# Evaluating the Effects of Tri-Butyl Phosphate and Normal Paraffin Hydrocarbon in Simulated Low-Activity Waste Solution on Ultrafiltration

by

J. R. Zamecnik

Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808

M. A. Baich

DOE Contract No. DE-AC09-96SR18500

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-96SR18500 with the U. S. Department of Energy.

#### **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161,

phone: (800) 553-6847, fax: (703) 605-6900

email: orders@ntis.fedworld.gov

online ordering: <a href="http://www.ntis.gov/help/index.asp">http://www.ntis.gov/help/index.asp</a>

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062,

phone: (865)576-8401, fax: (865)576-5728

email: reports@adonis.osti.gov

Evaluating The Effects Of Tri-Butyl Phosphate And Normal Paraffin Hydrocarbon In Simulated Low-Activity Waste Solution On Ultrafiltration

UNCLASSIFIED
DOES NOT CONTAIN
UNCLASSIFIED CONTROLLED
NUCLEAR INFORMATION

ADC &

Official:

(Name and Title)

Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808



#### **KEYWORDS:**

Hanford River Protection Project Crossflow Filtration Tank 241-AZ-101 Envelope B, Envelope D Separable Organics

Evaluating The Effects Of Tri-Butyl Phosphate And Normal Paraffin Hydrocarbon In Simulated Low-Activity Waste Solution On Ultrafiltration

#### SAVANNAH RIVER TECHNOLOGY CENTER

J. R. Zamecnik M. A. Baich

**April 25, 2002** 

Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808



Prepared for the U.S. Department of Energy under Contract No. DE-AC09-96SR18500

DOCUMENT: WSRC-TR-2002-00108, Rev. 0 (SRT-RPP-2002-00041, Rev. 0) Evaluating The Effects Of Tri-Butyl Phosphate And Normal Paraffin TITLE: Hydrocarbon In Simulated Low-Activity Waste Solution On Ultrafiltration APPROVALS Mark Baich, Co-author (ITS, SRTC) Date: 5/8/02 Paul Burket, Technical Reviewer (ITS, SRTC) Michael Poirier, Principal Investigator (WPT, SRTC)

treatment Manager (WPT, SRTC)

# **Table of Contents**

| <i>1.0</i> | $\boldsymbol{E}$ | Executive Summary                             | 1  |
|------------|------------------|-----------------------------------------------|----|
| 2.0        | В                | Background and Introduction                   | 1  |
| 2          | 2.               | Objectives                                    | 1  |
| 2          |                  | Experimental System & Operation               |    |
| 2          | 2.3              | Experimental Methods & Materials              | 4  |
| 2          | .4               | Experimental Runs Matrix                      | 7  |
| 3.0        | R                | Results and Discussion                        | 9  |
| 3          | 3.               | Experimental Data                             | 9  |
| 3          | 3.2              | Simulant and Permeate Composition Versus Time | 12 |
| 3          | 3.3              | Organics in Slurry and Permeate               | 22 |
| 3          | .4               | Statistical Analysis of Data                  | 24 |
| 3          | 3.5              | Quality Assurance                             | 27 |
| 4.0        | $\boldsymbol{C}$ | Conclusions2                                  | ?7 |
| 5.0        | $\boldsymbol{A}$ | ppendices                                     | 9  |
| 5          | 5.1              | Appendix – Supernate Recipe                   | 29 |
| 5          | 5.2              | Appendix – Simulant Compositions              | 30 |
| 5          | 3.3              | Appendix – Experimental Design                |    |
| 5          | .4               | Appendix – Experimental Results               | 12 |
| 5          | 5.5              | Appendix – Curve Fits from JMP                |    |
| 6.0        | R                | ?                                             |    |

# **List of Tables**

| Table 2.1  | Amounts of Simulants and Chemicals Used                                                             | 5  |
|------------|-----------------------------------------------------------------------------------------------------|----|
| Table 2.2  | Measured Initial Composition of Simulant from Supernate, Solids, & Trim Chemicals                   | 6  |
| Table 3.1  | Average Compositions of Slurry, Permeate, and Solids                                                | 15 |
| Table 3.2  | Composition of Permeate                                                                             | 20 |
| Table 3.3  | Dibutylphosphate and 1-Butanol in Samples                                                           | 24 |
| Table 3.4  | Parameter Estimates for Model with Velocity, Adjusted Time, Pressure, and Organics Content          | 25 |
| Table 3.5  | Parameter Estimates for Model with Velocity and Adjusted Time                                       | 25 |
| Table 5.1  | Supernate Simulant Samples                                                                          | 30 |
| Table 5.2  | Sludge Solids Sample #1: Composition of solids filtered from sample                                 | 32 |
| Table 5.3  | Sludge Solids Sample #2: Composition of solids filtered from sample                                 | 33 |
| Table 5.4  | Sludge Solids Sample #3: Composition of solids filtered from sample                                 | 34 |
| Table 5.5  | Sludge Sample #1: Composition of <u>filtrate</u> from sample                                        | 35 |
| Table 5.6  | Sludge Sample #2: Composition of <u>filtrate</u> from sample                                        | 36 |
| Table 5.7  | Sludge Sample #3: Composition of <u>filtrate</u> calculated from composition of Sample #2 by ratio. | 37 |
| Table 5.8  | Overall Compositions of Samples #1-3 Calculated from Solids and Filtrate Analyses                   | 38 |
| Table 5.9  | Trim Chemicals Added                                                                                | 39 |
| Table 5.10 | Experimental Design Table                                                                           | 40 |

# **List of Figures**

| Figure 2.1 Crossflow Ultrafilter System                                                  | 3   |
|------------------------------------------------------------------------------------------|-----|
| Figure 2.2 Cross-flow Filtration Schematic                                               | 4   |
| Figure 2.3 Level Z (No Organics) Factorial Design                                        | 8   |
| Figure 2.4 Level L (25 mg/L Each TBP & NPH) Factorial Design                             | 8   |
| Figure 2.5 Level H (2500 mg/L Each TBP & NPH) Factorial Design                           | 9   |
| Figure 3.1 Clean Water Flux Prior to Experimentation                                     | 10  |
| Figure 3.2 Factorial Data Points for All Levels                                          | 11  |
| Figure 3.3 All Centroid Flux Data                                                        | 12  |
| Figure 3.4 Total Solids, Suspended Solids, and Specific Gravity versus Run               | 13  |
| Figure 3.5 Total Solids, Suspended Solids, and Specific Gravity versus Level             | 16  |
| Figure 3.6 Ion Chromatography Data for Slurry Samples                                    | 16  |
| Figure 3.7 Ion Chromatography Data for Permeate                                          | 17  |
| Figure 3.8 Slurry Carbon and Free Hydroxide Analyses                                     | 17  |
| Figure 3.9 IC, Hydroxide, and TIC/TOC mg/L Data Normalized to Constant Average Nitrate   | 18  |
| Figure 3.10 IC, Hydroxide, and TIC/TOC Molar Data Normalized to Constant Average Nitrate | 18  |
| Figure 3.11 Elemental Analyses (by ICPES) for Major Metals                               | 19  |
| Figure 3.12 Ratio of Iron and Zirconium to Suspended Solids                              | 19  |
| Figure 3.13 Photos of Slurry Samples                                                     | 22  |
| Figure 3.14 Possible Organic Phase Separation in Piping                                  | 22  |
| Figure 3.15 Organics Concentrations in Slurry and Permeate                               | 23  |
| Figure 3.16 Fitted Data for Flux versus Velocity and Time                                | 26  |
| Figure 3.17 Fitted Data for Flux versus Velocity. Time, and Organics                     | 2.7 |

# **List of Acronyms**

ADS Analytical Development Section

DI deionized

DBP dibutylphosphate fps feet per second HLW high level waste IC ion chromatography

ICPES inductively coupled plasma emission spectroscopy

ITS Immobilization Technology Section NPH normal paraffin hydrocarbon (dodecane)

QA Quality Assurance
QC Quality Control
SpGr specific gravity
SRS Savannah River Site

SRTC Savannah River Technology Center

TBP tributyl phosphate TC total carbon

TIC total inorganic carbon TOC total organic carbon

TS total solids

TSS total suspended solids

WPT Waste Processing Technology (Section)
WSRC Westinghouse Savannah River Company

# 1.0 Executive Summary

The effect on the filter flux of tributyl phosphate (TBP) and normal paraffin hydrocarbon (dodecane) in a simulated AZ-101 3.5 wt% insoluble, 28-30 wt% total solids slurry was studied. A 0.1 µm sintered metal Mott filter element was used for this work. The operating parameters used were specified by the customer to be within the range applicable to the full-scale plant. Specifically, transmembrane pressures of 20-60 psi and linear velocities of 7-15 fps were tested.

With TBP and dodecane at up to 2500 mg/L each, no effect on the filter flux was found. Therefore, the de minimis concentration of separable organics, if one exists, must be greater than 2500 mg/L.

All measured fluxes exceeded the customer's minimum of 0.014 gpm/ft<sup>2</sup>. Simulants with no organics, 25 mg/L each, and 2500 mg/L each were concentrated by a factor of one to produce permeate for ion exchange tests.

Cleaning of the system after use with the organics proved difficult using only water and nitric acid. It should be noted that the concentrations of separable organics were much higher than should actually be seen in the WTP. We recommend that the effect of TBP and NPH be studied further during filter cleaning tests.

# 2.0 Background and Introduction

Detailed background on the origin of this task is given in the customer's (RPP-WTP) specifying document: TSP-W375-00-00036, Rev. 1.<sup>1</sup> This work is specified in the RPP-WTP R/T Plan (PL-W375-TE00007, Rev. 0).

#### 2.1 Objectives

## 2.1.1 General Objectives

The effects of trace quantities of separable organics (tri-butyl phosphate {TBP} and normal paraffin hydrocarbon{NPH}, herein also called "organics") in the tank waste liquid feed to the Hanford River Protection Project Waste Treatment Plant (RPP-WTP) and the fate of the separable organics within the system shall be evaluated. Bulk average concentrations of ~25 ppm (or mg/L) are expected, but instantaneous concentrations could be higher. Each potentially affected unit operation, including ultrafiltration, ion exchange, and evaporation shall be examined for process, safety, and permitting implications. Based upon the results of these tests, the SRTC shall propose a de minimis concentration level for separable organics that could be sent to the WTP without adversely affecting the WTP. Specifically, the effects of insoluble TBP and NPH on ultrafiltration filter flux rate with a simulated AZ-10l solution are to be evaluated in this task.

The products from these filtration tests will be used as the feed for cesium and technetium ion exchange studies, which will be covered by a separate Task Technical & Quality Assurance Plan. Evaporation studies are described in a separate customer request.<sup>2</sup>

# 2.1.2 Specific Objectives

- 1. Determine the effect on filter flux rate, for a 0.1 μm sintered metal Mott filter element, of processing a simulated waste solution containing approximately 25 ppm (mg/L) TBP and 25 ppm NPH each above their solubility limit. The solubility limit for TBP is approximately 1.1 mg/L. Although the solubility limit for NPH in the salt solution is not exactly known, it should be much less than that for TBP since NPH is more non-polar.
- 2. Determine the effect on filter flux rate, for a  $0.1~\mu m$  sintered metal Mott filter element, of processing a simulated waste solution containing incrementally higher levels of TBP and NPH each above their solubility limit. Organic levels up to 2500~mg/L each are to be studied.
- 3. For the simulant without TBP/NPH and simulant with two levels of TBP and NPH, produce at least 2.0-2.5 liters of permeate solution of each for use in ion exchange tests.

#### 2.2 Experimental System & Operation

Figure 2.1 shows a photograph of the system. A schematic of the experimental system is shown in Figure 2.2. The experimental crossflow filter, or Cold Cells Unit Filter (CUF) contains a single crossflow filter tube. A 5-stage centrifugal pump is used to feed the slurry into the filter. Some liquid permeates through the filter wall (permeate) and the remainder passes through the filter axially (concentrate). As solids accumulate on the filter wall, backpulsing can be used to remove accumulation. The filter in this work was a 3/8-inch internal diameter, 2-foot long Mott Metallurgical sintered stainless steel filter. The nominal pore size was  $0.1~\mu m$ . The single filter tube was mounted horizontally in a stainless steel housing of welded construction.

Filtrate flowrate was measured with a graduated collection glass and stopwatch. The simple backpulse system is manually operated. The backpulse chamber is first charged with filtrate followed by compressed air. Quickly opening a toggle valve below the chamber forces reverse flow of filtrate upon the filter medium. Standard Bourdon tube type pressure gauges on both the inlet and exit of the filter indicate pressure. A thermocouple mounted near the bottom of the reservoir measures slurry temperature directly. A heat exchanger and chiller unit provide temperature control. All experiments were performed at  $25 \pm 5$ °C.

Slurry is recirculated through a heat exchanger and the filter element. A magnetic flow meter measures the volumetric flow in the system, which is displayed on a digital read out along with the feed vessel temperature. The filter is back-pulsed before the start each experiment by

pressurizing the backpulse tank to 45 psig. The toggle valve is then open repeatedly at no flow conditions. When air is observed returning to the feed vessel, back-pulsing is stopped. Each set of experimental conditions are set by adjusting the flow of air to the feed pump and adjusting the slurry flow control valve until the desired flow and transmembrane pressures are achieved. The system was operated per an approved operating procedure.<sup>3</sup>

## 2.2.1 Cross-flow Filter Conditioning

The equipment internals were first rinsed with flush solutions or DI water per the steps below. The filter cleaning fluids were pre-filtered with 0.22  $\mu$ m nylon filters before use. The laboratory de-ionizing unit uses a 0.22  $\mu$ m filter on the discharge.

A previously used filter element was used. It was first drained of any previous fluid, then filled with deionized water. This water was filtered through a  $0.22~\mu m$  nylon filter, which was located on the deionizer. This water was then recirculated through the filter concentrate side for at least 15 minutes. The filtrate generated was recycled back to the feed tank. The system was then drained, filled with ~1 M nitric acid, and recirculated for at least one hour. The filtrate generated was again recycled back to the reservoir. At least 2 backpulses were done in this period to clean the backpulse system as well as the filter. The system was then drained and the backpulse chamber is purged to empty it. A solution of 0.01~M NaOH was then added and recirculated for at least 15 minutes. At least 2 backpulses were done in this period to clean the backpulse system as well as the filter. The entire system and backpulse chamber were then drained and then refilled with fresh DI water (the system is laid up with DI water).

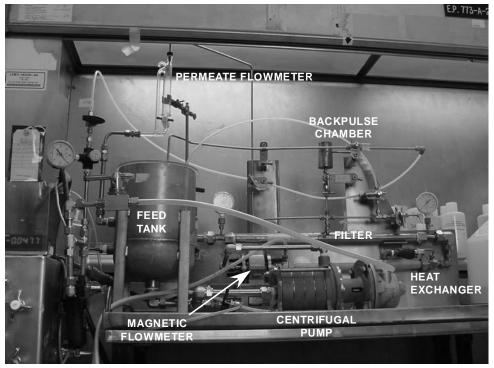



Figure 2.1 Crossflow Ultrafilter System

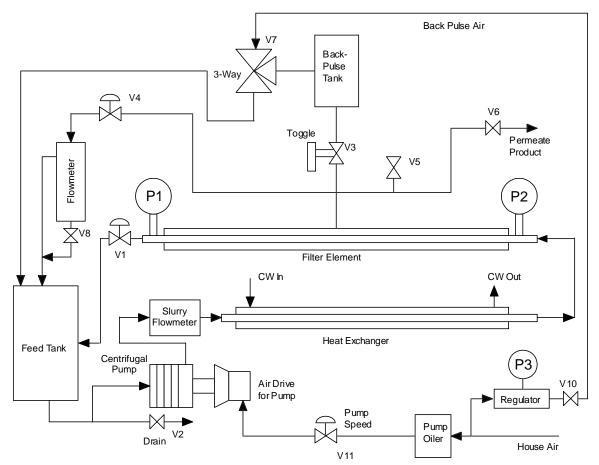



Figure 2.2 Cross-flow Filtration Schematic

#### 2.3 Experimental Methods & Materials

Initially, this work was specified to be performed with no insoluble solids, then respecified to include 0.1 wt% insoluble solids, then again respecified to use 3 wt% insoluble solids. Given these changes, to complete this work on a reasonable schedule, it was decided that the best way to proceed was to use the already made supernate simulant, some existing Envelope D solids simulant, and trim chemicals.

The simulant used for these experiments was made from a supernate simulant and a solids simulant. A simulated Tank 241-AZ-101 supernate solution that was ~5M Na concentration was prepared using a slight modification of the Envelope B simulant recipe.<sup>4</sup> The details of the recipe are given in Appendix 5.1. The solids used were an Envelope D simulant.<sup>4</sup> The supernate simulant and the solids simulant were each analyzed prior to use to verify correct makeup. The solids simulant used was actually from three different bottles of previously made materials that were at different insoluble solids concentrations (8.03-14.8 wt%). Note that concentration of these solids simulants to greater than 15 wt% insoluble solids by dead end filtration and centrifugation had been tried previously with no success, so they were used as is. The supernate simulant was mixed with calculated amounts of the solids simulants to

achieve a total insoluble solids content of nominally 3.0 wt%. Additional trim chemicals needed to be added to adjust the soluble solids concentrations to the correct values since the solids simulant had been washed to remove soluble components (e.g., Na, nitrite, nitrate, etc.). The amounts of each simulant material and chemicals used are shown in Table 2.1. The compositions of the simulant materials are shown in Appendix 5.2.

Table 2.1 Amounts of Simulants and Chemicals Used

| Material           | Insoluble Solids | Amount |
|--------------------|------------------|--------|
|                    | wt%              | Used   |
| Supernate simulant | 0                | 4.0 L  |
| Solids simulant    | 11.2             | 1.84 L |
| Solids simulant    | 14.8             | 0.25   |
| Trim chemicals     | 0                | 513 g  |
| Final Simulant     | ~ 3              | 6.3 L  |

The supernate simulant was prepared to give an Al concentration of approximately 10700 mg/L, but precipitation of aluminum as alumina occurred immediately. The pH was about 11.3 and the total hydroxide concentration was greater than 1.0M. Small amounts of Si and Li also appear to have precipitated. Analysis of precipitate from a previous attempt to prepare this simulant showed that the solids were predominantly gibbsite [Al(OH)<sub>3</sub>], NaNO<sub>2</sub>, NaNO<sub>3</sub>, and a trace amount of hydrogen aluminum silicate [H(AlSi<sub>2</sub>O<sub>6</sub>)]. The actual supernate simulant Al concentration was 5070 mg/L. Although aluminum precipitation could not be avoided, it was decided to continue with the experiments since the concentration of soluble aluminum in the simulant was deemed to have little effect on filtration. The supernate simulant was filtered prior to mixing with the solids simulants. Upon mixing the supernate simulant with the solids simulants and trim chemicals, the final composition shown in Table 2.2 was achieved. Note that the Al concentration is less than the original simulant. Aluminum was not added as a trim chemical, since it was suspected that additional precipitation would occur.

Table 2.2 Measured Initial Composition of Simulant from Supernate, Solids, & Trim Chemicals

|                 | Supernate, Solids, & Trim Chemicals |                 |               |                |        |        |               |        |
|-----------------|-------------------------------------|-----------------|---------------|----------------|--------|--------|---------------|--------|
|                 | Filt                                | trate           | Filter        | ed Solids      |        | Total  | Sample        |        |
| Treatment:      |                                     | ered            |               | ia Dissolution |        |        | e Dissolution |        |
|                 | mg/L                                | mg/L            | mg/kg         | mg/kg          | mg/L   | mg/L   | mg/L          | mg/L   |
| ICPES: Al       | 1970                                | 2100            | 7289          | 7257           | 2694   | 2662   | 2678          | 2691   |
| В               | 20.2                                | 28.1            | 544           | 461            | NA     | NA     | NA            | NA     |
| Ba              | < 0.12                              | < 0.12          | 873           | 874            | 66.3   | 65.6   | 65.0          | 65.7   |
| Ca              | 0.404                               | 0.812           | 2371          | 2342           | 185    | 182    | 179           | 177    |
| Cd              | 0.490                               | 0.745           | 11120         | 11155          | 820    | 823    | 824           | 826    |
| Co              | < 0.44                              | < 0.44          | 1425          | 1449           | 107    | 107    | 105           | 108    |
| Cr              | 443                                 | 454             | 1660          | 1684           | 551    | 562    | 559           | 564    |
| Cu              | < 0.5                               | < 0.5           | 482           | 475            | 35.7   | 32.5   | 29.9          | 28.0   |
| Fe              | 0.560                               | 0.952           | 142543        | 142434         | 10845  | 10898  | 10915         | 10895  |
| Li              | <1                                  | <1              | <43           | <43            | <30    | <30    | <28           | <28    |
| Mg              | < 0.84                              | < 0.84          | 245           | 226            | <25    | <25    | <23           | <23    |
| Mn              | < 0.09                              | < 0.09          | 3452          | 3452           | 287    | 289    | 261           | 261    |
| Mo              | 5.00                                | 5.25            | <43           | <43            | 30.4   | 30.4   | 27.7          | 27.7   |
| Na              |                                     | 105000          | 181250        | 176188         | 109955 | 106667 | 108417        | 107407 |
| Ni              | < 0.62                              | < 0.62          | 8616          | 8691           | 682    | 681    | 690           | 688    |
| P               | 711                                 | 735             | 1240          | 1016           | 1031   | 1018   | 1052          | 1022   |
| Pb              | < 6.9                               | < 6.9           | 1552          | 1585           | <210   | <210   | <191          | <222   |
| Si              | 3.70                                | 4.40            | 3196          | 3064           | 6077   | 6115   | 5653          | 5366   |
| Sn              | < 2.6                               | < 2.6           | <112          | <112           | <79    | <79    | <72           | <72    |
| Sr              | 0.165                               | 0.170           | 428           | 422            | 97.6   | 97.0   | 31.7          | 32.1   |
| Ti              | <1.4                                | <1.4            | 216           | 215            | <42    | <42    | <39           | <39    |
| V               | <1.3                                | <1.3            | <56           | < 56           | <40    | <40    | <36           | <36    |
| Zn              | <3.7                                | <3.7            | 480           | 482            | <112   | <112   | <102          | <102   |
| Zr              | 0.997                               | 2.15            | 42243         | 42785          | 3677   | 3669   | 3479          | 3496   |
| La              | <7                                  | <7              | 5578          | 5563           | 358    | 337    | 230           | 263    |
| K               | 3650                                | 3920            | 5753          | 5864           | 3547   | 3509   | 3786          | 3451   |
| Re              | 33.2                                | 34.4            | 52.7          | 62.3           | <61    | <61    | 64            | 64     |
| S               | 6190                                | 6230            | 9429          | 9513           | 6572   | 6682   | 6719          | 6623   |
| Ag              | <3                                  | <3              | 599           | 841            | <91    | <91    | <83           | <83    |
| Се              | <7.7                                | <7.7            | 1243          | 1300           | <234   | <234   | <213          | <213   |
| Nd              | <2.6                                | <2.6            | 3952          | 3992           | 390    | 316    | 300           | 319    |
| IC: chloride    |                                     | 94              |               |                |        | 231    |               | 200    |
| fluoride        |                                     | 38              |               |                |        | 2011   |               | 1694   |
| nitrate         | 671                                 |                 |               |                |        | 5686   |               | 3905   |
| nitrite         | 543                                 |                 |               |                |        | 0080   |               | 1437   |
| sulfate         | 181                                 |                 |               |                |        | 0532   |               | 7019   |
| phosphate       |                                     | 47              |               |                |        | 2358   |               | 2358   |
| TC              |                                     | NA              |               |                |        | 4000   |               |        |
| TIC             |                                     | NA              |               |                |        | 4000   |               |        |
| TOC             |                                     | NA<br>26.5      |               |                |        | <200   | 0.0           |        |
| Total Solid     |                                     | 26.5            |               |                |        |        | 8.0           |        |
| Insoluble Solid |                                     | 1.00            |               |                |        |        | 2.95          |        |
| *               | Gravity                             | 1.22            |               |                |        |        | 1.25          |        |
| Numbers in red  | a with < indic                      | cate values bel | low detection | n Iimit        |        |        |               |        |

Samples of the slurry simulant and permeate were taken throughout the experiments. Some samples were analyzed completely, while others were analyzed only for total solids, insoluble solids, and specific gravity. Sample results from throughout the experiments are discussed in Section 3.1. The TBP and NPH used were 99.9+ % pure. The NPH used was actually dodecane. The TBP and NPH were first mixed to a 50:50 wt% mixture and then the mixture was added to the simulant in the necessary quantities.

## 2.4 Experimental Runs Matrix

The experimental runs were divided into four sections:

- 1. No organics. Factorial design. Permeate flux versus transmembrane pressure (TMP) and linear velocity. (Called "Level Z" herein.)
- 2. TBP and NPH both at 25 mg/L above the solubility limit. Factorial design as in #1. (Called "Level L" herein.)
- 3. Increase TBP and NPH to as high as 2500 mg/L each to determine concentration (impact level) that adversely affects the filter flux. This is the "de minimis" concentration determination. (Called "Level M" herein.)
- 4. Organics at impact level. Factorial design as in #1. (Called "Level H" herein.)

The factorial design for the no organics level is shown in Figure 2.3. Three clean water flux determination points are also shown in this Figure. The clean water flux was determined prior to the first runs with simulant sludge. The level L and level H designs are shown in Figure 2.4-Figure 2.5. The clean water flux was again determined after level H was completed. The numbers on each experimental point indicate the order in which the experiments were conducted; this order was randomly chosen for each level prior to the start of the experiments. Details of these experimental designs are given in Appendix 5.3.

Between each level, approximately two liters of permeate was collected for further use in ion exchange and evaporation experiments. For all three collection periods, the permeate was collected at a velocity of 13.4-15.9 fps, TMP of 32-39 psi, and a permeate flux of 0.061-0.095 gpm/ft<sup>2</sup>. The Test Specification called for these production runs to be conducted at the optimum conditions of flow and pressure. The results of this work showed that the highest permeate flowrate was achieved at the highest attainable velocity and any pressure (above 20 psi, since lower pressures were not tested).

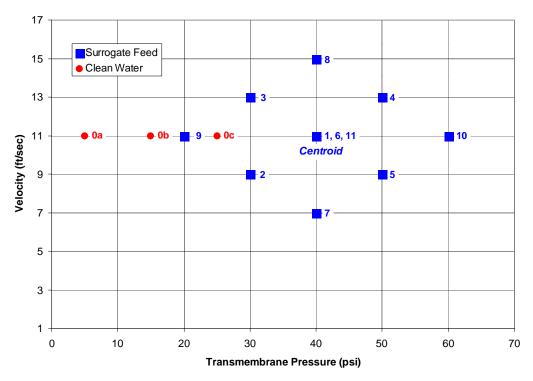



Figure 2.3 Level Z (No Organics) Factorial Design

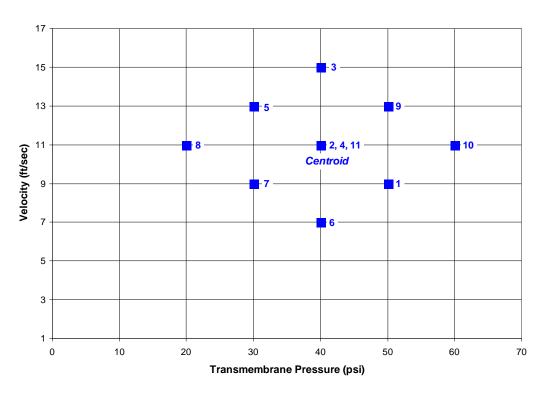



Figure 2.4 Level L (25 mg/L Each TBP & NPH) Factorial Design

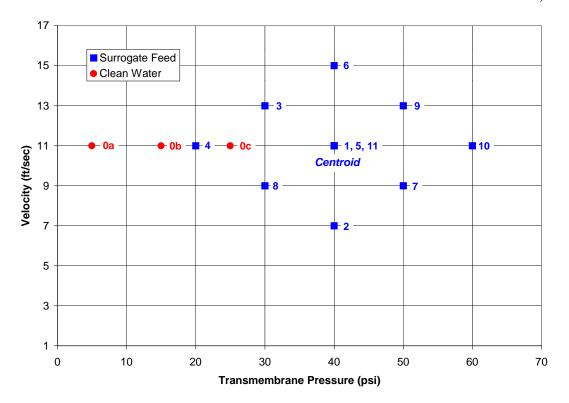



Figure 2.5 Level H (2500 mg/L Each TBP & NPH) Factorial Design

## 3.0 Results and Discussion

## 3.1 Experimental Data

#### 3.1.1 Clean Water Flux

Clean water fluxes were taken after the system was flushed with cleaning fluids as described in section 2.2.1. Transmembrane pressures were between 5 and 20 psi and fluxes were measured after initial backpulsing. The purpose for obtaining the clean water flux measurements is to ensure the equipment is cleaned and to establish a baseline filter flux to determine if filter fouling occurs during tests with the waste simulant sample. The high filtrate flux observed for water made it necessary to collect filtrate in a 500 ml graduated cylinder instead of the 40 ml graduated collection vessel used in slurry operation. Figure 3.1 presents the measured clean water flux prior to and after the experimentation. The clean water flux prior to the filtration of the Sr/TRU precipitate of Envelope C waste, on a similar ultrafilter, is also shown.<sup>5</sup>

The post-test clean water flux data was taken after the system had been cleaned as described in section 2.2.1, with the exceptions that the 0.01M NaOH flush was not done and a flush with a low-foaming detergent (Alconox<sup>TM</sup>) was performed. Soaking with ~1M nitric acid for several days did not return the flux back to the original values, so the detergent was used on the assumption that the organics had affected the filter

(although not adversely for slurry filtration). Both TBP and NPH are relatively stable in nitric acid (they are used in solvent extraction), so the apparent ineffectiveness of the nitric acid is not surprising since little organic degradation should occur.

After soaking with detergent, the system was flushed with water and then re-cleaned with nitric acid. At this time, significant foaming occurred, so the acid was left in the system for several weeks. After the additional soaking, the foaming stopped and the fluxes returned to values similar to before the run. There is no comparative cleaning data with an AZ-101 simulant without organics present to determine if the same difficulty in cleaning would have occurred.

Also note that the final feed used, at 2500 mg/L each of TBP and NPH, was much higher than would ever be expected in the WTP, so the effect of these organics may have been much more severe that will actually occur in the WTP. We recommend that the effect of separable organics on cleaning be investigated during filter cleaning tests.

