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Abstract 

The use of sequestering agents for the transformation of radionuclides in low 

concentrations in contaminated soils/sediments offers considerable potential for long-

term environmental cleanup. This study evaluated the influence of four phosphate 

amendments and two microbial amendments on U availability. The synchrotron X-ray 

fluorescence mapping of the untreated U-contaminated sediment showed that U was 

closely associated with Mn. All tested phosphate amendments reduced aqueous U 

concentration more than 90%, likely due to formation of insoluble phosphate precipitates. 

The addition of A. piechaudii and P. putida alone were found to reduce U concentrations 

63% and 31% respectively. Uranium sorption in phosphate treatments was significantly 

reduced in the presence of microbes. However, increased microbial activity in the treated 

sediment led to reduction of phosphate effectiveness. The average U concentration in 1 M 

MgCl2 extract from U amended sediment was 437 µg/kg, but in the same sediment 

without microbes (autoclaved sediment), the extractable U concentration was only 103 

µg/kg. When the autoclaved amended sediment was treated with autoclaved biological 

apatite, U concentration in the 1 M MgCl2 extract was ~0 µg/kg. Together these tests 



suggest that microbes may enhance U leaching and reduce phosphate amendment 

remedial effectiveness. 
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1. Introduction 

Activities associated with the mining and processing of uranium (U) ores as well as 

defense–related activities have resulted in vast areas of contaminated sediments and 

groundwater. Uranium is a significant contaminant on the Savannah River Site (SRS) in 

Aiken, South Carolina and at several other Department of Energy sites. Radionuclides 

that contaminate water, sediments, or sediments cannot be destroyed, but the toxicity of 

these inorganic contaminants can be diminished through alteration of their chemical 

speciation. Ideally, such chemical alterations (e.g., reduction or precipitation) will 

convert toxic and mobile species to nontoxic and immobile species.  The use of 

phosphate sequestering agents for the transformation of radionuclides in low 

concentrations in contaminated sediments offers considerable potential for long-term 

environmental cleanup. However, there are several number of bacterial species 

(Alcaligenes, Acinetobacter, Arthrobacter, Azospirillum, Bacillus, Pseudomonas, 

Rhizobium,and others) that are able to solubilize phosphate minerals (Rodriguez et al., 

1999) and therefore, could enhance or inhibit in-situ remediation of U with phosphate 

amendments. The principal mechanism for mineral phosphate solubilization by bacteria 

is the production of organic acids. It is generally accepted that the major mechanism of 

mineral phosphate solubilization is the action of organic acids synthesized by soil 



microorganisms. Production of organic acids results in acidification of the microbial 

surroundings. 

Phosphates such as apatite (Ca5(PO4)3OH), are common surface and subsurface 

amendments (Knox et al., 2004) that effectively immobilizes Pb and other constituents 

(e.g., Cd, Ni, Zn, and U) in contaminated soils/sediments (Knox, et al, 2000 a, b; Knox et 

al., 2003 and 2004; Ma et al., 1995, 1997; Singh et al., 2001), thus offering an 

economical, simple, and environmentally friendly alternative to treat contaminated 

environments. Properly selected phosphate amendments mixed in contaminated sediment 

or soils can effectively reduce metal mobility, bioavailability, and toxicity. Rock 

phosphates and biological apatite, such as fish bones, have been used at several 

contaminated remediation sites (Knox, et al., 2004). Biological apatite is relatively very 

soluble, making it immediately available for interaction with contaminated 

soils/sediments. Biological apatite also has much lower concentrations of impurities (As, 

Cr, and U) that may potentially leach into the surrounding groundwater (Knox, et al., 

2004; Knox et al., 2006b).  

Calcium phytate removes contaminants in the same manner as apatite minerals. 

