Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

WEAR TESTING OF STAINLESS STEELS IN HYDROGEN (U)

P. S. Lam T. M. Adams

Savannah River National Laboratory Materials Science & Technology Directorate

Publication Date: September 2008

Savannah River Nuclear Services Savannah River Site Aiken, SC 29808

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. Distribution authorized to the Department of Energy only; other requests shall be approved by the cognizant DOE Departmental Element.

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U. S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied: 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or 2. representation that such use or results of such use would not infringe privately owned rights; or 3. endorsement or recommendation of any specifically identified commercial product, process, or service. Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors. DOCUMENT: SRNS-STI-2008-00100 TITLE: Wear Testing of Stainless Steels in Hydrogen (U)

APPROVALS

Date: 9/18/2008 Poh-Sang Lam, Author Materials Compatibility & Welding Technology Group SRNL-MATERIALS SCIENCE & TECHNOLOGY Date: _ 9/18/08 Thád M. Adams, Author Materials Compatibility & Welding Technology Group SRNL-MATERIALS SCIENCE & TECHNOLOGY Date: 9-18-2008 Robert L. Sindelar, Technical Review SRNL-MATERIALS SCIENCE & TECHNOLOGY

Natraj C. Iver, Director SRNL-MATÉRIALS SCIENCE & TECHNOLOGY

Date: <u>9/18/08</u>

SRNS-STI-2008-00100

Table of Contents

EXECUTIVE SUMMARY	
INTRODUCTION	
WELD TEST EQUIPMENT AND SPECIMEN DESIGNS	
TEST PROCEDURE AND EQUIPMENT DESCRIPTION	6
WEAR MEASUREMENT	
POST-TEST WEAR CHARACTERIZATION	13
Air Test Surfaces	14
Hydrogen Test Surfaces	
RESULTS	
Weight Change	
Wear Coefficient (K _w)	66
CONCLUSIONS	67
PATH FORWARD	68
REFERENCES	68
APPENDIX Vendor Certifications	
Appendix A Stainless Steel Type 316L (for Disks)	
Appendix B Stainless Steel Type 316L (for Pins)	
Appendix C Stainless Steel Type A286 (for Pins)	76
Appendix D Stainless Steel Type AUM10 (for Disks)	
Appendix E Additional Contact Profilometry Scan Data	82
Appendix F Macrophotographs of Sample Wear Areas	104

List of Tables

Table 1 Mechanical properties of disk and pin sample materials	6
Table 2 Test matrix with completion dates	12
Table 3 Selected Air tested surface characterization – Guide to figures 10 to 53	13
Table 4 Selected Hydrogen (13.8 MPa or 2000 psi) tested surface characterization -	
Guide to Figures 54 to 97	14
Table 5 Test results for disks – wear track measurement and weight change	63
Table 6 Test results for pins – wear area measurement and weight change	64

List of Figures

Figure 1 Schematic of disk-pin wear test system (R is the wear track radius)	3
Figure 2 Wear sample disk design and dimensions	4
Figure 3 Wear sample pin design and dimensions	. 5
Figure 4 The disk and pin wear test sample	5
Figure 5 Test facility: Wear test system (left) and hydrogen gas supply cylinder	7
(fight)	/
hydrogen test environment (to be lowered when testing), disk-pin holding assembly (samples are mounted), and Magnedrive [®] with a V-belt connected a DC motor. A non-contact laser tachometer is visible above the motor and hohind the V helt	to
Figure 7 Sample disk on a rotating platform and the sample pin mounted in a fixed	0
position	9
Figure 8 Sample pin in contact with the disk	9
Figure 9 Pressure vessel lowered to enclose the wear test mechanism ready for testing	in
gaseous hydrogen	. 10
Figure 10 Wear track on the disk under optical microscope (Test No. 1)	. 15
Figure 11 Profilometer trace and measurement across the wear track on the disk	
(Test No. 1)	15
Figure 12 Wear area on the spherical surface of the pin under optical microscope	
(Test No. 1)	16
Figure 13 Profilometer trace and measurement across the wear area on the pin	
(Test No. 1)	. 16
Figure 14 Wear track on the disk under SEM at 60X (Test No. 1)	17
Figure 15 Detailed characterization of wear track on the disk with SEM	
(Test No. 1)	17
Figure 16 Wear track on the disk with SEM at 500X (Test No. 1)	18
Figure 17 Wear track on the disk under SEM at 1000X (Test No. 1)	18
Figure 18 Wear area on the spherical surface of the pin under SEM at 20X	
(Test No. 1)	19
Figure 19 Wear area on the spherical surface of the pin under SEM at 60X	
(Test No. 1)	19
Figure 20 Detailed characterization of wear area on the pin with SEM (Test No. 1)	20
Figure 21 Wear track on the disk under optical microscope (Test No. 4)	. 21
Figure 22 Profilometer trace and measurement across the wear track on the disk	0.1
(Test No. 4)	21
Figure 23 Wear area on the spherical surface of the pin under optical microscope	22
(1 est No. 4)	22
Figure 24 Promometer trace and measurement across the wear area on the pin $(\text{Teat Ne}, 4)$	22
(1 test INO. 4)	. 22
Figure 25 wear track on the disk under SEM at OUX (1est No. 4)	. 23
(Tast No. 4)	22
(1551 NO. 4)	23

Figure	27	Wear track on the disk with SEM at 500X (Test No. 4)	24
Figure	28	Wear track on the disk under SEM at 1000X (Test No. 4)	24
Figure	29	Wear area on the spherical surface of the pin under SEM at 20X	
•		(Test No. 4)	25
Figure	30	Wear area on the spherical surface of the pin under SEM at 60X	
U		(Test No. 4)	25
Figure	31	Detailed characterization of wear area on the pin with SEM (Test No. 4)	26
Figure	32	Wear track on the disk under optical microscope (Test No. 5)	27
Figure	33	Profilometer trace and measurement across the wear track on the disk	
8	22	(Test No. 5)	27
Figure	34	Wear area on the spherical surface of the pin under optical microscope	
I Iguie	51	(Test No. 5)	28
Figure	35	Profilometer trace and measurement across the wear area on the pin	20
Inguie	55	(Test No. 5)	28
Figure	36	Wear track on the disk under SEM at 60X (Test No. 5)	20
Figure	37	Detailed characterization of wear track on the disk with SFM	2)
I Iguic	57	(Test No. 5)	20
Figure	38	Wear track on the disk with SEM at 500X (Test No. 5)	29
Figure	30	Wear treak on the disk under SEM at 1000X (Test No. 5)	30
Figure	39	Wear track on the anharical surface of the rin under SEM at 20V	30
Figure	40	(Test No. 5)	21
г.	41	(1 est No. 5)	31
Figure	41	Wear area on the spherical surface of the pin under SEM at 60X	21
т.	10	(1est No. 5)	31
Figure	42	Detailed characterization of wear area on the pin with SEM (lest No. 5)	32
Figure	43	Wear track on the disk under optical microscope (Test No. 7)	33
Figure	44	Profilometer trace and measurement across the wear track on the disk	
		(Test No. 7)	33
Figure	45	Wear area on the spherical surface of the pin under optical microscope	
		(Test No. 7)	34
Figure	46	Profilometer trace and measurement across the wear area on the pin	
		(Test No. 7)	34
Figure	47	Wear track on the disk under SEM at 60X (Test No. 7)	35
Figure	48	Detailed characterization of wear track on the disk with SEM	
		(Test No. 7)	35
Figure	49	Wear track on the disk with SEM at 500X (Test No. 7)	36
Figure	50	Wear track on the disk under SEM at 1000X (Test No. 7)	36
Figure	51	Wear area on the spherical surface of the pin under SEM at 20X	
C		(Test No. 7)	37
Figure	52	Wear area on the spherical surface of the pin under SEM at 60X	
U		(Test No. 7)	37
Figure	53	Detailed characterization of wear area on the pin with SEM (Test No. 7)	38
Figure	54	Wear track on the disk under optical microscope (Test No. 22)	39
Figure	55	Profilometer trace and measurement across the wear track on the disk	- /
-00		(Test No. 22)	39
Figure	56	Wear area on the spherical surface of the pin under optical microscope	- /
8	- 5	(Test No. 22)	40
		· · · · · · · · · · · · · · · · · · ·	-

Figure	57	Profilometer trace and measurement across the wear area on the pin
		(Test No. 22)
Figure	58	Wear track on the disk under SEM at 60X (Test No. 22)
Figure	59	Detailed characterization of wear track on the disk with SEM
		(Test No. 22)
Figure	60	Wear track on the disk with SEM at 500X (Test No. 22)
Figure	61	Wear track on the disk under SEM at 1000X (Test No. 22)
Figure	62	Wear area on the spherical surface of the pin under SEM at 20X
		(Test No. 22)
Figure	63	Wear area on the spherical surface of the pin under SEM at 60X
		(Test No. 22)
Figure	64	Detailed characterization of wear area on the pin with SEM (Test No. 22) 44
Figure	65	Wear track on the disk under optical microscope (Test No. 25) 45
Figure	66	Profilometer trace and measurement across the wear track on the disk
		(Test No. 25)
Figure	67	Wear area on the spherical surface of the pin under optical microscope
		(Test No. 25)
Figure	68	Profilometer trace and measurement across the wear area on the pin
		(Test No. 25)
Figure	69	Wear track on the disk under SEM at 60X (Test No. 25)
Figure	70	Detailed characterization of wear track on the disk with SEM
		(Test No. 25)
Figure	71	Wear track on the disk with SEM at 500X (Test No. 25)
Figure	72	Wear track on the disk under SEM at 1000X (Test No. 25)
Figure	73	Wear area on the spherical surface of the pin under SEM at 20X
		(Test No. 25)
Figure	74	Wear area on the spherical surface of the pin under SEM at 60X
		(Test No. 25)
Figure	75	Detailed characterization of wear area on the pin with SEM (Test No. 25) 50
Figure	76	Wear track on the disk under optical microscope (Test No. 27)
Figure	77	Profilometer trace and measurement across the wear track on the disk
-		(Test No. 27)
Figure	78	Wear area on the spherical surface of the pin under optical microscope
		(Test No. 27)
Figure	79	Profilometer trace and measurement across the wear area on the pin
-		(Test No. 27)
Figure	80	Wear track on the disk under SEM at 60X (Test No. 27)
Figure	81	Detailed characterization of wear track on the disk with SEM
-		(Test No. 27)
Figure	82	Wear track on the disk with SEM at 500X (Test No. 27)
Figure	83	Wear track on the disk under SEM at 1000X (Test No. 27)
Figure	84	Wear area on the spherical surface of the pin under SEM at 20X
U		(Test No. 27)
Figure	85	Wear area on the spherical surface of the pin under SEM at 60X
-		(Test No. 27)
Figure	86	Detailed characterization of wear area on the pin with SEM (Test No. 27) \dots 56

