Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

United States Department of Energy

Savannah River Site

Electromagnetic Borehole Flowmeter Testing at the H-Area Extraction Wells (U)

WSRC-TR-2002-00187 Revision 0 May 2002

Prepared by: Westinghouse Savannah River Company LLC Savannah River Site Aiken, SC 29808

Prepared for the U.S. Department of Energy Under Contract No. DE-AC09-96SR18500

DISCLAIMER

This report was prepared by Westinghouse Savannah River Company LLC (WSRC) for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Reference herein to any specific commercial product, process, or service by trademark, name, manufacturer or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring of same by WSRC or the United States Government or any agency thereof.

Printed in the United States of America

Prepared for U.S. Department of Energy and Westinghouse Savannah River Company LLC Aiken, South Carolina

Electromagnetic Borehole Flowmeter Testing	WSRC-TR-2002-00187
at the H-Area Extraction Wells (U)	Revision 0
Savannah River Site	
May 2002	

en a su construction a reality à

Approvals:

1000

Gregory P. Blach, Author

Date

Mary K. Harris, L4 Manager

P. Casey Knapp, ERD -Project Task Team Lead

Date

Date

1267ertpg.doc 05/29/02

Page iv of vii

TABLE OF CONTENTS

SECTION:

PAGE NO.

١.

Appr	rovals:	i
LIST	OF FIGURES	v
LIST	OF TABLES	vi
LIST	OF ACRONYMS AND ABBREVIATIONS	vii
1.0	INTRODUCTION	1
1.1 1.2	Test Design	1
1.2	Test Procedures	5
1.4 1.5		
1.6	HEX-18 Data Analysis	
2.0	DISCUSSION	
3.0	RECOMMENDATIONS	12
4.0	REFERENCES	14
5.0	APPENDIX	15

LIST OF FIGURES

FIGURE 1.	LOCATIONS OF HEX WELLS
FIGURE 2.	SCHEMATIC DIAGRAM OF THE ELECTROMAGNETIC BOREHOLE
	FLOWMETER; REPRODUCED FROM MOLZ AND YOUNG (1993) 17
FIGURE 3.	ELECTROMAGNETIC BOREHOLE FLOWMETER (EBF) APPLICATION OF
	FARADAY'S LAW OF INDUCTION; REPRODUCED FROM MOLZ AND
	YOUNG (1993)
FIGURE 4.	SCHEMATIC ILLUSTRATION OF BOREHOLE FLOWMETER TESTING;
	REPRODUCED FROM MOLZ AND YOUNG (1993) 19
FIGURE 5.	BASIC GEOMETRY AND ANALYSIS OF BOREHOLE FLOWMETER DATA;
	REPRODUCED FROM MOLZ AND YOUNG (1993)
FIGURE 6.	CONFIGURATION OF PRIMARY TEST EQUIPMENT
FIGURE 7.	WIRE-WRAP SCREEN CONSTRUCTION AND BYPASS FLOW
	PHENOMENON
FIGURE 8.	RAW FLOW DATA FOR HEX-3
FIGURE 9.	CUMULATIVE FLOW LOGS FOR HEX-3, PRELIMINARY AND
	INTERPRETED
FIGURE 10.	PRELIMINARY ESTIMATES OF HYDRAULIC CONDUCTIVITY, TRITIUM
	CONCENTRATION AND MASS FLUX, REFERENCED TO SCREEN AVERAGE
	VALUES FOR HEX-3
FIGURE 11.	REVISED ESTIMATES OF HYDRAULIC CONDUCTIVITY, TRITIUM
	CONCENTRATION AND MASS FLUX, REFERENCED TO SCREEN AVERAGE
	VALUES FOR HEX-3
FIGURE 12.	CUMULATIVE FLOW LOG FOR HEX-4
FIGURE 13.	ESTIMATES OF HYDRAULIC CONDUCTIVITY, TRITIUM CONCENTRATION
	AND MASS FLUX, REFERENCED TO SCREEN AVERAGE VALUES FOR
	HEX-4
FIGURE 14.	CUMULATIVE FLOW LOGS FOR HEX-18, PRELIMINARY AND
	INTERPRETED
FIGURE 15.	PRELIMINARY ESTIMATES OF HYDRAULIC CONDUCTIVITY, TRITIUM
	CONCENTRATION AND MASS FLUX, REFERENCED TO SCREEN AVERAGE
	VALUES FOR HEX-18
FIGURE 16.	REVISED ESTIMATES OF HYDRAULIC CONDUCTIVITY, TRITIUM
	CONCENTRATION AND MASS FLUX, REFERENCED TO SCREEN AVERAGE
	VALUES FOR HEX-18

Page vi of vii

LIST OF TABLES

TABLE 1.	Well Construction Information for HEX Wells	
TABLE 2.	PRELIMINARY DATA ANALYSIS FOR HEX-3	
TABLE 3.	REVISED DATA ANALYSIS FOR HEX-3	
TABLE 4.	DATA ANALYSIS FOR HEX-4	
TABLE 5.	PRELIMINARY DATA ANALYSIS FOR HEX-18	
TABLE 6.	REVISED DATA ANALYSIS FOR HEX-18	

Page vii of vii

LIST OF ACRONYMS AND ABBREVIATIONS

cm	centimeter
CPT	cone penetrometer testing
EBF	electromagnetic borehole flowmeter
GEL	General Engineering Laboratory
L/min	liter per minute
mL	milliliter
msl	mean sea level
pCi	picocurie
TOC	top of casing

but film a to also simples of the granulyane mapin through the P2B and have their analysed to the holomority for provides in estimate of the new the of E3B flow and teconities concentering provides in estimate of the new the coloring the partition of the verification of the FBB. The contributive flow and more particular there is a real to that complete the FBB. The contributive flow and more particular to a real to that complete the FBB. The contributive flow and more particular to a flow on the constraint of the expected republic to the contribution of the other than the constraint of the expected republic to the second of the test of the expected of the expected republic to the Hoop demonstrated for arbitrar at these excitation wills according with the Hoop respect tests, parting and near encryptic remediation space. MEX 1, 100X–1, 200 (EX-18, 1 part - strays the frequencies of these weaks and 7 the 1 provides there we instruction information.

This starts was initiated through Tabilated Available. Request PER TAR-2001 0027 and conducted incursor-law a with 9, fool. Technical sign Quality Assurance. Proceedings and E. activitized 2001 c.

Life Ling Design

The option of the EBF in destruction the contract which in a provident of the second system of the second system is the second system is a second system is a second system.

1.0 INTRODUCTION

Electromagnetic Borehole Flowmeter (EBF) testing has been used at several locations at the Savannah River Site to characterize hydraulic conductivity variation along well screens (Phifer 1996, Boman et al. 1997, Flach et al. 2000a and b, Flach et al. 2001). The objective of the EBF testing documented in this report is to expand the technology to include simultaneous characterization of conductivity, contaminant concentration, and mass flux profiles. The latter two parameters, especially mass flux, can be valuable information for remedial design.

Mass flux refers to contaminant mass flow rate per unit length of well screen. The basic idea is to take samples of the groundwater passing through the EBF and have them analyzed in the laboratory for contaminant concentration. The product of EBF flow and laboratory concentration provides an estimate of the mass flux entering the portion of the well screen below the EBF. The cumulative flow and mass flux data can then be used to find conductivity, concentration and mass flux entering the well along each screen interval. This expanded capability has been demonstrated for tritium at three extraction wells associated with the H-area seepage basin pump and treat-reinject remediation system, HEX-3, HEX-4 and HEX-18. Figure 1 shows the locations of these wells and Table 1 provides basic well construction information.

This study was initiated through Technical Assistance Request ERE-TAR-2001-0027 and conducted in accordance with a Task Technical and Quality Assurance Plan (Flach and Ekechukwu 2001).

1.1 Test Design

The use of an EBF to determine the vertical variation in horizontal hydraulic conductivity along a well screen has been documented (e.g., Waldrop 1995; Molz

Page 2 of 37

and Young 1993; Flach et al. 2000a). Past Savannah River Site applications include Phifer (1996), Boman et al. (1997), and Flach et al. (2000a, b). The EBF measures *vertical* flow inside a well casing based on Faraday's Law of Induction, which states that the voltage induced by a conductor moving at right angles through a magnetic field is directly proportional to the velocity of the moving conductor (Waldrop 1995). Schematic diagrams of the EBF are shown in Figures 2 and 3 (Molz and Young 1993). In this application, groundwater acts as the moving conductor, an electromagnet generates the magnetic field, and the electrodes measure the induced voltage.

The idea behind EBF testing is to relate horizontal conductivity as a function of elevation, K(z), to borehole discharge as a function of elevation Q(z). The field procedure is schematically illustrated in Figure 4. Under quasi-steady pumping conditions, borehole discharge (Q) from the bottom of the screen up to the current flowmeter position is measured as a function of elevation (z). As shown in Figure 5, the difference (ΔQ) in borehole discharge Q(z) between any two locations is the flow rate of groundwater entering the well casing over that interval. This differential flow rate, minus any ambient flow effects, is directly proportional to the horizontal conductivity of the aquifer over that interval. The data analysis procedure is summarized by

$$\frac{K_{i}}{\overline{K}} = \frac{\left(\Delta Q_{i} - \Delta q_{i}\right) / \Delta z_{i}}{\sum_{i} \left(\Delta Q_{i} - \Delta q_{i}\right) / \sum_{i} \Delta z_{i}}$$
(1)

where:

 $K_i \equiv$ horizontal conductivity of the ith interval

 \overline{K} = vertically-averaged conductivity

- $\Delta Q_i \equiv$ difference in EBF flow at the top and bottom of the ith interval under *pumping* conditions
- $\Delta q_i \equiv$ difference in EBF flow at the top and bottom of the ith interval under *ambient* conditions
- $\Delta z_i \equiv$ height of the ith interval.

