches), The PJM Tank Level at which the pressure solenoid is switched from the compressed air supply to the vacuum/vent line
- Vacuum Stop Set (inches), The PJM Tank Level at which the vacuum valve is closed and the vent valve is opened
- Total Cycle Time (sec), The length of time between the start of one pressure pulse and the start of the next pressure pulse

The first page of each data set contained in the CD follows:

				PRE	C1_0926	01_062	1			
			Recir							
		HX	Pump	Tank	Heater					
		Outlet	Outlet	Bottom	Outlet	Recir				
		Temp	Temp	Temp	Temp	Pump	Heater	Heater	NaMnO₄	Sr(NO ₃) ₂
		TC0	TC1	TC2	TC3	Flow	Current	Voltage	Flow	Flow
DATE	TIME	(°C)	(°C)	(°C)	(°C)	(gpm)	(amps)	(volts)	(gpm)	(gpm)
9/26/2001	6:21	20.8	20.5	21.0	20.4	-0.1	0	0	0.0	0.0
9/26/2001	6:21	20.8	20.5	21.0	20.4	-0.1	0	0	0.0	0.0
9/26/2001	6:22	26.9	33.3	33.9	25.5	9.8	0	0	0.0	0.0
9/26/2001	6:23	32.8	33.5	33.7	32.9	9.7	0	0	0.0	0.0
9/26/2001	6:24	33.1	33.5	33.6	33.2	9.7	0	0	0.0	0.0
9/26/2001	6:25	33.1	33.4	33.6	33.3	9.5	0	0	0.0	0.0
9/26/2001	6:26	33.2	33.4	33.6	33.3	9.7	0	0	0.0	0.0
9/26/2001	6:27	33.2	33.4	33.5	33.3	9.7	0	0	0.0	0.0
9/26/2001	6:28	33.2	33.4	33.5	33.4	9.7	0	0	0.0	0.0
9/26/2001	6:29	33.2	33.4	33.5	33.4	9.6	0	0	0.0	0.0
9/26/2001	6:30	33.2	33.3	33.5	33.4	9.7	0	0	0.0	0.0
9/26/2001	6:31	33.2	33.3	33.5	33.4	9.7	0	0	0.0	0.0
9/26/2001	6:32	33.2	33.3	33.5	33.4	9.6	0	0	0.0	0.0
9/26/2001	6:33	33.2	33.3	33.4	33.4	9.6	0	0	0.0	0.0
9/26/2001	6:34	33.2	33.3	33.4	34.4	9.8	17	194	0.0	-1.3
9/26/2001	6:35	33.3	33.4	33.6	35.9	9.6	20	194	0.0	-1.2
9/26/2001	6:36	33.4	33.5	33.7	36.1	9.6	19	195	0.0	-1.3
9/26/2001	6:37	33.5	33.6	33.7	36.2	9.6	20	194	0.0	-1.3
9/26/2001	6:38	33.6	33.7	33.8	36.3	9.7	19	194	0.0	-1.2
9/26/2001	6:39	33.6	33.7	33.9	36.4	9.7	20	194	0.0	-1.2
9/26/2001	6:40	33.7	33.8	34.0	36.4	9.7	20	194	0.0	-1.2
9/26/2001	6:41	33.8	33.9	34.1	36.5	9.5	20	194	0.0	-1.3
9/26/2001	6:42	25.0	24.7	25.1	25.0	-0.1	20	194	0.0	-1.3
9/26/2001	6:43	24.8	24.8	25.2	25.0	9.7	0	0	0.0	0.0
9/26/2001	6:44	24.9	24.9	25.3	25.1	9.6	0	0	0.0	0.0
9/26/2001	6:45	24.9	24.9	25.3	25.1	-0.1	0	0	0.0	0.0
9/26/2001	6:46	24.9	24.9	25.3	25.1	9.7	0	0	0.0	0.0
9/26/2001	6:47	24.9	24.9	25.3	25.1	9.6	0	0	0.0	0.0
9/26/2001	6:48	34.1	34.1	34.2	34.2	-0.1	0	0	0.0	0.0
9/26/2001	6:49	33.8	33.9	34.3	34.0	1.4	0	0	0.0	0.0
9/26/2001	6:50	34.1	34.2	34.3	34.2	9.7	0	0	0.0	0.0
9/26/2001	6:51	34.1	34.2	34.3	36.6	9.6	19	194	0.0	-1.2
9/26/2001	6:52	34.2	34.3	34.5	37.0	9.7	19	194	0.0	-1.3
9/26/2001	6:53	34.4	34.5	34.6	37.0	9.6	19	194	0.0	-1.3
9/26/2001	6:54	34.4	34.5	34.7	37.1	9.6	20	194	0.0	-1.4
9/26/2001	6:55	34.5	34.6	34.8	37.2	9.8	19	194	0.0	-1.4
9/26/2001	6:56	34.6	34.7	34.8	37.3	9.6	20	194	0.0	-1.3
9/26/2001	6:57	34.8	34.8	34.9	37.5	9.6	20	194	0.0	-1.4
9/26/2001	6:58	34.9	34.9	35.0	37.5	9.6	20	194	0.0	-1.3
9/26/2001	6:59	35.0	35.0	35.2	37.7	9.6	19	194	0.0	-1.3
9/26/2001	7:00	35.1	35.1	35.2	37.7	9.6	19	194	0.0	-1.3
9/26/2001	7:01	35.2	35.3	35.4	37.7	9.6	19	194	0.0	-1.3
9/26/2001	7:02	35.3	35.4	35.5	38.1	9.7	20	194	0.0	-1.3
9/26/2001	7:03	35.4	35.5	35.6	38.1	9.6	19	194	0.0	-1.3
9/26/2001	7:04	35.5	35.6	35.7	38.2	9.6	20	194	0.0	-1.3
9/26/2001	7:05	35.7	35.7	35.8	38.4	9.7	19	194	0.0	-1.3
9/26/2001	7:06	35.8	35.8	35.9	38.5	9.6	19	194	0.0	-1.3
9/26/2001	7:07	35.9	36.0	36.1	38.6	9.8	19	194	0.0	-1.3

				PREC2	2_10230°	1_0623				
			Recir							
		HX	Pump	Tank	Heater					
		Outlet	Outlet	Bottom	Outlet	Recir				
		Temp	Temp	Temp	Temp	Pump	Heater	Heater	NaMnO₄	Sr(NO ₃) ₂
		TC0	TC1	TC2	TC3	Flow	Current		Flow	Flow
DATE	TIME	(°C)	(°C)	(°C)	(°C)	(gpm)	(amps)	(volts)	(gpm)	(gpm)
10/23/2001	6:24	20.6	20.6	20.8	20.6	-0.1	0	0	0.0	0.0
10/23/2001	6:25	20.6	20.6	20.8	20.6	-0.1	0	0	0.0	0.0
10/23/2001	6:26	20.6	20.6	20.8	20.6	-0.1	0	0	0.0	0.0
10/23/2001	6:27	20.6	20.6	20.8	20.7	-0.1	0	0	0.0	0.0
10/23/2001	6:28	20.6	20.6	20.9	20.6	-0.1	65	79	0.0	0.0
10/23/2001	6:29	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:30	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:31	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:32	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:33	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:34	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:35	20.6	20.6	20.9	20.7	-0.1	65	79	0.2	0.0
10/23/2001	6:36	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:37	20.6	20.6	20.9	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:38	20.6	20.6	20.8	20.7	-0.1	65	79	0.0	0.0
10/23/2001	6:39	21.6	21.6	21.7	21.6	9.6		79	0.0	0.0
10/23/2001	6:40	21.6	21.6	21.7	21.6	9.6		79	0.0	0.0
10/23/2001	6:41	21.7	21.6	21.7	21.7	9.7	65	79	0.0	0.0
10/23/2001	6:42	21.7	21.7	21.7	21.7	9.6	65	79	0.0	0.0
10/23/2001	6:43	20.9	21.7	21.7	20.9	9.6		79	0.0	0.0
10/23/2001	6:44	21.3	21.6	21.7	21.2	9.6	65	79	0.3	0.0
10/23/2001	6:45	20.6	21.6	21.7	20.5	9.7	65	79	0.2	0.0
10/23/2001	6:46	21.1	21.6	21.6	21.1	9.6	65	79	0.2	0.0
10/23/2001	6:47	20.6	21.6	21.6	20.6	9.7	65	79	0.0	0.0
10/23/2001	6:48	21.1	21.5	21.6	21.0	9.6		79	0.0	0.0
10/23/2001	6:49	20.6	21.5	21.6	20.6	9.7	65	79	0.0	0.0
10/23/2001	6:50	21.0	21.5	21.5	21.0	9.6	65	79	0.0	0.0
10/23/2001	6:51	20.5	21.5	21.5	20.6	9.6		79	0.1	0.0
10/23/2001	6:52	21.0	21.4			9.6				0.0
10/23/2001	6:53	20.9	21.4	21.5	20.9	9.6		79	0.0	0.0
10/23/2001	6:54	20.8	21.4	21.4	20.7	9.6		79	0.0	0.0
10/23/2001	6:55	21.0	21.4	21.4	21.0	9.7		79	0.0	0.0
10/23/2001	6:56	20.7	21.3	21.4	20.6	9.6		79	0.0	0.0
10/23/2001	6:57	21.0	21.3	21.4	20.9	9.6		79	0.0	0.0
10/23/2001	6:58	20.5	21.3	21.4	20.4	9.7	65	79	0.0	0.0
10/23/2001	6:59	20.9	21.3	21.3	20.9	9.7	65	79	0.0	0.0
10/23/2001	7:00	20.3	21.3	21.3	20.3	9.7	65	79	0.1	0.0
10/23/2001	7:01	21.1	21.5	21.5	21.0	9.6		79	5.0	0.0
10/23/2001	7:02	21.0	21.7	21.7	20.9	9.6		79	5.0	0.0
10/23/2001	7:03	21.4	21.8	21.8	21.1	9.6		79	5.0	0.0
10/23/2001	7:04	21.6	21.8	21.8	21.3	9.7	65	79	5.0	0.0
10/23/2001	7:05	21.3	21.8	21.8	20.8	9.6		79	5.0	0.0
10/23/2001	7:06	21.6	21.8	21.7	21.2	9.6	65	79	5.0	0.0
10/23/2001	7:07	21.0	21.8	21.7	20.6	9.5	65	79	5.0	0.0
10/23/2001	7:08	21.5	21.7	21.7	21.1	9.6		79	5.0	

				PREC	2_10240	1_0627				
			Recir							
		HX	Pump	Tank	Heater					
		Outlet	Outlet	Bottom	Outlet	Recir				
		Temp	Temp	Temp	Temp	Pump	Heater	Heater	NaMnO ₄	Sr(NO ₃) ₂
		TC0	TC1	TC2	TC3	Flow	Current	Voltage	Flow	Flow
DATE	TIME	(°C)	(°C)	(°C)	(°C)	(gpm)	(amps)	(volts)	(gpm)	(gpm)
10/24/2001	6:27	18.8	18.9	18.9	18.7	9.6	99	79	0.0	
10/24/2001	6:28	18.8	18.9	18.9	18.7	9.6	99	79	0.0	0.0
10/24/2001	6:29	18.8	18.9	18.9	18.6	9.8	23	79	0.0	0.0
10/24/2001	6:30	18.8	18.9	18.9	18.6	9.7	29	79	0.0	0.0
10/24/2001	6:31	18.8	18.9	18.9	18.7	9.6	35	79	0.0	0.0
10/24/2001	6:32	18.8	19.0	18.9	18.6	9.6	21	79	0.0	0.0
10/24/2001	6:33	18.8	19.0	18.9	18.7	9.7	97	79	0.0	0.0
10/24/2001	6:34	18.8	19.0	18.9	18.7	9.7	23	79	0.0	0.0
10/24/2001	6:35	18.9	19.0	18.9	18.7	9.6	26	79	0.0	0.0
10/24/2001	6:36	18.8	19.0	19.0	18.7	9.6	40	79	0.0	0.0
10/24/2001	6:37	18.9	19.0	19.0	18.7	9.6	29	79		
10/24/2001	6:38	18.8	19.0	19.0	18.7	9.7	26	79	0.0	0.0
10/24/2001	6:39	18.9	19.0	19.0	18.7	9.7	50	79	0.0	0.0
10/24/2001	6:40	18.8	19.0	19.0	18.7	9.6	25	79	0.0	0.0
10/24/2001	6:41	18.8	19.0	19.0	18.7	9.6	21	79	0.0	0.0
10/24/2001	6:42	18.9	19.0	19.0	18.7	9.6	37	79	0.0	0.0
10/24/2001	6:43	18.8	19.0	19.0	18.7	9.6	46	79	0.0	0.0
10/24/2001	6:44	18.9	19.0	19.0	18.7	9.7	28	79	0.0	0.0
10/24/2001	6:45	18.9	19.0	19.0	18.7	9.6	20	79	0.0	0.0
10/24/2001	6:46	18.9	19.0	19.0	18.8	9.7	20	79	0.0	0.0
10/24/2001	6:47	18.9	19.0	19.0	18.7	9.6	21	79	0.0	0.0
10/24/2001	6:48	18.9	19.1	19.0	18.8	9.6	21	79	0.0	0.0
10/24/2001	6:49	18.9	19.1	19.0	18.7	9.5	21	79	0.0	0.0
10/24/2001	6:50	18.9	19.1	19.0	18.8	9.7	37	79	0.0	0.0
10/24/2001	6:51	18.9	19.1	19.0	18.7	9.6	21	79	0.0	0.0
10/24/2001	6:52	18.9	19.1	19.0	18.8	9.6	21	79	0.0	
10/24/2001	6:53	18.9	19.1	19.0	18.8	9.7	21	79	0.0	0.0
10/24/2001	6:54	18.9	19.1	19.1	18.8	9.6	21	79	0.0	
10/24/2001	6:55	18.9	19.1	19.0		9.7	21	79		0.0
10/24/2001	6:56	18.9	19.1	19.0	18.8	9.7	21	79		
10/24/2001	6:57	19.0	19.1	19.1	18.8	9.6	21	79		
10/24/2001	6:58	18.9	19.1	19.1	18.8	9.6	21	79		
10/24/2001	6:59	19.0	19.1	19.1	18.8	9.6	21	79		
10/24/2001	7:00	18.9	19.1	19.1	18.8	9.6	21	79		
10/24/2001	7:01	19.0	19.1	19.1	18.8	9.6	21	79		
10/24/2001	7:02	18.9	19.1	19.1	18.8	9.7	21	79		
10/24/2001	7:03	19.0	19.1	19.1	18.8	9.6	21	79		
10/24/2001	7:04	18.9	19.1	19.1	18.8	9.6	21	79		
10/24/2001	7:05	19.0	19.1	19.1	18.8	9.7	21	79		
10/24/2001	7:06	19.0	19.1	19.1	18.8	9.7	21	79		
10/24/2001	7:07	19.0	19.1	19.1	18.8	9.7	21	79		
10/24/2001	7:08	19.0	19.1	19.1	18.9	9.7	21	79	0.0	
10/24/2001	7:09	19.0	19.2	19.1	18.8	9.5	21	79		
10/24/2001	7:10	19.0	19.2	19.1	18.9	9.7	21	79		!
10/24/2001	7:11	19.0	19.2	19.2	18.8	9.6	21	79	0.0	0.0