Figure 8	7 Wear track on the disk under optical microscope (Test No. 30)	57
Figure 8	8 Profilometer trace and measurement across the wear track on the disk	
•	(Test No. 30)	57
Figure 8	9 Wear area on the spherical surface of the pin under optical microscope	
C	(Test No. 30)	58
Figure 9	0 Profilometer trace and measurement across the wear area on the pin	
U	(Test No. 30)	58
Figure 9	1 Wear track on the disk under SEM at 60X (Test No. 30)	59
Figure 9	2 Detailed characterization of wear track on the disk with SEM	
U	(Test No. 30)	59
Figure 9	3 Wear track on the disk with SEM at 500X (Test No. 30)	60
Figure 9	4 Wear track on the disk under SEM at 1000X (Test No. 30)	60
Figure 9	5 Wear area on the spherical surface of the pin under SEM at 20X	
C	(Test No. 30)	61
Figure 9	6 Wear area on the spherical surface of the pin under SEM at 60X	
U	(Test No. 30)	61
Figure 9	7 Detailed characterization of wear area on the pin with SEM (Test No. 30)	62
Figure 9	8 Disk weight change (loss) after 500 m of travel distance and under a pin load	
U	of 45.4 g (0.1 lb)	65
Figure 9	9 Pin weight change (loss) after 500 m of disk travel distance and under a pin	
0	load of 45.4 g (0.1 lb)	65
Figure 1	00 The wear coefficients calculated for all wear test cases	67

EXECUTIVE SUMMARY

A wear test system has been assembled to conduct ASTM G 99, "Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus," testing in air or in gaseous hydrogen up to 13.8 MPa (2000 psig) at room temperature. Two separate disk materials, 316L and AUM10 stainless steels; and two separate pin materials, 316L and A286, were selected for testing. The objective of the testing is to evaluate hydrogen effects on wear characteristics of these materials when used in the design and fabrication of high pressure hydrogen storage vessels and equipment in automotive applications.

Material loss due to wear was determined by (1) weighing the specimens (disks and pins) before and after the test; and (2) by tracing the specimen surface roughness across the wear region with a profilometer. A planimeter was used to quantify the material loss and reconfiguration in the wear region, and integration along the wear track (disks) or over the wear area (pins) was made to estimate the volume loss. For wear test conditions with a travel distance of nominally 500 m and a unidirectional disk linear speed at nominally 800 mm/sec, the test data indicate:

- Materials transfer and excrescence resulted from this metal-to-metal sliding system. Examination of the surface finish of the post-test specimens was made with optical microscopy, scanning electron microscopy (SEM), and profilometer tracing. The phenomenon is consistent with adhesive wear and galling characteristics of stainless steels.
- AUM10 disk material had a slightly higher wear rate than 316L disk material in air, and a significantly higher wear rate in hydrogen. This is attributed to the fact that AUM10 is relatively softer than 316L and A286 in terms of tensile properties and hardness measurements.
- AUM10 disk material had a significantly higher wear rate in hydrogen compared to air; no clear effect of hydrogen pressure (1000 vs. 2000 psig) was observed.
- 316L disk material and pin material had higher wear rates in hydrogen compared to air; no clear effect of hydrogen pressure (1000 vs. 2000 psig) was observed.

INTRODUCTION

Joint research between the Toyota Research Institute North America and the Savannah River National Laboratory (SRNL) is being performed to characterize the effects of hydrogen for materials used in fuel cell vehicles. Mechanical equipment for high pressure gaseous hydrogen service includes moving parts where two surfaces may be in contact and slide against each other, resulting in wear that may damage the component. Consideration must be given to the wear characteristics of the alloys of construction; this is especially critical for valves, pumps, bearings, seals and fasteners.

The sliding wear mechanisms of metallic and ceramic components in hydrogen may be expected to be different from the wear experienced in air or inert atmospheres. The interactions of materials with similar hardness and surface reaction behavior could be more deleterious in a hydrogen environment than in air or other atmospheres where protective surface scales may form. Excessive adhesive transfer or fragmentation of these materials could also occur in hydrogen that would not occur in air applications.

Results from this initial study of selected materials at air and hydrogen test conditions provide input for material selection for hydrogen service. Expected improvement in wear resistance through use of surface coatings will be the subject of a follow-on experimental effort between Toyota Research Institute North America and SRNL.

WEAR TEST EQUIPMENT AND SPECIMEN DESIGNS

A wear test apparatus has been designed by following the guidelines described in ASTM G 99-05, "Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus," as schematically shown in Figure 1. The system was designed to allow testing samples in a high pressure hydrogen environment. A pressure vessel made of Super Alloy HASTELLOY[®] C276 with an outside diameter of 12.7 cm (5 in.), thickness of 3.81 cm (1.5 in.), and internal cavity height of 17.78 cm (7 in.) was adapted for the test equipment. An assembly of a rotating spindle to attach the disk, and a pin to provide a contact force was designed and fabricated to fit inside the pressure vessel.

Figure 1 Schematic of disk-pin wear test system (R is the wear track radius).

Figure 1 shows the schematic diagram of the wear test arrangement for a stationary pin and a rotating disk with angular velocity ω (rad/sec). The linear velocity of the disk speed (v) is calculated in term of revolutions per minute (RPM = $\frac{\omega}{2\pi} \times 60$) as

 $v = \omega R = \frac{\pi R \times RPM}{30}$

Disk samples for wear testing were fabricated from 316L and AUM10 stainless steels. As shown in Figure 2, they are 4.76 cm (1.875 in.) in diameter and 0.635 cm (¹/₄-in.) thick. The disks were machined from 2-inch diameter bar stock (see vendor certificate in Appendix A and Aichi Steel information sheets in Appendix D). Two parallel flat surfaces were machined on opposite edges of each disk to keep it from rotating in the sample holder. Each disk was engraved with a unique serial number. The test side of the sample is the non-engraved side and was machined to a minimum 0.81 μ m (32 μ -in.) arithmetic average (Ra), per ASTM G 99.

Figure 2 Wear sample disk design and dimensions.

Additionally, pin samples for wear were fabricated from 316L and A286 stainless steel materials. They were machined from 9.525 mm (3/8-in.) rod (see vendor certificates in Appendices B and C, respectively). Each pin is 6.985 cm (2-3/4 in.) long with a spherical tip on one end and is threaded on the other (Fig. 3). Each sample pin is engraved with a unique serial number. The spherical shape was machined on a lathe, so the tip at the end of the pin was not perfectly spherical. For this reason, the pin was mounted in the test machine at a slight angle to the vertical position so the point of contact with the disk would be made on a spherical pin surface. Typical as-finished sample disk and pin can be seen in Figure 4.

Figure 3 Wear sample pin design and dimensions.

Figure 4 The disk and pin wear test samples.

Tensile properties and material hardness values for the as-received disk and pin materials can be found in the vendor certificates or the material information sheets (Appendices A to D) and are summarized in Table 1.

	in the second second second		* pin sampio mare	
	316L Disk	316L Pin	A286 Pin	AUM10 Disk
	(Appendix A)	(Appendix B)	(Appendix C)	(Appendix D)
Bar Stock Diameter	5.08 (2)	9.525 (3/8)	9.525 (3/8)	$5.486^{1}(2.16)$
cm (in.)				
0.2% Yield Stress	269 (39)	607 (88)	1027 (149)	57 ²
MPa (ksi)				
UTS	593 (86)	717 (104)	1241 (180)	77^{2}
MPa (ksi)				
Elongation (%)	66	41	18	37 ²
RA (%)	73	74	44	74 ²
				HV 183 ¹ (3mm below surface)
Hardness	HB 185	HB 207	HB 335	HV 186 ¹ (D/4)
				HV 183 ¹ (D/2)
				HRB 88 ²

Table 1 Mechanical properties of disk and pin sample materials

Note 1:Information provided by Toyota Motor Company.

The heat treatment is 920 °C x0.5 Hr, furnace cool to 650 °C (2.5 Hr), 650 °C x 0.5 Hr, air cool.

HV 183 is equivalent to HB 174.

Note 2:See Appendix D for the information sheets from Aichi Steel Co. (Japan) [7]. The heat treatment is 900 °C x 2 Hr which is different from that in Note 1. HRB 88 is equivalent to HB 175.

TEST PROCEDURE AND EQUIPMENT DESCRIPTION

The sample disks and pins were cleaned in an ultrasonic cleaner, handled without any type of surface contamination, wrapped in tissue, and stored in a plastic bag prior to testing.

The overall layout of the wear test facility can be seen in Figure 5, with the wear test system and its components shown in Figure 6. The threaded end of the pin (Fig. 4) is screwed into a threaded hole in one end of a first class lever (Fig. 7). The pin is prevented from moving by the addition of a lock nut. The fulcrum of the lever is supported by two ball bearings and the other end of the lever is threaded to hold a movable weight. The entire pin-holding assembly is designed to be positioned over the pan of a balance for setting the pin loads. The surface of the balance pan is in the same

relative position as the surface of the disk in the test machine. The movable weight is adjusted until the force of the pin on the balance is exactly 45.4 g (0.1 lb).

The pin-holding assembly is then mounted over the sample disk (Figs. 7 and 8) with the load preset to 45.4 g (0.1 lb). The radial distance from the center of the disk to the point of contact with the pin is approximately 2.45 cm (1 in.). As discussed earlier, the pin is slightly tilted when the disk rotates because the apex of the pin head is not exactly on a spherical surface due to machining constraints. Thus, the initial (pre-wear) contact point between the disk and the pin remains on a spherical surface as recommended by ASTM G 99-05.

Figure 9 displays the wear system with the pressure vessel lowered to enclose the diskpin test mechanism for wear tests run in a hydrogen atmosphere. The pressure chamber (enclosure) is first evacuated, filled with helium, evacuated again and then filled to the desired pressure with gaseous hydrogen. The hydrogen gas used in this experiment was research grade with a purity of 99.9995%. Pressure is measured simultaneously by two independent pressure gages.

The disk-pin sample holder is rotated by a Magnedrive[®]. No high pressure rotating seals are required in the system so the leak path is eliminated. The Magnedrive[®], is driven by a V-belt connected to a variable speed DC motor (Fig. 6). The rotational speed is measured by a non-contact laser tachometer connected to a computer which records speed vs. time during each test.

Figure 5 Test facility: Wear test system (left) and hydrogen gas supply cylinder (right).

Figure 6 Wear test system from top to bottom: pressure vessel enclosure for providing hydrogen test environment (to be lowered when testing), disk-pin holding assembly (samples are mounted), and Magnedrive[®] with a V-belt connected to a DC motor. A non-contact laser tachometer is visible above the motor and behind the V-belt.

