Contract No:

This document was prepared in conjunction with work accomplished under Contract No. 89303321CEM000080 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Selection of Glasses to Confirm the 0.65 Weight Percent Sulfate Solubility Limit for Sludge Batch 10

F.C. Johnson November 2021 SRNL-TR-2021-00518, Revision 0

SRNL.DOE.GOV

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

SRNL-TR-2021-00518 Revision 0

Keywords: *DWPF, sulfate solubility, Frit* 473, SB10

Retention: Permanent

Selection of Glasses to Confirm the 0.65 Weight Percent Sulfate Solubility Limit for Sludge Batch 10

F.C. Johnson

November 2021

Savannah River National Laboratory is operated by Battelle Savannah River Alliance for the U.S. Department of Energy under Contract No. 89303321CEM000080.

EXECUTIVE SUMMARY

In preparation for Sludge Batch 10 (SB10) processing, projections of sulfate (SO₄²⁻) in glass at 36% waste loading (WL) were calculated in May 2020 for Tank 40 blend projections representing 0.7M and 0.85M Na wash endpoints. The projected SO₄²⁻ concentrations for either sludge-only (SO) or coupled processing with the Salt Waste Processing Facility (SWPF) were either near or exceeded the current Sludge Batch 9 (SB9) limit of 0.65 weight percent (wt.%). Four nominal glass compositions were selected based on SO and coupled processing for the 0.85M Na wash endpoint Tank 40 blend projection to conduct an initial evaluation of the SB10 sulfate solubility behavior. A sulfate salt phase was absent from each of the prepared glasses, which provided preliminary results that supported the 0.65 wt.% SO₄²⁻ limit for SB10.

In May 2021, Savannah River Remediation (SRR) reprojected SB10 based on the analytical results from the Tank 51 qualification sample that was washed in the Savannah River National Laboratory (SRNL) Shielded Cells Facility. Calculation-based frit assessments were performed on Tank 40 blend projections for 0.9M and 1M Na wash endpoints using the DWPF Product Composition Control System (PCCS) glass property models and their associated Measurement Acceptance Region (MAR) constraints. Based on these results, SRR finalized the decision to proceed with the 1M Na wash endpoint and Frit 473. These 1M SO4²⁻ projections are lower than the previous 0.85M Na wash endpoint SO4²⁻ projections, but still near the limit of 0.65 wt.%. This report documents the development of a supplementary test matrix of nine glasses to confirm that the 0.65 wt.% SO4²⁻ limit is applicable to the SB10 glass composition region defined by the 1M Na wash endpoint and Frit 473.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii
1.0 Introduction	1
2.0 Quality Assurance	2
3.0 Glass Selection	2
4.0 Recommendation	
5.0 References	
Appendix A. Composition Information	A-1

LIST OF TABLES

Table 1-1. May 2020 Projected SO42- Concentrations in Glass at 36% WL for Sludge-Only and Coupled Processing
Table 1-2. May 2021 Projected SO42- Concentrations in Glass at 36% WL for Sludge-Only and Coupled Processing. 2
APPENDIX
Table A-1. Normalized SB10 Tank 40 Blend Projection (wt.%)
Table A-2. SRNL-Developed SRAT Compositions for Coupled Operation for the 1M Na Wash Endpoint
Table A-3. Targeted Glass Compositions

LIST OF ABBREVIATIONS

DWPF	Defense Waste Processing Facility
ID	identification
MAR	Measurement Acceptance Region
MST/SS	monosodium titanate/sludge solids
NGS	Next Generation Solvent
PCCS	Product Composition Control System
SB10	Sludge Batch 10
SB3	Sludge Batch 3
SB4	Sludge Batch 4
SB7b	Sludge Batch 7b
SB8	Sludge Batch 8
SB9	Sludge Batch 9
SE	strip effluent
SEFT	Strip Effluent Feed Tank
SME	Slurry Mix Evaporator
SMRF	Slurry-Fed Melt Rate Furnace
SO	sludge-only
SRAT	Sludge Receipt and Adjustment Tank
SRNL	Savannah River National Laboratory
SRR	Savannah River Remediation
SSRT	Sludge Solids Receipt Tank
SWPF	Salt Waste Processing Facility
TTQAP	Task Technical and Quality Assurance Plan
TTR	Technical Task Request
WL	waste loading
wt.%	weight percent