				PREC	3C_100 ²	102_0930)			
			Recir							
		HX	Pump	Tank	Heater					
		Outlet	Outlet	Bottom	Outlet	Recir				
		Temp	Temp	Temp	Temp	Pump			NaMnO₄	Sr(NO ₃) ₂
		TC0	TC1	TC2	TC3	Flow	Heater	Heater	Flow	Flow
DATE	TIME	(°C)	(°C)	(°C)	(°C)	(gpm)	Current	Voltage	(gpm)	(gpm)
10/1/2002	9:26	21.0	21.0	21.0	21.0	-0.1	0	0	0.0	0.0
10/1/2002	9:26	21.0	21.0	21.0	21.0	-0.1	0	0	0.0	0.0
10/1/2002	9:27	21.0	21.1	21.0	21.0	-0.1	0	0	0.0	0.0
10/1/2002	9:28	22.7	22.8	22.6	22.5	9.7	0	0	0.0	0.0
10/1/2002	9:29	22.8	22.8	22.6	22.7	9.6		0	0.0	0.0
10/1/2002	9:30	22.9	22.8	22.7	22.8	9.6		0	0.0	0.0
10/1/2002	9:31	22.9	22.8	22.7	22.8	9.6		0	0.0	0.0
10/1/2002	9:32	22.9	22.9	22.7	22.8	9.6		0	0.0	0.0
10/1/2002	9:33	22.9	22.9	22.7	22.8	9.6		0	0.0	0.0
10/1/2002	9:34	23.0	22.9	22.7	22.8	9.6		0	0.0	0.0
10/1/2002	9:35	23.0	22.9	22.7	22.9	9.6		0	0.0	0.0
10/1/2002	9:36	23.0	22.9	22.7	22.9	9.7	0	0	0.0	0.0
10/1/2002	9:37	23.0	23.0	22.8	22.9	9.6	0	0	0.0	0.0
10/1/2002	9:38	23.0	23.0	22.8	22.9	9.7	0	0	0.0	0.0
10/1/2002	9:39	23.0	23.0	22.8	22.9	9.6	0	0	0.0	0.0
10/1/2002	9:40	23.1	23.0	22.8	23.0	9.6	0	0	0.0	0.0
10/1/2002	9:41	23.1	23.0	22.8	23.0	9.6	0	0	0.0	0.0
10/1/2002	9:42	23.1	23.0	22.9	23.0	9.5	0	0	0.0	0.0
10/1/2002	9:43	23.1	23.1	22.9	23.0	9.6	0	0	0.0	0.0
10/1/2002	9:44	23.1	23.1	22.9	23.0	9.6	0	0	0.0	0.0
10/1/2002	9:45	23.1	23.1	22.9	23.0	9.6	0	0	0.0	0.0
10/1/2002	9:46	23.2	23.1	22.9	23.1	9.6	0	0	0.0	0.0
10/1/2002	9:47	23.2	23.1	22.9	23.1	9.6	0	0	0.0	0.0
10/1/2002	9:48	23.2	23.1	22.9	23.1	9.6	0	0	0.0	0.0
10/1/2002	9:49	23.2	23.1	23.0	23.1	9.7	0	0	0.0	0.0
10/1/2002	9:50	23.2	23.1	23.0	23.1	9.5	0	0	0.0	0.0
10/1/2002	9:51	23.2	23.2	23.0	23.1	9.6	0	0	0.0	0.0
10/1/2002	9:52	23.2	23.2	23.0	23.1	9.6		0	0.0	0.0
10/1/2002	9:53	23.3	23.2	23.0	23.2	9.6	0	0	0.0	0.0
10/1/2002	9:54	23.3	23.2	23.0	23.2	9.6	0	0	0.0	0.0
10/1/2002	9:55	23.3	23.2	23.0	23.2	9.6		0	0.0	0.0
10/1/2002	9:56	23.3	23.3	23.0	23.2	9.6		0	0.0	0.0
10/1/2002	9:57	23.3	23.3	23.1	23.2	9.6		0	0.0	0.0
10/1/2002	9:58	23.3	23.3	23.1	23.2	9.7	0	0	0.0	0.0
10/1/2002	9:59	23.4	23.3	23.1	23.3	9.6		0	0.0	0.0
10/1/2002	10:00	23.4	23.3	23.1	23.3	9.6		0	0.0	0.0
10/1/2002	10:01	23.4	23.3	23.1	23.3	9.6		0	0.0	0.0
10/1/2002	10:02	23.4	23.3	23.1	23.3	9.6		0	0.0	0.0
10/1/2002	10:03	23.4	23.4	23.2	23.3	9.6		0	0.0	0.0
10/1/2002	10:04	23.4	23.4	23.2	23.3	9.6		0	0.0	0.0
10/1/2002	10:05	23.5	23.4	23.2	23.4	9.5		0	0.0	0.0
10/1/2002	10:06	23.5	23.4	23.2	23.4	9.6		0	0.0	0.0
10/1/2002	10:07	23.5	23.4	23.2	23.4	9.6		0	0.0	0.0
10/1/2002	10:08	23.5	23.5	23.2	23.4	9.7	0	0	0.0	0.0
10/1/2002	10:09	23.5	23.5	23.3	23.4	9.6	0	0	0.0	0.0

				PREC	C3B_102	102_064	14			
			Recir							
		HX	Pump	Tank	Heater					
		Outlet	Outlet	Bottom	Outlet	Recir				
		Temp	Temp	Temp	Temp	Pump			$NaMnO_4$	$Sr(NO_3)_2$
		TC0	TC1	TC2	TC3	Flow	Heater	Heater	Flow	Flow
DATE	TIME	(°C)	(°C)	(°C)	(°C)	(gpm)	Current	Voltage	(gpm)	(gpm)
10/21/2002	6:43	22.5	22.2	22.6	22.1	-0.1	0	0	0.0	0.0
10/21/2002	6:44	22.5	22.2	22.6	22.1	-0.1	0	0	0.0	0.0
10/21/2002	6:45	22.5	22.2	22.6	22.1	-0.1	0	0	0.0	0.0
10/21/2002	6:46	23.2	23.1	23.0	23.0	9.6	0	0	0.0	0.0
10/21/2002	6:47	23.3	23.2	23.1	25.6	9.6	19	198	0.0	0.0
10/21/2002	6:48	23.4	23.3	23.1	25.7	9.7	21	198	0.0	0.0
10/21/2002	6:49	23.4	23.4	23.2	25.8	9.6	20	198	0.0	0.0
10/21/2002	6:50	23.5	23.4	23.3	25.8	9.6	20	198	0.0	0.0
10/21/2002	6:51	23.6	23.5	23.3	25.9	9.6	20	198	0.0	0.0
10/21/2002	6:52	23.7	23.6	23.4	26.0	9.6	20	198	0.0	0.0
10/21/2002	6:53	23.7	23.7	23.5	26.1	9.6	20	198	0.0	0.0
10/21/2002	6:54	23.8	23.8	23.6	26.2	9.6		198	0.0	0.0
10/21/2002	6:55	23.9	23.9	23.7	26.3	9.6	20	198	0.0	0.0
10/21/2002	6:56	24.0	24.0	23.8	26.4	9.6	20	198	0.0	0.0
10/21/2002	6:57	24.2	24.1	23.9	26.5	9.5	20	198	0.0	0.0
10/21/2002	6:58	24.2	24.2	24.0	26.6	9.5	20	198	0.0	0.0
10/21/2002	6:59	24.4	24.3	24.1	26.6	9.5	20	198	0.0	0.0
10/21/2002	7:00	24.5	24.4	24.2	26.8	9.6	20	198	0.0	0.0
10/21/2002	7:01	24.6	24.5	24.3	26.9	9.6	20	198	0.0	0.0
10/21/2002	7:02	24.7	24.6	24.4	27.0	9.6	20	198	0.0	0.0
10/21/2002	7:03	24.8	24.7	24.5	27.1	9.6	20	198	0.0	0.0
10/21/2002	7:04	24.9	24.8	24.7	27.2	9.6	20	198	0.0	0.0
10/21/2002	7:05	25.0	24.9	24.8	27.4	9.7	20	198	0.0	0.0
10/21/2002	7:06	25.1	25.0	24.9	27.5	9.5	20	198	0.0	0.0
10/21/2002	7:07	25.2	25.2	25.0	27.6	9.6	20	198	0.0	0.0
10/21/2002	7:08	25.3	25.3	25.1	27.6	9.6	20	198	0.0	0.0
10/21/2002	7:09	25.4	25.4	25.2	27.8	9.6	20	198	0.0	0.0
10/21/2002	7:10	25.5	25.5	25.3	27.9	9.6	20	198	0.0	0.0
10/21/2002	7:11	25.7	25.6	25.4	27.9	9.6		198	0.0	0.0
10/21/2002	7:12	25.7	25.7	25.5	28.1	9.6	20	198	0.0	0.0
10/21/2002	7:13	25.9	25.8	25.6	28.2	9.6		198	0.0	0.0
10/21/2002	7:14	26.0	25.9	25.7	28.3	9.6		198	0.0	0.0
10/21/2002	7:15	26.1	26.0	25.8	28.4	9.6		198	0.0	0.0
10/21/2002	7:16	26.2	26.1	26.0	28.5	9.6		198	0.0	0.0
10/21/2002	7:17	26.3	26.2	26.1	28.6	9.7	20	198	0.0	0.0
10/21/2002	7:18	26.4	26.3	26.2 26.3	28.8	9.6	20	198	0.0	0.0
10/21/2002	7:19	26.5	26.4		28.8	9.6	20	198	0.0	0.0
10/21/2002	7:20 7:21	26.6 26.7	26.5	26.4 26.5	28.9	9.6	20 20	198 198	0.0	0.0
10/21/2002	7:21		26.6		29.0	9.6			0.0	0.0
10/21/2002		26.8	26.8	26.6	29.2	9.6	20	198	0.0	0.0
10/21/2002	7:23	26.9	26.9	26.7	29.2	9.6	20	198	0.0	0.0
10/21/2002	7:24	27.0	27.0	26.8	29.3	9.5	20	198	0.0	0.0
10/21/2002	7:25	27.1	27.1	26.9	29.5	9.6	20	198	0.0	0.0
10/21/2002	7:26	27.2	27.2	27.0	29.6	9.6	20	198	0.0	0.0
10/21/2002	7:27	27.4	27.3	27.1	29.7	9.5	20	198	0.0	0.0

				PREC	3A_1106	02_0630)			
			Recirc							
		HX	Pump	Tank	Heater					
		Outlet	Outlet	Bottom	Outlet	Recirc				
		Temp	Temp	Temp	Temp	Pump			NaMnO ₄	` -/-
		TC0	TC1	TC2	TC3	Flow	Heater		Flow	Flow
DATE	TIME	(°C)	(°C)	(°C)	(°C)	(gpm)	Current	Voltage	(gpm)	(gpm)
11/6/2002	6:28	22.4	22.5	22.6	22.2	-0.1	0	0	0.0	
11/6/2002	6:29	22.4	22.5	22.6	22.2	-0.1	0	0	0.0	
11/6/2002	6:30	22.4	22.5	22.6	22.2	-0.1	0	0	0.0	
11/6/2002	6:31	22.4	21.8	21.0	22.2	-0.1	0	0	0.0	
11/6/2002	6:32	21.5	21.3	21.1	21.4	9.6	0	0	0.0	
11/6/2002	6:33	21.5	21.4	21.1	21.4	9.5	0	0	0.0	
11/6/2002	6:34	21.5	21.4	21.1	21.4	9.6	0	0	0.0	
11/6/2002	6:35	21.5	21.4	21.2	21.4	9.5	0	0	0.0	
11/6/2002	6:36	21.5	21.4	21.2	21.4	9.5	0	0	0.0	
11/6/2002	6:37	21.6	21.5	21.2	21.4	9.6	0	0	0.0	
11/6/2002	6:38	21.6	21.5	21.2	21.5	9.6	0	0	0.0	
11/6/2002	6:39	21.6	21.5	21.3	21.5	9.5	0	0	0.0	
11/6/2002	6:40	21.7	21.6	21.3	21.5	9.5	0	0	0.0	
11/6/2002	6:41	21.7	21.6	21.3	21.5	9.6	0	0	0.0	0.0
11/6/2002	6:42	21.7	21.6	21.3	21.6	9.5	0	0	0.0	0.0
11/6/2002	6:43	21.7	21.7	21.4	21.6	9.6	0	0	0.0	
11/6/2002	6:44	21.8	21.7	21.4	21.6	9.6	0	0	0.0	0.0
11/6/2002	6:45	21.8	21.7	21.4	21.6	9.5	0	0	0.0	0.0
11/6/2002	6:46	21.8	21.7	21.4	21.7	9.6	0	0	0.0	0.0
11/6/2002	6:47	21.8	21.7	21.4	21.7	9.5	0	0	0.0	0.0
11/6/2002	6:48	21.8	21.8	21.5	21.7	9.6	0	0	0.0	0.0
11/6/2002	6:49	21.9	21.8	21.5	21.7	9.6	0	0	0.0	0.0
11/6/2002	6:50	21.9	21.8	21.5	21.8	9.6	0	0	0.0	0.0
11/6/2002	6:51	21.9	21.8	21.5	21.8	9.6	0	0	0.0	
11/6/2002	6:52	21.9	21.9	21.6	21.8	9.6	0	0	0.0	0.0
11/6/2002	6:53	22.0	21.9	21.6	22.3	9.6	90	138	0.0	0.0
11/6/2002	6:54	22.0	21.9	21.6	22.5	9.6	106	138	0.0	0.0
11/6/2002	6:55	22.0	21.9	21.7	22.5	9.5	115	140	0.0	
11/6/2002	6:56	22.1	22.0	21.7	22.6	9.6	86	141	0.0	0.0
11/6/2002	6:57	22.1	22.0	21.7	22.7	9.6	118		0.0	
11/6/2002	6:58	22.1	22.1	21.8	22.8	9.6	115		0.0	
11/6/2002	6:59	22.2	22.1	21.8	22.8	9.6	103		0.0	
11/6/2002	7:00	22.2	22.1	21.9	22.9	9.6	101	145	0.0	
11/6/2002	7:01	22.3	22.2	21.9	23.0	9.6	82	144	0.0	
11/6/2002	7:02	22.3	22.2	22.0	23.1	9.6	117	149	0.0	
11/6/2002	7:03	22.4	22.3	22.0	23.1	9.5	114		0.0	
11/6/2002	7:04	22.4	22.3	22.1	23.2	9.5	114		0.0	
11/6/2002	7:05	22.5	22.4	22.1	23.3	9.6	94		0.0	
11/6/2002	7:06	22.5	22.5	22.2	23.4	9.6	114		0.0	
11/6/2002	7:07	22.6	22.5	22.2	23.4	9.6	130	154	0.0	
11/6/2002	7:08	22.7	22.6	22.3	23.5	9.7	129	154	0.0	
11/6/2002	7:09	22.7	22.6	22.4	23.6	9.5	116	154	0.0	
11/6/2002	7:10	22.8	22.7	22.4	23.6	9.6	96	155	0.0	
11/6/2002	7:11	22.8	22.7	22.5	23.7	9.6	105		0.5	
11/6/2002	7:12	22.8	22.8	22.5	23.8	9.7	124	157	0.4	0.0