In equation (1), $(\Delta Q_i - \Delta q_i)$ is the net flow rate induced by pumping and accounts for ambient flow effects. Ambient flow refers to horizontal flow through the well screen and vertical flow in the casing under natural, undisturbed conditions. Note that the relative conductivity distribution is equal to the relative distribution of net flow entering the well, which is assumed to occur after the initial transient passes and after quasi-steady state conditions develop.

To determine concentration and mass flux distributions, additional measurements are needed. By measuring the concentration of a contaminant in groundwater passing through the EBF at each elevation, the mass flux entering the wellbore over the ith interval can be computed from

$$m_{i} = Q_{i+1}C_{i+1} - Q_{i}C_{i}$$
(2)

where

- $m_i = mass$ flux entering the wellbore over the ith interval
- Q_i = cumulative flow entering the wellbore from the bottom of the screen up to the ith elevation
- C_i = concentration in the cumulative flow passing through the EBF at the ith elevation

The concentration in the formation at the ith screen interval is computed from

$$c_{i} = \frac{m_{i}}{\Delta Q_{i}} = \frac{Q_{i+1}C_{i+1} - Q_{i}C_{i}}{Q_{i+1} - Q_{i}}$$
(3)

where

c_i = concentration in groundwater entering the wellbore over the ith interval.

Equations (1) through (3) summarize the technical basis for the borehole flowmeter testing in groundwater monitoring wells planned for the HEX wells.

1.2 Test Equipment

A schematic diagram showing the configuration of the primary equipment used to perform the field test is shown in Figure 6. Borehole flow measurements were taken using a Century Geophysical Corporation system consisting of the downhole EBF instrument, a 300-meter drawworks, and a Compu-Log data acquisition computer. Well discharge was induced using a Grundfos Redi-Flo2 submersible pump mounted on a center discharge hose reel and driven by a variable speed controller. Groundwater samples were taken using a small bladder pump operated through an electronic controller supplied with compressed nitrogen, and attached to 85 ft of 1/4" tubing on a reel. Both of the pumps were mounted on the EBF instrument and traveled together as a unit by operating the drawworks. A portable generator and uninterruptable power supply provided electrical power.

1.3 Test Procedures

To rigorously account for potential ambient flow effects, the standard borehole flowmeter test procedure entails two series of measurements acquired through the following actions:

- 1) Under ambient conditions, measure the vertical flow rate inside the well screen at 1- to 2-ft intervals.
- 2) Pump (or inject) at a constant rate above the screen zone and borehole flowmeter.
- 3) Pause until the drawdown reaches a quasi-steady-state.
- 4) Under these quasi-steady-state pumping conditions, again measure the vertical flow rate inside the well screen at 1- to 2-ft intervals.

If ambient flows are small compared to dynamic flows, step 1 may be omitted. The quasi-steady-state conditions referred to in step 3 typically occur within 15 to 30 minutes in confined aquifers and within a couple of hours in unconfined aquifers.

For testing at the HEX wells, a 2-ft measurement interval was chosen. Ambient flows were expected to be small so ambient flowing testing was assumed to be unnecessary. The ambient test was performed at HEX-4 to check this assumption. Under dynamic (pumping) conditions, a 100-mL groundwater sample was acquired with each flow measurement. The GEL Mobile Laboratory performed tritium analyses on the groundwater samples. Instrument calibration and field procedures were documented by Flach and Ekechukwu (2001a) and in Controlled Notebook WSRC-NB-2001-00167.

Page 6 of 37

1.4 HEX-3 Data Analysis

EBF testing was performed on HEX-3 on February 4, 2002, between approximately 11:30 AM and 3:30 PM. The extraction system pump was shut off approximately 24 hours in advance of EBF testing. Preliminary field and laboratory data are presented in Table 2. The rubber skirt used to create a seal between the borehole flowmeter tube and well casing allowed personnel to locate the beginning and end of wire-wrap screen sections by feel. Specifically, the EBF assembly would often "hang up" at the start of each screen section as the rubber gasket encountered the longitudinal spacer ribs (Figure 7). Slack or tightening in the drawworks cable was observed in these cases. By monitoring cable tension, personnel determined that the 15-ft screen interval comprised a 5-ft section on top of a 10-ft section (Table 2). The top of the screen appeared to be approximately 1 ft deeper than indicated on the well construction diagram.

The rubber skirt provides a good seal along a smooth well casing, but only a partial seal along the wire-wrap screen because of the longitudinal spacer ribs (Figure 7). Consequently, the EBF generally measures a fraction of the flow that enters the screen and moves up the wellbore. However, at the joint between two screen sections where the inner wall is smooth, the rubber gasket apparently forces all flow through the EBF. This is indicated by the raw flow rate data from HEX-3 (shown in chronological order) in Figure 8. Flow measurements were taken at 2-ft intervals marching up the screen, and then back down the screen. Depth measurements were referenced to the top of the protective casing. After the measurement at a 28.5 ft depth during the downward series of measurements, the EBF was moved back to 27.5 ft where the joint between screen sections occurs. Here the flow reading was substantially higher than those of the surrounding two measurements. The high flow reading was confirmed after the downward run was completed, when the EBF was repositioned to 27.5 ft to conclude testing. At the joint, the EBF-measured flow is roughly twice that immediately above and below.

The precise fraction of total flow passing through the EBF is estimated to be 0.53 in Table 2.

At depths where two readings were taken, the best-estimate is taken as the average of the two measurements. The total flow entering the wellbore below a measurement interval can be estimated by dividing the best-estimate EBF reading by the bypass flow ratio, 0.53, except at the joint between screen sections. Figure 9 shows the result of averaging and correcting for bypass flow. It also shows the flow rate of the Redi-Flo2 pump, corrected for head losses between the diversion valve where bucket-and-stopwatch measurements were taken and the radiological "buffalo" tank. The correction is based on post-test experimentation at 704-D that indicated the additional tubing past the diversion valve results in a 10% flow reduction (WSRC-NB-2001-00167). The Redi-Flo2 pumping rate corresponds to the total flow entering the wellbore.

The flow profile shown in Figure 9 is peculiar in that the cumulative flow rate decreases between an elevation of 9 and 11 ft (depths of 28.5 and 26.5 ft). In principle, the cumulative flow log should be strictly non-decreasing. That is, flow should increase or, at worst, equal that of the next lower station (Figure 4). Technically this statement is only true of the net difference between dynamic and ambient flow rates (cf. eqn. (1)). Ambient testing was not performed at HEX-3; however, as expected, the ambient flows measured in nearby HEX-4 were negligible compared to the dynamic flows. Therefore, ambient flow does not explain the cumulative flow decreases. Instrument error is another possible reason for these decreases but this is unlikely because the basic shape reflected on the graph was reproduced as the instrument moved up and down the borehole. Moreover, no significant drift was observed in the instrument under zero flow conditions at either the start or the end of the field test. Second-order effects such as "head-loss-induced flow redistribution" (Dinwiddie et al. 1999; Flach et al.

Page 8 of 37

2000a) and hydraulic diffusivity contrasts between formation layers (Kabala 1994, Ruud and Kabala 1996, Flach et al. 2000a) can impact the EBF flow log but not to the extent observed in Figure 9.

The most likely explanation for the unexpected behavior in Figure 9 is significant variation in the fraction of the flow passing through the EBF versus bypassing the instrument, both between the skirt and well casing, and outside the screen in the filter pack annulus (Figure 7). A likely cause is that the filter pack annulus along the upper portion of the HEX-3 screen is much more conductive than at lower elevations. Changes in filter pack conductivity are thought to have caused a similar sudden reduction in flow during EBF testing at RPC-3PW (Flach et al. 2000a). Another possibility is fouling and scale buildup inside the well screen, both of which might affect the seal between the EBF rubber gasket and well screen.

Whatever the root cause, a reduction in cumulative EBF flow leads to a nonphysical, negative value for hydraulic conductivity for the interval between a depth of 26.4 and 28.4 ft, as shown in the remainder of Table 2. A negative flow rate, combined with the GEL mobile lab tritium data from Appendix A, also produces a non-physical negative value for interval mass flow rate. The results of this preliminary analysis are plotted in Figure 10. Knowing that the flow log should be non-decreasing, better estimates are achieved by interpreting what the flow rates might have been under more ideal test conditions. Under ideal conditions bypass flow is a constant fraction of total flow and the measured EBF flow is non-decreasing. One such possibility of the actual variation in borehole flow is shown in Figure 9. The corresponding hydraulic conductivity, tritium concentration, and mass flux profiles are shown in Figure 11 and Table 3. Given uncertainty in the interpretation, the revised profiles in Figure 11 should be used in a semi-quantitative manner.

