## Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

## **Disclaimer:**

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

# HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF AUSTENITIC STAINLESS STEELS - a Compendium of Data from Testing at the Savannah River Laboratory in Support of High Pressure Hydrogen Service (U)

# P. S. Lam

Savannah River National Laboratory Materials Science & Technology Directorate

Publication Date: July 2008



# Washington Savannah River Company Savannah River Site Aiken, SC 29808

This document was prepared in connection with work done under Contract No. DE-AC09-96SR18500 with the U. S. Department of Energy. Distribution authorized to the Department of Energy only; other requests shall be approved by the cognizant DOE Departmental Element.

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

# DOCUMENT:WSRC-STI-2008-00043TITLE:Hydrogen Effects on the Mechanical Properties of Austenitic<br/>Stainless Steels - a Compendium of Data from Testing at the<br/>Savannah River Laboratory in Support of High Pressure<br/>Hydrogen Service (U)

# **APPROVALS**

Date: July 10, 2008 Poh-Sang Lam, Author Materials Compatibility & Welding Technology Group SRNL-MATERIALS SCIENCE & TECHNOLOGY Date: <u>10 July</u> 2008 Robert L. Sindelar, Technical Review SRNL-MATERIALS SCIENCE & TECHNOLOGY Date: 7/10/08 Thad M. Adams, Manager Materials Compatibility & Welding Technology Group SRNL-MATERIALS SCIENCE & TECHNOLOGY Natraj C. Iver, Director

SRNL-MATERIALS SCIENCE & TECHNOLOGY

# WSRC-STI-2008-00043

# **Table of Contents**

| EXECUTIVE SUMMARY                                                    | 1  |
|----------------------------------------------------------------------|----|
| INTRODUCTION                                                         | 2  |
| TENSILE PROPERTIES                                                   | 11 |
| Hydrogen Effects on Tensile Ductility                                | 18 |
| Hydrogen Concentration                                               |    |
| Effect of Grain Size                                                 | 19 |
| Effect of Nickel Content                                             | 19 |
| FRACTURE PROPERTIES                                                  | 21 |
| Fracture Data for Forged Alloys                                      | 22 |
| J-integral Testing (Jm)                                              | 24 |
| Thickness and Notch Effect (HERF 21-6-9)                             | 28 |
| Stress Intensity Factor (K) Testing                                  | 29 |
| CONCLUDING REMARKS                                                   | 32 |
| REFERENCES                                                           | 33 |
| APPENDIX Savannah River Laboratory Data Sheets                       | 36 |
| Appendix A Alloy Data Sheets                                         |    |
| Appendix B Definitions of the Measured Properties in SRL data Sheets | 83 |
| Appendix C Mechanical Test Specimens                                 | 85 |
| Appendix D Heat Analyses                                             | 93 |

# List of Tables

| Table 1 Test data and references for iron-chromium-nickel alloy            | 3  |
|----------------------------------------------------------------------------|----|
| Table 2 Test data and references for iron-chromium-nickel-manganese alloys | 7  |
| Table 3 Test data and references for precipitation hardenable alloys       | 9  |
| Table 4 Test data and references for high purity alloys                    | 11 |
| Table 5 Tensile properties for Fe-Cr-Ni Alloys                             | 14 |
| Table 6 Tensile properties for Fe-Cr-Ni-Mn Alloys                          | 16 |
| Table 7 Precipitation Hardenable Alloys                                    | 17 |
| Table 8 High Purity Alloys                                                 | 17 |
| Table 9 Hydrogen Concentration in Austenitic Stainless Steel Tensile       |    |
| Specimens                                                                  | 18 |
| Table 10 Summary of SRL fracture test results up to June 1982              | 27 |
| Table 11 Fracture toughness (K) for Tenelon <sup>®</sup>                   | 30 |
| Table 12 Fracture toughness (K) for HERF Nitronic <sup>®</sup> 40 (21-6-9) | 30 |
| Table 13 Fracture toughness (K) for HERF A-286                             | 31 |
| Table 14 Fracture toughness (K) for HERF JBK-75                            | 32 |
| Table 15 Fracture toughness (K) for17-4 PH                                 | 32 |
|                                                                            |    |

# List of Figures

| Figure 1 SRL tensile test specimens                                                                | 13 |
|----------------------------------------------------------------------------------------------------|----|
| Figure 2 Ductility loss in 69 MPa hydrogen environment for 304L with various grain                 |    |
| sizes                                                                                              | 19 |
| Figure 3 Correlation between retained ductility and nickel content for Fe-Cr-Ni and                |    |
| high purity alloys                                                                                 | 20 |
| Figure 4 Reduction of area and retained ductility for Fe-Cr-Ni, precipitation hardenable           | ÷, |
|                                                                                                    | 21 |
| Figure 5 SRL Fracture test specimens                                                               | 22 |
| Figure 6 Notch orientation and the forging flow lines                                              | 23 |
| Figure 7 Forging flow lines as shown by scanning electron microscope (SEM). The                    |    |
|                                                                                                    | 23 |
| Figure 8 J-integral test results for HERF 304L under various test environments and                 |    |
| specimen conditions                                                                                | 24 |
| Figure 9 J-integral test results for HERF Nitronic 40 <sup>®</sup> (21-6-9) under various test     |    |
| environments and specimen conditions                                                               | 25 |
| Figure 10 J-integral test results for HERF Nitronic 50 <sup>®</sup> (22-13-5) under various test   |    |
| environments and specimen conditions (based on Data Sheet IIC-3 in Ref.                            |    |
| [1])                                                                                               | 25 |
| Figure 11 J-integral test results for HERF A-286 under various test environments and               |    |
| specimen conditions                                                                                | 26 |
| Figure 12 J-integral test results for HERF 316 under various test environments and                 |    |
| specimen conditions                                                                                | 26 |
| Figure 13 Fracture toughness (J <sub>m</sub> ) for various types of stainless steel. Note that the |    |
| values for HERF materials were averaged by the number of orientations that                         |    |
| were tested                                                                                        | 28 |
| Figure 14 Thickness and notch effects on fracture toughness (J <sub>m</sub> ) of HERF 21-6-9 in    |    |
| hydrogen environment                                                                               | 29 |

## **EXECUTIVE SUMMARY**

Archival materials test data on austenitic stainless steels for service in high pressure hydrogen gas has been reviewed. The bulk of the data were from tests conducted prior to 1983 at the Savannah River Laboratory, the predecessor to the Savannah River National Laboratory, for pressures up to 69 MPa (10,000 psi) and at temperatures within the range from 78 to 400 K (-195 to 127 °C). The data showed several prominent effects and correlations with test conditions:

- There was a significant reduction in tensile ductility as measured by reduction of area or by the total elongation with hydrogen. Hydrogen effects were observed when the specimens were tested in the hydrogen environment, or the specimens were precharged in high pressure hydrogen and tested in air or helium.
- There was a significant reduction in fracture toughness with hydrogen (and sometimes in tearing modulus which is proportional to the slope of the crack resistance curve).
- The effects of hydrogen can be correlated to the nickel content of the iron-chromiumnickel steels. The optimal nickel content to retain the tensile ductility in wrought Fe-Cr-Ni alloys was 10 to at least 20 wt.%.
- The effects of hydrogen can be correlated to the grain size. Large grain sizes exhibited a greater loss of ductility compared to small grain sizes.

The Savannah River Laboratory test data, especially those not readily available in the open literature, along with the sources of the data, are documented in this report.

## INTRODUCTION

The Savannah River Laboratory (SRL), the predecessor to the Savannah River National Laboratory (SRNL), had carried out decades of research on the effects of hydrogen and hydrogen isotopes on the mechanical properties of materials in support of high pressure hydrogen and hydrogen isotope systems materials selection and design. Caskey [1] in 1983 provided the most comprehensive SRL database, in which the stainless steels were categorized into four major groups or alloy types:

Type I) Iron-Chromium-Nickel Alloys – 304L, 304N, 309S, 310, 316, Carpenter 20 Cb-3, Incoloy<sup>®</sup> 800H (Huntington Alloys Inc.), Nickel 200, Nickel 301, and 440 C;

Type II) Iron-Chromium-Nickel-Manganese Alloys – Tenelon<sup>®</sup> (U. S. Steel Corp.), Nitronic<sup>®</sup>- 40 or 21-6-9 (Armco, Inc.), Nitronic<sup>®</sup>-50 or 22-13-5 (Armco, Inc.), 18-18 Plus<sup>®</sup> (Carpenter Technology), X18-3 Mn, 18-2 Mn, and 216;

Type III) Precipitation Hardenable Alloys – A-286, JBK-75 (a modified form of A-286), 17-4PH, AM-363, CG-27, and Ni-SPAN-C (Alloy 902); and

Type IV) High purity alloys – Alloy A (18Cr-10Ni), Alloy B (18Cr-14Ni), and Alloy C (18Cr-19Ni).

The type of tests and test conditions of the database in Reference [1], excluding the tritium results, is provided in Tables 1 to 4, corresponding to each of the four alloy categories as described above. Tables 1 to 4 contain the alloy composition, test environment, material treatment, data type, and the location of the datasheets in Reference [1], which were reproduced in Appendix A of this report. In addition, Caskey and Ratliff [2] reported materials considerations in developing onboard hydrogen storage systems (and options) for vehicular use in an early initiative (1970s) for hydrogen as a replacement for hydrocarbon fuel with a key date set to 2015. The hydrogen effects on structural materials including austenitic stainless steels, embrittlement mechanisms, and fracture modes, etc. were thoroughly discussed. The stainless steel test data in Reference [2], and those published in the public domain, such as Caskey, et al. [3,4], Louthan, et al. [5,6], and Somerday, et al. [7], were carefully compared with those in Reference [1]. The data generated at SRL and relevant to mechanical properties for hydrogen systems materials selection and design are reported collectively in this report.

Some already-published results are included for completeness, or included after corrections were made. All the data included in this report will be consistent with the datasheets in Reference [1] from pp. 81-123. In particular, the ultimate tensile strength (UTS) has been converted, as possible, to the quantity that is commonly defined as the engineering stress at the peak load. The true (plastic) strain at failure has been converted to a more familiar parameter, Reduction of Area (RA). These results are listed in Tables 5-8. The original definitions of the measured quantities in Appendix A were listed in Appendix B. The Appendices C and D are, respectively, the test specimen geometries

and the actual heats of the specimens, as were referenced by the datasheets in Appendix A.

The updated tensile properties of stainless steels are tabulated in this report. The dependence of iron-chromium-nickel alloys on the nickel content is emphasized. The grain size effect is discussed with 304L stainless steel test data. Following the tensile data, the fracture testing is discussed. Both  $J_m$  (J-integral at the maximum load) and stress intensity factor (K) were reported for stainless steels under various test environments and exposure conditions. The orientation effect of the high energy rate forging (HERF) is discussed. A limited amount of specimen sensitivity study on the effect of thickness and notch/precrack was conducted.

A review of the test methods and results summarized in this report demonstrates the importance of standardized testing. A large deviation of test data may be expected for material testing with material precharged hydrogen versus material tested in high pressure hydrogen gas.

| I. Iron-Chro                                    | mium-Nickel A                    | Alloys                                                     |                                              |                                                                      |                                                   |
|-------------------------------------------------|----------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|
| Type and<br>composition<br>(wt.%)               | Test<br>Environment              | Exposure<br>Condition                                      | Data Type                                    | Remarks                                                              | Data Sheets<br>and page<br>numbers in<br>Ref. [1] |
| 304L<br>bar stock, as<br>received<br>19Cr, 10Ni | 78K (LN) –<br>380K (air)         | None &<br>69 MPa H <sub>2</sub> ,<br>470K,<br>1449 days    | Tensile                                      | LN: Liquid<br>Nitrogen                                               | IA-1<br>page 81                                   |
| 304L<br>as received                             | 78 (air),<br>298K (air)          | None &<br>17.9 MPa<br>H <sub>2</sub> , 470K,<br>1000 hours | Charpy:<br>Impact<br>Energy                  |                                                                      | IA-2<br>page 81                                   |
| 304L<br>tube                                    | 69 MPa<br>H <sub>2</sub> /He, RT | H <sub>2</sub> /He,<br>425K, 8 and<br>32 days              | Tensile                                      | RT: Room<br>Temperature                                              | IA-3<br>page 82                                   |
| 304L HERF                                       | 200-380K<br>air                  | None &<br>69 MPa H <sub>2</sub> ,<br>620K,<br>3 weeks      | Tensile                                      | HERF: high<br>energy rate<br>forged                                  | IA-5<br>page 83                                   |
| 304L HERF                                       | 77 and<br>298K, air              | None &<br>29.6 MPa<br>H <sub>2</sub> , 470K,<br>56 days    | Charpy                                       |                                                                      | IA-6<br>page 83                                   |
| 304L HERF                                       | 69 MPa<br>He /H <sub>2</sub>     | None &<br>69 MPa D <sub>2</sub> ,<br>620K,<br>3 weeks      | Fracture C-<br>specimen<br>(J <sub>m</sub> ) | D <sub>2</sub> :<br>Deuterium;<br>J <sub>m</sub> : J at max.<br>load | IA-7<br>page 84                                   |

Table 1 Test data and references for iron-chromium-nickel alloys

| 304L HERF                                                   | 69 MPa<br>He /H <sub>2</sub>                                                         | None &<br>69 MPa D <sub>2</sub> ,<br>620K,<br>3 weeks                                                  | Fracture C-<br>specimen<br>(dJ/da)                                | dJ/da:<br>tearing<br>capability | IA-8<br>page 85  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------|------------------|
| 304L heat<br>treated, GS<br>9.5 -340 μm                     | 69 MPa<br>He/H <sub>2</sub>                                                          |                                                                                                        | Tensile                                                           | GS: grain<br>size               | IA-9<br>page 86  |
| 304L heat<br>treated, GS<br>6.1 -290 μm                     | 220K                                                                                 | None & 69<br>MPa (4.7cc<br>D <sub>2</sub> /cc)                                                         | Tensile                                                           |                                 | IA-10<br>page 86 |
| 304L<br>GS 6µm                                              | 220K,<br>Crosshead:<br>51 & 0.51<br>mm/min                                           | None &<br>69 MPa,<br>3 weeks                                                                           | Tensile                                                           |                                 | IA-11<br>page 87 |
| 304L heat<br>treated,<br>solution<br>anneal &<br>sensitized | 69 MPa Air,<br>He, & H <sub>2</sub>                                                  |                                                                                                        | Tensile                                                           |                                 | IA-12<br>page 87 |
| 304L<br>notched bar                                         | Air<br>(0.1MPa);<br>He & H <sub>2</sub><br>(69 MPa)                                  |                                                                                                        | Tensile                                                           |                                 | IA-13<br>page 88 |
| 304L<br>notched bar                                         |                                                                                      | Annealed<br>Ag, 380K,<br>200 days;<br>69 MPa H <sub>2</sub> ,<br>380K,<br>200 days                     | Tensile                                                           |                                 | IA-14<br>page 89 |
| 304L<br>notched bar                                         | Air, 0.1 MPa<br>H <sub>2</sub> , 1.03<br>MPa H <sub>2</sub> ,<br>6.89 H <sub>2</sub> |                                                                                                        | Tensile                                                           |                                 | IA-15<br>page 89 |
| 304L                                                        | RT, H <sub>2</sub> ,<br>prestress 772<br>MPa, Creep<br>325 to 614<br>hours           |                                                                                                        | Pre-existing<br>crack in<br>tensile tube:<br>Slow Crack<br>Growth |                                 | IA-16<br>page 90 |
| 304N<br>19Cr, 9Ni,<br>0.13N                                 | 200-298K,<br>air and<br>69 MPa He<br>and H <sub>2</sub>                              | None &<br>69 MPa H <sub>2</sub><br>430K, 1000<br>hours;<br>69 MPa D <sub>2</sub> ,<br>620K,<br>3 weeks | Tensile                                                           |                                 | IB-1<br>page 91  |

| 2000                   |                       | NI CO                 | TT '1   | IC 1    |
|------------------------|-----------------------|-----------------------|---------|---------|
| 309S                   | Air, 69 MPa           | None, 69              | Tensile | IC-1    |
| 23Cr, 13Ni             | He and H <sub>2</sub> | MPa H <sub>2</sub>    |         | page 92 |
|                        |                       | 430K 14               |         |         |
|                        |                       | days; 28              |         |         |
|                        |                       | MPa H <sub>2</sub> ,  |         |         |
|                        |                       | 470K,                 |         |         |
|                        |                       | 100 hours             |         |         |
| 310 bar                | 78 (LN) to            | None & 69             | Tensile | ID-1    |
| stock, as              | 380K (air)            | MPa H <sub>2</sub>    |         | page 93 |
| received               |                       | 470K                  |         |         |
| 25Cr, 20Ni,            |                       | 1449 days             |         |         |
| 0.25C                  |                       |                       |         |         |
| 310                    | 298K, air             | None &                | Tensile | ID-2    |
|                        | and 69 MPa            | 69 MPa H <sub>2</sub> |         | page 93 |
|                        | H <sub>2</sub> , He   | 430K                  |         | r       |
|                        | 112, 110              | 1000 hours            |         |         |
| 316 bar                | air                   | None &                | Tensile | IE-1    |
| stock, as              |                       | $69 \text{ MPa H}_2$  |         | page 94 |
| received               |                       | 620K                  |         | puge    |
| 17Cr, 12Ni,            |                       | 3 weeks               |         |         |
| 2.5Mo                  |                       | 5 WEEKS               |         |         |
| Carpenter 20           | Air 200               | None &                | Tensile | IF-1    |
| Ch-3 <sup>®</sup> as   | &298K; 69             | $69 \text{ MPa } D_2$ | Tenshe  | page 95 |
| received               | MPa H <sub>2</sub>    |                       |         | page 95 |
|                        | -                     | 620K,                 |         |         |
| 20Cr, 34Ni,            | 298K                  | 3 weeks               |         |         |
| 2.5Mo,                 |                       |                       |         |         |
| 3.5Cu,                 |                       |                       |         |         |
| 0.6Nb                  |                       |                       |         |         |
| Incoloy®               | 78 (LN) to            | None &                | Tensile | IG-1    |
| 800H, hot              | 380 K air             | 69 MPa H <sub>2</sub> |         | page 95 |
| rolled plate,          |                       | 620K                  |         |         |
| solution               |                       | 3 weeks               |         |         |
| annealed               |                       |                       |         |         |
| 21CR, 32Ni,<br>0.75Cu, |                       |                       |         |         |
| 0.3Al, 0.3Ti           |                       |                       |         |         |
| Nickel 200             | 298K air,             | none                  | Tensile | IH-1    |
| (annealed              | 69 MPa He             |                       |         | page 96 |
| 1090K 15               | and H <sub>2</sub>    |                       |         | Page 70 |
| min, furnace           |                       |                       |         |         |
| cool); Plus            |                       |                       |         |         |
| additional             |                       |                       |         |         |
| annealed               |                       |                       |         |         |
| 773K 64                |                       |                       |         |         |
| hours, air             |                       |                       |         |         |
| cooled)                |                       |                       |         |         |
| 99+ Ni                 |                       |                       |         |         |

| Nickel 200,<br>Notched bar<br>(annealed<br>1090K 15<br>min, furnace<br>cool); Plus<br>additional<br>annealed<br>773K 64<br>hours, air<br>cooled)                                                   | 298K air,<br>69 MPa He<br>and H <sub>2</sub> | None                                                | Tensile | IH-2<br>page 96 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|---------|-----------------|
| Nickel 301,<br>(annealed<br>1170K 5 min,<br>quenched);<br>Plus<br>additional<br>annealed<br>860K 16<br>hours, 810K 5<br>hours, 755K 5<br>hours, furnace<br>cooled)<br>bal Ni, 1Si,<br>4.5Al, 0.6Ti | 298K air,<br>69 MPa He<br>and H <sub>2</sub> | none                                                | Tensile | IJ-1<br>page 97 |
| Nickel 301,<br>notched bar<br>(annealed<br>1170K 5<br>min,<br>quenched);<br>Plus<br>additional<br>annealed<br>860K 16<br>hours, 810K<br>5 hours,<br>755K 5<br>hours,<br>furnace<br>cooled)         | 298K air,<br>69 MPa He<br>and H <sub>2</sub> | none                                                | Tensile | IJ-2<br>page 97 |
| 440C<br>19Cr,<br>0.75Mo,<br>0.95 to 1.2C                                                                                                                                                           | 298K air                                     | None &<br>69 MPa D <sub>2</sub><br>620K,<br>3 weeks | Tensile | IK-1<br>page 98 |

| II. Iron-Chromium-Nickel-Manganese Alloys                                                                                                      |                                             |                                                        |                                  |                                                                         |                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|
| Type and<br>composition<br>(wt.%)                                                                                                              | Test<br>Condition                           | Exposure<br>Condition                                  | Data Type                        | Remarks                                                                 | Data Sheets<br>and page<br>numbers in<br>Ref. [1] |
| Tenelon <sup>®</sup> plate,<br>as received,<br>electropolished,<br>annealed<br>1170K 24<br>hours, annealed<br>1270K 24<br>hours<br>18Cr, 15 Mn | 78 (LN) –<br>350K air                       | None &<br>69 MPa H <sub>2</sub><br>620K<br>3 weeks     | Tensile                          |                                                                         | IIA-1<br>page 99                                  |
| Tenelon®                                                                                                                                       | air, 69 MPa<br>He, 69 MPa<br>H <sub>2</sub> | None & 69<br>MPa H <sub>2</sub><br>423K,<br>1000 hours | Tensile                          |                                                                         | IIA-2<br>page 100                                 |
| Tenelon <sup>®</sup> as<br>received,<br>Anneal 1170K,<br>Anneal 1270K                                                                          | 78 and<br>200K                              |                                                        | Fracture-<br>SENT<br>(K)         | SENT:<br>single edge<br>notched<br>tension,<br>K: fracture<br>toughness | II-A3<br>page 100                                 |
| Nitronic <sup>®</sup> 40<br>(21-6-9)<br>bar stock, as<br>received<br>21Cr, 6Ni,<br>9Mn, 0.15 to<br>0.4N                                        | 78 (LN) –<br>380K air                       | None &<br>69 MPa H <sub>2</sub><br>620K<br>3 weeks     | Tensile                          |                                                                         | IIB-1<br>page 101                                 |
| Nitronic <sup>®</sup> 40<br>heat treated:<br>solution Anneal<br>& Sensitized                                                                   | 200 and<br>230K air                         | None                                                   | Smooth and<br>Notched<br>Tensile |                                                                         | IIB-2<br>page 102                                 |
| Sensitized<br>Nitronic <sup>®</sup> 40<br>Solution<br>Annealed, 920<br>K-2 hr, 920K-<br>24 hr                                                  | 69 MPa He,<br>69 MPa H2                     | None                                                   | Smooth and<br>Notched<br>Tensile |                                                                         | IIB-3<br>page 103                                 |