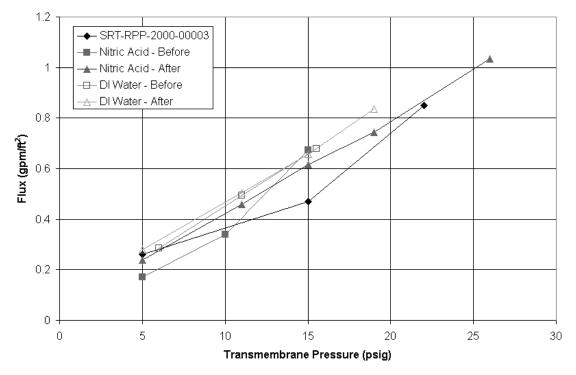



Figure 3.1 Clean Water Flux Prior to Experimentation

#### 3.1.2 Experimental Runs

The no organics (Level Z) and the 25 mg/L each of TBP & NPH experiments (Level L) were run in succession per the designs shown in Figure 2.3 and Figure 2.4. Upon completing level L, the organics content was incrementally increased from 25 mg/L each of TBP & NPH to 2500 mg/L of each. The organics content was increased each time by adding the additional organics on top of the feed in the feed tank. The pump was then started and run for several minutes at ~15 fps velocity to mix the organics.

The Test Plan specified that addition of organics cease when the "impact level" was found. However, no significant impact of the organics up to 2500 mg/L appeared to be found. The high organics (Level H) factorial experiment, with both TBP and NPH at 2500 mg/L, was then performed per the design shown in Figure 2.5.

The experimental fluxes measured for all levels of the factorial and impact level experiments are shown in Appendix 5.4. Plots of these same data are also shown in this Appendix. Figure 3.2 shows the factorial experiment arrangement with the actual variable values. The inability to achieve the highest flow/pressure combinations had no effect on the outcome of these tests. It should be noted that the multi-stage centrifugal pump should have been a six stage, rather than five stage pump.

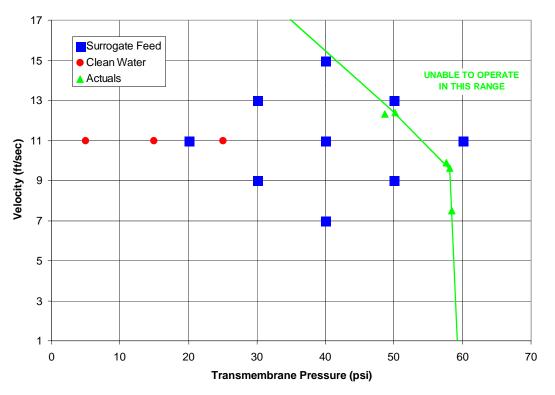



Figure 3.2 Factorial Data Points for All Levels

Because the factorial experiment used various combinations of TMP and velocity, direct graphical comparison of the data is somewhat difficult except where these variables are at the same values. Figure 3.3 shows the measured fluxes versus run number for the centroid point of the factorial experiments; this plot also includes the impact level determination data, which was also taken at the centroid. The minimum flux for Envelope B/D is 0.014 gpm/ft<sup>2</sup>. During the Level L factorial experiment, the centrifugal pump began to leak from the mechanical seal. By the end of this level, the leak was too great to continue without repairs. To repair the pump, the system had to be drained and flushed. The flushing of the system resulted in a step change increase of about 0.006 gpm/ft<sup>2</sup> in the steady state flux. Note the two data points that were run at the same conditions. To account for this change in flux, all of the flux data after the

pump repair was decreased by 0.006 gpm/ft<sup>2</sup> to put this data on the same basis as the initial data.

The steady state flux decreased approximately linearly until the beginning of the impact level (M) determination runs. This type of behavior has been seen in other ultrafiltration work at SRTC.<sup>7</sup> The cause for this type of trend has been attributed to either irreversible (except with cleaning) changes in the filter membrane or particle degradation to an ultimate particle size distribution.<sup>8</sup> Both of these proposed phenomena are functions primarily of run time.

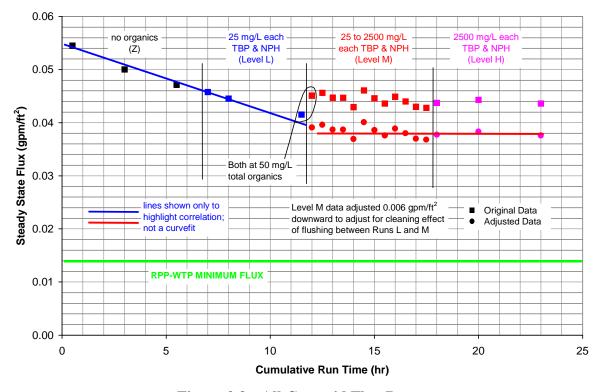



Figure 3.3 All Centroid Flux Data

# 3.2 Simulant and Permeate Composition Versus Time

The total solids and suspended (insoluble) solids contents and the specific gravity of the simulant sludge and permeate was measured periodically. More complete analyses of the composition of the simulant were made between each level of experiment. Figure 3.4 shows the total solids, suspended solids, and specific gravity of the slurry throughout the experiments. The total solids content ranged from about 27.5 to 29.0 wt% during the factorial experiments, and increased during the concentration steps. These data are also summarized in Figure 3.5. Overall, there was a slight increase in all three quantities from level to level. These differences are due to the way each level was started. Upon completion of the concentration step from the previous level, supernate simulant was re-added to the feed tank in the approximate amount that had been removed. The variation in the amounts of these additions is the reason for the different solids and specific gravity measurements.

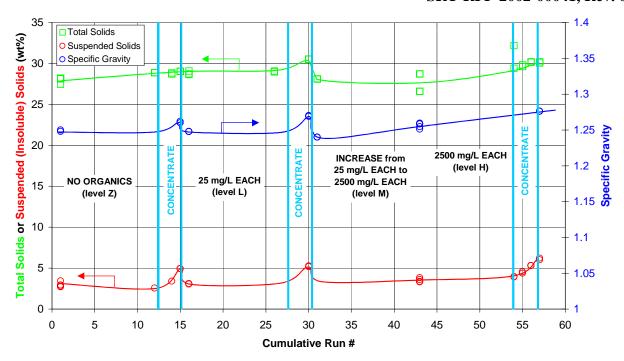



Figure 3.4 Total Solids, Suspended Solids, and Specific Gravity versus Run

The composition of the slurry, permeate (or filtrate from slurry samples), and the filtered solids are shown in Table 3.1. Most of the analyses of the slurry from level to level are consistent and generally within 20%. Different types of dissolutions were sometimes necessary for the elemental analyses to dissolve the entire sample. The microwave dissolution was usually used, but the peroxide fusion and aqua regia dissolutions were also used.

Since the main purpose of this work was to determine if the presence of the TBP and NPH have any effect on the filtrate flux, it was important to eliminate other possible causes for the data behavior. Dissolution or precipitation of selected species could have a significant effect on the filterability of the slurry. Figure 3.6-Figure 3.8 show the slurry and permeate IC and carbon analyses plotted versus cumulative run number. Note that some of the variation seen is due to slightly different solids concentrations that existed during the different levels. There were several unexpected trends. The phosphate concentration in both the slurry and permeate appears to have dropped off during the high organics runs. An increase in phosphorus was expected with the addition of the TBP; however, the difficulty in getting a representative sample containing the organic phase contributed to this trend (see discussion in Section 3.3). The hydroxide concentration also dropped off during the experiments, starting at about 0.97M and dropping to about 0.8M. In Figure 3.9-Figure 3.10, the IC and TIC/TOC data is shown in mg/L and Molar, respectively, where all concentrations have been normalized to a constant nitrate concentration. Nitrate concentration was not expected to change except for dilution effects. These figures show that when normalized to nitrate, the concentrations of sulfate, chloride, and fluoride stay essentially constant. The graph of Molar concentration shows that the decrease in the hydroxide concentration is, to within the analytical accuracy, balanced by the increase in the carbonate concentration. Therefore, absorption of carbon dioxide appears to account for the hydroxide decrease.

The data in Figure 3.11 show that the iron concentration was relatively constant during the factorial experiments and that it increased during the concentration, as expected. Iron was the major insoluble species in the slurry. The other significant insoluble species were Zr, and Si; the data for both of these is inconclusive. The dissolution of Zr by the microwave and aqua regia methods gave inconsistent results, whereas there was significant scatter in the Si data. The soluble species Na, Al, Cr, and K all stayed relatively constant as expected.

Since Zr and Fe were mostly insoluble, their concentrations in the slurry should parallel the suspended solids concentration. The ratio of these elements to the TSS is shown in Figure 3.12. The ratios, within experimental variation, are constant.

Figure 3.8 shows the carbon analyses during the experiments. There is good agreement between the TIC and carbonate analyses (although a constant offset) and also between the TOC analyses and the TOC calculated from the organics added (except for the last data point). The TOC calculated from the organics measured by GC-MS was generally about 1/3 of the actual amount added. This discrepancy can be explained by the difficulty in getting a representative sample of the slurry/organic phase mixture, which is discussed in Section 3.3. The average analyses of filtrate from slurry and permeate were shown in Figure 3.2. The composition of the permeate varied little during the experiments, as shown in Table 3.2. The first two columns and the last column are data for dead-end filtered slurry.

Table 3.1 Average Compositions of Slurry, Permeate, and Solids

| Table 3.    | 1110                                                                                                                                                                                                                                                  | ruge compe                                                                                                                                                                                                                                                                                                                                                                                                                               | bittons of b                                                 | iuiiy, i cii                                                                                                                                                   | meate, and t                                                             | JULIUS                                                                                                            |                                                              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          | Slurry -                                                     | Slurry -                                                                                                                                                       | Slurry –                                                                 | Slurry -                                                                                                          | Slurry –                                                     |
| Filtrate or | Sludge                                                                                                                                                                                                                                                | Slurry –                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level Z                                                      | Level L                                                                                                                                                        | Level L                                                                  | Level H                                                                                                           | Level H                                                      |
| Permeate    | Solids                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                          | Concentrated                                                 | Start                                                                                                                                                          | Concentrated                                                             | Start                                                                                                             | Concentrated                                                 |
| mg/L        | mg/L                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                | mg/L                                                                     | mg/L                                                                                                              | mg/L                                                         |
|             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                |                                                                          |                                                                                                                   | NA                                                           |
|             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                |                                                                          |                                                                                                                   | 621                                                          |
|             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                |                                                                          | 297                                                                                                               | 149                                                          |
|             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256                                                          | 196                                                                                                                                                            |                                                                          |                                                                                                                   | 1054                                                         |
|             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                |                                                                          |                                                                                                                   | 1664                                                         |
| < 0.44      | 1459                                                                                                                                                                                                                                                  | 106                                                                                                                                                                                                                                                                                                                                                                                                                                      | 156                                                          | 118                                                                                                                                                            | 167                                                                      | 108                                                                                                               | 219                                                          |
| 525         | 1803                                                                                                                                                                                                                                                  | 559                                                                                                                                                                                                                                                                                                                                                                                                                                      | 589                                                          | 649                                                                                                                                                            | 710                                                                      | 624                                                                                                               | 737                                                          |
| < 0.50      | 378                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                           | 42.8                                                                                                                                                           | 43.8                                                                     | 30.0                                                                                                              | <18.8                                                        |
| 3.58        | 144878                                                                                                                                                                                                                                                | 10888                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15394                                                        | 11548                                                                                                                                                          | 17076                                                                    | 10852                                                                                                             | 21717                                                        |
| <1.00       | <71                                                                                                                                                                                                                                                   | <29                                                                                                                                                                                                                                                                                                                                                                                                                                      | <29                                                          | <30.8                                                                                                                                                          | < 30.1                                                                   | <14.1                                                                                                             | <37.5                                                        |
| < 0.84      | 248                                                                                                                                                                                                                                                   | <24                                                                                                                                                                                                                                                                                                                                                                                                                                      | <25                                                          | <25.9                                                                                                                                                          | <25.3                                                                    | <17.1                                                                                                             | <73.8                                                        |
| < 0.13      | 3592                                                                                                                                                                                                                                                  | 274                                                                                                                                                                                                                                                                                                                                                                                                                                      | 380                                                          | 289                                                                                                                                                            | 411                                                                      | 272                                                                                                               | 541                                                          |
| 4.51        | <71                                                                                                                                                                                                                                                   | <29                                                                                                                                                                                                                                                                                                                                                                                                                                      | <31                                                          | <32.5                                                                                                                                                          | < 30.1                                                                   | <14.1                                                                                                             | <37.5                                                        |
| 110622      | 178719                                                                                                                                                                                                                                                | 108112                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108213                                                       | 112206                                                                                                                                                         | 114892                                                                   | 112549                                                                                                            | NA                                                           |
| < 0.71      | 8809                                                                                                                                                                                                                                                  | 685                                                                                                                                                                                                                                                                                                                                                                                                                                      | 960                                                          | 732                                                                                                                                                            | 1058                                                                     | 665                                                                                                               | 1364                                                         |
| 742         | 2343                                                                                                                                                                                                                                                  | 1031                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1069                                                         | 968                                                                                                                                                            | 991                                                                      | 395                                                                                                               | 862                                                          |
| < 6.90      | 1717                                                                                                                                                                                                                                                  | <208                                                                                                                                                                                                                                                                                                                                                                                                                                     | 207                                                          | <213                                                                                                                                                           | 217                                                                      | 163                                                                                                               | 270                                                          |
| 3.55        | 5247                                                                                                                                                                                                                                                  | 5803                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3838                                                         | 5292                                                                                                                                                           | 5421                                                                     | NA                                                                                                                | 5801                                                         |
| < 2.60      | <184                                                                                                                                                                                                                                                  | <76                                                                                                                                                                                                                                                                                                                                                                                                                                      | <75                                                          | < 80.2                                                                                                                                                         | < 78.2                                                                   | <36.6                                                                                                             | <97.5                                                        |
| < 0.12      | 444                                                                                                                                                                                                                                                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                           | 46.8                                                                                                                                                           | 48.6                                                                     | 40                                                                                                                | NA                                                           |
| <1.40       | 259                                                                                                                                                                                                                                                   | <41                                                                                                                                                                                                                                                                                                                                                                                                                                      | <43                                                          | <43.2                                                                                                                                                          | <42.1                                                                    | <20.2                                                                                                             | <191                                                         |
| <1.30       | <92                                                                                                                                                                                                                                                   | <38                                                                                                                                                                                                                                                                                                                                                                                                                                      | <37                                                          | <40.1                                                                                                                                                          |                                                                          | <18.3                                                                                                             | <48.8                                                        |
| < 3.70      | 513                                                                                                                                                                                                                                                   | <107                                                                                                                                                                                                                                                                                                                                                                                                                                     | <106                                                         | <114                                                                                                                                                           |                                                                          | <52.1                                                                                                             | <139                                                         |
| 3.45        | 42514                                                                                                                                                                                                                                                 | 3580                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4970                                                         | 3786                                                                                                                                                           | 5494                                                                     | 2999                                                                                                              | NA                                                           |
| < 7.00      | 5510                                                                                                                                                                                                                                                  | 297                                                                                                                                                                                                                                                                                                                                                                                                                                      | 361                                                          | 324                                                                                                                                                            | 498                                                                      | 440                                                                                                               | 893                                                          |
| 4141        | 5809                                                                                                                                                                                                                                                  | 3573                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3534                                                         | 3619                                                                                                                                                           | 3842                                                                     | 3768                                                                                                              | NA                                                           |
| 38.0        | 127                                                                                                                                                                                                                                                   | <63                                                                                                                                                                                                                                                                                                                                                                                                                                      | <58                                                          | <62.0                                                                                                                                                          | <81.0                                                                    | < 70.4                                                                                                            | <37.5                                                        |
| 6386        | 9405                                                                                                                                                                                                                                                  | 6649                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6557                                                         | 6654                                                                                                                                                           | 6635                                                                     | 7105                                                                                                              | 6991                                                         |
| < 3.00      | 1226                                                                                                                                                                                                                                                  | <87                                                                                                                                                                                                                                                                                                                                                                                                                                      | <144                                                         | <92.5                                                                                                                                                          | <150                                                                     | <73.8                                                                                                             | <313                                                         |
| < 7.70      | 1326                                                                                                                                                                                                                                                  | <224                                                                                                                                                                                                                                                                                                                                                                                                                                     | <222                                                         | <237                                                                                                                                                           | <232                                                                     | <119                                                                                                              | <289                                                         |
| < 2.60      | 3921                                                                                                                                                                                                                                                  | 331                                                                                                                                                                                                                                                                                                                                                                                                                                      | 380                                                          | 365                                                                                                                                                            | 476                                                                      | 288                                                                                                               | 603                                                          |
| 164         | NA                                                                                                                                                                                                                                                    | 215                                                                                                                                                                                                                                                                                                                                                                                                                                      | 221                                                          | 207                                                                                                                                                            | 221                                                                      | 161                                                                                                               | 155                                                          |
| 1629        | NA                                                                                                                                                                                                                                                    | 1852                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1888                                                         | 1866                                                                                                                                                           | 1973                                                                     | 1793                                                                                                              | 1705                                                         |
| 62749       | NA                                                                                                                                                                                                                                                    | 69795                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70394                                                        | 73099                                                                                                                                                          | 77174                                                                    | 69285                                                                                                             | 66567                                                        |
| 49750       | NA                                                                                                                                                                                                                                                    | 55758                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55171                                                        | 57827                                                                                                                                                          | 61918                                                                    | 58525                                                                                                             | 59140                                                        |
| 16286       | NA                                                                                                                                                                                                                                                    | 18776                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17332                                                        | 18714                                                                                                                                                          | 19701                                                                    | 17207                                                                                                             | 16302                                                        |
| 2108        | NA                                                                                                                                                                                                                                                    | 2358                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2424                                                         | 2167                                                                                                                                                           | 2276                                                                     | 1655                                                                                                              | 1325                                                         |
| NA          | NA                                                                                                                                                                                                                                                    | 22302                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24105                                                        | 24432                                                                                                                                                          | 29403                                                                    | 27588                                                                                                             | 27690                                                        |
| NA          | NA                                                                                                                                                                                                                                                    | 17061                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16426                                                        | 16394                                                                                                                                                          | 14799                                                                    | 13782                                                                                                             | 13336                                                        |
| 27.25       | NA                                                                                                                                                                                                                                                    | 28.04                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.04                                                        | 28.8                                                                                                                                                           | 30.5                                                                     | 27.7                                                                                                              | 30.1                                                         |
| NA          | NA                                                                                                                                                                                                                                                    | 2.95                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.93                                                         | 3.08                                                                                                                                                           | 5.23                                                                     | 3.53                                                                                                              | 6.12                                                         |
| 1.235       | NA                                                                                                                                                                                                                                                    | 1.249                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.261                                                        | 1.25                                                                                                                                                           | 1.27                                                                     | 1.26                                                                                                              | 1.28                                                         |
|             | Filtrate or Permeate mg/L  2339 21.4 0.23 <0.47 0.87 <0.44 525 <0.50 3.58 <1.00 <0.84 <0.13 4.51 110622 <0.71 742 <6.90 3.55 <2.60 <0.12 <1.40 <1.30 <3.70 3.45 <7.00 4141 38.0 6386 <3.00 <7.70 <2.60 164 1629 62749 49750 16286 2108 NA NA 27.25 NA | Filtrate or Permeate mg/L 2339 7273 21.4 503 0.23 931 <0.47 3131 0.87 11128 <0.44 1459 525 1803 <0.50 378 3.58 144878 <1.00 <71 <0.84 248 <0.13 3592 4.51 71 110622 178719 <0.71 8809 742 2343 <6.90 1717 3.55 5247 <2.60 <184 <0.12 444 <1.40 259 <1.30 <92 <3.70 513 3.45 42514 <7.00 5510 4141 5809 38.0 127 6386 9405 <3.00 1226 <7.70 1326 <2.60 3921 164 NA 1629 NA 1629 NA 16286 NA 2108 NA N | Filtrate or Permeate mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | Filtrate or Permeate mg/L Solids mg/L Level Z Start Concentrated mg/L 2339 7273 2681 2862 21.4 503 NA NA NA 0.23 931 66 94 94 94 94 94 94 94 94 94 94 94 94 94 | Filtrate or Permeate mg/L solids mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | Filtrate or Permete Solids Solids Solids Ing/L Level Z Start Concentrated mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | Filtrate or Permeate mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L |

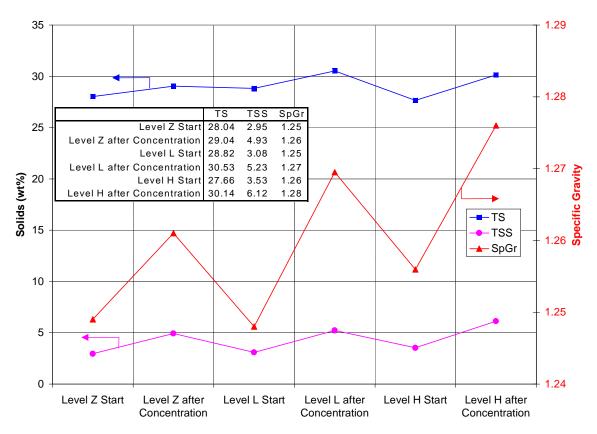



Figure 3.5 Total Solids, Suspended Solids, and Specific Gravity versus Level

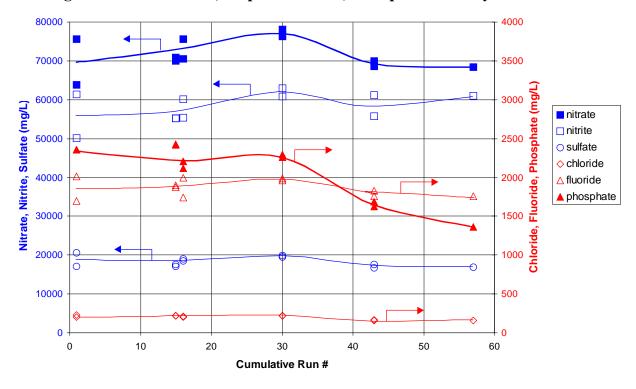



Figure 3.6 Ion Chromatography Data for Slurry Samples

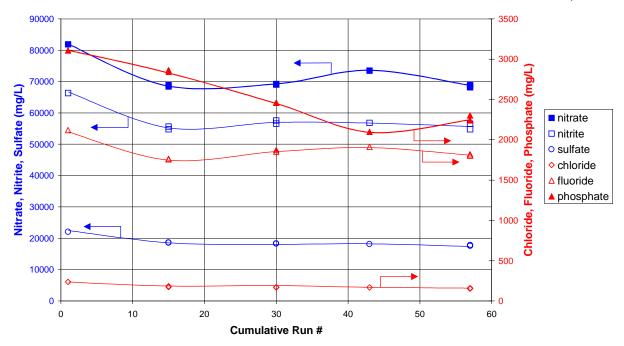



Figure 3.7 Ion Chromatography Data for Permeate

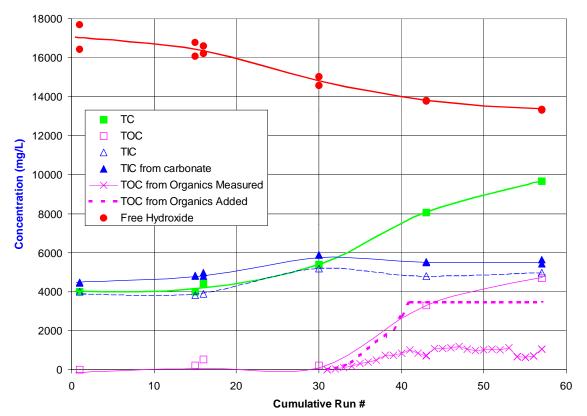



Figure 3.8 Slurry Carbon and Free Hydroxide Analyses

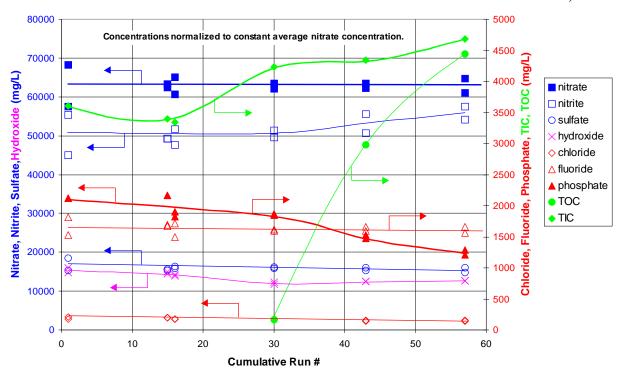



Figure 3.9 IC, Hydroxide, and TIC/TOC mg/L Data Normalized to Constant Average Nitrate

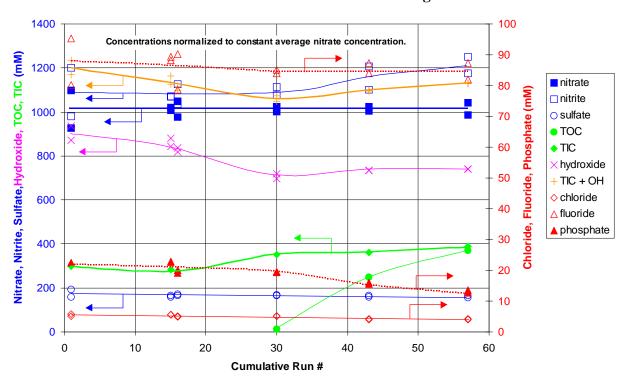



Figure 3.10 IC, Hydroxide, and TIC/TOC Molar Data Normalized to Constant Average Nitrate

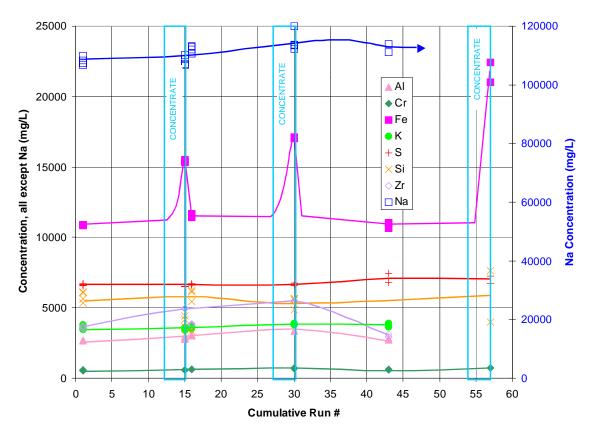



Figure 3.11 Elemental Analyses (by ICPES) for Major Metals

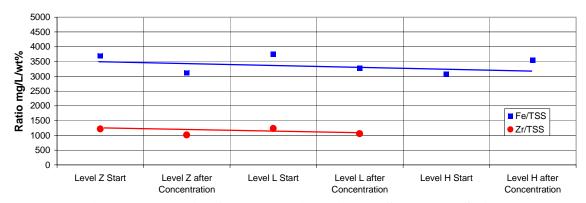



Figure 3.12 Ratio of Iron and Zirconium to Suspended Solids

| $\mathcal{C}$ | 1 |
|---------------|---|
| $\propto$     |   |
| 4             |   |
| J             | ) |
|               | ) |
| C             | 1 |
| Đ             | ٥ |
| 6             | N |
| C             | J |
| Д             |   |

|    |             |                         |                 |                  |                 |                  |                   |             | Filtered Slurry |
|----|-------------|-------------------------|-----------------|------------------|-----------------|------------------|-------------------|-------------|-----------------|
|    | Filtered SI | Filtered Slurry Initial | Permeat         | Permeate Level Z | Permeat         | Permeate Level L | Permeate Level H  | Level H     | Level H         |
|    | mg/L        | mg/L                    | mg/L            | mg/L             | mg/L            | mg/L             | mg/L              |             | mg/L            |
| Al | 1970        | 2100                    | 2280            | 2290             | 2280            | 2290             | 2630              |             | 2590            |
| В  | 20.2        | 28.1                    | 26.0            | 24.9             | 26.0            | 24.9             | 15.2              | 14.7        | 12.1            |
| Ba | <0.12       | <0.12                   | 0.33            | 0.39             | 0.33            | 0.39             | <0.12             |             | 0.19            |
| Ca | 0.40        | 0.81                    | <0.4            | <0.4             | <0.4            | <0.4             | 0.40              |             | 0.51            |
| Cd | 0.49        | 0.75                    | 0.79            | 0.77             | 0.79            | 0.77             | 0.56              |             | 2.41            |
| Co | <0.44       | <0.44                   | <0.44           | <0.44            | <0.44           | <0.44            | <0.44             |             | <0.44           |
| Cr | 443         | 454                     | 497             | 500              | 497             | 500              | 611               |             | 612             |
| Cu | <0.5        | <0.5                    | <0.5            | <0.5             | <0.5            | <0.5             | <0.5              |             | 0.50            |
| Fe | 0.56        | 0.95                    | 1.31            | 1.20             | 1.31            | 1.20             | 09.0              |             | 24.4            |
| Li | ~           | ~                       | $\overline{\ }$ | ~                | $\overline{\ }$ | ~                | $\overline{\lor}$ |             | $\overline{}$   |
| Mg | <0.84       | <0.84                   | <0.84           | <0.84            | <0.84           | <0.84            | <0.84             |             | 0.84            |
| Mn | <0.09       | <0.09                   | <0.0>           | <0.09            | <0.09           | <0.09            | <0.09             |             | 0.47            |
| Mo | 5.00        | 5.25                    | 5.73            | 5.21             | 5.73            | 5.21             | 2.81              |             | 2.81            |
| Na | 00966       | 105000                  | 117000          | 114000           | 117000          | 114000           | 109000            |             | 1111000         |
| ïZ | <0.62       | <0.62                   | <0.62           | <0.62            | <0.62           | <0.62            | <0.62             | <0.62       | 1.44            |
| Ь  | 711         | 735                     | 794             | 762              | 794             | 762              | 695               |             | 730             |
| Pb | 6.9>        | 6.9>                    | 6.9>            | 6.9>             | 6.9>            | 6.9>             | 6.9>              |             | 6.9>            |
| Si | 3.70        | 4.40                    | 2.61            | 2.32             | 2.61            | 2.32             | 5.40              |             | 2.28            |
| Sn | <2.6        | <2.6                    | <2.6            | <2.6             | <2.6            | <2.6             | <2.6              |             | <2.6            |
| Sr | 0.17        | 0.17                    | <0.1            | <0.1             | <0.1            | <0.1             | 0.0631            |             | 0.12            |
| Ti | <1.4        | <1.4                    | <1.4            | <1.4             | <1.4            | <1.4             | <1.4              |             | <1.4            |
| >  | <1.3        | <1.3                    | <1.3            | <1.3             | <1.3            | <1.3             | <1.3              |             | <1.3            |
| Zn | <3.7        | <3.7                    | <3.7            | <3.7             | <3.7            | <3.7             | <3.7              |             | <3.7            |
| Zr | 1.00        | 2.15                    | 1.72            | 1.64             | 1.72            | 1.64             | 0.99              |             | 19.2            |
| La | <b>!</b> >  | <i>L</i> >              | <b>!</b> >      | <b>!</b> >       | <i>L</i> >      | <i>L</i> >       | <b>\</b>          |             | <i>L</i> >      |
| ×  | 3650        | 3920                    | 4300            | 4340             | 4300            | 4340             | 4130              | 4170        | 4120            |
| Re | 33.2        | 34.4                    | 40.2            | 38.2             | 40.2            | 38.2             | 39.1              |             | 39.6            |
| S  | 6190        | 6230                    | 0029            | 6410             | 0029            | 6410             | 6310              |             | 6230            |
| Ag | $\Diamond$  | $\Diamond$              | $\Diamond$      | $\Diamond$       | \$              | $\Diamond$       | $\Diamond$        | \$          | $\Diamond$      |
| Ce | <7.7>       | <7.7>                   | <i>L.L.</i> >   | <i>L.L.</i> >    | <7.7>           | <i>L.L.</i>      | <i>L'L'</i> >     | <i>L.L.</i> | <i>L.L.</i> >   |
| PN | <2.6        | <2.6                    | <2.6            | <2.6             | <2.6            | <2.6             | <2.6              | <2.6        | <2.6            |

Table 3.2 Composition of Permeate (continued)

|        |                         |            |                  |        |                  |         |                  |         | Filtered Slurry |
|--------|-------------------------|------------|------------------|--------|------------------|---------|------------------|---------|-----------------|
|        | Filtered Slurry Initial | ry Initial | Permeate Level Z | evel Z | Permeate Level L | Level L | Permeate Level H | Level H | Level H         |
|        | mg/L                    | mg/L       | mg/L             | mg/L   | mg/L             | mg/L    | mg/L             | mg/L    | mg/L            |
| Total  | 26.5                    |            | 27.6             |        | 27.2             |         | 27.0             |         | 28.0            |
| Solids |                         |            |                  |        |                  |         |                  |         |                 |
| (wt%)  |                         |            |                  |        |                  |         |                  |         |                 |
| Sp Gr  | 1.22                    |            | 1.23             |        | 1.23             |         | 1.24             |         | 1.26            |
| CI     | 194                     |            |                  |        |                  |         |                  |         | 134             |
| Щ      | 1738                    |            |                  |        |                  |         |                  |         | 1519            |
| NO3    | 67107                   |            |                  |        |                  |         |                  |         | 58391           |
| NO2    | 54366                   |            |                  |        |                  |         |                  |         | 45134           |
| SO4    | 18123                   |            |                  |        |                  |         |                  |         | 14448           |
| PO4    | 2547                    |            |                  |        |                  |         |                  |         | 1668            |

#### 3.3 Organics in Slurry and Permeate

The concentrations of TBP and dodecane are plotted versus run number in Figure 3.15. As these organics were added during Level M, the measured concentrations in the slurry were generally about 1/3 of what the actual additions were.