Page 9 of 37

The data in Figure 11 indicate that groundwater enters the lower half of the screen at roughly three times the rate that it enters along the upper half of the screen. The variability in tritium concentration is low compared to the permeability variation. As a result, the mass flux profile follows the same trend as permeability. The shape of the concentration profile determined from EBF testing appears to be consistent with cone penetrometer testing (CPTs) conducted approximately 85 ft upgradient of HEX-3 (Appendix B). However, the average CPT sample concentration is approximately 2,700 pCi/mL compared to 654 pCi/mL for the screen average during EBF testing, a factor of 4 difference. The concentration of groundwater samples taken from HEX-3 on September 20, 2001, was 505 pCi/mL, which is similar to the EBF results. The reason for the discrepancy between the HEX-3 sampling results and CPT is uncertain, but two plausible explanations can be offered. First, the friction ratio log for HCPT-03 indicates the CPT groundwater samples with tritium concentrations exceeding 3,000 pCi/mL came from finer-grained sediments, i.e., silts and clays (Appendix B). Such sediments have lower permeability and do not contribute much groundwater to a sample obtained after well purging or pumping has been performed. In other words, the concentration from HEX-3 is a flow-weighted average of concentrations in the formation outside the screen. A second explanation is that, despite being reasonably close (85 ft), the CPT push and HEX-3 lie on different flow paths with different tritium concentrations.

1.5 HEX-4 Data Analysis

EBF testing was performed on HEX-4 on February 6, 2002, between approximately 10:00 AM and 2:00 PM. The extraction system pump was shut off approximately 24 hours in advance of EBF testing. An analysis of EBF field data and laboratory sample results for HEX-4 is presented in Table 4. An initial EBF test of ambient flow conditions indicated a slight upward flow, probably corresponding to ongoing well recovery following pump shutdown the day before.

Page 10 of 37

The ambient flow rates were very small compared to dynamic testing rates. A single measurement was taken at each measurement interval. The cumulative flow profile for HEX-4 shown in Figure 12 shows none of the peculiarities observed in HEX-3. Specifically, the profile exhibits no significant decreases in low rate as the EBF advances upward. However, these observations do not preclude varying bypass flow or other problems similar to those observed with HEX-3. Relative conductivity, tritium concentration, and mass flux profiles are shown in Figure 13. Here the flow and hydraulic conductivity data show the opposite trend as HEX-3. Almost no flow enters the lower 40% of HEX-4. Like HEX-3, the tritium concentration exhibits less vertical variation than permeability, and the mass flux profile is again similar to the conductivity profile. According to EBF testing, the tritium concentration tends to increase going from the screen top to bottom. This is qualitatively consistent with the nearby CPT results listed in Appendix B. However, the well average concentration of 365 pCi/mL was again much lower during EBF testing compared to the average CPT result (Appendix B). Groundwater samples taken from HEX-4 on September 20, 2001, averaged 494 pCi/mL, which is closer to the EBF sampling results. The reason for the discrepancy between the HEX-4 sampling results and CPT is uncertain. The two potential explanations offered above for HEX-3 hold for HEX-4 as well.

1.6 HEX-18 Data Analysis

EBF testing was performed on HEX-4 on February 11, 2002, between approximately 1:00 PM and 5:00 PM. The pump in HEX-18 was shut off approximately 8 hours in advance. Table 5 presents field and laboratory data for HEX-18. Figure 14 shows the cumulative flow log corrected for bypass flow. Like HEX-4, the cumulative flow data show an unexpected decrease in flow rate in the upper portion of the screen. Unfortunately, multiple measurements at each station were not possible due to time limitations in the field, and an instrument problem could not be ruled out. This possibility is still considered unlikely as the

Page 11 of 37

EBF showed no zero drift. Variable bypass flow is considered the most likely explanation. Conductivity, concentration, and mass flux profiles using unaltered data are presented in Figure 15. To avoid non-physical behavior in the end results, the flow data are reinterpreted in a manner similar to HEX-3 (Table 6 and Figure 14). Specifically, the cumulative flow curve was revised so that it would increase continuously along the upper portion of the screen, as shown by the dashed line. The revised estimates are presented in Figure 16.

Again, given uncertainty in the interpretation, these results should be used in a semi-qualitative manner. According to the EBF testing results, approximately 75% of the total flow comes from only a 4-ft interval near the bottom of the screen. The concentration profile shows a trend of decreasing concentration with depth, but the trend is less pronounced than the CPT results shown in Appendix B. The average well concentration during EBF testing was 1,770 pCi/mL compared to roughly 1,300 pCi/mL for CPT. The agreement is good relative to the HEX-3 and -4 comparisons. The friction ratio log for HCPT-01A indicates the CPT groundwater samples of interest came from coarser-grained sediments, i.e., sands and silts. These higher permeability sediments would significantly affect groundwater samples taken after well purging or pumping had been performed.

2.0 DISCUSSION

The new EBF system from Century Geophysical Corporation used in HEX well testing appears to have performed well after earlier warranty repairs (Flach et al. 2001b), but instrument drift during HEX testing cannot be completely ruled out. The concept of simultaneous measurement of hydraulic conductivity, contaminant concentration, and mass flux appears to be sound. However, variable amounts of flow bypassing the borehole flowmeter apparently compromised the quality of test results from HEX wells, which are equipped with a wire-wrap screen and filter

Page 12 of 37

pack. Bypass flow by itself is not a serious problem, but rather varying amounts of bypass flow relative to total wellbore flow. The cumulative EBF flow log can be effectively corrected for a uniform fraction of bypass flow, but not for the variable amount apparent in testing at HEX-3 and -18. Therefore, the conductivity, concentration, and mass flux profiles derived at the HEX wells contain more uncertainty than desired and inherent in the technology.

3.0 RECOMMENDATIONS

Flow bypassing the EBF continues to compromise the effectiveness of borehole flowmeter testing. For future EBF testing, the following actions are recommended to the extent feasible to reduce bypass flow or at least to make it more uniform along the well screen:

- Use a slotted screen rather than wire-wrap screen. The smooth inner wall of a slotted screen allows for a good seal with the EBF rubber gasket.
- 2) Use minimal or no filter pack. The absence of a high conductivity pathway outside the screen minimizes flow bypassing the EBF outside the well casing.
- Consider re-developing an old well with a filter pack as a potential method of achieving a more uniform filter pack conductivity and bypass flow.
- 4) Inspect the inside of the well screen for fouling and scale buildup or other features that could cause variable bypass flow, and clean or swab if needed
- 5) Improve the design of the EBF skirt to reduce the fraction of flow bypassing the instrument inside the screen. Suggested design improvements include adding additional skirts and resizing the gasket and supporting flange diameters.

6) Because the ideal arrangement is a slotted screen well with no filter pack, consider installing a 2" slotted screen well with CPT, letting the natural formation collapse around the screen.

4.0 **REFERENCES**

Boman, G. K., F. J. Molz and K. D. Boone, 1997. Borehole Flowmeter Application in Fluvial Sediments: Methodology, Results, and Assessment, Ground Water, v35 n3

Controlled Notebook WSRC-NB-2001-00167

Dinwiddie, C. L., N. A. Foley and F. J. Molz, 1999. In-well Hydraulics of the Electromagnetic Borehole Flowmeter, Ground Water v37 n2, 305-315

Flach, G. P., F. C. Sappington, W. Pernell Johnson and R. A. Hiergesell, 2000a. Electromagnetic Borehole Flowmeter (EBF) Testing in R Area (U), WSRC-TR-2000-00170

Flach, G. P., F. C. Sappington, F. A. Washburn and R. A. Hiergesell, 2000b. Electromagnetic Borehole Flowmeter (EBF) Testing at the Southwest Plume Test Pad (U), WSRC-TR-2000-00347

Flach, G. P., and A. A. Ekechukwu, 2001. Task technical and QA plan for electromagnetic borehole flowmeter testing at the H-area extraction wells (U), WSRC-TR-2001-00426, Rev. 0

Flach, G. P., W. E. Jones and F. C. Sappington, 2001. Borehole flowmeter testing at SWP-100D, Interoffice memorandum SRT-EST-2001-00322

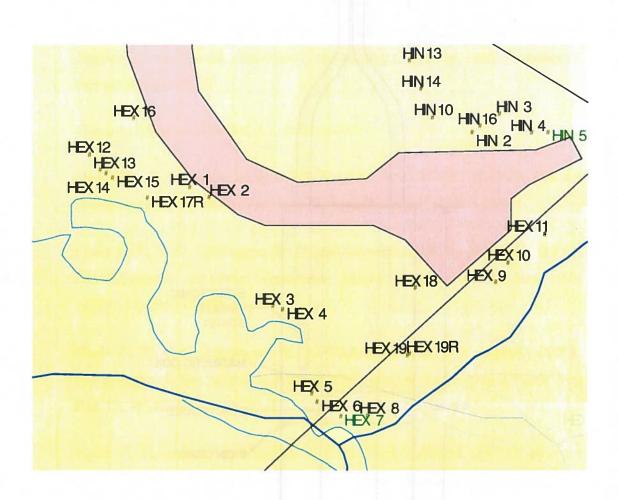
Kabala, Z. J., 1994. Measuring distributions of hydraulic conductivity and specific storage by the double flowmeter test, Water Resources Research, v30 n3, 685-690