1.0 Introduction

To support initial operations at the Defense Waste Processing Facility (DWPF), the original sulfate (SO4²⁻) solubility limit for Product Composition Control System (PCCS) Slurry Mix Evaporator (SME) acceptability was defined at 0.4 weight percent (wt.%) in glass based on pilot-scale melter testing.^{1,2} This limit signified that 0.4 wt.% SO₄²⁻ could be retained in the glass without the formation of a sulfate phase. The utilization of a 0.4 wt.% SO₄²- limit in glass for SME acceptability was challenged for Sludge Batch 3 (SB3), which included a neptunium (Np)-based stream projected to contain a significant fraction of ferrous sulfamate.³ Laboratory-scale crucible testing with both batch chemicals and simulated Sludge Receipt and Adjustment Tank (SRAT) product was performed, and a new PCCS SME acceptability limit for SO₄²⁻ was established at 0.6 wt.% for SB3, which was confirmed by supplementary Slurry-Fed Melt Rate Furnace (SMRF) testing with simulated SME product.³ While 0.6 wt. % SO₄² was allowed in the melter feed, it was anticipated that less than 0.6 wt.% would be retained in the glass based on SO42- volatility during DWPF melter processing, which provides some conservatism with respect to the formation of a sulfate phase. PCCS was not revised to reflect the updated SO4²⁻ limit and since then DWPF has imposed this constraint administratively outside of PCCS.² The 0.6 wt.% SO_4^{2-} limit was confirmed for Sludge Batch 4 (SB4) through Sludge Batch 7b (SB7b) by laboratory-scale crucible testing with batch chemicals.⁴⁻⁹ For Sludge Batch 8 (SB8) and Sludge Batch 9 (SB9), the limit was defined at 0.65 wt. %. ¹⁰⁻¹³

In preparation for Sludge Batch 10 (SB10) processing, projected SO_4^{2-} concentrations in glass were calculated for Tank 40 blend projections representing 0.7M and 0.85M Na wash endpoints.^{14,15} As shown in Table 1-1, the projected SO_4^{2-} concentrations in glass at 36% waste loading (WL) for either sludge-only (SO) or coupled processing with the Salt Waste Processing Facility (SWPF) are either near or exceed the current SB9 limit of 0.65 wt.%.

Table 1-1. May 2020 Projected SO42- Concentrations in Glass at 36% WL for Sludge-Only and Coupled Processing

0.7M	0.85M
0.69 wt.%	0.72 wt.%
0.58 wt.%	0.61 wt.%
	0.7M 0.69 wt.% 0.58 wt.%

*As-received coupled projection from Sludge Batch Planning.

To support the decision for the Na wash endpoint at that time, Savannah River Remediation (SRR) requested that a small set of glasses be fabricated to conduct a preliminary evaluation of the SB10 sulfate solubility behavior.¹⁶ Four nominal glass compositions were selected based on SO and coupled processing for the 0.85M Na wash endpoint Tank 40 blend projection. The waste loadings were allowed to vary from 31-40% to achieve SO_4^{2-} concentrations in glass that were at the current limit of 0.65 wt.%, and above and below this limit. A sulfate salt phase was absent from each of the prepared glasses, which provided preliminary results that supported the 0.65 wt.% SO_4^{2-} limit for SB10.¹⁷

In May 2021, SRR Sludge Batch Planning reprojected SB10 based on the analytical results from the Tank 51 qualification sample that was washed in the Savannah River National Laboratory (SRNL) Shielded Cells Facility.¹⁸ Calculation-based frit assessments were performed on Tank 40 blend projections for 0.9M and 1M Na wash endpoints using the DWPF PCCS glass property models and their associated Measurement Acceptance Region (MAR) constraints.¹⁹ Based on these results, SRR finalized the decision to proceed with the 1M Na wash endpoint and Frit 473. Table 1-2 presents the projected SO₄²⁻ concentrations in glass at 36% WL for SO and coupled processing based on the Tank 40 blend projections for the 1M Na wash endpoint.¹⁸ These SO₄²⁻ projections are lower than the 0.85M Na wash endpoint SO₄²⁻ projections in Table 1-1, but still near the limit of 0.65 wt.%.