				P	JM4A_(031003	3_0730					
				Heater	Tank							
		PJM	Pulse	Outlet	Bottom	Recirc						Total
		Tank	Tube	Temp TC8	Temp TC10	Pump	Pressure	Vacuum	Vent	Pressure	Vacuum	Cycle
DATE	TIME	Level (inches)	Pressure (psig)	(°C)	(°C)	Flow (gpm)	solenoid position	solenoid position	solenoid position	Stop Set (inches)	Stop Set (inches)	Time (sec)
3/10/2003	7:28:41	28.45	0.033	27.3	21.8	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:18	28.45	0.033	27.3	21.8	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:19	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:21	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:22	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:23	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:24	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:25	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:26	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:27	28.46	0.033	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:28	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:29	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:30	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:31	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:32	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:33	28.46	0.033	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:34	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:35	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:36	28.46	0.033	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:37	28.46	0.034	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:38	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:39	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:40	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:41	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:42	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:43	28.46	0.033	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:44	28.46	0.034	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:45	28.46	0.033	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:46	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:47	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:48	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:49	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:50	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:51	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:52	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:53	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:54	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:55	28.46	0.034	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:56	28.46	0.033	27.5	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:57	28.46	0.033	27.4	21.9	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:58	28.46	0.034	27.5	22.0	1.6	0	0	0	22.75	27	77
3/10/2003	7:30:59	28.46	0.034	27.5	22.0	1.6	0	0	0	22.75	27	77
3/10/2003	7:31:00	28.46	0.034	27.5	22.0	1.6	0	0	0	22.75	27	77
3/10/2003	7:31:01	28.46	0.034	27.5	22.0	1.6	0	0	0	22.75	27	77
3/10/2003	7:31:02	28.46	0.033	27.4	22.0	1.6	0	0	0	22.75	27	77 77
3/10/2003	7:31:03	28.46	0.034	27.5	22.0	1.6	0	0	0	22.75	27	77

				PJM4	A_031	103_06	16				
				Heater	Tank						
		PJM	Pulse	Outlet	Bottom	Recirc					
		Tank	Tube	Temp	Temp	Pump	Pressure	Vacuum	Vent	Pressure	Vacuum
DATE	TIME	Level	Pressure	TC8 (°C)	TC10 (°C)	Flow	solenoid	solenoid	solenoid	Stop Set	Stop Set
3/11/2003	TIME	(inches)	(psig)	51.3		(gpm) 1.6	position	position	position 1	(inches) 21.5	(inches)
	6:16:23	30.39	0.034	51.3	51.3 51.2	1.6	0	0	1	21.5	
3/11/2003	6:17:54	30.34	0.034				0	0	1		27 27
3/11/2003	6:22:54	30.46	0.034	60.6	50.7	0.5	0	0	1	21.5	27
3/11/2003	6:26:12	29.96	0.034	61.5	51.8	0.5	0	0		22.5	
3/11/2003	6:26:13	29.95	0.034	61.5	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:14	29.93	0.034	61.5	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:15	29.93	0.034	61.5	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:16	29.93	0.034	61.5	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:17	29.92	0.034	61.5	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:18	29.91	0.034	61.5	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:19	29.90	0.034	61.6	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:20	29.89	0.034	61.6	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:21	29.88	0.034	61.6	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:22	29.86	0.034	61.7	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:23	29.85	0.034	61.7	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:24	29.85	0.034	61.7	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:25	29.85	0.034	61.7	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:26	29.84	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:27	29.82	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:28	29.81	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:29	29.81	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:30	29.81	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:31	29.79	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:32	29.79	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:33	29.79	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:34	29.77	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:35	29.76	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:36	29.75	0.035	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:37	29.75	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:38	29.74	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:39		0.035			0.5	0	0	1	22.5	
3/11/2003	6:26:40		0.034		51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:41	29.72	0.034		51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:42	29.71	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:43	29.71	0.034	61.8	51.8	0.5	0	0	1	22.5	27
3/11/2003	6:26:44	29.69	0.034	61.8	51.7	0.5	0	0	1	22.5	27
3/11/2003	6:26:45	29.69	0.034	61.8	51.7	0.5	0	0	1	22.5	27
3/11/2003	6:26:46	29.69	0.035	61.9	51.7	0.5	0	0	1	22.5	27
3/11/2003	6:26:47	29.61	6.653	61.9	51.8	0.5	1	0	0	22.5	27
3/11/2003	6:26:48	20.25	11.109	61.9	51.8	0.5	0	1	0	22.5	27
3/11/2003	6:26:49		1.88	61.8	51.8	0.5	0	1	0	22.5	
3/11/2003	6:26:50	21.98	-0.021	61.8	51.8	0.5	0	1	0	22.5	27
3/11/2003	6:26:51	23.05	-0.763	61.8	51.8	0.5	0	1	0	22.5	27
3/11/2003	6:26:52	23.58	-1.192	61.8	51.8	0.5	0	1	0	22.5	27
3/11/2003	6:26:53		-1.403		51.8	0.5	0	1	0	22.5	
3/11/2003	6:26:54	28.22	-1.323	61.7	51.8	0.5	0	0	1	22.5	27

				P	JM4A_C	31103	_1030					
				Heater	Tank							
		PJM	Pulse	Outlet	Bottom	Recirc				_		Total
		Tank	Tube Pressure	Temp TC8	Temp TC10	Pump Flow	Pressure solenoid	Vacuum	Vent solenoid	Pressure Stop Set	Vacuum	Cycle Time
DATE	TIME	Level (inches)	(psig)	(°C)	(°C)	(gpm)	position	solenoid position	position	(inches)	Stop Set (inches)	(sec)
3/11/2003	10:30:14	35.92	0.0	53.0	53.4	0.5	0	0	1	27	27	77
3/11/2003	10:30:36	35.92	0.0	53.0	53.4	0.5	0	0	1	27	27	77
3/11/2003	10:30:37	36.27	0.0	53.0	53.4	0.5	0		1	27	27	77
3/11/2003	10:30:38	36.27	0.0	53.0	53.4	0.5	0		1	27	27	77
3/11/2003	10:30:39	36.27	0.0	53.0	53.4	0.5	0	0	1	27	27	77
3/11/2003	13:56:56	36.06	0.0	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:06	36.06	0.0	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:07	36.01	0.0	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:08	36.00	0.1	29.0	28.7	1.6	1	0	0	27	27	77
3/11/2003	13:57:09	34.04	11.0	29.0	28.7	1.6	1	0	0	27	27	77
3/11/2003	13:57:10	17.70	6.9	29.0	28.7	1.6	0	1	0	27	27	77
3/11/2003	13:57:11	11.55	0.8	29.0	28.7	1.6	0	1	0	27	27	77
3/11/2003	13:57:12	24.05	-0.2	29.0	28.7	1.6	0	1	0	27	27	77
3/11/2003	13:57:13	23.99	0.1	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:14	22.56	0.5	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:15	23.60	0.5	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:16	24.87	0.4	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:17	26.02	0.4	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:18	27.06	0.3	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:19	27.97	0.3	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:20	28.89	0.3	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:21	29.73	0.2	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:22	30.49	0.2	28.9	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:23	31.20	0.2	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:24	31.89	0.2	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:25	32.54	0.1	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:26	33.17	0.1	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:27	33.79	0.1	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:28	34.35	0.1	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:29	34.86	0.1	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:30	35.31	0.1	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:31	35.71	0.1	29.0	28.7	1.6	0	0	1	27	27	77
3/11/2003	13:57:32	36.02	0.0	29.0	28.7	1.6		0	1	27	27	77
3/11/2003	13:57:33	36.23	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:34	36.33	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:35	36.31	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:36	36.25	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:37	36.24	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:38	36.27	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:39	36.26	0.0	29.0	28.7	1.6			1	27	27	77
3/11/2003	13:57:40	36.26	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:41	36.25	0.0	28.9	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:42	36.25	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:43	36.25	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:44	36.27	0.0	29.0	28.7	1.6	0		1	27	27	77
3/11/2003	13:57:45	36.29	0.0	29.0	28.7	1.6	0	0	1	27	27	77

				P	JM4A_C	31203	_0251					
				Heater	Tank							
		PJM	Pulse	Outlet	Bottom	Recirc						Total
		Tank	Tube	Temp	Temp	Pump	Pressure	Vacuum	Vent	Pressure	Vacuum	Cycle
DATE	TIN 45	Level	Pressure	TC8 (°C)	TC10 (°C)	Flow	solenoid	solenoid	solenoid	Stop Set	Stop Set	Time
DATE	TIME	(inches)	(psig)			(gpm)	position	position	position	(inches)	(inches)	(sec)
3/12/2003	2:50:00	34.19	0.0	32.4	33.0	0.5	0	0	0	10 10	28 28	77 77
3/12/2003	2:51:15	34.19	0.0	32.4	33.0	0.5	0	0	0	10	28	77
3/12/2003	2:51:16 2:51:17	34.08	0.0	32.4 32.4	32.9 32.9	0.5	0	0	0	10	28	77
3/12/2003		34.09	0.0	32.4	32.9	0.5		0	0	10	28	77
3/12/2003 3/12/2003	2:51:18 2:51:19	34.08 34.08	0.0	32.4	32.9	0.5	0	0	0	10	28	77
3/12/2003	2:51:19	34.07	0.0	32.4	32.9	0.5	0	0	0	10	28	77
3/12/2003	2:51:21	34.07	0.0	32.4	32.9	0.5	0	0	0	10	28	77
3/12/2003	2:51:22	34.06	0.0	32.4	32.9	0.5	0	0	0	10	28	77
3/12/2003	2:51:23	34.77	9.8	32.3	32.9	0.5	1			10	28	77
3/12/2003	2:51:23	20.66	12.0	32.4	32.9	0.5	1	0	0	10	28	77
3/12/2003	2:51:25	5.30	8.0	32.4	32.9	0.5	0	1	0	10	28	77
3/12/2003	2:51:26	18.72	0.6	32.4	33.0	0.5	0	1	0	10	28	77
3/12/2003	2:51:27	13.22	-0.3	32.4	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:28	16.06	-0.3	32.5	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:29	21.78	-0.0	32.4	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:30	22.33	0.4	32.5	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:31	23.62	0.4	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:32	24.58	0.4	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:33	25.80	0.4	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:34	26.84	0.3	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:35	27.89	0.3	32.5	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:36	28.91	0.3	32.5	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:37	29.84	0.2	32.5	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:38	30.75	0.2	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:39	31.62	0.2	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:40	32.40	0.1	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:41	33.07	0.1	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:42	33.65	0.1	32.5	33.2	0.5	0	1	0	10	28	77
3/12/2003	2:51:43	34.18	0.1	32.6	33.2	0.5	0	1	0	10	28	
3/12/2003	2:51:44	34.64	0.1	32.6	33.2	0.5	0	1	0	10	28	
3/12/2003	2:51:45	35.01	0.1	32.6		0.5	0	1	0	10	28	
3/12/2003	2:51:46	35.32	0.1	32.6		0.5	0	1	0	10	28	77
3/12/2003	2:51:47	35.54	0.0	32.6	33.1	0.5	0	1	0	10	28	
3/12/2003	2:51:48	35.68	0.0	32.6	33.1	0.5	0	1	0	10	28	
3/12/2003	2:51:49	35.71	0.0	32.6	33.1	0.5	0	1	0	10	28	77
3/12/2003	2:51:50	35.64	0.0	32.6	33.1	0.5	0	1	0	10	28	
3/12/2003	2:51:51	35.58	0.0	32.6	33.1	0.5	0	1	0	10	28	
3/12/2003	2:51:52	35.57	0.0	32.6	33.1	0.5	0	1	0	26.6	28	
3/12/2003	2:51:53	35.52	0.0	32.6	33.1	0.5	0	1	0	26.6	28	
3/12/2003	2:51:54	35.45	0.0	32.6		0.5	0	1	0	26.6	28	
3/12/2003	2:51:55	35.43	0.0	32.6	33.1	0.5	0	1	0	26.6	28	77
3/12/2003	2:51:56	35.41	0.0	32.6	33.2	0.5	0	1	0	26.6	28	77
3/12/2003	2:51:57	35.38	0.0	32.6	33.2	0.5	0	1	0	26.6	28	77
3/12/2003	2:51:58	35.36	0.0	32.6	33.2	0.5	0	1	0	26.6	28	77
3/12/2003	2:51:59	35.32	0.0	32.7	33.2	0.5	0	1	0	26.6	28	77

				PJI	И4A_03	31203_	1147					
				Heater	Tank							
			Pulse	Outlet	Bottom	Recirc						Total
		PJM Tank	Tube	Temp TC8	Temp TC10	Pump	Pressure	Vacuum solenoid	Vent	Pressure	Vacuum	Cycle
DATE	TIME	Level (inches)	Pressure (psig)	(°C)	(°C)	Flow (gpm)	solenoid position	position	solenoid position	Stop Set (inches)	Stop Set (inches)	Time (sec)
3/12/2003	11:46:22	19.09	0.0	27.0	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:39	19.09	0.0	27.0	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:40	19.08	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:41	19.08	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:42	19.08	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:43	19.07	0.0	26.9	26.6	0.4	1	0	0	16.35	16	77
3/12/2003	11:46:44	18.18	4.9	26.9	26.6	0.4	1	0	0	16.35	16	77
3/12/2003	11:46:45	10.62	4.1	26.9	26.6	0.4	0	1	0	16.35	16	77
3/12/2003	11:46:46	14.89	0.6	26.9	26.6	0.4	0	1	0	16.35	16	77
3/12/2003	11:46:47	16.35	0.3	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:48	13.93	0.4	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:49	14.83	0.4	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:50	15.39	0.3	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:51	15.06	0.3	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:52	15.65	0.3	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:53	16.36	0.2	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:54	16.98	0.2	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:55	17.37	0.2	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:56	17.69	0.2	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:57	18.00	0.1	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:58	18.30	0.1	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:46:59	18.52	0.1	26.9	26.6	0.4		0	1	16.35	16	77
3/12/2003	11:47:00	18.68	0.1	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:01	18.80	0.1	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:02	18.91	0.1	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:03	19.03	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:04	19.13	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:05	19.18	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:06	19.21	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:07	19.21	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:08	19.20	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:09	19.19	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:10	19.19	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:11	19.18	0.0	26.9	26.6	0.4		0	1	16.35	16	
3/12/2003	11:47:12	19.18	0.0	26.9	26.6	0.4		0	1	16.35	16	77
3/12/2003	11:47:13	19.18	0.0	26.9	26.6	0.4		0	1	16.35	16	77
3/12/2003	11:47:14	19.18	0.0	26.9	26.6	0.4		0	1	16.35	16	
3/12/2003	11:47:15	19.17	0.0	26.9	26.6	0.4		0	1	16.35	16	
3/12/2003	11:47:16	19.16	0.0	26.9	26.6	0.4		0	1	16.35	16	
3/12/2003	11:47:17	19.16	0.0	26.9	26.6	0.4		0	1	16.35	16	
3/12/2003	11:47:18	19.16	0.0	26.9	26.6	0.4		0	1	16.35	16	
3/12/2003	11:47:19	19.16	0.0	26.9	26.6	0.4		0	1	16.35	16	
3/12/2003	11:47:20	19.16	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:21	19.16	0.0	26.9	26.6	0.4	0	0	1	16.35	16	
3/12/2003	11:47:22	19.15	0.0	26.9	26.6	0.4	0	0	1	16.35	16	77
3/12/2003	11:47:23	19.15	0.0	26.9	26.6	0.4		0	1	16.35	16	

APPENDIX K

Experimental Data: Crossflow Filter Test Rig Operations Data

Appendix Contents

Nomenclature for Data Sheets

- Solenoid, 1=yes and 0=no for pressure to the backpulse piston
- FLTRT (°C) T2, Filtrate temperature in filter at exit of the housing
- CL LOOP (°C) T3, Temperature of the liquid in the cleaning loop
- SL LOOP (°C) T1, Temperature of the liquid in the slurry loop at the slurry reservoir
- UP AMB (°C) T4, Ambient temperature at the top of the crossflow test rig-3rd level
- BOT AMB (°C) T5, Ambient temperature at the bottom of the crossflow test rig-1st level
- BOT DP (psid) dP2, Differential pressure between the filter slurry entrance and the bottom filtrate exit
- FLTR (psig) P1, pressure at the filter slurry entrance
- FLTR DP (psid) dP1, Differential pressure between the filter slurry entrance and exit
- TOP DP (psid) dP3, Differential pressure between the filter slurry exit and the top filtrate exit
- FLTRATE (psig) P2, Pressure at the filtrate exit
- BP (psig) P3, Air pressure applied to the backpulse piston
- SL FLOW (gpm) Q1, Flow rate of the slurry
- FLTR FLOW (gpm) Q2, flow rate of the filtrate (low range meter used for slurry runs)
- HI FLTR FLOW (gpm) Q3, Flow rate of the filtrate (high range meter used for water runs)
- Temp corr factor, Factor to correct for temperature variation from 25 $^{\circ}$ C equal to $_{e}^{(2500)(1/(273 + T1)-1/298))}$
- Temp corr flow (gpm/ft²), Filtrate flow per unit area of filter calculated by dividing the total filtrate flow by the area of the filter (2.29 ft²) and multiplying by the temperature correction factor.