Molz, F. J. and S. C. Young, 1993. Development and application of borehole flowmeters for environmental assessment, The Log Analyst, v3, Jan.-Feb., 13-23

Phifer, M. A., 1996. ESS borehole flowmeter capability, Interoffice memorandum SRT-ESS-96-453 dated October 10

Ruud, N. C., and Z. J. Kabala, 1996. Numerical evaluation of flowmeter test interpretation methodologies, Water Resources Research, v32 n4, 845-852

Technical Assistance Request, ERE-TAR-2001-0027


Waldrop, W. R., 1995. A summary of hydrogeologic studies with the Electromagnetic Borehole Flowmeter, report QEC T-102, Quantum Engineering Corporation, 112 Tigitsi Lane, Loudon, Tennessee, 37774, 615-458-0506

5.0 APPENDIX

Appendix A General Engineering Laboratory (GEL) Mobile Lab Tritium Analysis Results

Appendix B Nearby Cone Penetration Test Results

Electromagnetic Borehole Flowmeter Testing	WSRC-TR-2002-00187
at the H-Area Extraction Wells (U)	Revision 0
Savannah River Site	
May 2002	Page 16 of 37

Figure 1. Locations of HEX Wells

WSRC-TR-2002-00187 Revision 0

Page 17 of 37

.

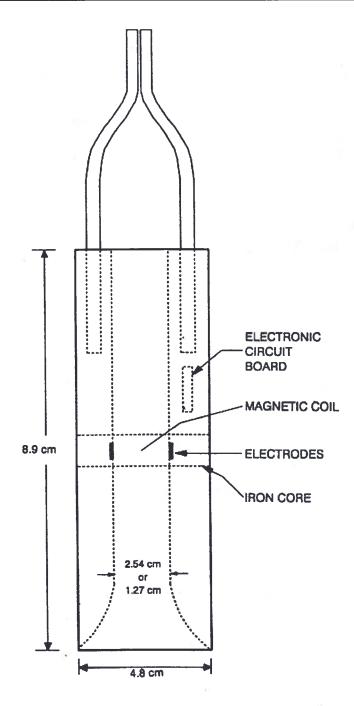
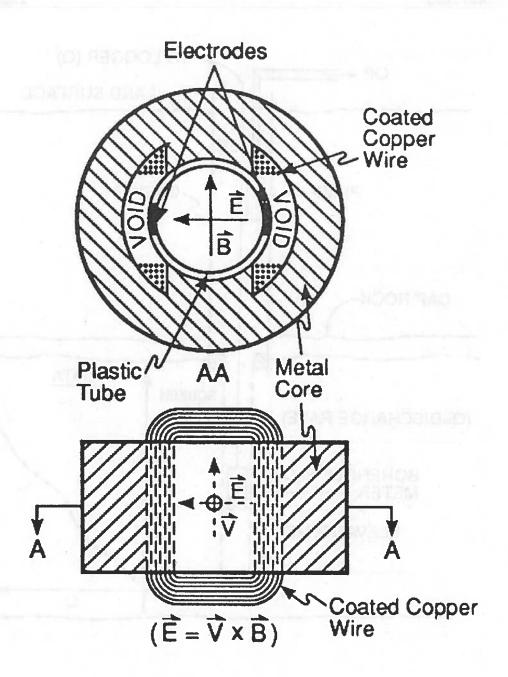



Figure 2. Schematic Diagram of the Electromagnetic Borehole Flowmeter; Reproduced from Molz and Young (1993)

WSRC-TR-2002-00187 Revision 0

Page 18 of 37

Figure 3. Electromagnetic Borehole Flowmeter (EBF) Application of Faraday's Law of Induction; Reproduced from Molz and Young (1993)

WSRC-TR-2002-00187 Revision 0

Page 19 of 37

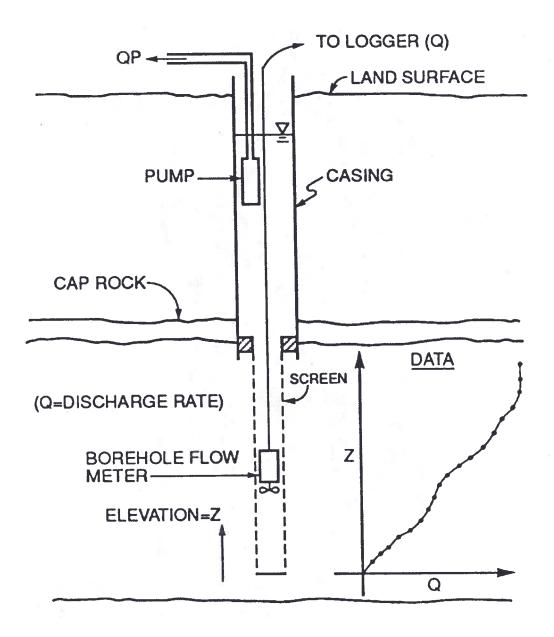
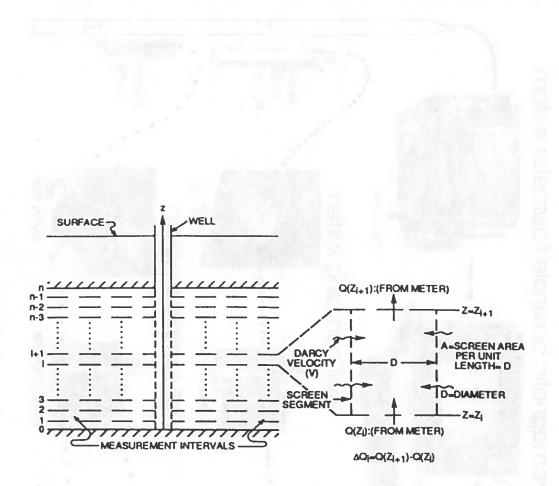



Figure 4. Schematic Illustration of Borehole Flowmeter Testing; Reproduced from Molz and Young (1993)

WSRC-TR-2002-00187 Revision 0

Page 20 of 37

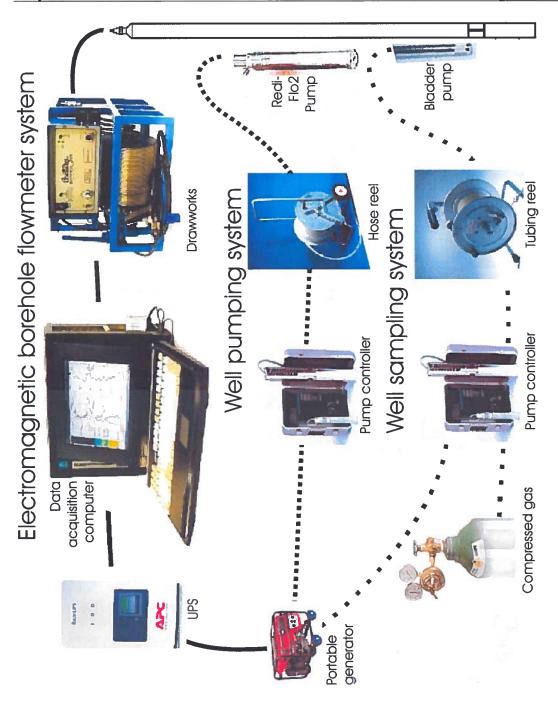
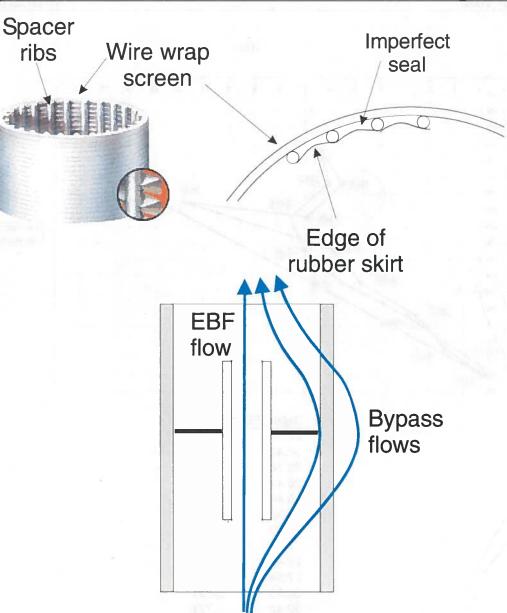


Figure 5. Basic Geometry and Analysis of Borehole Flowmeter Data; Reproduced from Molz and Young (1993)

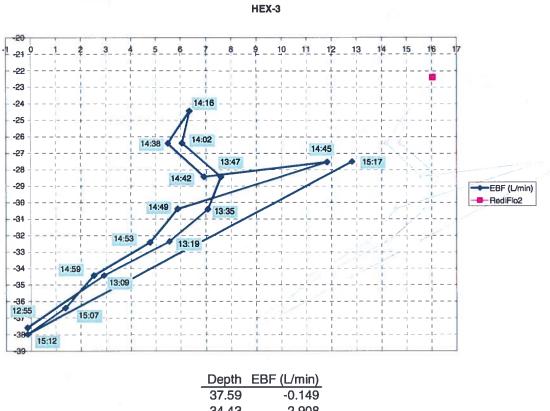
WSRC-TR-2002-00187 Revision 0


Page 21 of 37

.