Recent studies have suggested that phytate can be applied in a soluble form for delivery 

to remote contaminated sediments, where it undergoes various reactions that eventually 

result in the precipitation of the contaminant metals (Jensen et al., 1996; Nash et al., 

1997, 1998 a, b). Metal interactions with calcium phytate can lead to both intra-and 

intermolecular bonding resulting in the simultaneous formation of numerous monomeric 

and polymeric species, which can lead to the coprecipitation of nonstochiometric solid-

phase mixtures as the metal to ligand ratio increases (Wise, 1986). Naturally occurring 



metal ions like Ca2+ have been demonstrated to have a positive influence on metal ion-

exchange and mineralization in the presence of phytate (Nash et al., 1997). Contaminant 

metals may be coprecipitated or exchanged with Ca in Ca phytate at concentrations that 

are insufficient to promote precipitation by themselves (Wise, 1986). Additionally, 

metals such as Pb may be strongly sorbed to precipitated Ca phytate without resulting in 

the stochiometric release of Ca2+ (Wise, 1986). Although coprecipitation or metal 

exchange with Ca phytate may initially reduce contaminant metal solubility, Nash and 

coworkers (Jensen et al., 1996; Nash et al., 1997, 1998a, b) suggest Ca phytate hydrolysis 

and mineralization release inorganic PO4, which can result in further contaminant 

immobilization through the formation of insoluble secondary contaminant-phosphate 

precipitates in a manner similar to the addition of apatite or hydroxyapatite (HA) to metal 

contaminated sediment/soil. 

The objective of this paper was to evaluate phosphate amendments for the cost 

effective remediation of U – contaminated soil/sediments and to identify phosphate 

/microbial interaction that could affect remediation effectiveness.  

2. Materials and methods 

2.1. Phosphate and microbial amendments  
 

Three types of phosphate (rock phosphate, biological phosphate, and chemical 

reagent -calcium and sodium phytate) and two microbial amendments (Alcaligenes 

piechaudii and Pseudomonas putida) were tested. Alcaligenes pechaudii was isolated 

from petroleum hydrocarbon-contaminated soil in Uppers Sillesia, Poland (Plaza et al., 

2005), and it was used for petroleum bioremediation. Pseudomonas putida is a powerful 

phosphate solubilizer (Rodriguez et al. 1999) and was used for remediation of Pb 



contaminated shooting range soil (Wilson et al., 2006). The rock phosphate was obtained 

from Florida and North Carolina rock phosphate deposits. The biological phosphate (i.e., 

ground fish bones), called biogenic apatite in this paper, was obtained from Washington 

(PIMS NW, Inc. Richland, WA). Calcium and Na phytate was obtained from Dong Li 

Phytate Ltd., Anhui, China. Additionally, organoclay was tested for comparison as a 

weak U sorbent. Organoclays consist of bentonite that is modified with quaternary 

amines. Bentonite is a volcanic rock which main constituent is the clay mineral 

montmorillonite, which imparts an ion exchange capacity of 70-90 meq/gram. The 

bentonite becomes organically modified by exchanging the nitrogen end of a quaternary 

amine onto the surface of the clay platelets through cation exchange. For this study the 

organoclay was purchased from Biomin Inc., Ferndale, MI.  

2.2. Experimental procedures 

2.2.1. Aqueous uranium removal  

The U removal by the phosphate amendments and microbes was evaluated in 50 

mL centrifuge tubes for a period of one week. The amendments were tested individually 

and in mixtures. Each treatment had three replicates. The U concentration in the amended 

solution was 100 µg L-1 UO2
2+ (Inorganic Ventures, Lakewood, NJ). A suspension of 150 

mg of solid (the sequestering agents), 1 ml of microbes and 30 mL of spike solution was 

shaken for one week, phase separated by centrifugation, and the aqueous phase was 

analyzed for pH and U concentration by ICP-MS. Differences among treatments were 

analyzed by one-way analysis of variance (ANOVA) followed by the Holm-Sidak 

method (Systat Software, Inc., 2004) for testing differences between treatments. Data 



were log10(X+1) transformed prior to analysis to correct for non-normality and 

heteroscedasticity.   