 Table 2 Test data and references for iron-chromium-nickel-manganese alloys

 II. Iron-Chromium-Nickel-Manganese Alloys

| Sensitized<br>Nitronic <sup>®</sup> 40<br>Solution<br>Annealed,<br>920K-24 hr                                 | 200K                                              | None &<br>69 MPa H <sub>2</sub><br>620K<br>3 weeks              | Tensile                         | Crosshead:<br>5 and 0.5<br>mm/min | IIB-4<br>page 103  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|---------------------------------|-----------------------------------|--------------------|
| Nitronic <sup>®</sup> 40                                                                                      | 298K air,<br>69 MPa He,<br>69 MPa H <sub>2</sub>  | None                                                            | Tensile                         |                                   | IIB-5<br>page 104  |
| Nitronic <sup>®</sup> 40<br>Cold Worked<br>30%                                                                | 298K air,<br>69 MPa He,<br>69 MPa H <sub>2</sub>  | None &<br>30 MPa H <sub>2</sub>                                 | Tensile                         |                                   | IIB-6<br>page 104  |
| Nitronic <sup>®</sup> 40<br>HERF                                                                              | 78K (LN) –<br>380K air                            | None, 69<br>MPa 470K<br>1449 days,<br>69 MPa<br>620K<br>21 days | Tensile                         |                                   | IIB-7<br>page 105  |
| Nitronic <sup>®</sup> 40<br>HERF                                                                              | 298K, air,<br>69 MPa He,<br>69 MPa H <sub>2</sub> | None &<br>28 MPa H <sub>2</sub>                                 | Tensile                         |                                   | IIB-8<br>page 105  |
| Nitronic <sup>®</sup> 40<br>HERF                                                                              | 77K (LN) &<br>298K air                            | None &<br>29.6 MPa<br>H <sub>2</sub> 470K<br>56 days            | Charpy:<br>Impact<br>Energy     |                                   | IIB-9<br>page 106  |
| Nitronic <sup>®</sup> 40<br>HERF                                                                              | 298K, 69<br>MPa He, 69<br>MPa H <sub>2</sub>      | None &<br>0.6 MPa H <sub>2</sub>                                | Fracture: C-<br>specimen<br>(K) |                                   | IIB-10<br>page 106 |
| Nitronic <sup>®</sup> 40<br>HERF                                                                              | 69 MPa He,<br>69 MPa H <sub>2</sub>               | Annealed in<br>He, 69 MPa<br>D <sub>2</sub> 620K<br>3 weeks     | Fracture: J <sub>m</sub>        |                                   | IIB-11<br>page 107 |
| Nitronic <sup>®</sup> 40<br>HERF                                                                              | 69 MPa He,<br>69 MPa H <sub>2</sub>               | Annealed in<br>He, 69 MPa<br>D <sub>2</sub> 620K<br>3 weeks     | Fracture:<br>dJ/da              |                                   | IIB-12<br>page 108 |
| Nitronic <sup>®</sup> 50<br>(22-13-5)<br>bar stock, as<br>received<br>22Cr, 13Ni,<br>5Mn, 2Mo, 0.2<br>to 0.4N | 78K (LN) –<br>380K air                            | None &<br>69 MPa H <sub>2</sub><br>620K<br>3 weeks              | Tensile                         |                                   | IIC-1<br>page 109  |
| Nitronic <sup>®</sup> 50<br>bar stock, as<br>received                                                         | 298K, air,<br>69 MPa He,<br>69 MPa H <sub>2</sub> | None                                                            | Tensile                         |                                   | IIC-2              |

| Nitronic <sup>®</sup> 50 | 298K, air,            | None &     | Fracture: J <sub>m</sub> | IIC-3    |
|--------------------------|-----------------------|------------|--------------------------|----------|
| HERF                     | 69 MPa He,            | D2 620K    | and dJ/da                | page 110 |
|                          | 69 MPa H <sub>2</sub> | 3 weeks    |                          |          |
| 18-18 Plus®              | 298K,                 | None       | Tensile                  | IID-1    |
| 18Cr,0.5Ni,              | 69 MPa He,            |            |                          | page 110 |
| 18Mn, 1Mo,               | 69MPa H <sub>2</sub>  |            |                          |          |
| 0.4N, 1Cu,               |                       |            |                          |          |
| 0.1Co                    |                       |            |                          |          |
| X18-3 Mn                 | 298K, air,            | None       | Tensile                  | IIE-1    |
| Stainless Steel          | 69 MPa He,            |            |                          | page 111 |
| 18Cr, 3Ni,               | 69 MPa H <sub>2</sub> |            |                          |          |
| 12Mn, 0.3N               |                       |            |                          |          |
|                          |                       |            |                          |          |
| 18-2 Mn                  | 298K, air,            | None       | Tensile                  | IIF-1    |
| Stainless Steel          | 69 MPa H <sub>2</sub> |            |                          | page 111 |
| 18Cr, 2Ni,               |                       |            |                          |          |
| 13Mn                     |                       |            |                          |          |
| 216                      | 298K, air,            | None &     | Tensile                  | IIG-1    |
| 20Cr, 6Ni,               | 69 MPa He,            | 69 MPa     |                          | page 112 |
| 8Mn, 2Mo,                | 69 MPa H <sub>2</sub> | 430K       |                          |          |
| 0.32N                    |                       | 1000 hours |                          |          |

Table 3 Test data and references for precipitation hardenable alloys

| III. Precipitatio      | III. Precipitation Hardenable Alloys |                       |             |         |             |  |
|------------------------|--------------------------------------|-----------------------|-------------|---------|-------------|--|
| Type and               | Test                                 | Exposure              | Data Type   | Remarks | Data Sheets |  |
| composition            | Environment                          | Condition             |             |         | and page    |  |
| (wt.%)                 |                                      |                       |             |         | numbers in  |  |
|                        |                                      |                       |             |         | Ref. [1]    |  |
| A286                   | 220 and                              | None &                | Tensile     |         | IIIA-1      |  |
| 15CR, 26Ni,            | 298K, air                            | 2.1 MPa Ar,           |             |         | page 113    |  |
| 1.25Mo, 2Ti,           |                                      | 69 MPa D <sub>2</sub> |             |         |             |  |
| 0.25Al, 0.3V           |                                      | 620K                  |             |         |             |  |
|                        |                                      | 3 weeks               |             |         |             |  |
| A286 HERF              | 298K,                                | None & 1.6            | Fracture: K |         | IIIA-2      |  |
| (Heat 1, Heat          | 69 MPa He,                           | MPa D <sub>2</sub>    |             |         | page 114    |  |
| 2, R <sub>c</sub> -11) | 69 MPa H <sub>2</sub>                | 990K 8                |             |         |             |  |
|                        |                                      | hours; 1.5            |             |         |             |  |
|                        |                                      | MPa D <sub>2</sub>    |             |         |             |  |
|                        |                                      | 990K 8                |             |         |             |  |
|                        |                                      | hours                 |             |         |             |  |

| A286 base<br>metal and weld<br>metal                                                                                  | 298K air                                                                                                   | 0.21 MPa<br>Ar 370K<br>200 days                              | Charpy:<br>Impact<br>Energy                  | Contains<br>data for<br>specimens<br>exposed to<br>deuterium<br>and tritium | IIIA-3<br>page 115 |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|--------------------|
| A286                                                                                                                  | 69 MPa He,<br>69 MPa H <sub>2</sub>                                                                        | 69 MPa D <sub>2</sub><br>620K<br>3 weeks                     | Fracture C-<br>specimen<br>(J <sub>m</sub> ) |                                                                             | IIIA-4<br>page 116 |
| A286                                                                                                                  | 69 MPa He,<br>69 MPa H <sub>2</sub>                                                                        | 69 MPa D <sub>2</sub><br>620K 3<br>weeks                     | Fracture C-<br>specimen<br>(dJ/da)           |                                                                             | IIIA-5<br>page 117 |
| JBK-75 HERF<br>15Cr, 30Ni,<br>1.25Mo, 2Ti,<br>0.25Al,<br>0.001B, 0.25V                                                | 298K,<br>69 MPa He,<br>69MPa H <sub>2</sub>                                                                | None                                                         | Tensile                                      |                                                                             | IIIB-1<br>page 118 |
| JBK-75 HERF                                                                                                           | 298K,<br>69 MPa He,<br>69MPa H <sub>2</sub>                                                                | None & 0.7<br>MPa D <sub>2</sub><br>625K                     | C-shaped<br>Fracture: K                      |                                                                             | IIIB-2<br>page 118 |
| 17-4 Stainless<br>Steel, tensile<br>tubes<br>16.5Cr, 4Ni,<br>4Cu, 0.3Nb                                               | 298K, air,<br>69 MPa He                                                                                    | 69 MPa He                                                    | Tensile                                      | Contains<br>data for<br>specimens<br>exposed to<br>deuterium<br>and tritium | IIIC-1<br>page 119 |
| 17-4 PH<br>Stainless Steel<br>Solution<br>annealed 2 hrs<br>1339K, aged 1<br>hour 709-866K                            | 69 MPa He,<br>3.5 MPa H <sub>2</sub> ,<br>69 MPa H <sub>2</sub>                                            | None                                                         | C-shaped<br>Fracture: K                      | Hardness;<br>R <sub>c</sub> data<br>available                               | IIIC-2<br>page 119 |
| AM-350,<br>Condition H –<br>annealed 1310<br>to 1350K air<br>cool or water<br>quench<br>16.5Cr, 4.3Ni,<br>2.8Mo, 0.1N | 298K, air,<br>69 MPa He,<br>69 MPa D <sub>2</sub> ,<br>6.9 MPa D <sub>2</sub> ,<br>0.69 MPa D <sub>2</sub> | None &<br>69 MPa<br>570K<br>26 days<br>(test in air<br>only) | Tensile                                      |                                                                             | IIID-1<br>page 120 |
| AM-363<br>11.5Cr, 4.5Ni,<br>0.5Ti                                                                                     | 298K air                                                                                                   | None &<br>0.21 MPa<br>D <sub>2</sub> 630K<br>5 days          | Smooth and<br>Notched<br>Tensile             |                                                                             | IIIE-1<br>page 120 |

| CG-27          | 298K air,               | None &                | Tensile | IIIF-1   |
|----------------|-------------------------|-----------------------|---------|----------|
| (also CG-27    | 69 MPa He,              | 69 MPa H <sub>2</sub> |         | page 121 |
| HERF)          | 69 MPa H <sub>2</sub>   | 425K 72               |         |          |
| 13Cr, 38Ni,    |                         | hours                 |         |          |
| 6Mo, 2.5Ti,    |                         |                       |         |          |
| 1.6Al, 0.6Nb   |                         |                       |         |          |
| Ni-SPAN-C      | 298K, air,              | None                  | Tensile | IIIG-1   |
| (Alloy 902)    | 69 MPa He,              |                       |         | page 121 |
| Sheet          | 69 MPa H <sub>2</sub> , |                       |         |          |
| specimens 0.25 | 6.9 MPa H <sub>2</sub>  |                       |         |          |
| & 19 mm gage   |                         |                       |         |          |
| length         |                         |                       |         |          |
| 5Cr, 42Ni,     |                         |                       |         |          |
| 0.5Al, 2.5Ti   |                         |                       |         |          |

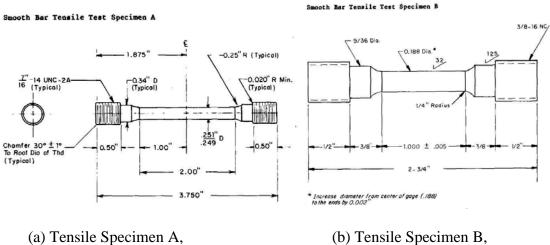
 Table 4 Test data and references for high purity alloys

| IV. High Purity Alloys |             |                       |           |         |             |  |  |  |  |
|------------------------|-------------|-----------------------|-----------|---------|-------------|--|--|--|--|
| Type and               | Test        | Exposure              | Data Type | Remarks | Data Sheets |  |  |  |  |
| composition            | Environment | Condition             |           |         | and page    |  |  |  |  |
| (wt.%)                 |             |                       |           |         | numbers in  |  |  |  |  |
|                        |             |                       |           |         | Ref. [1]    |  |  |  |  |
| Alloy A                | 78 (LN) –   | None &                | Tensile   |         | IVA-1       |  |  |  |  |
| 18Cr, 10Ni,            | 370K air    | 69 MPa H <sub>2</sub> |           |         | page 122    |  |  |  |  |
| N<0.01                 |             | 620K                  |           |         |             |  |  |  |  |
|                        |             | 3 weeks               |           |         |             |  |  |  |  |
| Alloy B                | 78 (LN) –   | None &                | Tensile   |         | IVB-1       |  |  |  |  |
| 18Cr, 14Ni,            | 370K air    | 69 MPa H <sub>2</sub> |           |         | page 123    |  |  |  |  |
| N<0.01                 |             | 620K                  |           |         |             |  |  |  |  |
|                        |             | 3 weeks               |           |         |             |  |  |  |  |
| Alloy C                | 78 (LN) –   | None &                | Tensile   |         | IVC-1       |  |  |  |  |
| 18Cr, 19Ni,            | 370K air    | 69 MPa H <sub>2</sub> |           |         | page 123    |  |  |  |  |
| N<0.01                 |             | 620K                  |           |         |             |  |  |  |  |
|                        |             | 3 weeks               |           |         |             |  |  |  |  |

## **TENSILE PROPERTIES**

Most of the tensile tests referenced in Tables 1 to 4 above were carried out with smooth bar specimens as shown in Figure 1 with gage lengths 12.7, 25.4, and 50.8 mm (or  $\frac{1}{2}$ , 1, and 2 inches), respectively. The test temperature ranged from 4 K (liquid helium) [8], 78 K (liquid nitrogen) to 380 K in air [1]. The test pressure was up to 69 MPa (10,00 psi) in helium or hydrogen. The test specimens included the unexposed and the hydrogen or deuterium charged at various temperatures, lengths of time, and pressures. The test data were reported as 0.2% offset yield stress, stress at 5% strain, UTS or UTS in true stress, uniform elongation (elongation at UTS), elongation at break or total elongation, reduction

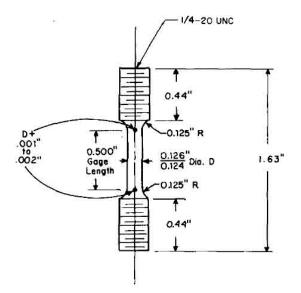
of area, and/or true failure strain. Occasionally, there were tests conducted with thin sheet specimens and tube specimens [1]. The data from circumferentially notched tensile bars were not included in this report, since they were used to enhance the hydrogen effect by stress concentration and therefore do not represent standard tensile properties. Most of the tensile tests were carried out with a crosshead speed of 0.5mm/min for specimens with 25.4 mm gage (Tensile Specimen B in Fig. 1) [1,4,9-12].


Tables 5 through 8 list the tensile properties of alloys Type I (Fe-Cr-Ni), Type II (Fe-Cr-Ni-Mn), Type III (precipitation hardenable), and Type IV (high purity), respectively. Because various hydrogen exposure conditions would result in drastic change of mechanical properties, Tables 5 to 8 contain data only from the unexposed specimens tested in air and in 69 MPa gaseous environments (hydrogen and helium) at room temperature (298 K). The yield stress refers to the stress at 0.2% strain unless otherwise specified (e.g., stress at 5% strain will be denoted as "5%"), ultimate tensile strength (UTS, or engineering stress at the peak load), uniform elongation (engineering strain at UTS before necking takes place) unless otherwise specified (denoted by "true" if only the true stress was reported), total elongation (engineering strain at failure), reduction of area (RA, defined as  $1-R_f/R_o$ , where  $R_o$  is the original cross-sectional area of the tensile specimen, and R<sub>f</sub> is the final cross-sectional area at break). Note that the elongation data are specimen gage length sensitive, the SRL tensile specimen types (i.e., Type A, B, and C in Fig. 1) and the gage lengths are included in Tables 5 to 8. The original (e.g., laboratory notebooks or internal reports/memoranda) data sources are provided if possible. The data attributes (such as the stress and strain measures, or the yield stress definitions) found in open literature and in the internal SRL reports may be occasionally inconsistent. If this was observed, the data information reported in the datasheets of Reference [1] was considered as accurate.

The following equations are used to convert the non-conventional data definitions in the SRL datasheets [1], unless the needed parameters are not provided:

UTS = (True ultimate tensile Stress in Ref. [1])/(1 + Uniform Elongation) RA =  $1 - \exp(-\epsilon_p^f)$ , where  $\epsilon_p^f$  is the true strain at failure [1].

If the uniform elongation was not reported, then the conventional UTS (engineering stress) cannot be converted from the reported value of true stress. Also note that the total elongation is not easily related to RA or  $\varepsilon_p^f$  via the plastic incompressibility unless the curvature of the deformed gage section is measured, since the cross-sectional area is no longer uniform in the post-necking configuration.


When the data or the references are not found, the entries in Tables 5 to 8 will be marked as "-".



(a) Tensile Specimen A, Gage length: 50.8 mm (2 in.)

(b) Tensile Specimen B, Gage length: 25.4 mm (1 in.)

Smooth Bar Tensile Test Specimen C



(c) Tensile Specimen C, Gage length: 12.7 mm (<sup>1</sup>/<sub>2</sub> in.)

Figure 1 SRL tensile test specimens

|                                  |                           | T                                               | th (MDa)                                           |                            |                          |                                      |                              |                   |
|----------------------------------|---------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------|--------------------------------------|------------------------------|-------------------|
|                                  |                           |                                                 | th (MPa)                                           | -                          | Ductil                   | ity (%)                              | 1                            |                   |
| Alloy                            | Test<br>Environ-<br>ment. | Stress at<br>0.2% offset<br>unless<br>specified | Ultimate<br>Tensile<br>Strength<br>(UTS)<br>unless | Uniform<br>Elonga-<br>tion | Total<br>Elonga-<br>tion | Speci-<br>men<br>Type<br>and<br>Gage | Reduction<br>of Area<br>(RA) | Ref.              |
|                                  |                           |                                                 | specified                                          |                            |                          | (mm)                                 |                              |                   |
| 304L                             | Air                       | -                                               | -                                                  | _                          | -                        |                                      | -                            | [1] IA-9,         |
| As received                      | He                        | 390 (5%)                                        | 574                                                | 62                         | 71                       | Type B                               | 89                           | [1] [1]           |
| Grain Size                       | H <sub>2</sub>            | 390 (5%)                                        | 583                                                | 56                         | 62                       | (25.4)                               | 76                           | L - J             |
| (GS)=9.5 µm                      |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| 304L                             | Air                       | -                                               | -                                                  | -                          | -                        |                                      | -                            | [13]              |
| Sensitized at                    | He                        | 380 (5%)                                        | 596                                                | 56                         | 63                       | Type B                               | 82                           |                   |
| 920K 24hrs                       | H <sub>2</sub>            | 380 (5%)                                        | 599                                                | 57                         | 63                       | (25.4)                               | 68                           |                   |
| (GSH10 µm)                       |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| 20.41                            | A :                       |                                                 |                                                    |                            |                          |                                      |                              | [1] [A [0]        |
| <b>304L</b><br>Annealed at       | Air<br>He                 | -<br>260 (5%)                                   | -<br>532                                           | -<br>82                    | -<br>89                  | Type B                               | -<br>90                      | [1] IA-9,<br>[13] |
| 1170K                            | He<br>H <sub>2</sub>      | 240 (5%)                                        | 515                                                | 82<br>88                   | 94                       | (25.4)                               | 90<br>92                     | [13]              |
| for 24hrs                        | 112                       | 2-10 (370)                                      | 515                                                | 00                         |                          | (23.7)                               |                              |                   |
| $GS=30\mu m$                     |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| 304L                             | Air                       | -                                               | -                                                  | -                          | -                        |                                      | -                            | [1] IA-9,         |
| Annealed at                      | He                        | 250 (5%)                                        | 510                                                | 90                         | 99                       | Type B                               | 90                           | [13]              |
| 1270K                            | $H_2$                     | 240 (5%)                                        | 500                                                | 86                         | 91                       | (25.4)                               | 69                           |                   |
| for 24hrs                        |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| GS=55µm                          |                           | -                                               |                                                    |                            |                          |                                      |                              |                   |
| 304L                             | Air                       | -                                               | -                                                  | -                          | -                        |                                      | -                            | [1] IA-9,         |
| annealed at                      | Не                        | 190 (5%)                                        | 458                                                | 81                         | 88                       | Type B                               | 89                           | [13]              |
| 1470K                            | H <sub>2</sub>            | 180 (5%)                                        | 451                                                | 84                         | 88                       | (25.4)                               | 65                           |                   |
| for 24hrs<br>GS=340µm            |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| <b>304L</b>                      | Air                       | _                                               | -                                                  | -                          | -                        |                                      | -                            | [13]              |
| As machined                      | He                        | _                                               | -                                                  | -                          | -                        | Type B                               | -                            | [13]              |
| i is inacimica                   | H <sub>2</sub>            | 370 (5%)                                        | 569                                                | 60                         | 66                       | (25.4)                               | 78                           |                   |
|                                  |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| 304L                             | Air                       | -                                               | -                                                  | -                          | -                        |                                      | -                            | [13]              |
| Electro-                         | He                        | 376 (5%)                                        | 589                                                | 68<br>62                   | 76                       | Type B                               | 91                           |                   |
| polished<br>304L                 | H <sub>2</sub>            | 370 (5%)                                        | 593                                                | 62                         | 73                       | (25.4)                               | 90                           | [12]              |
| SU4L<br>Electro-                 | Air<br>He                 | -                                               | -                                                  | -                          | -                        | Type B                               | -                            | [13]              |
| polished *                       | H <sub>2</sub>            | 390 (5%)                                        | 591                                                | - 64                       | 73                       | (25.4)                               | - 85                         |                   |
| Pd plated                        | 112                       | 590 (570)                                       | 571                                                | 0-                         | 15                       | (23.4)                               | 0.5                          |                   |
| 304L                             | Air                       | -                                               | -                                                  | -                          | -                        |                                      | -                            | [13]              |
| Annealed at                      | He                        | -                                               | -                                                  | -                          | -                        | Type B                               | -                            | -                 |
| 1170K, 5                         | $H_2$                     | 270 (5%)                                        | 519                                                | 83                         | 93                       | (25.4)                               | 87                           |                   |
| min. in                          |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| Argon,                           |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| Quenched in                      |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| 8% UCONC <sup>®</sup><br>Coolant |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| 304L                             | Air                       | _                                               | -                                                  | _                          | -                        |                                      | -                            | [13]              |
| Annealed at                      | He                        | -                                               | -                                                  | -                          | -                        | Type B                               | -                            | [13]              |
| 1170K , 5                        | H <sub>2</sub>            | 260 (5%)                                        | 532                                                | 86                         | 92                       | (25.4)                               | 83                           |                   |
| min. in                          | Ĩ                         | (-,-)                                           | -                                                  |                            |                          | ()                                   |                              |                   |
| vacuum,                          |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| slow cool                        |                           |                                                 |                                                    |                            |                          |                                      |                              |                   |
| 304L                             | Air                       | 380 (5%)                                        | 630 (true)                                         | -                          | -                        |                                      | 86                           | [1] IA-12         |
| Solution                         | He                        | 375 (5%)                                        | 600 (true)                                         | -                          | -                        | Type B                               | 89                           |                   |
| Anneal                           | $H_2$                     | 370 (5%)                                        | 580 (true)                                         | -                          | -                        | (25.4)                               | 75                           |                   |