The low measured concentration of organics would, at least initially, tend to indicate that the entire amount of organics did not pass through the filter system. If this were true, the filter would not have been challenged as much as planned. Visual observation of the top of the feed tank showed that, although the organic phase tended to float on top of the aqueous phase, it was periodically (on the order of several seconds) pulled down into the aqueous phase and fed to the filter. Figure 3.13 shows photos of slurry samples that show the presence of organics. No accumulation of organic phase above the liquid level, which would have been effectively excluded from processing, was seen. There also was no evidence of sticking elsewhere in the system.

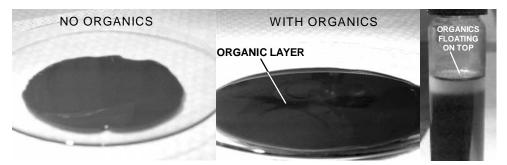



Figure 3.13 Photos of Slurry Samples

The lower than expected concentrations can be explained by the difficulty in getting a representative sample of the three phase (aqueous, solid, organic) mixture. Any given sample could contain different proportions of organics and slurry. The presence of organics in the samples taken from the piping at the pump inlet is verified by these analyses and also by visual examination of the samples. Figure 3.14 shows how the slurry samples were taken.

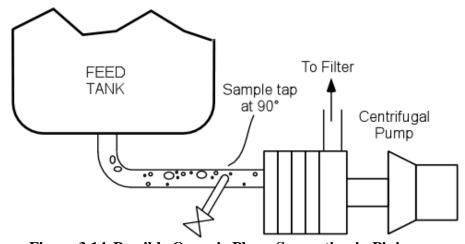



Figure 3.14 Possible Organic Phase Separation in Piping

Due to the density difference, the organic phase will tend to float to top of pipe even in turbulent flow. The axial distribution of organic phase along the pipe will also be not uniform. Therefore, samples taken at the sample tap would be expected to have lower average organic concentration than the average material in the pipe. (However, this sample tap configuration should result in good samples for the slurry consisting of small particles.)

The permeate measurements show that the dodecane was always below the detection limit, which was approximately 0.12 mg/L. The TBP concentrations in the permeate ranged from the detection limit of 0.12 mg/L to about 0.7 mg/L. The approximate solubility of TBP in high Na<sup>+</sup> solutions is 1.1 mg/L.<sup>9</sup> The concentrations of dibutylphosphate and 1-butanol (n-butanol) were measured in two samples. A trace amount of 1-butanol was found in the permeate samples; the DBP was below the detection limit. Slurry sample results for DBP & n-butanol were all below the detection limit. These data are summarized in Table 3.3.

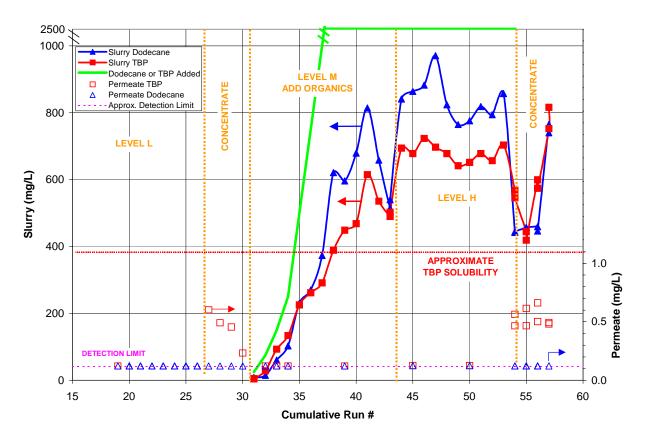



Figure 3.15 Organics Concentrations in Slurry and Permeate

| Table 3.3 Dibutylphosphate and 1-Butanol i | ol in Samı | oles |
|--------------------------------------------|------------|------|
|--------------------------------------------|------------|------|

|                    | dibutylphosphate | 1-butanol   |
|--------------------|------------------|-------------|
|                    | (DBP)            | (n-butanol) |
| Sample             | mg/L             | mg/L        |
| sludge (2 samples) | <10              | <25         |
| permeate           | <10              | 0.98        |
| permeate           | <10              | 2.0         |

#### 3.4 Statistical Analysis of Data

The filtrate flux for ultrafiltration can depend on several factors. To determine if the effects of TBP and NPH, transmembrane pressure, velocity, and run time (or approximately, number of runs) were significant, several potential models were examined. A number of models have been proposed for modeling the behavior of filters. Listed below are some of these models.

Kozeny-Carman  $J \propto \Lambda P$  $J \propto V^{0.503}C^{\frac{1}{3}}$ **Brownian Diffusion**  $J \propto V^{1.75} C^{\frac{1}{3}}$ Shear Induced Diffusion  $J \propto V^{3.5}$ **Inertial Lift**  $J \propto V^{1.75}$ Surface Transport  $J \propto V^{2.625}$ Lift Velocity  $J \propto V^{1.75} \ln \left(\frac{1}{C}\right) \text{ or } V^{1.75} \left(\frac{1}{C}\right)$ **Boundary Layer** where  $J = transmembrane flux (gpm/ft^2)$ V = velocity (ft/sec)  $\Delta P = \text{transmembrane pressure (psi)}$ 

C = solids (insoluble) concentration (wt%)

In addition to the variables given above, the total organics concentration and total run time were added as variables to a generalized model that was proposed:

Generalized Model 
$$J = aV^vC^c\Delta P^pQ^q(1-bt_{adj})$$
 where 
$$Q = \text{organics concentration} + 1 \text{ (mg/L)}$$
 
$$t_{adj} = \text{cumulative run time (hr) up to 13.5 hr, then} = 13.5 \text{ thereafter}$$
 
$$a, v, c, p, q, b = \text{parameters (constants)}$$

The cumulative run time term was added to account for the leveling off behavior shown in Figure 3.3. The linear drop occurs until about 13.5 hours, then the flux is essentially independent of time. The form of the organics concentration term was arbitrary since there was no theoretical basis for adding this term. The "concentration + 1" was used to make the baseline at zero organics have a contribution of "1" to the equation. The statistical analyses and curve fitting was performed using a statistical software package. <sup>10</sup>

The solids concentration term was immediately removed from the model because the solids concentration only varied from 2.95 to 3.53 wt%, which is too small a range to reliably fit a model. (Actual fitting with this variable gave a stair-step predicted flux, as expect, which is not what was seen.) Fitting of the model without the effect of solids is summarized in Table 3.4.

Table 3.4 Parameter Estimates for Model with Velocity, Adjusted Time, Pressure, and Organics Content

| 5 - <b>g</b> 5 |          | Annrovin  | anta 050/ |
|----------------|----------|-----------|-----------|
|                |          | Approxin  | nate 95%  |
|                |          | Confider  | ice Limit |
| Parameter      | Estimate | Lower     | Upper     |
| a              | 0.002642 | 0.001728  | 0.004016  |
| v              | 1.350    | 1.234     | 1.467     |
| b              | 0.008222 | -0.004988 | 0.019929  |
| q              | -0.01972 | -0.03813  | 0.00058   |
| p              | -0.07914 | -0.15746  | 0.00129   |

#### Correlation of Estimates

|   | a       | V       | b       | q       | p       |
|---|---------|---------|---------|---------|---------|
| a | 1.0000  | -0.7219 | 0.1902  | 0.1711  | -0.7145 |
| v | -0.7219 | 1.0000  | -0.1340 | -0.1209 | 0.0461  |
| b | 0.1902  | -0.1340 | 1.0000  | 0.9503  | -0.0074 |
| q | 0.1711  | -0.1209 | 0.9503  | 1.0000  | -0.0244 |
| p | -0.7145 | 0.0461  | -0.0074 | -0.0244 | 1.0000  |

The effect of pressure (p) is statistically insignificant since the confidence region includes zero. Both time "b" and organics "q" are also insignificant, although both parameters barely include zero. Moreover, they are highly correlated, so they tend to describe the same effect. Leaving out the effect of organics, since leaving this out makes more physical sense than leaving out time, gives the parameters in Table 3.5.

Table 3.5 Parameter Estimates for Model with Velocity and Adjusted Time

|           |          | Approxir         | nate 95% |
|-----------|----------|------------------|----------|
|           |          | Confidence Limit |          |
| Parameter | Estimate | Lower            | Upper    |
| a         | 0.002091 | 0.001543         | 0.002821 |
| v         | 1.342    | 1.221            | 1.464    |
| b         | 0.01942  | 0.01631          | 0.02233  |

#### Correlation of Estimates

|   | a       | V       | b       |
|---|---------|---------|---------|
| a | 1.0000  | -0.9914 | 0.1717  |
| v | -0.9914 | 1.0000  | -0.0597 |
| b | 0.1717  | -0.0597 | 1.0000  |

With only time as a variable, the parameter "b" is significant. Parameters "a" and "v" are highly correlated as is common with exponential models. The best model is then:

$$J = 0.002091 V^{1.342} (1 - 0.01942 t_{adj})$$

The predicted values for this model for all of the data is shown in Figure 3.16. The offset from each curve to the data points is due to the effect of pressure on flux. If a subset of the data is taken, the effect of pressure can be found to be statistically significant, but the scatter in the overall data hides this effect. In reality, higher pressures appear to result in slightly higher fluxes. Note the circled points in the Figure; if these are eliminated, the fit of the V=11 fps data is quite good.

Models with all parameters in most of the possible combinations were examined to thoroughly eliminate the possible models. Models without the time factor and with either the solids or organics gave statistically equivalent curve fits, but the shape of the curves were unrealistic. Figure 3.17 shows the fit of flux versus velocity, time, and organics concentration. Similar curves result from fitting versus velocity and just organics or solids. Figure 3.17 also shows that the adjusted time and organics concentration are highly correlated. A summary of the curve fits performed is given in Appendix 5.5.

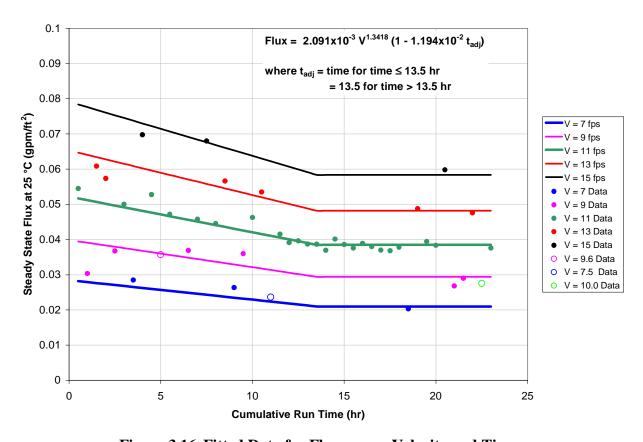



Figure 3.16 Fitted Data for Flux versus Velocity and Time

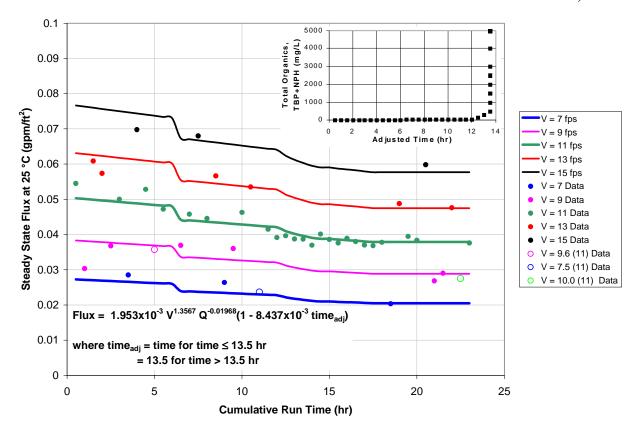



Figure 3.17 Fitted Data for Flux versus Velocity, Time, and Organics

#### 3.5 Quality Assurance

This task was conducted per the requirements of a Task Technical & Quality Assurance Plan that was approved by both SRTC and RPP-WTP personnel (technical & QA manager). These tests were not HLW form affecting. Therefore, the Quality Assurance Requirements and Description (DOE/RW-0333P), the principle quality assurance requirements for the Civilian Radioactive Waste Management Program, did not apply to this work. All data was recorded in a Laboratory Notebook. 12

# 4.0 Conclusions

- 1. The presence of tributyl phosphate and normal paraffin hydrocarbon (dodecane) at concentrations up to approximately 2500 mg/L of each has no effect on flux rate for filtration of an AZ-101 3.5 wt% slurry simulant for a 0.1 µm sintered metal Mott filter element.
- 2. If a concentration exists wherein the flux is affected (de minimis), it is above the tested levels.
- 3. The AZ-101 slurry simulant was filtered to an insoluble solids content of up to 6 wt% without the flux deteriorating below the lower limit of 0.014 gpm/ft<sup>2</sup>.

- 4. The permeate concentration of TBP was always less than 1 mg/L and the dodecane was always less than the detection limit of ~0.12 mg/L. Neither of these passed through the filter at a level higher than its solubility and so were concentrated in the slurry.
- 5. Cleaning of the system after use with the organics proved difficult using only water and nitric acid. It should be noted that the concentrations of separable organics were much higher than should actually be seen in the WTP. We recommend that the effect of TBP and NPH be studied further during filter cleaning tests.

## 5.0 Appendices

## **5.1** Appendix – Supernate Recipe

| Volume of Feed Made from this Recipe      | 8              | Liters          |               |
|-------------------------------------------|----------------|-----------------|---------------|
| Weigh a LARGE MIXING VESSEL of            | at least 8000  | ml capacity     |               |
| ADD THE FOLLOWING COMPOUNDS:              |                |                 |               |
| Transition Metals and Complexing Agents   | Formula        | Mass Needed (g) | Actual Wt (g) |
| Alumimum Nitrate                          | Al(NO3)3•9H2O  | 1186.521        | 1186.52       |
| Ammonium Nitrate                          | NH4NO3         | 11.759          | 11.76         |
| Cesium Nitrate                            | CsNO3          | 0.438           | 0.438         |
| Zirconyl Nitrate                          | ZrO(NO3)2•xH2O | 0.067           | 0.067         |
| Sodium Chloride                           | NaCl           | 2.631           | 2.633         |
| Sodium Fluoride                           | NaF            | 32.06           | 32.064        |
| Sodium Chromate                           | Na2CrO4        | 18.189          | 18.1912       |
| Sodium Sulfate                            | Na2SO4         | 209.021         | 209.02        |
| Sodium Perrhenate                         | NaReO4         | 0.468           | 0.4619        |
| ADD                                       | Formula        | Mass Needed (g) | Actual Wt (g) |
| Water                                     | H2O            | 1600            | 1600.00       |
| MIX THOROUGHLY TO DISSOLVE THE SALTS.     |                |                 |               |
| IN A SEPARATE CONTAINER MIX THE FOLLOWING | G:             |                 |               |
|                                           | Formula        | Mass Needed (g) | Actual Wt (g) |
| Sodium Hydroxide                          | NaOH           | 639.284         | 639.26        |
| Potassium Hydroxide                       | КОН            | 53.085          | 53.09         |
| Water                                     | H2O            | 800             | 800.00        |
| MIX THOROUGHLY TO DISSOLVE THE SODIUM HY  | DROXIDE AND P  | OTASSIUM HYI    | DROXIDE.      |
| ADD                                       |                | Mass Needed (g) | Actual Wt (g) |
| Sodium Phosphate                          | Na3PO4•12H2O   | 48.117          | 48.12         |
| Water                                     | H2O            | 1600            | 1600.00       |
| MIX THOROUGHLY. THEN ADD THIS SOLUTION SI | OWLY TO THE M  | IIXING VESSEL   | WHILE         |
| MAINTAINING AGITATION.<br>ADD             | Formula        | Mass Needed (g) | Actual Wt (g) |
| Sodium Carbonate                          | Na2CO3         | 326.057         | 326.06        |
| MIX THOROUGHLY.                           |                |                 |               |
| ADD                                       | Formula        | Mass Needed (g) | Actual Wt (g) |
| Sodium Nitrate                            | NaNO3          | 10.162          | 10.16         |
| Sodium Nitrite                            | NaNO2          | 780.663         | 780.66        |
| MIX THOROUGHLY.                           |                | l .             |               |
| NEXT ADD THE FINAL WATER ADDITION         | Formula        | Mass Needed (g) | Actual Wt (g) |
|                                           | H2O            |                 |               |

## **5.2** Appendix – Simulant Compositions

The final simulant was made up from 4.0 liters of supernate simulant, 1.84 liters of solids simulant #1 and 0.25 liters of solids simulant #3. Trim chemicals, in amounts shown below, were then added to replace the washed sodium and anions. The final volume was approximately 6.3 liters.

**Table 5.1** Supernate Simulant Samples

|                                         |            | First Super  | nate Sample |             | Second Su   | pernate Sample |             | Overall  |
|-----------------------------------------|------------|--------------|-------------|-------------|-------------|----------------|-------------|----------|
|                                         | LIMS #300- | 167560       | 167560      | Average     | 169527      | 169527-D       | Average     | Average* |
| ICPES (mg/L)                            | <i>Al</i>  | 5860         | 5740        | 5800        | 5060        | 5080           | 5070        | 5070     |
| *************************************** | В          | <2.1         | <2.1        |             | <2.1        | <2.1           |             |          |
|                                         | Ba         | < 0.12       | < 0.12      |             | < 0.12      | < 0.12         |             |          |
|                                         | Ca         | 0.547        | 0.459       | 0.503       | <0.4        | <0.4           |             |          |
|                                         | Cd         | <0.14        | < 0.14      |             | < 0.14      | < 0.14         |             |          |
|                                         | Co         | <0.44        | < 0.44      |             | <0.44       | < 0.44         |             |          |
|                                         | Cr         | 720          | 721         | 720         | 727         | 727            | 727         | 724      |
|                                         | Cu         | <0.8         | <0.8        |             | <0.5        | <0.5           |             |          |
|                                         | Fe         | <0.44        | < 0.44      |             | <0.44       | <0.44          |             |          |
|                                         | Li         | 1.99         | 1.97        | 1.98        | <1          | <1             |             |          |
|                                         | Mg         | < 0.84       | < 0.84      |             | < 0.84      | < 0.84         |             |          |
|                                         | Mn         | <0.09        | < 0.09      |             | <0.09       | < 0.09         |             |          |
|                                         | Мо         | <1           | <1          |             | <1          | <1             |             |          |
|                                         | Na         | 101000       | 100000      | 100500      | 114000      | 112000         | 113000      | 106750   |
|                                         | Ni         | < 0.62       | < 0.62      |             | < 0.62      | < 0.62         |             |          |
|                                         | P          | 528          | 539         | 533         | 516         | 505            | 511         | 522      |
|                                         | Pb         | <6.9         | <6.9        |             | <6.9        | <6.9           |             |          |
|                                         | Si         | 8.8 <i>3</i> | 10.4        | <i>9.61</i> | <i>4.35</i> | <i>4.76</i>    | <i>4.56</i> | 4.56     |
|                                         | Sn         | <2.6         | <2.6        |             | <2.6        | <2.6           |             |          |
|                                         | Sr         | < 0.04       | < 0.04      |             | < 0.02      | < 0.02         |             |          |
|                                         | Ti         | <1.4         | <1.4        |             | <1.4        | <1.4           |             |          |
|                                         | V          | <1.3         | <1.3        |             | <1.3        | <1.3           |             |          |
|                                         | Zn         | <3.7         | <3.7        |             | <3.7        | <3.7           |             |          |
|                                         | Zr         | <0.6         | < 0.6       |             | <0.48       | < 0.48         |             |          |
| *************************************** | La         | <7           | <7          |             | <7          | <7             |             |          |
|                                         | K          | 3840         | 3860        | 3850        | 3910        | 3920           | 3915        | 3883     |
| *************************************** | Re         | 40.0         | 40.3        | 40.2        | 39.5        | 39.3           | 39.4        | 39.8     |
|                                         | S          | 6380         | 6330        | 6355        | 6180        | 6130           | 6155        | 6255     |
|                                         | Ag         | <3           | <3          |             |             |                |             |          |
|                                         | Ce         | <7.7         | <7.7        |             |             |                |             |          |
|                                         | Nd         | <3.0         | <3.0        |             |             |                |             |          |

**Supernate Simulant Samples (continued)** 

|               |            | First Super | rnate Sample |         | Second Sup | pernate Sample |         | Overall  |
|---------------|------------|-------------|--------------|---------|------------|----------------|---------|----------|
| •             | LIMS #300- | 167560      | 167560       | Average | 169527     | 169527-D       | Average | Average* |
| IC (mg/L)     | F          | 1570        | 1574         | 1572    | NA         | NA             | 1572    | 1572     |
| •             | formate    | <100        | <100         | <100    | NA         | NA             |         |          |
|               | Cl         | 139         | 141          | 140     | NA         | NA             | 140     | 140      |
|               | NO2-       | 60805       | 61724        | 61265   | NA         | NA             | 61265   | 61265    |
|               | NO3-       | 61724       | 62704        | 62214   | NA         | NA             | 62214   | 62214    |
| •             | PO4(-3)    | 1292        | 1385         | 1339    | NA         | NA             | 1339    | 1339     |
|               | SO4(-2)    | 21402       | 21385        | 21394   | NA         | NA             | 21394   | 21394    |
|               | oxalate    | <100        | <101         |         | NA         | NA             | 0       |          |
| Carbon (mg/L) | TOC        | 4.60        | 4.60         | 4.60    | NA         | NA             | 4.60    | 4.60     |
|               | TIC        | <1          | <1           | <1      | NA         | NA             | <1      |          |
| •             | TC         | 5.03        | 5.03         | 5.03    | NA         | NA             | 5.03    | 5.03     |
| •             | Free OH    | NA          | NA           | NA      | NA         | NA             | NA      |          |
| Solids        | Total      | 27.5        | 27.6         | 27.5    | NA         | NA             | 27.5    | 27.5     |
| Specific      | Gravity    | 1.244       | 1.241        | 1.243   | NA         | NA             | 1.243   | 1.24     |
| Estimated     | Sp Gr      | 1.198       | 1.200        |         |            |                |         |          |

<sup>\*</sup> Average for Al, Li, Si from second sample only due to drop (precipitation). Values < detection limit not shown in averages.

 Table 5.2
 Sludge Solids Sample #1: Composition of solids filtered from sample.

|                 | LIMS #300-        | 167562 | 167564 | Mean  |
|-----------------|-------------------|--------|--------|-------|
| ICPES (mg/kg)   | Ag                | 351    | 349    | 350   |
|                 | Al                | 791    | 799    | 795   |
|                 | В                 | NA     | NA     | NA    |
|                 | Ba                | 257    | 254    | 255   |
|                 | Ca                | 669    | 737    | 703   |
|                 | Cd                | 3210   | 3160   | 3185  |
|                 | Ce                | 341    | 306    | 323   |
|                 | Co                | 415    | 413    | 414   |
|                 | Cr                | 329    | 327    | 328   |
|                 | Cu                | 139    | 144    | 141   |
|                 | Fe                | 41700  | 40900  | 41300 |
|                 | K                 | 673    | 759    | 716   |
|                 | La                | 1610   | 1580   | 1595  |
|                 | Li                | <10    | <10    |       |
|                 | Mg                | 63.1   | 62.8   | 63.0  |
|                 | Mn                | 989    | 981    | 985   |
|                 | Mo                | < 20   | <20    |       |
|                 | Na                | 8000   | 8090   | 8045  |
|                 | Nd                | 1110   | 1080   | 1095  |
|                 | Ni                | 2520   | 2490   | 2505  |
|                 | P                 | 1130   | 1050   | 1090  |
|                 | Pb                | 486    | 475    | 480   |
|                 | Re                | 17.4   | 18.6   | 18.0  |
|                 | S                 | 335    | 347    | 341   |
|                 | Si                | 2680   | 4090   | 3385  |
|                 | Sn                | < 50   | < 50   |       |
|                 | Sr                | 122    | 120    | 121   |
|                 | Ti                | 78.8   | 75.7   | 77.3  |
|                 | V                 | <15    | <15    |       |
|                 | Zn                | 140    | 139    | 140   |
|                 | Zr                | 13400  | 13300  | 13350 |
| Original Sample | (prior to filtrat | ion)   |        |       |
| Solids          | Total             | 14.9   | 14.8   | 14.8  |
|                 | Insoluble         | 13.7   | 13.1   | 13.4  |
| Solubl          | le (calculated)   | 1.18   | 1.61   | 1.40  |

 Table 5.3
 Sludge Solids Sample #2: Composition of solids filtered from sample.

|                 | LIMS #300-        | 167566 | 167568 | Mean  |
|-----------------|-------------------|--------|--------|-------|
| ICPES (mg/kg)   | Ag                | 186    | 182    | 184   |
|                 | Al                | 400    | 385    | 393   |
|                 | В                 | NA     | NA     | NA    |
|                 | Ba                | 135    | 133    | 134   |
|                 | Ca                | 777    | 771    | 774   |
|                 | Cd                | 1680   | 1650   | 1665  |
|                 | Ce                | 176    | 180    | 178   |
|                 | Co                | 221    | 217    | 219   |
|                 | Cr                | 176    | 171    | 174   |
|                 | Cu                | 73.2   | 74.4   | 73.8  |
|                 | Fe                | 21900  | 21800  | 21850 |
|                 | K                 | 395    | 433    | 414   |
|                 | La                | 848    | 854    | 851   |
|                 | Li                | <10    | <10    | NA    |
|                 | Mg                | 42.2   | 36.8   | 39.5  |
|                 | Mn                | 523    | 520    | 521   |
|                 | Mo                | < 20   | < 20   | NA    |
|                 | Na                | 3950   | 3890   | 3920  |
|                 | Nd                | 555    | 537    | 546   |
|                 | Ni                | 1320   | 1290   | 1305  |
|                 | P                 | 316    | 234    | 275   |
|                 | Pb                | 270    | 253    | 262   |
|                 | Re                | 7.91   | 6.30   | 7.10  |
|                 | S                 | 173    | 153    | 163   |
|                 | Si                | 3240   | 3290   | 3265  |
|                 | Sn                | < 50   | < 50   | NA    |
|                 | Sr                | 64.0   | 64.0   | 64.0  |
|                 | Ti                | 42.3   | 39.7   | 41.0  |
|                 | V                 | <15    | <15    | NA    |
|                 | Zn                | 73.7   | 72.3   | 73.0  |
|                 | Zr                | 6970   | 6930   | 6950  |
| Original Sample | (prior to filtrat | ion)   |        |       |
| Solids          | Total             | 8.05   | 8.00   | 8.03  |
|                 | Insoluble         | 7.25   | 7.19   | 7.22  |
| Solub           | le (calculated)   | 0.80   | 0.81   | 0.81  |

Table 5.4 Sludge Solids Sample #3: Composition of solids filtered from sample.

|                 | LIMS #300-       | 169717a     | 169717b      | Calculated |
|-----------------|------------------|-------------|--------------|------------|
| ICPES (mg/kg)   | Ag               |             |              | 263        |
|                 | Al               |             |              | 597        |
|                 | В                |             |              |            |
|                 | Ba               |             |              | 192        |
|                 | Ca               |             |              | 528        |
|                 | Cd               |             |              | 2392       |
|                 | Ce               |             |              | 243        |
|                 | Co               |             |              | 311        |
|                 | Cr               | Compositio  | n same as    | 246        |
|                 | Cu               | Sample #2,  | but more     | 106        |
|                 | Fe               | concentrate | d.           | 31017      |
|                 | K                |             |              | 538        |
|                 | La               |             |              | 1198       |
|                 | Li               |             |              |            |
|                 | Mg               | Calculated  | composition  | 47.3       |
|                 | Mn               | based on ra | tioing total | 740        |
|                 | Mo               | solids.     |              |            |
|                 | Na               |             |              | 6042       |
|                 | Nd               |             |              | 822        |
|                 | Ni               |             |              | 1881       |
|                 | P                |             |              | 819        |
|                 | Pb               |             |              | 361        |
|                 | Re               |             |              | 13.5       |
|                 | S                |             |              | 256        |
|                 | Si               |             |              | 2542       |
|                 | Sn               |             |              |            |
|                 | Sr               |             |              | 91.2       |
|                 | Ti               |             |              | 58.0       |
|                 | V                |             |              |            |
|                 | Zn               |             |              | 105        |
|                 | Zr               |             |              | 10026      |
| Original Sample | (prior to filtra |             |              |            |
| Solids (wt%)    | Total            | 11.2        | 11.1         | 11.1       |
|                 | Insoluble        | 9.97        | 9.73         | 9.85       |
| Solul           | ole (calculated) | 1.21        | 1.32         | 1.27       |

 Table 5.5
 Sludge Sample #1: Composition of filtrate from sample.