- Axial Vel (ft/sec), Axial tube velocity calculated by dividing the total slurry loop flow by the crosectional area of seven 3/8" ID tubes (0.415 ft²)
- Avg TMP (psid), calculated by averaging BOT DP and TOP DP

Note: the data for FLTR DP, dP1, and FLTRATE, P2, is not shown for some files as the root valves to the rosemount pressure transducers were not correctly valved in. This was identified while cleaning the Crossflow Test Rig and corrected on 10/10/01.

Experimental data:

Data Set	Solution	Done on
Waterrun_091001_0747	DIF Water	9/10/01
Xflow1_092601_1800	Batch #1 AN-107 Simulant	9/26/01
Xflow1_092701_0628	Batch #1 AN-107 Simulant	9/27/01
Xflow1_092801_0717	Batch #1 AN-107 Simulant	9/28/01
Xflow1_100101_0955	Batch #1 AN-107 Simulant	10/1/01
Xflow1_100201_0702	Batch #1 AN-107 Simulant	10/2/01
Xflow1_101501_0837	DIF Water	10/15/01
Xflow2_102301_1011	Batch #2 AN-107 Simulant	10/23/01
Xflow2_102401_0630	Batch #2 AN-107 Simulant	10/24/01
Xflow2_102501_0700	Batch #2 AN-107 Simulant	10/25/01
Xflow2_110101_1045	DIF Water	11/01/01

The first page of each data set contained in the CD follows:

									\Λ/Δ T F	RRIIN	V 0910	001 0747	,							
								Raw D		-111101	1_0510	01_0141						Calcula	ations	
			FLTRT	CL LOOP	SL LOOP	UP AMB	BOT AMB	BOT		FLTR	TOP			SL	FLTR	HI FLTR	T			_
			(°C)	(°C)	(°C)	(°C)	(°C)	DP (poid)	FLTR	DP (poid)	DP (poig)	FLTRATE	BP (poig)	FLOW	FLOW (gpm)	FLOW (gpm)	Temp corr flow	Axial Vel	Avg TMP	Temp
DATE	TIME	Sol	(C) T2	(C)	(C) T1	(C)	(C)	(psid) dP2	(psig) P1	(psid) dP1	(psig) dP3	(psig) P2	(psig) P3	(gpm) Q1	(gpm) Q2	(gpm) Q3	(gpm/ft ²)	(ft/sec)	(psid)	factor
9/10/2001	8:49	0	23.5	21.9	23.5	22.2	21.6	9.1	17.4	-0.1	8.4	0.1	0	13.1	1.210	1.146	0.521	5.4	8.8	1.042
9/10/2001	8:50	0	23.6	21.9	23.6	22.2	21.7	11.5	17.5	-0.1	11.0	0.1	0	12.9	0.954	0.905	0.412	5.3	11.2	1.042
9/10/2001	8:51	0	23.6	21.9	23.6	22.2	21.7	12.0	18.3	-0.1	11.2	0.1	0	10.6	0.948	0.891	0.405	4.4	11.6	1.041
9/10/2001	8:52	0	23.7	21.9	23.6	22.3	21.7	11.2	16.6	-0.1	10.9	0.1	0	10.1	0.885	0.837	0.380	4.2	11.1	1.040
9/10/2001	8:53	0	23.7	21.9	23.6	22.3	21.8	11.1	16.1	-0.1	10.8	0.1	0	9.8	0.856	0.807	0.366	4.1	10.9	1.039
9/10/2001	8:54	0	23.8	21.9	23.7	22.4	21.8	10.4	15.2	-0.1	10.6	0.1	0	9.1	0.838	0.793	0.359	3.8	10.5	1.037
9/10/2001	8:55	0	23.8	21.9	23.7	22.4	21.8	10.5	15.1	-0.1	10.6	0.1	0	10.2	0.822	0.778	0.352	4.2	10.6	1.037
9/10/2001	8:56	0	23.8	21.9	23.7	22.4	21.8	10.9	15.5	-0.1	10.4	0.1	0	10.1	0.820	0.773	0.350	4.2	10.7	1.036
9/10/2001	8:57	0	23.9	21.9	23.8	22.4	21.8	10.9	15.5	-0.1	10.7	0.1	0	10.1	0.817	0.770	0.348	4.2	10.8	1.035
9/10/2001	8:58	0	23.9	21.9	23.8	22.4	21.8	13.4	20.0	-0.1	13.0	0.1	0	11.6	0.961	0.920	0.415	4.8	13.2	1.034
9/10/2001	8:59	0	24.0	21.9	23.9	22.4	21.8	18.4	29.4	-0.1	18.3	0.1	0	12.1	1.211	1.317	0.593	5.0	18.3	1.032
9/10/2001	9:00	0	24.1	21.9	23.9	22.4	21.8	18.7	30.0	-0.1	18.4	0.1	0	10.0	1.211	1.349	0.607	4.1	18.5	1.030
9/10/2001	9:01	0	24.2	21.9	24.0	22.4	21.9	18.7	30.0	-0.1	18.6	0.1	0	9.1	1.211	1.352	0.607	3.8	18.6	1.028
9/10/2001	9:02	0	24.3	21.9	24.1	22.4	21.9	18.9	30.2	-0.1	19.1	0.1	0	9.1	1.211	1.354	0.606	3.8	19.0	1.025
9/10/2001	9:03	0	24.4	21.9	24.2	22.4	21.9	24.1	43.3	-0.1	23.5	0.1	0	10.9	1.211	1.598	0.714	4.5	23.8	1.024
9/10/2001	9:04	0	24.5	21.9	24.3	22.4	21.9	24.1	45.8	-0.1	23.6	0.1	0	9.7	1.211	1.702	0.757	4.0	23.8	1.019
9/10/2001	9:05	0	24.7	21.9	24.4	22.4	21.9	23.8	45.2	-0.1	23.3	0.1	0	10.6	1.211	1.681	0.746	4.4	23.6	1.017
9/10/2001	9:06	0	24.8	21.9	24.6	22.5	21.9	23.4	45.2	-0.1	23.8	0.1	0	9.6	1.211	1.686	0.745	4.0	23.6	1.012
9/10/2001	9:07	0	24.9	21.9	24.7	22.5	21.9	23.6	44.9	-0.1	23.1	0.1	0	9.3	1.211	1.692	0.746	3.9	23.3	1.009
9/10/2001	9:08	0	25.1	21.9	24.8	22.5	21.9	24.1	45.9	-0.1	23.6	0.1	0	8.6	1.211	1.696	0.744	3.6	23.8	1.005
9/10/2001	9:09	0	25.2	21.9	24.9	22.5	21.9	26.5	56.2	-0.1	26.8	0.1	0	9.7	1.211	1.912	0.837	4.0	26.7	1.002
9/10/2001	9:10	0	25.4	21.9	25.1	22.5	22.0	27.7	59.9	-0.1	27.6	0.1	0	10.2	1.211	1.976	0.860	4.2	27.6	0.997
9/10/2001	9:11	0	25.6	21.9	25.2	22.5	22.0	28.0	60.7	-0.1	27.5	0.1	0	10.0	1.211	1.987	0.862	4.1	27.7	0.993
9/10/2001	9:12	0	25.8	21.9	25.5	22.6	22.0	27.8	60.5	-0.1	27.8	0.1	0	9.4	1.211	1.991	0.858	3.9	27.8	0.987
9/10/2001	9:13	0	26.0	21.9	25.7	22.6	22.0	27.3	59.9	-0.1	27.4	0.1	0	9.3	1.211	1.996	0.855	3.8	27.3	0.981
9/10/2001	9:14	0	26.1	22.0	26.0	22.6	22.0	27.4	50.7	-0.1	23.5	0.1	0	31.3	1.211	1.741	0.740	13.0	25.5	0.973
9/10/2001	9:15	0	26.2	21.9	26.1	22.6	22.0	24.9	42.8	-0.1	21.5	0.1	0	30.3	1.211	1.583	0.669	12.6	23.2	0.968
9/10/2001	9:16	0	26.4	22.0	26.3	22.6	22.0	25.6	44.7	-0.1	22.0	0.1	0	30.9	1.211	1.613	0.678	12.8	23.8	0.963
9/10/2001	9:17	0	26.5	22.0	26.5	22.6	22.0	25.8	45.2	-0.1	22.4	0.1	0	29.8	1.211	1.631	0.682	12.4	24.1	0.958
9/10/2001	9:18	0	26.7	22.0	26.7	22.6	22.0	25.7	45.0	-0.1	22.1	0.1	0	30.2	1.211	1.625	0.676	12.5	23.9	0.953
9/10/2001	9:19	0	26.9	22.0	26.9	22.6	22.0	25.5	45.1	-0.1	22.4	0.1	0	30.1	1.211	1.628	0.674	12.5	23.9	0.948

								\//\	202224	4000								
						D	D-4-	Xflow1	_092601	_1800				ı		0-11-	41	
				01		Raw	Data									Calcula	tions	
				CL LOOP	SL	AMB	вот	BOT DP	FLTR	TOP DP		SL FLOW	FLTR FLOW	HI FLTR FLOW	T	Temp corr	A: - I	A
			FLTRT	(°C)	LOOP	(°C)	AMB	(psid)	(psig)	(psig)	PISTON	(gpm)	(gpm)	(gpm)	Temp	flow	Axial Velocity	Avg TMP
DATE	TIME	Sol	(°C) T2	T3	(°C) T1	T4	(°C) T5	dP2	P1	dP3	(psig) P3	Q1	Q2	Q3	factor	(gpm/ft ²)	(ft/sec)	(psid)
9/26/2001	6:09:00 PM	0	23.13	22.61	44.016	23.62	22.74	4.16	3.39	5.08	-0.08	-0.18	0.010	-0.02	0.605	0.0026	-0.1	4.6
9/26/2001	6:10:00 PM	0	23.20	22.63	43.964	24.00	22.81	4.16	3.39	5.08	-0.08	-0.18	0.010	-0.02	0.605	0.0026	-0.1	4.6
9/26/2001	6:11:00 PM	0	23.28	22.64	42.729	24.28	22.84	5.51	5.57	4.54	-0.08	1.71	0.010	-0.02	0.624	0.0027	0.7	5.0
9/26/2001	6:12:00 PM	0	23.54	22.65	39.937	24.65	22.92	0.33	7.68	-0.81	-0.08	9.53	0.010	-0.02	0.670	0.0029	4.0	-0.2
9/26/2001	6:13:00 PM	0	23.46	22.66	39.117	24.93	23.00	0.52	7.99	-0.75	-0.08	10.80	0.010	-0.02	0.684	0.0030	4.5	-0.1
9/26/2001	6:14:00 PM	0	23.65	22.66	38.180	25.14	23.07	-0.99	3.39	0.70	-0.08	-0.18	0.010	-0.02	0.701	0.0031	-0.1	-0.1
9/26/2001	6:15:00 PM	0	23.49	22.68	33.366	25.32	23.11	-0.70	3.36	0.94	-0.08	-0.18	0.010	-0.02	0.795	0.0035	-0.1	0.1
9/26/2001	6:16:00 PM	0	23.49	22.69	36.089	25.35	23.17	5.44	10.97	0.10	-0.09	29.91	0.010	-0.02	0.740	0.0032	12.4	2.8
9/26/2001	6:17:00 PM	0	23.41	22.72	34.907	25.48		6.55	11.20	1.02	-0.08	29.84	0.010	-0.02	0.763	0.0033	12.4	3.8
9/26/2001	6:18:00 PM	0	23.40	22.71	33.821	25.53	23.26	20.88	25.67	9.95	-0.08	43.50	0.010	-0.02	0.786	0.0034	18.1	15.4
9/26/2001	6:19:00 PM	0	33.58	22.73	32.719	25.61	23.29	19.21	25.72	8.22	-0.08	44.06	0.010	-0.02	0.809	0.0035	18.3	13.7
9/26/2001	6:20:00 PM	0	32.91	22.73	31.708	25.61	23.33	17.64	25.82	6.51	-0.08	44.08	0.243	0.22	0.831	0.0882	18.3	12.1
9/26/2001	6:21:00 PM	0	32.56	22.75	30.731	25.63	23.36	13.78	25.96	2.81	-0.08	43.95	0.010	-0.02	0.854	0.0037	18.2	8.3
9/26/2001	6:22:00 PM	0	31.88	22.76		25.63			25.69	4.68	-0.08	43.90	0.165	0.13	0.876	0.0631	18.2	10.1
9/26/2001	6:23:00 PM	0	31.25	22.76		25.60			25.70	5.06	-0.08	43.70	0.149	0.12	0.897	0.0584	18.1	10.6
9/26/2001	6:24:00 PM	0	30.42	22.77			23.43		25.75	5.50	-0.08	43.78	0.160	0.13	0.920	0.0643	18.2	10.9
9/26/2001	6:25:00 PM	0	31.17	22.79			23.44		25.93	5.52	-0.07	43.50	0.151	0.12	0.940	0.0620	18.1	11.0
9/26/2001	6:26:00 PM	0	30.91	22.79	26.395	25.55	23.48	16.34	25.41	5.67	-0.08	43.60	0.136	0.11	0.962	0.0571	18.1	11.0
									25.70			43.69			Average	0.0610	18.1	10.7
9/26/2001	6:27:00 PM	0	29.99	22.81	25.599	25.59	23.53	12.81	25.49	2.14	-0.08	43.06	0.010	-0.02	0.983	0.0043	17.9	7.5
9/26/2001	6:28:00 PM	0	29.90	22.81	24.886		23.56	9.18	25.51	-1.47	-0.08	43.04	0.010	-0.02	1.003	0.0044	17.9	3.9
9/26/2001	6:29:00 PM	0	29.75	22.82	24.184	25.57	23.59	9.64	25.75	-1.48	-0.08	43.18	0.010	-0.02	1.023	0.0045	17.9	4.1
9/26/2001	6:30:00 PM	0	29.37	22.83	23.496	25.55	23.62	9.42	25.69	-1.12	-0.08	43.18	0.010	-0.02	1.043	0.0046	17.9	4.2
9/26/2001	6:31:00 PM	0	29.10	22.84	22.826	25.53	23.65	9.54	25.80	-1.09	-0.08	42.92	0.010	-0.02	1.064	0.0046	17.8	4.2
9/26/2001	6:32:00 PM	0	28.74	22.84	24.088	25.46	23.68	9.51	25.88	-1.37	-0.08	43.16	0.010	-0.02	1.026	0.0045	17.9	4.1
9/26/2001	6:33:00 PM	0	28.23	22.86	25.498	25.45	23.68	9.31	25.74	-1.31	-0.07	43.31	0.010	-0.02	0.986	0.0043	18.0	4.0
9/26/2001	6:34:00 PM	0	28.05	22.87	24.905	25.47	23.72	9.14	25.53	-1.50	-0.07	43.33	0.010	-0.02	1.003	0.0044	18.0	3.8
9/26/2001	6:35:00 PM	1	29.44	22.88	24.251	25.46	23.73	9.17	26.17	-1.97	48.94	43.34	0.010	-0.02	1.021	0.0045	18.0	3.6
9/26/2001	6:36:00 PM	0	26.34	22.89	23.653				25.97	0.63	-0.07	43.02	0.010	-0.02	1.039	0.0045	17.9	6.0
9/26/2001	6:37:00 PM	0	25.61	22.90	23.094	25.42	23.75		26.05	5.17	-0.07	43.24	0.121	0.09	1.055	0.0558	17.9	10.7
9/26/2001	6:38:00 PM	0	25.00	22.90	22.533			18.50	28.74	10.43	-0.07	36.17	0.164	0.13	1.073	0.0768	15.0	14.5
9/26/2001	6:39:00 PM	0	24.48	22.91	22.013		23.79		28.39	11.61	-0.07	36.31	0.150	0.12	1.089	0.0713	15.1	15.6
9/26/2001	6:40:00 PM	0	24.14	22.92	21.512	25.44		18.31	26.95	8.40	-0.07	40.60	0.135	0.10	1.104	0.0651	16.8	13.4
9/26/2001	6:41:00 PM	0	24.07	22.94	21.090	25.35		16.37	25.12	4.86	-0.07	44.89	0.076	0.05	1.118	0.0371	18.6	10.6
9/26/2001	6:42:00 PM	0	23.85	22.94	20.613		23.84		23.39	1.00	-0.08	48.99	0.046	0.02	1.134	0.0228	20.3	7.9
9/26/2001	6:43:00 PM	0	23.79	22.96	20.399	25.38	23.81	15.19	23.73	0.39	-0.07	50.17	0.043	-0.02	1.141	0.0214	20.8	7.8
9/26/2001	6:44:00 PM	0	24.13	22.98	20.628		23.78	10.27	17.49	-1.78	-0.07	45.89	0.010	-0.02	1.133	0.0049	19.0	4.2
9/26/2001	6:45:00 PM	0	24.58	22.98	20.831	25.10	23.72	10.54	17.29	-1.76	-0.07	45.58	0.010	-0.02	1.126	0.0049	18.9	4.4