Table 1-2.	May 2021 Pr	ojected SO ₄ ²	⁻ Concentrations i	in Glass at 36%	WL for Sludge-Only and			
	Coupled Processing							
				1	1			

Na Wash Endpoint	1M
Sludge-only Projection	0.59 wt.%
Coupled Projection*	0.57 wt.%
· 1 11 · · · · ·	C1 1 D (1 D)

*As-received coupled projection from Sludge Batch Planning.

This report documents the development of a supplementary test matrix to confirm that the $0.65 \text{ wt.} \% \text{ SO}_{4^{2-}}$ limit is applicable to the SB10 glass composition region defined by the 1M Na wash endpoint and Frit 473.

2.0 Quality Assurance

This work was requested via a Technical Task Request (TTR)²⁰ and directed by a Task Technical and Quality Assurance Plan (TTQAP).²¹ The TTR indicated the portion of the work scope covered by this report (TTR Task 3) is classified as Safety Class and not subject to RW-0333P requirements. Microsoft Excel was used to support this work. Requirements for performing reviews of technical reports and the extent of review are established in Manual E7, Procedure 2.60.²² This document, including calculations, was reviewed by a Design Verification. SRNL documents the Design Verification using the SRNL Technical Report Design Checklist contained in WSRC-IM-2002-00011, Rev. 2.²³ The Design Checklist for this report is stored in electronic laboratory notebook experiment C7592-00311-39.

3.0 Glass Selection

A Tank 40 blend projection for the 1M Na wash endpoint for SO processing was received from SRR System Planning (on a calcine basis) in May 2021.¹⁸ The elemental concentrations were converted to oxides and normalized to 100 weight percent (wt.%) as shown in Appendix Table A-1. Per a previous request from SRR,²⁴ SRNL also performed subsequent calculations with the SO projection in Appendix Table A-1 to estimate the composition in the SRAT during coupled operation with SWPF. These calculations involved developing compositions for strip effluent (SE) and the Sludge Solids Receipt Tank (SSRT) effluent stream, which consists of monosodium titanate and sludge solids (MST/SS). This evaluation focuses on the following case for the SSRT effluent stream:

• Case 1: Single MST strike operation with no entrained insoluble sludge solids. This case represents the baseline for coupled operation with SWPF.

Other pertinent inputs include:

- DWPF receives 5700 gallons of sludge slurry from Tank 40 per SRAT batch²⁵
- Single strike operation results in 2800 gallons of the SSRT effluent stream (MST/SS) per SRAT batch²⁶
- DWPF receives 15,000 of SE per SRAT batch (Next Generation Solvent (NGS)^a)^{25,26}
- Cs-137 concentration in SE is 66 Ci/gallon²⁷

The methodology used for these calculations was originally developed for SB9.^{26,28-30} The nominal SRAT composition representing the coupled operation scenario for Case 1 is shown in Appendix Table A-2. A second SRAT composition was developed for an SSRT volume of 4200 gallons (Case 1A), which would allow for operational flexibility if necessary during SB10 processing.³¹ As compared to the nominal Case 1, the TiO₂ concentration of Case 1A is increased by ~ 3 wt.% due to the increased concentration of MST. Using the SO, Case 1 and Case 1A compositions, the SO₄²⁻ concentrations were fixed such that the resulting SO₄²⁻ concentrations in glass would be 0.65 wt.% at 32%, 36% and 40% WL. Similar to previous sulfate solubility studies,^{4,7-10,13} the SRAT compositions were renormalized without U₃O₈ and ThO₂ since these