Figure 6. Configuration of Primary Test Equipment

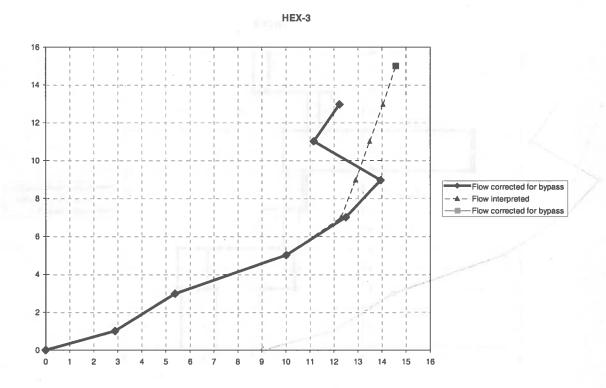
Electromagnetic Borehole Flowmeter Testing
at the H-Area Extraction Wells (U)WSRC-TR-2002-00187
Revision 0Savannah River SitePage 22 of 37



Wellbore flow

WSRC-TR-2002-00187 Revision 0

Page 23 of 37



Depth	EBF (L/min)
37.59	-0.149
34.43	2.908
32.36	5.553
30.41	7.067
28.44	7.582
26.38	6.056
24.43	6.346
26.4	5.494
28.43	6.921
27.54	11.831
30.38	5.891
32.42	4.771
34.42	2.508
36.39	1.383
37.99	-0.14
27.53	12.814
22.4	16.047

Figure 8.

Raw Flow Data for HEX-3

Electromagnetic Borehole Flowmeter Testing	WSRC-TR-2002-00187
at the H-Area Extraction Wells (U)	Revision 0
Savannah River Site	
May 2002	Page 24 of 37

Page 25 of 37

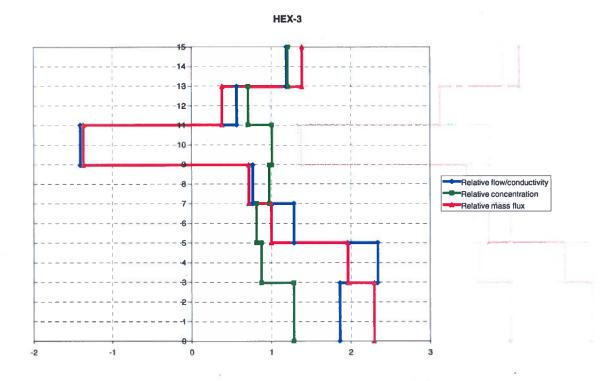
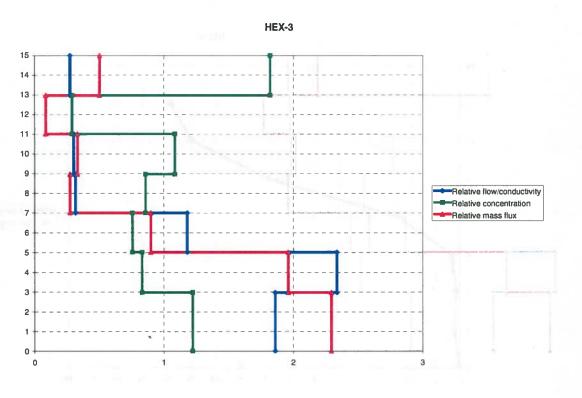



Figure 10. Preliminary Estimates of Hydraulic Conductivity, Tritium Concentration and Mass Flux, Referenced to Screen Average Values for HEX-3

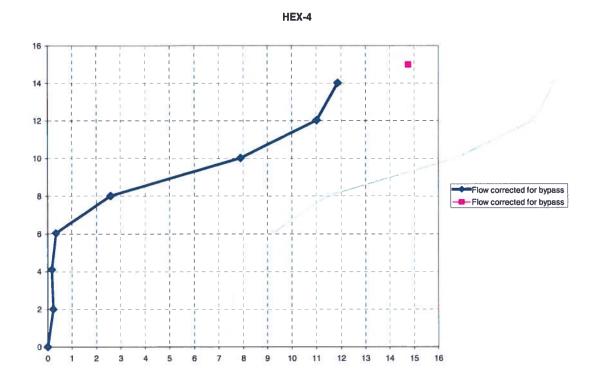
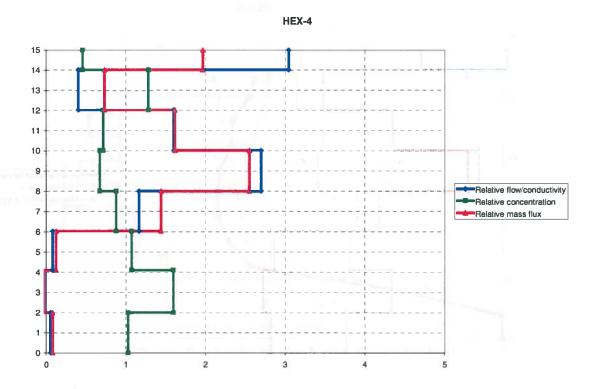
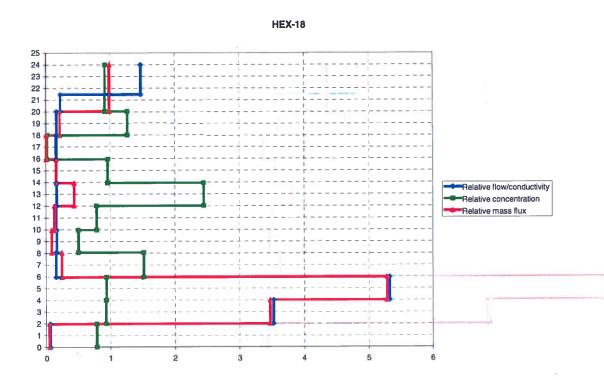


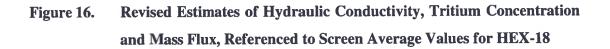
Figure 11. Revised Estimates of Hydraulic Conductivity, Tritium Concentration and Mass Flux, Referenced to Screen Average Values for HEX-3

Page 27 of 37


.

L




Figure 12. Cumulative Flow Log for HEX-4

WSRC-TR-2002-00187
Revision 0
Page 28 of 37

Figure 13. Estimates of Hydraulic Conductivity, Tritium Concentration and Mass Flux, Referenced to Screen Average Values for HEX-4

May 2002

Page 32 of 37

Revision 0

WSRC-TR-2002-00187

					EH-								
					Well	Casing	Casing Borehol	Filter			SZ	SZ Top	SZ Bot.
	SZ Top	SZ Bot.	Grnd.	100	Depth	Dia.	e Dia.	Pack	SZ Top	SZ Bot.	Length	(ft below	(ft below
Well ID	(ft MSL)	(ft MSL)	(ft MSL)	(ft MSL)	(#)	(in)	(in)	Mat'l	(ft BGS)	(ft BGS)	(#)	TOC)	TOC)
HEX 1	212.7	192.7	252.7	255.2	62.5	9	14	FX-50	40.0	60.09	20.0	42.5	62.5
HEX 2	219.9	214.9	253.9	254.9	59.9	9	14	SP1-A	34.0	39.0	5.0	35.0	40.0
And the second se	205.0	195.0	253.9	254.9					48.9	58.9	10.0	49.9	59.9
HEX 3	209.0	194.1	228.0	229.0	34.9	9	14	SP1-A	19.0	33.9	14.9	20.0	34.9
HEX 4	208.0	193.0	227.0	229.5	36.5	9	14	FX-50	19.0	34.0	15.0	21.5	36.5
HEX 5	195.6	185.6	211.8	215.8	30.2	9	14	FX-50	16.2	26.2	10.0	20.2	30.2
HEX 6	198.1	188.1	211.1	213.1	25.0	9	14	FX-50	13.0	23.0	10.0	15.0	25.0
HEX 7	199.1	189.1	213.1	216.6			14	FX-50	14.0		10.0		
HEX 8	199.8	184.9	212.8	215.4	30.5	9	14	FX-50	13.0	27.9	14.9	15.6	
HEX 9	217.6	197.7	240.6	242.6	44.9	9	14	FX-50	23.0	42.9	19.9	25.0	44.9
HEX 10	217.4	202.4	239.4	240.4	38.0	9	14	FX-50	22.0	37.0	15.0	23.0	38.0
HEX 11	218.7	198.8	236.7	238.6	39.9	9	14	SP1-A	18.0	37.9	19.9	20.0	39.9
HEX 12	169.9	164.9	231.9	232.9	113.0	9	14	FX-50	62.0	67.0	5.0	63.0	68.0
	159.9	119.9		232.9					72.0	112.0	40.0	73.0	113.0
HEX 13	183.0	178.0		233.0	109.9	9	14	FX-50	49.0	54.0	5.0	50.0	55.0
	173.0	123.1	232.0	233.0					59.0	108.9	49.9	60.09	109.9
HEX 14	178.4	173.4		233.4	109.9	9	14	FX-50	54.0	59.0	5.0	55.0	60.0
	168.4	123.4		233.4					64.0	108.9	44.9	65.0	109.9
HEX 15	177.3	167.3	232.4	234.7	112.4	9	14	FX-50	55.2	65.1	10.0	57.5	67.4
	162.3	122.4	232.4	234.7					70.2	110.1	39.9	72.5	112.4
HEX 16	226.5	196.5	258.1	259.1	62.6	9	12.875	SP1-A	31.6	61.6	30.0	32.6	62.6
HEX 17R	209.3	189.4	231.9	232.9	43.5	9	12.875	FX-50	22.6	42.5	19.9	23.6	43.5
HEX 18	218.6	193.7	244.2	245.2	51.5	9	12.875	SP1-A	25.6	50.5	24.9	26.6	51.5
HEX 19R	1 213.9	199.0	230.9	231.9	32.9	9	12.25	FX-50	17.0	31.9	14.9	18.0	32.9
							FX-50:	0.45 to 0.55 mm	.55 mm				
							SP1-A:	0.84 to 1.68 mm	.68 mm				12000
	-								1				

*TOC top of casing *msl mean sea level *mm millimeter

Table 1.