Figure 7 Sample disk on a rotating platform and the sample pin mounted in a fixed position.

Figure 8 Sample pin in contact with the disk.

Figure 9 Pressure vessel lowered to enclose the wear test mechanism ready for testing in gaseous hydrogen.

WEAR MEASUREMENT

After the samples are run in the test apparatus with a specified speed and travel distance (nominally 500 m) under the load of 45.4 g (0.1 lb), the wear track on the disk and the wear area on the pin are photographed through an optical microscope (e.g., Figs. 10 and 12). The wear surface morphology is obtained with a contact profilometer. A diamond tip stylus is moved in a straight line from an undisturbed area, across the wear region, and ending in the undisturbed area on the other side. A typical trace of the surface profile can be seen in Figures 11 and 13. From the trace on the chart, the wear width can be identified by noting a difference in surface finish. Typically, the wear region exhibits higher peak to valley variations, signaling that the surface has been disturbed and become roughened. The wear width obtained by profilometer can be confirmed by that measured using a microscope.

The output of the profilometer can be analyzed using a planimeter as an alternative to estimate the weight change due to wear. The area between the line representing original surface and the profilometer trace would represent the material that is displaced by wear. This area can be integrated along the wear track on the disk ($2\pi R$ in Fig. 1), or along the wear area on the pin (assuming an elliptic patch in this report), to obtain the volume loss (or gain, if additional material is transferred to this surface) due to wear. By using a typical mass density of the stainless steel (i.e., 7.98 g/cc), the weight loss (or gain) can be estimated.

The individual disk and pin samples were weighed with a five-place balance to determine weight changes by direct measurement. AS discussed, estimation of the disk weight change from profilometer traces was performed. These results, together with the surface examination by means of optical microscopy and/or SEM, provide characterization of the wear region.

Table 2 lists the test matrix of the present study, including the test parameters and the test completion dates. Note that the actual disk speed and the actual total travel distance vary slightly from the nominal (or target) values, because the actual distance from the center of the disk to the center of the wear track did not coincide with the design distance of R=2.54 cm (1 in.).

				Ambient	Disk	Travel	Pin	Test Date
Test	Disk	Pin	Ambient.	Pressure	Speed	Distance	Load	Year
No.	Material	Material	Gas	(psig)	(mm/sec)	(m)	(lb)	2008
1	316L	316L	Air	0	704	450	0.1	5-May
3	316L	316L	Air	0	808	520	0.1	15-Apr
2	316L	316L	Air	0	86	445	0.1	8-May
21	316L	316L	Air	0	98	488	0.1	28-Apr
9	316L	316L	Hydrogen	1000	688	423	0.1	0-Jan
11	316L	316L	Hydrogen	1000	712	445	0.1	29-May
12	316L	316L	Hydrogen	1000	92	463	0.1	17-Jun
13	316L	316L	Hydrogen	1000	91	453	0.1	18-Jun
20	316L	316L	Hydrogen	2000	808	496	0.1	9-Jun
22	316L	316L	Hydrogen	2000	764	469	0.1	10-Jun
23	316L	316L	Hydrogen	2000	94	471	0.1	23-Jun
24	316L	316L	Hydrogen	2000	97	487	0.1	24-Jun
4	316L	A286	Air	0	696	485	0.1	7-May
6	316L	A286	Air	0	776	500	0.1	17-Apr
14	316L	A286	Hydrogen	1000	696	435	0.1	30-May
15	316L	A286	Hydrogen	1000	752	470	0.1	2-Jun
25	316L	A286	Hydrogen	2000	814	501	0.1	11-Jun
26	316L	A286	Hydrogen	2000	816	501	0.1	16-Jun
5	AUM10	316L	Air	0	688	470	0.1	7-May
8	AUM10	316L	Air	0	792	510	0.1	14-Apr
16	AUM10	316L	Hydrogen	1000	819	511	0.1	3-Jun
17	AUM10	316L	Hydrogen	1000	785	490	0.1	4-Jun
27	AUM10	316L	Hydrogen	2000	803	494	0.1	16-Jun
28	AUM10	316L	Hydrogen	2000	847	523	0.1	18-Jun
7	AUM10	A286	Air	0	696	475	0.1	7-May
10	AUM10	A286	Air	0	776	500	0.1	15-Apr
18	AUM10	A286	Hydrogen	1000	712	445	0.1	28-May
19	AUM10	A286	Hydrogen	1000	819	503	0.1	5-Jun
29	AUM10	A286	Hydrogen	2000	869	535	0.1	18-Jun
30	AUM10	A286	Hydrogen	2000	807	496	0.1	20-Jun

Table 2 Test matrix with completion dates

POST-TEST WEAR CHARACTERIZATION

The post-wear testing surface conditions for selected disk and pin samples are displayed in this section. These tests were conducted in air (Table 3) and in 13.8 MPa (2000 psi) hydrogen gas (Table 4). For all these tests, the nominal travel speed was 800 mm/sec and the nominal travel distance was 500 m. For each of these samples, the results from the optical microscope, profilometer, and scanning electronic microscope (SEM) are displayed (Figs. 10 to 53 for air testing; and Figs. 54 to 97 for hydrogen testing). Tables 3 and 4 provide a guide for these images:

Guide to figures 10 to 55						
	Test No. 1	Test No. 4	Test No. 5	Test No. 7		
	Disk-Pin:	Disk-Pin:	Disk-Pin:	Disk-Pin:		
	316L-316L	316L-A286	AUM10-316L	AUM10-A286		
Disk Wear Track	Figure 10	Figure 21	Figure 32	Figure 43		
Optical						
Disk Wear Track	Figure 11	Figure 22	Figure 33	Figure 44		
Profilometer						
Pin Wear Area	Figure 12	Figure 23	Figure 35	Figure 45		
Optical						
Pin Wear Area	Figure 13	Figure 24	Figure 35	Figure 46		
Profilometer						
Disk Wear Track	Figure 14	Figure 25	Figure 36	Figure 47		
SEM 60X						
Disk Wear Track	Figure 15	Figure 26	Figure 37	Figure 48		
SEM Detailed						
Disk Wear Track	Figure 16	Figure 27	Figure 38	Figure 49		
SEM 500X						
Disk Wear Track	Figure 17	Figure 28	Figure 39	Figure 50		
SEM 1000X						
Pin Wear Area	Figure 18	Figure 29	Figure 40	Figure 51		
SEM 20X						
Pin Wear Area	Figure 19	Figure 30	Figure 41	Figure 52		
SEM 60X						
Pin Wear Area	Figure 20	Figure 31	Figure 42	Figure 53		
SEM Detailed						

Table 3	Selected Air tested surface characterization -
	Guide to figures 10 to 53

		Guide to Tigure.	351077	1
	Test No. 22	Test No. 25	Test No. 27	Test No. 30
	Disk-Pin:	Disk-Pin:	Disk-Pin:	Disk-Pin:
	316L-316L	316L-A286	AUM10-316L	AUM10-A286
Disk Wear Track	Figure 54	Figure 65	Figure 76	Figure 87
Optical				
Disk Wear Track	Figure 55	Figure 66	Figure 773	Figure 88
Profilometer	-	_	-	-
Pin Wear Area	Figure 56	Figure 67	Figure 78	Figure 89
Optical	-	_	-	-
Pin Wear Area	Figure 57	Figure 68	Figure 79	Figure 90
Profilometer	-		-	
Disk Wear Track	Figure 58	Figure 69	Figure 80	Figure 91
SEM 60X	-		-	
Disk Wear Track	Figure 59	Figure 70	Figure 81	Figure 92
SEM Detailed	-		-	
Disk Wear Track	Figure 60	Figure 71	Figure 82	Figure 93
SEM 500X	-		-	-
Disk Wear Track	Figure 61	Figure 72	Figure 83	Figure 94
SEM 1000X	C	0	C C	U U
Pin Wear Area	Figure 62	Figure 73	Figure 84	Figure 95
SEM 20X	-		-	
Pin Wear Area	Figure 63	Figure 74	Figure 85	Figure 96
SEM 60X	-	-	-	-
Pin Wear Area	Figure 64	Figure 75	Figure 86	Figure 97
SEM Detailed	-	-	-	-

Table 4 Selected Hydrogen (13.8 MPa or 2000 psi) tested surface characterization – Guide to Figures 54 to 97

All the wear surfaces exhibit typical adhesive wear and galling features that include indication of material transfer, plastic deformation, and excrescence resulting from metal-to-metal sliding, scoring and scuffing. The observation is consistent with the wear characteristics of stainless steels [1-3].

Air Test Surfaces

SEM images of the wear scar surfaces for disk and pin samples tested in air are displayed in Figures 10 to 53. Examination of the wear scar surface images for the 316L and AUM10 disk materials tested in air indicates the following: 1) for the 316L and AUM10 disk materials tests conducted using both a 316L and A286 pin materials, evidence of surface roughening and protrusion in addition to evidence of surface fragmentation is observed, 2) surface roughening, protrusion development and fragmentation in the wear scar area is increased for the 316L disk materials when tested with the A286 pin material compared to the 316L pin material, and 3) testing for the AUM10 disk materials with both the 316L and A286 pin materials displays moderate protrusion development and evidence of void formation and fragmentation.

Figure 10 Wear track on the disk under optical microscope (Test No. 1).

Figure 11 Profilometer trace and measurement across the wear track on the disk (Test No. 1).

Figure 12 Wear area on the spherical surface of the pin under optical microscope (Test No. 1).

Figure 13 Profilometer trace and measurement across the wear area on the pin (Test No. 1).

Figure 14 Wear track on the disk under SEM at 60X (Test No. 1).

Figure 15 Detailed characterization of wear track on the disk with SEM (Test No. 1).

Figure 16 Wear track on the disk with SEM at 500X (Test No. 1).

Figure 17 Wear track on the disk under SEM at 1000X (Test No. 1).

Figure 18 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 1).

Figure 19 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 1).

Figure 20 Detailed characterization of wear area on the pin with SEM (Test No. 1).

Figure 21 Wear track on the disk under optical microscope (Test No. 4).

Figure 22 Profilometer trace and measurement across the wear track on the disk (Test No. 4).

Figure 23 Wear area on the spherical surface of the pin under optical microscope (Test No. 4).

Figure 24 Profilometer trace and measurement across the wear area on the pin (Test No. 4).

Figure 25 Wear track on the disk under SEM at 60X (Test No. 4).

Figure 26 Detailed characterization of wear track on the disk with SEM (Test No. 4).

Figure 27 Wear track on the disk with SEM at 500X (Test No. 4).

Figure 28 Wear track on the disk under SEM at 1000X (Test No. 4).

Figure 29 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 4).