|       | LIMS #300- | 167561 | 167563 | Average |
|-------|------------|--------|--------|---------|
|       |            | mg/L   | mg/L   | mg/L    |
| ICPES | Ag         | <3     | <3     | <3      |
|       | Al         | 5.08   | < 2.4  | 5.08    |
|       | В          | 16.4   | 26.9   | 21.6    |
|       | Ba         | < 0.12 | < 0.12 | < 0.12  |
|       | Ca         | 15.2   | 11.9   | 13.6    |
|       | Cd         | < 0.14 | < 0.14 | < 0.14  |
|       | Ce         | < 7.7  | < 7.7  | <7.7    |
|       | Co         | < 0.44 | < 0.44 | < 0.44  |
|       | Cr         | 4.52   | 6.66   | 5.59    |
|       | Cu         | < 0.6  | < 0.6  | < 0.6   |
|       | Fe         | < 0.44 | < 0.44 | < 0.44  |
|       | K          | 313    | 444    | 378     |
|       | La         | <7     | <7     | <7      |
|       | Li         | NA     | NA     | NA      |
|       | Mg         | 3.71   | 3.98   | 3.84    |
|       | Mn         | < 0.09 | < 0.09 | < 0.09  |
|       | Mo         | 9.83   | 15.4   | 12.6    |
|       | Na         | 4190   | 6150   | 5170    |
|       | Nd         | < 2.6  | < 2.6  | < 2.6   |
|       | Ni         | < 0.62 | < 0.62 | < 0.62  |
|       | P          | < 6.8  | < 6.8  | <6.8    |
|       | Pb         | < 6.9  | < 6.9  | < 6.9   |
|       | Re         | 12.0   | 18.0   | 15.0    |
|       | S          | 254    | 363    | 308     |
|       | Si         | <1.3   | <1.3   | <1.3    |
|       | Sn         | NA     | NA     | NA      |
|       | Sr         | < 0.15 | < 0.15 | < 0.15  |
|       | Ti         | <1.4   | <1.4   | <1.4    |
|       | V          | NA     | NA     | NA      |
|       | Zn         | < 3.7  | < 3.7  | <3.7    |
|       | Zr         | < 0.48 | < 0.48 | < 0.48  |
| IC    | fluoride   | 47.0   | 69.0   | 58.0    |
|       | formate    | <100   | <100   | <100    |
|       | chloride   | 85.0   | 108    | 96.5    |
|       | nitrite    | 2916   | 4166   | 3541    |
|       | nitrate    | 2655   | 3916   | 3286    |
|       | phosphate  | <100   | <100   | <100    |
|       | sulfate    | 572    | 837    | 705     |
|       | oxalate    | <100   | <100   | <100    |

 Table 5.6
 Sludge Sample #2: Composition of filtrate from sample.

|       | LIMS #300- | 167565 | 167567 | Average |
|-------|------------|--------|--------|---------|
|       |            | mg/L   | mg/L   | mg/L    |
| ICPES | Ag         | <3     | <3     | <3      |
|       | Al         | < 2.4  | < 2.4  | < 2.4   |
|       | В          | 15.0   | 14.8   | 14.9    |
|       | Ba         | < 0.12 | < 0.12 | < 0.12  |
|       | Ca         | 8.90   | 10.1   | 9.52    |
|       | Cd         | < 0.14 | < 0.14 | < 0.14  |
|       | Ce         | <7.7   | <7.7   | <7.7    |
|       | Co         | < 0.44 | < 0.44 | < 0.44  |
|       | Cr         | 2.98   | 3.00   | 2.99    |
|       | Cu         | < 0.6  | < 0.6  | < 0.6   |
|       | Fe         | < 0.44 | < 0.44 | < 0.44  |
|       | K          | 216    | 227    | 222     |
|       | La         | <7     | <7     | <7      |
|       | Li         | NA     | NA     | NA      |
|       | Mg         | 1.59   | 2.03   | 1.81    |
|       | Mn         | < 0.09 | < 0.09 | < 0.09  |
|       | Mo         | 6.90   | 6.48   | 6.69    |
|       | Na         | 2910   | 2790   | 2850    |
|       | Nd         | < 2.6  | < 2.6  | < 2.6   |
|       | Ni         | < 0.62 | < 0.62 | < 0.62  |
|       | P          | < 6.8  | < 6.8  | < 6.8   |
|       | Pb         | < 6.9  | < 6.9  | < 6.9   |
|       | Re         | 7.81   | 7.78   | 7.79    |
|       | S          | 160    | 162    | 161     |
|       | Si         | <1.3   | <1.3   | <1.3    |
|       | Sn         | NA     | NA     | NA      |
|       | Sr         | < 0.15 | < 0.15 | < 0.15  |
|       | Ti         | <1.4   | <1.4   | <1.4    |
|       | V          | NA     | NA     | NA      |
|       | Zn         | < 3.7  | < 3.7  | <3.7    |
|       | Zr         | < 0.48 | < 0.48 | < 0.48  |
| IC    | fluoride   | 38.0   | 37.0   | 37.5    |
|       | formate    | <100   | <100   | <100    |
|       | chloride   | 69.0   | 67.0   | 68.0    |
|       | nitrite    | 1871   | 1833   | 1852    |
|       | nitrate    | 1627   | 1595   | 1611    |
|       | phosphate  | <100   | <100   | <100    |
|       | sulfate    | 382    | 378    | 380     |
|       | oxalate    | <100   | <100   | <100    |

Table 5.7 Sludge Sample #3: Composition of <u>filtrate</u> calculated from composition of Sample #2 by ratio.

| by rano.  |                   |
|-----------|-------------------|
|           | Calculated (mg/L) |
| Ag        | 0                 |
| Al        | 4.42              |
| В         | 18.9              |
| Ba        | 0                 |
| Ca        | 11.8              |
| Cd        | 0                 |
| Ce        | 0                 |
| Co        | 0                 |
| Cr        | 4.87              |
| Cu        | 0                 |
| Fe        | 0                 |
| K         | 330               |
| La        | 0                 |
| Li        | 0                 |
| Mg        | 3.35              |
| Mn        | 0                 |
| Mo        | 11.0              |
| Na        | 4506              |
| Nd        | 0                 |
| Ni        | 0                 |
| P         | 0                 |
| Pb        | 0                 |
| Re        | 13.1              |
| S         | 269               |
| Si        | 0                 |
| Sn        | 0                 |
| Sr        | 0                 |
| Ti        | 0                 |
| V         | 0                 |
| Zn        | 0                 |
| Zr        | 0                 |
| fluoride  | 50.5              |
| formate   | 0                 |
| chloride  | 84.1              |
| nitrite   | 3086              |
| nitrate   | 2863              |
| phosphate | 0                 |
| sulfate   | 614               |
| oxalate   | 0                 |

Table 5.8 Overall Compositions of Samples #1-3 Calculated from Solids and Filtrate Analyses.

| yscs.        |                  |           |           |           |
|--------------|------------------|-----------|-----------|-----------|
|              |                  | Sample #1 | Sample #2 | Sample #3 |
|              |                  | mg/L      | mg/L      | mg/L      |
| Metals       | Ag               | 345       | 172       | 247       |
|              | Al               | 788       | 368       | 565       |
|              | В                | 20.3      | 14.4      | 18.0      |
|              | Ba               | 252       | 125       | 180       |
|              | Ca               | 705       | 734       | 508       |
|              | Cd               | 3137      | 1559      | 2249      |
|              | Ce               | 319       | 166       | 228       |
|              | Co               | 408       | 205       | 292       |
|              | Cr               | 328       | 165       | 236       |
|              | Cu               | 139       | 69.1      | 99.9      |
|              | Fe               | 40681     | 20462     | 29166     |
|              | K                | 1060      | 601       | 820       |
|              | La               | 1571      | 797       | 1126      |
|              | Li               | 0         | 0         | 0         |
|              | Mg               | 65.6      | 38.8      | 47.7      |
|              | Mn               | 970       | 488       | 696       |
|              | Mo               | 11.8      | 6.45      | 10.5      |
|              | Na               | 12770     | 6420      | 9975      |
|              | Nd               | 1079      | 511       | 773       |
|              | Ni               | 2467      | 1222      | 1769      |
|              | P                | 1074      | 258       | 770       |
|              | Pb               | 473       | 245       | 339       |
|              | Re               | 31.8      | 14.2      | 25.2      |
|              | S                | 625       | 308       | 497       |
|              | Si               | 3334      | 3058      | 2390      |
|              | Sn               | 0         | 0         | 0         |
|              | Sr               | 120       | 59.9      | 85.7      |
|              | Ti               | 76.1      | 38.4      | 54.6      |
|              | V                | 0         | 0         | 0         |
|              | Zn               | 138       | 68.4      | 98.6      |
|              | Zr               | 13150     | 6509      | 9428      |
| Anions       |                  | 54.4      | 36.2      | 48.2      |
|              | formate          | 0         | 0         | 0         |
|              | chloride         | 90.4      | 65.6      | 80.1      |
|              | nitrite          | 3318      | 1786      | 2941      |
|              | nitrate          | 3079      | 1554      | 2728      |
|              | phosphate        | 0         | 0         | 0         |
|              | sulfate          | 660       | 367       | 585       |
|              | oxalate          | 0         | 0         | 0         |
| Solids (wt%) |                  | 13.4      | 7.22      | 9.85      |
|              | Soluble          | 1.40      | 0.805     | 1.27      |
|              | Total            | 14.8      | 8.03      | 11.1      |
|              | Specific gravity | 1.09      | 1.04      | 1.06      |
|              | -pooms gravity   | 1.07      | 1.01      | 1.00      |

**Table 5.9** Trim Chemicals Added

| Chemical           | Amount (g) |
|--------------------|------------|
| NaOH               | 141.01     |
| NaCl               | 0.25       |
| NaF                | 7.79       |
| NaNO <sub>2</sub>  | 204.04     |
| NaNO <sub>3</sub>  | 190.06     |
| $Na_3PO_4*12H_2O$  | 12.45      |
| $Na_2SO_4$         | 71.60      |
| $KNO_3$            | 18.14      |
| NaReO <sub>4</sub> | 0.0548     |

## 5.3 Appendix – Experimental Design

Table 5.10 Experimental Design Table

|                                               | 1 able 5.10   | $\mathbf{r}\mathbf{x}\mathbf{b}\mathbf{e}$ | Experimental Design 1 able | sign Lad   | le        |          |          |            |                       |
|-----------------------------------------------|---------------|--------------------------------------------|----------------------------|------------|-----------|----------|----------|------------|-----------------------|
|                                               |               |                                            |                            | Factorial  | Factorial |          |          | Volumetric |                       |
|                                               | TBP/NPH Level | Run                                        | Run Order                  | Design Std | Design    | Pressure | Velocity | Flowrate   |                       |
| Test Phase                                    | (each) (mg/L) | Name                                       | (randomized)               | Order      | Level     | (bisd)   | (ft/s)   | (gpm)      | Sample Time           |
| Clean water flux                              | water         | Z-0a                                       | 0a                         |            |           | 2        | 11       | 3.79       |                       |
|                                               | water         | Z-0b                                       | 90                         |            |           | 15       | 11       | 3.79       | ı                     |
|                                               | water         | Z-0c                                       | 0c                         |            |           | 25       | 11       | 3.79       | -                     |
| NO ORGANICS EXPERIMENTAL DESIGN               |               |                                            |                            |            |           |          |          |            |                       |
|                                               | 0             | Z-1                                        | 1                          | 6          | 00        | 40       | 11       | 3.79       | SS flux               |
|                                               | Ξ             | <b>Z</b> -2                                | 2                          | 1          | !         | 30       | 6        | 3.10       | SS flux               |
|                                               | Ξ             | Z-3                                        | 3                          | 2          | +         | 30       | 13       | 4.47       | SS flux               |
|                                               | Ξ             | Z-4                                        | 4                          | 4          | +         | 20       | 13       | 4.47       | SS flux               |
|                                               | Ξ             | Z-5                                        | 5                          | ю          | +         | 20       | 6        | 3.10       | SS flux               |
|                                               | Ξ             | 9-Z                                        | 9                          | 10         | 00        | 40       | 11       | 3.79       | SS flux               |
|                                               | Ξ             | Z-7                                        | 7                          | 7          | 0a        | 40       | 7        | 2.41       | SS flux               |
|                                               | Ξ             | <b>Z-8</b>                                 | ∞                          | ∞          | 0A        | 40       | 15       | 5.16       | SS flux               |
|                                               | Ξ             | 6-Z                                        | 6                          | 5          | a0        | 20       | 11       | 3.79       | SS flux               |
|                                               | Ξ             | Z-10                                       | 10                         | 9          | Α0        | 09       | 11       | 3.79       | SS flux               |
|                                               | ±             | Z-11                                       | 11                         | 11         | 00        | 40       | 11       | 3.79       | SS flux               |
| Collect 2 liters permeate in 500 ml fractions |               |                                            |                            |            |           |          |          |            | every 500 ml permeate |
| Add 2 liters new feed                         |               |                                            |                            |            |           |          |          |            |                       |
| LOW TBP/NPH LEVEL EXPERIMENTAL                |               |                                            |                            |            |           |          |          |            |                       |
| <b>DESIGN:</b> 25 ppm each TBP & NPH added    |               |                                            |                            |            |           |          |          |            |                       |
|                                               | 25            | L-1                                        | 1                          | 33         | +         | 20       | 6        | 3.10       | SS flux               |
|                                               | Ξ             | L-2                                        | 2                          | 6          | 00        | 40       | 11       | 3.79       | SS flux               |
|                                               | Ξ             | L-3                                        | B                          | ∞          | 0A        | 40       | 15       | 5.16       | SS flux               |
|                                               | Ξ             | L-4                                        | 4                          | 10         | 00        | 40       | 11       | 3.79       | SS flux               |
|                                               | Ξ             | L-5                                        | 5                          | 7          | +         | 30       | 13       | 4.47       | SS flux               |
|                                               | Ξ             | L-6                                        | 9                          | 7          | 0a        | 40       | 7        | 2.41       | SS flux               |
|                                               | Ξ             | L-7                                        | 7                          | 1          | 1         | 30       | 6        | 3.10       | SS flux               |
|                                               | Ξ             | L-8                                        | ∞                          | 2          | a0        | 20       | 11       | 3.79       | SS flux               |
|                                               | Ξ             | F-9                                        | 6                          | 4          | ++        | 20       | 13       | 4.47       | SS flux               |
|                                               | Ξ             | L-10                                       | 10                         | 9          | Α0        | 09       | 11       | 3.79       | SS flux               |
|                                               | Ξ             | L-11                                       | 11                         | 11         | 00        | 40       | 11       | 3.79       | SS flux               |
| Collect 2 liters permeate in 500 ml fractions | ±             | 1                                          | 1                          |            |           |          |          |            | every 500 ml permeate |
|                                               |               |                                            |                            |            |           |          |          |            |                       |

Table 5.10 Experimental Design Table (continued)

| Tab                                                       | 01.5 31       |        | EAPCI IIIICIII a Design Table (commucu) | anic (com  | mann)     |                   |          |            |              |
|-----------------------------------------------------------|---------------|--------|-----------------------------------------|------------|-----------|-------------------|----------|------------|--------------|
|                                                           |               |        |                                         | Factorial  | Factorial |                   |          | Volumetric |              |
|                                                           | TBP/NPH Level | Run    | Run Order                               | Design Std | Design    | Pressure Velocity | Velocity | Flowrate   |              |
| Test Phase                                                | (each) (mg/L) | Name ( | (randomized)                            | Order      | Level     | (psid)            | (ft/s)   | (gpm)      | Sample Time  |
| Add 2 liters new feed<br>Add TBP/NPH back to ~25 ppm each |               |        |                                         |            |           |                   |          |            |              |
| DETERMINE IMPACT LEVEL                                    | 25            | M-1    | 1                                       |            |           | 40                | 111      | 3.79       | SS flux      |
|                                                           | 75            | M-2    | 2                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 150           | M-3    | 8                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 250           | M-4    | 4                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 500           | M-5    | 5                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 750           | 9-W    | 9                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 1000          | M-7    | 7                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 1250          | M-8    | ~                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 1500          | M-9    | 6                                       |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 2000          | M-10   | 10                                      |            |           | 40                | 11       | 3.79       | SS flux      |
|                                                           | 2500          | M-11   | 11                                      |            |           | 40                | 11       | 3.79       | SS flux      |
| IMPACT LEVEL EXPERIMENTAL DESIGN                          | 2500          | H-1    | 1                                       | 6          | 00        | 40                | 11       | 3.79       | SS flux      |
|                                                           | Ξ             | H-2    | 2                                       | 7          | 0a        | 40                | 7        | 2.41       | SS flux      |
|                                                           | Ξ             | H-3    | $\mathcal{S}$                           | 2          | +         | 30                | 13       | 4.47       | SS flux      |
|                                                           | Ξ             | H-4    | 4                                       | 5          | a0        | 20                | 11       | 3.79       | SS flux      |
|                                                           | Ξ             | H-5    | 5                                       | 10         | 00        | 40                | 11       | 3.79       | SS flux      |
|                                                           | Ξ             | 9-H    | 9                                       | ∞          | 0A        | 40                | 15       | 5.16       | SS flux      |
|                                                           | Ξ             | H-7    | 7                                       | 3          | +         | 50                | 6        | 3.10       | SS flux      |
|                                                           | Ξ             | 8-H    | ~                                       | 1          | !         | 30                | 6        | 3.10       | SS flux      |
|                                                           | Ξ             | 6-H    | 6                                       | 4          | ++        | 20                | 13       | 4.47       | SS flux      |
|                                                           | Ξ             | H-10   | 10                                      | 9          | A0        | 09                | 11       | 3.79       | SS flux      |
|                                                           | =             | H-11   | 11                                      | 11         | 00        | 40                | 11       | 3.79       | SS flux      |
| Collect 2 liters permeate IN 500 ml increments            |               |        |                                         |            |           |                   |          |            | every 500 ml |
|                                                           |               |        |                                         |            |           |                   |          |            | permeate     |
| Clean water flux                                          | water         |        | 0a                                      |            |           | 5                 | 11       | 3.79       | ı            |
|                                                           | water         |        | 0p                                      |            |           | 15                | 11       | 3.79       |              |
|                                                           | water         | H-0c ( | 0c                                      |            |           | 25                | 11       | 3.79       |              |

| 5.4 | Appen             | Appendix – Experimental Results | perimen       | tal Re        | sults         |                   |                    |                      |               |                   |              |                    |                  |
|-----|-------------------|---------------------------------|---------------|---------------|---------------|-------------------|--------------------|----------------------|---------------|-------------------|--------------|--------------------|------------------|
|     | Target            | Target                          |               |               |               |                   | 1                  | Time for<br>40 ml of | Run           |                   | ı            |                    | Corr.            |
| Run | Velocity<br>(fps) | Pressure<br>(psi)               | Time<br>(min) | Flow<br>(gpm) | Flow<br>(fps) | Inlet P<br>(psig) | Outlet P<br>(psig) | Permeate<br>(sec)    | Time<br>(min) | Flux $(gpm/ft^2)$ | Temp<br>(°C) | Temp.<br>Comp.     | Flux<br>(gpm/ft² |
| Z-1 |                   |                                 | 0             | 3.84          | 11.15         | 43                | 40                 | 53.16                | 0             | 0.0607            | 22           | 1.08906            | 0.0662           |
|     |                   |                                 | 5             | 3.94          | 11.45         | 42                | 68                 | 68.65                | 2             | 0.0539            | 23           | 1.058322           | 0.0571           |
|     |                   |                                 | 10            | 3.80          | 11.04         | 43                | 40                 | 57.98                | 10            | 0.0557            | 23           | 1.058322           | 0.0589           |
|     |                   |                                 | 15            | 3.85          | 11.18         | 44                | 40                 | 59.1                 | 15            | 0.0546            | 24           | 1.028649           | 0.0562           |
|     |                   |                                 | 20            | 3.89          | 11.30         | 43                | 40                 | 60.29                | 20            | 0.0536            | 24           | 1.028649           | 0.0551           |
|     |                   |                                 | 25            | 3.66          | 10.63         | 43                | 40                 | 61.13                | 25            | 0.0528            | 24           | 1.028649           | 0.0543           |
|     |                   |                                 | 30            | 3.77          | 10.95         | 41                | 38                 | 63.46                | 30            | 0.0509            | 24           | 1.028649           | 0.0523           |
|     | 11                | 40                              | Mean:         | 3.82          | 11.10         | 42.71             | 39.57              |                      |               | N                 | Iean Ste     | Mean Steady State: | 0.0539           |
|     |                   |                                 |               |               |               | 41                | 41.14              |                      |               |                   |              |                    |                  |
| Z-2 |                   |                                 | 0             | 3.06          | 8.89          | 32                | 30                 | 98.14                | 0             | 0.0329            | 24           | 1.028649           | 0.0338           |
|     |                   |                                 | 5             | 3.04          | 8.83          | 32                | 67                 | 28.97                | 2             | 0.0326            | 24           | 1.028649           | 0.0336           |
|     |                   |                                 | 10            | 3.10          | 9.01          | 34                | 31                 | 29.86                | 10            | 0.0327            | 24           | 1.028649           | 0.0337           |
|     |                   |                                 | 15            | 3.13          | 60'6          | 34                | 31                 | 104.96               | 15            | 0.0308            | 25           | 1                  | 0.0308           |
|     |                   |                                 | 20            | 3.30          | 65.6          | 31                | 87                 | 111.38               | 20            | 0.0290            | 23           | 1.058322           | 0.0307           |
|     |                   |                                 | 25            | 3.06          | 8.89          | 30                | 27                 | 113.7                | 25            | 0.0284            | 23           | 1.058322           | 0.0301           |
|     |                   |                                 | 30            | 3.08          | 8.95          | 30                | 27                 | 114.75               | 30            | 0.0281            | 23           | 1.058322           | 0.0298           |
|     | 9                 | 30                              | Mean:         | 3.11          | 9.03          | 31.86             | 29.00              |                      |               | N                 | Iean Ste     | Mean Steady State: | 0.0303           |
|     |                   |                                 |               |               |               | 30                | 30.43              |                      |               |                   |              |                    |                  |
| Z-3 |                   |                                 | 0             | 4.47          | 12.98         | 35                | 27                 | 48.53                | 0             | 0.0665            | 23           | 1.058322           | 0.0704           |
|     |                   |                                 | 5             | 4.50          | 13.07         | 32                | 31                 | 52.72                | 5             | 0.0613            | 23           | 1.058322           | 0.0648           |
|     |                   |                                 | 10            | 4.48          | 13.01         | 32                | 28                 | 53.98                | 10            | 0.0598            | 24           | 1.028649           | 0.0615           |
|     |                   |                                 | 15            | 4.40          | 12.78         | 33                | 29                 | 53.87                | 15            | 0.0599            | 24           | 1.028649           | 0.0617           |
|     |                   |                                 | 20            | 4.59          | 13.33         | 33                | 29                 | 54                   | 20            | 0.0598            | 24           | 1.028649           | 0.0615           |
|     |                   |                                 | 25            | 4.49          | 13.04         | 33                | 30                 | 52.94                | 25            | 0.0610            | 24           | 1.028649           | 0.0627           |
|     |                   |                                 | 30            | 4.55          | 13.22         | 33                | 29                 | 56.17                | 30            | 0.0575            | 25           | 1                  | 0.0575           |
|     | 13                | 30                              | Mean:         | 4.50          | 13.06         | 33.00             | 29.00              |                      |               | N                 | Iean Ste     | Mean Steady State: | 0.0609           |
|     |                   |                                 |               |               |               | 31                | 31.00              |                      |               |                   |              |                    |                  |
| Z-4 |                   |                                 | 0             | 4.01          | 11.65         | 49                | 47                 | 46.34                | 0             | 0.0697            | 27           | 0.945607           | 0.0659           |
|     |                   |                                 | 5             | 4.18          | 12.14         | 52                | 48                 | 47.84                | 5             | 0.0675            | 28           | 0.919786           | 0.0621           |
|     |                   |                                 | 10            | 4.34          | 12.61         | 51                | 47                 | 51.29                | 10            | 0.0630            | 28           | 0.919786           | 0.0579           |
|     |                   |                                 | 15            | 4.34          | 12.61         | 53                | 48                 | 52.23                | 15            | 0.0618            | 28           | 0.919786           | 0.0569           |