							Xflo	w1_09	2701	0628	}						
					R	aw Da									Calcula	ations	
			EL EDE	CL	SL	UP	BOT	BOT		TOP		SL	FLTR	-			_
			FLTRT (°C)	LOOP (°C)	LOOP (°C)	AMB (°C)	AMB (°C)	DP (psid)	FLTR	DP	BP	FLOW	FLOW	Temp corr flow	Axial Vel	Avg TMP	Temp corr
DATE	TIME	Sol	(C) T2	(C)	(C)	(C)	(C) T5	dP2	(psig) P1	(psig) dP3	(psig) P3	(gpm) Q1	(gpm) Q2	(gpm/ft ²)	(ft/sec)	(psid)	factor
9/27/2001	6:28	0	19.9	19.1	17.5	17.7	17.7	0.1	-2.3	0.3	0	-0.2	0.010	0.0054	-0.1	0.2	1.244
9/27/2001	6:29	0	19.9	19.0	17.5	17.6	17.7	0.1	-2.3	0.3	0	-0.2	0.010	0.0054	-0.1	0.2	1.243
9/27/2001	6:30	0	19.9	19.0	21.8	17.7	17.7	13.4	11.4	7.2	0	31.7	0.010	0.0048	13.2	10.3	1.095
9/27/2001	6:31	0	20.5	19.0	21.8	17.7	17.7	13.7	13.8	9.8	0	24.6	0.010	0.0048	10.2	11.8	1.094
9/27/2001	6:32	0	20.8	19.0	21.9	17.7	17.7	9.7	11.6	3.5	0	31.7	0.010	0.0048	13.2	6.6	1.092
9/27/2001	6:33	0	21.1	19.0	22.0	17.8	17.7	20.2	26.3	10.1	0	40.9	0.010	0.0048	17.0	15.2	1.088
9/27/2001	6:34	0	21.2	19.0	22.2	17.8	17.7	14.6	25.3	3.0	0		0.010	0.0047	18.5	8.8	1.082
9/27/2001	6:35	0	21.5	19.0	22.4	17.8	17.8	14.6	26.0	4.8	0	_	0.010	0.0047	16.7	9.7	1.077
9/27/2001	6:36	0	21.7	19.0	22.6	17.8	17.8	13.4	25.5	3.8	0	40.0	0.010	0.0047	16.6	8.6	1.071
9/27/2001	6:37	0	22.0	19.0	22.8	17.8	17.8	15.0	24.5	3.4	0	44.0	0.010	0.0047	18.2	9.2	1.065
9/27/2001	6:38	0	22.1	19.0	22.9	17.8	17.8	13.7	24.6	1.8	0	44.8	0.012	0.0056	18.6	7.7	1.060
9/27/2001	6:39	0	22.3	19.0	23.1	17.8	17.8	12.9	24.6	1.1	0	45.0	0.012	0.0055	18.7	7.0	1.054
9/27/2001	6:40	0	22.1	19.0	23.1	17.8	17.8	-2.7	-2.2	-2.5	0	-0.2	0.010	0.0046	-0.1	-2.6	1.057
9/27/2001	6:41	0	22.3	19.0	23.0	17.8	17.8	-0.7	-2.3	-0.5	0	-0.2	0.010	0.0046	-0.1	-0.6	1.058
9/27/2001	6:42	0	22.2	19.0	22.9	17.7	17.8	-0.2	-2.3	0.0	0	-0.2	0.010	0.0046	-0.1	-0.1	1.061
	wire from the FLTR FLOW gauge was damaged causing intermittant readings. It was not fixed until 9/28/01.																
The FLTR FLO	W readir	ngs a	bove are	not va	lid.												

							Xfl	ow_09	2801	0717	,						
					R	aw Da									Calcula	ations	
							БОТ										
				CL LOOP	SL LOOP	UP AMB	BOT AMB	BOT DP	FLTR	TOP	DD	SL	FLTR	Temp	A: = 1		T
			FLTRT	(°C)	(°C)	(°C)	(°C)	(psid)	(psig)	DP (psig)	BP (psig)	FLOW (gpm)	FLOW (gpm)	corr flow	Axial Vel	Avg TMP	Temp corr
DATE	TIME	Sol	(°C) T2	T3	T1	T4	T5	dP2	P1	dP3	P3	Q1	Q2	(gpm/ft ²)	(ft/sec)	(psid)	factor
9/28/2001	7:17	0	20.5	20.5	19.3	20.1	20.0	0.1	-2.3	0.3	0	-0.2	0.010	0.0051	-0.1	0.2	1.179
9/28/2001	7:18	0	20.5	20.5	20.6	20.1	20.0	11.0	8.8	5.8	0	26.1	0.010	0.0049	10.8	8.4	1.132
9/28/2001	7:19	0	20.5	20.5	20.8	20.2	20.0	11.8	11.2	5.8	0	31.5	0.010	0.0049	13.1	8.8	1.127
9/28/2001	7:20	0	20.6	20.5	20.9	20.3	20.0	22.5	24.8	10.9	0	45.6	0.010	0.0049	18.9	16.7	1.123
9/28/2001	7:21	0	20.7	20.5	21.2	20.3	20.0	16.5	24.8	4.5	0	45.3	0.010	0.0049	18.8	10.5	1.116
9/28/2001	7:22	0	20.9	20.5	21.4	20.3	20.0	12.6	24.0	-0.3	0	45.1	0.010	0.0048	18.7	6.2	1.109
9/28/2001	7:23	0	21.0	20.5	21.6	20.3	20.1	12.4	23.9	-0.3	0	-25.1	0.011	0.0053	-10.4	6.1	1.103
9/28/2001	7:24	0	21.1	20.5	21.8	20.4	20.1	12.2	23.8	-0.7	0	-25.1	0.010	0.0048	-10.4	5.7	1.095
9/28/2001	7:25	0	21.3	20.5	22.0	20.3	20.1	12.4	23.6	-0.1	0	47.0	0.010	0.0048	19.5	6.1	1.089
9/28/2001	7:26	0	21.5	20.5	22.2	20.4	20.1	12.2	23.9	-0.6	0	-25.1	0.010	0.0047	-10.4	5.8	1.082
9/28/2001	7:27	0	21.6	20.5	22.4	20.3	20.1	12.2	23.9	-0.4	0	-25.1	0.011	0.0052	-10.4	5.9	1.075
9/28/2001	7:28	0	21.8	20.5	22.7	20.3	20.1	12.4	24.1	-0.7	0	-25.1	0.010	0.0047	-10.4	5.9	1.069
9/28/2001	7:29	0	22.0	20.5	22.9	20.4	20.2	12.3	23.9	-0.9	0	-25.1	0.010	0.0046	-10.4	5.7	1.063
9/28/2001	7:30	0	22.2	20.5	23.1	20.3	20.2	12.3	23.9	-0.6	0	47.1	0.010	0.0046	19.5	5.8	1.057
9/28/2001	7:31	0	22.3	20.5	23.3	20.4	20.2	12.2	23.8	-0.7	0	46.9	0.010	0.0046	19.5	5.8	1.051
9/28/2001	7:32	0	22.6	20.5	23.5	20.4	20.2	15.4	27.4	6.4	0	38.4	0.011	0.0050	15.9	10.9	1.045
9/28/2001	7:33	0	22.8	20.5	23.6	20.4	20.2	22.7	34.6	20.7	0	18.0	0.084	0.0381	7.5	21.7	1.040
9/28/2001	7:34	0	23.0	20.5	23.8	20.4	20.3	48.7	59.6	47.7	0	12.8	0.133	0.0601	5.3	48.2	1.035
9/28/2001	7:35	0	23.2	20.5	23.9	20.4	20.3	58.0	67.9	56.9	0	8.5	0.110	0.0495	3.5	57.4	1.030
9/28/2001	7:36	0	23.6	20.5	24.2	20.5	20.3	61.1	68.7	60.4	0	8.0	0.010	0.0045	3.3	60.7	1.023
9/28/2001	7:37	0	23.9	20.5	24.5	20.5	20.4	59.2	68.6	58.2	0	8.2	0.074	0.0328	3.4	58.7	1.014
9/28/2001	7:38	0	24.1	20.5	24.7	20.5	20.4	58.1	67.1	57.9	0	8.1	0.067	0.0295	3.3	58.0	1.008
9/28/2001	7:39	0	24.3	20.5	25.0	20.5	20.4	59.6	68.7	58.9	0	8.1	0.061	0.0266	3.4	59.2	1.000
9/28/2001	7:40	0	24.5	20.5	25.2	20.5	20.4	59.1	68.0	58.9	0	8.0	0.057	0.0247	3.3	59.0	0.994
9/28/2001	7:41	0	24.7	20.5	25.5	20.5	20.5	59.6	68.6	58.7	0	8.0	0.055	0.0237	3.3	59.1	0.986
9/28/2001	7:42	0	24.9	20.5	25.7	20.5	20.5	59.5	68.0	59.3	0	7.6	0.052	0.0222	3.2	59.4	0.980
9/28/2001	7:43	0	25.1	20.5	26.0	20.5	20.5	60.0	68.9	58.2	0	7.9	0.050	0.0212	3.3	59.1	0.972
9/28/2001	7:44	0	25.4	20.5	26.3	20.6	20.5	58.8	67.2	58.7	0	7.9	0.048	0.0202	3.3	58.7	0.965
9/28/2001	7:45	0	25.6	20.5	26.5	20.6	20.6	59.3	67.9	58.2	0	7.9	0.046	0.0193	3.3	58.7	0.959
9/28/2001	7:46	0	25.8	20.5	26.7	20.6	20.6	59.8	68.4	59.2	0	7.8	0.045	0.0188	3.2	59.5	0.955
9/28/2001	7:47	0	26.1	20.5	26.9	20.6	20.6	59.2	67.6	58.8	0	7.8	0.045	0.0187	3.2	59.0	0.949
9/28/2001	7:48	0	26.2	20.5	27.1	20.7	20.7	59.4	67.9	59.2	0	7.8	0.039	0.0161	3.2	59.3	0.944
9/28/2001	7:49	0	26.5	20.5	27.3	20.8	20.7	60.2	68.3	59.4	0	7.7	0.046	0.0188	3.2	59.8	0.937
9/28/2001	7:50	0	26.6	20.5	27.5	20.7	20.7	60.5	68.4	58.8	0	7.7	0.042	0.0171	3.2	59.6	0.932
9/28/2001	7:51	0	26.9	20.5	27.8	20.7	20.7	60.4	68.2	59.3	0	10.4	0.041	0.0166	4.3	59.8	0.925
9/28/2001	7:52	0	27.1	20.5	28.0	20.7	20.7	60.4	68.1	59.1	0	10.1	0.040	0.0161	4.2	59.7	0.920
9/28/2001	7:53	0	27.4	20.5	28.2	20.6	20.7	60.4	68.3	59.1	0	9.9	0.039	0.0156	4.1	59.7	0.914
9/28/2001	7:54	0	27.5	20.5	28.4	20.7	20.8	60.3	67.8	59.7	0	9.8	0.040	0.0159	4.1	60.0	0.909
9/28/2001	7:55	0	27.7	20.5	28.5	20.7	20.8	60.1	67.8	59.1	0	9.7	0.039	0.0155	4.0	59.6	0.908
9/28/2001	7:56	0	27.9	20.5			20.8		68.1		0	9.6		0.0155	4.0	59.8	0.911
9/28/2001	7:57	0	28.0		28.2				68.5		0	9.6	0.038	0.0152	4.0	59.8	0.916
9/28/2001	7:58	0	28.1		28.1						0	9.6	0.037	0.0148	4.0	60.1	0.918
9/28/2001	7:59	0	28.0	20.6			21.0			59.6	0	9.5	0.037	0.0150	4.0	60.0	0.927
9/28/2001	8:00	0	28.0	20.6	27.5	21.8	21.1	60.6	68.4	58.8	0	9.5	0.037	0.0151	3.9	59.7	0.932
9/28/2001	8:01	0	28.0	20.6	27.2	21.8	21.1	60.5	68.1	59.3	0	9.5	0.037	0.0152	3.9	59.9	0.940