2.2.2. Influence of phosphate amendments and microbial amendments on U aqueous 

concentrations 

A series of laboratory experiments were conducted to evaluate the influence of 

four types of phosphate apatites (Florida rock phosphate, North Carolina rock phosphate, 

biological phosphate [ground fish bones], and calcium phytate) on U extractability. In 

these experiments two sediments were evaluated, one from Tims Branch (a second order 

stream on the Department of Energy’s Savannah River Site – SRS near Aiken, South 

Carolina) and the other from Hanford (a major Department of Energy  facility in 

Washington state). Tims Branch was contaminated with U and other metals (e.g., Ni, Al, 

Cr, Cu, Cd) produced during fuel fabrication. Approximately 45 000 kg of depleted U 

were released into Tims Branch from 1954 to 1985, with approximately 70% still 

remaining in the sediments, primary as U(VI) (Evans et al., 1992; Bertsch et al., 1994). 

Hanford sediment was uncontaminated and was collected from Trench 8. It was included 

in this study to provide a measure of how uranium behaved in these treatments with a 

high carbonate-containing sediment. Because U concentrations were low in this sediment, 

110 grams of Hanford sediment was spiked with 22 mL of 5 ppm U (Inorganic Ventures, 

Lakewood, NJ). The initial pH of the Hanford sediment was 8.94 but after spiking went 

down to about 7.13 and stayed fairly constant during two weeks of equilibration with the 

spike solution. The spiked, homogenized Hanford sediment was used to evaluate U 

mobility after mixing with amendments.  In addition, a portion of this sediment was 

sterilized to determine if microbial activity affected U extractability. Three grams of 



sediment were mixed individually with 0.150 grams (i.e., 5% by dry weight) of the 

following amendments: North Carolina apatite (NCA), calcium phytate (CaP), biological 

apatite (BA), sterilized NCA, sterilized CaP, and sterilized BA. Two replicates were 

analyzed for U and metals by ICP-MS, and the third replicate was used to measure pH 

values. The samples were extracted with water for one week, after which they were 

extracted with 12 mL of 1 M MgCl2 and analyzed for U and metals by ICP-MS. 

Differences among treatments were statistically tested as previously described for the U 

removal experiments. Evaluation of the effects of the amendments on the U extractability 

in Tims Branch sediment was conducted in the same manner as for the spiked Hanford 

sediment; however, the sterilization step was omitted.   

 
2.2.3. Synchrotron X-ray fluorescence mapping 

Microprobe Synchrotron X-ray Fluorescence (SXRF) measurements were made of the 

untreated Tim’s Branch sediment at the National Synchrotron Light Source (NSLS), at 

the Brookhaven National Laboratory located in Upton, NY.  The synchrotron hard X-ray 

fluorescence microprobe on the bending magnet at X26A of the NSLS was used with a 

channel-cut Si(110) monochromator. Microfocusing optics were used to produce the X-

ray beam (Eng et al. 1995).  A double elliptical Au- or Rh-coated Kirkpatrick-Baez 

mirror system angled at 2 mrad was used to focus a 350- by 350-µm monochromatic X-

ray beam 7 µm vertical by 13 µm horizontal beam (Eng et al. 1995). Milligram quantities 

of sediment were contained within fitted plastic inserts with polypropylene and kapton 

windows, placed in a metal frame and mounted on an automated, digital x-y-z stage at 

45o to the beam.  Fluorescent X-rays were detected with a 9-element Ge Array detector 

(30 mm2 area; Canberra) mounted at 90o to the incident beam and about 1 cm from the 



sample. Elemental mappings on the samples were conducted using micro-SXRF imaging 

at several areas, ranging from 100 µm by 100 µm to 300 µm by 300 µm in size. For 

elements with absorption energies below 18.5 keV, SXRF was performed by collecting 

20 s live counts in the elemental regions of interest and rastering the sample in 4 to 5 µm 

steps in the x-y plane.   

 

3. Results and discussion  

3.1. Effect of phosphate and microbial amendments on U removal 

All tested phosphate amendments reduced aqueous U concentration more than 

90%, likely due to formation of insoluble phosphate precipitates (Figure 1). Ranking of 

the treatments by U removal effectiveness was: calcium phytate (CaP)> biological apatite 

(BA)>North Carolina apatite (NCA)>Florida apatite (FA)>organoclay (OC)>sodium 

phytate (NaP). Differences among treatments were statistically significant (F=58.52, 

P<0.001), and U concentrations in all treatments except OC, P. putida, and NaP were 

significantly (P<0.05) lower than in the spike. The addition of A. piechaudii and P. 