^a NGS contains the extractant MaxCalix (1,3-alt-25,27-bis(3,7-dimethyloctyl-1-oxy) calix[4]arene-benzocrown-6), which uses a boric acid strip solution.

components are not expected to have an impact on the sulfate solubility behavior. Glass compositions were developed by combining the renormalized SRAT compositions for SO, Case 1 and Case 1A with Frit 473 (8B₂O₃-8Li₂O-5Na₂O-79SiO₂, wt.%) at 32%, 36% and 40% WL. Target compositions for the nine recommended glass compositions are shown in Appendix Table A-3. These compositions provide supplementary compositional variation to the preliminary four glasses that were previously evaluated for the 0.85M Na wash endpoint.^{16,17}

4.0 Recommendation

A supplementary test matrix of nine glasses is recommended to confirm that the 0.65 wt.% SO_4^{2-} limit is applicable to the SB10 glass region defined by the 1M Na wash endpoint and Frit 473. The prepared glasses will be visually inspected for the presence of a yellow sulfate salt phase.

5.0 References

- 1. D.F. Bickford and C.M. Jantzen, "Inhibitor Limits for Washed Precipitate Based on Glass Quality and Solubility Limits," DPST-86-00546, Rev. 0, 1986.
- 2. T.B. Edwards, "SME Acceptability Determination for DWPF Process Control," Savannah River National Laboratory, Aiken, SC, WSRC-TR-95-00364, Rev. 6, 2017.
- D.K. Peeler, C.C. Herman, M.E. Smith, T.H. Lorier, D.R. Best, T.B. Edwards, and M.A. Baich, "An Assessment of the Sulfate Solubility Limit for the Frit 418-Sludge Batch 2/3 System," WSRC-TR-2004-00081, Rev. 0, 2004.
- 4. T.H. Lorier, I.A. Reamer, and R.J. Workman, "Initial Sulfate Solubility Study for Sludge Batch 4 (SB4)," WSRC-TR-2005-00213, Rev. 0, 2005.
- 5. K.M. Fox, T.B. Edwards, and D.K. Peeler, "Sulfate Retention in High Level Waste (HLW) Sludge Batch 4 Glasses: A Preliminary Assessment," WSRC-STI-2006-00038, Rev. 0, 2006.
- F.C. Raszewski, D.R. Best, and D.K. Peeler, "An Assessment of the Applicability of the 0.6 Wt% SO₄²⁻ PCCS Limit for the Frit 418-SB5 System," Savannah River National Laboratory, Aiken, SC, SRNL-L3100-2008-00023, Rev. 0, September 2008.
- 7. A.L. Billings, "DWPF Sulfate Limit Verification for SB6," SRNL-STI-2010-00191, Rev. 0, 2010.
- 8. A.L. Billings, "Sulfate Solubility Limit Verification for DWPF Sludge Batch 7a," SRNL-STI-2011-00197, Rev. 0, 2011.
- 9. A.L. Billings and K.M. Fox, "Sulfate Solubility Limit Verification for DWPF Sludge Batch 7b," SRNL-STI-2011-00482, Rev. 0, 2011.
- W.K. Kot and I.L. Pegg, "Determination of Sulfate Solubility Limit for Defense Waste Processing Facility (DWPF) Sludge Batch 8," Vitreous Sate Laboratory, The Catholic University of America, Washington, DC, VSL-13L2580-3, Rev. 0, 2013.
- 11. W.K. Kot and I.L. Pegg, "Sulfur Solubility Limit Determination for Defense Waste Processing Facility (DWPF) Sludge Batch 8 Glasses," Vitreous Sate Laboratory, The Catholic University of America, Washington, DC, VSL-13L2580-1, Rev. 0, 2013.