Figure 30 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 4).

Figure 31 Detailed characterization of wear area on the pin with SEM (Test No. 4).

Figure 32 Wear track on the disk under optical microscope (Test No. 5).

Figure 33 Profilometer trace and measurement across the wear track on the disk (Test No. 5).

Figure 34 Wear area on the spherical surface of the pin under optical microscope (Test No. 5).

Figure 35 Profilometer trace and measurement across the wear area on the pin (Test No. 5).

Figure 36 Wear track on the disk under SEM at 60X (Test No. 5).

Figure 37 Detailed characterization of wear track on the disk with SEM (Test No. 5).

Figure 38 Wear track on the disk with SEM at 500X (Test No. 5).

Figure 39 Wear track on the disk under SEM at 1000X (Test No. 5).

Figure 40 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 5).

Figure 41 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 5).

Figure 42 Detailed characterization of wear area on the pin with SEM (Test No. 5).

Figure 43 Wear track on the disk under optical microscope (Test No. 7).

Figure 44 Profilometer trace and measurement across the wear track on the disk (Test No. 7).

Figure 45 Wear area on the spherical surface of the pin under optical microscope (Test No. 7).

Figure 46 Profilometer trace and measurement across the wear area on the pin (Test No. 7).

Figure 47 Wear track on the disk under SEM at 60X (Test No. 7).

Figure 48 Detailed characterization of wear track on the disk with SEM (Test No. 7).

Figure 49 Wear track on the disk with SEM at 500X (Test No. 7).

Figure 50 Wear track on the disk under SEM at 1000X (Test No. 7).

Figure 51 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 7).

Figure 52 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 7).

Figure 53 Detailed characterization of wear area on the pin with SEM (Test No. 7).

Hydrogen Test Surfaces

The analysis of the post-test characteristic wear scar surface images (Figs 54 to 97) indicates that disk wear for both the 316L and AUM10 disks by an A286 pin appears to have a less roughened/fragmented surface most similar to a harder object wearing against a softer material. Results, in comparison, for both the 316L and AUM10 disks tested with a 316L pin, display more evidence of surface protrusions and fractures in the wear scar area. In addition, of the two disk materials evaluated in this study (316L and AUM10), analysis of the surface images of the wear scar presented in the figures above, the AUM10 displays the most surface damage as indicated by the increased occurrence of surface asperities/protrusions and fractures.

Figure 54 Wear track on the disk under optical microscope (Test No. 22)

Figure 55 Profilometer trace and measurement across the wear track on the disk (Test No. 22)

Figure 56 Wear area on the spherical surface of the pin under optical microscope (Test No. 22)

Figure 57 Profilometer trace and measurement across the wear area on the pin (Test No. 22)

Figure 58 Wear track on the disk under SEM at 60X (Test No. 22).

Figure 59 Detailed characterization of wear track on the disk with SEM (Test No. 22)

Figure 60 Wear track on the disk with SEM at 500X (Test No. 22)

Figure 61 Wear track on the disk under SEM at 1000X (Test No. 22).

Figure 62 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 22).

Figure 63 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 22).

Figure 64 Detailed characterization of wear area on the pin with SEM (Test No. 22).

Figure 65 Wear track on the disk under optical microscope (Test No. 25).

Figure 66 Profilometer trace and measurement across the wear track on the disk (Test No. 25).

Figure 67 Wear area on the spherical surface of the pin under optical microscope (Test No. 25).

Figure 68 Profilometer trace and measurement across the wear area in the pin (Test No. 25).

Figure 69 Wear track on the disk under SEM at 60X (Test No. 25).

Figure 70 Detailed characterization of wear track on the disk with SEM (Test No. 25).

Figure 71 Wear track on the disk under SEM at 500X (Test No. 25).

Figure 72 Wear track on the disk under SEM at 1000X (Test No. 25).

Figure 73 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 25).

Figure 74 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 25).

Figure 75 Detailed characterization of wear area on the pin with SEM (Test No. 25).

Figure 76 Wear track on the disk under optical microscope (Test No. 27).

Figure 77 Profilometer trace and measurement across the wear track on the disk (Test No. 27).

Figure 78 Wear area on the spherical surface of the pin under optical microscope (Test No. 27).

Figure 79 Profilometer trace and measurement across the wear area in the pin (Test No. 27).

Figure 80 Wear track on the disk under SEM at 60X (Test No. 27).

Figure 81 Detailed characterization of wear track on the disk with SEM (Test No. 27).

Figure 82 Wear track on the disk under SEM at 500X (Test No. 27).

Figure 83 Wear track on the disk under SEM at 1000X (Test No. 27).

Figure 84 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 27).

Figure 85 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 27).

Figure 86 Detailed characterization of wear area on the pin with SEM (Test No. 27).

Figure 87 Wear track on the disk under optical microscope (Test No. 30).

Figure 88 Profilometer trace and measurement across the wear track on the disk (Test No. 30).

Figure 89 Wear area on the spherical surface of the pin under optical microscope (Test No. 30).

Figure 90 Profilometer trace and measurement across the wear area in the pin (Test No. 30).

Figure 91 Wear track on the disk under SEM at 60X (Test No. 30).

Figure 92 Detailed characterization of wear track on the disk with SEM (Test No. 30).

Figure 93 Wear track on the disk under SEM at 500X (Test No. 30).

Figure 94 Wear track on the disk under SEM at 1000X (Test No. 30).

Figure 95 Wear area on the spherical surface of the pin under SEM at 20X (Test No. 30).

Figure 96 Wear area on the spherical surface of the pin under SEM at 60X (Test No. 30).

Figure 97 Detailed characterization of wear area on the pin with SEM (Test No. 30).

A comparison of the SEM wear scar surface images for the disk and pin materials tested in air and hydrogen indicates an increase in the overall roughening, protrusion development, and fragmentation for the AUM10 disk material tested in hydrogen. Results for the 316L disk material indicate minimal change or a reduction of the wear scar surface roughening and fragmentation in hydrogen.

RESULTS

Weight Change

As discussed in a previous section, the weight change of the samples was obtained independently by (1) weighing the sample with a five-place balance before and after the test, and (2) using profilometer to trace the surface roughness with a planimeter to estimate the area of wear and with integration along the wear path (for disks), or over the wear region (for pins) to estimate the volume change due to wear. The weight changes are shown in Tables 5 and 6, respectively, for the disks and for the pins. The results are shown graphically in Figures 54 to 55. The results show the AUM10 disk material to have a slightly higher wear rate than the 316L disk materials in air, and a significantly higher wear rate in hydrogen. Additionally, results from this initial dataset do indicate a small trend of increased wear in the gaseous hydrogen environment for both AUM10 and 316L materials.

					Disk	Disk			
				Ambient	Track	Track	Calculated	Calculated	Measured
Test	Disk	Pin	Amb.	Pressure	Width	Finish	Disk Vol.	Disk Wt.	Disk Wt.
No.	Material	Material	Gas	(psig)	(in)	(µ-inch)	(in ³)	Loss (g)	Loss (g)
1	316L	316L	Air	0	0.030	64	4.00E-06	0.00052	0.00070
3	316L	316L	Air	0	0.039	78	1.70E-06	0.00022	0.00097
2	316L	316L	Air	0	0.015	11.7	n.m.	n.m.	0.00021
21	316L	316L	Air	0	0.015	11.7	n.m.	n.m.	-0.00036*
9	316L	316L	H ₂	1000	0.013	21	4.00E-06	0.00052	0.00034
11	316L	316L	H ₂	1000	0.010	6.03	1.40E-05	0.00183	0.00002
12	316L	316L	H_2	1000	0.046	33.2	5.30E-05	0.00693	0.00092
13	316L	316L	H_2	1000	0.042	38.3	1.00E-06	0.00013	0.00040
20	316L	316L	H_2	2000	0.045	53.3	2.50E-05	0.00327	0.00156
22	316L	316L	H ₂	2000	0.039	157	9.00E-06	0.00118	0.00061
23	316L	316L	H ₂	2000	0.048	38.4	1.10E-05	0.00144	0.00042
24	316L	316L	H ₂	2000	0.046	26.6	9.00E-06	0.00118	0.00021
4	316L	A286	Air	0	0.034	22.4	2.70E-05	0.00353	0.01406
6	316L	A286	Air	0	0.030	57	gain	gain	n.m.
14	316L	A286	H_2	1000	0.018	23.3	1.00E-06	0.00013	0.00097
15	316L	A286	H_2	1000	0.040	63.2	1.40E-05	0.00183	0.00046
25	316L	A286	H_2	2000	0.039	95.4	4.00E-06	0.00052	0.00106
26	316L	A286	H_2	2000	0.008	27.3	0.00E+00	0	-0.00101*
5	AUM10	316L	Air	0	0.031	28.5	3.00E-06	0.00039	0.00088
8	AUM10	316L	Air	0	0.027	14	5.50E-04	0.07193	-0.00006*
16	AUM10	316L	H_2	1000	0.015	32.5	n.m.	n.m.	0.00005
17	AUM10	316L	H_2	1000	0.057	88.6	6.30E-05	0.00824	0.00578
27	AUM10	316L	H ₂	2000	0.055	100	8.30E-05	0.01085	0.00943
28	AUM10	316L	H ₂	2000	0.031	32.6	n.m.	n.m.	0.00064
7	AUM10	A286	Air	0	0.020	14.7	4.00E-06	0.00052	0.00014
10	AUM10	A286	Air	0	0.044	51	7.00E-06	0.00092	0.00032
18	AUM10	A286	H ₂	1000	0.061	129	2.82E-03	0.36879	0.01156
19	AUM10	A286	H ₂	1000	0.002	14.4	3.10E-04	0.04054	0.00027
29	AUM10	A286	H ₂	2000	0.056	94.2	4.40E-05	0.00575	0.00185
30	AUM10	A286	H ₂	2000	0.05	135.7	1.04E-04	0.01360	0.00888

Table 5	Test results for	or disks – v	wear track	measurement	and	weight change

Note - n.m.: Not Measurable

gain: Profile of surface roughness in the wear area (wear track) showed more material above the undisturbed surface baseline.