putida alone were found to reduce U concentrations by 63% and 31%, respectively 

(Figure 1). However, these two microbes were less effective than phosphate for aqueous 

U removal. Also as expected, sodium phytate and organoclay were not good sorbents for 

U. When phosphate amendments were mixed with microbial treatments, U removal by 

phosphate was not enhanced (Figure 2). Instead, the distribution coefficients (Kd values) 

for U in phosphate treatments were substantially reduced in the presence of microbes 

(Figure 3). Uranium may react with apatite to form mineral phases of the autunite group, 

a diverse group of over 40 minerals, having the general formula: M(UO2PO4)2 – nH2O 



(Bostick et al., 2000). Apatite minerals are known to react with many transition and 

heavy metals, metalloids, and radionuclides to rapidly form secondary phosphate 

precipitates that are stable over a wide range of geochemical conditions (Wright 1990, 

Wright et al., 1987, Ma et al., 1994, and Arey at al., 1999). Murray et al. (1983) have 

demonstrated the use of synthetic apatite for the retention of uranium and its daughter 

products from uranium mine leachates. Gauglitz et al. (1992) and later Jeanjean (1995) 

also demonstrated the removal of soluble U by crystalline apatite phase. Bostick et al. 

(2000) demonstrated that ground fish bone (biological apatite) is highly effective for the 

removal of soluble uranium from synthetic groundwater matrix, and that autunite 

(calcium uranyl phosphate) crystalline phase is formed at high loadings of uranium. Also, 

Wright et al. (1995) showed that biological apatite is very effective in U removal from 

aqueous phase. Arey et al. (1999) also showed that apatite additions lower aqueous U to 

near proposed drinking water standards in batch equilibrations of two distinct sediment 

strata having total U concentration of 1703 and 2100 mg kg-1, respectively.  However, 

there are very limited data in the literature on the influence of microbes on the 

effectiveness of phosphate amendments. Most papers present data on the bioreduction of 

U or microbes that solubilize phosphate minerals to promote plant growth and yield. Our 

data showed that the effectiveness of phosphate in the presence of two tested microbes 

was reduced, as indicated by Kd values (Figure 3). However, on the other hand, 

microorganism are very efficient biosorbents (Kurek et al., 1996), and therefore, the U 

concentration in our study in the presences of only microbes was reduce by 31 and 63%, 

respectively by P. putida and A. piechaudii (Figure 1).  

 



3.2. Influence of phosphate and microbial amendments on U aqueous concentrations 

Addition of two phosphate amendments alone, North Carolina apatite and calcium 

phytate at 5 wt %, significantly reduced water extractable U from Tim’s Branch (TB) 

sediment (Figure 4). However, in treatments where TB sediment was treated with 

phosphate and microbial amendments (P. putida) U removal from the water soluble 

fraction was less or the same in the treatments where TB sediment was treated by 

phosphate amendments alone (Figure 4). Other researches, for example, Arey et al., 

(1999) also demonstrated that minor additions (5 g kg-1) of hydroxyapatite significantly 

reduced both the water-soluble and TCLP-extractable U.  Thermodynamic calculations 

indicated that contaminant metal solubility was less than that of the pure metal phosphate 

(e.g., autunite for uranium), despite evidence that metal solubility was enhanced 

somewhat by the presence of soluble humics. Thus, understanding the processes 

controlling the formation of secondary phosphate precipitates is critical to predicting the 

long-term stability of the immobilized contaminant metal.  In addition, phosphate is 

likely to reduce the solubility of trace metals associated within Fe oxides that dissolve 

under anoxic conditions. 