							Xflov	w11 1	00101	0955	5						
					R	aw Da	ata								Calcula	ations	
				CL	SL	UP	вот	рот		TOD		01	EL ED				
			FLTRT		LOOP	AMB	AMB	BOT DP	FLTR	TOP DP	BP	SL FLOW	FLTR FLOW	Temp	Axial	Avg	Temp
			(°C)	(°C)	(°C)	(°C)	(°C)	(psid)	(psig)	(psig)	(psig)	(gpm)	(gpm)	corr flow	Vel	TMP	corr
DATE	TIME	Sol	T2	T3	T1	T4	T5	dP2	"P1	dP3	"P3	Q1	Q2	(gpm/ft ²)	(ft/sec)	(psid)	factor
10/1/2001	9:55	0	18.9	18.5	17.3	19.4	18.5	0.2	-2.2	0.4	0	-0.2	0.010	0.0054	-0.1	0.3	1.248
10/1/2001	9:56	0	18.9	18.5	17.4	19.4	18.6	0.2	-2.2	0.4	0	-0.2	0.010	0.0054	-0.1	0.3	1.247
10/1/2001	9:57	0	18.9	18.5	17.3	19.5	18.6	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.248
10/1/2001	9:58	0	18.9	18.5	17.4	19.5	18.6	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.246
10/1/2001	9:59	0	18.9	18.5	17.4	19.5	18.6	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.247
10/1/2001	10:00	0	18.9	18.5	17.4	19.5	18.6	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.246
10/1/2001	10:01	0	18.9	18.5	17.4	19.5	18.7	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.246
10/1/2001	10:02	0	18.9	18.5	17.4	19.6	18.7	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.245
10/1/2001	10:03	0	18.9	18.5	17.4	19.6	18.7	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.245
10/1/2001	10:04	0	18.9	18.5	17.4	19.6	18.7	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.244
10/1/2001	10:05	0	18.9	18.5	17.4	19.6	18.7	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.244
10/1/2001	10:06	0	18.9	18.5	17.4	19.6	18.8	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.244
10/1/2001	10:07	0	18.9	18.5	17.5	19.7	18.8	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.243
10/1/2001	10:08	0	18.9	18.5	17.5	19.7	18.8	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.243
10/1/2001	10:09	0	18.9	18.6	17.5	19.7	18.8	0.2	-2.2	0.4	0		0.010	0.0054	-0.1	0.3	1.242
10/1/2001	10:10	0	18.9	18.5	17.5	19.7	18.8	0.1	-2.3	0.3	0		0.010	0.0054	-0.1	0.2	1.243
10/1/2001	10:11	0	19.0	18.6	17.5	19.7	18.8	0.1	-2.3	0.3	0		0.010	0.0054	-0.1	0.2	1.242
10/1/2001	10:12	0	18.9	18.6	17.5	19.7	18.9	0.1	-2.3	0.3	0		0.010	0.0054	-0.1	0.2	1.242
10/1/2001	10:13	0	19.0	18.6	17.5	19.8	18.9	0.1	-2.3	0.3	0		0.010	0.0054	-0.1	0.2	1.241
10/1/2001	10:14	0	19.0	18.6	19.1	19.8	18.9	16.7	14.3	13.4	0		0.010	0.0052	7.2	15.1	1.184
10/1/2001	10:15	0	19.0	18.6	19.1	19.8	18.9	30.3	28.6	25.5	0		0.011	0.0057	11.1	27.9	1.184
10/1/2001	10:16	0	19.0	18.6	19.3	19.8	19.0	29.2	28.3	24.2	0		0.010	0.0051	11.1	26.7	1.178
10/1/2001	10:17	0	19.1	18.6	19.5	19.9	19.0	57.6	57.8	48.2	0		0.010	0.0051	16.1	52.9	1.171
10/1/2001 10/1/2001	10:18 10:19	0	19.3	18.6	19.9	19.9	19.0	54.9 51.1	57.8 57.8	45.8 41.9	0		0.011	0.0056	16.1 16.1	50.3 46.5	1.157
10/1/2001	10:19	0	19.5 19.8	18.6 18.6	20.3	19.9 20.0	19.1 19.1	45.5	58.0	35.8	0		0.010	0.0030	16.1	40.7	1.145 1.132
10/1/2001	10:21	0	20.1	18.6	21.0	20.0	19.1	44.9	57.5	35.8	0			0.0049	16.1	40.7	1.132
10/1/2001	10:21	0	20.1	18.6	21.4	20.1	19.1	47.1	57.9	37.4	0		0.010	0.0049	16.2	42.3	1.120
10/1/2001	10:23	0	20.5	18.7	21.7	20.2	19.2	46.2		37.0	0		0.015	0.0048	16.2	41.6	1.098
10/1/2001	10:24	0	21.0	18.7	22.1	20.2	19.2	46.5	57.6	37.3	0	39.1	0.050	0.0210	16.2	41.9	1.086
10/1/2001	10:25	0	21.2	18.7	22.1	20.2	19.2	46.4		37.3	0		0.050	0.0237	16.1	41.9	1.075
10/1/2001	10:26	0	21.6	18.7	22.8	20.1	19.3	46.5		36.9	0	39.1	0.058	0.0269	16.2	41.7	1.064
10/1/2001	10:27	0	21.9	18.7	23.2	20.2	19.3	46.6		37.3	0		0.050	0.0230	16.2	41.9	1.053
10/1/2001	10:28	0	22.3	18.7	23.5	20.2	19.3	46.6		37.2	0		0.051	0.0232	16.3	41.9	1.042
10/1/2001	10:29	0	22.5	18.7		20.2		46.5		37.1	0		0.052	0.0235	16.3	41.8	1.033
10/1/2001	10:30			18.7					56.9		0			0.0223		41.6	1.023
10/1/2001	10:31		23.2				19.4		57.6	37.4	0		0.051	0.0225	16.3	42.0	1.012
10/1/2001	10:32		23.5		24.7	20.2		46.1		37.1	0		0.051	0.0225	16.3	41.6	1.008
10/1/2001	10:33		23.8		24.7	20.5			57.5	37.1	0		0.051	0.0225	16.3	41.8	1.009
10/1/2001	10:34		24.0			20.7			57.8	37.4	0		0.051	0.0226	16.2	42.2	1.017
10/1/2001	10:35		24.1			20.7			57.3	37.4	0		0.051	0.0229	16.2	42.0	1.029
10/1/2001	10:36		24.0				19.7		57.4	37.4	0			0.0225	16.3	42.1	1.032
10/1/2001	10:37		23.9						57.4	37.5	0			0.0225	16.3	42.0	1.028
10/1/2001	10:38		23.9			20.5			57.0	37.3	0		0.051	0.0228	16.3	41.8	1.023
10/1/2001	10:39			18.8					57.6	37.4	0		0.051	0.0227	16.3	42.1	1.018
10/1/2001	10:40			18.8					57.6		0			0.0230	16.4	42.2	1.012

							Xf	low_1	00201	_0702	2					
					F	Raw D	ata							Calcula	ations	
			CL	SL	UP	вот	вот		TOP		SL	FLTR				
		FLTRT	LOOP	LOOP	AMB	AMB	DP	FLTR	DP	BP	FLOW	FLOW	Temp	Axial	Avg	Temp
		(°C)	(°C)	(°C)	(°C)	(°C)	(psid)	(psig)	(psig)	(psig)	(gpm)	(gpm)	corr flow	Vel	TMP	corr
TIME	Sol	T2	T3	T1	T4	T5	dP2	P1	dP3	P3	Q1	Q2	(gpm/ft ²)	(ft/sec)	(psid)	factor
7:02	0	19.8	19.3	17.3	18.2	17.8	0.1	-2.2	0.4	0	-0.2	0.010	0.005	-0.1	0.2	1.247
7:03	0	19.8	19.3	21.4	18.2	17.8	61.3	59.4	51.6	0	38.3	0.010	0.005	15.9	56.5	1.107
7:04	0	20.2	19.3	21.9	18.2	17.8	57.7	58.5	48.2	0	39.0	0.010	0.005	16.2	53.0	1.093
7:05	0	20.8	19.3	22.2	18.2	17.8	52.4	58.1	43.0	0	39.0	0.010	0.005	16.2	47.7	1.083
7:06	0	21.2	19.3	22.5	18.2	17.8	45.6	58.1	36.3	0	38.8	0.010	0.005	16.1	41.0	1.074
7:07	0	21.6	19.3	22.6	18.2	17.9	45.8	57.9	36.6	0	38.9	0.010	0.005	16.1	41.2	1.071
7:08	0	21.8	19.3	22.7	18.2	17.9	47.0	57.8	38.0	0	39.1	0.010	0.005	16.2	42.5	1.066
7:09	0	22.1	19.3	23.1	18.2	17.9	46.8	58.0	37.6	0	39.1	0.043	0.020	16.2	42.2	1.056
7:10	0	22.3	19.3	23.3	18.2	17.9	47.4	58.3	37.8	0	39.1	0.048	0.022	16.2	42.6	1.049
7:11	0	22.6	19.3	23.6	18.2	17.9	47.3	58.1	38.3	0	39.1	0.048	0.022	16.2	42.8	1.041
7:12	0	22.8	19.3	23.9	18.2	17.9	47.1	57.9	37.9	0	39.1	0.048	0.022	16.2	42.5	1.033
7:13	0	23.1	19.2	24.2	18.2	18.0	47.5	58.3	38.1	0	39.2	0.050	0.022	16.3	42.8	1.024
7:14	0	23.4	19.2	24.4	18.2	18.0	47.0	57.9	37.9	0	39.1	0.049	0.022	16.2	42.5	1.017
7:15	0	23.6	19.2	24.7	18.2	18.0	46.9	57.6	37.9	0	39.1	0.049	0.022	16.2	42.4	1.009
7:16	0	23.9	19.2	25.0	18.2	18.0	47.3	58.0	37.6	0	39.2	0.049	0.021	16.3	42.4	1.001
7:17	0	24.1	19.2	25.2	18.2	18.1	46.8	57.5	37.9	0	39.3	0.050	0.022	16.3	42.3	0.994
7:18	0	24.4	19.2	25.5	18.2	18.1	47.0	57.8	37.6	0	39.4	0.049	0.021	16.4	42.3	0.986
7:19	0	24.6	19.2	25.7	18.2	18.1	47.4	58.3	38.0	0	39.4	0.050	0.021	16.3	42.7	0.979
7:20	0	24.9	19.2	26.0	18.2	18.1	46.8	57.5	37.7	0	39.5	0.050	0.021	16.4	42.3	0.972
7:21	0	25.2	19.2	26.3	18.3	18.1	47.2	58.1	37.8	0	39.2	0.052	0.022	16.3	42.5	0.964
7:22	0	25.4	19.2	26.6	18.2	18.1	47.0	57.9	37.5	0	39.3	0.051	0.021	16.3	42.3	0.957
7:23	0	25.7	19.2	26.8	18.2	18.1	46.6	57.3	37.5	0	39.4	0.051	0.021	16.4	42.1	0.951
7:24	0	25.9	19.2	27.1	18.2	18.2	47.0	57.7	37.5	0	39.5	0.051	0.021	16.4	42.2	0.944
7:25	0	26.2	19.2	27.2	18.2	18.2	47.1	57.9	37.8	0	39.6	0.053	0.022	16.4	42.4	0.941
7:26	0	26.4	19.2	27.1	18.2	18.2	47.0	57.8	37.4	0	39.4	0.051	0.021	16.3	42.2	0.943
7:27	0	26.5	19.2	27.0	18.2	18.3	46.8	57.5	37.5	0	39.4	0.051	0.021	16.3	42.1	0.947
7:28	0	26.6	19.2	26.9	18.3	18.4	47.2	57.8	37.6	0	39.6	0.050	0.021	16.4	42.4	0.948
7:29	0	26.6	19.1	26.8	18.3	18.4	47.1	57.7	37.7	0	39.4	0.051	0.021	16.4	42.4	0.950
7:30	0	26.6	19.1	26.7	18.2	18.5	47.3	57.9	37.6	0	39.3	0.050	0.021	16.3	42.4	0.954
7:31	0	26.6	19.2	26.7	18.4	18.6	46.8	57.5	37.8	0	39.4	0.051	0.021	16.3	42.3	0.954
7:32	0	26.6	19.1	26.6	18.4	18.7	47.2	57.8	37.6	0	39.3	0.052	0.022	16.3	42.4	0.956
7:33		26.5	19.2	26.6		18.7	46.8		37.8	0	39.4	0.050	0.021	16.3	42.3	0.956
7:34		26.5	19.1	26.5	18.5		47.8		37.9	0	39.4	0.050	0.021	16.3	42.8	0.958
7:35		26.5	19.1	26.5	18.6		46.9	57.5	37.7	0	39.5	0.050	0.021	16.4	42.3	0.959
7:36		26.5	19.1	26.4	18.7	18.8	47.2	57.9	37.9	0	39.3	0.049	0.021	16.3	42.5	0.961
7:37	0	26.5	19.1	26.4	18.8	18.9	47.1	57.7	37.9	0	39.3	0.050	0.021	16.3	42.5	0.962
7:38	0	26.4	19.1	26.4	18.8	18.9	46.8		37.7	0	39.5	0.049	0.021	16.4	42.3	0.963
7:39		26.4	19.1	26.3	18.8	18.9	47.0		37.7	0	39.3	0.050	0.021	16.3	42.4	0.964
7:40		26.4	19.1	26.3	18.9		47.2	57.8	37.7	0	39.3	0.049	0.021	16.3	42.4	0.965
7:41	0	26.3	19.1	26.2	18.9		46.8		37.6	0	39.0	0.049	0.021	16.2	42.2	0.967
7:42		26.3	19.1	26.2	19.0	19.0	46.8		37.7	0	39.2	0.049	0.021	16.3	42.2	0.968
7:43		26.3	19.1	26.1	19.1	19.0	47.1	57.7	37.8	0	39.3	0.048	0.020	16.3	42.5	0.969
7:44	0	26.3	19.1	26.1	19.1	19.0	47.6	58.1	37.8	0	39.3	0.049	0.021	16.3	42.7	0.969
7:45	0	26.3	19.1	26.1	19.0	19.0	47.0	57.4	37.5	0	39.3	0.049	0.021	16.3	42.2	0.970
7:46		26.2	19.2	26.1	19.0	19.1	47.0		37.8	0	39.2	0.049	0.021	16.3	42.4	0.969
7:47	0	26.1	19.1	26.0	19.1	19.1	46.8	57.3	37.7	0	39.3	0.049	0.021	16.3	42.3	0.972