* (negative): Possibly due to measurement error or material transferred from the pin.
| | | | | | Pin | Pin | Pin | | |
|------|----------|----------|----------------|----------|----------|--------|--------|------------|------------|
| | | | | Ambient | Wear | Wear | Wear | Calculated | Measured |
| Test | Disk | Pin | Amb. | Pressure | Finish | Width | Length | Pin Wt. | Pin Wt. |
| No. | Material | Material | Gas | (psig) | (µ-inch) | (inch) | (inch) | Loss (g) | Loss (g) |
| 1 | 316L | 316L | Air | 0 | 74 | 0.031 | 0.058 | 0.00013 | 0.00003 |
| 3 | 316L | 316L | Air | 0 | 21 | n.m. | n.m. | 0.00000 | gain § |
| 2 | 316L | 316L | Air | 0 | 3.4 | 0.017 | 0.024 | 0.00000 | 0.00003 |
| 21 | 316L | 316L | Air | 0 | 17.8 | 0.028 | 0.036 | 0.00006 | gain § |
| 9 | 316L | 316L | H_2 | 1000 | 1 | 0.021 | 0.015 | 0.00000 | 0.00000 |
| 11 | 316L | 316L | H ₂ | 1000 | 4 | 0.014 | 0.015 | 0.00005 | 0.00002 |
| 12 | 316L | 316L | H_2 | 1000 | 42.1 | 0.053 | 0.058 | 0.00018 | -0.00014 § |
| 13 | 316L | 316L | H_2 | 1000 | 29.4 | 0.0429 | 0.0475 | 0.00010 | 0.00017 |
| 20 | 316L | 316L | H ₂ | 2000 | 72.6 | 0.031 | 0.065 | 0.00006 | 0.00011 |
| 22 | 316L | 316L | H_2 | 2000 | 103 | 0.0374 | 0.058 | 0.00013 | -0.00020* |
| 23 | 316L | 316L | H_2 | 2000 | 63.6 | 0.052 | 0.059 | 0.00029 | 0.00018 |
| 24 | 316L | 316L | H ₂ | 2000 | 32.1 | 0.0474 | 0.053 | 0.00025 | 0.00036 |
| 4 | 316L | A286 | Air | 0 | 104 | 0.032 | 0.056 | 0.00010 | 0.00059 |
| 6 | 316L | A286 | Air | 0 | 30 | 0.011 | 0.06 | 0.00001 | gain § |
| 14 | 316L | A286 | H_2 | 1000 | 30.3 | 0.014 | 0.052 | 0.00000 | 0.00097 |
| 15 | 316L | A286 | H_2 | 1000 | 74.4 | 0.036 | 0.063 | 0.00010 | 0.00026 |
| 25 | 316L | A286 | H ₂ | 2000 | 85.2 | 0.328 | 0.033 | 0.00060 | -0.00045 § |
| 26 | 316L | A286 | H_2 | 2000 | 1.6 | 0.018 | 0.016 | 0.00000 | 0.00046 |
| 5 | AUM10 | 316L | Air | 0 | 61.6 | 0.032 | 0.036 | 0.00006 | 0.00030 |
| 8 | AUM10 | 316L | Air | 0 | 5.3 | 0.023 | 0.0102 | 0.00000 | gain § |
| 16 | AUM10 | 316L | H_2 | 1000 | 5 | 0.0235 | 0.029 | 0.00001 | 0.00005 |
| 17 | AUM10 | 316L | H_2 | 1000 | 72.1 | 0.061 | 0.76 | 0.00023 | 0.00049 |
| 27 | AUM10 | 316L | H_2 | 2000 | 108 | 0.058 | 0.0737 | 0.00051 | -0.00004 § |
| 28 | AUM10 | 316L | H_2 | 2000 | 60.7 | 0.033 | 0.044 | 0.00006 | 0.00060 |
| 7 | AUM10 | A286 | Air | 0 | 12.1 | 0.019 | 0.027 | 0.00001 | 0.00014 |
| 10 | AUM10 | A286 | Air | 0 | 39 | 0.033 | 0.056 | 0.00018 | 0.00018 |
| 18 | AUM10 | A286 | H ₂ | 1000 | 52 | 0.051 | 0.084 | 0.00004 | 0.00045 |
| 19 | AUM10 | A286 | H ₂ | 1000 | 3.1 | 0.0207 | 0.023 | 0.00001 | 0.00006 |
| 29 | AUM10 | A286 | H ₂ | 2000 | 69.6 | 0.05 | 0.091 | 0.00054 | 0.00057 |
| 30 | AUM10 | A286 | H ₂ | 2000 | 142.9 | 0.056 | 0.073 | 0.00030 | 0.00037 |

Ta	ble	6	Tes	t resul	ts f	for	pins	_	wear	area	measure	ement	and	weig	ht c	chang	ge
		-															· -

Note - n.m.: Not Measurable

gain: Profile of surface roughness in the wear area showed more material above the undisturbed surface baseline.

§: (negative): Possibly due to measurement error or material transferred from the disk track.

Figure 98 Disk weight change (loss) after 500 m of travel distance and under a pin load of 45.4 g (0.1 lb).

Figure 99 Pin weight change (loss) after 500 m of disk travel distance and under a pin load of 45.4 g (0.1 lb).

Wear Coefficient (Kw)

A wear coefficient was calculated based on the Archard Equation [3-6] for each test where the volume loss took place by the wear. This coefficient is the proportionality between the wear rate (volume loss per unit sliding distance) and the ratio of the external load to the flow pressure of the material. Mathematically, it can be regarded as the probability of any material surface junctions leading to transferred fragments [3]. The majority of the wear coefficients based on the SRNL test data are within the range of those for the stainless steels as reported in the literature, on the order of 0.01 [3].

A wear equation was proposed by Holm in 1946 [4] and later was derived analytically by Archard in 1953 [5,6] as

W=kL/3p,

where W is the wear rate (volume loss per unit sliding distance), L is the external load acting on the flat plate, p is the flow pressure of the metal (the Brinell Hardness can be used as an approximation), the "3" in the denominator is a shape factor for the assumed circular junctions and hemispheric fragments or debris (for a square junctions and cubical fragment, the factor would be 1), and k is the probability of any material surface junctions leading to transferred fragments [3].

The above Archard Equation is rearranged to incorporate the test data for calculation the wear coefficient K_w , in which the shape factor has been absorbed:

 $K_{w} = \frac{\text{Hardness} (\text{kg/mm}^{2}) \times (\text{Wear Volume per unit Sliding Distance, mm}^{2})}{\text{Total Normal Load} (\text{kg})}$

The wear coefficient for each of the test case is shown in Figure 56. About one-half (16) of the tests resulted in $K_w < 0.001$, which is consistent with the observation by Robinowicz (Table 6.1 of Ref. 3), in which he reported that $k=21\times10^{-3}$ (equivalently, $K_w=7\times10^{-3}$). Robinowicz also reported that the values of k above 0.1 are very rare in his 172 data points, with most of them are in between 10^{-4} and 10^{-2} (Figure 6.15 in Ref. 3).

Figure 100 The wear coefficients calculated for all wear test cases.

Examination of the wear coefficient data displayed in Figure 56 indicates that the AUM10 disk material exhibits more wear in comparison to the 316L disk material in all conditions tested in this initial study (air and hydrogen). This result trend is consistent with the other previously shown data for weight change and wear scar surface analysis that also indicated increased wear for the AUM10 material.

CONCLUSIONS

Based on the current data collected for a travel distance of 500 m and a load of 45.4 g, the tribological effects of the stainless disks (316L and AUM10) and the pins (316L and A286) are not significant. However, the results do show a tendency for higher wear of materials sliding against each other in a gaseous hydrogen environment. The effect on wear in gaseous hydrogen appears to be more pronounced for the AUM10 disk alloy.

The lack of overall significant wear in terms of weight loss for the testing may be due to the combination of low test loads in conjunction with relatively short travel distances. It may also be attributed to the nature of adhesive wear, which is characterized by macroscopic plastic deformation such as scoring, scuffing, and galling - to form excrescences (bulging and protuberating) until the local strain limit is reached and the debris breaks away from the surface. Material transfer between the stationary pin and the rotating disk may also be likely. All these factors will affect the weight change assessment by weighing the pre/post-testing specimens or by integrating the area based on profilometer tracing.

The apparent initial impact of gaseous hydrogen on the wear of the stainless steel may be attributed to the hydrogen diffusivity in these materials. The hydrogen diffusion in stainless steels is known to be slower [8,9] in comparison to carbon steels [10-12]. Thus, the hydrogen effects on wear in gaseous hydrogen are expected to be affected by exposure time in the hydrogen. Testing condition options such as increased travel distance, increased load, and pre-charging of pin and disk samples can be explored in future tests.

PATH FORWARD

It has been recommended that surface deposition technologies be considered in improving the metal-to-metal sliding wear, in particular, by applying the amorphous carbon coating (i.e., the diamond-like coating or DLC) because of its superior mechanical and physical properties (high toughness, high elastic modulus, high electrical resistance, high thermal conductivities, and chemical inertness) with no post-fabrication surface finish. Additional experimental techniques and characterization methodologies should be developed to evaluate the tribological properties of these coatings and to determine their optimal thickness in hydrogen [13]. The Savannah River National laboratory is currently in discussions with the Toyota Research Institute North America to develop a continuation work scope that will evaluate surface coating effects of wear properties in both air and hydrogen.

ACKNOWLEDGMENTS

SRNL would like acknowledge Toyota Research Institute North America for funding support under CRADA Agreement PTS-03. Additionally, we would like to recognize and thank both Craig Stripling and Doug Leader of SRNL for equipment design, fabrication, installation, and test support. Furthermore, we would also like to acknowledge Daryl Hudson for profilometry support, Zane Nelson for sample photography, and Tony Curtis for performing scanning electron microscopy.

REFERENCES

- [1] Budinski, K. G., <u>Guide to Friction, Wear, and Erosion Testing</u>, ASTM International, West Conshohocken," PA, 2007.
- [2] Review of the Wear and Galling Characteristics of Stainless Steels, A Designers' Handbook Series, Committee of Stainless Steel Producers, American Iron and Steel Institute, Washington, D.C., 1978.
- [3] Rabinowicz, E., Friction and Wear of Materials, John Wiley and Sons, Inc., New York, 1965.
- [4] Holm, R. and Heijne, A. V., Electric Contacts, H. Geber, Stockholm, 1946.
- [5] Archard, J. F., "Contact and Rubbing of Flat Surfaces," Journal of Applied Physics, Vol. 24, pp. 981-988, 1953.