| Run         (fps) (psi) (psi)         (min) (gpm) (fpm)                                        |             |     |       |       |       |         |                  | Time for             |             |              |              |                    |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-------|-------|-------|---------|------------------|----------------------|-------------|--------------|--------------|--------------------|---------------|
| Run         (fps)         (psi)         (min)         (gpm)           13         50         4.34           13         50         Mean:         4.34           13         50         Mean:         4.37           13         50         Mean:         4.37           13         50         Mean:         4.37           10         5         3.00         3.08           10         5         3.00         3.08           10         5         3.00         3.08           10         5         3.00         3.08           10         5         3.00         3.08           10         5         3.00         3.08           10         5         3.00         3.08           10         5         3.75           11         40         Mean:         3.75           11         40         Mean:         3.75           11         40         0         2.40           10         2.40         2.41           10         2.41         2.40           10         2.40         2.40           10         2.41         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tar<br>Velo | , Д |       | Flow  | Flow  | Inlet P | Inlet P Outlet P | 40 ml of<br>Permeate | Run<br>Time | Flux         | Temp         | Temp.              | Corr.<br>Flux |
| 25 4.37 13 50 Mean: 4.27 13 50 Mean: 4.27 13 50 Mean: 4.27 13 50 Mean: 4.27 14.0 Mean: 3.08 25 3.75 26 3.75 27 4.37 28 4.37 29 50 Mean: 4.27 29 50 Mean: 3.08 20 3.78 21 1 40 Mean: 3.77 20 2.40 21 10 2.40 21 10 2.41 22 2.40 24 2.40 24 40 Mean: 2.41 25 2.40 26 2.41 27 40 Mean: 2.41 28 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (fp         |     |       | (mdg) | (fps) | (psig)  | (psig)           | (sec)                | (min)       | $(gpm/ft^2)$ | $^{\circ}C)$ | Comp.              | $(gpm/ft^2)$  |
| 13 50 Mean: 4.37   4.37   13 50 Mean: 4.27   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37   4.37 |             |     | 20    | 4.34  | 12.61 | 53      | 50               | 52.91                | 20          | 0.0610       | 27           | 0.945607           | 0.0577        |
| 13 50   Mean: 4.27     13 50   Mean: 4.27     13 50   Mean: 4.27     10   3.08     10   2.98     10   2.98     10   2.98     10   2.98     10   2.98     10   2.98     10   3.79     11   40   Mean: 3.75     11   40   Mean: 3.77     11   40   Mean: 3.77     11   40   Mean: 3.77     12   2.40     13   30   2.40     14   40   Mean: 3.77     15   2.42     16   2.41     17   40   Mean: 2.41     18   2.42     19   25   2.40     10   2.40     11   40   Mean: 2.41     12   2.41     13   40   Mean: 2.41     14   40   Mean: 2.41     15   2.42     16   2.40     17   40   Mean: 2.41     18   2.41     19   2.41     10   2.41     10   2.41     11   40   Mean: 2.41     12   2.42     13   2.40     14   24     15   2.40     15   2.40     16   2.41     17   2.41     18   2.42     20   2.41     21   2.41     21   2.41     22   2.40     24   24     24   24     24   24     24   24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     | 25    | 4.37  | 12.69 | 53      | 49               | 52.05                | 25          | 0.0620       | 27           | 0.945607           | 0.0587        |
| 13     50     Mean:     4.27       13     50     Mean:     4.27       10     3.08     3.00     3.08       10     2.98     3.00     3.03       10     2.5     3.22     3.22       20     3.08     3.08     3.08       20     3.78     3.79       20     3.78     3.75       20     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.75     3.75       30     3.76     3.75       30     3.76     3.71       40     Mean: 3.71     3.71       40     3.00     3.74       40     3.00     3.74       40     3.00     3.74       40     3.00     3.74       40     3.00     3.74 <th></th> <th></th> <th>30</th> <th>4.32</th> <th>12.55</th> <th>53</th> <th>50</th> <th>52.8</th> <th>30</th> <th>0.0612</th> <th>28</th> <th>0.919786</th> <th>0.0563</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |     | 30    | 4.32  | 12.55 | 53      | 50               | 52.8                 | 30          | 0.0612       | 28           | 0.919786           | 0.0563        |
| 9 50 3.08 9 50 Mean: 3.08 9 50 Mean: 3.08 11 40 Mean: 3.77 11 2.40 12 2.41 13 2.40 14 40 Mean: 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13          | 20  | Mean: |       | 12.41 | 52.00   | 48.43            |                      |             | V            | Iean Ste     | Mean Steady State: | 0.0574        |
| 9 50 3.08 9 50 Mean: 3.08 9 50 Mean: 3.08 11 40 Mean: 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |       |       |       | 50      | 50.21            |                      |             |              |              |                    |               |
| 9 50 Mean: 3.08 9 50 Mean: 3.08 11 40 Mean: 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |     | 0     | 3.08  | 8.95  | 50      | 48               | 71.53                | 0           | 0.0451       | 26           | 0.972332           | 0.0439        |
| 9 50 Mean: 3.08 9 50 Mean: 3.08 9 50 Mean: 3.08 11 40 Mean: 3.77 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |     | 5     | 3.00  | 8.71  | 49      | 47               | 90.62                | 5           | 0.0408       | 26           | 0.972332           | 0.0397        |
| 15 3.03     20 3.20     21 3.20     22 3.22     30 8 3.08     30 8 3.08     30 8 3.79     11 40 Mean: 3.75     11 40 Mean: 3.77     11 40 Mean: 3.77     12 20 2.41     13 2.42     14 40 Mean: 3.77     15 2.40     16 2.41     17 40 Mean: 3.77     18 2.42     19 2.41     10 2.41     10 2.41     11 40 Mean: 3.77     12 3.40     13 3.40     14 40 Mean: 3.77     15 2.40     17 3.01     18 3.02     19 3.03     19 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.04     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3.05     10 3 |             |     | 10    | 2.98  | 99.8  | 52      | 49               | 81.06                | 10          | 0.0398       | 26           | 0.972332           | 0.0387        |
| 9     50     3.20       9     50     Mean: 3.08       9     50     Mean: 3.08       10     3.78       11     40     Mean: 3.77       11     40     Mean: 3.77       10     2.40       20     2.40       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.40       30     2.40       30     2.40       40     Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     | 15    | 3.03  | 8.80  | 52      | 50               | 83.23                | 15          | 0.0388       | 25           | 1                  | 0.0388        |
| 9     50     Mean: 3.08       9     50     Mean: 3.08       9     50     Mean: 3.08       0     3.78       5     3.79       11     40     Mean: 3.75       11     40     Mean: 3.75       11     5     2.40       10     2.40       11     20     2.40       11     20     2.41       10     2.41       10     2.41       10     2.41       10     2.41       10     2.41       10     2.41       10     2.41       10     2.40       10     2.40       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.40       20     2.40       20     2.40       30     2.40       30     2.40       40     Mean: 2.41       20     2.40       30     2.40       30     2.40       40     Mean: 2.41       40     40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |     | 20    | 3.20  | 9.30  | 51      | 48               | 87.53                | 20          | 0.0369       | 26           | 0.972332           | 0.0359        |
| 9     50     Mean: 3.08       9     50     Mean: 3.08       0     3.78       5     3.79       10     3.79       11     40     Mean: 3.75       11     40     Mean: 3.75       10     2.40       5     2.37       10     2.40       11     40     2.41       10     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.40       30     2.40       30     2.40       40     Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |     | 25    | 3.22  | 9.35  | 51      | 48               | 90.13                | 25          | 0.0358       | 26           | 0.972332           | 0.0348        |
| 9     50     Mean: 3.08       0     3.78       5     3.79       10     3.79       11     40     Mean: 3.77       11     40     Mean: 3.75       11     20     2.40       11     20     2.40       11     20     2.41       10     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.40       30     2.40       30     2.40       40     Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     | 30    | 3.08  | 8.95  | 52      | 50               | 83.49                | 30          | 0.0387       | 26           | 0.972332           | 0.0376        |
| 11 40 Mean: 3.77  11 40 Mean: 3.77  11 40 10 2.40  2 5 2.37  1 1 2 2 2.37  2 2 2.40  2 40 2.40  2 40 2.40  2 5 2.40  2 7 40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6           | 20  | Mean: |       | 8.96  | 51.00   | 48.57            |                      |             | N            | Iean Ste     | Mean Steady State: | 0.0368        |
| 10   3.78     10   3.79     11   40   Mean: 3.77     11   40   Mean: 3.77     12   3.75     13   40   Mean: 3.77     14   5   2.40     15   2.40     16   2.40     17   2.40     18   2.42     19   2.41     10   2.41     11   40   Mean: 2.41     12   2.42     13   2.42     14   40   Mean: 2.41     15   2.42     16   2.41     17   2.40     18   2.40     19   30   2.40     10   30   2.40     10   30   3.40     11   40   Mean: 2.41     12   3.40     13   3.40     14   40   Mean: 3.41     15   3.40     16   3.75     17   30   3.40     18   30   3.40     19   30   3.40     10   30   3.40     10   30   3.40     11   40   Mean: 3.41     12   3.40     13   3.40     3   3   3     4   40   Mean: 3.41     5   5   5     5   5     5   5     5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |       |       |       | 49      | 49.79            |                      |             |              |              |                    |               |
| 10   3.79   10   3.79   10   3.79   10   3.79   11   40   Mean: 3.75   3.75   11   40   Mean: 3.77   11   40   Mean: 3.77   11   40   10   2.40   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.47   10   2.41   10   2.41   10   2.41   10   2.41   10   2.41   10   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2.41   2. |             |     | 0     | 3.78  | 10.98 | 41      | 38               | 63.54                | 0           | 8050.0       | 20           | 1.153916           | 9850.0        |
| 10 3.79 1.77 1.79 1.79 1.79 1.79 1.79 1.79 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |     | 5     | 3.79  | 11.01 | 42      | 39               | 64.42                | 5           | 0.0501       | 20           | 1.153916           | 8/50.0        |
| 15 3.77 20 3.78 21 40 Mean: 3.75 21 3.75 21 3.75 21 3.75 21 3.75 21 3.77 21 2.40 22 2.40 24 40 Mean: 2.41 25 2.40 27 40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     | 10    | 3.79  | 11.01 | 43      | 40               | 99.79                | 10          | 0.0477       | 21           | 1.120909           | 0.0535        |
| 11 40 Mean: 3.75 11 40 Mean: 3.75 11 240 1.00 1.40 1.00 1.40 1.00 1.40 1.00 1.40 1.00 1.40 1.00 1.40 1.00 1.40 1.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.00 1.41 1.40 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |     | 15    | 3.77  | 10.95 | 41      | 38               | 89.89                | 15          | 0.0470       | 22           | 1.08906            | 0.0512        |
| 11     40     Mean: 3.75       11     40     Mean: 3.77       11     40     3.75       12     2.40       10     2.40       10     2.47       10     2.47       10     2.47       10     2.41       20     2.41       20     2.41       20     2.41       20     2.40       30     2.40       7     40     Mean: 2.41       241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |     | 20    | 3.78  | 10.98 | 42      | 38               | 69.25                | 20          | 0.0466       | 22           | 1.08906            | 8050.0        |
| 11     40     Mean: 3.77       11     40     Mean: 3.77       0     2.40       5     2.37       10     2.47       10     2.47       20     2.41       20     2.41       20     2.41       30     2.40       7     40     Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |     | 25    | 3.75  | 10.89 | 42      | 39               | 69.02                | 25          | 0.0468       | 23           | 1.058322           | 0.0495        |
| 11     40     Mean:     3.77       0     0     2.40       5     2.37       10     2.47       10     2.47       20     2.41       20     2.41       20     2.41       30     2.40       7     40     Mean:     2.41       7     40     Mean:     2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     | 30    | 3.75  | 10.89 | 42      | 39               | 68.43                | 30          | 0.0472       | 24           | 1.028649           | 0.0485        |
| 0 2.40<br>5 2.37<br>10 2.47<br>115 2.42<br>20 2.41<br>20 2.41<br>20 2.41<br>20 2.41<br>20 2.41<br>21 20 2.40<br>22 2.40<br>24 2.40<br>25 2.40<br>27 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11          | 40  | Mean: |       | 10.96 | 41.86   | 38.71            |                      |             | V            | Iean Ste     | Mean Steady State: | 0.0496        |
| 0     2.40       5     2.37       10     2.47       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.41       20     2.40       30     2.40       7     40     Mean:       2.41       25     2.40       30     2.40       20     2.40       30     2.40       40     Mean:       2.41       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |     |       |       |       | 40      | 40.29            |                      |             |              |              |                    |               |
| 2.37<br>10 2.47<br>15 2.42<br>20 2.41<br>20 2.41<br>25 2.40<br>30 2.40<br>40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     | 0     | 2.40  | 6.97  | 41      | 39               | 97.52                | 0           | 0.0331       | 25           | 1                  | 0.0331        |
| 10 2.47<br>15 2.42<br>20 2.41<br>25 2.40<br>30 2.40<br>40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     | 5     | 2.37  | 6.88  | 41      | 39               | 100.21               | 5           | 0.0322       | 25           | 1                  | 0.0322        |
| 15 2.42<br>20 2.41<br>25 2.40<br>30 2.40<br>40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |     | 10    | 2.47  | 7.18  | 42      | 40               | 106.14               | 10          | 0.0304       | 25           | 1                  | 0.0304        |
| 20 2.41<br>25 2.40<br>30 2.40<br>40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |     | 15    | 2.42  | 7.03  | 42      | 40               | 108.91               | 15          | 0.0297       | 26           | 0.972332           | 0.0288        |
| 25 2.40<br>30 2.40<br>40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |     | 20    | 2.41  | 7.00  | 42      | 40               | 111.24               | 20          | 0.0290       | 25           | 1                  | 0.0290        |
| 30 2.40<br>40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |     | 25    | 2.40  | 6.97  | 42      | 40               | 114.4                | 25          | 0.0282       | 25           | 1                  | 0.0282        |
| 40 Mean: 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     | 30    | 2.40  | 26.9  | 42      | 40               | 115.77               | 0ε          | 0.0279       | 25           | 1                  | 0.0279        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7           | 40  | Mean: |       | 7.00  | 41.71   | 39.71            |                      |             | V            | Iean Ste     | Mean Steady State: | 0.0285        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |       |       |       | 40      | 40.71            |                      |             |              |              |                    |               |
| Z-8 0 5.07   14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |     | 0     | 5.07  | 14.73 | 43      | 38               | 36.89                | 0           | 0.0875       | 24           | 1.028649           | 0.0900        |

|      | Target            | Target |            |               |            |                |                    | Time for       | Rim           |                |          |                    | Corr           |
|------|-------------------|--------|------------|---------------|------------|----------------|--------------------|----------------|---------------|----------------|----------|--------------------|----------------|
| Run  | Velocity<br>(fps) | P.     | Time (min) | Flow<br>(gpm) | Flow (fps) | Inlet P (psig) | Outlet P<br>(psig) | Permeate (sec) | Time<br>(min) | Flux (gpm/ft²) | Temp     | Temp.<br>Comp.     | Flux (gpm/ft²) |
|      |                   |        | 5          | 5.17          | 15.02      | 43             | 38                 | 43.11          | 5             | 0.0749         | 25       | 1                  | 0.0749         |
|      |                   |        | 10         | 5.13          | 14.90      | 42             | 39                 | 44.2           | 10            | 0.0731         | 24       | 1.028649           | 0.0752         |
|      |                   |        | 15         | 5.24          | 15.22      | 43             | 38                 | 45.48          | 15            | 0.0710         | 25       | 1                  | 0.0710         |
|      |                   |        | 20         | 5.14          | 14.93      | 43             | 36                 | 45.41          | 20            | 0.0711         | 25       | 1                  | 0.0711         |
|      |                   |        | 25         | 5.08          | 14.76      | 43             | 39                 | 45.43          | 25            | 0.0711         | 26       | 0.972332           | 0.0691         |
|      |                   |        | 30         | 5.06          | 14.70      | 43             | 39                 | 46.27          | 30            | 0.0698         | 26       | 0.972332           | 0.0679         |
|      | 15                | 40     | Mean:      | 5.13          | 14.89      | 42.86          | 38.57              |                |               | V              | Mean Ste | Mean Steady State: | 8690.0         |
|      |                   |        |            |               |            | 40.71          | .71                |                |               |                |          |                    |                |
| 6-7  |                   |        | 0          | 3.78          | 10.98      | 22             | 19                 | 57.2           | 0             | 0.0565         | 23       | 1.058322           | 0.0597         |
|      |                   |        | 5          | 3.69          | 10.72      | 20             | 17                 | 68.4           | 2             | 0.0472         | 21       | 1.120909           | 0.0529         |
|      |                   |        | 10         | 3.73          | 10.84      | 20             | 17                 | 72.45          | 10            | 0.0446         | 21       | 1.120909           | 0.0500         |
|      |                   |        | 15         | 3.69          | 10.72      | 20             | 17                 | 71.56          | 15            | 0.0451         | 21       | 1.120909           | 0.0506         |
|      |                   |        | 20         | 3.75          | 10.89      | 20             | 17                 | 69.43          | 20            | 0.0465         | 22       | 1.08906            | 0.0507         |
|      |                   |        | 25         | 3.90          | 11.33      | 21             | 18                 | 62.2           | 25            | 0.0519         | 23       | 1.058322           | 0.0549         |
|      |                   |        | 30         | 3.91          | 11.36      | 22             | 19                 | 63.99          | 30            | 0.0505         | 22       | 1.08906            | 0.0550         |
|      | 11                | 20     | Mean:      | 3.78          | 10.98      | 20.71          | 17.71              |                |               | V              | Mean Ste | Mean Steady State: | 0.0528         |
|      |                   |        |            |               |            | 19,            | 19.21              |                |               |                |          |                    |                |
| 7-10 |                   |        | 0          | 3.10          | 9.01       | 28             | 99                 | 71.55          | 0             | 0.0451         | 23       | 1.058322           | 0.0478         |
|      |                   |        | 5          | 3.22          | 9.35       | 09             | 22                 | 81.14          | 2             | 0.0398         | 23       | 1.058322           | 0.0421         |
|      |                   |        | 10         | 3.33          | 6.67       | 09             | 58                 | 86.81          | 10            | 0.0372         | 24       | 1.028649           | 0.0383         |
|      |                   |        | 15         | 3.22          | 9.35       | 09             | 57                 | 87.14          | 15            | 0.0371         | 24       | 1.028649           | 0.0381         |
|      |                   |        | 20         | 2.90          | 8.42       | 09             | 27                 | 89.87          | 20            | 0.0359         | 25       | 1                  | 0.0359         |
|      |                   |        | 25         | 3.74          | 10.86      | 09             | 99                 | 93.71          | 25            | 0.0345         | 25       | 1                  | 0.0345         |
|      |                   |        | 30         | 3.60          | 10.46      | 69             | 25                 | 94.04          | 30            | 0.0343         | 25       | 1                  | 0.0343         |
|      | 11                | 09     | Mean:      | 3.30          | 62.6       | 59.57          | 56.57              |                |               | V              | Mean Ste | Mean Steady State: | 0.0357         |
|      |                   |        |            |               |            | 58,            | 58.07              |                |               |                |          |                    |                |
| 7-11 |                   |        | 0          | 3.70          | 10.75      | 42             | 36                 | 66.28          | 0             | 0.0487         | 20       | 1.153916           | 0.0562         |
|      |                   |        | 5          | 3.55          | 10.31      | 41             | 38                 | 72.37          | 5             | 0.0446         | 21       | 1.120909           | 0.0500         |
|      |                   |        | 10         | 3.75          | 10.89      | 41             | 38                 | 74.54          | 10            | 0.0433         | 22       | 1.08906            | 0.0472         |
|      |                   |        | 15         | 3.83          | 11.13      | 41             | 37                 | 73.5           | 15            | 0.0439         | 23       | 1.058322           | 0.0465         |
|      |                   |        | 20         | 3.85          | 11.18      | 42             | 39                 | 69.74          | 20            | 0.0463         | 24       | 1.028649           | 0.0476         |
|      |                   |        | 25         | 3.80          | 11.04      | 42             | 39                 | 70.95          | 25            | 0.0455         | 24       | 1.028649           | 0.0468         |
|      |                   |        | 30         | 3.82          | 11.10      | 43             | 40                 | 71.8           | 30            | 0.0450         | 23       | 1.058322           | 0.0476         |

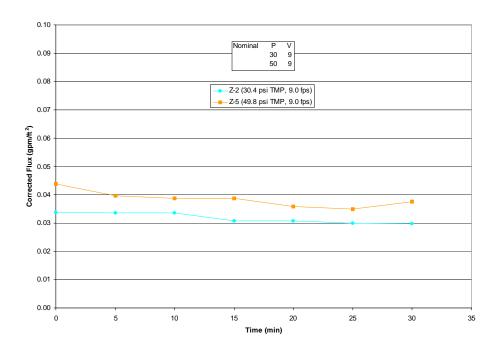
|     | Target            | Target |               |            |            |                |          | 40 ml of       | Run           |                   |          |                    | Corr.          |
|-----|-------------------|--------|---------------|------------|------------|----------------|----------|----------------|---------------|-------------------|----------|--------------------|----------------|
| Run | Velocity<br>(fps) |        | Time<br>(min) | Flow (gpm) | Flow (fps) | Inlet P (psig) | Outlet P | Permeate (sec) | Time<br>(min) | Flux<br>(gpm/ft²) | Temp     | Temp.<br>Comp.     | Flux (gpm/ft²) |
| 1   | 11                | 40     | Mean:         | 3.76       | 10.91      | 41.71          | 38.57    |                |               |                   | Jean Ste | Mean Steady State: | 0.0471         |
|     |                   |        |               |            |            | 40             | 40.14    |                |               |                   |          |                    |                |
| -1  |                   |        | 0             | 3.01       | 8.74       | 52             | 49       | 64.79          | 0             | 0.0498            | 26       | 0.972332           | 0.0485         |
|     |                   |        | 5             | 2.86       | 8.31       | 50             | 48       | 79.11          | 5             | 0.0408            | 26       | 0.972332           | 2680.0         |
|     |                   |        | 10            | 3.00       | 8.71       | 49             | 47       | 84.95          | 10            | 0.0380            | 25       | 1                  | 0.0380         |
|     |                   |        | 15            | 2.99       | 8.69       | 50             | 48       | 87.73          | 15            | 0.0368            | 25       | 1                  | 0.0368         |
|     |                   |        | 20            | 2.97       | 8.63       | 51             | 48       | 89.58          | 20            | 0.0360            | 24       | 1.028649           | 0.0371         |
|     |                   |        | 25            | 2.96       | 8.60       | 53             | 50       | 87.67          | 25            | 0.0368            | 24       | 1.028649           | 0.0379         |
|     |                   |        | 30            | 3.22       | 9.35       | 51             | 48       | 90.01          | 30            | 0.0359            | 25       | 1                  | 0.0359         |
| 6   |                   | 50     | Mean:         | 3.00       | 8.72       | 50.86          | 48.29    |                |               | V                 | Jean Ste | Mean Steady State: | 0.0369         |
|     |                   |        |               |            |            | 49.57          | .57      |                |               |                   |          |                    |                |
| 2-2 |                   |        | 0             | 3.60       | 10.46      | 42             | 39       | 55.96          | 0             | 0.0577            | 26       | 0.972332           | 0.0561         |
|     |                   |        | 5             | 3.64       | 10.57      | 41             | 38       | 65.21          | 5             | 0.0495            | 24       | 1.028649           | 0.0509         |
|     |                   |        | 10            | 3.64       | 10.57      | 40             | 37       | 71.18          | 10            | 0.0454            | 23       | 1.058322           | 0.0480         |
|     |                   |        | 15            | 3.59       | 10.43      | 40             | 37       | 73.67          | 15            | 0.0438            | 23       | 1.058322           | 0.0464         |
|     |                   |        | 20            | 3.64       | 10.57      | 41             | 38       | 70.93          | 20            | 0.0455            | 24       | 1.028649           | 0.0468         |
|     |                   |        | 25            | 3.63       | 10.54      | 40             | 37       | 70.43          | 25            | 0.0459            | 25       | 1                  | 0.0459         |
|     |                   |        | 30            | 3.79       | 11.01      | 41             | 38       | 73.26          | 30            | 0.0441            | 25       | 1                  | 0.0441         |
| 1   | 11                | 40     | Mean:         | 3.65       | 10.59      | 40.71          | 37.71    |                |               | V                 | Jean Ste | Mean Steady State: | 0.0458         |
|     |                   |        |               |            |            | 39.21          | .21      |                |               |                   |          |                    |                |
| 3   |                   |        | 0             | 5.22       | 15.16      | 43             | 38       | 36.68          | 0             | 0.0880            | 25       | 1                  | 0880'0         |
|     |                   |        | 5             | 5.07       | 14.73      | 43             | 39       | 39.15          | 2             | 0.0825            | 27       | 0.945607           | 08200          |
|     |                   |        | 10            | 5.04       | 14.64      | 41             | 37       | 42.85          | 10            | 0.0754            | 27       | 0.945607           | 0.0713         |
|     |                   |        | 15            | 5.08       | 14.76      | 40             | 35       | 46.22          | 15            | 0.0699            | 26       | 0.972332           | 6290'0         |
|     |                   |        | 20            | 5.07       | 14.73      | 41             | 36       | 48.33          | 20            | 0.0668            | 25       | 1                  | 8990'0         |
|     |                   |        | 25            | 5.21       | 15.13      | 43             | 38       | 48.34          | 25            | 0.0668            | 25       | 1                  | 8990'0         |
|     |                   |        | 30            | 5.20       | 15.11      | 4              | 40       | 45.86          | 30            | 0.0704            | 25       | 1                  | 0.0704         |
| 1   | 15                | 40     | Mean:         | 5.13       | 14.89      | 42.14          | 37.57    |                |               | V                 | Jean Ste | Mean Steady State: | 0890'0         |
|     |                   |        |               |            |            | 39,            | 39.86    |                |               |                   |          |                    |                |
| 4-  |                   |        | 0             | 3.82       | 11.10      | 41             | 38       | 60.83          | 0             | 0.0531            | 25       | 1                  | 0.0531         |
|     |                   |        | 5             | 3.64       | 10.57      | 42             | 39       | 65.08          | 5             | 0.0496            | 24       | 1.028649           | 0.0510         |
|     |                   |        | 10            | 3.73       | 10.84      | 39             | 36       | 71.07          | 10            | 0.0454            | 24       | 1.028649           | 0.0467         |
|     |                   |        | 15            | 3.84       | 11.15      | 41             | 39       | 71.85          | 15            | 0.0449            | 26       | 0.972332           | 0.0437         |

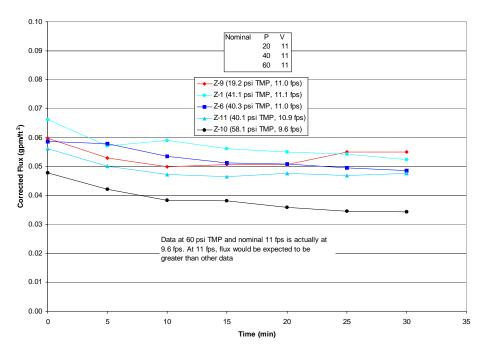
|     |                    |       |       |       |       |        |          | Time for             |             |                        |          |                    |                        |
|-----|--------------------|-------|-------|-------|-------|--------|----------|----------------------|-------------|------------------------|----------|--------------------|------------------------|
|     | Target<br>Velocity | P     | Time  | Flow  | Flow  | _      | Outlet P | 40 ml of<br>Permeate | Run<br>Time | Flux                   | Temp     | Temp.              | Corr.<br>Flux          |
| Run | (fps)              | (psi) | (min) | (gpm) | (fps) | (psig) | (psig)   | (sec)                | (min)       | (gpm/ft <sup>2</sup> ) | (C)      | Comp.              | (gpm/ft <sup>2</sup> ) |
|     |                    |       | 70    | 3.82  | 11.10 | 41     | 39       | 72.42                | .20         | 0.0446                 | 52       | 1                  | 0.0446                 |
|     |                    |       | 25    | 3.82  | 11.10 | 41     | 39       | 73.05                | 25          | 0.0442                 | 25       | 1                  | 0.0442                 |
|     |                    |       | 30    | 3.87  | 11.24 | 42     | 40       | 79.07                | 30          | 0.0457                 | 25       | 1                  | 0.0457                 |
|     | 11                 | 40    | Mean: | 3.79  | 11.01 | 41.00  | 38.57    |                      |             | N                      | Iean Ste | Mean Steady State: | 0.0445                 |
|     |                    |       |       |       |       | 39,    | 39.79    |                      |             |                        |          |                    |                        |
| 5   |                    |       | 0     | 4.38  | 12.72 | 32     | 28       | 44.51                | 0           | 0.0726                 | 26       | 0.972332           | 0.0705                 |
|     |                    |       | 5     | 4.58  | 13.30 | 33     | 29       | 52.49                | 5           | 0.0615                 | 26       | 0.972332           | 0.0598                 |
|     |                    |       | 10    | 4.47  | 12.98 | 32     | 28       | 56.82                | 10          | 0.0568                 | 25       | 1                  | 0.0568                 |
|     |                    |       | 15    | 4.45  | 12.93 | 32     | 28       | 59.4                 | 15          | 0.0544                 | 25       | 1                  | 0.0544                 |
|     |                    |       | 20    | 4.60  | 13.36 | 33     | 29       | 56.23                | 20          | 0.0574                 | 25       | 1                  | 0.0574                 |
|     |                    |       | 25    | 4.58  | 13.30 | 33     | 29       | 55.51                | 25          | 0.0582                 | 26       | 0.972332           | 0.0566                 |
|     |                    |       | 30    | 4.64  | 13.48 | 34     | 30       | 54.07                | 30          | 0.0597                 | 26       | 0.972332           | 0.0581                 |
|     | 13                 | 30    | Mean: | 4.53  | 13.15 | 32.71  | 28.71    |                      |             | N                      | Jean Ste | Mean Steady State: | 0.0566                 |
|     |                    |       |       |       |       | 30     | 30.71    |                      |             |                        |          |                    |                        |
| 9-  |                    |       | 0     | 2.32  | 6.74  | 41     | 39       | 97.41                | 0           | 0.0332                 | 23       | 1.058322           | 0.0351                 |
|     |                    |       | 5     | 2.32  | 6.74  | 42     | 40       | 105.48               | 5           | 0.0306                 | 24       | 1.028649           | 0.0315                 |
|     |                    |       | 10    | 2.46  | 7.15  | 41     | 39       | 114.36               | 10          | 0.0282                 | 25       | 1                  | 0.0282                 |
|     |                    |       | 15    | 2.44  | 60.7  | 41     | 36       | 116.96               | 15          | 0.0276                 | 25       | 1                  | 0.0276                 |
|     |                    |       | 20    | 2.40  | 6.97  | 42     | 40       | 117.63               | 20          | 0.0275                 | 26       | 0.972332           | 0.0267                 |
|     |                    |       | 25    | 2.40  | 26.9  | 42     | 40       | 124.94               | 25          | 0.0258                 | 25       | 1                  | 0.0258                 |
|     |                    |       | 30    | 2.36  | 98.9  | 42     | 40       | 131.37               | 30          | 0.0246                 | 24       | 1.028649           | 0.0253                 |
|     | 7                  | 40    | Mean: | 2.39  | 6.93  | 41.57  | 39.57    |                      |             | V                      | Iean Ste | Mean Steady State: | 0.0264                 |
|     |                    |       |       |       |       | 40     | 40.57    |                      |             |                        |          |                    |                        |
| 2-  |                    |       | 0     | 3.18  | 9.24  | 32     | 30       | 76.38                | 0           | 0.0423                 | 25       | 1                  | 0.0423                 |
|     |                    |       | 5     | 3.09  | 86.8  | 33     | 31       | 79.61                | 2           | 0.0406                 | 25       | 1                  | 0.0406                 |
|     |                    |       | 10    | 3.09  | 86.8  | 34     | 32       | 81.17                | 10          | 0.0398                 | 25       | 1                  | 86£0.0                 |
|     |                    |       | 15    | 3.12  | 90.6  | 34     | 31       | 83.27                | 15          | 0.0388                 | 26       | 0.972332           | 0.0377                 |
|     |                    |       | 20    | 3.14  | 9.12  | 34     | 32       | 92.7                 | 20          | 0.0348                 | 24       | 1.028649           | 0.0358                 |
|     |                    |       | 25    | 3.08  | 8.95  | 33     | 31       | 94.36                | 25          | 0.0342                 | 23       | 1.058322           | 0.0362                 |
|     |                    |       | 30    | 3.13  | 60.6  | 32     | 30       | 96.95                | 30          | 0.0333                 | 24       | 1.028649           | 0.0343                 |
|     | 6                  | 30    | Mean: | 3.12  | 90.6  | 33.14  | 31.00    |                      |             | V                      | Iean Ste | Mean Steady State: | 09800                  |
|     |                    |       |       |       |       | 32.    | 32.07    |                      |             |                        |          |                    |                        |
| 8   |                    |       | 0     | 3.86  | 11.21 | 23     | 19       | 59.82                | 0           | 0.0540                 | 25       | 1                  | 0.0540                 |
|     | 1                  |       |       |       | l     | l      |          |                      | Ì           |                        |          |                    |                        |

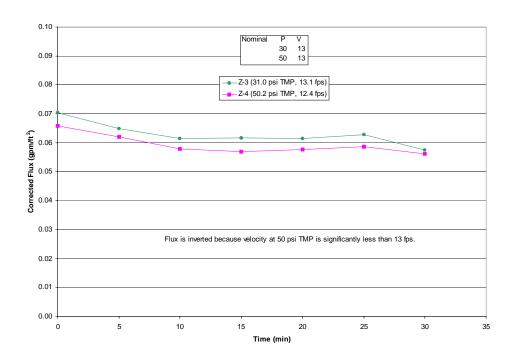
|     | Toract            | Torgot |               |            |            |                |                    | Time for       | Dun           |                |                 |                    |                |
|-----|-------------------|--------|---------------|------------|------------|----------------|--------------------|----------------|---------------|----------------|-----------------|--------------------|----------------|
| Run | Velocity<br>(fps) |        | Time<br>(min) | Flow (gpm) | Flow (fps) | Inlet P (psig) | Outlet P<br>(psig) | Permeate (sec) | Time<br>(min) | Flux (gpm/ft²) | Temp<br>(°C)    | Temp.<br>Comp.     | Flux (gpm/ft²) |
|     |                   | ,      | 5             | 3.71       | 10.78      | 20             | 17                 | 63.7           | 5             | 0.0507         | 25              | 1                  | 0.0507         |
|     |                   |        | 10            | 3.74       | 10.86      | 23             | 19                 | 96.39          | 10            | 0.0487         | 25              | 1                  | 0.0487         |
|     |                   |        | 15            | 3.72       | 10.81      | 22             | 19                 | 67.35          | 15            | 0.0479         | 25              | 1                  | 0.0479         |
|     |                   |        | 20            | 3.62       | 10.52      | 21             | 18                 | 60.69          | 20            | 0.0467         | 26              | 0.972332           | 0.0454         |
|     |                   |        | 25            | 3.61       | 10.49      | 21             | 17                 | 70.39          | 25            | 0.0459         | 25              | 1                  | 0.0459         |
|     |                   |        | 30            | 3.67       | 10.66      | 21             | 18                 | 70.62          | 30            | 0.0457         | 25              | 1                  | 0.0457         |
|     | 11                | 20     | Mean:         | 3.70       | 10.76      | 21.57          | 18.14              |                |               | V              | Mean Ste        | Mean Steady State: | 0.0463         |
|     |                   |        |               |            |            | 19,            | 19.86              |                |               |                |                 |                    |                |
| 6-  |                   |        | 0             | 4.32       | 12.55      | 53             | 50                 | 46.44          | 0             | 0.0695         | 25              | 1                  | 0.0695         |
|     |                   |        | 5             | 4.23       | 12.29      | 51             | 47                 | 51.66          | 5             | 0.0625         | 26              | 0.972332           | 0.0608         |
|     |                   |        | 10            | 4.17       | 12.11      | 51             | 48                 | 53.91          | 10            | 0.0599         | 26              | 0.972332           | 0.0582         |
|     |                   |        | 15            | 4.26       | 12.37      | 50             | 47                 | 58.42          | 15            | 0.0553         | 25              | 1                  | 0.0553         |
|     |                   |        | 20            | 4.24       | 12.32      | 51             | 47                 | 6.09           | 20            | 0.0530         | 25              | 1                  | 0.0530         |
|     |                   |        | 25            | 4.25       | 12.35      | 49             | 46                 | 62.07          | 25            | 0.0520         | 24              | 1.028649           | 0.0535         |
|     |                   |        | 30            | 4.10       | 11.91      | 48             | 44                 | 61.86          | 30            | 0.0522         | 25              | 1                  | 0.0522         |
|     | 13                | 20     | Mean:         | 4.22       | 12.27      | 50.43          | 47.00              |                |               | V              | Mean Ste        | Mean Steady State: | 0.0535         |
|     |                   |        |               |            |            | 48,            | 48.71              |                |               |                |                 |                    |                |
| -10 |                   |        | 0             | 2.35       | 6.83       | 69             | 22                 | 60.06          | 0             | 0.0358         | 56              | 0.972332           | 0.0349         |
|     |                   |        | 5             | 2.44       | 7.09       | 69             | 99                 | 122.24         | 2             | 0.0264         | 25              | 1                  | 0.0264         |
|     |                   |        | 10            | 2.83       | 8.22       | 09             | 27                 | 130.2          | 10            | 0.0248         | 25              | 1                  | 0.0248         |
|     |                   |        | 51            | 2.70       | 7.84       | 09             | 28                 | 134.59         | 15            | 0.0240         | 25              | 1                  | 0.0240         |
|     |                   |        | 20            | 2.61       | 7.58       | 09             | 27                 | 136            | 20            | 0.0237         | 25              | 1                  | 0.0237         |
|     |                   |        | 25            | 2.56       | 7.44       | 09             | 57                 | 138.64         | 25            | 0.0233         | 25              | 1                  | 0.0233         |
|     |                   |        | 30            | 2.58       | 7.49       | 09             | 57                 | 141.8          | 30            | 0.0228         | 24              | 1.028649           | 0.0234         |
|     | 11                | 09     | Mean:         | 2.58       | 7.50       | 59.71          | 57.00              |                |               | V              | <b>Jean Ste</b> | Mean Steady State: | 0.0236         |
|     |                   |        |               |            |            | 58,            | 58.36              |                |               |                |                 |                    |                |
| -11 |                   |        | 0             | 3.56       | 10.34      | 40             | 37                 | 62.07          | 0             | 0.0520         | 25              | 1                  | 0.0520         |
|     |                   |        | 5             | 3.80       | 11.04      | 43             | 40                 | 68.7           | 5             | 0.0470         | 24              | 1.028649           | 0.0484         |
|     |                   |        | 10            | 3.73       | 10.84      | 42             | 39                 | 73.32          | 10            | 0.0440         | 24              | 1.028649           | 0.0453         |
|     |                   |        | 15            | 3.76       | 10.92      | 38             | 35                 | 81.21          | 15            | 0.0398         | 24              | 1.028649           | 0.0409         |
|     |                   |        | 20            | 3.96       | 11.50      | 42             | 39                 | 78.31          | 20            | 0.0412         | 24              | 1.028649           | 0.0424         |
|     |                   |        | 25            | 3.99       | 11.59      | 43             | 40                 | 74.09          | 25            | 0.0436         | 26              | 0.972332           | 0.0424         |
|     |                   |        | 30            | 3.83       | 11.13      | 40             | 37                 | <i>81.77</i>   | 30            | 0.0415         | 26              | 0.972332           | 0.0404         |