Addition of phosphates increased the pH of TB sediment from 5.42 to 6.36 and 

6.95, respectively, for North Carolina apatite and calcium phytate (Table 1). However, 

the pH of the TB sediment treated with bacteria decreased from 5.52 to 5.18, when 

compared to the control (i.e., untreated TB sediment) (Table 1). The decrease of sediment 

pH might be attributed to the secretion of proton, amino acid and organic acids through 

metabolic activities of bacteria (van der Lelie et al., 1999; Huang et al., 2002). On the 

other hand, the addition of bacteria to the phosphate treated TB sediment had no effect or 



only a slight effect on sediment pH (Table 1). Addition of phosphate alone released 

significant amount of Ca and P (Table 1). The P release was substantial, especially in the 

case of calcium phytate (Table 1). The microbial count in calcium phytate was the 

highest of all tested amendments (Figure 5). It seems that native microbes in calcium 

phytate contributed significantly to the dissolution of phosphate in the TB sediment. This 

fast release of phosphate permits rapid immobilization of U and other contaminants if 

present. However, slower release, as expected from North Carolina apatite, could be 

beneficial for continued long term treatment. Several scientist have reported the ability of 

different bacterial species to solubilize insoluble phosphate compounds, such as 

tricalcium phosphate, dicalcium phosphate, hydroxyapatite , and rock phosphate. Wu et 

al. (2006) showed that B. megaterium significantly increased the available phosphate 

concentration in sediment. Addition of phosphate amendments also reduced Mn 

concentration in the water extracts from TB sediment from 50 mg kg-1 to almost zero 

(Table 1). However, in the treatments where the TB sediment was treated with P. putida, 

Mn concentration increased up to 250 mg kg-1
. Such significant dissolution of Mn could 

cause release of U and other elements to the water solution since it is well know that 

many elements have high affinity for Mn mineral phases. The sychrotron X-ray 

fluorescence map of TB sediment (Figure 6) shows clearly that U associated mostly with 

Mn, therefore, dissolution of Mn mineral phases in the presence of P. putida very likely 

also cause U dissolution, and this explains why aqueous U concentrations increased in 

TB sediments treated with P. putida (Figure 4). In TB sediment treated with phosphate, 

especially calcium phytate, substantial release of Fe was also observed (Figure 2). The 

release of Fe could reduce the ability of phosphate amendments to immobilize U and 



other metals due to the strong affinity of Fe oxides for these elements (Figure 6). 

Increased release of Fe or Mn was very likely related to higher native microbial 

population in calcium phytate (Figure 5). Therefore, the contribution of microorganisms 

to U removal was examined by testing P amendments with their natural populations and 

autoclaved amendments (sterilized i.e., without microbial populations). The effects of 

sterilization of amendments on U mobility were evaluated by water extraction and 1 M 

MgCl2 extraction.   

ANOVA showed that sterilization of amendments had a statistically significant 

effect on U mobility (F=284.16, P<0.001) (Figures 7 and 8). The U concentration in 1 M 

MgCl2 extract from the U spiked Hanford sediment was 437 µg/kg, but in the same 

sediment without microbes (autoclaved), the U concentration was only 103 µg/kg 

(P<0.05, Holm-Sidak test) (Figure 8). In amended Hanford sediment that was sterilized 

by autoclaving and treated with sterilized biological apatite, U concentration in the 1 M 

MgCl2 extract was zero compared with 74 µg/kg in unsterilized sediment that was treated 

with biological apatite (P<0.05, Holm-Sidak test).  These comparisons strongly suggest 

that microbes enhance U mobility (Figure 8).  

Bacteria may enhance the mobility of heavy metals or radionuclides, e.g., they 

increase the water soluble or MgCl2 soluble fraction by dissolution and desorption from 

the secretion of proton and various ligands. Generally, in the presence of bacteria, the 

sediment pH decreases and dissolved organic carbon increases. Thus, more metals could 

be transformed to the higher mobile fractions (Wu et al., 2006). On the other hand, 

bacteria could adsorb, immobilize and complex metals and radionuclides via surface 

interaction and secretion of chelating agents, which results in metals transformation to 



more stable forms. For example, Wu et al. (2006) showed that water-soluble Zn was 

significantly increased in the presence of bacteria. Also, Huang et al. (2002) reported that 

inoculation of rhizobia increased water-soluble Zn and DTPA exchangeable Zn in 

sediment. However, other researches; Berthelin et al., 1990 and Kurek and Majewska 

(2004) reported high Cd sorption capacity of fungi live biomass and low remobilization 

of immobilized Cd. The studies indicated that decreased content of the most mobile Cd 

fraction (extracted by 0.1 M NaNO3) in sediment supplemented with Cd immobilized by 

Trichoderma koningii biomass after a 42-day incubation was connected with a transfer of 

this element from this operational fraction to the most stable residual fraction. However, 

the role of bacteria in phosphate remediation technology needs to be carefully evaluated; 

considerable attention should be paid to the increasing downward movement of U and 

other elements induced by bacterial inoculation, in order to prevent any secondary 

pollution to groundwater or ambient regions. 