Table 5 Tensile properties for Fe-Cr-Ni Alloys

| 304L                      | Air            | 300 (5%)   | 560 (true)  | -  | -  |        | 83    | [1] IA-12 |
|---------------------------|----------------|------------|-------------|----|----|--------|-------|-----------|
| Sensitized                | He             | 350 (5%)   | 670 (true)  | _  | -  | Type B | 89    | [1]       |
| Belisttized               | H <sub>2</sub> | 330-350    | 660 (true)  | -  | _  | (25.4) | 50-55 |           |
|                           | 112            | (5%)       | 000 (1140)  |    |    | (23.4) | 50 55 |           |
| 304N                      | Air            | 760        | 880         | -  | 33 | Type A | 71    | [1] IB-1  |
|                           | He             | 630        | 850         | -  | 43 | (50.8) | 74    |           |
|                           | H <sub>2</sub> | 640        | 840         | -  | 36 | ()     | 54    |           |
| 309S                      | Air            | 290        | 600         | -  | 54 | Type A | 72    | [1] IC-1  |
|                           | He             | 276        | 580         | -  | 60 | (50.8) | 71    |           |
|                           | $H_2$          | 260        | 586         | -  | 63 | , í    | 74    |           |
| 310                       | Air            | 210        | 540         | -  | 61 | Type A | 79    | [1] ID-2  |
|                           | He             | 180        | 480         | -  | 70 | (50.8) | 80    |           |
|                           | $H_2$          | 186        | 490         | -  | 67 |        | 82    |           |
| 316                       | Air            | -          | -           | -  | -  | (?)    | -     | [14]      |
| (unknown                  | He             | 186 (?)    | 565 (?)     | -  | 74 |        | 81    |           |
| data source)              | $H_2$          | 206 (?)    | 503 (?)     | -  | 48 |        | 33    |           |
| Carpenter                 | Air            | 236        | 600         | -  | 48 | Type B | 68    | [1] IF-1  |
| 20 Cb-3                   | He             | -          | -           | -  | -  | (25.4) | -     |           |
|                           | $H_2$          | 230        | 590         | -  | 48 |        | 68    |           |
| Incoloy®                  | Air            | 310 (5%)   | 554         | 48 | 55 | Type B | 62    | [1] IG-1  |
| 800H                      | He             | -          | -           | -  | -  | (25.4) | -     |           |
|                           | H <sub>2</sub> | -          | -           | -  | -  |        | -     |           |
| Nickel 200                | Air            | 88 (5%)    | 506 (true)  | -  | 55 | Type A | 90    | [1] IH-1  |
| Annealed at               | He             | 120 (5%)   | 490 (true)  | -  | 55 | (50.8) | 91    |           |
| 1090K, 15                 | $H_2$          | 106 (5%)   | 470 (true)  | -  | 51 |        | 53    |           |
| min, furnace              |                |            |             |    |    |        |       |           |
| cooled                    |                |            |             |    |    |        |       |           |
| Nickel 200                | Air            | 135 (5%)   | 480 (true)  | -  | 50 | Type A | 89    | [1] IH-1  |
| Annealed at               | He             | 122 (5%)   | 450 (true)  | -  | 48 | (50.8) | 87    |           |
| 1090K, 15                 | $H_2$          | 156 (5%)   | 460 (true)  | -  | 45 |        | 50    |           |
| min, Plus                 |                |            |             |    |    |        |       |           |
| annealed at               |                |            |             |    |    |        |       |           |
| 773K, 64                  |                |            |             |    |    |        |       |           |
| hrs, air                  |                |            |             |    |    |        |       |           |
| cooled                    | <u> </u>       |            |             |    |    |        |       |           |
| Nickel 301                | Air            | 451 (5%)   | 778 (true)  | -  | 39 | Type A | 85    | [1] IJ-1  |
| Annealed at               | He             | 486 (5%)   | 791 (true)  | -  | 34 | (50.8) | 74    |           |
| 1170K, 5                  | $H_2$          | 532 (5%)   | 618 (true)  | -  | 12 |        | 20    |           |
| min,                      |                |            |             |    |    |        |       |           |
| quenched                  |                | 1000 (50() | 1200 (/ )   |    | 22 |        | 20    | [1] TT 1  |
| Nickel 301                | Air            | 1008 (5%)  | 1380 (true) | -  | 23 | Type A | 39    | [1] IJ-1  |
| Annealed at               | He             | 1009 (5%)  | 1350 (true) | -  | 22 | (50.8) | 34    |           |
| 1170K, 5                  | $H_2$          | -          | 850 (true)  | -  | 4  |        | 0     |           |
| min, Plus                 |                |            |             |    |    |        |       |           |
| annealed                  |                |            |             |    |    |        |       |           |
| 860K 16 hrs,              |                |            |             |    |    |        |       |           |
| 810K 5 hrs,<br>and 755K 5 |                |            |             |    |    |        |       |           |
| hrs, furnace              |                |            |             |    |    |        |       |           |
| cooled                    |                |            |             |    |    |        |       |           |
| cooleu                    | 1              |            | I           |    |    |        |       |           |

|                           | Test                 |             | th (MPa)   |         |          | ity (%)   |           | Ref.       |
|---------------------------|----------------------|-------------|------------|---------|----------|-----------|-----------|------------|
| Alloy                     | Environ-             | Stress at   | Ultimate   | Uniform | Total    | Speci-    | Reduction | 1001.      |
| i illoj                   | ment.                | 0.2% offset | Tensile    | Elonga- | Elonga-  | men       | of Area   |            |
|                           | ment.                | unless      | Strength   | tion    | tion     | Туре      | (RA)      |            |
|                           |                      | specified   | (UTS)      | uon     | uon      | and       | (IXA)     |            |
|                           |                      | specified   |            |         |          |           |           |            |
|                           |                      |             | unless     |         |          | Gage      |           |            |
| <b>.</b>                  |                      |             | specified  |         |          | (mm)      |           | 543 TT 4 0 |
| Tenelon®                  | Air                  | 570         | 930        | -       | 56       | Type A    | 65        | [1] IIA-2  |
| (U.S. Steel               | He                   | 500         | 875        | -       | 65       | (50.8)    | 68        |            |
| Corp)                     | $H_2$                | 500         | 900        | -       | 55       |           | 47        |            |
| Nitronic <sup>®</sup> -40 | Air                  | 400         | 670        | -       | 58       | Type A    | 78        | [1] IIB-5  |
| (21-6-9)                  | He                   | 350         | 700        | -       | 69       | (50.8)    | 77        |            |
| (Armco, Inc)              | $H_2$                | 360         | 700        | -       | 61       |           | 76        |            |
| Nitronic <sup>®</sup> -40 | Air                  | 1240        | 1290       | -       | 26       | Type A    | 58        | [1] IIB-6  |
| (21-6-9)                  | He                   | 1010        | 1050       | -       | 26       | (50.8)    | 63        |            |
| Cold worked               | $H_2$                | 980         | 1100       | -       | 26       |           | 64        |            |
| 30%                       |                      |             |            |         |          |           |           |            |
| Nitronic <sup>®</sup> -40 | Air                  | 610         | 790        | -       | 34       | Type A    | 74        | [1] IIB-8  |
| (21-6-9)                  | Не                   | 570         | 780        | -       | 34       | (50.8)    | 75        |            |
| HERF                      | $H_2$                | 570         | 790        | -       | 30       | ()        | 73        |            |
| 21-6-9                    | Air                  | -           | -          | -       | -        | Type B    | -         | [15]       |
| As received               | He                   | 640         | 741        | 42      | 52       | (25.4)    | 67        | p.130      |
| 115 10001100              | H <sub>2</sub>       | 650         | 755        | 41      | 50       | (25.1)    | 70        | p.150      |
| 21-6-9                    | Air                  | -           | -          | -       | -        | Type B    | -         | [15]       |
| Heat treated              | He                   | 620         | 770        | 43      | 50       | (25.4)    | 78        | p.130      |
| at 923K 2                 | He<br>H <sub>2</sub> | 620         | 763        | 43      | 30<br>49 | (23.4)    | 78        | p.150      |
|                           | <b>Π</b> 2           | 020         | 703        | 42      | 49       |           | 10        |            |
| hrs, Argon<br>cooled      |                      |             |            |         |          |           |           |            |
| 21-6-9                    | Air                  | -           | -          | -       | -        | Type B    | _         | [15]       |
| Heat treated              | He                   | 607         | 760        | 46      | 53       | (25.4)    | 75        | p.130      |
| at 923K 24                | He<br>H <sub>2</sub> | 600         | 756        | 40      | 52       | (23.4)    | 67        | p.150      |
| hrs, Argon                | <b>Π</b> 2           | 000         | 750        | 40      | 52       |           | 07        |            |
| cooled                    |                      |             |            |         |          |           |           |            |
| Nitronic <sup>®</sup> -50 | A :                  | 440         | 710        |         | 42       | T A       | 70        | [1]][[C 2] |
|                           | Air<br>Ho            | 440         | 710        | -       | 43<br>47 | Type A    | 72<br>74  | [1]IIC-2   |
| (22-13-5)                 | He                   | 400         | 680<br>680 | -       |          | (50.8)    |           |            |
| (Armco, Inc)              | H <sub>2</sub>       | 400         | 680        | -       | 45       | T 4       | 73        |            |
| 18-18 <sup>®</sup> Plus   | Air                  | -           | -          | -       | -        | Type A    | -         | [1] IID-1  |
| (carpenter                | He                   | 520         | 910        | -       | 63       | (50.8)    | 78        | [2]        |
| Technology)               | H <sub>2</sub>       | 506         | 800        | -       | 42       |           | 34        |            |
| X18-3 Mn                  | Air                  | 580         | 810        | -       | 45       | Type A    | 71        | [1] IIE-1  |
|                           | He                   | 530         | 790        | -       | 50       | (50.8)    | 74        |            |
|                           | $H_2$                | 520         | 790        | -       | 46       |           | 73        |            |
| 18-2 Mn                   | Air                  | 730         | 1007       | -       | 51       | Type A    | 58        | [1] IIF-1  |
|                           | He                   | -           | -          | -       | -        | (50.8)    | -         |            |
|                           | $H_2$                | 660         | 924        | -       | 33       |           | 27        |            |
| 216                       | Air                  | 640         | 810        | -       | 40       | Type A    | 67        | [1] IIG-1  |
|                           | He                   | 590         | 790        | -       | 45       | (50.8)    | 70        |            |
|                           | $H_2$                | 590         | 780        | 1       | 44       | ( · · · / | 69        | 1          |

Table 6 Tensile properties for Fe-Cr-Ni-Mn Alloys

|                                               | Test              |                                                 | th (MPa)                                                        |                            |                          | ity (%)                                      |                              | Ref.       |
|-----------------------------------------------|-------------------|-------------------------------------------------|-----------------------------------------------------------------|----------------------------|--------------------------|----------------------------------------------|------------------------------|------------|
| Alloy                                         | Environ-<br>ment. | Stress at<br>0.2% offset<br>unless<br>specified | Ultimate<br>Tensile<br>Strength<br>(UTS)<br>unless<br>specified | Uniform<br>Elonga-<br>tion | Total<br>Elonga-<br>tion | Speci-<br>men<br>Type<br>and<br>Gage<br>(mm) | Reduction<br>of Area<br>(RA) |            |
| A286                                          | Air               | -                                               | -                                                               | -                          | -                        | (?)                                          | -                            | [14]       |
| (unknown                                      | He                | 724 (?)                                         | 1117 (?)                                                        | -                          | 26                       |                                              | 47                           |            |
| data source)                                  | $H_2$             | 710 (?)                                         | 1131 (?)                                                        | -                          | 34                       |                                              | 49                           |            |
| JBK-75                                        | Air               | -                                               | -                                                               | -                          | -                        | Type C                                       | -                            | [1] IIIB-  |
| HERF                                          | He                | 800                                             | 1090                                                            | 10                         | 14                       | (12.7)                                       | 47                           | 1          |
|                                               | $H_2$             | 809                                             | 1160                                                            | 10                         | 13                       |                                              | 33                           |            |
| <b>17-4PH</b><br>(No data)                    |                   |                                                 |                                                                 |                            |                          |                                              |                              |            |
| AM350                                         | Air               | 420                                             | 1160                                                            | -                          | 70                       | (?)                                          | -                            | [1] IIID-  |
| Annealed at                                   | He                | 420                                             | 1240                                                            | -                          | 55                       |                                              | -                            | 1          |
| 1310 to                                       | $D_2$             | 430                                             | 520                                                             | -                          | 2.6                      |                                              | -                            |            |
| 1350K, air<br>cooled, or<br>water<br>quenched |                   |                                                 |                                                                 |                            |                          |                                              |                              |            |
| AM363                                         |                   |                                                 |                                                                 |                            |                          |                                              |                              |            |
| (No data)                                     |                   |                                                 |                                                                 |                            |                          |                                              |                              |            |
| CG-27                                         | Air               | -                                               | -                                                               | -                          | -                        | Type A                                       | -                            | [1] IIIF-1 |
|                                               | He                | 806                                             | 1165                                                            | -                          | 29                       | (50.8)                                       | 26                           | [14]       |
|                                               | H <sub>2</sub>    | 855                                             | 1117                                                            | -                          | 10                       |                                              | 12                           |            |
| CG-27                                         | Air               | -                                               | -                                                               | -                          | -                        | Type A                                       | -                            | [1] IIIF-1 |
| HERF                                          | He                | 1070                                            | 1385                                                            | -                          | 12                       | (50.8)                                       | 12                           |            |
|                                               | H <sub>2</sub>    | 1034                                            | 1138                                                            | -                          | 1                        |                                              | 3                            |            |
| Ni-SPAN-C                                     | Air               | 760                                             | 1186                                                            | -                          | 10                       | Sheet                                        | -                            | [1] IIIG-  |
| (Alloy 902)                                   | He                | 750                                             | 1160                                                            | -                          | 16                       | (19)                                         | -                            | 1          |
|                                               | H <sub>2</sub>    | 650                                             | 1130                                                            | -                          | 15                       |                                              | -                            |            |

Table 7 Precipitation Hardenable Alloys

Table 8 High Purity Alloys

|           | Test           | Streng    | gth (MPa) |         | Ductil  | ity (%) |           | Ref.     |
|-----------|----------------|-----------|-----------|---------|---------|---------|-----------|----------|
| Alloy     | Environ-       | Stress at | Ultimate  | Uniform | Total   | Speci-  | Reduction |          |
|           | ment.          | 0.2%      | Tensile   | Elonga- | Elonga- | men     | of Area   |          |
|           |                | offset    | Strength  | tion    | tion    | Туре    | (RA)      |          |
|           |                | unless    | (UTS)     |         |         | and     |           |          |
|           |                | specified | unless    |         |         | Gage    |           |          |
|           |                |           | specified |         |         | (mm)    |           |          |
| Alloy A   | Unknown        |           |           |         |         | Type B  |           | [1]      |
| 18CR-10Ni | Pressure       |           |           |         |         | (25.4)  |           | IVA-1    |
|           | Air            | 350 (5%)  | 780       | 62      | 73      |         | 81        | [15]     |
|           | He             | -         | -         | -       | -       |         | 82        | p.167    |
|           | $H_2$          | -         | -         | -       | -       |         | 26        |          |
| Alloy B   | Unknown        |           |           |         |         | Type B  |           | [1] IVB- |
| 18CR-14Ni | Pressure       |           |           |         |         | (25.4)  |           | 1        |
|           | Air            | 340 (5%)  | 640       | 61      | 69      |         | 79        | [15]     |
|           | He             | -         | -         | -       | -       |         | 83        | p.167    |
|           | $H_2$          | -         | -         | -       | -       |         | 91        |          |
| Alloy C   | Unknown        |           |           |         |         | Type B  |           | [1]      |
| 18CR-19Ni | Pressure       |           |           |         |         | (25.4)  |           | IVC-1    |
|           | Air            | 330 (5%)  | 610       | 49      | 58      |         | 81        | [15]     |
|           | He             | -         | -         | -       | -       |         | 82        | p.167    |
|           | H <sub>2</sub> | -         | -         | -       | -       |         | 92        |          |

#### Hydrogen Effects on Tensile Ductility

The ductility loss is the most pronounced hydrogen effect on tensile test results for stainless steels. This significant phenomenon is reflected by the data reported in Reference [1], which documented the mechanical testing conducted at SRL from 1970s to 1983 for unexposed (not precharged) specimens that were tested in high pressure hydrogen; and for specimens precharged with hydrogen with various conditions (duration and temperature) and then tested in air, helium, or hydrogen environments. Most of the hydrogen pressure used for precharging or for test environment was 69 MPa. No systematic studies of pressure level effect on ductility were conducted.

Hydrogen concentrations were measured for some exposed tensile specimens and the results are listed in Table 9. In addition, the grain size and nickel content were found to be related to the degree of ductility loss in hydrogen environments (Fig. 2).

#### Hydrogen Concentration

The hydrogen concentration in metal may be an indication of degree of hydrogen damage. Specimens were cut from the gage or the end of the post-test tensile specimens and the hydrogen concentrations were measured with a LECO RH-1 Hydrogen Determinator [4]. Table 9 which was reproduced from Reference [4] shows the hydrogen concentration when the tensile specimens were exposed to 69 MPa deuterium (D<sub>2</sub>) at 620 K for three weeks. The compositions of the alloys can be found in Tables 1 to 4 or from Appendix A. It is believed that the high hydrogen concentrations in Tenelon<sup>®</sup>, Nitronic<sup>®</sup> 40, and Nitronic<sup>®</sup> 50 were caused by the added nitrogen as austenite strengthener, which trapped the excess hydrogen [4].

| Alloy                          | Hydrogen Concentration (cc D <sub>2</sub> /cc alloy) |
|--------------------------------|------------------------------------------------------|
| 304L (bar)                     | 4.5                                                  |
| 310 (plate)                    | 6.5                                                  |
| 316 (bar)                      | 4.9                                                  |
| 330 (bar)                      | 5.1                                                  |
| A286 (bar)                     | 4.4                                                  |
| I800H (bar)                    | 4.0                                                  |
| Nitronic <sup>®</sup> 40 (bar) | 8.7                                                  |
| Nitronic <sup>®</sup> 50 (bar) | 12.8                                                 |
| Tenelon <sup>®</sup> (bar)     | 10.0                                                 |
| А                              | 2.3                                                  |
| В                              | 5.1                                                  |
| С                              | 4.8                                                  |

Table 9 Hydrogen Concentration in Austenitic Stainless Steel Tensile Specimens [4]

#### Effect of Grain Size

Stainless steel 304L was heat treated to achieve various grain sizes ranging from 9.5  $\mu$ m (as received) to 340  $\mu$ m (annealed at 1470 K for 24 hours). Unexposed tensile specimens were tested in 69 MPa helium and in 69 MPa hydrogen. It can be seen from Figure 1 that 304L with the larger gain size is more susceptible to hydrogen damage in losing ductility [13]. This is the only known study at SRL using 304L stainless steel for grain size effect.



Figure 2 Ductility loss in 69 MPa hydrogen environment for 304L with various grain sizes [13]

## Effect of Nickel Content

It was first pointed out by Caskey [1,3] that there is a strong correlation between the hydrogen embrittlement and the nickel content in the iron-chromium-nickel alloys based on tensile testing in 69 MPa hydrogen environment at room temperature. By plotting the retained ductility of the Fe-Cr-Ni alloys versus the nickel composition, it can be seen that the resistance of hydrogen damage in ductility begins to improve at nickel content between 8 to 14 wt.%. It is possible that the austenite stability was increased with respect to the transformation to  $\alpha$ '-martensite at room temperature and to  $\varepsilon$ -martensite when the nickel content is increased (both  $\alpha$ '-martensite and  $\varepsilon$ -martensite are detrimental to ductility). This correlation appeared to be valid for commercial grade and high purity alloys. The relationship between the retained ductility and the nickel content has been recently reconstructed by Morgan [12] and was modified by adding more alloy data. The resulting plot, similar to Figure 1 in Reference [1], is shown in Figure 3. Most of the data

points were obtained by testing unexposed (not precharged) specimens in 69 MPa hydrogen, except A-286 and 17-4 for which hydrogen-precharged specimens were used in testing. The correlation between the resistance of hydrogen damage and nickel content was not unique for iron-chromium-nickel-manganese alloys. Therefore, they were not included in Figure 3.

Note that "Retained Ductility" in Figure 3 is defined as  $RA_{H2}/RA_{air}$  or  $RA_{H2}/RA_{He}$ , where  $RA_{H2}$ ,  $RA_{air}$ , and  $RA_{He}$  are, respectively, the reduction of area (RA) for specimens tested in hydrogen, in air, and in helium. It appears that the optimal nickel content to retain the tensile ductility in wrought Fe-Cr-Ni alloys is 10 to at least 20 wt.%.

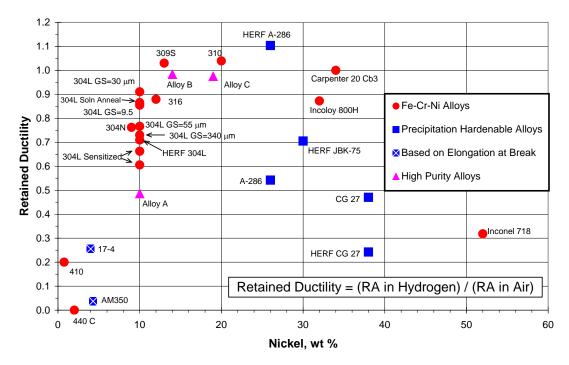



Figure 3 Correlation between retained ductility and nickel content for Fe-Cr-Ni and high purity alloys [16,1].

The actual values of the reduction of area for alloys in Figure 3 are shown in Figure 4, in which the retained ductility for each alloy was also plotted. These test results indicated that the ductility of alloys 309S, 310, and HERF A-286 was actually increased in the hydrogen environment, contrary to the common observation. It should be noted that alloy 440C contains zero nickel, and exhibited a completely brittle fracture at break (no reduction of area).

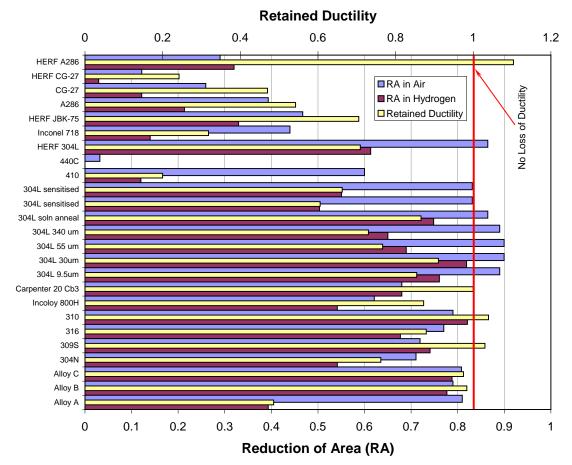
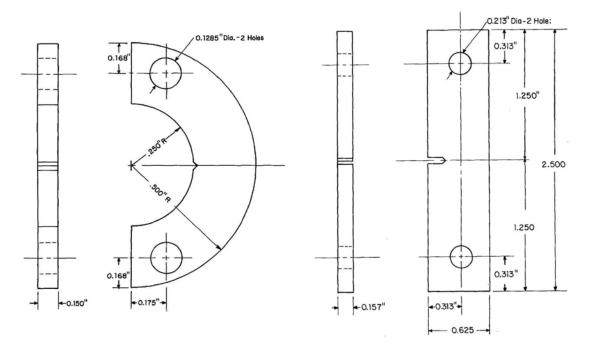
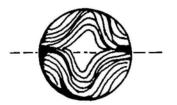




Figure 4 Reduction of area and retained ductility for Fe-Cr-Ni, precipitation hardenable, and high purity alloys.

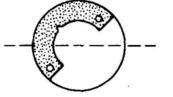
#### FRACTURE PROPERTIES

The loss of fracture toughness is a pronounced hydrogen effect in stainless steels. Most of the SRL fracture testing was carried out with C-shaped specimens (Fig. 5a), which is a standard test specimen in ASTM E 399 [17] for linear elastic fracture mechanics. In addition, the single edge notched tension (SENT) specimens (Fig. 5b) were sometimes employed. The test results were summarized in Reference [1]; and for several HERF stainless steels, data can be found in Reference [18]. Because of the instrumentation difficulties for measuring fracture parameters in high pressure hydrogen environment, and the tedious test procedure for elastic-plastic fracture mechanics (ASTM E 813 [19]), SRL developed J<sub>m</sub> approach [1] as an alternative parameter for J<sub>IC</sub>. The J<sub>m</sub> is the Jintegral value calculated at the maximum load, at which the crack initiation was assumed to take place. A subsequent verification study was carried out with A-286 and 21-6-5 stainless steels [20] following ASTM E 813 procedure. It was demonstrated that the J<sub>m</sub> is about 10% higher than J<sub>IC</sub>. However, it was considered quite acceptable [20] because the J-integral testing with the same material using the same technique often times contains even higher data deviation than 10%, and that is the inherent nature of material ductile failure under elastic-plastic deformation. Furthermore, considering the data deviation resulted from different fracture toughness measurement techniques or different specimen types, the variation between  $J_m$  and ASTM  $J_{IC}$  appears to be small.

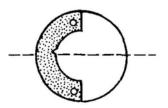



(a) C-shaped specimen

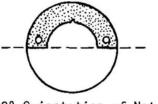
(b) single edge notched tension (SENT)


Figure 5 SRL Fracture test specimens

#### **Fracture Data for Forged Alloys**

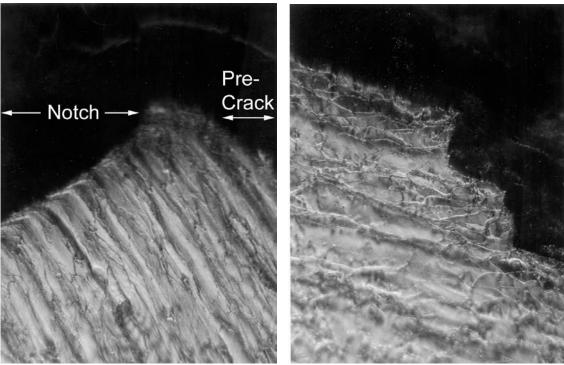

Strong orientation effects on the mechanical properties have been noted for HERF stainless steels, especially in the determination of fracture toughness. The C-shaped specimens were fabricated such that the initial machine notch was parallel (0°), 45°, or perpendicular (90°) to the forging flow lines. The schematic specimen layout [1,21] can be seen in Figure 6. The actual forging flow lines in such materials can be observed through scanning electron microscopes, as shown in Figure 7. It can be seen that the crack growth resistance is very poor when the initial notch is in parallel with the forging flow lines. A markedly higher J-integral can be obtained for notch orientation at  $45^{\circ}$  or 90° with respect to the flow lines.




Cross Section of Bar Showing Forging Flow Lines



45° Orientation of Notch




Parallel Orientation of Notch



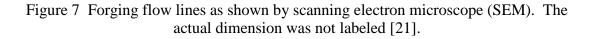

90° Orientation of Notch

Figure 6 Notch orientation and the forging flow lines



(a) Specimen Cross-section (SEM 500X)

(b) Fracture surface (SEM 500X)



#### J-integral Testing (Jm)

The J-integral test data  $(J_m)$  for HERF 304L, Nitronic 40<sup>®</sup> (21-6-9), Nitronic 50<sup>®</sup> (22-13-5), A-286, and 316 are shown in Figures 8 to 12, respectively. Additional test data prior to June 1982 were summarized in Reference [21], which are reproduced in Table 10 and plotted in Figure 13. Note that the values of  $J_m$  have been corrected for combined tension and bending in the specimen, and were averaged if multiple orientations were tested.

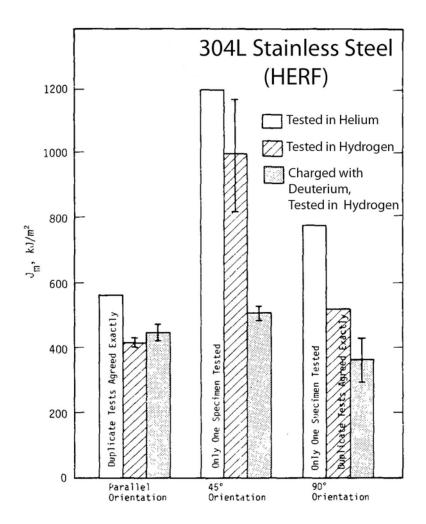



Figure 8 J-integral test results for HERF 304L under various test environments and specimen conditions [1].