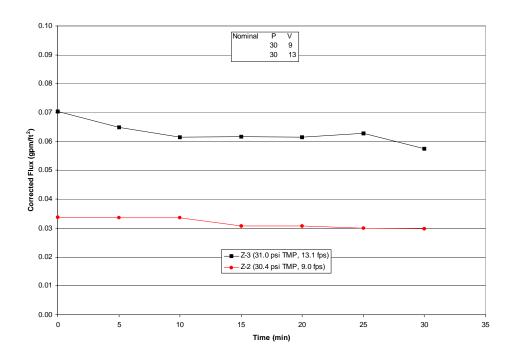
| Pressure (psi)         Time (psi)         Flow (psi)         Inlet (psi)         Outlet P (psig)         Outlet P (psig)         Perment (psin)         Time (gpm/ft) (gpm/ft)         How (psin)         (psig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Target            | Target |               |            |            |                   |                    | Time for 40 ml of | Run |                |                 |                    | Corr.          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|--------|---------------|------------|------------|-------------------|--------------------|-------------------|-----|----------------|-----------------|--------------------|----------------|
| 11   40   Mean: 3.80   11.05   41.14   38.14     38.14     38.14     39.64     39.64     38.2     11.05   41.14   38.14     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64     39.64      | Run      | Velocity<br>(fps) |        | Time<br>(min) | Flow (gpm) | Flow (fps) | Inlet P<br>(psig) | Outlet P<br>(psig) | Permeate (sec)    |     | Flux (gpm/ft²) | Temp            | Temp.<br>Comp.     | Flux (gpm/ft²) |
| g/L         39,64         39,64         0         0.0561           g/L         3.82         11.10         43         39,64         0         0.0561           g/L         3         3.84         11.12         42         38         57.6         0         0.0483           g/L         1         3.84         11.15         42         38         57.6         0         0.0489           g/L         1         3.78         11.07         41         37         66.24         25         0.0489           mg/L         1         40         Mean         3.88         11.07         40         36         66.64         25         0.0489           mg/L         1         40         36         66.44         25         0.0489           mg/L         40         36         11.07         40         36         66.44         25         0.0489           mg/L         30         3.74         10.95         41         37         66.04         20         0.0489           mg/L         30         11.04         40         36         66.44         25         0.0489           mg/L         30         11.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 11                | 40     | Mean:         |            | 11.05      | 41.14             | 38.14              |                   |     | V S            | <b>Jean Ste</b> | Mean Steady State: | 0.0415         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                   |        |               |            |            | 39                | .64                |                   |     |                |                 |                    |                |
| g/L         5         3.86         11.21         41         37         64.83         5         0.0498           g/L         10         3.84         11.15         42         38         63.38         10         0.0510           g/L         10         3.84         11.15         42         38         63.38         10         0.0480           1         2         3.81         11.07         41         37         66.04         25         0.0480           1         40         Mean:         3.80         11.04         41.25         37.25         30         0.0460           11         40         Mean:         3.80         11.04         41.25         37.25         30         0.0460           mg/L         3         3.71         10.95         41         37         69.04         35         0.0460           1         40         Mean:         3.80         11.04         41.25         37.25         30         0.0460           3         3         3         3         3         4         4         37         69.04         35         0.0480           4         4         4         4         4 </td <td>M-1</td> <td></td> <td></td> <td>0</td> <td>3.82</td> <td>11.10</td> <td>43</td> <td>39</td> <td>57.6</td> <td>0</td> <td>0.0561</td> <td>23</td> <td>1.058322</td> <td>0.0593</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M-1      |                   |        | 0             | 3.82       | 11.10      | 43                | 39                 | 57.6              | 0   | 0.0561         | 23              | 1.058322           | 0.0593         |
| pgL   10   3.84   11.15   42   38   63.38   10   0.0510     15   3.81   11.07   41   37   66.25   15   0.0487     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                   |        | 5             | 3.86       | 11.21      | 41                | 37                 | 64.83             | 5   | 0.0498         | 23              | 1.058322           | 0.0527         |
| 15   3.81   11.07   41   37   66.25   15   0.0489   15   3.81   11.07   41   37   66.04   20   0.04889   1   3.81   11.07   40   3.6   66.64   25   0.04889   1   3.81   11.07   40   3.6   66.64   25   0.04889   1   3.9   3.72   3.81   11.04   41.25   37.25   3.82   3.72   3.82   3.83   3.72   3.83   3.72   3.84   3.83   3.72   3.84   3.83   3.74   3.83   3.74   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84   3.84    | 50 mg/L  |                   |        | 10            | 3.84       | 11.15      | 42                | 38                 | 63.38             | 10  | 0.0510         | 25              | 1                  | 0.0510         |
| 10   20   3.78   10.98   41   37   66.04   20   0.0489     11   40   Mean: 3.80   11.07   40   36   66.64   25   0.0468     11   40   Mean: 3.80   11.04   41.25   37.25   65.91   35   0.0468     12   40   Mean: 3.80   11.04   41.25   37.25   65.91   0.0   0.0469     13   40   Mean: 3.81   11.04   40   38   56.91   0   0.0479     14   40   Mean: 3.81   11.07   41.86   38.86   67.32   30   0.0476     15   3.82   11.15   41   37   67.93   25   0.0475     16   40   Mean: 3.81   11.07   41.86   38.86   67.32   30   0.0476     18   40   Mean: 3.81   11.07   41.86   38.86   67.31   5   0.0497     19   40   Mean: 3.81   11.07   41   38   67.12   5   0.0497     10   40   Mean: 3.81   11.07   41   38   67.31   5   0.0497     11   40   Mean: 3.82   11.10   41   38   67.31   5   0.0447     11   40   Mean: 3.82   11.04   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.07   41   38   67.31   5   0.0447     11   40   Mean: 3.82   11.07   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.07   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.07   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.07   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.07   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.04   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.04   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.04   41   38   67.32   30   0.0447     11   40   Mean: 3.82   11.04   42   38   67.95   67.87   60.0470     11   40   Mean: 3.82   11.04   41   38   67.95   67.87   60.0470     12   41   41   42   43   60.05   60.05   60.05     13   41   41   42   43   60.05   60.05   60.05     14   41   42   43   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   60.05   6  |          |                   |        | 15            | 3.81       | 11.07      | 41                | 37                 | 66.25             | 15  | 0.0487         | 26              | 0.972332           | 0.0474         |
| 11   40   3.3   3.72   10.81   41   37   70.19   30   0.0460     11   40   Mean; 3.80   11.04   41.25   37.25   37.25   0.0468     11   40   Mean; 3.80   11.04   41.25   37.25   37.25   0.0468     12   40   Mean; 3.80   11.04   40   38   56.91   0   0.0469     13   40   3.83   11.13   41   38   67.43   10   0.0477     14   40   Mean; 3.81   11.15   41   38   67.12   30   0.0477     15   40   Mean; 3.81   11.07   41   38   67.12   30   0.0477     16   5   3.84   11.15   41   38   67.12   30   0.0477     17   40   Mean; 3.81   11.07   41   38   67.12   30   0.0477     18   40   Mean; 3.81   11.07   41   38   67.12   30   0.0447     19   40   Mean; 3.81   11.07   41   38   67.12   30   0.0447     10   40   Mean; 3.81   11.07   41   38   67.12   30   0.0447     11   40   Mean; 3.82   11.10   41   38   67.12   30   0.0447     12   40   Mean; 3.82   11.10   41   38   67.12   30   0.0447     13   40   Mean; 3.82   11.10   41   38   67.12   30   0.0447     14   40   Mean; 3.82   11.10   41   38   67.12   30   0.0447     15   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.83   3.8 |          |                   |        | 20            | 3.78       | 10.98      | 41                | 37                 | 66.04             | 20  | 0.0489         | 27              | 0.945607           | 0.0462         |
| 11         40 $372$ $10.81$ $41.55$ $37.25$ $69.04$ $35$ $0.0468$ 11         40         Mean: $3.80$ $11.04$ $41.25$ $37.25$ $0.046$ $35.05$ $0.0468$ mg/L         0 $3.80$ $11.04$ $41.25$ $37.25$ $0.046$ $0.0567$ mg/L         0 $3.80$ $11.04$ $41.25$ $37.25$ $0.04$ $35.05$ $0.0469$ mg/L         0 $3.80$ $11.04$ $41.25$ $40.25$ $65.48$ $10.0567$ mg/L         10 $3.81$ $11.15$ $41$ $38$ $67.43$ $10.0567$ $0.0475$ mg/L         10 $3.81$ $11.15$ $41$ $38$ $67.12$ $30.0475$ mg/L         10 $3.82$ $11.15$ $41$ $38$ $67.13$ $10.050$ mg/L         10 $3.82$ $11.05$ $41$ $38$ $67.13$ $10.050$ $10.050$ mg/L </td <td></td> <td></td> <td></td> <td>25</td> <td>3.81</td> <td>11.07</td> <td>40</td> <td>36</td> <td>66.64</td> <td>25</td> <td>0.0485</td> <td>26</td> <td>0.972332</td> <td>0.0471</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |        | 25            | 3.81       | 11.07      | 40                | 36                 | 66.64             | 25  | 0.0485         | 26              | 0.972332           | 0.0471         |
| II         40         Mean:         3.77         10.95         41         37         69.04         35         0.0468           III         40         Mean:         3.80         II.04         41.25         37.25         9.00         0.0567           mg/L         0         3.80         II.04         40         38         56.91         0         0.0567           mg/L         10         3.85         II.13         41         38         67.43         10         0.0567           mg/L         10         3.84         II.15         42         39         59.46         5         0.0567           mg/L         10         3.82         II.13         41         38         67.43         10         0.0479           mg/L         11         40         Mean:         38.4         II.15         41         37         67.93         25         0.0479           mg/L         11         40         Mean:         38.1         11.05         41         38         65.94         0         0.0567           mg/L         11         40         Mean:         38.1         11.05         41         38         65.94         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                   |        | 30            | 3.72       | 10.81      | 41                | 37                 | 70.19             | 30  | 0.0460         | 26              | 0.972332           | 0.0447         |
| II         40         Mean:         3.80         II.04         41.25         37.25         0         0.0567           mg/L         0         3.80         II.04         40         38         56.91         0         0.0567           mg/L         0         3.80         II.12         42         39         59.46         5         0.0543           mg/L         10         3.83         II.13         41         38         67.43         10         0.0567           mg/L         15         3.84         II.15         43         40         63.48         15         0.0509           11         40         Mean:         3.74         10.95         43         40         63.78         20         0.0470           mg/L         10         43         40         63.78         10         0.0470           mg/L         30         3.74         10.86         43         40         67.82         30         0.0470           mg/L         30         3.74         10.86         42         38         62.12         5         0.0470           mg/L         30         3.74         10.86         42         38         65.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                   |        | 35            | 3.77       | 10.95      | 41                | 37                 | 69.04             | 35  | 0.0468         | 26              | 0.972332           | 0.0455         |
| mg/L         39.25         9         0.0567           mg/L         10         3.80         11.04         40         38         56.91         0         0.0567           mg/L         10         3.86         11.12         42         39         59.46         5         0.0543           mg/L         10         3.86         11.13         41         38         67.43         10         0.0479           11         40         Mean:         3.74         10.95         43         40         63.48         15         0.0509           11         40         Mean:         3.74         10.86         43         40         63.78         20         0.0509           mg/L         11         40         Mean:         3.81         11.07         41.86         38.86         7.72         0.0475           mg/L         10         3.74         10.86         43         40         67.82         30         0.0475           mg/L         3.8         11.10         41.36         38.86         7.72         10         0.0450           mg/L         3.8         11.07         41         38         67.31         2         0.0450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 11                | 40     | Mean:         | 3.80       | 11.04      | 41.25             | 37.25              |                   |     | V              | Jean Ste        | Mean Steady State: | 0.0451         |
| mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                   |        |               |            |            | 39                | .25                |                   |     |                |                 |                    |                |
| mg/L   5   3.86   11.21   42   39   59.46   5   0.0543    mg/L   10   3.83   11.13   41   38   67.43   10   0.0479    11   20   3.77   10.95   43   40   63.78   15   0.0509    12   25   3.84   11.15   41   37   67.93   25   0.0475    13   3.74   10.86   43   40   67.82   30   0.0475    14   40   Mean: 3.81   11.07   41.86   38.86   55.94   0   0.0567    15   3.80   11.04   42   38   65.12   5   0.0490    16   30   3.80   11.04   41   38   65.13   20   0.0447    17   40   Mean: 3.81   11.07   41   38   67.31   20   0.0447    18   40   Mean: 3.82   11.10   41   38   67.32   30   0.0447    19   40   Mean: 3.82   11.10   41   38   67.32   30   0.0447    11   40   Mean: 3.82   11.04   41   38   67.32   35   0.0447    11   40   Mean: 3.82   11.09   41.75   38.75   1.95   0.0557    11   40   Mean: 3.82   11.09   41.75   38.75   1.95   0.0557    11   40   Mean: 3.82   11.09   41.75   38.75   1.95   0.0557    11   40   Mean: 3.82   11.09   41.75   38.75   1.95   0.0557    11   40   Mean: 3.82   11.09   41.75   38.75   0.0447    12   40   3.82   11.09   41.75   38.75   0.0447    13   40   2.82   2.82   2.82   2.82   2.82   2.82   2.82    14   5   6   6   6   6   6   6   6   6   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-2      |                   |        | 0             | 3.80       | 11.04      | 40                | 38                 | 56.91             | 0   | 0.0567         | 26              | 0.972332           | 0.0552         |
| mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                   |        | 5             | 3.86       | 11.21      | 42                | 39                 | 59.46             | 5   | 0.0543         | 27              | 0.945607           | 0.0514         |
| 15   3.84   11.15   43   40   63.48   15   0.0506     120   3.77   10.95   43   40   63.78   20   0.0506     11   40   Mean: 3.81   11.15   41   37   67.93   25   0.0475     12   40   Mean: 3.81   11.07   41.86   38.86   3.80   0.0476     13   40   Mean: 3.81   11.07   41.86   38.86   3.0   0.0476     14   40   Mean: 3.82   11.10   42   38   67.31   20   0.0480     15   3.80   11.04   41   38   67.31   20   0.0447     16   40   Mean: 3.82   11.09   41.75   38.75   35   0.0447     17   40   Mean: 3.82   11.09   41.75   38.75   35   0.0447     18   40   Mean: 3.82   11.09   41.75   38.75   35   0.0447     19   40   Mean: 3.82   11.09   41.75   38.75   35   0.0447     10   40   Mean: 3.82   11.09   41.75   38.75   35   0.0447     11   40   Mean: 3.82   11.09   41.75   38.75   35   0.0447     12   40   3.80   11.04   42   38.75   35   0.0447     13   40   3.80   11.04   42   38   57.99   0   0.0557     14   40   3.80   11.04   42   38   57.99   0   0.0557     15   3.75   10.89   41   38   57.87   5   0.0450     16   5   3.75   10.89   41   39   67.87   5   0.0450     17   5   3.75   10.89   41   39   67.87   5   0.0450     18   5   3.75   10.89   41   39   67.87   5   0.0450     19   5   3.75   10.89   41   39   67.87   5   0.0450     10   5   3.75   10.89   41   39   67.87   5   0.0450     11   41   41   42   43   43   43   43   43   43   43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150 mg/L |                   |        | 10            | 3.83       | 11.13      | 41                | 38                 | 67.43             | 10  | 0.0479         | 26              | 0.972332           | 0.0466         |
| 11   40   3.77   10.95   43   40   63.78   20   0.0506     11   40   Mean: 3.81   11.07   41.86   38.86   3.0   0.0476     11   40   Mean: 3.81   11.07   41.86   38.86   3.0   0.0476     12   40   Mean: 3.81   11.07   41.86   38.86   3.0   0.0476     13   40   Mean: 3.82   11.10   42   38   65.87   15   0.0490     14   40   Mean: 3.82   11.10   41   38   67.31   20   0.0447     15   3.82   11.10   41   38   67.31   20   0.0447     16   3.82   11.10   41   38   67.32   30   0.0447     17   40   Mean: 3.82   11.04   41   38   77.22   30   0.0447     18   40   Mean: 3.82   11.04   41   38   77.22   30   0.0447     19   40   Mean: 3.82   11.04   41   38   57.99   0   0.0557     10   40   3.80   11.04   41   38   57.99   0   0.0557     11   40   Mean: 3.82   11.09   41.75   38.75   11.95   35   0.0449     12   40   3.80   11.04   42   38   57.99   0   0.0557     13   40   5.81   5.81   5.81   5.81   5.81   5.81   5.81     14   40   Mean: 3.82   11.09   41.75   38.75   35   0.0449     15   3.81   3.81   3.81   40   3.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81   5.81 |          |                   |        | 15            | 3.84       | 11.15      | 43                | 40                 | 63.48             | 15  | 0.0509         | 26              | 0.972332           | 0.0495         |
| II         40         Mean:         3.84         II.15         41         37         67.93         25         0.0476           II         40         Mean:         3.81         II.07         41.86         38.86         90         0.0476           mg/L         0         3.92         II.39         42         38.86         56.94         0         0.0567           mg/L         0         3.92         II.39         42         38         56.94         0         0.0567           mg/L         0         3.92         II.39         42         38         56.94         0         0.0567           mg/L         10         3.82         II.10         43         40         67.72         10         0.0480           mg/L         3         3.82         II.10         42         39         65.87         15         0.0480           3         3         3.82         II.10         41         39         68.66         25         0.0440           4         4         3         4         4         38         72.22         30         0.0440           4         4         4         4         3         4 <td></td> <td></td> <td></td> <td>20</td> <td>3.77</td> <td>10.95</td> <td>43</td> <td>40</td> <td>63.78</td> <td>20</td> <td>0.0506</td> <td>27</td> <td>0.945607</td> <td>0.0479</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |        | 20            | 3.77       | 10.95      | 43                | 40                 | 63.78             | 20  | 0.0506         | 27              | 0.945607           | 0.0479         |
| II         40         Mean:         3.74         10.86         43         40         67.82         30         0.0476           mg/L         40         Mean:         3.81         II.07         41.86         38.86 $38.86$ $30.0040$ mg/L         0         3.92         11.39         42         38 $56.94$ $0$ $0.0567$ mg/L         1         10         3.82         11.10         43 $40$ $67.72$ $10$ $0.0477$ mg/L         1         10         3.82         11.10 $43$ $40$ $67.72$ $10$ $0.0450$ mg/L         1         15         3.80         11.04 $42$ 39 $65.87$ $10$ $0.0447$ mg/L         3         3.81         11.07 $41$ 38 $67.31$ $20$ $0.0449$ mg/L         3         3.82         11.04 $41$ 38 $67.22$ $30$ $0.0449$ mg/L         4         41         38 $40$ $71.95$ $35$ $0.0449$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |        | 25            | 3.84       | 11.15      | 41                | 37                 | 67.93             | 25  | 0.0475         | 27              | 0.945607           | 0.0450         |
| II         40         Mean:         3.81         11.07         41.86         38.86         9         60.0567           mg/L         0         3.92         11.39         42         38         56.94         0         0.0567           mg/L         1         5         3.76         10.92         41         38         65.12         5         0.0550           mg/L         1         10         3.82         11.10         43         40         67.72         10         0.0477           mg/L         1         15         3.80         11.04         42         39         65.87         15         0.0490           mg/L         2         3.81         11.07         41         38         67.31         20         0.0447           mg/L         3         3.82         11.10         41         38         67.31         20         0.0449           mg/L         3         3.83         11.04         41         38         67.22         30         0.0449           mg/L         3         3.83         11.09         41.75         38.75         10.49         11.09           mg/L         3         3         11.04 </td <td></td> <td></td> <td></td> <td>30</td> <td>3.74</td> <td>10.86</td> <td>43</td> <td>40</td> <td>67.82</td> <td>30</td> <td>0.0476</td> <td>26</td> <td>0.972332</td> <td>0.0463</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                   |        | 30            | 3.74       | 10.86      | 43                | 40                 | 67.82             | 30  | 0.0476         | 26              | 0.972332           | 0.0463         |
| mg/L       0       3.92       11.39       42       38       56.94       0       0.0567         mg/L       5       3.76       10.92       41       38       56.94       0       0.0520         mg/L       10       3.82       11.10       43       40       67.72       10       0.0477         1       15       3.80       11.04       42       39       65.87       15       0.0480         2       3.81       11.07       41       38       67.31       20       0.0480         3       3       3.82       11.10       41       38       67.31       20       0.0480         4       4       38       67.31       20       0.0480       3.80       11.04       41       38       67.31       20       0.0440         8       3       3.83       11.04       41       38       72.22       30       0.0449         9       3       3.83       11.09       41.75       38.75       35       0.0449         9       9       3.80       11.04       42       38       57.99       0       0.0459         9       9       3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 11                | 40     | Mean:         | 3.81       | 11.07      | 41.86             | 38.86              |                   |     | V              | Aean Ste        | Mean Steady State: | 0.0456         |
| mg/L         0         3.92         11.39         42         38         56.94         0         0.0567           mg/L         5         3.76         10.92         41         38         65.12         5         0.0520           mg/L         10         3.82         11.10         43         40         67.72         10         0.0477           1         1         10         3.82         11.10         42         39         65.87         15         0.0440           2         3.81         11.04         41         38         67.31         20         0.0440           3         3.82         11.10         41         38         68.66         25         0.0440           4         4         38         67.31         20         0.0440           3         3.82         11.04         41         38         68.66         25         0.0440           4         4         4         38         4.2         40         71.95         35         0.0449           8         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                   |        |               |            |            | 40                | .36                |                   |     |                |                 |                    |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M-3      |                   |        | 0             | 3.92       | 11.39      | 42                | 38                 | 56.94             | 0   | 0.0567         | 25              | 1                  | 0.0567         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                   |        | 5             | 3.76       | 10.92      | 41                | 38                 | 62.12             | 5   | 0.0520         | 26              | 0.972332           | 0.0505         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300 mg/L |                   |        | 10            | 3.82       | 11.10      | 43                | 40                 | 67.72             | 10  | 0.0477         | 26              | 0.972332           | 0.0464         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                   |        | 15            | 3.80       | 11.04      | 42                | 39                 | 65.87             | 15  | 0.0490         | 25              | 1                  | 0.0490         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                   |        | 20            | 3.81       | 11.07      | 41                | 38                 | 67.31             | 20  | 0.0480         | 25              | 1                  | 0.0480         |
| 11         40         Mean:         3.83         11.04         41         38         72.22         30         0.0447           1         40         Mean:         3.82         11.09         41.75         38.75 $\Rightarrow$ 0.0449           0         0         3.82         11.04         41.75         38.75 $\Rightarrow$ 0.0449           1         0         3.80         11.04         42         38.75 $\Rightarrow$ 0.0557           2         3.75         10.89         41         39         67.87 $\Rightarrow$ 0.0476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                   |        | 25            | 3.82       | 11.10      | 41                | 39                 | 99.89             | 25  | 0.0470         | 26              | 0.972332           | 0.0457         |
| 11         40         Mean:         3.82         11.09         41.75         38.75         38.75         0.0449           0         3.82         11.09         41.75         38.75         0.0446           11         40         Mean:         3.82         11.09         41.75         38.75         0           11         0         3.80         11.04         42         38         57.99         0         0.0557           11         0         5         3.75         10.89         41         39         67.87         5         0.0476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                   |        | 30            | 3.80       | 11.04      | 41                | 38                 | 72.22             | 30  | 0.0447         | 25              | 1                  | 0.0447         |
| 11         40         Mean:         3.82         11.09         41.75         38.75         9         40.25         9         60.0557           8         0         3.80         11.04         42         38         57.99         0         0.0557           9         3.75         10.89         41         39         67.87         5         0.0476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                   |        | 35            | 3.83       |            | 43                | 40                 | 71.95             | 35  | 0.0449         | 26              | 0.972332           | 0.0436         |
| 40.25         40.25         40.25           0         3.80         11.04         42         38         57.99         0         0.0557           5         3.75         10.89         41         39         67.87         5         0.0476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 11                | 40     | Mean:         | 3.82       | 11.09      | 41.75             | 38.75              |                   |     | V              | Aean Ste        | Mean Steady State: | 0.0447         |
| 0     3.80     11.04     42     38     57.99     0     0.0557       5     3.75     10.89     41     39     67.87     5     0.0476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |        |               |            |            |                   | 1.25               |                   |     |                |                 |                    |                |
| 3.75   10.89   41   39   67.87   5   0.0476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M-4      |                   |        | 0             | 3.80       | 11.04      | 42                | 38                 | 57.99             | 0   | 0.0557         | 24              | 1.028649           | 0.0573         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                   |        | 5             | 3.75       | 10.89      | 41                | 39                 | 67.87             | 5   | 0.0476         | 24              | 1.028649           | 0.0489         |

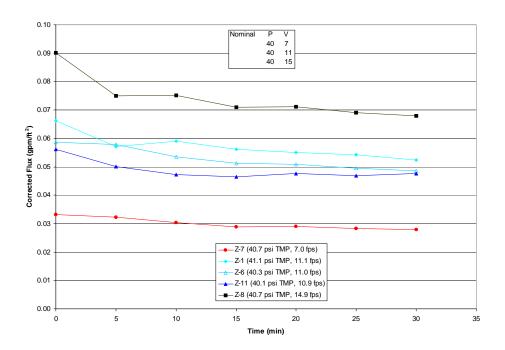
|           | Toract   | Torgot   |            |      |       |         |          | Time for | Dun  |        |          |                    | Corr   |
|-----------|----------|----------|------------|------|-------|---------|----------|----------|------|--------|----------|--------------------|--------|
| D         | Velocity | Pressure | Time (min) | Flow | Flow  | Inlet P | Outlet P | Permeate | Time | Flux   | Temp     | Temp.              | Flux   |
| 500 mg/L  | (solt)   | (red)    | 10         | 3.80 | 11.04 | 42      | 38       | 71.06    | 10   | 0.0454 | 2 2      | 1.028649           | 0.0467 |
|           |          |          | 15         | 3.75 | 10.89 | 41      | 41       | 70.53    | 15   | 0.0458 | 25       | 1                  | 0.0458 |
|           |          |          | 20         | 3.86 | 11.21 | 44      | 39       | 69.16    | 20   | 0.0467 | 25       | 1                  | 0.0467 |
|           |          |          | 25         | 3.85 | 11.18 | 42      | 40       | 74.66    | 25   | 0.0433 | 24       | 1.028649           | 0.0445 |
|           |          |          | 30         | 3.86 | 11.21 | 43      | 39       | 74.02    | 30   | 0.0436 | 24       | 1.028649           | 0.0449 |
|           | 11       | 40       | Mean:      | 3.81 | 11.07 | 42.14   | 39.14    |          |      | V      | Mean Ste | Mean Steady State: | 0.0447 |
|           |          |          |            |      |       | 40      | 40.64    |          |      |        |          |                    |        |
| M-5       |          |          | 0          | 3.78 | 10.98 | 42      | 36       | 62.88    | 0    | 0.0514 | 23       | 1.058322           | 0.0544 |
|           |          |          | 5          | 3.83 | 11.13 | 43      | 40       | 68.93    | 5    | 0.0468 | 23       | 1.058322           | 0.0496 |
| 1000 mg/L |          |          | 10         | 3.86 | 11.21 | 41      | 38       | 74.73    | 10   | 0.0432 | 23       | 1.058322           | 0.0457 |
|           |          |          | 15         | 3.84 | 11.15 | 41      | 38       | 99.62    | 15   | 0.0405 | 23       | 1.058322           | 0.0429 |
|           |          |          | 20         | 3.85 | 11.18 | 41      | 38       | 77.02    | 20   | 0.0419 | 24       | 1.028649           | 0.0431 |
|           |          |          | 25         | 3.88 | 11.27 | 42      | 39       | 76.78    | 25   | 0.0421 | 25       | 1                  | 0.0421 |
|           |          |          | 30         | 3.89 | 11.30 | 42      | 39       | 74.05    | 30   | 0.0436 | 25       | 1                  | 0.0436 |
|           | 11       | 40       | Mean:      | 3.85 | 11.18 | 41.71   | 38.71    |          |      | V      | Mean Ste | Mean Steady State: | 0.0429 |
|           |          |          |            |      |       | 40      | 40.21    |          |      |        |          |                    |        |
| M-5b      |          |          | 0          | 3.87 | 11.24 | 41      | 38       | 63.43    | 0    | 0.0509 | 21       | 1.120909           | 0.0571 |
|           |          |          | 5          | 3.84 | 11.15 | 41      | 38       | 68.82    | 2    | 0.0469 | 22       | 1.08906            | 0.0511 |
| 1000 mg/L |          |          | 10         | 3.77 | 10.95 | 41      | 38       | 71.64    | 10   | 0.0451 | 23       | 1.058322           | 0.0477 |
|           |          |          | 15         | 3.87 | 11.24 | 43      | 40       | 71.89    | 15   | 0.0449 | 23       | 1.058322           | 0.0475 |
|           |          |          | 20         | 3.75 | 10.89 | 41      | 38       | 73.25    | 20   | 0.0441 | 24       | 1.028649           | 0.0453 |
|           |          |          | 25         | 3.87 | 11.24 | 43      | 40       | 82.69    | 25   | 0.0463 | 25       | 1                  | 0.0463 |
|           |          |          | 08         | 3.79 | 11.01 | 42      | 36       | 71.58    | 30   | 0.0451 | 25       | 1                  | 0.0451 |
|           |          |          | 32         | 3.72 | 10.81 | 40      | 37       | 74.31    | 35   | 0.0435 | 26       | 0.972332           | 0.0423 |
|           | 11       | 40       | Mean:      | 3.81 | 11.07 | 41.50   | 38.50    |          |      | V      | Mean Ste | Mean Steady State: | 0.0461 |
|           |          |          |            |      |       | 40      | 40.00    |          |      |        |          |                    |        |
| 9-W       |          |          | 0          | 3.68 | 10.69 | 41      | 38       | 61.96    | 0    | 0.0521 | 25       | 1                  | 0.0521 |
|           |          |          | 5          | 3.86 | 11.21 | 42      | 36       | 64.69    | 5    | 0.0499 | 24       | 1.028649           | 0.0514 |
| 1500 mg/L |          |          | 10         | 3.82 | 11.10 | 42      | 39       | 69.94    | 10   | 0.0462 | 24       | 1.028649           | 0.0475 |
|           |          |          | 51         | 3.81 | 11.07 | 42      | 39       | 71.05    | 15   | 0.0455 | 25       | 1                  | 0.0455 |
|           |          |          | 20         | 3.81 | 11.07 | 42      | 39       | 70.04    | 20   | 0.0461 | 25       | 1                  | 0.0461 |
|           |          |          | 25         | 3.83 | 11.13 | 42      | 39       | 70.36    | 25   | 0.0459 | 26       | 0.972332           | 0.0446 |
|           |          |          | 30         | 3.83 | 11.13 | 42      | 39       | 72.29    | 30   | 0.0447 | 25       | П                  | 0.0447 |