Well Construction Information for HEX Wells

Electromagnetic Borehole Flowmeter Testing
at the H-Area Extraction Wells (U)
Savannah River Site
May 2002

Page 33 of 37

....

L

L

L.

n

L

L

P

				je	ž÷∉							1																	
					(pCI/mL* (pCI/mL*	1459	1247				245																		
				Interval concentrati	on (pCi/mL)	806					763	3																	
				Interval	mass flow (pCl/mL* L/min)	4341	2539			Ŧ	1703		ugh line																
					Mass flow (pCVmL* L/min)	0	4341	6880	8148	9041	77.49	9541	n back throu																
	te			Sample concentrati	on (pCi/mL)		ROG	687	652	648	651	654	alo, and drai																
	joint 11.831 12.814 average+offsat 12.47			Interval Sample volumetric concentrati	(L/min)	5.386	4 628	2.483	1.455	2.788	1.075	14.59	Ive and buff																
	ow 7.582 6.921	0.63	nt test)	Interval	midpoint (ft)	1.49	3 99	6.01	7.99	66.6	11.99	10,00	diversion va																
	e 5.494 198+0 6.66	atio	(not used - no ambient test)	Flow corrected	or ambient (L/min)	0.000	2.888 5.386	10.014	12.497	13,953	11.165	14.588	s between																
		-	(not used	Flow corrected	or bypass f	0000	2.888	10.014	12.497	13.953	11.165	14.588	on of flow los		Interval	1000000	1 40	3.99	6.01	7.99	9.99	11.99	10.00						
	p of protective casing bypass flow estimate			Bypass	flow factor for bypass for ambient midpoint (unitiess) (Umin) (Umin) (tt)	0.53	0.53	0.53	0.53	0.53	0.53	. 1 1	• consideration of flow loss between diversion value and buffalo, and drain back through line			CINECK	000 0	1.770	1.616	1.907	2.062	1.386	10472	1.000000					
	tal man ben b				for drift 1 (L/min)	0,000	1,531	5.308	6.624	7,395	5,917	16.047		Relative	concentrati	(unifiee)	1 20	0.87	0.81	0.97	1.01	0.71	171						
	inca - measu				correction (L/min)	0.149	0.148	0.146	0.145	0.143	0.142	0 140				C 02	1. 10000	1116	1019	1203	1301	874 1 E E O	0001	12					
	Approximate deptha based on EBF nubber skirt resistance - measured from top of protective casing screen top bypass flow estimate bypass flow estimate screen bothom - presumed EBF "zero" readings (L/min) start of dynamic test (12:55)					-0.149	1.383 2.708	5.182	6.479	7.252	5,775	16.05	3			CIECK	- 010	3.991	1.994	1,404	-2.788	0.754	V.0.7	1.000000					
	on EBF rubt ns ()			Distance	up screen EBF reading (ft) (L/min)	00.0	1.01	5,01	7.01	8.97	11,01	15.00	2			(undificant)	leconiii	1.96	1.00	0.72	-1.36	0.38	20.1					ite	
	leptha tased screen sectic - presumed adings (L/mir ic test (12:55	c test (3:12)	Depth		casing up	37.59	36,39	32,39	30.40	28.44	26,39	22 40				Creck II	2 2 2 2 2	4.759	2.553	1.497	-2.867	1.106	2.410	1.000000				sr minu	
	Approximate depths based on 22.4 screen lop 37.4 joint between screen screen screen screen screen 37.4 screen bottom - presumed 37.4 screen bottom - presumed EEF *2er0* readings (L/min) 0.149 start of dynamic test (12:55)	-0.140 end of dynamic test (3:12) -0.145 average		_	Station	sump	79	ç q	+7	6+	Ę ŝ	+12	2	Relative	flow/condu	CUVRY	4 66	2.34	1.28	0.76	-1.40	0.56	1.14					liter pe	
HEX3	22.4 % 27.4 jo 37.4 % 37.4 % EI	-0.145 average			Time	0 12:55	1 3:07 2 1-00 E 2-60	3 1:19 & 2:53	4 1:35 & 2:49	5 1:47 & 2:42	6 2:02 & 2:38	01:2 / B	D			TINCKINGSS	0	2.04	2.00	1.96	2.05	1.96	2.03	00.eL				= *l/min liter per minute	

Table 2.

Preliminary Data Analysis for HEX-3

WSRC-TR-2002-00187 Revision 0

Page 34 of 37

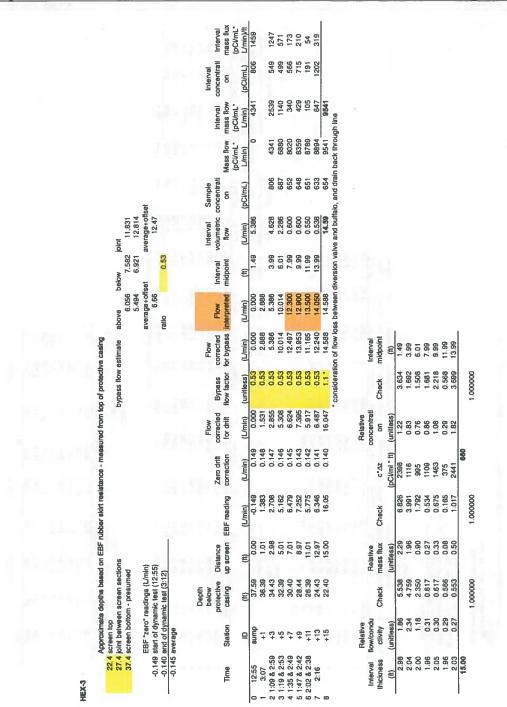


Table 3.

Revised Data Analysis for HEX-3

Electromagnetic Borehole Flowmeter Testing
at the H-Area Extraction Wells (U)
Savannah River Site
May 2002