- [6] Archard, J. F. and Hirst, W., "Wear of Metals under Unlubricated Conditions," Proceedings of Royal Society, Vol. A-236, pp. 397-410, 1956.
- [7] Private Communication with Professor Naoya Tada, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan, August 25, 2008.
- [8] Kim, Y., Chao, Y. J., Morgan, M. J., and Lam, P.-S., "Comparison of Decoupled and Coupled Analyses for Hydrogen Transport in Fracture Specimens," Paper No. PVP2007-26389, Proceedings of ASME Pressure Vessels and Piping Conference, San Antonio, Texas, July 2007.
- [9] Taha, A. and Sofronis, P., "A micromechanics approach to the study of hydrogen transport and embrittlement", Engineering Fracture Mechanics, Vol.68, pp.803-837, 2001.
- [10] Duncan, A. J., Lam, P.-S., and Adams, T. M., "Tensile Testing of Carbon Steel in High Pressure Hydrogen," Paper No. PVP2007-26736, Proceedings of ASME Pressure Vessels and Piping Conference, San Antonio, Texas, July 2007.
- [11] Lam, P. S., Sindelar, R. L., and Adams, T. M., "Literature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Alloy Steels," Paper No. PVP2007-26730, Proceedings of ASME Pressure Vessels and Piping Conference, San Antonio, Texas, July 2007.
- [12] Lam, P. S., "Hydrogen Effects on the Mechanical Properties of Austenitic Stainless Steels - a Compendium of Data from Testing at the Savannah River Laboratory in Support of High Pressure Hydrogen Service (U)," WSRC-STI-2008-00043, Washington Savannah River Company, Aiken, South Carolina, July 2008.
- [13] Li, X. and Bhushan, B., "Micro/nanomechanical and tribological characterization of ultrathin amorphous carbon coatings," Journal of Materials Research, Vol. 14, pp. 2328-2337, 1999.

APPENDIX

Vendor Certifications

A. Stainless Steel Type 316L (for Disks)

B. Stainless Steel Type 316L (for Pins)

C. Stainless Steel Type A286 (for Pins)

D. Stainless Steel Type AUM10 (for Disk)

E. Additional Contact Profilometry Scan Data

F. Additional Macrophotographs of Wear Tracks on Disk and Pins

Appendix A Stainless Steel Type 316L (for Disks)

TOLL FREE: 800-628-3035 EMAIL: SALES@DIVERSIFIEDMETALS.COM WEBSITE: WWW.DIVERSIFIEDMETALS.NET 49 MAIN STREET MONSON, MA 01057-0065 FAX: 413-267-3151 PHONE: 413-267-5101 CAGE CODE: 57067 PO BOX 65

		TES	T CERTIFICA	TE						
Customer: Washington S Building 723-A Aiken, SC 298 Ship To Addr Washington S Operations Re Aiken, SC 298	avannah River C N 08 ess: avannah River C cceiving 731-1N 08	o o	Customer Order: 7P5896 Item No.: 3 PN: NONE Dimensions: 2.000 IN DIA X 27.1250 INCHES Alloy/Grade: STAINLESS STEEL 316 COND A							
Specification	Grade: QQ-S-	763 REV F								
No. Of Boxes	No of Pieces	Length	Weight	Packing Slip No.	Heat No.	Lot No.				
1	1	27.1250 INCHE	S 24.0 LBS	59849	415377	426500950				
MILL TEST R	EPORT ATTAC	HED X								
MATERIAL HA	S NOT BEEN EXP	OSED TO MERCU	RY WHILE IN DIVER	SIFIED METALS IN	NC. FACILITY.					
This is to certif accordance wi specifications We certify that true.	fy that the materia th, and has been forming a part of the Chemical An	al covered by this r found to meet the a this description. alysis and Physica	eport and shipped o applicable requirem I Test Results apply	on the above order ents described he ring on the above o	r has been ins rewith, involvi order number	pected in ng any are correct and				
QUALITY API	PROVAL:									
Sharon Brown Quality Contro	I Administrator									
Date: Novemb	er 29, 2007									

Mill Cert. - REV 2. - 2/27/2007

E ŝ 4 1 . F

1

V	lcc. albr	iai ur	ier na	Scanr ie s.p.A.	and the second s	®			CER AB INS CER	RTIFICAT INAHMEI SPECTIO RTIFICAT EN 10	O DI COLL PRUEFZEU N CERTIFI DE RECE 204, 3.1.B	AUDO GNIS CATE PTION			
6100 VI Stab.: 39 Stats: 39 Malaru 1 IRON JSA-OA	CENZA (Italia 100 BOLZAN NA CORP. HORSE ROA LAND NJ 07) - Viale D (Italia) M D 436-US/	della s) - Via /	cienza, 25 z A. Volta, 4	T	Avviso di Spadi VeferanijePering	iziona: D-BZ	205001142	C Z	ertificato nr Segnational Interna ordina	: MEST18403	3/2005/ 2			
roduitore	: STABILIN Debus providution	IENTO	DIB	OLZANO		Ordina nr. 127 Baciel/Yuur ordor/Co	79/STOCK	(1)	Marchio di Fabbrica: Zelicen des Laboreches						
iggetta P. Algogentic	ove: Polished	Anneale	ed Peel	ed		Tipo di Elabora Encometenguatila	zione: E+A ling proventie	OD te delatoriston	Punzame del Collaudatora:						
IRST M SME (1 STM A STM A STM A STM A STM A MS-QC B SEC.II	ETALS 2003) SA162 2001) SA479 2001 93 2004C BE 276 2004 S31 970 2003A. 2 B/1 316 -S-763 96 31/ PTA 2001 ED/ PTA 2001 ED/ PTA 2001 ED/ 31603	316/316 S31600 S31600 M 600/03 S/316L FION AD FION AD FION AD	L A 0/03 (0) 0/03 (3) 0.2002 0.2002 0.2002		AMS 554 ASME (1 ASTM A1 ASTM A1 ASTM A3 ASTM A4 NACE MI QQ-S-761	8 K S31600 SA163 2011 Bi SA464 2001 . 94 99 8M 114 97 S31600/0 73 99 S31600/0 R0175 2002 S31 3 E/1 316/316L	BM (1))3 13 1600/03 (0) Chemic (2) SEC.II ((4) Chemic Punzanalu	al analisys c PT A 2001 E al analysis c na: S3160:	AMS ASM ASTI ASTI ASTI ASTI QQ-3 DITION ADD DITION ADD DITION ADD	5653 F S314 E (1) SA320 M A182 2002 M A262 2002 M A320 2004 M A379 2004 S-763 F 3167 hanloal propert	503 2001 BBM (2) 531500/03 (4) A. BBM 88M 531600/03 316L dns. APPRO DATE(VED BY <u>CIR</u> CAROL RALPH D.C. MANAGER			
DS. Nr. Pas. nr.	Oggetto Gegenslavet	1.0	Dime	ensiani - in		Tolloranza Talimot	Lunghaz	ta - Fl	Colata Scimelze	Pazzi Sicioni Piani	Peso - LB Girwicht Weight	Lotto nr. Loenr. Lot nr.			
da parte 0180	Bound	-	2	American 0000	-	Toleverse AdRd	12/	13	415377	Plane	4,113	426500950			
patienter patienter protec	soddisfatte IJI witatienergen stat II, as been fumished in e sk voovit conforme e	la la cond Antes erita contánce e o especos	lizioni ric	hieste Annosta	Controllo a Verwechskog Animisting test Condis estin	intiminscolanza: Of rolling: spectralaristy init ing performed: Off storige fail: r.s.e.	(miningelika		Contro Besichtig Visual im Demette	Ito visivo e dim urg and Atametau prolice and dimension visual et dimension	ensionale: soddis s day basetimicity bred checkmathlattery c esticiained	fa la esigenze:			
TEST	Proveile/manage Langdate Energy Balan Dian Data Man Dian Tatan Lang dan pala TITE	۰F	Palato III	Rp 0,2%	Snervamen Vol Ben Links darkpe	lo Rasislanza Taria dagt fanta dagt fanta dagt Rm k.s.l.	Allungar Baya Menjar	E 4d	Strizio	RA	Realienza Katativyeni Ingti Vala Bathena	Durezza Nena Mana Sues HB			
Valor	richiusti 1	min	n x	30		75		40		50		140 223			
A	12.50	68	L	39		86	1	66	-	73		185			
rain si	ze for ASTM	E112		: 5	, 9m	Analis	i chimi	ca	- /	1K-Hongkides	antaigt, Gilbarvertasis	ref, 1 = 1 and in the minimum			
	el Inita- miex 0,030 C %	1.00 Si %	1,25 2,00 Mri	15,50 V 18,00 % Cr %	2,00 V 3,00 Mo %	1.00 14.00 Cu % Ni %	0.040 P %	0,020 V 0,030 S %	0.100 ·		-				
Xolata nu		0,70	1,5	7 17,11	2,01	0,42 10,23	0,028	0,026	0,078						
41537 Produce Solution Annealin Micro an Reducti	7 0,018 d without cla heat treated ng temperate nd macro etc on ratio > 4	ass I-II i free fr ure: 196 ch test: 1	Ozone rom co S0° F fr OK	depleting ntinuous ca or 2.50h/H2	arbide netv 20.	vork.				DIV 49 M	ERSIFIED MI	ETALS, INC. MONSON, MA 0105			

The Quality Management System is Certified	I acc. Pressure Equipment Directive [87/20/EC] Annex 1, s. 4.3 by TUEV and LLOYO'S	P.O.#
Bolzano, 15/11/05	ll collaudatore di stabilimento i der Warkssachverständige / Works inspector / R. Criste	L'agent d'asine

Pagina - 1 di 1

3

1

A V Valbruna G	roup	Valbri	una Sta	, Inc.	31 Iron Horse Road Oakland, NJ 07436 Tel. (201) 337-1233 Fax (201) 337-0833 njsales@valbruna.com					
				TEST CE	RTIFICA	TE				
BUYER : BUYERS P	Divers O. No	ified Metals 42239				11/10/2005 VALBRUNA No:	1277	9		
GRADE	517	F/SHAPE	-	DESCR	IPTION AND	SPECIFICATION		QTY (LBS)		
S31603		ROUND 2.000"	FIRST METAL ASME(1)SA18 ASME (1) SA4 ASTM A193 20 ASTM A276 20 ASTM A370 20 ML-S-862 B/1	S 2003 316/316 2 2001 S31600 79 2001 S3160 004C B8M 004 S311600/03 003A 316	3L /03 (1) 0/03 (3) 3	AMS-QS-763 98 316/31 (o) SEC.11PT A 2001 E (1) SEC.11PT A 2001 E (2) SEC.11PT A 2001 E	6L Dition add 20 Dition add 20 Dition add 20	1,000 002 002		
Chomical	nalvei	e only		CHEMICA	L ANALYS	IS				
HEAT NUM	ABER	C	Mn	Р	S	Si	Ni	Cr		
41537	7	1.000						1		
Mo	Cu	Ti	-	Co		Cb+Ta	Sn	N		
			Δ	I IECHANICA	L PROPER	TIES		1		
TENSI	F	YIELD	1	RED.OF		HARDNESS		AS		
STRENG	TH	STRENGTH	ELONG	AREA	BRINELL	ROCKW	ELL	SHIPPED		
(KSI)		(KSI)	%	%		"B"	C	HARDNESS		
			OTHER	TEST(S) ANI	D/OR REQU	JIREMENTS				
AMS 5648 ASME (1) S ASME(1) S/ ASTM A194 ASTM A314 ASTM A479 NACE MR0 QQ-S-763 E	 (S316) (A193) (A484 2) (99 80) (97 8) (9	500 2001 B8M(1) 2001 4 31600/03 31600/03 502 S31600/03 5/316L	3	AMS 5553 FS3 ASME (1) SA32 ASTM A152 20 ASTM A252 20 ASTM A252 20 ASTMA320 200 ASTM A479 20 QQ-S-763 F 31	1603 20 2001 BBM (2) 02 S31600/03 (4 02A 04 BBM 04S31600/03 6316L	 (1) Chemical analysis or (2) SEC 11PT A 2001 Ei (4) Chemical analysis or 	ily and mechan DITION ADD 20	ical properties		
"Statement "This materi	of Con al, is p	N npliance" produced by A	IOTES ccialerie Valbr	una and trans	ferred to					