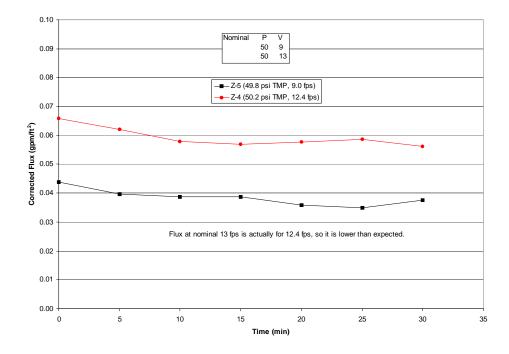

|           | Target         | Target |               |            |            |                   |          | Time for<br>40 ml of | Run           |                   | _ <del>_</del> |                    | Corr.          |
|-----------|----------------|--------|---------------|------------|------------|-------------------|----------|----------------------|---------------|-------------------|----------------|--------------------|----------------|
| Run       | Velocity (fps) | _      | Time<br>(min) | Flow (gpm) | Flow (fps) | Inlet P<br>(psig) | Outlet P | Permeate (sec)       | Time<br>(min) | Flux<br>(gpm/ft²) | Temp           | Temp.<br>Comp.     | Flux (gpm/ft²) |
|           | 11             | 40     | Mean:         | 3.81       | 11.06      | 41.86             | 38.86    |                      |               |                   | Mean Ste       | Mean Steady State: | 0.0446         |
|           |                |        |               |            |            | 40                | 40.36    |                      |               |                   |                |                    |                |
| M-7       |                |        | 0             | 3.80       | 11.04      | 42                | 39       | 61.05                | 0             | 0.0529            | 24             | 1.028649           | 0.0544         |
|           |                |        | 5             | 3.67       | 10.66      | 41                | 38       | 68.47                | 5             | 0.0472            | 25             | 1                  | 0.0472         |
| 2000 mg/L |                |        | 10            | 3.82       | 11.10      | 43                | 40       | 70.10                | 10            | 0.0461            | 25             | 1                  | 0.0461         |
|           |                |        | 15            | 3.81       | 11.07      | 43                | 40       | 69.93                | 15            | 0.0462            | 25             | 1                  | 0.0462         |
|           |                |        | 20            | 3.79       | 11.01      | 42                | 39       | 71.79                | 20            | 0.0450            | 25             | Ţ                  | 0.0450         |
|           |                |        | 25            | 3.81       | 11.07      | 42                | 39       | 74.02                | 25            | 0.0436            | 25             | 1                  | 0.0436         |
|           |                |        | 30            | 3.81       | 11.07      | 43                | 40       | 74.13                | 30            | 0.0436            | 25             | 1                  | 0.0436         |
|           | 11             | 40     | Mean:         | 3.79       | 11.00      | 42.29             | 39.29    |                      |               | N .               | Mean Ste       | Mean Steady State: | 0.0436         |
|           |                |        |               |            |            | 40                | 40.79    |                      |               |                   |                |                    |                |
| M-8       |                |        | 0             | 3.88       | 11.27      | 42                | 39       | 62.91                | 0             | 0.0513            | 25             | 1                  | 0.0513         |
|           |                |        | 5             | 3.91       | 11.36      | 41                | 38       | 67.1                 | 5             | 0.0481            | 25             | 1                  | 0.0481         |
| 2500 mg/L |                |        | 10            | 3.85       | 11.18      | 42                | 39       | 66.81                | 10            | 0.0483            | 25             | 1                  | 0.0483         |
|           |                |        | 15            | 3.88       | 11.27      | 43                | 10       | 81.78                | 15            | 0.0476            | 25             | 1                  | 0.0476         |
|           |                |        | 20            | 3.76       | 10.92      | 41                | 38       | 74.54                | 20            | 0.0433            | 25             | 1                  | 0.0433         |
|           |                |        | 25            | 3.86       | 11.21      | 42                | 39       | 70.84                | 25            | 0.0456            | 25             | 1                  | 0.0456         |
|           |                |        | 30            | 3.88       | 11.27      | 43                | 40       | 95.07                | 30            | 0.0458            | 25             | 1                  | 0.0458         |
|           | 11             | 40     | Mean:         | 3.86       | 11.21      | 42.00             | 34.71    |                      |               | N                 | Mean Ste       | Mean Steady State: | 0.0449         |
|           |                |        |               |            |            | 38                | 38.36    |                      |               |                   |                |                    |                |
| 6-W       |                |        | 0             | 3.87       | 11.24      | 42                | 39       | 51.02                | 0             | 0.0633            | 27             | 0.945607           | 0.0599         |
|           |                |        | 5             | 3.97       | 11.53      | 42                | 39       | 55.01                | 2             | 0.0587            | 26             | 0.972332           | 0.0571         |
| 3000 mg/L |                |        | 10            | 3.81       | 11.07      | 42                | 39       | 92.79                | 10            | 0.0478            | 26             | 0.972332           | 0.0465         |
|           |                |        | 15            | 3.78       | 10.98      | 41                | 38       | 69.44                | 15            | 0.0465            | 26             | 0.972332           | 0.0452         |
|           |                |        | 20            | 3.79       | 11.01      | 42                | 39       | 99.07                | 20            | 0.0457            | 26             | 0.972332           | 0.0444         |
|           |                |        | 25            | 3.85       | 11.18      | 43                | 40       | 58.89                | 25            | 0.0469            | 27             | 0.945607           | 0.0444         |
|           |                |        | 30            | 3.82       | 11.10      | 43                | 40       | 20.07                | 30            | 0.0457            | 27             | 0.945607           | 0.0432         |
|           | 11             | 40     | Mean:         | 3.84       | 11.16      | 42.14             | 39.14    |                      |               | N                 | Mean Ste       | Mean Steady State: | 0.0440         |
|           |                |        |               |            |            | 40                | 40.64    |                      |               |                   |                |                    |                |
| M-10      |                |        | 0             | 3.85       | 11.18      | 42                | 39       | 64.09                | 0             | 0.0504            | 25             | 1                  | 0.0504         |
|           |                |        | 5             | 3.77       | 10.95      | 42                | 39       | 10.91                | 2             | 0.0455            | 24             | 1.028649           | 0.0468         |
| 4000 mg/L |                |        | 10            | 3.77       | 10.95      | 43                | 40       | 74.32                | 10            | 0.0435            | 23             | 1.058322           | 0.0460         |
|           |                |        | 15            | 3.99       | 11.59      | 44                | 40       | 75.91                | 15            | 0.0425            | 23             | 1.058322           | 0.0450         |

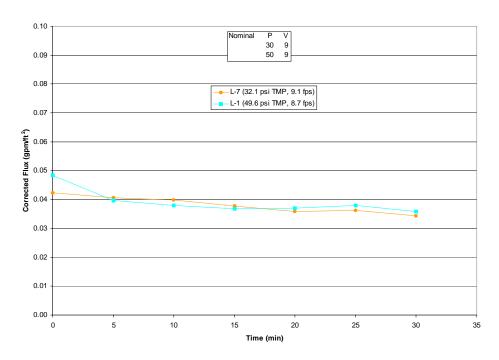

|           | Target            |                   | i             |               |               |                   |                    | Time for<br>40 ml of | Run           |                   | ŀ            | 1                  | Corr.             |
|-----------|-------------------|-------------------|---------------|---------------|---------------|-------------------|--------------------|----------------------|---------------|-------------------|--------------|--------------------|-------------------|
| Run       | Velocity<br>(fps) | Pressure<br>(psi) | Time<br>(min) | Flow<br>(gpm) | Flow<br>(fps) | Inlet P<br>(psig) | Outlet P<br>(psig) | Permeate (sec)       | Time<br>(min) | Flux $(gpm/ft^2)$ | Temp<br>(°C) | Temp.<br>Comp.     | Flux $(gpm/ft^2)$ |
|           |                   |                   | 20            | 3.65          | 10.60         | 41                | 38                 | 77.34                | 20            | 0.0418            | 24           | 1.028649           | 0.0430            |
|           |                   |                   | 25            | 3.82          | 11.10         | 42                | 39                 | 77.22                | 25            | 0.0418            | 24           | 1.028649           | 0.0430            |
|           |                   |                   | 30            | 3.75          | 10.89         | 42                | 39                 | 77.06                | 30            | 0.0419            | 24           | 1.028649           | 0.0431            |
|           | 11                | 40                | Mean:         | 3.80          | 11.04         | 42.29             | 39.14              |                      |               | N                 | Iean Ste     | Mean Steady State: | 0.0430            |
|           |                   |                   |               |               |               | 40                | 40.71              |                      |               |                   |              |                    |                   |
| M-11      |                   |                   | 0             | 3.86          | 11.21         | 43                | 40                 | 64.97                | 0             | 0.0497            | 23           | 1.058322           | 0.0526            |
|           |                   |                   | 5             | 3.86          | 11.21         | 43                | 40                 | 60.89                | 5             | 0.0474            | 23           | 1.058322           | 0.0502            |
| 5000 mg/L |                   |                   | 10            | 3.79          | 11.01         | 41                | 38                 | 72.63                | 10            | 0.0445            | 23           | 1.058322           | 0.0471            |
|           |                   |                   | 15            | 3.76          | 10.92         | 42                | 39                 | 72.36                | 15            | 0.0446            | 24           | 1.028649           | 0.0459            |
|           |                   |                   | 20            | 3.73          | 10.84         | 40                | 37                 | 75.74                | 20            | 0.0426            | 25           | 1                  | 0.0426            |
|           |                   |                   | 25            | 3.76          | 10.92         | 42                | 39                 | 76.07                | 25            | 0.0425            | 25           | T                  | 0.0425            |
|           |                   |                   | 30            | 3.82          | 11.10         | 43                | 40                 | 76.81                | 30            | 0.0420            | 24           | 1.028649           | 0.0432            |
|           | 11                | 40                | Mean:         | 3.80          | 11.03         | 42.00             | 39.00              |                      |               | N                 | Iean Ste     | Mean Steady State: | 0.0428            |
|           |                   |                   |               |               |               | 40                | 40.50              |                      |               |                   |              |                    |                   |
| H-1       |                   |                   | 0             | 3.85          | 11.18         | 42                | 39                 | 59.76                | 0             | 0.0540            | 24           | 1.028649           | 0.0556            |
|           |                   |                   | 5             | 3.78          | 10.98         | 41                | 38                 | 66.15                | 5             | 0.0488            | 25           | 1                  | 0.0488            |
|           |                   |                   | 10            | 3.98          | 11.56         | 42                | 38                 | 69.16                | 10            | 0.0467            | 24           | 1.028649           | 0.0480            |
|           |                   |                   | 15            | 3.83          | 11.13         | 43                | 40                 | 67.54                | 15            | 0.0478            | 23           | 1.058322           | 0.0506            |
|           |                   |                   | 20            | 3.98          | 11.56         | 42                | 36                 | 74.84                | 20            | 0.0432            | 24           | 1.028649           | 0.0444            |
|           |                   |                   | 25            | 3.96          | 11.50         | 42                | 36                 | 75.24                | 25            | 0.0429            | 24           | 1.028649           | 0.0442            |
|           |                   |                   | 30            | 3.92          | 11.39         | 42                | 39                 | 74.52                | 30            | 0.0433            | 25           | 1                  | 0.0433            |
|           | 11                | 40                | Mean:         | 3.90          | 11.33         | 42.00             | 38.86              |                      |               | V                 | Iean Ste     | Mean Steady State: | 0.0437            |
|           |                   |                   |               |               |               | 40                | 40.43              |                      |               |                   |              |                    |                   |
| H-2       |                   |                   | 0             | 2.38          | 6.91          | 43                | 41                 | 104.33               | 0             | 0.0310            | 25           | 1                  | 0.0310            |
|           |                   |                   | 5             | 2.55          | 7.41          | 43                | 40                 | 115.35               | 5             | 0.0280            | 24           | 1.028649           | 0.0288            |
|           |                   |                   | 10            | 2.47          | 7.18          | 41                | 38                 | 121.33               | 10            | 0.0266            | 24           | 1.028649           | 0.0274            |
|           |                   |                   | 15            | 2.47          | 7.18          | 42                | 39                 | 125.12               | 15            | 0.0258            | 24           | 1.028649           | 0.0265            |
|           |                   |                   | 20            | 2.40          | 6.97          | 44                | 41                 | 121.79               | 20            | 0.0265            | 24           | 1.028649           | 0.0273            |
|           |                   |                   | 25            | 2.34          | 08.9          | 43                | 40                 | 125.42               | 25            | 0.0257            | 25           | 1                  | 0.0257            |
|           |                   |                   | 30            | 2.35          | 6.83          | 43                | 40                 | 125.65               | 30            | 0.0257            | 25           | 1                  | 0.0257            |
|           | 7                 | 40                | Mean:         | 2.42          | 7.04          | 42.71             | 39.86              |                      |               | N                 | Iean Ste     | Mean Steady State: | 0.0263            |
|           |                   |                   |               |               |               |                   | 41.29              |                      |               |                   |              |                    |                   |
| H-3       |                   |                   | 0             | 4.43          | 12.87         | 32                | 29                 | 47.18                | 0             | 0.0684            | 25           | 1                  | 0.0684            |

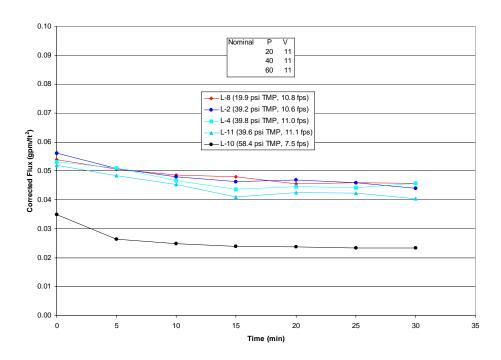

|     | Toract            | Target |            |            |               |                   |          | Time for       | Pun           |                |          |                    | Corre          |
|-----|-------------------|--------|------------|------------|---------------|-------------------|----------|----------------|---------------|----------------|----------|--------------------|----------------|
| Run | Velocity<br>(fps) | _      | Time (min) | Flow (gpm) | Flow<br>(fps) | Inlet P<br>(psig) | Outlet P | Permeate (sec) | Time<br>(min) | Flux (gpm/ft²) | Temp     | Temp.<br>Comp.     | Flux (gpm/ft²) |
|     |                   | ,      | 5          | 4.51       | 13.10         | 31                | 27       | 56.97          | 5             | 0.0567         | 25       | 1                  | 0.0567         |
|     |                   |        | 10         | 4.53       | 13.16         | 32                | 28       | 57.1           | 10            | 0.0566         | 25       | 1                  | 0.0566         |
|     |                   |        | 15         | 4.51       | 13.10         | 32                | 28       | 57.91          | 15            | 0.0558         | 25       | 1                  | 0.0558         |
|     |                   |        | 20         | 4.50       | 13.07         | 32                | 28       | 58.53          | 20            | 0.0552         | 25       | 1                  | 0.0552         |
|     |                   |        | 25         | 4.52       | 13.13         | 31                | 28       | 58.49          | 25            | 0.0552         | 26       | 0.972332           | 0.0537         |
|     |                   |        | 30         | 4.50       | 13.07         | 32                | 28       | 59.33          | 30            | 0.0544         | 25       | 1                  | 0.0544         |
|     | 13                | 30     | Mean:      | 4.50       | 13.07         | 31.71             | 28.00    |                |               | V              | Jean Ste | Mean Steady State: | 0.0548         |
|     |                   |        |            | _          |               | 29                | 29.86    |                |               |                |          |                    |                |
| H-4 |                   |        | 0          | 3.84       | 11.15         | 23                | 19       | 64.97          | 0             | 0.0497         | 23       | 1.058322           | 0.0526         |
|     |                   |        | 5          | 3.85       | 11.18         | 23                | 19       | 66.02          | 5             | 0.0489         | 23       | 1.058322           | 0.0518         |
|     |                   |        | 10         | 3.80       | 11.04         | 23                | 19       | 69.49          | 10            | 0.0465         | 23       | 1.058322           | 0.0492         |
|     |                   |        | 15         | 3.78       | 10.98         | 23                | 20       | 70.44          | 15            | 0.0458         | 23       | 1.058322           | 0.0485         |
|     |                   |        | 20         | 3.76       | 10.92         | 23                | 19       | 73.1           | 20            | 0.0442         | 23       | 1.058322           | 0.0468         |
|     |                   |        | 25         | 3.83       | 11.13         | 22                | 19       | 75.75          | 25            | 0.0426         | 23       | 1.058322           | 0.0451         |
|     |                   |        | 30         | 3.80       | 11.04         | 22                | 19       | 76.94          | 30            | 0.0420         | 23       | 1.058322           | 0.0444         |
|     | 11                | 20     | Mean:      | 3.81       | 11.06         | 22.71             | 19.14    |                |               | V              | Aean Ste | Mean Steady State: | 0.0454         |
|     |                   |        |            | _          |               | 20                | 20.93    |                |               |                |          |                    |                |
| H-5 |                   |        | 0          | 3.72       | 10.81         | 41                | 38       | 64.37          | 0             | 0.0502         | 23       | 1.058322           | 0.0531         |
|     |                   |        | 5          | 3.82       | 11.10         | 42                | 39       | 68.3           | 5             | 0.0473         | 23       | 1.058322           | 0.0500         |
|     |                   |        | 10         | 3.84       | 11.15         | 41                | 38       | 72.55          | 10            | 0.0445         | 24       | 1.028649           | 0.0458         |
|     |                   |        | 15         | 3.88       | 11.27         | 42                | 39       | 72.2           | 15            | 0.0447         | 24       | 1.028649           | 0.0460         |
|     |                   |        | 20         | 3.86       | 11.21         | 42                | 39       | 72.64          | 20            | 0.0445         | 25       | 1                  | 0.0445         |
|     |                   |        | 25         | 3.84       | 11.15         | 42                | 39       | 73.98          | 25            | 0.0437         | 25       | 1                  | 0.0437         |
|     |                   |        | 30         | 3.81       | 11.07         | 41                | 38       | 74.8           | 30            | 0.0432         | 25       | 1                  | 0.0432         |
|     | 11                | 40     | Mean:      | 3.82       | 11.11         | 41.57             | 38.57    |                |               | V              | Jean Ste | Mean Steady State: | 0.0443         |
|     |                   |        |            |            |               | 40                | 40.07    |                |               |                |          |                    |                |
| 9-H |                   |        | 0          | 5.19       | 15.08         | 42                | 39       | 41.75          | 0             | 0.0773         | 25       | 1                  | 0.0773         |
|     |                   |        | 5          | 5.25       | 15.25         | 43                | 39       | 44.15          | 5             | 0.0731         | 25       | 1                  | 0.0731         |
|     |                   |        | 10         | 5.27       | 15.31         | 44                | 39       | 45.89          | 10            | 0.0704         | 26       | 0.972332           | 0.0684         |
|     |                   |        | 15         | 5.29       | 15.37         | 44                | 39       | 46.73          | 15            | 0.0691         | 26       | 0.972332           | 0.0672         |
|     |                   |        | 20         | 5.25       | 15.25         | 44                | 39       | 48.28          | 20            | 0.0669         | 25       | 1                  | 0.0669         |
|     |                   |        | 25         | 5.29       | 15.37         | 44                | 39       | 48.04          | 25            | 0.0672         | 26       | 0.972332           | 0.0654         |
|     |                   |        | 30         | 5.26       | 15.28         | 44                | 39       | 49.24          | 30            | 0.0656         | 26       | 0.972332           | 0.0638         |


|      | Target         | Target |               |               |            |                   |                    | Time for 40 ml of | Run           |                |          |                    | Corr.          |
|------|----------------|--------|---------------|---------------|------------|-------------------|--------------------|-------------------|---------------|----------------|----------|--------------------|----------------|
| Run  | Velocity (fps) |        | Time<br>(min) | Flow<br>(gpm) | Flow (fps) | Inlet P<br>(psig) | Outlet P<br>(psig) | Permeate (sec)    | Time<br>(min) | Flux (gpm/ft²) | Temp     | Temp.<br>Comp.     | Flux (gpm/ft²) |
|      | 15             | 40     | Mean:         | 5.26          | 15.27      | 43.57             | 39.00              |                   |               |                | Mean Ste | Mean Steady State: | 0.0658         |
|      |                |        |               |               |            | 41                | 41.29              |                   |               |                |          |                    |                |
| H-7  |                |        | 0             | 3.06          | 8.89       | 51                | 49                 | 73.84             | 0             | 0.0437         | 25       | 1                  | 0.0437         |
|      |                |        | 5             | 3.09          | 86.8       | 50                | 48                 | 8.98              | 5             | 0.0372         | 25       |                    | 0.0372         |
|      |                |        | 10            | 3.09          | 86.8       | 51                | 49                 | 89.65             | 10            | 0.0360         | 25       | 1                  | 0.0360         |
|      |                |        | 15            | 3.07          | 8.92       | 52                | 49                 | 90.51             | 15            | 0.0357         | 26       | 0.972332           | 0.0347         |
|      |                |        | 20            | 3.08          | 8.95       | 52                | 50                 | 92.66             | 20            | 0.0349         | 26       | 0.972332           | 0.0339         |
|      |                |        | 25            | 3.05          | 8.86       | 52                | 50                 | 94.24             | 25            | 0.0343         | 26       | 0.972332           | 0.0333         |
|      |                |        | 30            | 3.12          | 90.6       | 52                | 50                 | 100.17            | 30            | 0.0322         | 25       | Ţ                  | 0.0322         |
|      |                |        | 35            | 3.16          | 9.18       | 51                | 49                 | 100.59            | 35            | 0.0321         | 25       | 1                  | 0.0321         |
|      | 6              | 50     | Mean:         | 3.09          | 8.98       | 51.38             | 49.25              |                   |               | N .            | Mean Ste | Mean Steady State: | 0.0328         |
|      |                |        |               |               |            | 20                | 50.31              |                   |               |                |          |                    |                |
| 8-H  |                |        | 0             | 3.13          | 60.6       | 33                | 30                 | 83.11             | 0             | 0.0389         | 23       | 1.058322           | 0.0411         |
|      |                |        | 5             | 3.14          | 9.12       | 33                | 30                 | 85.32             | 5             | 0.0378         | 24       | 1.028649           | 0.0389         |
|      |                |        | 10            | 3.16          | 9.18       | 32                | 29                 | 88.27             | 10            | 0.0366         | 24       | 1.028649           | 0.0376         |
|      |                |        | 15            | 3.14          | 9.12       | 32                | 59                 | 20.06             | 15            | 0.0359         | 24       | 1.028649           | 0.0369         |
|      |                |        | 20            | 3.13          | 60.6       | 33                | 30                 | 94.79             | 20            | 0.0341         | 24       | 1.028649           | 0.0350         |
|      |                |        | 25            | 3.13          | 60'6       | 33                | 30                 | 96.94             | 25            | 0.0333         | 24       | 1.028649           | 0.0343         |
|      |                |        | 30            | 3.12          | 90.6       | 32                | 56                 | 66'16             | 30            | 0.0330         | 24       | 1.028649           | 0.0339         |
|      | 6              | 30     | Mean:         | 3.14          | 9.11       | 32.57             | 29.57              |                   |               | V .            | Mean Ste | Mean Steady State: | 0.0350         |
|      |                |        |               |               |            | 31                | 31.07              |                   |               |                |          |                    |                |
| 6-H  |                |        | 0             | 4.36          | 12.67      | 50                | 46                 | 56.78             | 0             | 0.0569         | 24       | 1.028649           | 0.0585         |
|      |                |        | 5             | 4.37          | 12.69      | 51                | 47                 | 96.85             | 5             | 0.0548         | 25       | 1                  | 0.0548         |
|      |                |        | 10            | 4.44          | 12.90      | 51                | 47                 | 62.12             | 10            | 0.0520         | 24       | 1.028649           | 0.0535         |
|      |                |        | 15            | 4.39          | 12.75      | 52                | 48                 | 56.09             | 15            | 0.0530         | 25       | 1                  | 0.0530         |
|      |                |        | 20            | 4.38          | 12.72      | 52                | 48                 | 42.09             | 20            | 0.0532         | 25       | 1                  | 0.0532         |
|      |                |        | 25            | 4.43          | 12.87      | 52                | 48                 | 60.02             | 25            | 0.0538         | 25       | 1                  | 0.0538         |
|      |                |        | 30            | 4.42          | 12.84      | 51                | 49                 | 28.28             | 30            | 0.0554         | 26       | 0.972332           | 0.0539         |
|      |                |        | 35            | 4.41          | 12.81      | 52                | 48                 | 19.65             | 35            | 0.0541         | 26       | 0.972332           | 0.0526         |
|      | 13             | 20     | Mean:         | 4.40          | 12.78      | 51.38             | 47.63              |                   |               | V .            | Mean Ste | Mean Steady State: | 0.0536         |
|      |                |        |               |               |            | 49                | 49.50              |                   |               |                |          |                    |                |
| H-10 |                |        | 0             | 3.24          | 9.41       | 9                 | 57                 | 75.61             | 0             | 0.0427         | 25       | 1                  | 0.0427         |
|      |                |        | 5             | 3.15          | 9.15       | 58                | 26                 | 83.39             | 5             | 0.0387         | 25       | 1                  | 0.0387         |

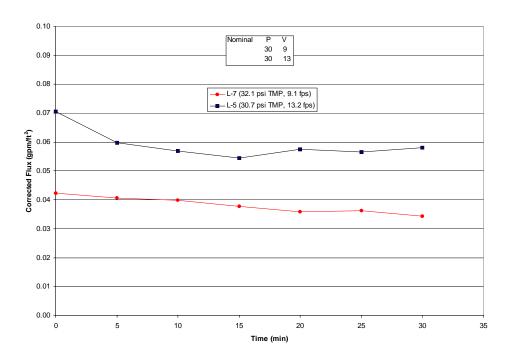

|      | Target   | Target            |       |       |       |         |                  | Time for 40 ml of | Run   |              |          |                    | Corr.        |
|------|----------|-------------------|-------|-------|-------|---------|------------------|-------------------|-------|--------------|----------|--------------------|--------------|
|      | Velocity | Velocity Pressure | Time  | Flow  | Flow  | Inlet P | Inlet P Outlet P | Permeate          | Time  | Flux         | Temp     | Temp.              | Flux         |
| Run  | (fps)    | (psi)             | (min) | (gpm) | (fps) | (psig)  | (psig)           | (sec)             | (min) | $(gpm/ft^2)$ | (°C)     | Comp.              | $(gpm/ft^2)$ |
|      |          |                   | 10    | 3.36  | 9.76  | 65      | 27               | 88.7              | 10    | 0.0364       | 25       | 1                  | 0.0364       |
|      |          |                   | 15    | 3.51  | 10.20 | 65      | 99               | 92.17             | 15    | 0.0350       | 25       | Ţ                  | 0.0350       |
|      |          |                   | 20    | 3.49  | 10.14 | 58      | 99               | 93.38             | 20    | 0.0346       | 26       | 0.972332           | 0.0336       |
|      |          |                   | 25    | 3.51  | 10.20 | 65      | 57               | 94.15             | 25    | 0.0343       | 25       |                    | 0.0343       |
|      |          |                   | 30    | 3.47  | 10.08 | 58      | 99               | 96.53             | 30    | 0.0335       | 26       | 0.972332           | 0.0325       |
|      | 11       | 09                | Mean: | 3.39  | 6.85  | 58.71   | 56.43            |                   |       | N            | Iean Ste | Mean Steady State: | 0.0335       |
|      |          |                   |       |       |       | 57      | 57.57            |                   |       |              |          |                    |              |
| H-11 |          |                   | 0     | 3.79  | 11.01 | 41      | 38               | 61.65             | 0     | 0.0524       | 26       | 0.972332           | 0.0509       |
|      |          |                   | 5     | 3.82  | 11.10 | 42      | 38               | 68.99             | 5     | 0.0483       | 26       | 0.972332           | 0.0469       |
|      |          |                   | 10    | 3.82  | 11.10 | 42      | 39               | 70.53             | 10    | 0.0458       | 25       | 1                  | 0.0458       |
|      |          |                   | 15    | 3.80  | 11.04 | 42      | 39               | 71.66             | 15    | 0.0451       | 25       | Ţ                  | 0.0451       |
|      |          |                   | 20    | 3.81  | 11.07 | 42      | 39               | 73.27             | 20    | 0.0441       | 25       | 1                  | 0.0441       |
|      |          |                   | 25    | 3.77  | 10.95 | 42      | 39               | 73.47             | 25    | 0.0440       | 25       | 1                  | 0.0440       |
|      |          |                   | 30    | 3.81  | 11.07 | 42      | 39               | 75.5              | 30    | 0.0428       | 25       | 1                  | 0.0428       |
|      | 11       | 40                | Mean: | 3.80  | 11.05 | 41.86   | 38.71            |                   |       | N            | Iean Ste | Mean Steady State: | 0.0436       |
|      |          |                   |       |       |       | 40      | 40.29            |                   |       |              |          |                    |              |