 

4. Conclusions 

Radionuclides that contaminate soils/sediments cannot be destroyed, but their 

toxicity can be diminished through alteration of their chemical speciation. Ideally, such 

chemical alterations (e.g., reduction or precipitation) will convert toxic and mobile 

species to nontoxic and immobile species. The use of sequestering agents to remediate 

contaminated sediments offers considerable potential for long-term environmental 

cleanup. The potential effects of microbial organisms on amendment effectiveness 

require further investigation.  



This paper presents new useful data on interactions among phosphate 

amendments, microbes, and uranium mobility in contaminated sediments. The results 

could lead to improved technologies and approaches for the long-term environmental 

remediation challenges posed by metal contaminated sediments. This data also could 

have beneficial applications to other technologies such as tank closure, concrete 

immobilization, and aqueous removal. 
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Table 1. Effect of phosphate and microbial treatments on TB sediment pH and Ca, Fe, 

Mn, and P concentration in water solution; TB – Tims Branch sediment, NCA – North 

Crolina apatite, CaP – calcium phytate, M - P. putida. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ca Fe Mn P pH Treatments 
  Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev
TB 0.78 0.03 0.002 0.00 0.418 0.03 0.04 0.04 5.52 0.14
TB/NCA 40.87 0.95 0.048 0.01 0.010 0.00 0.11 0.03 6.36 0.07
TB/CaP 63.41 2.14 0.184 0.04 0.014 0.00 155.93 6.87 6.95 0.06
TB/NCA/M 61.72 0.40 0.014 0.00 0.083 0.09 0.40 0.06 6.22 0.03
TB/CaP/M 71.31 2.99 0.079 0.03 0.018 0.00 134.65 2.33 6.99 0.02
TB/M 5.40 1.12 0.026 0.01 2.517 0.11 0.06 0.02 5.18 0.05
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Figure 1. Removal of aqueous U by phosphate treatments and microbes; FA – Florida 

apatite, NCA – North Crolina apatite, BA – biological apatite, CaP – calcium phytate, 

NaP – sodium phytate, M1 – A. piechaudii, M2 – P. putida, and OC - organoclay. 

 

Figure 2. Effect of microbial treatment on phosphate amendments effectiveness; FA – 

Florida apatite, BA – biological apatite, CaP – calcium phytate, M1 – A. piechaudii, M2 – 

P. putida 

 

Figure 3. Effect of microbes on Kd values; M1 – A. piechaudii, M2 – P. putida. 

 

Figure 4. Effect of phosphate and microbes amendments on U desorption from Tims 

Branch sediment, TB – Tims Branch sediment, NCA – North Carolina apatite, CaP – 

calcium phytate, M – P. putida (U concentration in ug/L in water extract). 

. 

Figure 5. Microbial activity in Tims Branch sediment and in the treated sediment with 

phosphate and microbial amendments. 

 

Figure 6. U association with Mn and Fe. 

 

Figure 7. Effect of phosphate amendments and sterilization of amendments on U 

mobility; 1 M MgCl2 extraction, the following acronyms stand for: HS - U spiked 

Hanford sediment, NCA – North Carolina  



Apatite, NCAs – sterilized North Carolina Apatite, CaP – calcium phytate, CaPs –

sterilized calcium phytate, BA – biological apatite (ground fish bones), Bas – sterilized 

biological apatite, sediment/amendment/liquid ratio: 3g/0.15g/20 mL   

 

Figure 8. Effect of sterilization of sediment and biological apatite on U mobility 

following 1 M MgCl2 extraction; HS – U spike Hanford sediment, SHS – sterilized U 

spiked Hanford sediment,  BA – biological apatite (ground fish bones), BAs – sterilized 

biological apatite, sediment/amendment/liquid ratio: 3g/0.15g/20 mL.  
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