T

Appendix B Stainless Steel Type 316L (for Pins)

TOLL FREE: 800-628-3035 EMAIL: SALES@DIVERSIFIEDMETALS.COM WEBSITE: WWW.DIVERSIFIEDMETALS.NET 49 MAIN STREET MONSON, MA 01057-0065 FAX: 413-267-3151 PHONE: 413-267-5101 CAGE CODE: 57067 PO BOX 65

		TES	T CERTIFICA	TE		
Customer: Washington S. Building 723-A Aiken, SC 298 Ship To Addr Washington S. Operations Re Aiken, SC 298 Specification	avannah River Co 08 ess: avannah River Co ceiving 731-1N 08	835	Customer Order: Item No.: 2 PN: NONE Dimensions: 0.3 Alloy/Grade: ST	7P5896 175 IN. DIA. X 12.0 AINLESS 316	05 FEET	
No. Of Boxes	No of Pieces	Length	Weight	Packing Slip	Heat No.	Lot No.
				No.		
1	2	12.05 FEET	5.0 LBS	59927	OLV2	NONE
MILL TEST R	EPORT ATTACH	ED X				
MATERIAL HA	S NOT BEEN EXPO	SED TO MERCU	RY WHILE IN DIVER	SIFIED METALS IN	C. FACILITY.	
This is to certif accordance wir specifications	fy that the material th, and has been fo forming a part of t	covered by this bund to meet the his description.	report and shipped o applicable requireme	on the above order ents described her	has been inspec ewith, involving	any
We certify that true.	the Chemical Ana	lysis and Physica	al Test Results apply	ing on the above o	rder number are	correct and
QUALITY API Sharon Brown Quality Contro Date: Decemb	PROVAL: I Administrator ver 5, 2007					

Mill Cert. - REV 2. - 2/27/2007

OBSER	VILLAR	US ÖLVZ	CK HEAT	CHEMICA				ORDER NUMBER	CUSTO	(MAS)	Ē	TP Q S P S
ATIONS/S UNS SELECTED AND MELTED AND	0300	-0240	c v	L COMPOSIT			39002/	MARK#/	MER		r		NO	1413-267-51 0LD TO: 0.# 0.#
/31603, GR .1B, AMS MANDFACT	.0450	+0284	P J	ION %			BB22555	PROD ID BB22554		FAX: Email: cus	Ghent, f	North A	RTH A	MASHAJE
ATIONS AIN SIZE 5648K/AM	.0300	.0205	r s				OLV2	HEAT NUM		(50 tomerse	ne: (50	nericar	MERIC	3-267-315 3-00-7-315 3-00-7-15
= 4-6, A S 56538, USA.	1.0000	.3195	1 TS	CM(Co	1		1830	WEIGHT 2313		2) 347-(nvice@no	2) 347-6) Stainle	AN S	MAHKU
ASHE SA4	2.0000	1.4962	Mn V	suntry of M	Required Values	0TV2	MECHAN HEAT NUM	7		5001 rthameric	5-9615	220	FAINL	1118
04;ASTM J 79/04, AS	16.0000	17.0850	Cr /	elt) ES(S	90	104		EQUIRE	TOLER	anstainle			SS	
479/04/0	10.0000	10.6872	V IN	pain) US(l	100	88	PERTIES Rp 0.2 YS	MENTS	ANCE	ss.com			INSPEC	
13-7632 0	2.0000	2.1169	No V	Julied State			Rp 1.0 YS						TION O	APPR
0100 A, MS	.1000	.0421	T R	(\$5	50 100	74	Z & RA		PRO	GRA	PAC		ERTIFIC	CARO
1,008,7634 11EH 0KLY)		.4312	N 10			41	ELONG A 3 L4d	LEN	nd bar.	DE MAS (316L/)	KINGLI	2006	CATE	RALP
		.1766	00		140 255	207	HARD NESS HB	GTH	anneal	-264 F	ST # 20	/ 980	ł	DE A
1		1				100	IENCE	.12	ed, cold	0.#	06 /671	02		134
					000000		5 d A%	.00 ft. 1 Inches	drawn.	: P6082	72 NU	DA		
Eric Hess Quality Control Representative	QUALITY INSPECTOR	EAF+AOD+CC	- Frincetaa	STEELMAXING	SATISFACTORY	ASTM A262-02A PRACTICE "E"	WITHOUT OBJECTIONS	SURFACE AND DIMENSION CONTROL		28AM007 Item Code:	JMBER 1	ATE 11/21/2006		

28PB011-1 DIVERSIFIED MET PO: 46883 Part #: 1.00PC

Appendix C Stainless Steel Type A286 (for Pins)

TOLL FREE: 800-628-3035 EMAIL: SALES@DIVERSIFIEDMETALS.COM WEBSITE: WWW.DIVERSIFIEDMETALS.NET 49 MAIN STREET MONSON, MA 01057-0065 FAX: 413-267-3151 PHONE: 413-267-5101 CAGE CODE: 57067 PO BOX 65

		TES	T CERTIFICA	TE		
Customer: Washington S. Building 723-A Aiken, SC 298 Ship To Addr Washington S. Operations Re Aiken, SC 298	avannah River C 08 ess: avannah River C cceiving 731-1N 08	o o	Customer Order: Item No.: 1 PN: NONE Dimensions: 0.3 Alloy/Grade: A2	7P5896 875 IN. DIA. X 72. 86 ALLOY STEE!	00 INCHES	
specification	Grade: AMS 5	(3/N				
No. Of Boxes	No of Pieces	Length	Weight	Packing Slip No.	Heat No.	Lot No.
1	1	72.00 INCHES	2.0 LBS	59849	302417	514600660
MILL TEST R	EPORT ATTACH	IED X				
MATERIAL HA	S NOT BEEN EXP	OSED TO MERCU	RY WHILE IN DIVER:	SIFIED METALS IN	IC. FACILITY.	
This is to certif accordance with specifications	fy that the materia th, and has been f forming a part of	I covered by this r ound to meet the a this description.	eport and shipped o applicable requireme	on the above order ents described he	has been insp rewith, involvi	bected in ng any
We certify that true.	the Chemical Ana	alysis and Physica	l Test Results apply	ing on the above o	order number :	are correct and
QUALITY API	PROVAL:					
Sharon Brown	Į I					
Quality Contro	Administrator					

Mill Cert. - REV 2. - 2/27/2007

V.	Acc albi	ia. ru	ie na	rie 1 s.p.A.		®				CERTI ABN/ INSPI CERTI	FICATO HMEP ECTION FICAT EN 102	D DI C RUEI N CEF DE R 204 , 3	COLL FZEU RTIFIC IECE 3.1.B	AUDO GNIS CATE PTION	5
Stab.: 35 Cliente / 1 VALBRU 2400 TA USA-FO	INA STAINLE YLOR STREE RT WAYNE, I	IO (Italia ISS INC IT WES IN 4680	a) - Via T 1-USA	A. Volta, 4	4.	Avviso di Spu Demancelgettico	dizione: D-\ leg tută L	/105001121		Certi Profusor Conter	icato nr: International ma ordine i	MEST	30225	7/2006/ 1	S, INC. VSON, MA 010 13-267-3151
Produiton	e: ACCIAIE	RIE V.	ALBR	UNA S.P./	A .	Ordine nr: 14 Basial/Your order	569:DIFER	ISIFIELD M	ETALS	S March Zaicran	o di Fabbri les Unternand	C1A:			METAL ET, MO
Oggetto P Indespreta	rrove: - Aged E	Bright G	round (D-Exec		Tipo di Elabo Enermekunguary	razione: E++ Maling process#	AOD+ESR Ande dielessenitier	ġ:	Punzo Stengel	ne del Colla les Werkssachi e claup/Poling	iudatore: motindgen un de Tesse	Farmer -	MR	VERSIFIED MAIN STRE (413-267-510
Actordenuege VAL COI ASTM A (0) * ISO 1 Qualitá: 6 Workscellfore Marca: Al	n/Requirements / Ex RP 2004 560 538 2000 660 15156-3 60 CL.A/T.1 deStuarts N5	CLA/T.	1 AGE	D	AMS 5737 NACE MR0	N 566286 175* 2003 S	Puncamut	AG (0) ura: S6682	6	ASTM A	53 2004 (beo DA		CAROL F	CT RALPH NAGER
Pos. nr. Pos. nr.	Oggetto Degetaland	T	Din	sensioni - in	T	olleranza Teleranz	Lungha	226 - Fl	Co	olata	Perzzi Silokashi Plegas	Pese	a - LB Hold	Lotto ni Court.	
Nr. de joele	Bound	-	-	Dimension 0 3750		SREO	Long	14	305	2417	Pieces	Pt 2 1	ids 302	5146006	160
Sono state Die genielen The material h	a socidisinita tul Antederungun tiet t. as been fumitied in i tit inveré cielarme e	te la con Anlage vitt accordance ar estgenos	dizioni ri ar vita no rec	ichieste ukamente	Controlic anti Verwesteticing soll Automoting testing Controlic antimates	mescolanza: (mp: spectraliantylis performed: OK npr fab: r.e.t.	XC 2N 2N Consignation of the		(Controllo vi Issichtgung un Neus Inspecto Contrôle visuel	sivo e dime d Ausmestung and dimensions d finanzions: a	nsionale chui Bain ni chosan utbiakani	t soddist etansorg etalstatory	a lo esigenzo:	
TEST	Proveita/mission Economy Connection Lang days, Other Matte Diago, Other Matte Diago, Other Matte Diago, Thickness Lang, class, samb Children	۰F	Postz. Saggis	Shervamento That Base Rp 0,2% k.s.L	Snervamento Strebparse Strebparse Units designe	Resistenza Zeptetpise Tuesta result Paritance 4 tudos Rm k.s.l.	Allung	E 4d		Strizione Sector RA		Resilienz Native:Napide Privat Volet Regilance	a	Durozza Henry Ganty HB	
Valor	I dehlasti 1	m	n ix	95	•	140	1.00	15		18	1	1		/ 277 / 341	
A	8,75	68	L	149		180		18	1	44				335	
TEST	Provella/nuscum England Sum Data Dian, Okla Walk Dian, Tricknes Lang data, and Safet Stars, Skile Walk Dian, Tricknes Lang data, and Jan	۴F	Postr. Saggio	50	Carico k.s.L		Dura Dura t	ita		Allur	gamento adates angeneri E		Ĩ	Sirizione Destrictore Relative	
Valor	i richlesti 1	mi	n	1.11	0	1	10	0	1	1	5	1			
B	9,07	1.202	L	1	56		13	5	1		9				
TEST	Provelia/mentor Sectore Concertor Lag Gen, Dister Main Gen, Dister With Ober, Person Lag dina, span Lag man sen	٩F	Pastz. Saggia 111 =	Z.d Contro	Carleo Sonta K.s.I.		Dura Potentia Line line Down 1 h			Allur	gamenio noticiona argania E		1	Strizione Custoriang Reporter al gree Stephen	
Valor	richlesti 1	mi ma	n IX		3	1	23	1	J		5	1	-		
CI	9,07	1.202	L		65		60)			6		-		
-											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			and the second second	incident and