Page 35 of 37

P

L

L

		Interval mass flux mass flux Umin)/# 29 51 51 51 51 51 51 51 52 53 57 53 57 53 694	
		Interval In concentrati In on ma 827 J/J 827 J/42 821 550 342 342 342 342 342 3550 345 3550	
		11 Interval continues flow continues flow continues (focumin). I Umin). 15 1147 1147 1147 515 5284 5284	
		Mass flow rr (poUmL° (Umin) 59 130 1340 1340 2995 2995 2995 4615 5294	
		iample centrati on 527 458.5 381 377 381 3364 381 337 336 336 336 336 337 336 336 337 336 336	
		Interval Sample volumetric concentrate flow on Interval Itom on (Limin) (pc/ml.) 0.112 (2.236 458) 2.236 458 2.236 458 2.236 458 2.236 458 2.236 458 2.236 458 2.236 458 2.236 458 2.236 458 2.236 458 7.14.54 7.14.57	
	Interval licev (L/min) 0.111 0.015 0.015 0.003 0.003 0.003 0.003	Flow Flow Flow Interval Comparison Bypass corrected corrected interval contraction flow flow interval contraction contraction contraction flow flow interval contraction interval contraction contraction flow flow interval contraction interval contraction contraction flow interval contraction interval contraction contr	
	Interval midpoint (n) 1.02 3.01 5.01 13.48 13.48	Flow Flow Flow corrected corrected corrected (or bypass for ambient 0.000 0.000 0.000 0.100 0.003 0.162 0.162 0.093 0.162 0.162 0.033 0.162 0.162 0.251 0.182 0.162 0.251 0.182 0.162 0.251 0.182 0.162 0.251 0.182 0.162 0.251 0.182 11.63 11.657 11.003 11.653 11.653 10.172 14.772 14.545 tion of flow loss between tion of flow loss between	
ve casing	Flow corperated for bypass (umin) 0.000 0.111 0.111 0.113 0.	Flow corrected for bypass (Umin) 0.000 0.162 0.334 1.1.017 1.1.863 1.1.017 1.1.863 1.1.017 1.1.863 1.1.017 1.1.863	Interval midpoint (f) (f) (f) 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02
p of protecti	Bypass Row factor (unites) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		11 Check 2.051 3.354 1.740 1.347 1.347 2.559 0.448
trred from to	Flow corrected for drift (urmin) 3 0.000 0.055 1 0.035 1 0.035 1 0.035 1 0.035 1 0.035 1 0.070 5 0.071	Flow corrected (or drift (Umin) 0 0000 0 0111 2 0.167 5 5304 5 5324 5 5322 0 16.249	Relative concentrati 0.03 1.03 1.03 1.06 1.1.07 1.07 1.07 1.27 1.29 0.46 0.46
stance - mea	Zero drift correction (Junin) 0.478 0.478 0.478 0.478 0.478 0.427 0.435 0.419	Zero drift correction (Umito) 0.419 0.410 0.410 0.410 0.410 0.410 0.410 0.505 0.505 0.505 0.550 0.550	c 22 ppC/mi = m 1054 1724 1724 1724 1724 1724 1335 738 1315 230
bber skin resi	EBF reading (L/min) 0.478 -0.414 -0.427 -0.427 -0.356 -0.356	Distance Distance (1) (L/min) (1) (L/min) 0.00 -0.419 0.00 -0.381 4.10 -0.381 6.03 -0.381 6.03 -0.381 6.03 -0.381 1.12 -0.381	Check 0.167 0.246 0.246 5.134 5.134 1.460 1.926
Approximate depths based on EBF rubber skirt resistance - measured from top of protective casing 22.4 screen bop 32.5 ploitte however accions 37.4 screen bottom - presumed 0.478 start of archient test (10.44) 0.478 between archient test (10.44) 0.478 between archient test (10.44) 0.478 start of archient test (10.40) 0.478 start of archient test (10.40) 0.478 start of archient test (10.40) 0.486 avenage	Distance up screen (1) 2.03 3.99 5.02 5.02 5.02 11.95 11.95 11.95		Relative mass flux (unitiess) 0.08 0.13 2.55 1.62 0.13 2.55 1.62 1.62
Approximate depths based on 22 4 screen bo 32 joint between accions 37.4 acreen botion - presumed BEF 2 sen° readings (Jmin) 0.478 start of ambient test (10.44) 0.518 between ambient test (10.44) 0.580 end of dynamic test (150)	Depth below protective 33.34 37.90 37.90 37.37 29.42 29.42 29.42 29.42 25.45 25.45 25.45	Depth betow protective (ft) 35,40 33,30 31,37 22,39 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 22,20 23,30 23,30 20,200 20,20 20,200000000	Check 0.115 5.426 2.306 2.163 3.223 2.982 2.982
Approximati 22.4 screen top 32 joint betwee 37.4 screen bott BEF "2ero" 0.4.78 betwef arm 0.496 average	Station Sump 1D 1D 10 10 14 14 14 15 15 14 14 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Sation 10 15 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Relative flow(condu cit/ty) (unitiess) 0.08 0.08 1.16 1.16 1.20 1.60 1.60 1.60
32.4 32 37.4 37.4 37.4 0.419 0.419 0.496	Time 10:40 10:51 11:05 11:04 11:08	Time 12/25 12/25 12/46 12/46 12/46 12/46 12/46 12/46 12/46	1.98 1.198 2.00 2.01 2.01 2.01 2.01 1.98 2.01 1.98 0.98

Table 4.

Data Analysis for HEX-4

Electromagnetic Borehole Flowmeter Testing
at the H-Area Extraction Wells (U)
Savannah River Site
May 2002

Page 36 of 37

		Dypass Interval concentrati Interval flow factor Mass flow mass flow on mass flux estimates	(pCVmL* (pCVmL) L/min/fl	21 1480	1745	1757 5	1312 267					1623	Q														
		Interval concentrati mass flow on	(pCi/mL* (pCi/mL)				1312	175	10845	8																	
		Interval mass flow	(pCi/mL*	5	419	_			1	3226	1770	1741															
	-				r.	10959	510	2	815	-1573	19-	6476		25363													
	e r	2	(pCi/mL*	0	121	7541	20319	20829	20836	21651	20078	18886	1	25363													
	E a	sampie concentrati on	(DCVmL)		1480	1740	02/1	1755	1750	1830	0//1	1780	3.958 no sample	1770	D												
		Interval Sample volumetric concentrati flow on	(L/min)	0.082	4.252	6.237	0.389	0.038	-0.075	-0.488	-0.029	-0.239	3.958 n	14.33		Ueph Linger	bund	E	49.51	45.52	43.50	41.50	37.53	35.56	33.53	28.50	
	k test)	Interval	8	1.00	3.00	4.98	100	10.99	12.98	14.94	16.97	20.74	22.73	And and and a second		Depth	bund	E	49.51	45.52	43.50	41.50	37.53	35.56	33.53	29.77	27.77
	(not used - no ambient test)	corrected for ambient	(L/min)	0.000	0.082	134	11480	11.869	11.906	11.831	11.343	10.610	10.372	14.329	- כמ גומפומונים וינו וומא ומצ הפגעפפון מאפצים אמא מינה החוומס		midpoint	Ē	8.8	8.8	7.00	10.6	12.98	14.94	16.97	10.22	
	(not used	corrected for bypass 1	(L/min)	0.000	0.082	4.334	11 480	11.869	11.906	11.831	11.343	10.610	10.372	14.329			micpoint	(L)	8.8	4.98	7.00	10.6	12.98	14.94	16.97	20.74	22.73
		Friow Friow Friow Bypass corrected corrected flow factor for bypass for ambient	(unitions)	0.56	0.56	0.56	0.56	-	0.56	0.56	0.56	1	0.56	1.1			Check		4.332	5.013	6.185	3.686	-30.783	9.488	5.363	10.219	
Approximate optins based on the moder start reastance - measured from top of protective casing point between acreen sections point between acreen accions point between acreen accions point between acreen accions point of the sections defined accions the sections point of dynamic test (3:12) average		corrected for drift		0.000	0.046	2.427	028.0	11.869	6.668	6.825	6.352	10.610	5.808	15.762	1	Reichtve	0	(unites)	2.18	2.58	2.95	1.93	-15.95	4.74	2.60	2.56	
		Zaro drift correction	(L/min)	0.735	0.751	0.767	0.799	0.815	0.831	0.646	0.862	0.894	0.910	0,926			C*Z	DOVM * II)	2945	3408	4206	2506	-20931	6451	3046	3230 6948	
				-0.735	-0.705	1.660	5.630	11.054	5.037	5.778	5.490	9.716	4.898	15.76			Check)	0.115	10.370	1.722	0.483	0.771	-1.468	-0.048	6.129	
ons treat 5)		Distance up screen EBF reading		0.00	1.99	4.01	5.95 20.6	96.6	12.01	13.94	15.94	20.01	21.46	24,00		-	moss flux	(unitees)	8.9	5.35 9.5	0.82	0.26	9.0	-0.74	80	8 8 7	
acrean sections teaced acrean section acrean section section section and the dynamic ding dynamic (12:5: lot least (12:5: lot	Depth			53.98	51.01	48.99	44.05	43.04	40.99	39.06	37,06	32,99	31.54	29,00			Check		0.137	10.447	1.522	0.651	0.126	-0.617	-0.048	-0.400	0.629
28 screen top 33 joint botween screen accions 43 joint botween screen accions 53 screen botom - prevamed 29 WL h welding dynamic test 207 Stat of dynamic test (12:5) -0.735 start of dynamic test (3:12)		Station	9	duns	42	1 9	9+	10	+12	+14	+16	+20	+21.5	+25		Reictive	citrity	(unitiess)	0.07	5.39	0.72	0.34	200	-0.41	-0.02	-0.28 -0.28	2.61
28 screent beh 33 joint beh 43 joint beh 53 screen b 29 wL In we 29 WL In we		Time		2:27	2:52	3:02	3.08	3.21	3:28	3:35	44:0	4.22	4:37	a/u			thickness	(m)	8 8	7.02	2.10	161	1.03	2.00	5.0	1.45	2.54

Table 5.

Preliminary Data Analysis for HEX-18

WSRC-TR-2002-00187 Revision 0

Page 37 of 37

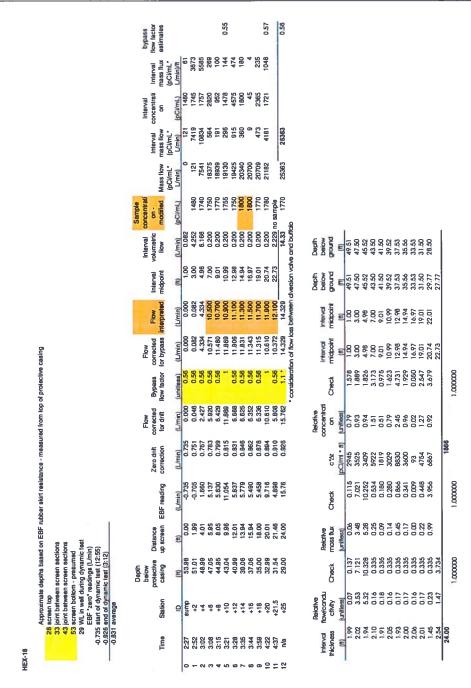


Table 6.