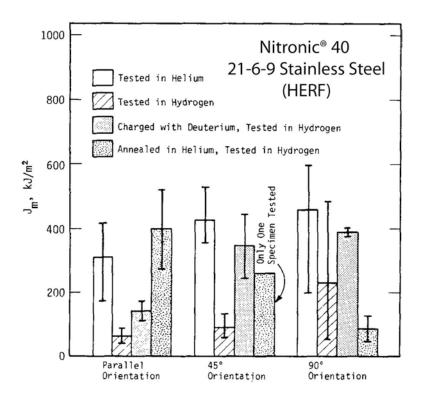



Figure 9 J-integral test results for HERF Nitronic 40<sup>®</sup> (21-6-9) under various test environments and specimen conditions. [1]

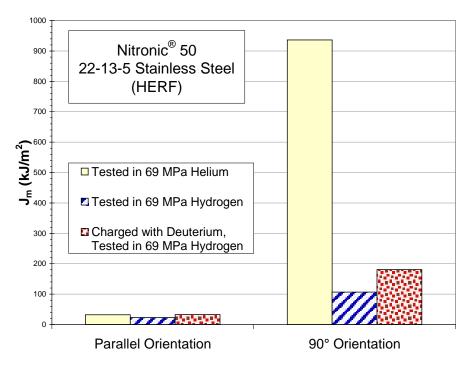



Figure 10 J-integral test results for HERF Nitronic 50<sup>®</sup> (22-13-5) under various test environments and specimen conditions (based on Data Sheet IIC-3 in Ref. [1]).

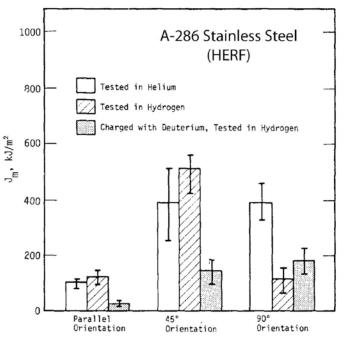



Figure 11 J-integral test results for HERF A-286 under various test environments and specimen conditions [1].

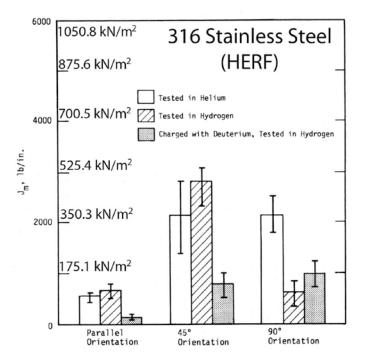



Figure 12 J-integral test results for HERF 316 under various test environments and specimen conditions [18].

| 10010 10                 |                               | ICE Indetuie test           |                             |                 |
|--------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------|
|                          |                               |                             | $\mathbf{J}_{\mathbf{m}^1}$ |                 |
|                          | $\mathbf{J}_{\mathbf{m}^{1}}$ | $\mathbf{J}_{\mathbf{m}^1}$ | Precharged                  |                 |
| Alloy                    | Tested in                     | Tested in                   | in Deuterium                |                 |
|                          | 69 MPa He                     | 69 MPa H <sub>2</sub>       | and tested in               | Remarks         |
|                          | $(kJ/m^2)$                    | $(kJ/m^2)$                  | 69 MPa H <sub>2</sub>       |                 |
|                          |                               |                             | $(kJ/m^2)$                  |                 |
| 304L HERF                | 701                           | 573                         | 489                         | -               |
| 316 HERF                 | 792                           | 880                         | -                           | -               |
| 316 WR <sup>2</sup>      | 312                           | 268                         | -                           | 1 orientation   |
| 310S HERF                | 537                           | 417                         | 291                         | 6J Forging      |
| 21-6-9 HERF <sup>5</sup> | 686                           | 475                         | 695                         | -               |
| 21-6-9 HERF <sup>5</sup> |                               | 468                         | 158                         | 2 orientations  |
| 21-6-9 CRP <sup>3</sup>  | 1409                          | 1158                        | -                           | Forging Step 7, |
|                          |                               |                             |                             | 2 orientations  |
| 21-6-9 WR <sup>2</sup>   | 281                           | 259                         | -                           | 1 orientation   |
| JBK-75 HERF              | 560                           | 377                         | 201                         | -               |
| A-286 HERF               | 539                           | 497                         | 132                         | -               |
| 22-13-5 HERF             | 289                           | 72                          | 116                         | 2 orientations  |
| 17-4PH STA <sup>4</sup>  | 80                            | 4                           | -                           | -               |
| 17-4PH Annealed          | 995                           | 85                          | -                           | -               |
| 4 7 11 37 11             |                               | 5003 G 1                    |                             | 1.1 11 1        |

#### Table 10 Summary of SRL fracture test results up to June 1982 [21]

1. J<sub>m</sub>: with Merkle-Corten correction [22] for the combined tension and bending in specimens. The values were averaged if multiple orientations were tested.

2. WR: Warm Rolled

3. CRP: Cross-Rolled Plate

4. STA: solution treated/annealed

5. Alloys from different sources.

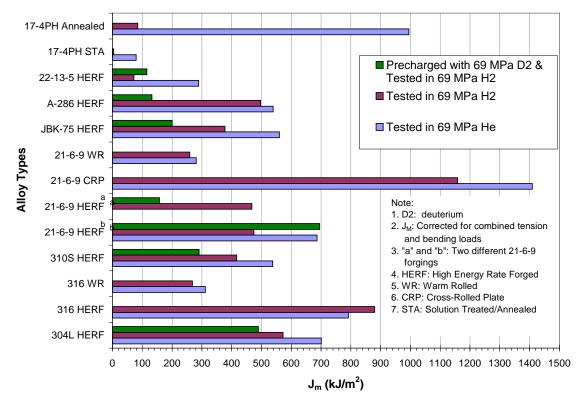



Figure 13 Fracture toughness  $(J_m)$  for various types of stainless steel. Note that the values for HERF materials were averaged by the number of orientations that were tested.

#### Thickness and Notch Effects (HERF 21-6-9)

Thickness and notch effects on fracture properties with C-specimens were investigated with HERF MP35N (nickel-cobalt based alloy) and HERF 21-6-9 in 69 MPa helium and in 69 MPa hydrogen [21]. In addition to the SRL standard C-specimen thickness (3.81 mm or  $\frac{1}{2}$  in.), another thickness of 6.35 mm (0.25 in.) was chosen. The initial machine notch length was 1.27 mm. Two specimens with 6.35 mm thick were not precracked (tested respectively in helium and in hydrogen). The test results for 21-6-9 are plotted in Figure 14. The data scatter is less for the standard thickness (thinner specimens).

The averaged  $J_m$  values for testing in helium are higher than that in hydrogen, which is consistent with the data trend of hydrogen damage. However, the overall data scattering leads to inconclusiveness for the thickness and the notch effects. In fact, the higher averaged values of  $J_m$  for thicker specimens seem to contradict the constraint theory in fracture mechanics, which predicts that, qualitatively, thinner specimens tend to have higher fracture toughness [23] because it allows much larger plastic zone to develop around the crack tip. All the discrepancies may be resulted from the anisotropy of the HERF materials (see Fig. 9 for alloy 21-6-9). A refined experiment with a carefully designed test matrix could resolve the discrepancies. Two additional sets of test data found in Reference [21] are included in Figure 14: 1) Two specimens with different orientations precharged with deuterium in 69 MPa at 190 °C for six weeks and then tested in 69 MPa hydrogen environment; and 2) Two specimens tested in 69 MPa hydrogen in a separate experiment. These data further suggested that the testing for HERF materials be conducted with careful planning and characterization.

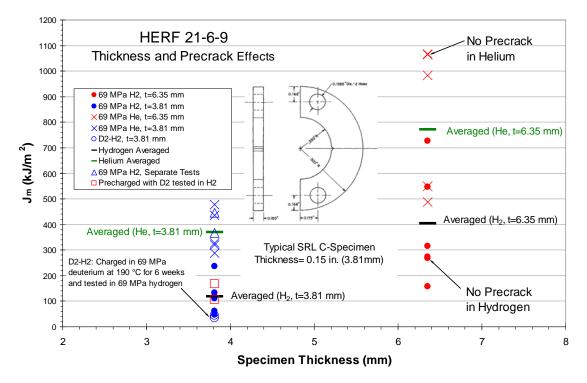



Figure 14 Thickness and notch effects on fracture toughness (J<sub>m</sub>) of HERF 21-6-9 in hydrogen environment

#### **Stress Intensity Factor (K) Testing**

Alloys Tenelon<sup>®</sup>, HERF Nitronic<sup>®</sup> 40 (21-6-9), HERF A-286, HERF JBK-75, and 17-4 PH were tested for fracture toughness in terms of stress intensity factors under various test environments (temperatures or high pressure gases) and specimen preparations (aged, annealed, or exposed to hydrogen at difference pressures). The tests were conducted with either C-shaped (Fig. 4a) or SENT (Fig. 4b) specimens. The results are listed in Tables 10 to 14.

| Tenelon <sup>®</sup> (Ref.:   | Tenelon <sup>®</sup> (Ref.: Data Sheet IIA-3, Ref. [1], page 100) |                    |          |                    |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------|--------------------|----------|--------------------|--|--|--|--|--|--|
| Test Specimen: SENT (Fig. 4b) |                                                                   |                    |          |                    |  |  |  |  |  |  |
| Test Temperature              | Test                                                              | Specimen Condition | Specimen | Fracture Toughness |  |  |  |  |  |  |
| (kelvin)                      | Environment                                                       |                    | Exposure | $(MPa\sqrt{m})$    |  |  |  |  |  |  |
| 78                            | -                                                                 | As received        | -        | 68.6               |  |  |  |  |  |  |
| 78                            | _                                                                 | Annealed           | -        | 36.5               |  |  |  |  |  |  |
|                               |                                                                   | 1170 K             |          |                    |  |  |  |  |  |  |
| 78                            | -                                                                 | Annealed           | -        | 71.4               |  |  |  |  |  |  |
|                               |                                                                   | 1270 K             |          |                    |  |  |  |  |  |  |
| 200                           | -                                                                 | As received        | -        | 127.8              |  |  |  |  |  |  |
| 200                           | _                                                                 | Annealed           | -        | 99.6               |  |  |  |  |  |  |
|                               |                                                                   | 1170 K             |          |                    |  |  |  |  |  |  |
| 200                           | -                                                                 | Annealed           | -        | 120.5              |  |  |  |  |  |  |
|                               |                                                                   | 1270 K             |          |                    |  |  |  |  |  |  |

Table 11 Fracture toughness (K) for Tenelon®

Table 12 Fracture toughness (K) for HERF Nitronic<sup>®</sup> 40 (21-6-9)

| Nitronic <sup>®</sup> 40 (Alloy 21-6-9) HERF (Ref.: Data Sheet IIB-10, Ref. [1], page 106) |                       |                                      |                        |                    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|------------------------|--------------------|--|--|--|--|--|--|
| Test Specimen: C-specimen (Fig. 4a)                                                        |                       |                                      |                        |                    |  |  |  |  |  |  |
| Test Temperature                                                                           | Test                  | Specimen Condition                   | Hydrogen               | Fracture Toughness |  |  |  |  |  |  |
| (kelvin)                                                                                   | Environment           | Environment Exposure $(MPa\sqrt{m})$ |                        |                    |  |  |  |  |  |  |
| 298                                                                                        | 69 MPa He             | -                                    | None                   | 79                 |  |  |  |  |  |  |
| 298                                                                                        | 69 MPa H <sub>2</sub> | -                                    | none                   | 81                 |  |  |  |  |  |  |
| 298                                                                                        | 69 MPa H <sub>2</sub> | -                                    | 0.6 MPa H <sub>2</sub> | 62                 |  |  |  |  |  |  |

Note: For independent test results for J<sub>m</sub>, see Figure 9.

| A-286 HERF (R    |                       | et IIIA-2, Ref. [1], page |           |                    |
|------------------|-----------------------|---------------------------|-----------|--------------------|
| Test Specimen:   |                       | b)                        |           |                    |
| Test Temperature | Test                  | Specimen Condition        | Hydrogen  | Fracture Toughness |
| (kelvin)         | Environment           |                           | Exposure  | $(MPa\sqrt{m})$    |
| 298              | 69 MPa He             | Aged 4 hrs 990 K          | none      | 76                 |
|                  |                       | (Heat 1)                  |           |                    |
| 298              | 69 MPa H <sub>2</sub> | Aged 4 hrs 990 K          | (ditto)   | 89                 |
|                  |                       | (Heat 1)                  |           |                    |
| 298              | 69 MPa He             | Aged 8 hrs 990 K          | none      | 71                 |
|                  |                       | (Heat 1)                  |           |                    |
| 298              | 69 MPa H <sub>2</sub> | Aged 8 hrs 990 K          | (ditto)   | 90                 |
|                  |                       | (Heat 1)                  |           |                    |
| 298              | 69 MPa He             | Aged 16 hrs 990 K         | none      | 81                 |
|                  |                       | (Heat 1)                  |           |                    |
| 298              | 69 MPa H <sub>2</sub> | Aged 16 hrs 990 K         | (ditto)   | 82                 |
|                  |                       | (Heat 1)                  |           |                    |
| 298              | 69 MPa He             | Aged 8 hrs 990 K          | none      | 93                 |
|                  |                       | (Heat 2)                  |           |                    |
| 298              | 69 MPa H <sub>2</sub> | Aged 8 hrs 990 K          | none      | 89                 |
|                  |                       | (Heat 2)                  |           |                    |
| 298              | 69 MPa He             | Aged 8 hrs 990 K          | 1.6 MPa   | 88                 |
|                  |                       | (Heat 2)                  | Deuterium |                    |
| 298              | 69 MPa H <sub>2</sub> | Aged 8 hrs 990 K          | 1.6 MPa   | 97                 |
|                  |                       | (Heat 2)                  | Deuterium |                    |
| 298              | 69 MPa He             | HERF, not aged,           | none      | 52                 |
|                  |                       | R <sub>c</sub> -11        |           |                    |
| 298              | 69 MPa H <sub>2</sub> | HERF, not aged,           | none      | 56                 |
|                  |                       | R <sub>c</sub> -11        |           |                    |
| 298              | 69 MPa H <sub>2</sub> | HERF, not aged,           | 1.5 MPa   | 59                 |
|                  |                       | R <sub>c</sub> -11        | Deuterium |                    |
| 298              | 69 MPa He             | Aged 8 hrs 990 K          | none      | 93                 |
|                  |                       | R <sub>c</sub> -11        |           |                    |
| 298              | 69 MPa H <sub>2</sub> | Aged 8 hrs 990 K          | none      | 90                 |
|                  |                       | R <sub>c</sub> -11        |           |                    |
| 298              | 69 MPa H <sub>2</sub> | Aged 8 hrs 990 K          | 1.5 MPa   | 97                 |
|                  |                       | R <sub>c</sub> -11        | Deuterium |                    |

| Та | ble | e 13 | Fractur | e to | oug | gh | ness | (K) f | or | HERF A-286 |
|----|-----|------|---------|------|-----|----|------|-------|----|------------|
| 1  |     | ~ 1  |         | •    | 1   | 0  |      |       |    |            |

| JBK-75 HERF (Ref.: Data Sheet IIIB-2, Ref. [1], page 118) |                                     |                                                    |              |                 |  |  |  |  |
|-----------------------------------------------------------|-------------------------------------|----------------------------------------------------|--------------|-----------------|--|--|--|--|
| Test Specimen:                                            | Test Specimen: C-specimen (Fig. 4a) |                                                    |              |                 |  |  |  |  |
| Test Temperature                                          | Test                                | Test Specimen Condition Hydrogen Fracture Toughnes |              |                 |  |  |  |  |
| (kelvin)                                                  | Environment                         |                                                    | Exposure     | $(MPa\sqrt{m})$ |  |  |  |  |
| 298                                                       | 69 MPa He                           | -                                                  | none         | 80              |  |  |  |  |
| 298                                                       | 69 MPa H <sub>2</sub>               | -                                                  | none         | 80              |  |  |  |  |
| 298                                                       | 69 MPa H <sub>2</sub>               |                                                    | 0.7 MPa      | 81              |  |  |  |  |
|                                                           |                                     |                                                    | Deuterium at |                 |  |  |  |  |
|                                                           |                                     |                                                    | 625 K        |                 |  |  |  |  |

Table 14 Fracture toughness (K) for HERF JBK-75

| Table 15 Fracture to  | oughness (K) for17-4 PH |
|-----------------------|-------------------------|
| I dolo 10 I laotalo t |                         |

| 17-4 PH (Ref.: Data Sheet IIIC-2, Ref. [1], page 119) |                                                          |                                |          |                 |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------|--------------------------------|----------|-----------------|--|--|--|
| Test Specimen: C-specimen (Fig. 4a)                   |                                                          |                                |          |                 |  |  |  |
| Test Temperature                                      | emperature Test Specimen Condition Hydrogen Fracture Tou |                                |          |                 |  |  |  |
| (kelvin)                                              | Environment                                              |                                | Exposure | $(MPa\sqrt{m})$ |  |  |  |
| -                                                     | 69 MPa He                                                | Underaged <sup>1</sup>         | -        | 104             |  |  |  |
| -                                                     | 3.5 MPa H <sub>2</sub>                                   | (ditto)                        | -        | 31              |  |  |  |
| -                                                     | 69 MPa H <sub>2</sub>                                    | (ditto)                        | -        | 20              |  |  |  |
| -                                                     | 69 MPa He                                                | Peak aged <sup>2</sup>         | -        | 97              |  |  |  |
| -                                                     | 3.5 MPa H <sub>2</sub>                                   | (ditto)                        | -        | 29              |  |  |  |
| -                                                     | 69 MPa H <sub>2</sub>                                    | (ditto)                        | -        | 13              |  |  |  |
| -                                                     | 69 MPa He                                                | Overaged <sup>3</sup>          | -        | -               |  |  |  |
| -                                                     | 3.5 MPa H <sub>2</sub>                                   | (ditto)                        | -        | 57              |  |  |  |
| -                                                     | 69 MPa H <sub>2</sub>                                    | (ditto)                        | -        | 34              |  |  |  |
| _                                                     | 69 MPa He                                                | Solution annealed <sup>4</sup> | _        | 97              |  |  |  |
| _                                                     | 3.5 MPa H <sub>2</sub>                                   | (ditto)                        | -        | 71              |  |  |  |
| -                                                     | 69 MPa H <sub>2</sub>                                    | (ditto)                        | -        | 31              |  |  |  |

Condition of Heat Treatments:

1 Solution annealed 2 hours at 1339 K and aged at 709 K, Hardness  $R_c$ = 38

2. Solution annealed 2 hours at 1339 K and aged at 783 K, Hardness  $R_c = 42$ 

3. Solution annealed 2 hours at 1339 K and aged at 866 K, Hardness  $R_c=35$ 

4. Hardness  $R_c = 28$ 

# **CONCLUDING REMARKS**

A range of austenitic stainless steels were tested for hydrogen compatibility for service condition up to 69 MPa (10,000 psi) hydrogen and temperatures from 78 to 400 K (some tests were carried out at 4 K in liquid helium) at the Savannah River Laboratory to support materials selections and designs for systems in high pressure hydrogen service. These steels included the iron-chromium-nickel alloys (304L, 304N, 309S, 310, 316, Carpenter 20 Cb-3, Incoloy<sup>®</sup> 800H, Nickel 200, Nickel 301, and 440 C), iron-chromium-nickel-manganese alloys (Tenelon<sup>®</sup>, Nitronic<sup>®</sup>- 40 or 21-6-9, Nitronic<sup>®</sup>-50 or 22-13-5, 18-18 Plus<sup>®</sup>, X18-3 Mn, 18-2 Mn, and 216), precipitation hardenable alloys (A-286,

JBK-75, 17-4PH, AM-363, CG-27, and Ni-SPAN-C or Alloy 902), and high purity alloys (18Cr-10Ni, 18Cr-14Ni, and 18Cr-19Ni). An in-depth summary of the hydrogen transport in these alloys (permeation) and the hydrogen effects on the mechanical properties (tensile and fracture) was provided by Caskey [1]. This present report reviewed the SRL test data which are in general not readily available in the open literature. The following conclusions can be made:

- Hydrogen has a minor influence on the yield stress and the ultimate tensile strength of the austenitic stainless steels. However, the tensile ductility suffers significant loss when the hydrogen is present, either externally as the service environment, or internally resulting from extended exposure or precharging. This material behavior (hydrogen embrittlement) is similar in carbon steels [24,25].
- The ductility loss increases as the grain size increases, as shown by 304L testing on the heat treatment effects [13] (Fig. 2).
- The retain ductility [1,16], defined by the ratio of reduction of area in hydrogen to the reduction of area in helium, correlates well with the nickel content in Fe-Cr-Ni alloys. The optimal nickel content to retain the tensile ductility in wrought Fe-Cr-Ni alloys is 10 to at least 20 wt.% (Fig. 3).
- The fracture toughness testing shows a strong orientation effect with respect to the forging flow lines in the high energy rate forged (HERF) stainless steels (Figs. 8-12).
- The fracture toughness (J-integral or stress intensity factor) is reduced significantly when the hydrogen is present in the test environment or internally in the metal by extended exposure to hydrogen (Figs. 8-13). Similar behavior has been observed for carbon steels [24].

The SRL test data also indicated that the specimen condition has significant influence on the mechanical property measurement, such as the surface polishing or plating, and the orientations in the HERF stainless steels. Previous testing attempted to explore the effects of specimen geometry (such as the sample thickness and precracking), but only inconclusive results were obtained. A refined experiment with advanced fracture mechanics analysis of the constraint effect may be employed to resolve the discrepancy and uncertainty.

More recent SRNL test data are mostly related to tritium exposure and aging, which results in helium-3, a radioactive decay product, and is a different mechanism for mechanical property degradation. Limited hydrogen effects were reported and the information is available in open literature (e.g., [26,27]). The general trend is consistent with the earlier data which have been covered in this report. The quantitative comparison is not possible because the alloy composition, specimen fabrication, exposure condition, and test environment may be different.

# REFERENCES

 Caskey Jr., G. R., Hydrogen Compatibility Handbook for Stainless Steels, DP-1643, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1983.

- [2] Caskey Jr., G. R. and Ratliff, J. T., Hydrogen Storage Systems, DPST-76-455, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1977.
- [3] Caskey Jr., G. R., "Hydrogen Effects in Stainless Steel," in *Hydrogen Degradation of Ferrous Alloys*, eds. R. A. Oriani, J. P. Hirth, and M. Smialowski, Park Ridge NJ: Noyes Publications, pp. 822-862, 1985 (also DP-MS-82-090, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1982).
- [4] Caskey Jr., G. R., "Hydrogen Damage in Stainless Steel," in *Environmental Degradation of Engineering Materials*, eds. M. R. Louthan, R. P. McNitt, and R. D. Sission, Virginia Polytechnic Institute, Blacksburg, VA, pp. 283-302, 1981 (also DP-MS-81-31, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1981).
- [5] Louthan, M. R. and Caskey, Jr., G. R., "Hydrogen Transport and Embrittlement in Structural Metals," First World Hydrogen Energy Conference, Miami Beach, FL, March 1976 (also DPSTWD-75-156, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1975).
- [6] Louthan, M. R., Caskey, Jr., G. R., Donovan, J. A., and Rawl, Jr., D. E., "Hydrogen Embrittlement of Metals," Materials Science and Engineering, vol. 10, pp. 357-368, 1972.
- [7] Somerday, B. P. and San Marchi, C. W.,
   "http://www.ca.sandia.gov/matlsTechRef/," Sandia National Laboratories, Livermore, California, 2008.
- [8] Caskey Jr., G. R., DPSTN-2184, Laboratory Notebook, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, April 1969 to September 1971.
- [9] Caskey Jr., G. R., "Fractography of Hydrogen-Embrittled Stainless Steel," Scripta Metallurgica, Vol. 11, pp. 1077-1083, 1977 (also DP-MS-77-51, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1977).
- [10] Caskey Jr., G. R., "Fracture of Fe-Cr-Mn Austenitic Steel,", at the 108<sup>th</sup> Annual AIME Meeting, New Orleans, LA, Feb. 18-22, 1979 (also DP-MS-78-68, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1978).
- [11] Caskey Jr., G. R., "Hydrogen Effects in High Purity Stainless Steels," in *The Third International Congress, Hydrogen and Materials*, Paris, France, June 7-11, 1982, pp. 611-616 (also DP-MS-81-80, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1981).
- [12] Caskey Jr., G. R., "Hydrogen Effects in Austenitic Stainless Steels Based on the Fe-Cr-Mn-N System," at the Materials Research Society Symposium on Hydrogen in Metals, Boston, MA, Nov. 26-30, 1984 (also DP-MS-84-74, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1984).
- [13] Caskey Jr., G. R. and Donovan, J. A., Effect of heat Treatment on Fracture of Type 304L Stainless Steel in a Hydrogen Environment, DP-MS-79-18, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1979; TMS-AIME Fall Meeting, Milwaukee, WI, Sept. 16-20, 1979.
- [14] Capeletti, T. L. and Louthan Jr., M. R., "The Tensile Ductility of Austenitic Steels in Air and Hydrogen," Journal of Engineering and Technology, 99, pp. 153-158, 1977 (also DPSTWD-75-147, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1975).