302417	0,040	0,35	1,45	15,38	1,26	0,37	25,06	0,09	2,27	0,25	0,021	0,001	0,29	0,0050
Vicenza, 14/09/06 Il collaudatore di stabilimento / der Werkssachverständing Maa Arcosta M. Rizzotty						llmento / di	r Werkssa M.F	chverständ Rizzotfo	atte Warks	i laspector i	L'agent d'	'usina	P	agina - 1 di 2

Avviso di Spedizione: D-VI06001121 Delemosion/Pashing fattui.

Ordine nr: 14569:DIFERSIFIELD METALS

Oggetto Prove: - Aged Bright Ground C-Exec

Produttore: ACCIAIERIE VALBRUNA S.P.A.

Tipo di Elaborazione: E+AOD+ESR ling pr

CERTIFICATO DI COLLAUDO ABNAHMEPRUEFZEUGNIS INSPECTION CERTIFICATE CERTIFICAT DE RECEPTION

EN 10204, 3.1.B

Solution treated 1650F for 2h / water, precipitation treated 1325F/16h air cool

Produced without class I-II Ozone depleting substances.

Melled and manufactured in Italy No weiding or weld repair Material free (rom Mercory or radio-activity contamination The Quality Management System & Ceditied act, Pressure Equipment Directive (37/52/EC) Annux 1,5.4.3 by TUEV and LLOYO' S

VICETIZA, 14/US/UD M.Rizzotty Pagina - 2 (audatore di stabilimento / der Werksachverstandiger Works M. Rizzotig	Pagina - 2 di 2
--	--	-----------------

Appendix D Stainless Steel Type AUM10 (for Disks)

1.	優れた磁気特性	磁束密度が高く、保磁力が小さい。
2.	大きい電気抵抗	比抵抗が高く、交流特性が優れている。
з.	優れた耐食性	優れた耐食性を有している。(AUM6を除く)
4.	豊富な品揃え	用途、加工方法に応じて最適な鋼種選択ができる

電磁弁、EFI(電子制御式燃料噴射装置)、スピードセンサ など

化学成分

特

分	鋼種名	化学成分(%)								
類		C+N	Si	Cr	A	Pb	S	TI	Mo	
切	AUM6	0.02	2.2	3.6	添加	添加	調整	-	-	
剫	AUM10	0.02	2.4	12.5	-	-	調整	添加	-	
用	AUMIT	0.02	2.2	12.5	-	添加	周整	添加	-	
	AUM12	0.02	0.2	12.0	-	-	-	-	-	
655	AUM15	0.02	0.7	12.0	添加	添加	調整	添加	-	
戦後	AUM15H	0.02	0.2	12.0	添加	添加	調整	添加	-	
m	AUM25	0.02	0.2	10.0	添加	添加	調整	-	-	
副開	AUM20	0.02	0.2	19.0	-	-	-	-	添加	

- (1) 13%Crステンレス鋼をベース成分として低 (C+N)化とAI、Ti等の添加により磁気特性、 電気抵抗、耐食性、冷鍛性を改善しています。
- (2) 高耐食性用途のために19%Cr鋼をペースとし、必要に応じてMoを添加することにより 耐食性を改善しています。
- (3) Pb、Sにより切削性を改善しています。
- (4) AUM 6 は磁束密度を改善するためにCr量 を3.6%にしています。

1. 電磁特性(代表特性値)

分類	特性	磁東密度(G)				保强力	電気抵抗	透磁率
	銅種名	Bt	82	B10	Ba	Hc(Oe)	μΩ-cm	µmax
切	AUM6	4000	12000	14000	14500	1.0	72	4700
開用	AUM10	3000	11000	12000	12800	1.0	93	4200
	AUM11	3600	11000	12100	12900	1.0	90	4100
4	AUM12	3300	11200	12900	14000	1.5	47	3500
10	AUM15	3500	10800	11800	12900	1.0	72	4500
報	AUM15H	5400	11000	12200	13200	1.0	60	5000
m	AUM25	5400	10800	11700	12700	1.0	100	4900
村田用	AUM20	6000	10500	11500	12000	1.0	53	5000
比	軟鉄(SIOC)	480	9000	13200	15500	1.8	15	1700
較材	SUS403	30	140	290	660	3.3	.57	40

2. 耐食性(耐海水性)

性

(1) AUM20はSUS316より耐食性が良好で、
 特に耐食性が要求される場合に最適です。

(2) AUM10からAUM25までは、13%Crス テンレス鋼より耐食性が優れています。

特約店

1940611

2008年8月24日 愛知製鋼㈱ 品質保証部 品質・技術サービス室 余語

軟磁性ステンレス鋼AUM10の機械的性質

熟処理 焼鈍 900℃×2Hr での機械的性質を下記に示します。

0.2%耐力(N/mm2)	8	290以上(代表例 390)	
引張強さ(N/mm2)	3	490以上(代表例 530)	
伸び(%)	4	30以上(代表例 37)	
絞り(%)	3	55以上 (代表例 74)	
硬さ(HRB)	÷	83~95(代表例 88)	

以上

Appendix E: Additional Contact Profilometry Scan Data

Figure E1. Contact Profilometry Data for Test #2 (a) Disk and (b) Pin

Figure E2. Contact Profilometry Data for Test #3 (a) Disk and (b) Pin

Figure E3. Contact Profilometry Data for Test #6 (a) Disk and (b) Pin

Figure E4. Contact Profilometry Data for Test #8 (a) Disk and (b) Pin

Figure E5. Contact Profilometry Data for Test #9 (a) Disk and (b) Pin

Figure E6. Contact Profilometry Data for Test #10 (a) Disk and (b) Pin

Figure E7. Contact Profilometry Data for Test #11 (a) Disk and (b) Pin

Figure E8. Contact Profilometry Data for Test #12 (a) Disk and (b) Pin

Figure E9. Contact Profilometry Data for Test #13 (a) Disk and (b) Pin

Figure E10. Contact Profilometry Data for Test #14 (a) Disk and (b) Pin

Figure E11. Contact Profilometry Data for Test #15 (a) Disk and (b) Pin

Figure E12. Contact Profilometry Data for Test #16 (a) Disk and (b) Pin

Figure E13. Contact Profilometry Data for Test #17 (a) Disk and (b) Pin

Figure E14. Contact Profilometry Data for Test #18 (a) Disk and (b) Pin

Figure E15. Contact Profilometry Data for Test #19 (a) Disk and (b) Pin

Figure E16. Contact Profilometry Data for Test #20 (a) Disk and (b) Pin

Figure E17. Contact Profilometry Data for Test #21 (a) Disk and (b) Pin

Figure E18. Contact Profilometry Data for Test #23 (a) Disk and (b) Pin

Figure E19. Contact Profilometry Data for Test #24 (a) Disk and (b) Pin

Figure E20. Contact Profilometry Data for Test #26 (a) Disk and (b) Pin

Figure E21. Contact Profilometry Data for Test #28 (a) Disk and (b) Pin

Figure E22. Contact Profilometry Data for Test #29 (a) Disk and (b) Pin

Appendix F: Macrophotographs of Sample Wear Areas

(a)

Figure F1. Macrophotographs of Test #2 wear areas (a) disk and (b) pin

Figure F2. Macrophotographs of Test #3 wear areas (a) disk and (b) pin

Figure F3. Macrophotographs of Test #6 wear areas (a) disk and (b) pin

(b)

0.20 mm

Figure F4. Macrophotographs of Test #8 wear areas (a) disk and (b) pin

Figure F5. Macrophotographs of Test #9 wear areas (a) disk and (b) pin

(b)

Figure F6. Macrophotographs of Test #10 wear areas (a) disk and (b) pin

Figure F7. Macrophotographs of Test #11 wear areas (a) disk and (b) pin

Figure F8. Macrophotographs of Test #12 wear areas (a) disk and (b) pin

Figure F9. Macrophotographs of Test #13 wear areas (a) disk and (b) pin

Figure F10. Macrophotographs of Test #14 wear areas (a) disk and (b) pin

Figure F11. Macrophotographs of Test #15 wear areas (a) disk and (b) pin

Figure F12. Macrophotographs of Test #16 wear areas (a) disk and (b) pin

Figure F13. Macrophotographs of Test #17 wear areas (a) disk and (b) pin

(b)

Figure F14. Macrophotographs of Test #18 wear areas (a) disk and (b) pin

Figure F15. Macrophotographs of Test #19 wear areas (a) disk and (b) pin

Figure F16. Macrophotographs of Test #20 wear areas (a) disk and (b) pin

Figure F17. Macrophotographs of Test #21 wear areas (a) disk and (b) pin

Figure F18. Macrophotographs of Test #23 wear areas (a) disk and (b) pin

Figure F19. Macrophotographs of Test #24 wear areas (a) disk and (b) pin

Figure F20. Macrophotographs of Test #26 wear areas (a) disk and (b) pin

Figure F21. Macrophotographs of Test #27 wear areas (a) disk and (b) pin

Figure F22. Macrophotographs of Test #29 wear areas (a) disk and (b) pin

SRNS-STI-2008-00100

DISTRIBUTION

SAVANNAH RIVER SITE

N. C. Iyer, 773-41A R. L. Sindelar, 773-41A T. M. Adams, 773-41A T. Motyka, 719-18A P. S. Lam, 773-41A

EXTERNAL

Rana Mohtadi, Toyota Research Institute North America Taisuke Miyamoto, Toyota Motor Corporation