Revised Data Analysis for HEX-18

Page A-1 of A-1

Appendix A General Engineering Laboratory (GEL) Mobile Lab Tritium Analysis Results

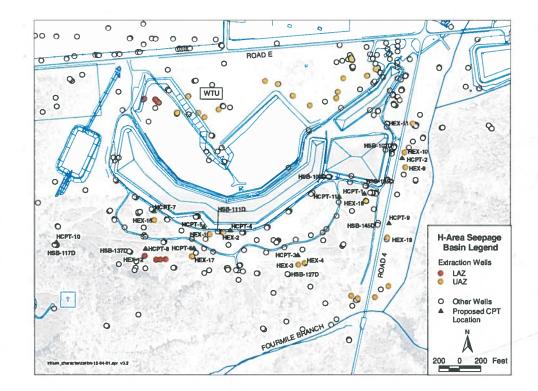
GEL ID	Client ID1	Client ID2	Date Sampled	Analyte	Method	Synonym	MDL	PQL	Units	Result	Uncertainty	Qualifier
55572001	01503-HEX-3-1		020402	Tritium	RADA-002	TRITIU	582	10942	PCL	654000	5180	
55572002	01503-HEX-3-2		020402	Tritium	RADA-002	TRITIU	663	12923	PCL	806000	6130	
55572003	01503-HEX-3-3		020402	Tritium	RADA-002	TRITIU	631	11691	PCL	687000	5530	
55572004	01503-HEX-3-4		020402	Tritium	RADA-002	TRITIU	626	11346	PCL	652000	5360	
55572005	01503-HEX-3-5		020402	Tritium	RADA-002	TRITIU	640	11460	PCL	648000	5410	
55572006	01503-HEX-3-6		020402	Tritium	RADA-002	TRITIU	638	11458	PCL	651000	5410	(Tripped
55572007	01503-HEX-3-7		020402	Tritium	RADA-002	TRITIU	638	11298	PCL	633000	5330	
55572008	01503-HEX-3-10B		013102	Tritium	RADA-002	TRITIU	640	1330	PCL	-265	345	U

GEL ID	Client ID1	Client ID2	Date Sampled	Analyte	Method	Synonym	MDL	PQL	Units	Result	Uncertainty	Qualifier
55684001	01503-HEX-4-1		020602	Tritium	RADA-002	TRITIU	639	8639	PCL	364000	4000	
55684002	01503-HEX-4-2		020602	Tritium	RADA-002	TRITIU	687	10667	PCL	527000	4990	
55684003	01503-HEX-4-3		020602	Tritium	RADA-002	TRITIU	669	9969	PCL	469000	4650	1.7
55684004	01503-HEX-4-4		020602	Tritium	RADA-002	TRITIU	666	10426	PCL	520000	4880	ALC: NOT A
55684005	01503-HEX-4-5		020602	Tritium	RADA-002	TRITIU	666	9806	PCL	456000	4570	0.000
55684006	01503-HEX-4-6		020602	Tritium	RADA-002	TRITIU	663	9843	PCL	461000	4590	S2
55684007	01503-HEX-4-7		020602	Tritium	RADA-002	TRITIU	638	8838	PCL	381000	4100	State 1997
55684008	01503-HEX-4-8		020602	Tritium	RADA-002	TRITIU	644	8824	PCL	377000	4090	
55684009	01503-HEX-4-9		020602	Tritium	RADA-002	TRITIU	643	9023	PCL	396000	4190	
55684010	01503-HEX-4-2B		013102	Tritium	RADA-002	TRITIU	666	1408	PCL	-111	371	U

GEL ID	Client ID1	Client ID2	Date Sampled	Analyte	Method	Synonym	MDL	PQL	Units	Result	Uncertainty	Qualifier
55955001	01503-HEX18-1		021102	Tritium	RADA-002	TRITIU	593	18233	PCL	1780000	8820	
55955002	01503-HEX18-2		021102	Tritium	RADA-002	TRITIU	608	16928	PCL	1480000	8160	
55955003	01503-HEX18-3		021102	Tritium	RADA-002	TRITIU	623	18523	PCL	1740000	8950	1.1
55955004	01503-HEX18-4		021102	Tritium	RADA-002	TRITIU	609	18369	PCL	1750000	8880	
55955005	01503-HEX18-4B		013102	Tritium	RADA-002	TRITIU	616	1278	PCL	-244	331	υ
55955006	01503-HEX18-5		021102	Tritium	RADA-002	TRITIU	625	18665	PCL	1770000	9020	
55955007	01503-HEX18-6		021102	Tritium	RADA-002	TRITIU	630	18690	PCL	1750000	9030	
55955008	01503-HEX18-7		021102	Tritium	RADA-002	TRITIU	622	18602	PCL	1760000	8990	
55955009	01503-HEX18-8	11100	021102	Tritium	RADA-002	TRITIU	616	18416	PCL	1750000	8900	
55955010	01503-HEX18-9	1	021102	Tritium	RADA-002	TRITIU	618	18878	PCL	1830000	9130	
55955011	01503-HEX18-10		021102	Tritium	RADA-002	TRITIU	597	18237	PCL	1770000	8820	
55955012	01503-HEX18-11		021102	Tritium	RADA-002	TRITIU	618	18558	PCL	1770000	8970	
55955013	01503-HEX18-12		021102	Tritium	RADA-002	TRITIU	625	18725	PCL	1780000	9050	
55955014	01503-HEX18-13		021102	Tritium	RADA-002	TRITIU	619	18579	PCL	1760000	8980	

Page B-1 of B-2

Appendix B Nearby Cone Penetrometer Testing (CPT) Results


Data for comparison of Cone Penetrometer Tests Upgradient of HEX Wells and EBF Testing at HEX wells; Prepared by Jeff Thibault

Jeff's CPT	sample results	Location HC	PT-03 is approxi	mately 85	ft upgradient of	HEX-3		SRS_E	56967.72	SRS_N	71315.0 Elev.	235.2
GEL ID	Client ID1	Client ID2	Date Sampled	Analyte	Method	Synonym	MDL	PQL	Units	Result	Uncertainty	Qualifier
54993005	HCPT-03-26		012202	Tritium	RADA-002	TRITIU	627	14267	PCL	1010000	6820	
54993006	HCPT-03-31		012202	Tritium	RADA-002	TRITIU	632	26232	PCL	3560000	12800	
54993007	HCPT-03-36		012202	Tritium	RADA-002	TRITIU	631	24431	PCL	3070000	11900	
54993008	HCPT-03-41		012202	Tritium	RADA-002	TRITIU	554	23354	PCL	3200000	11400	
54993009	HCPT-03-50		012202	Tritium	RADA-002	TRITIU	635	9435	PCL	415000	4400	
	HCPT-03-##	## is sample	e depth below su	face (ie, r	nidpoint of 2-ft	ample scree	en)					
	Yellow samples we	re collected s	tratigraphically fr	om the ele	evation of the H	EX-3 well sc	reen					
Greg's EB	F sample results											
GEL ID	Client ID1	Client ID2	Date Sampled	Analyte	Method	Synonym	MDL	PQL	Units	Result	Uncertainty	Qualifier
55572001	01503-HEX-3-1		020402	Tritium	RADA-002	TRITIU	582	10942	PCL	654000	5180	
55572002	01503-HEX-3-2		020402	Tritium	RADA-002	TRITIU	663	12923	PCL	806000	6130	
55572003	01503-HEX-3-3		020402	Tritium	RADA-002	TRITIU	631	11691	PCL	687000	5530	
55572004	01503-HEX-3-4		020402	Tritium	RADA-002	TRITIU	626	11346	PCL	652000	5360	
55572005	01503-HEX-3-5		020402	Tritium	RADA-002	TRITIU	640	11460	PCL	648000	5410	
55572006	01503-HEX-3-6		020402	Tritium	RADA-002	TRITIU	638	11458	PCL	651000	5410	
55572007	01503-HEX-3-7		020402	Tritium	RADA-002	TRITIU	638	11298	PCL	633000	5330	
55572008	01503-HEX-3-10B		013102	Tritium	RADA-002	TRITIU	640	1330	PCL	-265	345	U

	Sample		1000			Ground_	Sample	Sample	Sample	Sample			
Location_ID	Depth_ID	SRS_E	SRS_N	UTM_E	UTM_N	Elevation	Top_Depth	Base_Depth	Top_Elevation	Base_Elevation	pH	Tritium_Result	Tritium_Unit
HCPT01	30	57816.52	71434.88	The straight of		244.11	29	31	215,11	213.11	212 2 2	2,270,000	PCL
HCPT01	35	57818.52	71434.88			244.11	34	36	210.11	208.11		1,880,000	PCL
HCPT01	40	57816.52	71434.88			244.11	39	41	205.11	203.11	21111	729,000	PCL
HCPT01	45	57816.52	71434.88			244.11	44	48	200.11	198,11		331,000	PCL
HCPT01	52	57816.52	71434.88	1	1 10 15	244.11	51	53	193.11	191.11		1,160,000	PCL
HCPT01	65	57816.52	71434.88			244.11	64	66	180.11	178.11		173,000	PCL
HCPT01	74	57816.52	71434.88			244.11	73	75	171.11	169.11		74,700	PCL
HCPT01	90	57816.52	71434.88			244.11	89	91	155.11	153.11		178,000	PCL
HCPT01	119	57816.52	71434.88			244.11	118	120	126.11	124.11		70,200	PCL

highlighted samples correspond approximately to HEX-18 screen zone

A statistics of the state of th