- [15] Caskey Jr., G. R., DPSTN-2357, Laboratory Notebook, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, November 1971 to September 1983.
- [16] Morgan, M. J., "Effect of Nickel Content on Retained Ductility," WSRC-STI-2007-00610, Washington Savannah River Company, Aiken, SC, October 2007.
- [17] ASTM E 399, "Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness  $K_{IC}$  of Metallic Materials," American Society for Testing and Materials, Philadelphia.
- [18] Dietrich, M. R., Caskey Jr., G. R., and Donovan, J. A., "J-Controlled Crack Growth as an Indicator of Hydrogen-Stainless Steel Compatibility," in Proceedings of the International Conference on Effect of Hydrogen on Behavior of Materials: Hydrogen Effects in Metals, Moran WY., The Metallurgical Society of AIME, pp. 637-643,1980.
- [19] ASTM E 813, "Standard Test Method for J<sub>IC</sub>, a Measure of Fracture Toughness" American Society for Testing and Materials, Philadelphia.
- [20] Wheeler, D. A., "Experimental Verification of the J<sub>max</sub> Technique for Fracture Toughness Measurements," Memorandum DPST 87-836, Technical Division, Savannah River Laboratory, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, November 1987.
- [21] Mezzanotte, D. A., Laboratory Notebook, DPSTN-3305, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, June 1981 to August 1983.
- [22] Merkle, J. G. and Corten, H. T., "A J-integral Analysis for the Compact Tension Specimen, Considering Axial Force as well as Bending Effects," Transactions of American Society of Mechanical Engineers, Journal of Pressure Vessel Technology, vol. 96, pp. 286-292, 1974.
- [23] Roos, E., Eisele, U., and Silcher, H., "Effect of Stress State on Ductile Fracture Behavior of Large-scale Specimens," in *Constraint Effects in Fracture*, ASTM STP 1171, eds. E. M. Hackett, K. H. Schwalbe, and R. H. Dodds, American Society for Testing and Materials, Philadelphia, pp. 41-63, 1993.
- [24] Lam, P.-S., Sindelar, R. L., and Adams, T. M., "Literature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Alloy Steels," Paper No. PVP2007-26730, Proceedings of ASME Pressure Vessels and Piping Conference, San Antonio, Texas, July 2007.
- [25] Duncan, A. J., Lam, P.-S., Adams, T. M., "Tensile Testing of Carbon Steel in High Pressure Hydrogen,", Paper No. PVP2007-26736, Proceedings of ASME Pressure Vessels and Piping Conference, San Antonio, Texas, July 2007
- [26] Morgan, M. J., "The Effects of Hydrogen Isotopes and Helium on the Flow and Fracture properties of 21-6-9 Stainless Steel," in Morris E. Fine Symposium, eds. P. K. Liaw, J. R. Weertman, H. L. Marcus, and J. S. Santner, The Minerals, Metals& Materials Society, pp. 105-111, 1991.
- [27] Morgan, M. J., "Hydrogen Effects on the Fracture Toughness Properties of Forged Stainless Steels," PVP2008-61390, Proceedings ASME Pressure vessels and Piping Conference, Chicago, Illinois, July 27-31, 2008.

# APPENDIX

# Savannah River Laboratory Data Sheets (Reference [1])

The original data source which is referenced in Tables 1 through 4 of this report is included in **Appendix A**.

The measured properties in the data sheets may be differently from the customary definitions. The original definitions for these data sheets are reproduced from Reference [1] and are listed in **Appendix B**.

Mechanical test specimen types and dimensions for the data sheets are included in **Appendix C**.

Some of the data sheets referenced the actual heats of the alloys that were tested. These heats are summarized in **Appendix D**.

# Appendix A

# **Alloy Data Sheets**

| 1.  | Iron-Chromium-Nickel Alloys            | Data Sheet           |
|-----|----------------------------------------|----------------------|
|     | 304L<br>304N                           | IA-1 to IA-16        |
|     | 3095                                   | IB-1                 |
|     | 310                                    | IC-1<br>ID-1 to ID-2 |
|     | 316                                    | IE-1                 |
|     | Carpenter 20 Cb-3                      | IF-1                 |
|     | Incoloy® 800H (Huntington Alloys, Inc) | IG-1                 |
|     | Nickel 200                             | IH-1 to IH-2         |
|     | Nickel 301                             | IJ-1 to IJ-2         |
|     | 440 C                                  | IK-1                 |
| п.  | Iron-Chromium-Nickel-Manganese Alloys  |                      |
|     | Tenelon® (U.S. Steel Corp)             | IIA-1 to IIA-3       |
|     | Nitronic@-40 (21-6-9)(Armco, Inc)      | IIB-1 to IIB-12      |
|     | Nitronic®-50 (22-13-5)(Armco, Inc)     | IIC-1 to IIC-3       |
|     | 18-18 Plus® (Carpenter Technology)     | IID-1                |
|     | X18-3 Mn                               | IIE-1                |
|     | 18-2 Mn                                | IIF-1                |
|     | 216                                    | 11G-1                |
| ш.  | Precipitation Hardenable Alloys        |                      |
|     | A-286                                  | IIIA-1 to IIIA-5     |
|     | JBK-75                                 | IIIB-1 to IIIB-2     |
|     | 17-4PH                                 | IIIC-1 to IIIC-2     |
|     | AM-350                                 | IIID-1               |
|     | AM-363                                 | IIIE-L               |
|     | CG-27                                  | IIIF-1               |
|     | Ni-SPAN-C (Alloy 902)                  | IIIG-1               |
| IV. | High Purity Alloys                     |                      |
|     | A - 18Cr-10Ni                          | IVA-1                |
|     | B - 18Cr-14Ni                          | IVB-1                |
|     | C - 18Cr-19Ni                          | IVC-1                |

| Alloy               | Cr       | Ni     | Mn | Mo   | Other                    |
|---------------------|----------|--------|----|------|--------------------------|
| Fe-Cr-Ni-Alloys     |          |        |    |      |                          |
| 304 L               | 19       | 10     | -  | -    |                          |
| 304N                | 19       | 9      | -  | -    | 0.13 N                   |
| 309s                | 23       | 13     | -  | -    |                          |
| 310                 | 25       | 20     | -  | -    | 0.25 C                   |
| 316                 | 17       | 12     | -  | 2.5  |                          |
| 440C                | 19       | -      | -  | 0.75 | 0.95 to 1.20 C           |
| Carpenter 20 Cb-3   | 20       | 34     | -  | 2.5  | 3.5 Cu, 06 Nb            |
| 1800H               | 21       | 32     | -  | -    | 0.75 Cu, 0.3 Al, 0.3 Ti  |
| 1718                | 19       | 52     | -  | 13   | 5 (Nb + Ta), 1 Ti, 0.5 A |
| Ni200               | -        | 99+    | -  | -    |                          |
| Ni301               | -        | bal    | -  | -    | 1 Si, 4.5 Al, 0.6 Ti     |
| Fe-Cr-Ni-Mn-N Allog | ys       |        |    |      |                          |
| 216                 | 20       | 6      | 8  | 2    | 0.32 N                   |
| Tenelon®            | 18       | -      | 15 | -    | (see Note below)         |
| Nitronic®-40        | 21       | 6      | 9  | -    | 0.15 to 0.4 N            |
| Nitronic®-50        | 22       | 13     | 5  | 2    | 0.2 to 0.4 N             |
| 18-18 Plus®         | 18       | 0.5    | 18 | 1    | 0.4 N, 1 Cu, 0.1 Co      |
| X 18-3 Mn           | 18       | 3      | 12 | -    | 0.3 N                    |
| 18-2 Mn             | 18       | 2      | 13 | -    |                          |
| Precipitation-Harde | enable . | Alloys |    | 1    |                          |
| 17-4 PH             | 16.5     | 4      | -  | -    | 4 Cu, 0.3 Nb             |
| A-286               | 15       | 26     | -  | 1.25 | 2 Ti, 0.25 Al, 0.3 V     |
| JBK-75              | 15       | 30     | -  | 1.25 | 2 Ti, 0.25 Al,           |
|                     |          | 30     |    |      | 0.001 B, 0.25 V          |
| AM 363              | 11.5     | 4.5    | -  | -    | 0.5 Ti                   |
| CG 27               | 13       | 38     | -  | 6    | 2.5 Ti, 1.6 Al, 0.6 Nb   |
| AM 350              | 16.5     | 4.3    | -  | 2.8  | 0.1 N                    |
| Ni-SPAN-C           |          | 415    |    |      | <b></b>                  |
| Alloy 902           | 5        | 42     | -  | -    | 0.5 Al, 2.5 Ti           |
| High-Purity Alloys  |          |        |    |      |                          |
| A                   | 18       | 10     | -  | -    | N <0.01 in all           |
| В                   | 18       | 14     | -  | -    | three alloys             |
| c                   | 18       | 19     | -  | _    | entee arroyo             |
|                     | 10       | 19     |    |      |                          |

# **Nominal** Alloy Composition (wt.%)

Note: The nitrogen content in Tenelon<sup>®</sup> was 0.40 to 0.60 wt.% as listed in Ref. [10]: "Fracture of Fe-Cr-Mn Austenitic Steel," by G. R. Caskey, Jr., DP-MS-78-68, E. I. du Pont de Nemours & Co, Savannah River Laboratory, Aiken, SC, 1978; presented at the 108<sup>th</sup> Annual AIME Meeting, New Orleans, LA, Feb. 18-22, 1979.

# Nominal Tensile Properties for Annealed Materials (unless otherwise noted)

|                   | Strength, |           |               |
|-------------------|-----------|-----------|---------------|
| Alloy             | Yield*    | Tensile   | Elongation, % |
| 304L              | 230-270   | 540-560   | 55-60         |
| 304N              | 290-330   | 620       | 50-55         |
| 3095              | 275-310   | 620~650   | 45            |
| 310               | 310       | 650       | 45-50         |
| 316               | 207-290   | 550-585   | 45-50         |
| 440C              | 450-1890  | 760-1965  | 2-14          |
| Carpenter 20 Cb-3 | 250       | 600       | 50            |
| 1800H             | 140-345   | 450-650   | 30-50         |
| 1718              | 1180-1250 | 1350-1400 | 16            |
| Ni 200            | 103-207   | 380-550   | 40-55         |
| Ni 301            | 210-1200  | 620-1450  | 15-55         |
| 216               | 428       | 745       | 50            |
| Tenelon®          | 570       | 930       | 56            |
| Nitronic®-40      | 414       | 690       | 40            |
| Nitronic®-50      | 448       | 828       | 45            |
| 18-18 Plus®       | 520       | 900       | 60            |
| X 18-3 Mn         | 580       | 810       | 45            |
| 18-2 Mn           | 730       | 1000      | 51            |
| 17-4 PH           | 940       | 980       | 5             |
| A-286             | 760       | 1100      | 25            |
| JBK-75**          | 800       | 1090      | 14            |
| AM 350            | 420       | 1160      | 70            |
| AM 363            | 890       | 890       | 7             |
| CG 27             | 810       | 1160      | 29            |
| Ni-SPAN-C         | 760-870   | 900-1200  | 6-25          |
| Alloy 902         |           |           |               |

\* 0.2% offset.

\*\* HERF & Age.

# **Measured** Mechanical Properties at Savannah River Laboratory

#### IRON-CHROMIUM-NICKEL ALLOYS

DATA SHEET IA-1

Type 304L Stainless Steel Bar Stock, As Received\*

| Test Condition |          | Hydrogen** |       | Strength, MPa |         | Elongation, % |               |
|----------------|----------|------------|-------|---------------|---------|---------------|---------------|
| Temp, K        | Environ. | Exposure   | Yield | Ultimate      | Uniform | Total         | <u>Strain</u> |
| 380            | AIR      | NONE       | 240   | 680           | 58      | 69            | 1.78          |
|                |          | 69 MPa     | 260   | 730           | 60      | 70            | 1.27          |
| 273            | AIR      | NONE       | 310   | 1160          | 80      | 89            | 1.56          |
|                |          | 69 MPa     | 330   | 870           | 44      | 44            | 0.45          |
| 200            | AIR      | NONE       | 360   | 1500          | 61      | 70            | 1.27          |
|                |          | 69 MPa     | 390   | 1210          | 44      | 44            | 0.25          |
| 78             | LN       | NONE       | 390   | 2200          | 60      | 64            | 1.27          |
|                |          | 69 MPa     | 430   | 2100          | 59      | 65            | 1.27          |

\* Heat Analysis, Appendix D-1; Tensile B, Appendix C-2.

\*\* Exposure conditions: 69 MPa at 470 K for 1449 days.

#### DATA SHEET IA-2

Type 304L Stainless Steel, As Received

| Test Conditions<br>Temp, K Environ. |     | Hydrogen<br>Exposure | Impact<br>Energy, J |  |
|-------------------------------------|-----|----------------------|---------------------|--|
| 298                                 | AIR | NONE<br>17.9 MPa*    | 194<br>185          |  |
| 78                                  | AIR | NONE<br>17.9 MPa*    | 165<br>110          |  |

\* 17.9 MPa hydrogen pressure at 470 K for 1000 hours.

#### Effect of Test Environment on Tensile Properties of Type 304L Stainless Steel Tubes\*

| Exposure Conditions |         |               | Tensile Properties             |                                    |          |  |  |  |
|---------------------|---------|---------------|--------------------------------|------------------------------------|----------|--|--|--|
| Gas                 | Temp, K | Time,<br>days | $\sigma_y$ , MN/m <sup>2</sup> | $\sigma_{ult}$ , MN/m <sup>2</sup> | % Elong. |  |  |  |
| He                  | 425     | 32            | 270                            | 560                                | 59       |  |  |  |
| H <sub>2</sub>      | 425     | 32            | 320                            | 480                                | 19       |  |  |  |
| T <sub>2</sub>      | 425     | 32            | 300                            | 490                                | 22       |  |  |  |
| <sup>H</sup> 2      | 425     | 8             | 260                            | 490                                | 26       |  |  |  |
| т <sub>2</sub>      | 425     | 8             | 250                            | 490                                | 22       |  |  |  |

\* All tensile tubes tested at room temperature with 69 MPa gas; data reported are averages of at least two samples.

DATA SHEET IA-4

#### Tensile Properties of Type 304L Stainless Steels Containing Hydrogen and Helium

| Test Condition |             | Hydrogen |       | Strength, MPa |          |  |
|----------------|-------------|----------|-------|---------------|----------|--|
| Temp, K        | Environment | Exposure | Yield | Ultimate      | <u>%</u> |  |
| 300            | Air         | none     | 327   | 734           | 49-56    |  |
| 300*           | Air         | **       | 400   | 733           | 28-32    |  |
| 300*           | Air         | **       | - 434 | 744           | 28       |  |
| 973†           | Air         | none     | 152   | 237           | 31       |  |
| 973†           | Air         | **       | 179   | 190           | 1.5      |  |
|                |             |          |       |               |          |  |

\* Specimens contained tritium and Helium-3.

\*\* 328 mol hydrogen isotopes and 6.2 mol helium per  $m^3$  metal.

 $\dagger$  146 mol hydrogen isotopes and 25 mol helium per  $m^3$  metal. Held 1/2 hour at 973 K before testing.

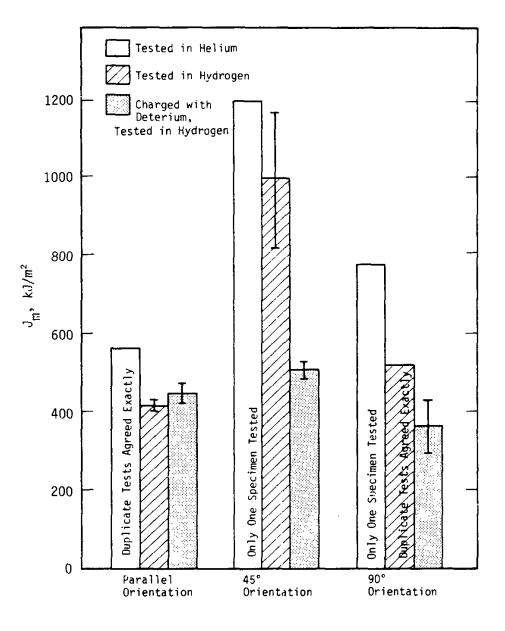
## Type 304L Stainless Steel, High Energy Rate Forged\*

| <u>Test Con</u><br>Temp, K | dition<br>Environ. | Hydrogen<br>Exposure** | Streng<br>Yield | th, MPa<br>Ultimate | Elongati<br>Uniform | on, %<br>Total | Fracture<br>Strain |
|----------------------------|--------------------|------------------------|-----------------|---------------------|---------------------|----------------|--------------------|
| 380                        | Air                | None<br>69 MPa         | 440<br>440      | 630<br>650          | 32<br>32            | 44<br>43       | 1.72<br>1.63       |
| 298                        | Air                | None<br>69 MPa         | 480<br>510      | 930<br>990          | 57<br>55            | 68<br>62       | 2.00<br>0.95       |
| 250                        | Air                | None<br>69 MPa         | 490<br>610      | 1100<br>1120        | 52<br>41            | 61<br>41       | 1.65<br>0.40       |
| 200                        | Air                | None<br>69 MPa         | 660<br>620      | 1390<br>1300        | 46<br>43            | 55<br>44       | 1.37<br>0.38       |

\* Tensile B, Appendix C-2.

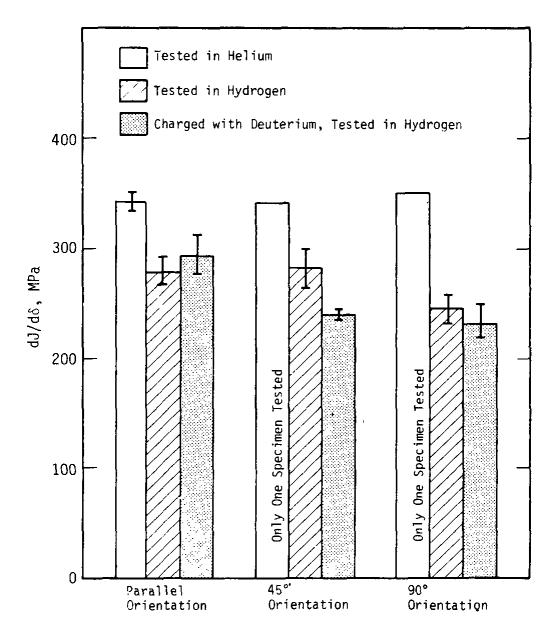
\*\* Exposed at 620 K for 3 weeks.

DATA SHEET IA-6


## Type 304L Stainless Steel, High Energy Rate Forged\*

| Test Condition |          | Hydrogen                   | Impact    |  |
|----------------|----------|----------------------------|-----------|--|
| Temp, K        | Environ. | Exposure                   | Energy, J |  |
| 298            | Air      | None                       | 199       |  |
| 298            | Air      | 29.6 MPa H <sub>2</sub> ** | 152       |  |
| 77             | Air      | None                       | 160       |  |
| 77             | Air      | 29.6 MPa H <sub>2</sub> ** | 95        |  |

\* Impact, Appendix C-8.


\*\* Exposure of 56 days at 470 K.

# Fracture Parameters for Type 304L Stainless Steel, High Energy Rate Forged\*



\* C-shaped tensile, Appendix C-7. Test in 69 MPa He or  $H_2$ . Deuterium charge at 69 MPa at 620 K for 3 weeks.

# Fracture Parameters for Type 304L Stainless Steel\*



<sup>\*</sup> C-shaped tensile, Appendix C-7. Test in 69 MPa He or H<sub>2</sub>. Deuterium charge at 69 MPa at 620 K for 3 weeks.

# Effect of Heat Treatment on Mechanical Properties of Type 304L Stainless Steel\*

| Heat<br>Treatment   | Test<br>Environment   | Strength, MPa<br>Yield Ultimate | Elongation, %<br>Uniform Total | Fracture<br>Strain |
|---------------------|-----------------------|---------------------------------|--------------------------------|--------------------|
| As-received         | 69 MPa He             | 390 930                         | 62 71                          | 2.21               |
| GS = 9.5 μm         | 69 MPa H <sub>2</sub> | 390 910                         | 56 62                          | 1.43               |
| 1170 K-24 hrs       | 69 MPa He             | 260 970                         | 82 89                          | 2.30               |
| $GS = 30 \ \mu m$   | 69 MPa H <sub>2</sub> | 240 970                         | 88 94                          | 1.71               |
| 1270 K-24 hrs       | 69 MPa He             | 250 970                         | 90 99                          | 2.30               |
| $GS = 55 \ \mu m$ . | 69 MPa H <sub>2</sub> | 240 930                         | 86 91                          | 1.17               |
| 1470 K-24 hrs       | 69 MPa He             | 190 830                         | 81 88                          | 2.21               |
| GS = 340 µm         | 69 MPa H <sub>2</sub> | 180 830                         | 84 88                          | 1.05               |

\* Heat analysis; Appendix D-1; Tensile B, Appendix C-2.

#### DATA SHEET IA-10

Grain Size Dependence of Mechanical Properties - Test at 220 K\*

.

| Hydrogen<br>Exposure | Grain<br>Size, µm | Streng<br>Yield | th, MPa<br>Ultimate | Elonga<br>Unit | tion, %<br>Total | Fracture<br><u>Strain</u> |
|----------------------|-------------------|-----------------|---------------------|----------------|------------------|---------------------------|
| None                 | 6.4               | 520             | 1310                | 56             | 63               | 1.71                      |
|                      | 42.0              | 340             | 1210                | ,60            | 72               | 1.70                      |
|                      | 290               | 250             | 1130                | 55             | 63               | 1.64                      |
| 69 MPa**             | 6.1               | 630             | 1040                | 35             | 35               | 0.27                      |
|                      | 26                | 400             | 1020                | 47             | 47               | 1.10                      |
|                      | 50                | 370             | 860                 | 37             | 37               | 0.40                      |
|                      | 260               | 270             | 690                 | 31             | 31               | 0.39                      |

\* Heat analysis, Appendix D-1; Tensile B, Appendix C-2.

\*\* Average deuterium contents measured on samples from the tensile specimens were 4.7 ccD<sub>2</sub>/cc (69 MPa).

# Effect of Deformation Rate on Hydrogen Damage\*

```
TYPE 304L Stainless Steel
T = 220 K
Grain Size: 6 m
```

| Hydrogen   | Cross<br>Headspeed, | Strength, MPa |          | Elongation, % |       | Fracture      |  |
|------------|---------------------|---------------|----------|---------------|-------|---------------|--|
| Exposure** | mm/min              | Yield         | Ultimate | Uniform       | Total | <u>Strain</u> |  |
| None       | 51                  | 570           | 1170     | 50            | 60    | 1.68          |  |
|            | 0.51                | 5.20          | 1310     | 56            | 63    | 1.70          |  |
| 69 MPa     | 51                  | 675           | 1210     | 52            | 52    | 0.92          |  |
|            | 0.51                | 630           | 1040     | 35            | 35    | 0.27          |  |

\* Heat analysis, Appendix D-1; Tensile B, Appendix C-2.

\*\* Exposed at 620 K for 3 weeks.

#### DATA SHEET IA-12

| Mechanical  | Properties   | of Sensitized | Туре | 304L | Stainless | Stee1* |
|-------------|--------------|---------------|------|------|-----------|--------|
| (Smooth Ban | r Tensile Sy | pecimens)     |      |      |           |        |

|            | Test          | Streng | th, MPa  | Fracture      |  |
|------------|---------------|--------|----------|---------------|--|
| Treatment  | Environment** | Yield  | Ultimate | <u>Strain</u> |  |
| Solution   | Air           | 380    | 630      | 2.00          |  |
| Anneal     | Helium        | 375    | 600      | 2.20          |  |
|            | Hydrogen      | 370    | 580<br>, | 1.38          |  |
| Sensitized | Air           | 300    | 560      | 1.78          |  |
|            | Helium        | 350    | 670      | 1.90          |  |
|            | Hydrogent     | 330    | 660      | 0.70          |  |
|            | Hydrogen††    | 350    | 660      | 0.80          |  |

\* Heat analysis, Appendix D-1; Tensile B, Appendix C-2.
\*\* 69 MPa gas pressure.

† Nearly continuous carbide network on some grain boundaries.

tt Isolated carbides.