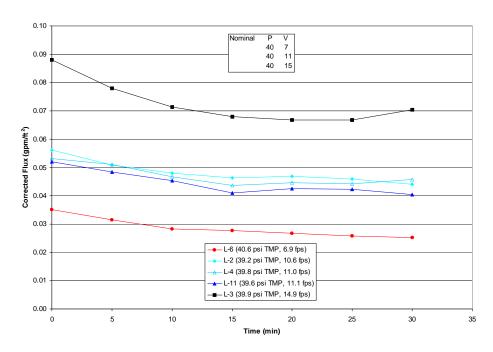


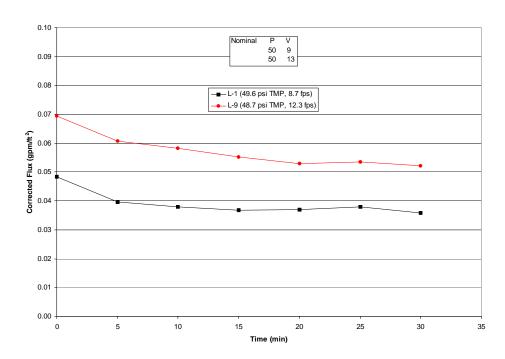



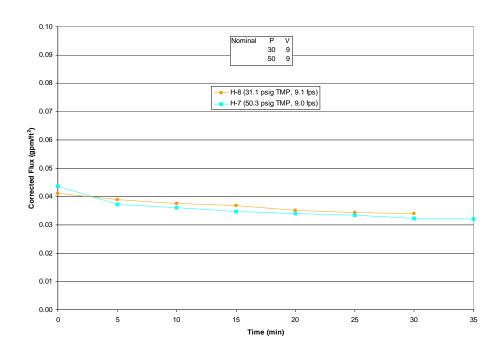



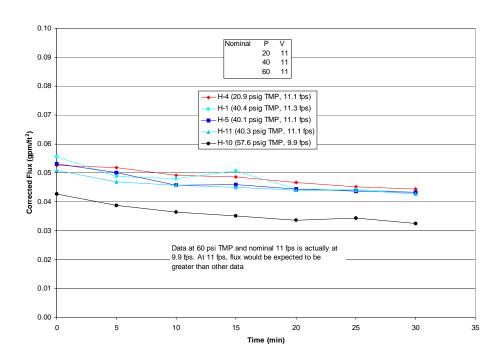


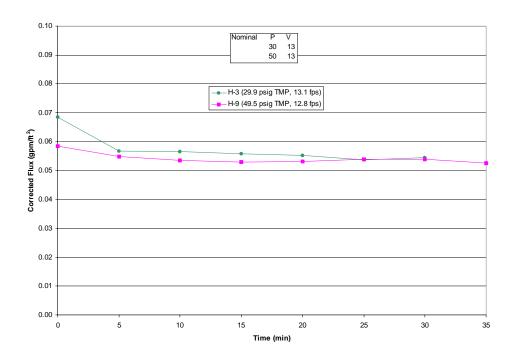



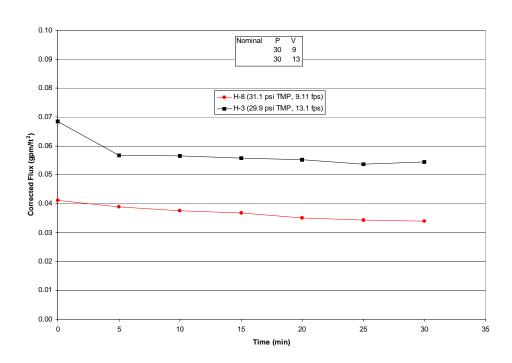



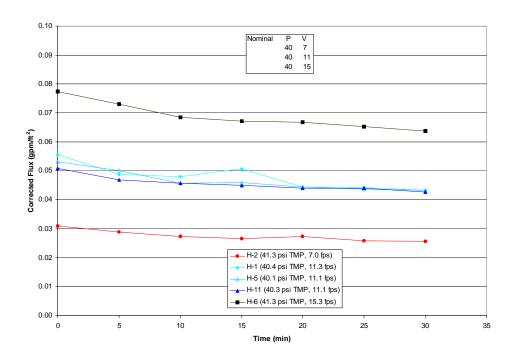



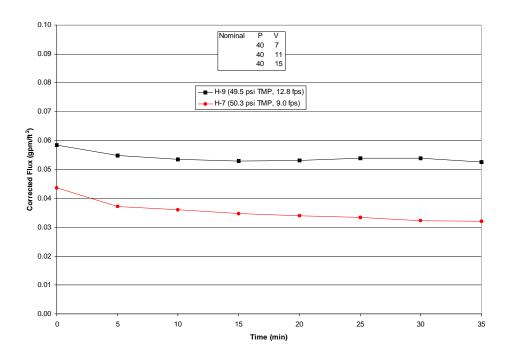



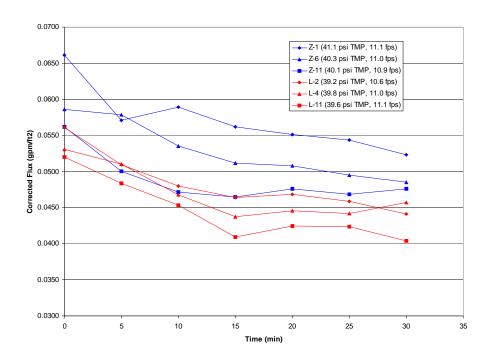



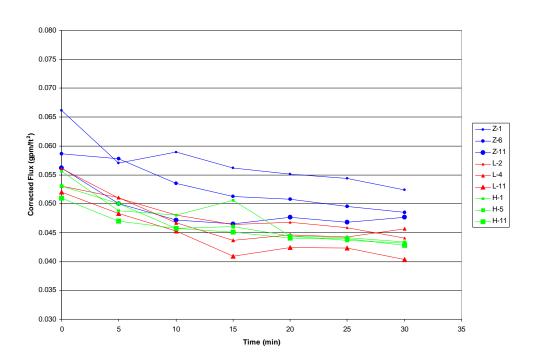



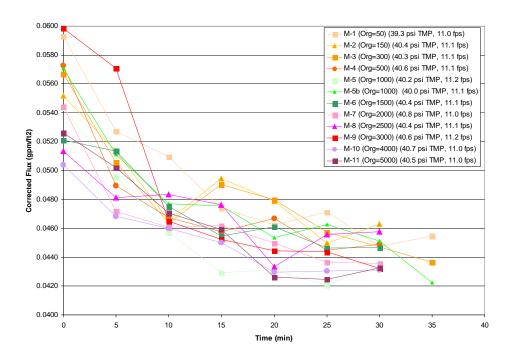














# 5.5 Appendix – Curve Fits from JMP

Fit of Flux =  $aV^{v}P^{p}Q^{q}S^{s}(1-bt_{adj})$ 

 $Flux = gpm/ft^2$ 

V = velocity (fps)

P = transmembrane pressure (psi)

Q = total organics (TBP+NPH) (mg/L)

 $t_{adj}$  = cumulative run time (adjusted after t=13.5) (hr)

S = solids concentration (wt%)

a, b, p, q, s are parameters

#### **Nonlinear Fit**

#### Converged in the Gradient

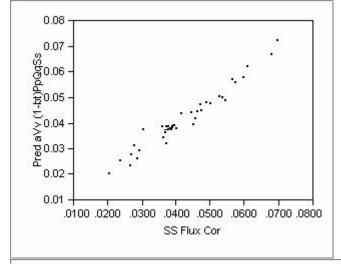
| Criterion  | Current      | Stop Limit |
|------------|--------------|------------|
| Iteration  | 59           | 60         |
| Shortening | 0            | 15         |
| Obj Change | 8.212934e-13 | 0.0000001  |
| Prm Change | 0.0000079245 | 0.0000001  |
| Gradient   | 1.988623e-16 | 0.000001   |

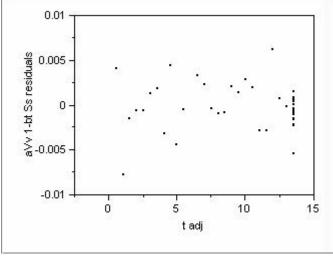
| Parameter | Current Value |
|-----------|---------------|
| a         | 0.005626668   |
| v         | 1.3465218598  |
| b         | 0.0033701345  |
| q         | -0.010193617  |
| p         | -0.071298492  |
| S         | -0.736696127  |

SSE 0.0002544523

N 45

Alpha 0.050


Convergence Criterion 0.00001


Goal SSE for CL 0.0002811028

| SSE          | DFE | MSE       | RMSE      |
|--------------|-----|-----------|-----------|
| 0.0002544523 | 39  | 0.0000065 | 0.0025543 |

|           |          |                | Lower      | Upper      |
|-----------|----------|----------------|------------|------------|
|           |          | Approx.        | Confidence | Confidence |
| Parameter | Estimate | Standard Error | Limit      | Limit      |
| a         | 0.005627 | 0.002171       | 0.002543   | 0.002543   |
| v         | 1.3465   | 0.05437        | 1.2371     | 1.4569     |
| b         | 0.003370 | 0.006026       | -0.009993  | 0.015354   |
| q         | -0.01019 | 0.00946        | -0.02964   | 0.00979    |
| p         | -0.07130 | 0.03728        | -0.14592   | 0.0049     |
| S         | -0.7367  | 0.3231         | -1.3829    | -0.0905    |

|   | a       | V       | b       | q       | p       | S       |
|---|---------|---------|---------|---------|---------|---------|
| a | 1.0000  | -0.3946 | -0.1704 | 0.5026  | -0.2821 | -0.8592 |
| v | -0.3946 | 1.0000  | -0.1163 | -0.1184 | 0.0458  | 0.0298  |
| b | -0.1704 | -0.1163 | 1.0000  | 0.6311  | -0.0420 | 0.3103  |
| q | 0.5026  | -0.1184 | 0.6311  | 1.0000  | 0.0219  | -0.4931 |
| p | -0.2821 | 0.0458  | -0.0420 | 0.0219  | 1.0000  | -0.0960 |
| S | -0.8592 | 0.0298  | 0.3103  | -0.4931 | -0.0960 | 1.0000  |





Fit of Flux =  $aV^{v}P^{p}Q^{q}(1-bt_{adi})$ 

 $Flux = gpm/ft^2$ 

V = velocity (fps)

P = transmembrane pressure (psi)

Q = total organics (TBP+NPH) (mg/L)

 $t_{adj}$  = cumulative run time (adjusted after t=13.5) (hr)

a, b, p, q, v are parameters

#### Nonlinear Fit

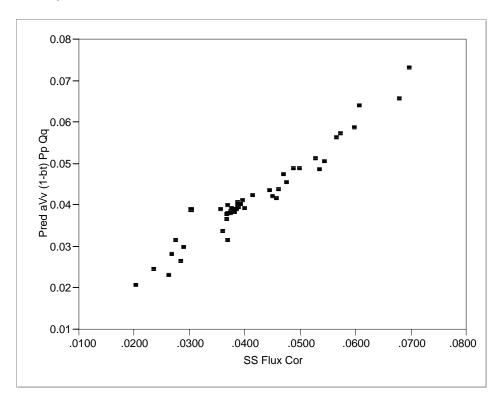
# Converged in the Gradient

| Criterion  | Current      | Stop Limit |
|------------|--------------|------------|
| Iteration  | 4            | 60         |
| Shortening | 0            | 15         |
| Obj Change | 0.000308719  | 0.0000001  |
| Prm Change | 0.0646007448 | 0.0000001  |
| Gradient   | 7.7701505e-8 | 0.000001   |

| Parameter | Current Value |
|-----------|---------------|
| a         | 0.00264206    |
| V         | 1.3503668344  |
| b         | 0.0082221362  |
| q         | -0.019724438  |
| p         | -0.079136273  |

SSE 0.0002869069

N 45


Alpha 0.050

Convergence Criterion 0.05 Goal SSE for CL 0.000316161

| SSE          | DFE | MSE       | RMSE      |
|--------------|-----|-----------|-----------|
| 0.0002869069 | 40  | 0.0000072 | 0.0026782 |

|           |          |                | Lower      | Upper      |
|-----------|----------|----------------|------------|------------|
|           |          | Approx.        | Confidence | Confidence |
| Parameter | Estimate | Standard Error | Limit      | Limit      |
| a         | 0.002642 | 0.000547       | 0.001728   | 0.004016   |
| v         | 1.350    | 0.057          | 1.234      | 1.467      |
| b         | 0.008222 | 0.005655       | -0.004988  | 0.019929   |
| q         | -0.01972 | 0.00877        | -0.03813   | 0.00058    |
| p         | -0.07914 | 0.03911        | -0.15746   | 0.00129    |

|   | a       | V       | b       | q       | p       |
|---|---------|---------|---------|---------|---------|
| a | 1.0000  | -0.7219 | 0.1902  | 0.1711  | -0.7145 |
| v | -0.7219 | 1.0000  | -0.1340 | -0.1209 | 0.0461  |
| b | 0.1902  | -0.1340 | 1.0000  | 0.9503  | -0.0074 |
| q | 0.1711  | -0.1209 | 0.9503  | 1.0000  | -0.0244 |
| p | -0.7145 | 0.0461  | -0.0074 | -0.0244 | 1.0000  |



Fit of Flux =  $aV^{v}P^{p}Q^{q}(1-bt_{adj})$ 

 $Flux = gpm/ft^2$ 

V = velocity (fps)

P = transmembrane pressure (psi)

Q = total organics (TBP+NPH) (mg/L)

 $t_{adj}$  = cumulative run time (adjusted after t=13.5) (hr)

a, b, p, q, v are parameters

#### Nonlinear Fit

## Converged in the Gradient

| Criterion  | Current      | Stop Limit |
|------------|--------------|------------|
| Iteration  | 4            | 60         |
| Shortening | 0            | 15         |
| Obj Change | 0.000308719  | 0.0000001  |
| Prm Change | 0.0646007448 | 0.0000001  |
| Gradient   | 7.7701505e-8 | 0.000001   |

| Parameter | Current Value |
|-----------|---------------|
| a         | 0.00264206    |
| V         | 1.3503668344  |
| b         | 0.0082221362  |
| q         | -0.019724438  |
| p         | -0.079136273  |

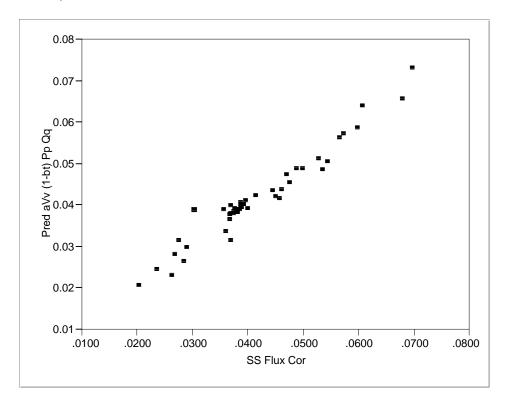
SSE 0.0002869069

N 45

Alpha 0.050

Convergence Criterion 0.05

Goal SSE for CL 0.000316161


Solution

 SSE
 DFE
 MSE
 RMSE

 0.0002869069
 40
 0.0000072
 0.0026782

|           |          |                | Lower      | Upper      |
|-----------|----------|----------------|------------|------------|
|           |          | Approx.        | Confidence | Confidence |
| Parameter | Estimate | Standard Error | Limit      | Limit      |
| a         | 0.002642 | 0.000547       | 0.001728   | 0.004016   |
| V         | 1.350    | 0.057          | 1.234      | 1.467      |
| b         | 0.008222 | 0.005655       | -0.004988  | 0.019929   |
| q         | -0.01972 | 0.00877        | -0.03813   | 0.00058    |
| p         | -0.07914 | 0.03911        | -0.15746   | 0.00129    |

|   | a       | V       | b       | q       | p       |
|---|---------|---------|---------|---------|---------|
| a | 1.0000  | -0.7219 | 0.1902  | 0.1711  | -0.7145 |
| V | -0.7219 | 1.0000  | -0.1340 | -0.1209 | 0.0461  |
| b | 0.1902  | -0.1340 | 1.0000  | 0.9503  | -0.0074 |
| q | 0.1711  | -0.1209 | 0.9503  | 1.0000  | -0.0244 |
| p | -0.7145 | 0.0461  | -0.0074 | -0.0244 | 1.0000  |



Fit of  $Flux = aV^{v}Q^{q}(1-bt_{adj})$ 

 $Flux = gpm/ft^2$ 

V = velocity (fps)

Q = total organics (TBP+NPH) (mg/L)

 $t_{adj}$  = cumulative run time (adjusted after t=13.5) (hr)

a, b, q, v are parameters

## Nonlinear Fit

# Converged in the Gradient

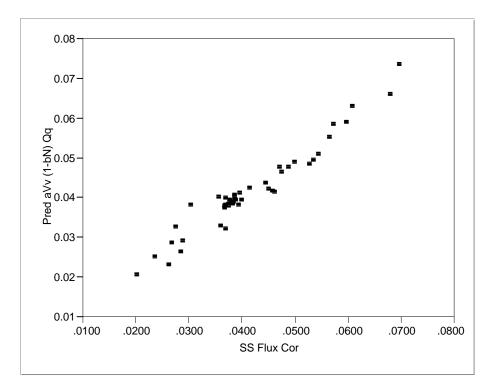
| Current      | Stop Limit                        |
|--------------|-----------------------------------|
| 3            | 60                                |
| 0            | 15                                |
| 0.0003080764 | 0.0000001                         |
| 0.0667741471 | 0.0000001                         |
| 8.4865869e-8 | 0.000001                          |
|              | 0<br>0.0003080764<br>0.0667741471 |

| Parameter | Current Value |
|-----------|---------------|
| a         | 0.0019529218  |
| v         | 1.3566523696  |
| b         | 0.0084367207  |
| q         | -0.019681765  |

SSE 0.0003152431

N 45

Alpha 0.050


Convergence Criterion 0.05

Goal SSE for CL 0.0003465571

| SSE          | DFE | MSE       | RMSE      |
|--------------|-----|-----------|-----------|
| 0.0003152431 | 41  | 0.0000077 | 0.0027729 |

|           |          |                | Lower      | Upper      |
|-----------|----------|----------------|------------|------------|
|           |          | Approx.        | Confidence | Confidence |
| Parameter | Estimate | Standard Error | Limit      | Limit      |
| a         | 0.001953 | 0.000291       | 0.001438   | 0.00264    |
| V         | 1.357    | 0.059          | 1.238      | 1.477      |
| b         | 0.008437 | 0.005831       | -0.005246  | 0.020509   |
| q         | -0.01968 | 0.00907        | -0.03875   | 0.00143    |

|   | a       | V       | b       | q       |
|---|---------|---------|---------|---------|
| a | 1.0000  | -0.9858 | 0.2638  | 0.2191  |
| V | -0.9858 | 1.0000  | -0.1333 | -0.1195 |
| b | 0.2638  | -0.1333 | 1.0000  | 0.9504  |
| q | 0.2191  | -0.1195 | 0.9504  | 1.0000  |



Fit of Flux =  $aV^{v}S^{s}(1-bt_{adi})$ 

 $Flux = gpm/ft^2$ 

V = velocity (fps)

P = transmembrane pressure (psi)

Q = total organics (TBP+NPH) (mg/L)

 $t_{adj}$  = cumulative run time (adjusted after t=13.5) (hr)

a, b, s, v are parameters

# Converged in the Gradient

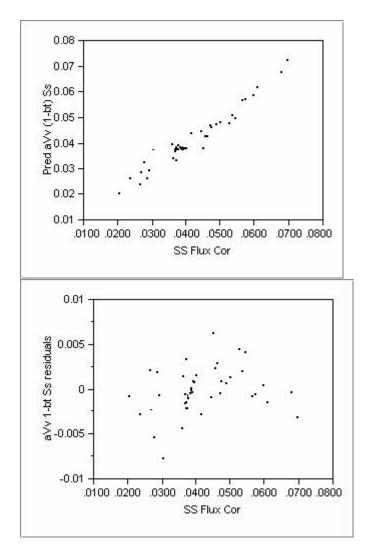
| Criterion  | Current       | Stop Limit |
|------------|---------------|------------|
| Iteration  | 59            | 60         |
| Shortening | 0             | 15         |
| Obj Change | 3.8329933e-7  | 0.0000001  |
| Prm Change | 0.0001371318  | 0.0000001  |
| Gradient   | 1.089313e-10  | 0.000001   |
| Parameter  | Current Value |            |
| a          | 0.0054779622  |            |
| v          | 1.3458730305  |            |
| b          | 0.007057525   |            |
| S          | -0.942319127  |            |
| Logle      |               |            |

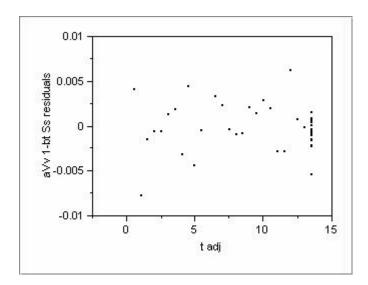
Lock

SSE 0.0002839426

N 45 Alpha 0.050

Convergence Criterion 0.00001


Goal SSE for CL 0.0003121475


Solution

SSE DFE MSE RMSE 0.0002839426 41 0.0000069 0.0026316

|           |          |                | Lower      | Upper      |
|-----------|----------|----------------|------------|------------|
|           |          | Approx.        | Confidence | Confidence |
| Parameter | Estimate | Standard Error | Limit      | Limit      |
| a         | 0.005478 | 0.001809       | 0.001860   | 0.009096   |
| V         | 1.3459   | 0.0551         | 1.2354     | 1.4571     |
| b         | 0.007058 | 0.004624       | -0.002942  | 0.016239   |
| S         | -0.9423  | 0.2959         | -1.5341    | -0.3505    |

|              | a       | V       | b       | S       |
|--------------|---------|---------|---------|---------|
| a            | 1.0000  | -0.3827 | -0.8121 | -0.9096 |
| $\mathbf{v}$ | -0.3827 | 1.0000  | -0.0522 | -0.0313 |
| b            | -0.8121 | -0.0522 | 1.0000  | 0.9247  |
| S            | -0.9096 | -0.0313 | 0.9247  | 1.0000  |





Fit of Flux =  $aV^vS^s$ Flux =  $gpm/ft^2$ V = velocity (fps) S = solids concentration a, v, s are parameters

## **Nonlinear Fit**

# Converged in the Gradient

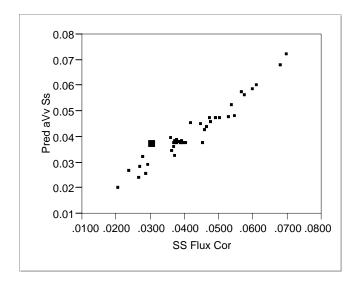
| Criterion               | Current      | Stop Limit |  |
|-------------------------|--------------|------------|--|
| Iteration               | 4            | 60         |  |
| Shortening              | 0            | 15         |  |
| Obj Change              | 0.0013144702 | 0.0000001  |  |
| Prm Change              | 0.0009129883 | 0.0000001  |  |
| Gradient                | 3.9218594e-7 | 0.000001   |  |
|                         |              |            |  |
| Donomoton Comment Volve |              |            |  |

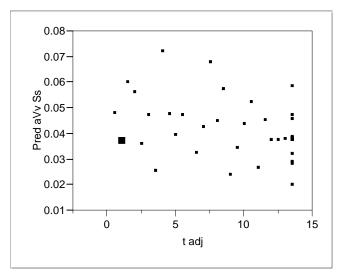
| Parameter | Current Value |
|-----------|---------------|
| a         | 0.0080168667  |
| V         | 1.3501400332  |
| S         | -1.333106672  |

| CCE | 0.0002002500 |
|-----|--------------|
| SSE | 0.0002983598 |

N 45 Alpha 0.050

Convergence Criterion 0.00001


Goal SSE for CL 0.0003272513


#### **Solution**

| SSE          | DFE | MSE       | RMSE      |
|--------------|-----|-----------|-----------|
| 0.0002983598 | 42  | 0.0000071 | 0.0026653 |

|           |          | Approx.        | Lower<br>Confidence | Upper<br>Confidence |
|-----------|----------|----------------|---------------------|---------------------|
| Parameter | Estimate | Standard Error | Limit               | Limit               |
| a         | 0.008017 | 0.001568       | 0.005391            | 0.010643            |
| V         | 1.3501   | 0.0558         | 1.2388              | 1.4624              |
| S         | -1.3331  | 0.1148         | -1.5648             | -1.1023             |

|   | a       | V       | S       |
|---|---------|---------|---------|
| a | 1.0000  | -0.7276 | -0.7156 |
| V | -0.7276 | 1.0000  | 0.0438  |
| S | -0.7156 | 0.0438  | 1 0000  |





Fit of Flux =  $aV^{v}(1-bt_{adj})$ 

 $Flux = gpm/ft^2$ 

V = velocity (fps)

 $t_{adj}$  = cumulative run time (adjusted after t=13.5) (hr)

a, b, v are parameters

## Nonlinear Fit

## Converged in the Gradient

| Criterion  | Current      | Stop Limit |
|------------|--------------|------------|
| Iteration  | 2            | 60         |
| Shortening | 0            | 15         |
| Obj Change | 0.0000272661 | 0.0000001  |
| Prm Change | 0.0050122417 | 0.0000001  |
| Gradient   | 9.3709483e-9 | 0.000001   |

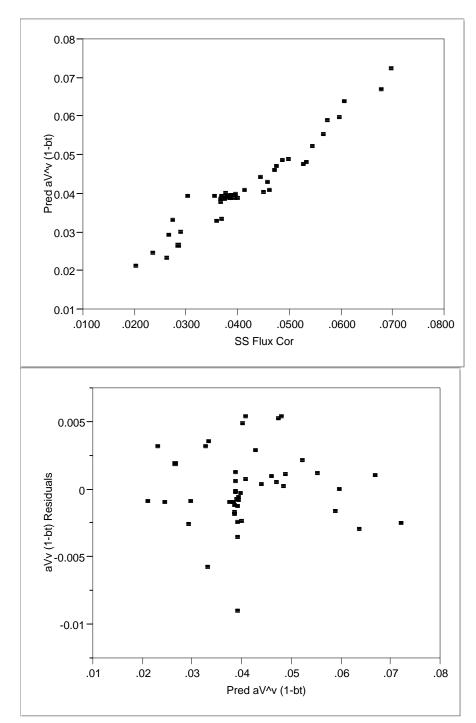
| Parameter | Current Value |
|-----------|---------------|
| a         | 0.0020910329  |
| v         | 1.3418623025  |
| h         | 0.0194210721  |

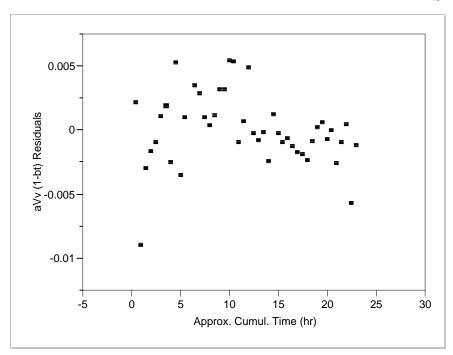
SSE 0.0003425838

N 45

Alpha 0.050

0.05


Convergence Criterion
Goal SSE for CL 0.0003757578


| SSE          | DFE | MSE       | RMSE     |  |
|--------------|-----|-----------|----------|--|
| 0.0003425838 | 42  | 0.0000082 | 0.002856 |  |

|         |          | Approx.  | Lower      | Upper      |
|---------|----------|----------|------------|------------|
| Paramet |          | Standard | Confidence | Confidence |
| er      | Estimate | Error    | Limit      | Limit      |
| a       | 0.002091 | 0.000311 | 0.001543   | 0.002821   |
| V       | 1.342    | 0.0602   | 1.221      | 1.464      |
| b       | 0.01942  | 0.00149  | 0.01631    | 0.02233    |

| $\sim$  |        |         |                  |
|---------|--------|---------|------------------|
| ( 'orro | lotion | $^{-1}$ | L'atimatas       |
| COHE    | iauon  | OI.     | <b>Estimates</b> |

|   | a       | V       | b       |
|---|---------|---------|---------|
| a | 1.0000  | -0.9914 | 0.1717  |
| V | -0.9914 | 1.0000  | -0.0597 |
| b | 0.1717  | -0.0597 | 1.0000  |





## **6.0** References

- Test Specification for Evaluating Effect of Tri-Butyl Phosphate and Normal Paraffin Hydrocarbon in Simulated Low-Activity Waste Solution on Ultrafiltration and Ion Exchange Systems, **TSP-W375-00-00036**, **Rev. 1**, Washington Group International, RPP-WTP, Richland, Washington, June 14, 2001.
- <sup>2</sup> LAW Evaporation: Antifoam / Defoamer Testing for Low Activity Waste Solution, TSP-W375-00-00035, Rev. 0, CH2M HILL Hanford Group, Inc., Richland, Washington, December 15, 2000.
- <sup>3</sup> Procedure for the Operation of the Cold Ultrafilter, **IWT-OP-140**, **Rev. 0**, Westinghouse Savannah River Co., Aiken, SC, November 2001.
- R. E. Eibling and C. A. Nash, *Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project Waste Treatment Plant*, **SRT-RPP-2000-00017**, **Rev. 0** (**WSRC-TR-2000-00338**, **Rev. 0**), Westinghouse Savannah River Co., Aiken, SC, February 2001.
- C. A. Nash, S. W. Rosencrance, W. R. Wilmarth, *Entrained Solids, Strontium-Transuranic Precipitation, and Crossflow Filtration of AN102 Small C*, **SRT-RPP-2000-00003, Rev. 0** (WSRC-TR-2000-00341, Rev. 0), Westinghouse Savannah River Co., Aiken, SC, August, 2000.
- E. Slaathaug, et. al, *Configuration of the Ultrafiltration System*, **24590-PTF-RPT-ENG-01-002**, **Rev. 0**, RPP-WTP, Bechtel Washington Group, July 30, 2001.
- M. R. Poirier, T. M. Jones, S. D. Fink, *Impact of Strontium Nitrate and Sodium Permanganate Addition an Solid-Liquid Separation of SRS High Level Waste*, **WSRC-TR-2001-00554**, **Rev. 0**, Westinghouse Savannah River Co., Aiken, SC, November 16, 2001.
- M. R. Poirier, personal communication to J. R. Zamecnik, Westinghouse Savannah River Co., Aiken, SC, December, 2001.
- M. J. Barnes, D. T. Hobbs, R. F. Swingle, *Tributylphosphate in the In-Tank Precipitation Process Facilities*, **WSRC-RP-93-1162**, **Rev. 0**, Westinghouse Savannah River Co., Aiken, SC, November 23, 1993.
- <sup>10</sup> JMP, Version 4.0.4 for Windows, SAS Institute, Cary, NC.
- J. R. Zamecnik, M. A. Baich, Task Technical and Quality Assurance Plan In Support of RPP – Evaluating The Effects Of Tri-Butyl Phosphate And Normal Paraffin Hydrocarbon In Simulated Low-Activity Waste Solution On Ultrafiltration, WSRC-TR-2001-00217, Rev. 0 (SRT-RPP-2001-0053, Rev. 0), Westinghouse Savannah River Co., Aiken, SC, November 2, 2001
- Laboratory Notebook, WSRC-NB-2001-00144, Westinghouse Savannah River Co., Aiken, SC.