			Xf	low1_	10150	1_083	37 (De	ionize	ed wat	er run	s afte	r Batch #	1 slurr	y filtrati	on and	filter cle	aning)			
							R	aw Da	ata									Calcu	ılations	;
			FLTRT (°C)	CL LOOP (°C)	SL LOOP (°C)	UP AMB (°C)	BOT AMB (°C)	BOT DP (psid)	FLTR (psig)	FLTR DP (psid)	TOP DP (psig)	FLTRATE (psig)	BP (psig)	SL FLOW (gpm)	FLTR FLOW (gpm)	HI FLTR FLOW (gpm)	Temp corr flow	Axial Vel	Avg TMP	Temp corr
DATE	TIME	Sol	T2	T3	T1	T4	T5	dP2	P1	dP1	dP3	P2	P3	Q1	Q2	Q3	(gpm/ft ²)	(ft/sec)	(psid)	factor
10/15/2001	8:45	1	20.2	19.8	20.4	19.7	18.9	11.0	17.2	9.6	1.7	6.7	53.8	48.5	0.01	-0.019	-0.009	20.1	6.3	1.140
10/15/2001	8:46	1	20.1	19.8	20.5	19.7	18.9	10.8	24.5	13.3	-2.7	14.1	53.9	59.2	0.01	-0.019	-0.009	24.6	4.1	1.137
10/15/2001	8:47	1	20.1	19.8	20.7	19.7	19.0	10.1	22.1	11.9	-2.1	12.5	53.8	55.3	0.01	-0.019	-0.009	22.9	4.0	1.132
10/15/2001	8:48	1	20.3	20.2	20.8	19.9	19.0	6.5	22.3	12.0	-3.2	16.3	53.8	49.5	0.01	-0.019	-0.009	20.6	1.6	1.126
10/15/2001	8:49	1	20.4	20.2	21.0	20.0	19.0	9.6	21.8	11.8	-2.4	12.7	53.8	55.2	0.01	-0.019	-0.009	22.9	3.6	1.121
10/15/2001	8:50	1	20.6	20.2	21.2	20.0	19.0	9.7	22.0	11.9	-2.2	12.6	53.9	54.4	0.01	-0.019	-0.009	22.6	3.8	1.115
10/15/2001	8:51	1	20.7	20.2	21.3	19.9	19.0	9.9	22.1	12.2	-2.0	12.6	53.8	55.9	0.01	-0.019	-0.009	23.2	4.0	1.110
10/15/2001	8:52	1	20.8	20.1	21.5	19.9	19.0	9.8	21.8	12.1	-2.0	12.6	53.8	55.3	0.01	-0.019	-0.009	22.9	3.9	1.105
10/15/2001	8:53	1	20.9	20.1	21.7	19.9	19.1	9.6	21.9	12.0	-2.1	12.7	53.8	54.4	0.01	-0.019	-0.009	22.6	3.7	1.099
10/15/2001	8:54	1	21.1	20.1	21.8	19.9	19.1	9.6	21.9	11.9	-2.3	12.6	53.8	55.7	0.01	-0.019	-0.009	23.1	3.7	1.094
10/15/2001	8:55	1	21.2	20.1	22.0	19.9	19.1	9.9	22.2	11.9	-2.1	12.7	53.9	55.2	0.01	-0.019	-0.009	22.9	3.9	1.089
10/15/2001	8:56	1	21.3	20.1	22.2	19.9	19.1	9.7	21.9	12.1	-2.2	12.7	53.8	55.3	0.01	-0.019	-0.009	23.0	3.7	1.084
10/15/2001	8:57	1	21.5	20.0	22.3	19.9	19.1	9.3	21.5	12.0	-2.0	12.7	53.8	55.4	0.01	-0.019	-0.009	23.0	3.6	1.079
10/15/2001	8:58	1	21.6	20.1	22.5	19.9	19.1	9.8	22.1	11.9	-2.0	12.7	53.8	55.7	0.01	-0.019	-0.009	23.1	3.9	1.074
10/15/2001	8:59	1	21.8	20.0	22.6	19.9		9.7	22.0	12.1	-2.2	12.7	53.9	55.4	0.01	-0.019		23.0	3.7	1.069
10/15/2001	9:00	1	21.9	20.0	22.8	19.9	19.2	9.6	23.0	11.1	-1.2	13.9	53.8	53.5	0.01	-0.019	-0.009	22.2	4.2	1.064
10/15/2001	9:01	1	22.2	20.0	23.0	19.9	19.2	9.1	31.1	11.0	-1.7	22.4	53.8	53.3	0.01	-0.019	-0.009	22.1	3.7	1.059
10/15/2001	9:02	1	22.2	20.0	23.2	19.9	19.2	8.1	32.0	10.0	-1.9	24.3	53.8	50.3	0.01	-0.019	-0.009	20.9	3.1	1.053
10/15/2001	9:03	1	22.4	20.0	23.4	19.9	19.2	8.1	32.2	10.1	-1.4	24.4	54.0	50.4	0.01	-0.019	-0.009	20.9	3.4	1.047
10/15/2001	9:04	1	22.6	20.0	23.6	20.0	19.2	8.0	31.9	10.1	-1.8	24.3	53.8	50.8	0.01	-0.019	-0.009	21.1	3.1	1.041
10/15/2001	9:05	1	22.8	20.0	23.8	20.0	19.3	7.9	31.9	10.0	-1.8	24.5	53.8	50.6	0.01	-0.019	-0.009	21.0	3.0	1.035
10/15/2001	9:06	0	23.3	20.0	24.0	20.0	19.3	22.0	31.7	9.9	12.5	10.1	0.0	51.3	1.194	1.191	0.535	21.3	17.2	1.029
10/15/2001	9:07	0	23.9	20.0	24.1	20.0	19.3	23.0	31.6	9.9	13.4	9.2	0.0	51.1	1.158	1.110	0.497	21.2	18.2	1.025
10/15/2001	9:08	0	24.2	20.0	24.3	20.0		24.3	32.0	9.8	14.7	8.2	0.0	50.8	1.043	1.001	0.446	21.1	19.5	1.020
10/15/2001	9:09	0	24.4	20.0	24.5	20.1	19.3	25.1	32.1	9.9	15.2	7.5	0.0	51.1	0.929	0.899	0.399	21.2	20.1	1.016
10/15/2001	9:10	0	24.6	20.0	24.6	20.1	19.4	25.2	31.8	9.8	15.6	7.0	0.0	50.5	0.881	0.842	0.371	21.0	20.4	1.010
10/15/2001	9:11	0	24.7	20.0	24.8	20.1	19.4	25.7	31.9	9.9	15.8	6.7	0.0	51.5	0.82	0.781	0.343	21.4	20.8	1.005
10/15/2001	9:12	0	24.9	20.0	25.0	20.1	19.4	25.8	31.8	9.9	16.0	6.5	0.0	51.2	0.775	0.730	0.319	21.2	20.9	1.000
10/15/2001	9:13	0	25.0	20.0	25.2	20.1	19.4	19.8	31.6	9.7	10.3	12.2	0.0	51.0	1.211	1.289	0.560	21.2	15.1	0.995
10/15/2001	9:14	0	25.3	20.0	25.4	20.1	19.4	22.4	31.6	9.8	12.5	9.8	0.0	51.3	1.193	1.144	0.494	21.3	17.5	0.990
10/15/2001	9:15	0	25.4	20.0	25.6	20.2	19.5	20.9	31.8	9.9	11.2	11.4	0.0	51.5	1.211	1.321	0.568	21.4	16.0	0.985

									Vflour?	102301	1011								
							Raw D		AIIOWZ_	102301	_1011						Calcula	ations	
							INAW L	ala									Oalcule	1110113	
				CL	SL	UP	BOT	BOT		FLTR	TOP			SL	FLTR	_			
			FLTRT	LOOP	LOOP	AMB	AMB	DP	FLTR	DP	DP	FLTRATE	BP	FLOW	FLOW	Temp		Avg	Temp
DATE	TIME	Sol	(°C) T2	(°C)	(°C) T1	(°C) T4	(°C) T5	(psid) dP2	(psig) P1	(psid) dP1	(psig) dP3	(psig) P2	(psig) P3	(gpm) Q1	(gpm) Q2	corr flow (gpm/ft ²)	Axial Vel (ft/sec)	TMP (psid)	corr factor
10/23/2001	10:55	0	22.7	22.0	23.1	23.4	22.0	17.0		13.6	3.2	5.2	0	46.1	0.021	0.0097	19.1	10.1	1.054
	10:56	0	22.7	22.1	23.4	23.4	22.1	41.8	47.0	24.0	17.0	6.7	0	64.7	0.018	0.0082	26.9	29.4	1.046
	10:57	0	22.8	22.1	23.7	23.4	22.2	50.4	58.5	11.8	38.0	9.3	0	42.6	0.018	0.0082	17.7	44.2	1.038
10/23/2001	10:58	0	22.8	22.1	23.9	23.5	22.2	47.1	58.5	11.6	35.2	12.3	0	42.4	0.018	0.0081	17.6	41.2	1.031
10/23/2001	10:59	0	22.1	22.1	24.2	23.5	22.2	54.2	58.3	11.6	42.5	4.9	0	42.7	0.010	0.0045	17.7	48.3	1.024
10/23/2001	11:00	0	22.3	22.1	24.4	23.5	22.2	54.0	58.2	11.7	42.3	4.9	0	42.8	0.010	0.0044	17.7	48.2	1.018
10/23/2001	11:01	0	22.4	22.1	24.6	23.6	22.3	54.2	58.9	11.5	42.7	4.9	0	42.1	0.010	0.0044	17.5	48.5	1.010
10/23/2001	11:02	0	22.4	22.1	24.8	23.6	22.3	53.7	58.5	11.3	42.8	4.9	0	41.9	0.010	0.0044	17.4	48.3	1.005
10/23/2001	11:03	0	23.0	22.1	25.1	23.8	22.4	53.3	58.3	11.7	42.1	5.1	0	42.6	0.010	0.0044	17.7	47.7	0.998
10/23/2001	11:04	0	23.5	22.1	25.2	24.0	22.4	52.3	58.3	11.5	41.3	6.2	0	42.3	0.010	0.0043	17.5	46.8	0.993
10/23/2001	11:05	0	24.7	22.1	25.4	24.1	22.4	50.8	58.2	11.3	40.2	7.5	0	42.0	0.010	0.0043	17.4	45.5	0.989
10/23/2001	11:06	0	24.9	22.1	25.6	24.1	22.5	50.0	58.3	11.4	39.2	8.4	0	42.4	0.010	0.0043	17.6	44.6	0.984
10/23/2001	11:07	0	25.2	22.1	25.7	24.2	22.5	49.8	58.7	11.2	38.9	8.9	0	41.8	0.111	0.0475	17.4	44.3	0.979
10/23/2001	11:08	0	25.3	22.1	25.9	24.2	22.6	49.7	58.3	11.3	39.0	9.0	0	42.0	0.112	0.0477	17.4	44.3	0.976
10/23/2001	11:09	0	25.5	22.2	26.0	24.2	22.6	49.6	58.4	11.1	38.9	8.9	0	41.7	0.111	0.0471	17.3	44.3	0.971
10/23/2001	11:10	0	25.7	22.2	26.2	24.3	22.6	49.6	58.3	11.2	39.0	8.9	0	41.7	0.110	0.0464	17.3	44.3	0.967
10/23/2001	11:11	0	25.8	22.2	26.4	24.3	22.7	49.6	58.4	11.2	38.7	8.9	0	41.9	0.108	0.0454	17.4	44.2	0.963
10/23/2001	11:12	0	26.0	22.2	26.5	24.3	22.8	49.8	58.6	11.2	38.7	8.9	0	42.0	0.110	0.0460	17.4	44.2	0.958
10/23/2001	11:13	0	26.2	22.2	26.6	24.4	22.8	49.5	58.2	11.2	38.8	8.9	0	41.7	0.108	0.0450	17.3	44.2	0.955
10/23/2001	11:14	0	26.3	22.2	26.8	24.4	22.9	49.6	58.4	11.2	39.2	8.9	0	42.3	0.107	0.0444	17.5	44.4	0.951
10/23/2001	11:15	0	26.5	22.2	26.9	24.6	22.9	49.4	58.3	11.2	38.7	8.9	0	41.3	0.107	0.0443	17.1	44.1	0.949
	11:16	0	26.6	22.3	27.0	24.6	22.9	50.1	59.0	11.2	38.9	8.9	0	41.7	0.106	0.0438	17.3	44.5	0.946
10/23/2001	11:17	0	26.7	22.3	27.1	24.7	23.0	49.3	58.0	11.5	38.3	8.9	0	42.4	0.105	0.0432	17.6	43.8	0.943
	11:18	0	26.9	22.3	27.2	24.7	23.1	49.2	58.0	11.4	38.3	8.9	0	42.2			17.5	43.8	0.940
10/23/2001	11:19	0	27.0	22.3	27.3	24.8	23.1	49.1	57.8	11.3	38.2	8.9	0	42.2	0.104	0.0426	17.5	43.7	0.938
	11:20	0	27.1	22.3	27.4	24.8	23.1	49.7	58.5	11.0	38.8	9.0	0	41.6		0.0425	17.3	44.2	0.935
	11:21	0	27.2	22.3	27.5	24.8	23.1	49.7	58.6	11.0	39.2	9.0	0	41.7		0.0424	17.3	44.5	0.933
10/23/2001	11:22	0	27.2	22.3	27.6	24.8	23.1	49.3	58.1	10.9	38.9	9.0	0	41.5	0.104		17.2	44.1	0.931
	11:23	0	27.4	22.4	27.6	24.7	23.0	49.8	58.6	11.0	39.2	9.0	0	41.5	0.103		17.2	44.5	0.930
10/23/2001	11:24	0	27.4	22.4	27.7	24.6	23.0	49.6	58.3	10.9	39.1	9.0	0	41.8	0.103	0.0417	17.3	44.4	0.927
																Average	17.4	44.2	

									Xflow2	102401	0630								$\overline{}$
							Raw	Data									Calculat	ions	
				CL	SL	UP	BOT	BOT		FLTR	TOP	FLT-		SL	FLTR	Temp			
			FLTRT	LOOP	LOOP	AMB	AMB	DP	FLTR	DP	DP	RATE	BP	FLOW	FLOW	corrected		Avg	Temp
DATE	TIME	Sol	(°C) T2	(°C)	(°C) T1	(°C) T4	(°C) T5	(psid) dP2	(psig) P1	(psid) dP1	(psig) dP3	(psig) P2	(psig) P3	(gpm) Q1	(gpm) Q2	(gpm/ft ²)	Axial Vel (ft/sec)	TMP (psid)	corr factor
10/24/01	6:30	0	26.0	25.2	25.7	25.6	25.7	50.4	60.4	10.4	40.9	9.9	0	38.3	0.078	0.0334	15.9	45.6	0.980
10/24/01	6:31	0	26.0	25.2	25.7	25.6	25.8	50.4	60.9	10.4	41.0	9.9	0	38.4	0.077	0.0329	16.0	45.9	0.979
10/24/01	6:32	0	26.0	25.2	25.7	25.5	25.8	50.7	60.7	10.5	40.9	9.8	0	38.5	0.076	0.0325	16.0	45.8	0.980
10/24/01	6:33	0	26.0	25.3	25.8	25.6	25.8	51.0	61.0	10.6	41.0	9.8	0	38.4	0.076	0.0325	15.9	46.0	0.979
10/24/01	6:34	0	26.0	25.3	25.8	25.6	25.7	51.2	61.2	10.5	41.3	9.8	0	38.4	0.076	0.0324	15.9	46.3	0.978
10/24/01	6:35	0	26.0	25.3	25.8	25.6	25.7	50.7	60.6	10.4	40.9	9.8	0	38.5	0.075	0.0320	16.0	45.8	0.978
10/24/01	6:36	0	26.0	25.3	25.9	25.6	25.8	51.1	61.0	10.5	41.2	9.8	0	38.5	0.075	0.0320	16.0	46.1	0.976
10/24/01	6:37	0	26.1	25.3	25.8	25.6	25.8	51.0	60.8	10.5	40.9	9.7	0	38.4	0.075	0.0320	15.9	45.9	0.977
10/24/01	6:38	0	26.1	25.3	25.9	25.6	25.8	50.8	60.6	10.4	41.0	9.7	0	38.4	0.075	0.0319	15.9	45.9	0.975
10/24/01	6:39	0	26.1	25.3	25.8	25.6	25.8	51.0	60.7	10.4	41.2	9.7	0	38.4	0.074	0.0316	15.9	46.1	0.977
10/24/01	6:40	0	26.1	25.3	25.8	25.6	25.8	51.2	60.9	10.5	41.2	9.7	0	38.5	0.074	0.0316	16.0	46.2	0.977
10/24/01	6:41	0	26.1	25.3	25.9	25.6	25.7	51.1	60.9	10.5	41.1	9.7	0	38.4	0.074	0.0315	16.0	46.1	0.975
10/24/01	6:42	0	26.2	25.3	26.0	25.7	25.8	50.9	60.7	10.5	41.1	9.7	0	38.3	0.074	0.0315	15.9	46.0	0.974
10/24/01	6:43	0	26.2	25.3	26.0	25.6	25.8	51.3	61.0	10.5	41.0	9.7	0	38.2	0.074	0.0315	15.9	46.2	0.974
10/24/01	6:44	0	26.2	25.3	25.9	25.6	25.9	51.0	61.0	10.5	41.3	9.7	0	38.5	0.074	0.0315	16.0	46.2	0.974
10/24/01	6:45	0	26.2	25.3	26.0	25.6	25.8	51.0	60.8	10.5	41.3	9.7	0	38.5	0.074	0.0314	16.0	46.2	0.973
10/24/01	6:46	0	26.2	25.3	26.0	25.6	25.8	50.9	60.7	10.5	41.0	9.7	0	38.5	0.074	0.0314	16.0	45.9	0.973
10/24/01	6:47	0	26.3	25.4	26.0	25.6	25.8	50.9	60.6	10.4	41.1	9.7	0	38.4	0.073	0.0310	15.9	46.0	0.972
10/24/01	6:48	0	26.3	25.3	26.0	25.6	25.8	51.0	60.7	10.4	41.4	9.7	0	38.4	0.073	0.0310	15.9	46.2	0.973
10/24/01	6:49	0	26.3	25.3	26.0	25.6	25.8	51.2	60.8	10.5	41.1	9.7	0	38.5	0.073	0.0310	16.0	46.2	0.972
10/24/01	6:50	0	26.3	25.4	26.0	25.6	25.8	51.1	60.8	10.4	41.1	9.6	0	38.1	0.073	0.0310	15.8	46.1	0.972
10/24/01	6:51	0	26.3	25.4	26.0	25.6	25.8	51.3	61.0	10.5	41.4	9.6	0	38.4	0.073	0.0310	15.9	46.3	0.971
10/24/01	6:52	0	26.3	25.4	26.0	25.6	25.7	51.4	61.1	10.5	41.0	9.6	0	38.5	0.073	0.0310	16.0	46.2	0.972
10/24/01	6:53	0	26.3	25.4	26.1	25.6	25.8	51.2	60.9	10.5	41.3	9.6	0	38.4	0.073	0.0309	16.0	46.2	0.970
10/24/01	6:54	0	26.3	25.4	26.1	25.6	25.7	51.5	61.1	10.5	41.4	9.6	0	38.4	0.073	0.0309	15.9	46.4	0.970
10/24/01	6:55	0	26.3	25.4	26.1	25.6	25.8	51.2	60.8	10.5	41.2	9.6	0	38.4	0.073	0.0309	15.9	46.2	0.971
10/24/01	6:56	0	26.3	25.4	26.1	25.6	25.8	51.2	60.9	10.5	41.7	9.6	0	38.4	0.073	0.0309	15.9	46.5	0.970
10/24/01	6:57	0	26.4	25.4	26.1	25.6	25.8	51.4	61.1	10.5	41.3	9.6	0	38.4	0.073	0.0309	15.9	46.3	0.971
10/24/01	6:58	0	26.3	25.4	26.1	25.6	25.8	51.3	61.0	10.4	41.2	9.6	0	38.4	0.072	0.0305	15.9	46.3	0.969
10/24/01	6:59	0	26.4	25.4	26.1	25.6	25.8	51.0	60.5	10.5	41.1	9.6	0	38.4	0.072	0.0305	15.9	46.0	0.969
10/24/01	7:00	0	26.4	25.4	26.1	25.6	25.8	51.5	61.2	10.6	41.3	9.6	0	38.5	0.072	0.0304	16.0	46.4	0.968