# Mechanical Properties of Notch Bar Tensile Specimens of Type 304L Stainless Steel\*

| Treatment_         | Test<br>Environment**       | Streng<br>Yield | th, MPa<br>Ultimate | Fracture<br>Strain |
|--------------------|-----------------------------|-----------------|---------------------|--------------------|
| Solution<br>Anneal | Airt                        | 700             | 750                 | 0.41               |
| Sensitized         | Airtt                       | 350             | 590                 | 1.26               |
|                    | Helium††                    | 410             | 740                 | 1.10               |
|                    | Hydrogentt,¶<br>Hydrogen ¶¶ | 430<br>480      | 590<br>620          | 0.35<br>0.38       |
|                    | Airt                        | 510             | 680                 | 1.17               |
|                    | Heliumț                     | 540             | 790                 | 1.00               |
|                    | Hydrogen†,¶<br>Hydrogen ¶¶  | 730<br>-        | 750<br>690          | 0.30<br>0.20       |

\* Heat analysis, Appendix D-1 and Appendix C-2.

\*\* He and H<sub>2</sub> at 69 MPa. Air at 0.1 MPa.

† Deep notch.

tf Shallow notch.

¶ Nearly continuous carbide network on some grain boundaries.

.

**¶¶** Isolated carbides.

# Effect of Hydrogen Charging on Notch Bar Tensile Properties of Type 304L Stainless Steel\*

| Condition         | Specimen | Nominal Tensile<br>Strength, MPa | Fracture<br>Strain |
|-------------------|----------|----------------------------------|--------------------|
| As received       | Smooth   | 600                              | 1.50               |
|                   | Notch    | 770                              | 0.30               |
| Annealed**        | Smooth   | 600                              | 1.43               |
|                   | Notch    | 710                              | 0.24               |
| Hydrogen charged† | Smooth   | 530                              | 0.37               |
|                   | Notch    | 580                              | 0.13               |

\* Tensile C, Appendix C-4.

\*\* Annealed 200 days at 380 K in argon.

† Exposed to hydrogen gas at 69 MPa for 200 days at 380 K.

τ.

,

#### DATA SHEET IA-15

#### Type 304L Stainless Steel Notch Tensile Strength\*

| Notch Tensile |  |  |  |  |  |
|---------------|--|--|--|--|--|
| Strength,     |  |  |  |  |  |
| MPa           |  |  |  |  |  |
|               |  |  |  |  |  |
| 896           |  |  |  |  |  |
| 786           |  |  |  |  |  |
| 703           |  |  |  |  |  |
| 662           |  |  |  |  |  |
|               |  |  |  |  |  |

\* Tensile C, Appendix C-4.

## Stress Necessary for Slow Crack Growth in Type 304L Stainless Steel\*

| Net Section               | Time, hrs    |             | Crack  |  |
|---------------------------|--------------|-------------|--------|--|
| Stress, MN/m <sup>2</sup> | Incremental  | Accumulated | Growth |  |
| 600                       | 325          | 325         | No     |  |
| 641                       | 72           | 397         | No     |  |
| 682                       | 72           | 469         | No     |  |
| 724                       | 72           | 541         | No     |  |
| 765                       | 72           | 613         | No     |  |
| 786                       | 1.4 (failed) | 614.4       | Yes    |  |
|                           |              |             |        |  |

\* Crack developed during room temperature tensile test in hydrogen environment; net section stress when tensile test was stopped was 772 MN/m<sup>2</sup>. Specimen then loaded in creep frame at indicated stresses without removal from the hydrogen environment.

Tensile E, Appendix C-5.

#### DATA SHEET IB-1 Type 304N Stainless Steel\*

| Test Con<br>Temp, K |                       | Hydrogen<br>Exposure     | Strengt<br>Yield† | h, MPa<br>Tensile |    | m Total | Fracture<br>Strain |
|---------------------|-----------------------|--------------------------|-------------------|-------------------|----|---------|--------------------|
| 298                 | Air                   | none                     | 760               | 880               | -  | 33      | 1.24               |
|                     | Air                   | 69 MPa H2**              | 740               | 830               | -  | 31      | 1.05               |
|                     | 69 MPa H <sub>2</sub> | none                     | 640               | 840               | -  | 36      | 0.78               |
|                     | 69 MPa H2             | 69 MPa H <sub>2</sub> ** | 550               | 790               | -  | 37      | 0.62               |
|                     | 69 MPa He             | none                     | 630               | 850               | -  | 43      | 1.35               |
|                     |                       |                          |                   |                   |    |         |                    |
| 375                 | Air                   | none                     | 820               | 950               | 11 | 26      | 1.31               |
|                     |                       | 69 MPa $D_2$ tt          | 820               | 970               | 11 | 22      | 1.20               |
|                     |                       |                          |                   |                   |    |         |                    |
| 298                 | Air                   | none                     | 906               | 1110              | 16 | 28      | 1.47               |
|                     |                       | 69 MPa D <sub>2</sub> †† | 950               | 1185              | 16 | 28      | 0.95               |
|                     |                       |                          |                   |                   |    |         |                    |
| 245                 | Air                   | none                     | 975               | 1340              | 27 | 37      | 1.82               |
|                     |                       | 69 MPa D <sub>2</sub> tt | 1063              | 1420              | 22 | 27      | 0.49               |
|                     |                       |                          |                   |                   |    |         |                    |
| 220                 | Air                   | none                     | 1026              | 1450              | 26 | 35      | 1.67               |
|                     |                       | 69 MPa D <sub>2</sub> tt | 1093              | 1480              | 21 | 24      | 0.33               |
|                     |                       |                          |                   |                   |    |         |                    |
| 200                 | Air                   | none                     | 1096              | 1810              | 47 | 56      | 1.44               |
|                     |                       | 69 MPa D <sub>2</sub> tt | 1160              | 1510              | 19 | 23      | 0.38               |
|                     |                       |                          |                   |                   |    |         |                    |

\* Tensile A, Appendix C-1; Heat Analysis, Appendix D-10.

\*\* 69 MPa H2 at 430 K for 1000 hours.

† 0.2% offset.

 $\dagger \dagger$  69 MPa D<sub>2</sub> at 620 K for 3 weeks.

|      |       | 1    |
|------|-------|------|
| DATA | SHEET | IC-1 |

#### Type 309S Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure                  | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-----------------------|---------------------------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | Air                   | none                                  | 290                 | 600              | -                  | 54 | 1.27               |
|                     | 69 MPa He             | none                                  | 276                 | 580              | -                  | 60 | 1.24               |
|                     | 69 MPa H2             | none                                  | 260                 | 586              | -                  | 63 | 1.35               |
|                     | Air                   | 69 MPa H <sub>2</sub> -430K<br>14d    | 255                 | 615              | -                  | 43 | 0.92               |
|                     | Air                   | 28 MPa H <sub>2</sub> -470K<br>100 hr | 330                 | 615              | -                  | 57 | 1.17               |

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

DATA SHEET IC-2

# Tensile Properties of Type 3098 Stainless Steels Containing Hydrogen and Helium

| Test Condition |             | Hydrogen Strength, MPa |       |          | Elongation, |  |
|----------------|-------------|------------------------|-------|----------|-------------|--|
| Temp, K        | Environment | Exposure               | Yield | Ultimate | %           |  |
| 300            | Air         | none                   | 243   | 612      | 56          |  |
| 300*           | Air         | **                     | 301   | 618      | 48-57       |  |
| 300*           | Air         | t                      | 382   | 658      | 45-53       |  |
| 973†† ·        | Air         | none                   | 131   | 296      | 27          |  |
| 973††          | Air         | t                      | 227   | 196      | <1 ·        |  |
|                |             |                        |       |          |             |  |

\* Specimens contained tritium and Helium-3.

\*\* 328 mol hydrogen isotopes and 6.2 mol helium per  $m^3$  metal.

† 146 mol hydrogen isotopes and 2.5 mol helium per m<sup>3</sup> metal.

tt Held 1/2 hour at 973 K before testing.

| DATA | SHEET | ID-J | l |
|------|-------|------|---|
|------|-------|------|---|

## Type 310 Stainless Steel Bar Stock, As Received\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Strength, MPaElongation, %YieldUltimateUniformTotal |              |          | Fracture<br>Strain |              |
|---------------------|-----------------------|------------------------|-----------------------------------------------------|--------------|----------|--------------------|--------------|
| 380                 | Air                   | none<br>69 MPa         | 440<br>440                                          | 670<br>700   | 25<br>27 | 36<br>40           | 1.35<br>1.71 |
| 273                 | Air                   | none<br>69 MPa         | 510<br>510                                          | 860<br>900   | 44<br>46 | 53<br>53           | 1.71<br>1.47 |
| 200                 | Air                   | none<br>69 MPa         | 560<br>590                                          | 1200<br>1280 | 60<br>62 | 66<br>73           | 1.20<br>1.24 |
| 78                  | LN                    | none<br>69 MPa         | 570<br>570                                          | 1720<br>1790 | 74<br>71 | 78<br>76           | 1.05<br>1.35 |

\* Tensile B, Appendix C-2.

\*\* Exposed at 470 K for 1449 days.

DATA SHEET ID-2

## Type 310 Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure    | Strength, MPa<br>Yield** Tensile |       | Elongation, %<br>Uniform Total |    | Fracture<br>Strain |
|---------------------|-----------------------|-------------------------|----------------------------------|-------|--------------------------------|----|--------------------|
| 298                 | Air                   | none                    | 210                              | 540   | -                              | 61 | 1.56               |
|                     | Air                   | 69 MPa H <sub>2</sub> † | 200                              | 500   | -                              | 63 | 1.42               |
|                     | 69 MPa H <sub>2</sub> | none                    | 186                              | , 490 | -                              | 67 | 1.72               |
|                     | 69 MPa H <sub>2</sub> | 69 MPa H <sub>2</sub> † | 180                              | 440   | -                              | 66 | 1.56               |
|                     | 69 MPa He             | none                    | 180                              | 480   |                                | 70 | 1.61               |

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

 $\dagger$  69 MPa H<sub>2</sub> at 430 K for 1000 hours.

```
DATA SHEET IE-1
```

# Type 316 Stainless Steel; Bar Stock, As Received\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Strength, MPaElongation, %YieldUltimateUniformTotal |              | Fracture<br>Strain |          |              |
|---------------------|-----------------------|------------------------|-----------------------------------------------------|--------------|--------------------|----------|--------------|
| 380                 | Air                   | none<br>69 MPa         | 810<br>880                                          | 830<br>930   | 7<br>11            | 20<br>22 | 1.61<br>1.19 |
| 273                 | Air                   | none<br>69 MPa         | 890<br>990                                          | 1040<br>1160 | 21<br>20           | 33<br>32 | 1.47<br>1.13 |
| 250                 | Air                   | none<br>69 MPa         | 900<br>1030                                         | 1150<br>1280 | 27<br>24           | 40<br>35 | 1.51<br>1.07 |
| 200                 | Air                   | none<br>69 MPa         | 960<br>1100                                         | 1210<br>1410 | 24<br>26           | 43<br>37 | 1.56<br>1.06 |

\* Tensile B, Appendix C-2.

\*\* Exposed at 620 K for 3 weeks.

## Carpenter 20 Cb-3<sup>®</sup> Stainless Steel As-Received\*

| Test Con<br>Temp, K |                       | Hydrogen<br>Exposure** | Strength, MPa<br>Yield† Ultimate |      | Elongation, %<br>Uniform Total |    | Fracture<br>Strain |
|---------------------|-----------------------|------------------------|----------------------------------|------|--------------------------------|----|--------------------|
| 298                 | Air                   | none                   | 236                              | 600  | -                              | 48 | 1.14               |
|                     | 69 MPa H <sub>2</sub> | none                   | 230                              | 590  | -                              | 48 | 1.14               |
|                     | 69 MPa H <sub>2</sub> | 69 MPa D <sub>2</sub>  | 262                              | 610  | -                              | 48 | 1.14               |
| 200                 | Air                   | none                   | 320                              | 1100 | 60                             | 66 | 1.01               |
|                     | Air                   | 69 MPa D <sub>2</sub>  | 348                              | 1177 | 55                             | 62 | 1.08               |

\* Tensile B, Appendix C-2; heat analysis, Appendix D-11.

\*\* Exposed at 620 K for 3 weeks.

† 0.2% offset.

#### DATA SHEET IG-1

## Incoloy Alloy 800H, Hot Rolled Plate, Solution Annealed\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Streng<br>Yield | th, MPa<br>Ultimate | Elongation, %<br>Uniform Total |          | Fracture<br>Strain |
|---------------------|-----------------------|------------------------|-----------------|---------------------|--------------------------------|----------|--------------------|
| 380                 | Air                   | none<br>69 MPa         | 270<br>290      | 750<br>770          | 47<br>48                       | 52<br>53 | 0.92<br>0.82       |
| 298                 | Air                   | none<br>69 MPa         | 310<br>330      | 820<br>840          | 48<br>48                       | 55<br>53 | 0.97<br>0.78       |
| 250                 | Air                   | none<br>69 MPa         | 340<br>360      | 870<br>900          | 48<br>49                       | 56<br>55 | 1.20<br>0.92       |
| 200                 | Air                   | none<br>69 MPa         | 360<br>380      | 930<br>990          | 49<br>54                       | 56<br>63 | 1.11<br>0.94       |
| 78                  | LN                    | none<br>69 MPa         | 530<br>540      | 1520<br>1490        | 80<br>74                       | 84<br>76 | 0.78<br>0.69       |

\* Tensile B, Appendix C-2; heat analysis, Appendix D-3.

\*\* Exposed at 620 K for 3 weeks.

#### Nickel 200\*

| Test Con<br>Temp, K | dition<br>Environment    | Hydrogen<br>Exposure | Strength, MPa Elongation<br>Yield Ultimate Uniform To |     |   | Fracture<br>Strain |      |
|---------------------|--------------------------|----------------------|-------------------------------------------------------|-----|---|--------------------|------|
| 298                 | Air**                    | none                 | 88                                                    | 506 | - | 55                 | 2.30 |
|                     | 69 MPa He**              | none                 | 120                                                   | 490 | - | 55                 | 2.41 |
|                     | 69 MPa H <sub>2</sub> ** | none                 | 106                                                   | 470 | - | 51                 | 0.76 |
| 298                 | Airt                     | none                 | 135                                                   | 480 | - | 50                 | 2.21 |
|                     | 69 MPa Het               | none                 | 122                                                   | 450 | - | 48                 | 2.04 |
|                     | 69 MPa H <sub>2</sub> †  | none                 | 156                                                   | 460 | - | 45                 | 0.69 |

\* Tensile A, Appendix C-1.

\*\* Annealed 1090 K 15 minutes and furnace cooled.

t As in \*\*, plus annealed 773 K for 64 hours and air cooled.

#### DATA SHEET IH-2

#### Nickel 200, Notch-Bar Tensile Properties\*

| Test Con<br>Temp, K | dition<br>Environment    | Hydrogen<br>Exposure | Strength, MPa<br>Yield Ultimate |     | Elongation, %<br>Uniform Total |   | Fracture<br>Strain |
|---------------------|--------------------------|----------------------|---------------------------------|-----|--------------------------------|---|--------------------|
| 298                 | Air**                    | none                 | -                               | 660 | -                              | - | 0.35               |
|                     | 69MPa He**               | none                 | -                               | 810 | -                              | - | 0.37               |
|                     | 69 MPa H <sub>2</sub> ** | none                 | -                               | 560 | -                              | - | 0.11               |
|                     | Air†                     | none                 | -                               | 635 | -                              | - | 0.44               |
|                     | 69 MPa Het               | none                 | -                               | 710 | -                              | - | 0.34               |
|                     | 69 MPa H <sub>2</sub> †  | none                 | -                               | 580 | -                              | - | 0.20               |

\* Tensile A, Appendix C-1 with notch.

\*\* Annealed 1090 K 15 minutes and furnace cooled.

† As in \*\*, plus annealed 773 K for 64 hours and air cooled.

#### Nickel 301\*

| Test Cor<br>Temp, K | dition<br>Environment   | Hydrogen<br>Exposure | Streng<br>Yield | th, MPa<br>Ultimate | Elongation, %<br>Uniform Total |    | Fracture<br>Strain |
|---------------------|-------------------------|----------------------|-----------------|---------------------|--------------------------------|----|--------------------|
| 298                 | Air**                   | none                 | 451             | 778                 | -                              | 39 | 1.89               |
|                     | 69 MPa He**             | none                 | 486             | 791                 | -                              | 34 | 1.35               |
|                     | 69 MPa H2**             | none                 | 532             | 618                 | -                              | 12 | 0.22               |
| 298                 | Air†                    | none                 | 1008            | 1380                | -                              | 23 | 0.49               |
|                     | 69 MPa Het              | none                 | 1009            | 1350                | -                              | 22 | 0.42               |
|                     | 69 MPa H <sub>2</sub> † | none                 | -               | 850                 | -                              | 4  | 0                  |

\* Tensile A, Appendix C-1.

\*\* Annealed 1170 K for 5 min and quenched.

† Annealed as in \*\*, plus annealed 860 K for 16 hours, 810 K for 5 hours and 755 K for 5 hours and furnace cooled.

#### DATA SHEET IJ-2

#### Nickel 301, Notch Bar Tensile Properties\*

| Test Condition |             | Hydrogen <u>Strength</u> , MPa |       | Elongation, %    |         | Fracture |               |
|----------------|-------------|--------------------------------|-------|------------------|---------|----------|---------------|
| Temp, K        | Environment | Exposure                       | Yield | Ultimate         | Uniform | Total    | <u>Strain</u> |
| 298            | Air**       | none                           | -     | 985              | -       | -        | 0.30          |
|                | 69 MPa He** | none                           | -     | 995 <sup>,</sup> | -       | -        | 0.30          |
|                | 69 MPa H2** | none                           | -     | 690              |         | -        | 0.01          |
|                | Air†        | none                           | -     | 1630             | -       | -        | 0.19          |
|                | 69 MPa Het  | none                           | -     | 1600             | -       | -        | 0.10          |
|                | 69 MPa H2†  | none                           | -     | 840              | -       | -        | 0.04          |

\* Tensile A, Appendix C-1 plus notch.

\*\* Annealed 1170 K for 5 min and quenched.

† Annealed as in \*\*, plus annealed 860 K for 16 hours, 810 K for 5 hours and 755 K for 5 hours and furnace cooled.

## Type 440C Stainless Steel\*

| Test Cond<br>Temp, K | lition<br>Environment | Hydrogen<br>Exposure**        | Strengt<br>Yield | th, MPa<br>Ultimate | Elongatic<br>Uniform | on, %<br>Total | Fracture<br>Strain |
|----------------------|-----------------------|-------------------------------|------------------|---------------------|----------------------|----------------|--------------------|
| 298                  | Air                   | none<br>69 MPa D <sub>2</sub> | 377<br>377       | 620<br>575          | -                    | 7.1<br>4.6     | 0.010<br>0.006     |
| 200                  | Air                   | none<br>69 MPa D <sub>2</sub> | 406<br>450       | 670<br>570          | -                    | 7.7<br>4.2     | 0.013              |

\* Tensile B, Appendix C-2.

\*\* Exposure at 620 K for 3 weeks.

#### IRON-CHROMIUM-NICKEL-MANGANESE ALLOYS

## DATA SHEET IIA-1

# Tenelon<sup>®</sup> Plate, As Received\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Streng<br>Yield | th, MPa<br>Ultimate | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-----------------------|------------------------|-----------------|---------------------|--------------------|----|--------------------|
| 350                 | Air                   | none                   | 675             | 1270                | 48                 | 59 | 1.43               |
|                     |                       | 69 MPa                 | 700             | 1300                | 53                 | 60 | 0.94               |
| 273                 | Air                   | none                   | 830             | 1480                | 50                 | 58 | 1.14               |
|                     |                       | 69 MPa                 | 920             | 1540                | 48                 | 50 | 0.51               |
| 200                 | Air                   | none                   | 1050            | 1960                | 59                 | 66 | 0.69               |
|                     |                       | 69 MPa                 | 1020            | 1620                | 40                 | 40 | 0.36               |
| 78                  | LN                    | none                   | 1740            | 1780                | 19                 | 19 | 0.08               |
|                     |                       | nonet                  | 1730            | 2040                | 22                 | 22 | 0.07               |
|                     |                       | nonett                 | 1670            | 2120                | 25                 | 25 | 0.13               |
|                     |                       | none¶                  | 1450            | 1730                | 21                 | 21 | 0.14               |
|                     |                       | 69 MPa                 | 1720            | 1780                | 20                 | 20 | 0.06               |

.

\* Tensile B, Appendix C-2; heat analysis, Appendix D-4

\*\* Exposed at 620 K for 3 weeks.

t Electropolished.

tt Annealed 1170 K for 24 hours.

¶ Annealed 1270 K for 24 hours.

#### Tenelon<sup>®\*</sup>

| Test Con<br>Temp, K |                       | Hydrogen<br>Exposure    | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Straín |
|---------------------|-----------------------|-------------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | Air                   | none                    | 570                 | 930              | -                  | 56 | 1.05               |
|                     | 69 MPa He             | none                    | 500                 | 875              | -                  | 65 | 1.14               |
|                     | 69 MPa H <sub>2</sub> | none                    | 500                 | 900              | -                  | 55 | 0.63               |
|                     | Air                   | 69 MPa H <sub>2</sub> † | 550                 | 840              | -                  | 41 | 0.45               |
|                     | 69 MPa H <sub>2</sub> | 69 MPa H <sub>2</sub> † | 470                 | 760              | -                  | 24 | 0.26               |

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

 $\dagger$  69 MPa  $\rm H_2$  for 1000 hours at 423 K.

#### DATA SHEET IIA-3

## Fracture Toughness of Tenelon®\*

| Test<br>Temp, K | Specimen<br>Condition | Fracture<br>Toughness, MPa√m |  |  |  |  |
|-----------------|-----------------------|------------------------------|--|--|--|--|
| 78              | As received           | 68.6                         |  |  |  |  |
|                 | Anneal 1170 K         | 36.5                         |  |  |  |  |
|                 | Anneal 1270 K         | 71.4                         |  |  |  |  |
| 200             | As received           | 127.8                        |  |  |  |  |
|                 | Anneal 1170 K         | 99.6                         |  |  |  |  |
|                 | Anneal 1270 K         | 120.5                        |  |  |  |  |

\* Heat analysis, Appendix D-4; single edge notched, Appendix C-6.

# Nitronic<sup>®</sup> 40 Stainless Steel Bar Stock, As Received\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Streng<br>Yield | th, MPa<br>Ultimate | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-----------------------|------------------------|-----------------|---------------------|--------------------|----|--------------------|
| 380                 | Air                   | none                   | 680             | 940                 | 30                 | 39 | 1.66               |
|                     |                       | 69 MPa                 | 690             | 1020                | 36                 | 46 | 1.02               |
| 298                 | Air                   | none                   | 770             | 1170                | 41                 | 51 | 1.61               |
|                     |                       | 69 MPa                 | 800             | 1270                | 46                 | 56 | 0.92               |
| 250                 | Air                   | none                   | 860             | 1360                | 46                 | 57 | 1.51               |
|                     |                       | 69 MPa                 | -               | 1380                | 41                 | 46 | 0.45               |
| 200                 | Air                   | none                   | 970             | 1550                | 48                 | 58 | 1.56               |
|                     |                       | 69 MPa                 | 1060            | 1650                | 44                 | 48 | 0.65               |
| 78                  | LN                    | none                   | 1580            | 2140                | 45                 | 49 | 0.64               |
|                     |                       | 69 MPa                 | 1600            | 2060                | 36                 | 36 | 0.38               |

\* Tensile B, Appendix C-2; heat analysis, Appendix D-5.

\*\* Exposed at 620 K for 3 weeks.

# Mechanical Properties of Nitronic<sup>®</sup> 40 Alloy: Heat Treatment and Notch Effects\*

| Test<br>Temp, K** | Treatment          | Specimen      | Streng<br>Yield | th, MPa<br>Ultimate | Elongati<br>Uniform | on, %<br>Total | Fracture<br>Strain |
|-------------------|--------------------|---------------|-----------------|---------------------|---------------------|----------------|--------------------|
| 300               | Solution<br>Anneal | Smooth<br>bar | 700             | 1170                | 41                  | 51             | 1.59               |
|                   |                    | Notch<br>bar  | 800             | 1160                | 24                  | 27             | 0.74               |
|                   | Sensitize          | Notch<br>bar  | 750             | 1070                | 18                  | 18             | 0.53               |
| 200               | Solution           | Smooth<br>bar | 880             | 1550                | 48                  | 58             | 1.57               |
|                   |                    | Notch<br>bar  | 1130            | 1500                | 19                  | 19             | 0.72               |
|                   | Sensitize          | Smooth<br>bar | 720             | 1490                | 51                  | 60             | 1.03               |
|                   |                    | Notch<br>bar  | 1120            | 1250                | 10                  | 10             | 0.17               |

ī

\* Heat analysis, Appendix D-5; Tensile B, Appendix C-2.