- 12. F.C. Johnson, "Recommendation for the Sludge Bach 9 Sulfate Solubility Limit," Savannah River National Laboratory, Aiken, SC, SRNL-L3100-2016-00044, Rev. 0, 2016.
- 13. W.K. Kot and I.L. Pegg, "Letter Report Sulfate Solubility Limit Determination for Sludge Batch 9 Coupled Operation with Salt Waste Processing Facility (SWPF)," Vitreous Sate Laboratory, The Catholic University of America, Washington, DC, VSL-19L4680-1, Rev. 0, 2019.
- 14. T. Le, "Re: SB10 Projections at 0.85 and 0.7M Na Including Mn+MST+HPT6 Heel," email communication, received on May 18, 2020 at 9:52 AM and stored in Electronic Laboratory Notebook Experiment C7592-00311-35.
- 15. H.B. Shah, "SB10 Projections at 0.85 and 0.7M Na Including Mn+MST+HPT6 Heel," email communication, received on May 17, 2020 at 2:12 PM and stored in Electronic Laboratory Notebook Experiment C7592-00311-35.
- F.C. Johnson, "Glass Compositions Supporting a Preliminary Evaluation of SB10 Sulfate Solubility," Savannah River National Laboratory, Aiken, SC, SRNL-L3310-2020-00024, Rev 0, 2020.
- W.K. Kot and I.L. Pegg, "Preliminary Determination for Sludge Batch 10 Sulfate Solubility Limit," Vitreous State Laboratory - The Catholic University of America, Washington, DC, VSL-20L4680-1, Rev. 0, 2020.
- 18. H.B. Shah, "SB10 Batch Projection Using TK51 Washed Qual Sample Results for MARS Assessment," email communication, received on May 13, 2021 at 9:45 PM and stored in Electronic Laboratory Notebook Experiment C7592-00311-38.
- 19. F.C. Johnson, "SB10 Frit Recommendation, and Evaluations of the Glass Variability Study and Cs-137 Concentrations in Strip Effluent Based on May 2021 Projections," Savannah River National Laboratory, Aiken, SC, SRNL-STI-2021-00393, Rev. 0, 2021.
- 20. K.J. Russell, "Sludge Batch 10 Frit Evaluation and Measurement Acceptance Region Assessment," Savannah River Remediation, Aiken, SC, X-TTR-S-00064, Rev. 4, 2021.
- 21. F.C. Johnson, "Task Technical and Quality Assurance Plan for Sludge Batch 10 Frit Evaluation and Measurement Acceptance Region Assessments," Savannah River National Laboratory, Aiken, SC, SRNL-RP-2017-00384, Rev. 4, 2021.
- 22. "Technical Reviews," Savannah River Site, Aiken, SC, Manual E7, Procedure 2.60, current revision.
- 23. "Savannah River National Laboratory Technical Report Design Check Guidelines," Westinghouse Savannah River Company, Aiken, SC, WSRC-IM-2002-00011, Rev. 2, 2004.
- 24. A. Samadi-Dezfouli, "Re: SLB10 MAR Assessment [June 3, 2021]," email communication, received on June 3, 2021 at 5:27 PM and stored in Electronic Laboratory Notebook Experiment C7592-00311-38.
- 25. A. Samadi-Dezfouli, "Re: SLB10 MAR Assessment [June 7, 2021]," email communication, received on June 7, 2021 at 3:07 PM and stored in Electronic Laboratory Notebook Experiment C7592-00311-38.

- 26. A. Samadi, H.B. Shah, J.D. Ledbetter, J.W. Ray, K.M. Brotherton, R. McNew, and T.L. Fellinger, "Integration of the Defense Waste Processing Facility (DWPF) and Salt Waste Processing Facility (SWPF): Assumptions and Guidance to Support Measurement Acceptance Region (MAR) Assessments for Sludge Batch 9 (SB9)," Savannah River Remediation, Aiken, SC, SRR-WSE-2018-00025, Rev. 0, 2018.
- 27. A. Samadi-Dezfouli, "Re: SLB10 MAR Assessment [June 8, 2021]," email communication, received on June 8, 2021 at 9:39 AM and stored in Electronic Laboratory Notebook Experiment C7592-00311-38.
- 28. A. Samadi, J. Windham, L. Jamison, and V. Kmiec, "Integration of the Defense Waste Processing Facility (DWPF) and Salt Waste Processing Facility (SWPF): Assumptions and Guidance to Support Measurement Acceptance Region (MAR) Assessments for Sludge Batch 9 (SB9)," Savannah River Remediation, Aiken, SC, SRR-WSE-2017-00042, Rev. 0, 2017.
- 29. M.E. Stone, "Calculation of Inputs for SB9 and SB10 SWPF-Coupled MAR Assessments," Savannah River National Laboratory, Aiken, SC, SRNL-L3300-2017-00050, Rev. 0, 2017.
- 30. M.E. Stone, "SSRT Effluent Composition Estimate for SB9/SB10 MAR Assessments," Savannah River National Laboratory, Aiken, SC, SRNL-L3300-2018-00063, Rev. 1, 2018.
- 31. T.L. Fellinger, "Draft Meeting Minutes," email communication, received on September 16, 2021 at 11:36 AM and stored in Electronic Laboratory Notebook Experiment C7592-00311-39.