									Xflov	v2 1025	01 070	0							
							Rav	w Data		VZ_1020	01_070	<u> </u>					Calcula	tions	
				٠.	٥.														
			FLTRT	CL LOOP	SL LOOP	UP AMB	BOT AMB	BOT DP	FLTR	FLTR DP	TOP DP		BP	SL FLOW	FLTR FLOW	Temp corr		A	Tama
			(°C)	(°C)	(°C)	(°C)	(°C)	(psid)	(psig)	(psid)	(psig)	FLTRATE	(psig)	(gpm)	(gpm)	flow	Axial Vel	Avg TMP	Temp corr
DATE	TIME S	Sol	T2	T3	T1	T4	T5	dP2	P1	dP1	dP3	(psig) P2	P3	Q1	Q2	(gpm/ft ²)	(ft/sec)	(psid)	factor
10/25/01	7:00	0	29.6	23.5	29.2	23.7	22.8	53.1	62.8	11.4	42.2	9.8	0	38.0	0.068	0.0264	15.8	47.6	0.889
10/25/01	7:01	0	29.5	23.5	29.2	23.7	22.7	53.2	63.0	11.4	42.4	9.7	0	38.0	0.068	0.0264	15.8	47.8	0.890
10/25/01	7:02	0	29.5	23.5	29.2	23.6	22.7	52.7	62.5	11.4	42.1	9.7	0	38.0	0.068	0.0264	15.8	47.4	0.890
10/25/01	7:03	0	29.5	23.5	29.3	23.6	22.6	53.1	62.9	11.3	42.4	9.7	0	38.0	0.068	0.0264	15.8	47.8	0.888
10/25/01	7:04	0	29.5	23.5	29.2	23.5	22.6	52.9	62.7	11.4	42.4	9.7	0	37.9	0.068	0.0264	15.7	47.6	0.890
10/25/01	7:05	0	29.5	23.5	29.3	23.5	22.6	52.8	62.4	11.4	42.3	9.7	0	38.0	0.068	0.0263	15.8	47.6	0.886
10/25/01	7:06	0	29.5	23.5	29.3	23.5	22.5	53.1	62.9	11.4	42.1	9.7	0	38.0	0.067	0.0259	15.8	47.6	0.887
10/25/01	7:07	0	29.5	23.5	29.3	23.4	22.5	52.9	62.7	11.4	41.9	9.7	0	37.9	0.068	0.0263	15.7	47.4	0.886
10/25/01	7:08	0	29.5	23.5	29.3	23.4	22.4	53.0	62.7	11.5	42.2	9.7	0	38.0	0.067	0.0260	15.8	47.6	0.887
10/25/01	7:09	0	29.5	23.5	29.4	23.4	22.4	52.8	62.6	11.4	42.3	9.7	0	37.9	0.068	0.0263	15.7	47.6	0.884
10/25/01	7:10	0	29.6	23.5	29.4	23.4	22.4	53.0	62.7	11.3	42.0	9.7	0	37.9	0.068	0.0263	15.7	47.5	0.884
10/25/01	7:11	0	29.6	23.5	29.5	23.4	22.3	53.1	62.8	11.3	42.2	9.7	0	37.9	0.068	0.0262	15.7	47.6	0.883
10/25/01	7:12	0	29.6	23.5	29.5	23.4	22.3	53.1	62.8	11.4	42.4	9.7	0	37.9	0.068	0.0262	15.7	47.7	0.882
10/25/01	7:13	0	29.6	23.5	29.5	23.3	22.2	52.8	62.6	11.4	42.3	9.7	0	37.8	0.068	0.0262	15.7	47.6	0.883
10/25/01		0	29.6	23.5	29.6	23.3	22.2	53.0	62.8	11.4	42.1	9.7	0	37.9	0.068	0.0262	15.7	47.6	0.881
10/25/01		0	29.7	23.5	29.5	23.3	22.2	52.7	62.4	11.3	42.3	9.7	0	37.8	0.068	0.0262	15.7	47.5	0.882
10/25/01		0	29.7	23.5	29.6	23.3	22.1	53.0	62.7	11.4	42.2	9.7	0	37.8	0.067	0.0258	15.7	47.6	0.881
10/25/01		0	29.7	23.4	29.7	23.2	22.1	53.1	62.9	11.3	42.3	9.7	0	37.8	0.068	0.0261	15.7	47.7	0.879
10/25/01		0	29.7	23.4	29.7	23.2	22.2	53.4	63.1	11.3	42.4	9.7	0	37.7	0.068	0.0261	15.6	47.9	0.879
10/25/01		0	29.8	23.4	29.7	23.2	22.2	53.0	62.9	11.3	42.6	9.7	0	37.7	0.068	0.0261	15.6	47.8	0.878
10/25/01	-	0	29.8	23.4	29.7	23.1	22.2	52.8	62.5	11.2	42.5	9.7	0	37.7	0.068	0.0260	15.6	47.7	0.877
10/25/01		0	29.8	23.4	29.7	23.1	22.2	53.4	63.2	11.3	42.4	9.7	0	37.7	0.067	0.0257	15.6	47.9	0.878
10/25/01		0	29.8	23.4	29.8	23.1	22.2	52.9	62.7	11.1	42.4	9.7	0	37.5	0.068	0.0260	15.6	47.7	0.875
10/25/01		0	29.9	23.4	29.8	23.2	22.2	53.0	62.7	11.3	42.7	9.7	0	37.7	0.067	0.0256	15.6	47.9	0.876
10/25/01		0	29.9	23.4	29.7	23.3	22.2	53.2	62.9	11.2	42.3	9.7	0	37.7	0.068	0.0261	15.6	47.7	0.878
10/25/01		0	29.9	23.4	29.6	23.2	22.3	53.2	62.9	11.3	42.9	9.7	0	37.7	0.068	0.0261	15.6	48.1	0.879
10/25/01		0	29.9	23.4	29.6	23.3	22.3	53.0	62.7	11.2	42.5	9.7	0	37.6	0.067	0.0257	15.6	47.7	0.880
10/25/01		0	29.8	23.4	29.6	23.3	22.3	52.9	62.6	11.1	42.4	9.7	0	37.6	0.067	0.0257	15.6	47.6	0.879
10/25/01		0	29.8	23.4	29.6	23.3	22.4	53.2	63.0	11.3	42.6	9.7	0	37.7	0.067	0.0257	15.6	47.9	0.880
10/25/01	-	0	29.8	23.4	29.6	23.3	22.4	53.3	63.1	11.3	42.5	9.7	0	37.7	0.067	0.0257	15.7	47.9	0.880
10/25/01	7:30	0	29.8	23.4	29.6	23.4	22.4	53.3	63.0	11.2	42.3	9.7	0	37.6	0.067	0.0258	15.6	47.8	0.881

					Xflov	v2 110°	101 10	45 (Dei	onized	water at	ter filter	ing Batch #	2 and c	leaning	the filter)				
								aw Da								,	(Calcula	tions	
				CL	SL	UP	BOT	вот		FLTR	TOP			SL	FLTR	HI FLTR				
			FLTRT	LOOP	LOOP	AMB	AMB	DP	FLTR	DP	DP	FLTRATE	BP	FLOW	FLOW	FLOW	Temp corr	Axial	Avg	Temp
5.475	T11.4F		(°C)	(°C)	(°C)	(°C)	(°C)	(psid)	(psig)	(psid)	(psig)	(psig)	(psig)	(gpm)	(gpm)	(gpm)	flow	Vel	TMP	corr
DATE	TIME	Sol	T2	T3	T1	T4	T5	dP2	P1	dP1	dP3	P2	P3	Q1	Q2	Q3	(gpm/ft ²)	(ft/sec)	(psid)	factor
11/01/01	13:34 13:35	0	23.3	21.4	22.8	23.1	21.4	10.4 15.3	15.8 25.3	10.2 15.4	0.5	5.748 10.185	0	49.6 62.1	0.010	-0.019	0.0047	20.6	5.5 7.7	1.065
		0							33.4				-	_				25.8		1.059
11/01/01	13:36	0	23.2	21.4	23.4	23.0	21.4	21.8		20.2	1.5	11.985	0	73.4	0.311	0.498	0.1420	30.4	11.7	1.045
11/01/01	13:37	0	23.4	21.4	23.9		21.3	21.7	33.6	20.3	2.0	12.103	0	73.2	0.286	0.302	0.1289	30.4	11.9	1.032
11/01/01	13:38	0	23.8	21.4	24.3	23.0	21.3	23.3	34.7	18.9	4.9	11.65	0	70.6	0.429	0.354	0.1911	29.3	14.1	1.020
11/01/01	13:39	0	24.5	21.4	24.7	22.9	21.3	31.2	43.8	10.5	20.7	12.911	0	52.4	1.211	1.580		21.7	25.9	
11/01/01	13:40	0	24.9	21.5	25.0	22.9	21.3	33.8	44.7	9.6	24.6	11.194	0	50.6	1.211	1.351	0.5291	21.0		1.000
11/01/01	13:41	0	25.2	21.5	25.3	22.9	21.3	36.4	44.9	9.8	26.8	8.773	0	50.6	1.211	1.246	0.5243	21.0		0.991
11/01/01	13:42 13:43	0	25.5 25.8	21.5	25.6 25.9	22.9 22.9	21.2	35.7	45.0	9.7	26.0	9.523 15.879	0	50.1	1.074	1.046	0.4609	20.8		0.983
11/01/01		0		21.5		-	21.2	29.1	44.6	9.7	20.0		0	50.7	1.211	1.537	0.5152	21.0		0.974
11/01/01	13:44	0	26.2	21.5	26.2	22.9	21.2	29.1	45.0	9.5	19.5	16.232	0	50.7	1.211	1.535	0.5108	21.0		0.966
11/01/01	13:45	0	26.5	21.5	26.6	22.9	21.2	33.0	44.9	9.3 9.4	23.7	12.228	0	50.3	1.211	1.398	0.5063	20.9		0.957
11/01/01	13:46	0	26.8	21.5	26.8	22.9	21.2	36.2	44.9	-	27.3	8.904	0	50.1	1.211	1.261	0.5024	20.8		0.950
11/01/01	13:47 13:48	0	27.0 27.3	21.5 21.5	27.2 27.5	22.9 22.9	21.2	37.5 38.8	44.8 45.5	9.5 9.5	28.7 29.1	7.654 6.888	0	50.2 49.5	1.123	1.090 0.972	0.4613 0.4124	20.9		0.941
11/01/01	13:49	0	27.6	21.5		22.9	21.2	39.3	44.8	9.5	30.3	5.938	0	50.2	0.926	0.894	0.4124	20.5		0.933
	13:49	_	27.8	21.5	28.0	22.9	21.2	33.8	36.9	10.0	24.0	3.554	0		0.926	0.894	0.3741	20.8		0.925
11/01/01	13:50	0	28.0	21.5	28.3	23.0	21.2	34.0	36.9	9.5	24.0	3.554	0	51.7 50.1	0.673	0.604	0.2700	20.8		0.919
11/01/01	13.51	0	20.0	21.5	20.3	23.0	21.3	34.0	30.9	9.5	24.5	3.203	U	50.1	0.036	0.604	0.2542	20.6	30.1	0.912
11/01/01	13:52	0	28.4	21.5	28.5	23.0	24.2	32.4	240	9.6	22.0	2.82	0	50.5	0.583	0.553	0.2309	20.9	27.6	0.907
11/01/01	13:52	0	28.5	21.5	28.7	23.0	21.3	32.4 19.7	34.9	9.6	22.8 10.8	12.674	0	49.1	0.583	0.553	0.2309	20.9	15.3	0.907
11/01/01	13:54	0	28.6	21.5	28.9	23.1	21.4	20.5	30.4	9.8	11.1	10.236	0	50.9	0.243	0.220	0.0956	21.1	15.8	0.896
11/01/01	13:55	1	28.6	21.5	29.1	23.1	21.4	6.9	30.4	9.6	-2.8	23.969	74	49.6	0.290	0.277	0.1133	20.6	2.1	0.892
11/01/01	13:56	1	28.9	21.5	29.3	23.1	21.5	7.8	30.0	9.6	-1.6	22.676	74	49.8	0.214	-0.018	0.0054	20.7	3.1	0.887
11/01/01	13:57	0	29.3	21.5	29.5	23.1	21.6	22.0	30.0	9.6	12.5	8.532	0	51.3	1.131	1.063	0.0054	21.3	17.2	0.884
11/01/01	13:58	0	29.5	21.6	29.5	23.2	21.6	22.0	30.2	9.6	13.8	7.358	0	50.8	0.941	0.892	0.4364	21.3	18.4	0.878
11/01/01	13:59	0	29.7	21.5	_	23.3	21.6	24.0	30.1	9.7	14.9	6.387	0	50.6	0.941	0.892		21.1	19.5	0.874
11/01/01	14:00	0	29.7	21.5	29.8	23.4	21.7	25.2	30.1	9.6	15.8	5.382	0		0.700	0.743	0.3004	21.0	20.5	0.876
11/01/01	14:01	0	29.8	21.5		23.6	21.8	26.0	30.3	9.7	16.6	4.6	0		0.622	0.605		20.9	21.3	0.886
11/01/01	14:02	0	29.5	21.6	28.9	23.9	21.9	26.5	30.2	9.7	17.0	4.038	0	51.0	0.622	0.544	0.2406	21.2	21.8	0.898
11/01/01	14:02	0	29.3	21.6	28.3	24.2	22.0	11.4	20.4	9.7	2.2	9.225	0	49.8	0.378	0.090		20.7	6.8	0.090
11/01/01	14:04	0	29.2	21.6	27.7	24.5	22.1	9.0	16.8	9.3	0.0	8.052	0	49.3	0.060	0.038	0.0478	20.7	4.5	0.912
1 1/0 1/01	14.04	U	25.2	21.0	21.1	24.0	ZZ. I	9.0	10.0	უ.ა	0.0	0.002	U	49.3	0.000	0.036	0.0243	20.4	4.0	0.920

This page intentionally left blank.