\*\* Air environment.

#### Mechanical Properties of Sensitized Nitronic<sup>®</sup> 40 Stainless Steel Tested in a High-Pressure Hydrogen Environment at Room Temperature\*

| Specimen<br>Condition | Test<br>Atmosphere    | <u>Streng</u><br>Yield | th, MPa<br>Ultimate | Elongati<br>Uniform | on, %<br>Total | Fracture<br>Strain |
|-----------------------|-----------------------|------------------------|---------------------|---------------------|----------------|--------------------|
| Solution<br>Annealed  | 69 MPa He             | 650                    | 1050                | 42                  | 52             | 1.11               |
|                       | 69 MPa H <sub>2</sub> | 670                    | 1060                | 41                  | 50             | 1.22               |
| 920 K-2 hr            | 69 MPa He             | 640                    | 1100                | 43                  | 50             | 1.51               |
|                       | 69 MPa H <sub>2</sub> | 640                    | 1080                | 42                  | 49             | 1.50               |
| 920 K-24 hr           | 69 MPa He             | 625                    | 1110                | 46                  | 53             | 1.38               |
|                       | 69 MPa H <sub>2</sub> | 620                    | 1100                | 46                  | 52             | 1.10               |
| 920 K-24 hr           | 69 MPa He**           | 760                    | 1060                | 16                  | 16             | 0.32               |
|                       | 60 MPa H2**           | 700                    | 760                 | 9                   | 9              | 0.06               |

\* Heat analysis, Appendix D-5; Tensile B, Appendix C-2.

\*\* Notch bar specimen.

#### DATA SHEET IIB-4

# Mechanical Properties of Sensitized Nitronic<sup>®</sup> 40 Stainless Steel Saturated with Hydrogen\*

| Temp, K | Treatment**        | Hydrogen<br>Exposure     | <u>Streng</u><br>Yield | th, MPa<br>Ultimate | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------|--------------------|--------------------------|------------------------|---------------------|--------------------|----|--------------------|
| 200     | Solution<br>Anneal | none                     | 970                    | 1550                | 48                 | 58 | 1.57               |
|         | Solution<br>Anneal | 69 MPa H <sub>2</sub> †  | 1060                   | 1650                | 44                 | 48 | 0.66               |
|         | 920 K-24 hr        | none                     | 790                    | 1490                | 51 ·               | 60 | 1.03               |
|         | 920 K-24 hr        | 69 MPa H <sub>2</sub>    | 920                    | 1470                | 37                 | 37 | 0.33               |
|         | 920 K-24 hr        | 69 MPa H <sub>2</sub> tt | <b>90</b> 0            | 1350                | 35                 | 40 | 0.45               |

\* Heat analysis, Appendix D-5; Tensile B, Appendix C-2.

\*\* Smooth bar tensile specimens.

† Exposed at 620 K for 3 weeks.

§ tt Crosshead speed, 5 mm/sec; all others, 0.5 mm/sec.

Note:Typographic errors were made on the original Data Sheet IIB-4 in Ref. [1]. The crosshead speeds (denoted by § above) should be 5 mm/min and 0.5 mm/min, respectively.

## Nitronic<sup>®</sup> 40\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure | Strength,<br>Yield** | MPa<br>Tensile | Elongat |    | Fracture<br>Strain |
|---------------------|-----------------------|----------------------|----------------------|----------------|---------|----|--------------------|
| 298                 | Air                   | none                 | 400                  | 670            | -       | 58 | 1.51               |
|                     | 69 MPa He             | none                 | 350                  | 700            | -       | 59 | 1.47               |
|                     | 69 MPa H <sub>2</sub> | none                 | 360                  | 700            | -       | 61 | 1.43               |

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

### DATA SHEET IIB-6

## Nitronic<sup>®</sup> 40; Cold Worked 30%\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure          | Strength,<br>Yield** | MPa<br>Tensile | Elongat<br>Uniform |          | Fracture<br>Strain |
|---------------------|-----------------------|-------------------------------|----------------------|----------------|--------------------|----------|--------------------|
| 298                 | Air                   | none<br>30 MPa H <sub>2</sub> | 1240<br>1075         | 1290<br>1150   | -                  | 26<br>32 | 0.87<br>0.43       |
|                     | 69 MPa He             | none                          | 1010                 | 1050           | -                  | 26       | 0.99               |
|                     | 69 MPa H <sub>2</sub> | none                          | 980                  | <b>'1100</b>   | -                  | 26       | 1.02               |
|                     | 69 MPa H <sub>2</sub> | 30 MPa H <sub>2</sub>         | 1060                 | 1130           | -                  | 36       | 0.44               |

.

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

## Nitronic<sup>®</sup> 40 Stainless Steel, High Energy Rate Forged\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure | Streng<br>Yield | th, MPa<br>Ultimate | Elongat  | ion, %<br>1 Total | Fracture<br>Strain |
|---------------------|-----------------------|----------------------|-----------------|---------------------|----------|-------------------|--------------------|
| 380                 | Air                   | none<br>69 MPa**     | 540<br>570      | 1040<br>1070        | 47<br>50 | 59<br>68          | 1.81<br>1,26       |
|                     |                       | none<br>69 MPa†      | 780<br>690      | 970<br>930          | 21<br>26 | 31<br>33          | 1.17<br>0.67       |
| 298                 | Air                   | none<br>69 MPa†      | 780<br>890      | 1140<br>1220        | 32<br>30 | 44<br>42          | 1.24<br>0.96       |
| 273                 | Air                   | none<br>69 MPa**     | 640<br>690      | 1300<br>1430        | 57<br>67 | 69<br>78          | 1.81<br>1.06       |
| 220                 | Air                   | none<br>69 MPat      | 900<br>960      | 1320<br>1420        | 33<br>37 | 45<br>47          | 1.31<br>0.80       |
| 200                 | Air                   | none<br>69 MPa**     | 930<br>1050     | 1700<br>1830        | 51<br>49 | 59<br>54          | 1.26<br>0.90       |
|                     |                       | none<br>69 MPa†      | 1020<br>990     | 1610<br>1740        | 42<br>53 | 54<br>60          | 1.26<br>0.66       |
| 78                  | LN                    | none<br>69 MPa**     | 1450<br>1400    | 2840<br>2600        | 46<br>46 | 56<br>46          | 0.83<br>0.53       |

\* Tensile B, Appendix C-2.

\*\* 69 MPa at 470 K for 1449 days.

† 69 MPa at 620 K for 21 days.

DATA SHEET IIB-8

# Nitronic<sup>®</sup> 40 Stainless Steel, High Energy Rate Forged\*

| Test Condition |                       | Hydrogen              | Strength, MPa |         | Elongation, % |       | Fracture |
|----------------|-----------------------|-----------------------|---------------|---------|---------------|-------|----------|
| Temp, K        | Environment           | Exposure              | Yield**       | Tensile | Uniform       | Total | Strain   |
| 298            | Air                   | none                  | 610           | 790     | -             | 34    | 1.35     |
|                |                       | 28 MPa H <sub>2</sub> | 660           | 820     | -             | 31    | 0.89     |
|                | 69 MPa He             | none                  | 570           | 780     | -             | 34    | 1.39     |
|                | 69 MPa H <sub>2</sub> | none                  | 570           | 790     | -             | 30    | 1.31     |
|                |                       | 28 MPa H <sub>2</sub> | 630           | 830     | -             | 31    | 0.78     |

1

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

.

\$

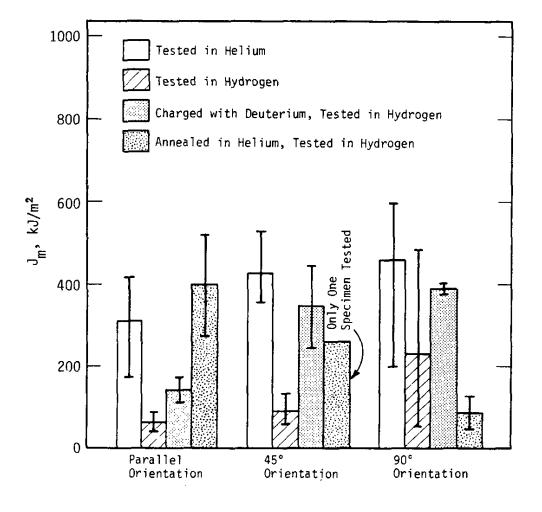
#### DATA SHEET IIB-9

# Nitronic<sup>®</sup> 40 Stainless Steel, High Energy Rate Forged\*

| Test Con |             | Hydrogen                           | Impact    |  |
|----------|-------------|------------------------------------|-----------|--|
| Temp, K  | Environment | Exposure                           | Energy, J |  |
| 298      | Air         | none<br>29.6 MPa H2**              | 110<br>91 |  |
| 77       | LN          | none<br>29.6 MPa H <sub>2</sub> ** | 37<br>35  |  |

\* Impact, Appendix C-8.

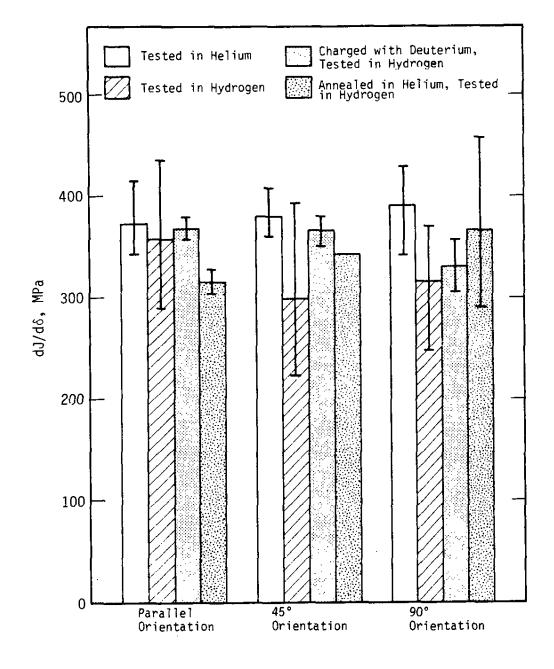
\*\* 470 K - 56 days.


#### DATA SHEET IIB-10

# Nitronic<sup>®</sup> 40 Stainless Steel, High Energy Rate Forged\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure   | Fracture Toughness,<br>MPa√m<br>Long Trans |    |
|---------------------|-----------------------|------------------------|--------------------------------------------|----|
| <u>+_/</u>          | ×                     | <u>Inpobul c</u>       | <u>10.05</u>                               |    |
| 298                 | 69 MPa He             | none                   | 79                                         | 74 |
|                     | 69 MPa H <sub>2</sub> | none                   | 81                                         | 68 |
|                     | 69 MPa H <sub>2</sub> | 0.6 MPa H <sub>2</sub> | 76                                         | 62 |

\* C-shaped tensile, Appendix C-7.


## Fracture Parameters for Nitronic<sup>®</sup> 40 Stainless Steel\*



\* C-shaped tensile, Appendix C-7. Test in 69 MPa He or  $H_2$ . Deuterium exposed at 69 MPa at 620 K for 3 weeks.

# DATA SHEET IIB-12

# Fracture Parameters for Nitronic<sup>®</sup> 40 Stainless Steel\*



\* C-shaped tensile, Appendix C-7. Test in 69 MPa He or H<sub>2</sub>. Deuterium charged at 69 MPa at 620 K for 3 weeks.

```
DATA SHEET IIC-1
```

#### Nitronic<sup>®</sup> 50 Stainless Steel Bar Stock, As Received\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Streng<br>Yield | th, MPa<br>Ultimate |          | tion, %<br>m Total | Fracture<br>Strain |
|---------------------|-----------------------|------------------------|-----------------|---------------------|----------|--------------------|--------------------|
| 380                 | Air                   | none<br>69 MPa         | 700<br>720      | 990<br>1060         | 26<br>29 | 34<br>37           | 1.23<br>1.16       |
| 298                 | Air                   | none<br>69 MPa         | 800<br>820      | 1190<br>1240        | 32<br>33 | 41<br>44           | 1.17<br>1.05       |
| 248                 | Air                   | none<br>69 MPa         | 870<br>900      | 1310<br>1390        | 34<br>35 | 43<br>43           | 1.23<br>1.00       |
| 200                 | Air                   | none<br>69 MPa         | 1030<br>1020    | 1550<br>1620        | 35<br>37 | 44<br>44           | 1.08<br>0.97       |
| 78                  | LN                    | none<br>69 MPa         | 1590<br>1590    | 2310<br>2350        | 38<br>38 | 44<br>44           | 0.91<br>0.90       |

\* Tensile B, Appendix C-2.

\*\* Exposed at 620 K for 3 weeks.

DATA SHEET IIC-2

### Nitronic<sup>®</sup> 50 Stainless Steel Bar Stock, As Received.\*

| Test Con<br>Temp, K |                       | Hydrogen<br>Exposure | Strength,<br>Yield** | MPa<br>Tensile | Elongation, % | Fracture<br>Strain |
|---------------------|-----------------------|----------------------|----------------------|----------------|---------------|--------------------|
| 298                 | Air                   | none                 | 440                  | 710            | 43            | 1.27               |
|                     | 69 MPa He             | none                 | 400                  | 680            | 47            | 1.35               |
|                     | 69 MPa H <sub>2</sub> | none                 | 400                  | 680            | 45            | 1.31               |

\* Tensile A, Appendix C-1; heat analysis, Appendix D-6. \*\* 0.2% offset.

| DATA | SHEET | IIC-3 |
|------|-------|-------|
|------|-------|-------|

#### Nitronic<sup>®</sup> 50 Stainless Steel, High-Energy-Rate-Forged\*

| Test Condition |                          | Hydrogen       | Deflection J <sub>m</sub> | Jm                | dJ/da |
|----------------|--------------------------|----------------|---------------------------|-------------------|-------|
| Temp, K        | Environment              | Exposure       | nim                       | kJ/m <sup>2</sup> | MPa   |
| 298            | 69 MPa Het               | none           | -                         | 32                | 176   |
|                | 69 MPa H <sub>2</sub>    | none           | -                         | 23                | 137   |
|                | 69 MPa H <sub>2</sub>    | D2             | -                         | 33                | 211   |
|                | 69 MPa Hett              | none           | -                         | 936               | 360   |
|                | 69 MPa H <sub>2</sub> †† | none           | -                         | 107               | 209   |
|                | 69 MPa H <sub>2</sub> †† | D <sub>2</sub> | -                         | 181               | 264   |

\* C-Shaped tensile, Appendix C-7.

\*\* Exposed at 620 K for 3 weeks.

† Crack parallel to forging pattern

†† Crack perpendicular to forging patterns.

DATA SREET IID-1

#### 18-18 Plus<sup>®</sup> Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-----------------------|----------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | 69 MPa He             | none                 | 520                 | 910              | -                  | 63 | 1.51               |
|                     | 69 MPa H <sub>2</sub> | none                 | 506 ·               | 880              | -                  | 42 | 0.42               |

ı

\* Tensile A, Appendix C-1; heat analysis, Appendix D-9.

\*\* 0.2% offset.

```
DATA SHEET IIE-1
```

#### X18-3 Mn Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-----------------------|----------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | Air                   | none                 | 580                 | 810              | -                  | 45 | 1.24               |
|                     | 69 MPa He             | none                 | 530                 | 790              | -                  | 50 | 1.35               |
|                     | 69 MPa H <sub>2</sub> | none                 | 520                 | 790              | -                  | 46 | 1.31               |

\* Tensile A, Appendix C-1; heat analysis, Appendix D-8.

\*\* 0.2% offset.

DATA SHEET IIF-1

18-2 Mn Stainless Steel\*

| Test Con<br>Temp, K |                       | Hydrogen<br>Exposure | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-----------------------|----------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | Air                   | none                 | 730                 | 1007             | -                  | 51 | 0.87               |
|                     | 69 MPa H <sub>2</sub> | none                 | 660                 | 924              | -                  | 33 | 0.31               |
|                     |                       |                      |                     | 1                |                    |    |                    |

,

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

### DATA SHEET IIG-1

# Type 216 Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure    | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-----------------------|-------------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | Air                   | none                    | 640                 | 810              | -                  | 40 | 1.10               |
| 298                 | Air                   | 69 MPa H <sub>2</sub> † | 630                 | 790              | -                  | 36 | 1.05               |
| 298                 | 69 MPa H <sub>2</sub> | none                    | 590                 | 780              | -                  | 44 | 1.17               |
| 298                 | 69 MPa H <sub>2</sub> | 69 MPa H <sub>2</sub> † | 560                 | 760              | -                  | 45 | 1.02               |
| 298                 | 69 MPa He             | none                    | 590                 | 790              | -                  | 45 | 1.20               |

\* Tensile A, Appendix C-1; heat analysis, Appendix D-7.

\*\* 0.2% offset.

 $\ensuremath{\texttt{f}}$  69 MPa H\_2 at 430 K for 1000 hours.

#### PRECIPITATION HARDENABLE ALLOYS

#### DATA SHEET IIIA-1

#### A-286 Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure     | Streng<br>Yield | th, MPa<br>Tensile | <u>Elongat</u><br>Uniform |     | Fracture<br>Strain |
|---------------------|-----------------------|--------------------------|-----------------|--------------------|---------------------------|-----|--------------------|
| 298                 | Air                   | none                     | 765             | 1098               | -                         | 25  | 0.77               |
|                     |                       | 2.1 MPa Argon            | 776             | 1089               | -                         | 24  | 0.79               |
|                     |                       | 69 MPa D/T**             | 750             | 1041               | -                         | 13  | 0.34               |
|                     |                       | none¶                    | -               | 1500               | -                         | 4   | 0.15               |
|                     |                       | 2.1 MPa Argon¶           | -               | 1380               | -                         | 3.6 | 0.11               |
|                     |                       | 69 MPa D/T**,¶           | -               | 1310               | -                         | 3   | 0.06               |
|                     |                       | none                     | 1010†           | 1350††             | 23                        | 28  | 0.50               |
|                     |                       | 69 MPa D <sub>2</sub> ¶¶ | 1070†           | 1380††             | 23                        | 24  | 0.24               |
| 220                 | Air                   | none                     | 1100†           | 1520††             | 28                        | 34  | 0.49               |
|                     |                       | 69 MPa D <sub>2</sub> ¶¶ | 1130†           | 1530††             | 27                        | 27  | 0.25               |
|                     |                       |                          |                 |                    |                           |     |                    |

.

\* Tensile A, Appendix C-1.

\*\* 69 MPa D/T at 370 K for 200 days.

† True stress at 5% strain.

tt True stress at maximum load.

¶ Notched-bar tensile specimens, all others smooth-bar specimens.

**¶¶** 69 MPa  $D_2$  at 620 K for 3 weeks.

#### DATA SHEET IIIA-2

### A-286 Stainless Steel High Energy, Rate Forged\*

| Test Condition<br>Temp, K Environment |                       | Hydrogen<br>Exposure   | Fracture<br>Toughness,<br>MPa √m |
|---------------------------------------|-----------------------|------------------------|----------------------------------|
| 298                                   | 69 MPa He             | none                   | 76**                             |
|                                       | 69 MPa H <sub>2</sub> |                        | 89**                             |
|                                       | 69 MPa He             | none                   | 71***                            |
|                                       | 69 MPa H <sub>2</sub> |                        | 90***                            |
|                                       | 69 MPa He             | none                   | 81†                              |
|                                       | 69 MPa H <sub>2</sub> |                        | 82†                              |
|                                       | 69 MPa He             | none                   | 93††                             |
|                                       | 69 MPa H <sub>2</sub> |                        | 8911                             |
|                                       | 69 MPa He             | 1.6 MPa D <sub>2</sub> | 88††                             |
|                                       | 69 MPa H <sub>2</sub> | 1.6 MPa D <sub>2</sub> | 9711                             |
|                                       | 69 MPa He             | none                   | 52¶                              |
|                                       | 69 MPa H <sub>2</sub> | none                   | 56¶                              |
|                                       | 69 MPa H <sub>2</sub> | 1.5 MPa D <sub>2</sub> | 59¶                              |
|                                       | 69 MPa He             | none                   | 93¶¶                             |
|                                       | 69 MPa H <sub>2</sub> | none                   | 90¶¶                             |
|                                       | 69 MPa H <sub>2</sub> | 1.5 MPa D <sub>2</sub> | 97¶¶                             |
|                                       |                       |                        |                                  |

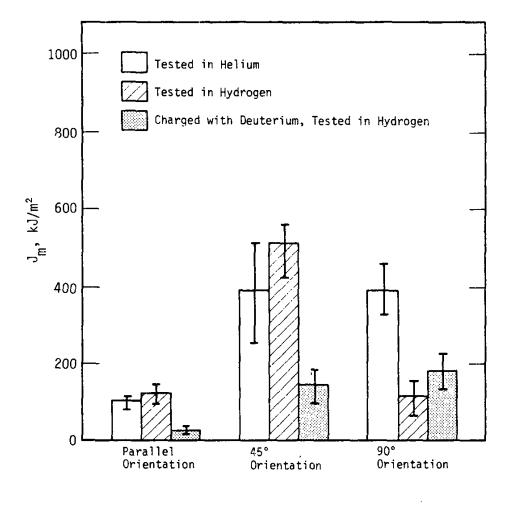
\* Single edge notched, Appendix C-6.
\*\* Aged 4 hours at 990 K (Heat 1).
\*\*\* Aged 8 hours at 990 K (Heat 1).
† Aged 16 hours at 990 K (Heat 1).
† Aged 8 hours at 990 K (Heat 2).
¶ HERF only not aged. R<sub>C</sub>-11.
¶ Aged 8 hours at 990 K. R<sub>C</sub>-11.

.

### DATA SHEET IIIA-3

# A-286 Stainless Steel Notch Impact Test\*

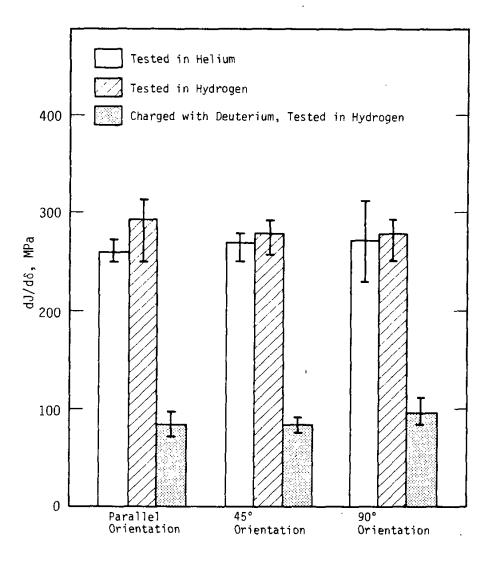
| Test Con | dition      | Hydrogen                  | Impact    |  |  |
|----------|-------------|---------------------------|-----------|--|--|
| Temp, K  | Environment | Exposure                  | Energy, J |  |  |
| 298      | Air         | Base Metal<br>As Received | 6.10      |  |  |
|          |             | Argon**                   | 5.08      |  |  |
|          |             | D/T†                      | 4.74      |  |  |
| 298      | Air         | Weld Metal<br>As Received | 4.18      |  |  |
|          |             | Argon**                   | 3,40      |  |  |
|          |             | D/T†                      | 4,51      |  |  |


\* Impact Appendix C-8.

\*\* 0.21 MPa at 370 K for 200 days.

t 69 MPa D/T at 370 K for 200 days.

### DATA SHEET IIIA-4


# Fracture Parameters for A-286 Stainless Steel\*



\* C-shaped tensile, Appendix C-7. Tested in 69 MPa H<sub>2</sub> or He. Deuterium charged at 69 MPa at 620 K for 3 weeks. ł.

## DATA SHEET IIIA-5

Fracture Parameters for A-286 Stainless Steel\*



<sup>\*</sup> C-shaped Tensile, Appendix C-7. Tested in 69 MPa He or H<sub>2</sub>. Deuterium charged at 69 MPa at 620 K for 3 weeks.

```
DATA SHEET IIIB-1
```

JBK-75 HERF and Age\*

| Test Con<br>Temp, K | the second s | Hydrogen<br>Exposure | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|----------------------------------------------------------------------------------------------------------------|----------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | 69 MPa He                                                                                                      | none                 | 800                 | 1090             | 10                 | 14 | 0.63               |
|                     | 69 MPa H <sub>2</sub>                                                                                          | none                 | 890                 | 1160             | 10                 | 13 | 0.40               |

\* Tensile, Appendix C-3.

\*\* 0.2% offset.

DATA SHEET IIIB-2

JBK-75 HERF and Age\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure               | Stress<br>Intensity,<br>MPa√m | Fracture<br>Energy,<br>MJ/m <sup>2</sup> |
|---------------------|-----------------------|------------------------------------|-------------------------------|------------------------------------------|
| 298                 | 69 MPa He             | none                               | 80                            | 0.350                                    |
|                     | 69 MPa H <sub>2</sub> | none                               | 80                            | 0.333                                    |
|                     | 69 MPa H <sub>2</sub> | 0.7 MPa D <sub>2</sub><br>at 625 K | 81                            | 0.294                                    |

\* C-shaped tensile, Appendix C-7.