Appendix A. Composition Information

Na Wash	1M			
Endpoint	1171			
Projection	SO			
Al ₂ O ₃	29.72			
B_2O_3	0.03			
BaO	0.08			
CaO	1.22			
Ce_2O_3	0.19			
Cr ₂ O ₃	0.30			
CuO	0.06			
Fe ₂ O ₃	19.64			
K ₂ O	0.11			
La ₂ O ₃	0.04			
Li ₂ O	0.05			
MgO	0.48			
MnO	5.61			
Na ₂ O	31.83			
NiO	0.74			
PbO	0.03			
SO4 ²⁻	1.64			
SiO ₂	1.72			
ThO ₂	2.45			
TiO ₂	0.03			
U_3O_8	3.82			
ZnO	0.03			
ZrO ₂	0.18			

Table A-1. Normalized SB10 Tank 40 Blend Projection (wt.%)

Case	Case 1 Single Strike	Case 1A Single Strike		
Tank 40 Volume (gal)	5700	5700		
SSRT Volume (gal)	2800	4200		
SE Volume ^a (gal)	15,000	15,000		
Al ₂ O ₃	24.42	22.89		
B ₂ O ₃	0.86	0.80		
BaO	0.06	0.06		
CaO	0.97	0.89		
Ce_2O_3	0.15	0.14		
Cr ₂ O ₃	0.23	0.22		
Cs ₂ O	2.05	1.89		
CuO	0.05	0.04		
Fe ₂ O ₃	15.61	14.40		
K ₂ O	0.31	0.33		
La ₂ O ₃	0.03	0.03		
Li ₂ O	0.04	0.04		
MgO	0.38	0.35		
MnO	4.46	4.11		
Na ₂ O	33.77	34.74		
NiO	0.59	0.54		
РЬО	0.02	0.02		
SO4 ²⁻	1.34	1.26		
SiO_2	1.37	1.26		
ThO ₂	1.95	1.80		
TiO ₂	8.12	11.23		
U ₃ O ₈	3.04	2.80		
ZnO	0.03	0.03		
ZrO ₂	0.14	0.13		

Table A-2. SRNL-Developed SRAT Compositions for Coupled Operation for the 1M Na WashEndpoint

^a Under typical processing conditions, 15,000 gallons represents 2 transfers from the Strip Effluent Feed Tank (SEFT), whereas 22,000 gallons represents 3 transfers from the SEFT and allows for flexibility if a processing upset occurs. The compositional difference on a glass basis between 15,000 and 22,000 gallons of SE is minimal, which results in little or no difference in the operating windows when evaluating 15,000 versus 22,000 gallons of SE with MAR assessments.¹⁹ Thus, for the purpose of the sulfate solubility evaluation, 15,000 gallons is a representative volume compositionally.