.

.

# DATA SHEET IIIC-1

17-4 Stainless Steel, Tensile Tubes\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |     | Fracture<br>Strain |
|---------------------|-----------------------|----------------------|---------------------|------------------|--------------------|-----|--------------------|
| 298                 | Air                   | none                 | 940                 | 980              | -                  | 4.7 | -                  |
|                     | 69 MPa He             | 69 MPa He            | 1076                | 1145             | -                  | 6.4 | -                  |
|                     | 35 MPa D/T            | 35 MPa D/T†          | 1000                | 1000             | -                  | 0.7 | -                  |
|                     | 69 MPa D/T            | 69 MPa D/T††         | 1062                | 1096             | -                  | 1.2 | -                  |
|                     |                       |                      |                     |                  |                    |     |                    |

- \* Tensile E, Appendix C-5.
- \*\* 0.2% offset.
- + 8 hours at 315 K.

11 2 hours at 370 K.

DATA SHEET IIIC-2

#### Fracture Toughness 17-4 PH Stainless Steel\*

Fracture Toughness, MPa√m

| Material          | Test Environment |                        |                       |  |  |
|-------------------|------------------|------------------------|-----------------------|--|--|
| Condition         | 69 MPa He        | 3.5 MPa H <sub>2</sub> | 69 MPa H <sub>2</sub> |  |  |
|                   | 101              | ••                     |                       |  |  |
| Underaged         | 104 🔪            | 31                     | 20                    |  |  |
| Peak Aged         | 97 `             | 29                     | 13                    |  |  |
| Overaged          | -                | 57                     | 34                    |  |  |
| Solution Annealed | 97               | 71                     | · 31                  |  |  |

Heat Treatments

| Material<br>Condition | Aging<br>Temp, K | Hardness<br>R <sub>C</sub> |
|-----------------------|------------------|----------------------------|
| Underaged             | 709              | 38                         |
| Peak Aged             | 783              | 42                         |
| Overaged              | 866              | 35                         |
| Solution Annealed     | -                | 28                         |

\* C-shaped tensile, Appendix C-7.

All specimens were solution annealed 2 hours at

1339 K and aged 1 hour at indicated temperatures.

#### DATA SHEET IIID-1

### AM-350 Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment   | Hydrogen<br>Exposure | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |     | Fracture<br>Strain |
|---------------------|-------------------------|----------------------|---------------------|------------------|--------------------|-----|--------------------|
| 298                 | Air                     | none                 | 420                 | 1160             | -                  | 70  | -                  |
|                     |                         | 69 MPat              | 455                 | 580              | -                  | 3/4 | -                  |
|                     | 69 MPa He               | none                 | 420                 | 1240             | -                  | 55  | -                  |
|                     | 6.9 MPa D <sub>2</sub>  | none                 | 345                 | 430              | -                  | 4   | -                  |
|                     | 69 MPa D <sub>2</sub>   | none                 | 430                 | 520              | -                  | 2.6 | -                  |
|                     | 0.69 MPa D <sub>2</sub> | none                 | 410                 | 455              | -                  | 3   | -                  |

\* Condition H - annealed at 1310 to 1350 K air cool or water quench.

\*\* 0.2% offset.

† 26 days at 570 K.

DATA SHEET IIIE-1

AM-363 Stainless Steel

| Test Con |             | Hydrogen                   | Strengt |         | Elongat | ion, % | Fracture |
|----------|-------------|----------------------------|---------|---------|---------|--------|----------|
| Temp, K  | Environment | Exposure                   | Yield*  | Tensile | Uniform | Total  | Strain   |
| 298      | Air         | none                       | 890     | 890     | -       | 7      | -        |
|          | Air         | 0.21 MPa H <sub>2</sub> ** | 900     | 900     | -       | 8.6    | -        |
|          | Air         | none                       | 1340†   | 1480    | -       | 3      | -        |
|          | Air         | 0.21 MPa H <sub>2</sub> ** | 1400†   | 1500    | -       | 3      | -        |

\* 0.21 MPa  $D_2$  at 630 K for 5 days.

\*\* 0.2% offset.

† Notched - 45° notch. Notch diameter = 0.5X outer diameter.

#### DATA SHEET IIIF-1

#### CG-27 Stainless Steel\*

| Test Con<br>Temp, K | dition<br>Environment   | Hydrogen<br>Exposure                     | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform |    | Fracture<br>Strain |
|---------------------|-------------------------|------------------------------------------|---------------------|------------------|--------------------|----|--------------------|
| 298                 | 69 MPa He               | none                                     | 806                 | 1165             | -                  | 29 | 0.30               |
|                     | 69 MPa H <sub>2</sub>   | none                                     | 855                 | 1117             | -                  | 10 | 0.13               |
| 298                 | 69 MPa H <sub>2</sub>   | 69 MPa H <sub>2</sub> at<br>425 K-72 hrs | 855                 | 1020             | -                  | 4  | 0.03               |
| 298                 | 69 MPa Het              | none                                     | 1070                | 1385             | -                  | 12 | 0.13               |
|                     | 69 MPa H <sub>2</sub> † | none                                     | 1034                | 1138             | -                  | 1  | 0.03               |

\* Tensile A, Appendix C-1.

\*\* 0.2% offset.

t HERF specimens.

DATA SHEET IIIG-1

Ni-SPAN-C\* (Alloy 902)

| <u>Test Con</u><br>Temp, K | dition<br>Environment  | Hydrogen<br>Exposure | Strength<br>Yield** | , MPa<br>Tensile | Elongat<br>Uniform | · · · · · · · · · · · · · · · · · · · | Fracture<br>Strain |  |
|----------------------------|------------------------|----------------------|---------------------|------------------|--------------------|---------------------------------------|--------------------|--|
| 298                        | Air                    | none                 | 676                 | 1186             | -                  | 10                                    | -                  |  |
|                            | 69 MPa He              | none                 | 750                 | 1160             | -                  | 16                                    | -                  |  |
|                            | 6.9 MPa H <sub>2</sub> | none                 | -                   | 1170             | -                  | 14                                    | -                  |  |
|                            | 69 MPa H <sub>2</sub>  | none                 | 650                 | 1130             | -                  | 15                                    | -                  |  |

\* Sheet specimens 0.25 mm and 19 mm gauge length.

\*\* 0.2% offset.

### HIGH PURITY ALLOYS

### DATA SHEET IVA-1

# Mechanical Properties (Alloy A)\*

| Test Con<br>Temp, K | Environment | Hydrogen<br>Exposure** | Streng<br>Yield | th, MPa<br>Ultimate |          | tion, %<br>m Total | Fracture<br>Strain |
|---------------------|-------------|------------------------|-----------------|---------------------|----------|--------------------|--------------------|
| 370                 | Air         | none<br>69 MPa         | 230<br>270      | 610<br>660          | 45<br>50 | 52<br>59           | 1.57<br>1.65       |
| 298                 | Air         | none<br>69 MPa         | 350<br>290      | 1270<br>1030        | 62<br>60 | 73<br>60           | 1.66<br>0.50       |
| 235                 | Air         | 69 MPa                 | 390             | 1110                | 38       | 38                 | 0.27               |
| 200                 | Air         | none<br>69 MPa         | 540<br>420      | 1320<br>1190        | 36<br>33 | 46<br>33           | 1.42<br>0.31       |
| 78                  | LN          | none<br>69 MPa         | -               | -<br>1060           | -<br>42  | -<br>48            | 1.44<br>1.13       |

\* Tensile B, Appendix C-2.

\*\* Exposed at 620 K for 3 weeks.

#### DATA SHEET IVB-1

### Mechanical Properties (Alloy B)\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Streng<br>Yield | th, MPa<br>Ultimate |          | m Total  | Fracture<br>Strain |
|---------------------|-----------------------|------------------------|-----------------|---------------------|----------|----------|--------------------|
| 370                 | Air                   | none<br>69 MPa         | 240<br>260      | 630<br>660          | 45<br>46 | 56<br>56 | 1.58<br>1.40       |
| 298                 | Air                   | none<br>69 MPa         | 340<br>290      | 1020<br>870         | 61<br>65 | 69<br>72 | 1.56<br>1.50       |
| 235                 | Air                   | 69 MPa                 | 320             | 1170                | 72       | 79       | 0.44               |
| 200                 | Air                   | none<br>69 MPa         | 340<br>380      | 1170<br>1250        | 64<br>66 | 74<br>71 | 1.57<br>0.89       |
| 78                  | LN                    | none<br>69 MPa         | 260<br>270      | 870<br>900          | 63<br>66 | 67<br>72 | 1.37<br>1.41       |

\* Tensile B, Appendix C-2.

\*\* Exposed at 620 K for 3 weeks.

DATA SHEET IVC-1

### Mechanical Properties (Alloy C)\*

| Test Con<br>Temp, K | dition<br>Environment | Hydrogen<br>Exposure** | Streng<br>Yield | th, 'MPa<br>Ultimate | Elongat<br>Uniform |          | Fracture<br>Strain |
|---------------------|-----------------------|------------------------|-----------------|----------------------|--------------------|----------|--------------------|
| 370                 | Air                   | none<br>69 MPa         | 250<br>260      | 630<br>660           | 44<br>45           | 52<br>53 | 1.62<br>1.45       |
| 298                 | Air                   | none<br>69 MPa         | 330<br>290      | 910<br>770           | 49<br>52           | 58<br>62 | 1.65<br>1.55       |
| 200                 | Air                   | none<br>69 MPa         | 300<br>330      | 1100<br>1170         | 78<br>78           | 87<br>86 | 1.52<br>1.50       |
| 78                  | LN                    | none<br>69 MPa         | 250<br>280      | 850<br>890           | 82<br>80           | 89<br>86 | 1.53<br>1.43       |

\* Tensile B, Appendix C-2.

\*\* Exposed at 620 K for 3 weeks.

### **Appendix B**

#### **Definitions of the Measured Properties in SRL data Sheets**

#### ELONGATION

Percentage increase of a gauge length, usually one inch, during plastic strain in tension. In the data presented here, crosshead motion was taken as the measure of change in length.

Total elongation is length increase at fracture.

Uniform elongation is length increase to the point where drop in load is detected which signals beginning of observable strain localization or necking.

#### HEAT TREATMENTS

Aging is a process of heating a previously solution-treated alloy to an intermediate temperature to cause precipitation of a finely dispersed phase which hardens the alloy.

Sensitization is a heat treatment that causes precipitation of carbides of the form  $M_{23}$  C<sub>6</sub> along grain boundaries and simultaneously reduces the chromium content of the grain boundary regions.

Solution annealing is a process of heating to elevated temperature to dissolve all precipitates and produce a homogeneous solid solution and quenching to retain the solid solution.

#### MECHANICAL PROCESSING

Ingots of stainless steel are formed into plate or bar by mechanical processes of rolling and forging.

Cross-rolled plate refers to turning plate 90° between passes through the rolling mills to minimize preferred orientation that arises during the rolling process.

High energy rate forged (HERF) alloys are hot forged at a very rapid rate and immediately quenched in water to retain deformation introduced during forging.

#### PLASTIC STRAIN

Irreversible or permanent strain of the test specimen measured by subtracting elastic or recoverable strain from total strain. This was usually done graphically on the load-deformation record obtained during a tensile test.

Plastic strain to failure  $(c_p)$  is calculated from the measured change in cross sectional area from the original  $(A_0)$  to the final area  $(A_f)$  at the fracture.

 $\varepsilon_{\rm D} = \ln A_0 / A_{\rm f}$ 

Reduction in area (RA) is a measure of plasticity calculated from the original  $(A_0)$  and final  $(A_f)$  cross sectional areas.

$$RA = 100 \frac{A_0 - A_f}{A_0}$$

#### STRESS

Stress or force per unit area may be defined with respect to an initial area (engineering stress) or the instantaneous area (true stress). Both definitions have been utilized in data presented here and are distinguished in each table.

Yield strength is the stress corresponding to a plastic strain of 5% unless otherwise noted.

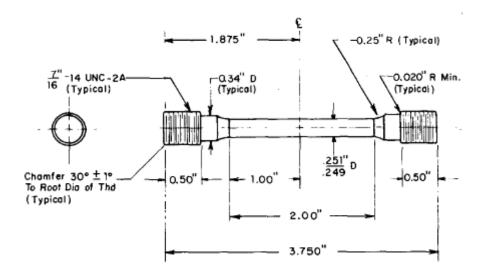
Ultimate strength is the true stress corresponding at maximum load.

Tensile strength is the engineering stress at maximum load.

#### STRESS INTENSITY

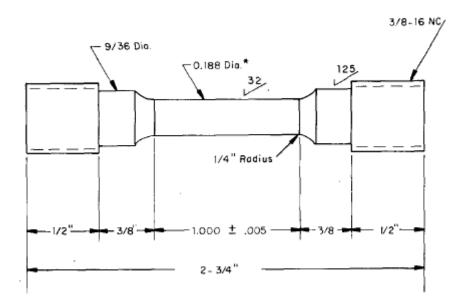
The stress intensity factor (K) relates the stress field  $(\sigma_{ij})$  around a crack tip to the crack dimensions (a) and specimen dimensions (width = w), where the function f(a,W) depends on specimen shape, crack location and loading mode.

The stress intensity corresponding to the critical value for crack extension is the Fracture Toughness ( $K_c$ ). Fracture toughness is a measure of the ability of a material to resist crack propagation.


Under sustained load, cracks will propagate in hydrogen at stress intensities greater than a threshold or K<sub>TH</sub>.

# Appendix C

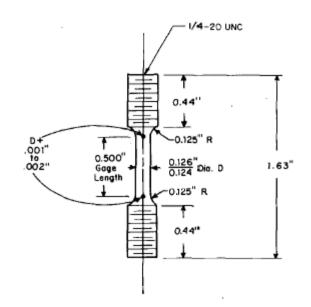
# **Mechanical Test Specimens**


C-1 to C-3: Tensile Specimens
C-4: Notched Tensile Specimen
C-5: Tensile Tube Specimen
C-6 and C-6a: Single Edge Notched Specimen
C-7 and C-7a: C-shaped Fracture mechanics Specimen
C-8: Impact Specimen

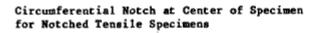
Smooth Bar Tensile Test Specimen A

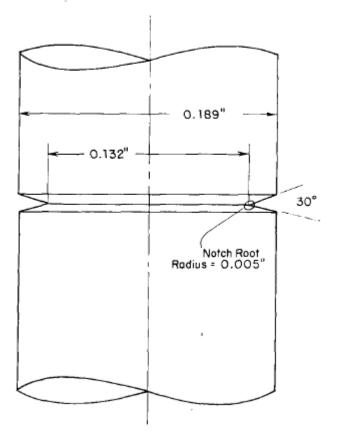


APPENDIX C-2

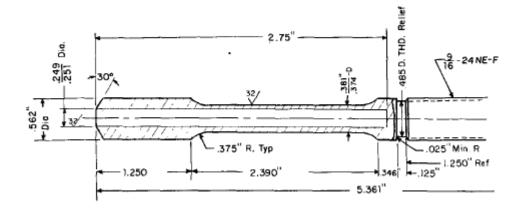

Smooth Bar Tensile Test Specimen B

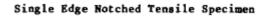


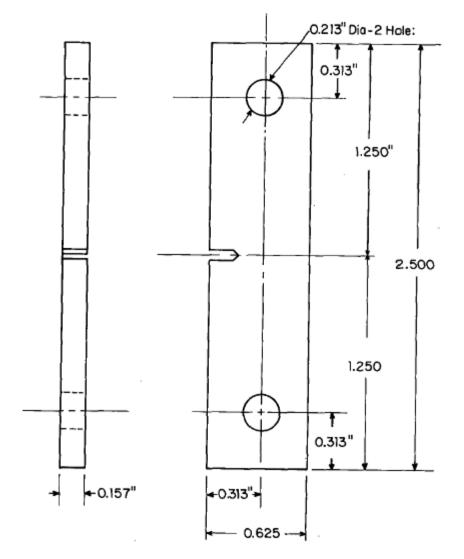

÷


\* Increase diameter from center of gage (.188) to the ends by 0.002".

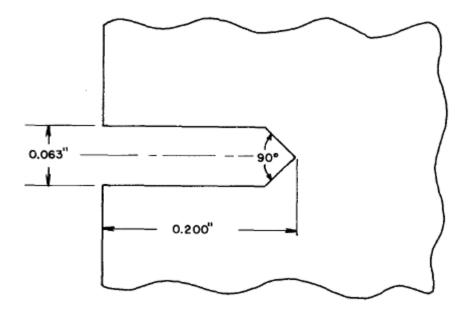
#### Smooth Bar Tensile Test Specimen C





#### APPENDIX C-4







### Tensile Tube Specimen



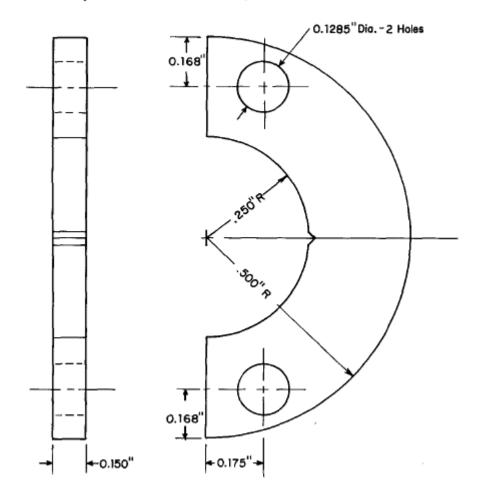




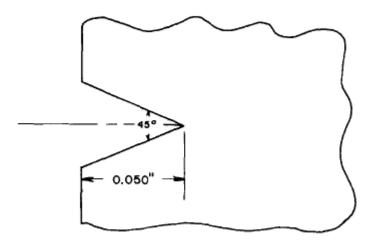
#### Detail of Notch in Single Edge Notched Tensile Specimen



ı


- Notes: 1) All demensions ± 0.001"

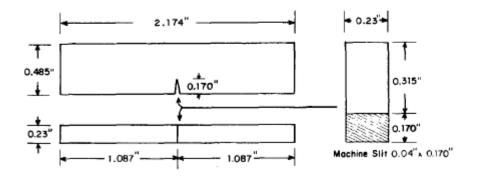
  - 2) Notch root radius = 0.005"
    3) To prevent excessive hardening in notch area, machine final 0.040" of notch in five cuts (0.010" on first cut, 0.010" on 2nd cut, 0.010" on 3rd cut, 0.005" on 4th cut and 0.005" on 5th cut).


.

#### APPENDIX C-7

# C-Shaped Fracture Mechanics Specimen




# Detail of Notch in C-Shaped Fracture Mechanics Specimen



Notes: 1) All demensions ± 0.001" 2) Notch root radius = 0.005"

#### APPENDIX C-8

Impact Specimen: Modified Naval Research Laboratory Dynamic Tear Specimen



# Appendix D

# Heat Analyses

D-1: Type 304L Stainless Steel D-2: Type 330 Stainless Steel D-3: Incoloy<sup>®</sup> 800H D-4 Tenelon<sup>®</sup> D-5: Nitronic 40<sup>®</sup> Stainless Steel D-6: Nitronic 50<sup>®</sup> Stainless Steel D-7: Type 316 Stainless Steel D-8: X18-3 Mn Stainless Steel D-9: 18-18 Plus<sup>®</sup> D-10: 304N D-11: Carpenter 20 Cb-3<sup>®</sup>

### Heat Analysis Type 330 Stainless Steel

| Weight Percent |
|----------------|
|                |
| 0.049          |
| 1.40           |
| -              |
| 0.005          |
| 1.46           |
| 18.40          |
| 35.00          |
| 0.18           |
| -              |
| -              |
| 0.45           |
| -              |
| 0.20           |
|                |

#### DATA SHEET D-3

### Heat Analysis Incoloy® 800H

.

| Element | Weight Percent |
|---------|----------------|
| С       | 0.08           |
| Mn      | 0.84           |
| P       | -              |
| s       | 0.002          |
| Si      | 0.51           |
| Cr      | 19.19          |
| Ni      | 34.04          |
| Мо      | -              |
| N       | -              |
| A1      | 0.36           |
| Ti      | 0.41           |
| Nb      | -              |
| Cu      | 0.52           |

#### Heat Analysis Tenelon®

| Element | Weight Percent |
|---------|----------------|
| с       | -              |
| Mn      | 15.3           |
| P       | -              |
| S       | -              |
| Si      | 0.53           |
| Cr      | 17.4           |
| Ni      | 0.22           |
| Мо      | -              |
| N       | 0.4-0.6        |
| A1      | -              |
| Ti      | -              |
| Nb      | -              |
| Cu      | -              |

### DATA SHEET D-5

# Heat Analysis Nitronic<sup>®</sup> 40 Stainless Steel

| Element | Weight Percent |
|---------|----------------|
| с       | 0.015          |
| Mn      | 9.01           |
| P       | 0.018          |
| S       | 0.016          |
| Si      | 0.24           |
| Cr      | 20.32          |
| Ni      | 6.71           |
| Мо      | -              |
| N       | 0.35           |
| A1      | -              |
| Ti      |                |
| Nb      | -              |
| Cu      | -              |

### Heat Analysis Nitronic<sup>®</sup> 50 Stainless Steel

| Element | Weight Percent |
|---------|----------------|
| с       | 0.05           |
| Mn      | 5.44           |
| Р       | 0.015          |
| S       | 0.010          |
| Si      | 0.42           |
| Cr      | 21.48          |
| Ni      | 12.36          |
| Мо      | 2.12           |
| N       | 0.25           |
| A1      | -              |
| Ti      | -              |
| Nb      | 0.19           |
| Cu      | -              |
| v       | 0.2            |

#### DATA SHEET D-7

# Heat Analysis Type 316 Stainless Steel

ι.

| Element | Weight Percent |
|---------|----------------|
| с       | 0.07           |
| Mn      | 8.08           |
| Р       | 0.015          |
| S       | 0.023          |
| Si      | 0.69           |
| Cr      | 19.57          |
| Ni      | 5.67           |
| Мо      | 2.13           |
| N       | 0.32           |
| A1      | -              |
| Ti      | -              |
| Nb      | -              |
| Cu      | -              |
| -       |                |

### Heat Analysis X18-3 Mn Stainless Steel

| Element | Weight_Percent |
|---------|----------------|
| с       | 0.067          |
| Mn      | 12.4           |
| P       | 0.013          |
| S       | 0.013          |
| Si      | 0.43           |
| Cr      | 18.55          |
| Ni      | 3.17           |
| Mo      | -              |
| N       | 0.33           |
| A1      | -              |
| Ti      | -              |
| Nb      | -              |
| Cu      | -              |
| в       | 0.0015         |

#### DATA SHEET D-9

### Heat Analysis 18-18 Plus♥

.

.

| Element | Weight Percent |
|---------|----------------|
| с       | 0.11           |
| Mn      | 17.80          |
| Р       | 0.020          |
| s       | 0.004          |
| Si      | 0.56           |
| Cr      | 17.78          |
| Ni      | 0.46           |
| Mo      | 1.09           |
| N       | 0.45           |
| A1      | -              |
| Ti      | -              |
| Nb      | -              |
| Cu      | 0.95           |
| Co      | 0.01           |
|         |                |

### Heat Analysis 304N

| Element | Weight Percent |
|---------|----------------|
| с       | 0.06           |
| Mn      | 1.66           |
| P       | 0.30           |
| s       | 0,025          |
| Si      | 0.19           |
| Cr      | 18.37          |
| Ni      | 8.43           |
| Мо      | 0.10           |
| N       | 0.250          |
| A1      | -              |
| Ti      | -              |
| NÞ      | -              |
| Cu      | 0.15           |

#### DATA SHEET D-11

# Heat Analysis Carpenter 20 Cb-3®

| Element | Weight Percent |
|---------|----------------|
| с       | 0.018          |
| Mn      | 1.60           |
| P       | 0.028          |
| S       | 0.007          |
| Si      | 0.44           |
| Cr      | 20.60          |
| Ni      | 34.90          |
| Мо      | 4.33           |
| N       | -              |
| A1      | -              |
| ті      | -              |
| Nb      | 0.39           |
| Cu      | 0.20           |

#### REPORT WSRC-STI-2008-00043

# DISTRIBUTION

# SAVANNAH RIVER SITE

N. C. Iyer, 773-41A R. L. Sindelar, 773-41A T. M. Adams, 773-41A T. Motyka, 719-18A S. L. West, 773-A M. J. Morgan, 773-A P. S. Lam, 773-41A

### **EXTERNAL**

Rana Mohtadi, Toyota Motor Engineering & Manufacturing North America TEMA Kazuo Kawahara, Toyota Motor Engineering & Manufacturing North America TEMA Taisuke Miyamoto, Toyota Motor Corporation