Glass ID	SB10S-05	SB10S-06	SB10S-07	SB10S-08	SB10S-09	SB10S-10	SB10S-11	SB10S-12	SB10S-13
Case	SO	Coupled	Coupled	SO	Coupled	Coupled	SO	Coupled	Coupled
Case	50	Case 1	Case 1A	50	Case 1	Case 1A	50	Case 1	Case 1A
WL	32%	32%	32%	36%	36%	36%	40%	40%	40%
Al ₂ O ₃	10.117	8.172	7.623	11.408	9.215	8.596	12.699	10.257	9.568
B_2O_3	5.452	5.729	5.705	5.133	5.446	5.419	4.815	5.163	5.133
BaO	0.027	0.021	0.019	0.030	0.023	0.022	0.033	0.026	0.024
CaO	0.414	0.323	0.297	0.466	0.364	0.335	0.519	0.406	0.372
Ce_2O_3	0.063	0.049	0.045	0.071	0.056	0.051	0.079	0.062	0.057
Cr ₂ O ₃	0.101	0.079	0.072	0.113	0.089	0.081	0.126	0.099	0.090
Cs ₂ O	0.000	0.687	0.631	0.000	0.774	0.711	0.000	0.862	0.792
CuO	0.020	0.016	0.015	0.023	0.018	0.016	0.025	0.020	0.018
Fe ₂ O ₃	6.685	5.223	4.794	7.538	5.890	5.406	8.391	6.556	6.017
K ₂ O	0.038	0.105	0.109	0.043	0.118	0.123	0.048	0.132	0.137
La ₂ O ₃	0.014	0.011	0.010	0.016	0.012	0.011	0.018	0.014	0.013
Li ₂ O	5.457	5.453	5.452	5.139	5.135	5.133	4.821	4.816	4.815
MgO	0.164	0.128	0.118	0.185	0.144	0.133	0.206	0.161	0.148
MnO	1.910	1.492	1.370	2.154	1.683	1.545	2.397	1.873	1.719
Na ₂ O	14.235	14.702	14.969	15.418	15.944	16.245	16.600	17.186	17.521
NiO	0.253	0.198	0.181	0.285	0.223	0.204	0.317	0.248	0.228
PbO	0.011	0.008	0.008	0.012	0.009	0.009	0.013	0.010	0.010
SO4 ²⁻	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.650	0.650
SiO ₂	54.306	54.178	54.140	51.221	51.077	51.034	48.136	47.975	47.928
TiO ₂	0.010	2.719	3.739	0.012	3.066	4.216	0.013	3.412	4.693
ZnO	0.012	0.009	0.008	0.013	0.010	0.009	0.015	0.011	0.011
ZrO ₂	0.062	0.048	0.044	0.070	0.055	0.050	0.078	0.061	0.056

Table A-3. Targeted Glass Compositions

Note that glass identification (ID) numbering is continued from the preliminary evaluation.^{16,17}

Distribution:

aaron.staub@srs.gov alex.cozzi@srnl.doe.gov anna.murphy@srs.gov anthony.robinson@srs.gov aubrey.silker@srs.gov austin.stanfield@srnl.doe.gov barbara.hamm@srs.gov bill.clark@srs.gov bill.holtzscheiter@srs.gov boyd.wiedenman@srnl.doe.gov brady.lee@srnl.doe.gov cameron.sherer@srnl.doe.gov chris.martino@srnl.doe.gov cj.bannochie@srnl.doe.gov connie.herman@srnl.doe.gov curtis.gardner@srs.gov eric.skidmore@srnl.doe.gov fabienne.johnson@srnl.doe.gov frank.pennebaker@srnl.doe.gov gregg.morgan@srnl.doe.gov hasmukh.shah@srs.gov helen.boyd@srs.gov james.folk@srs.gov jeff.ray@srs.gov jeffrey.crenshaw@srs.gov jeffrey.gillam@srs.gov jeremiah.ledbetter@srs.gov jocelyn.lampert@srnl.doe.gov joseph.fields@srs.gov joseph.manna@srnl.doe.gov kevin.brotherton@srs.gov kirk.russell@srs.gov marion.cofer@srnl.doe.gov marissa.reigel@srnl.doe.gov mark-a.smith@srs.gov michael.broome@srs.gov michael.stone@srnl.doe.gov patricia.suggs@srs.gov richard.edwards@srs.gov robert.hoeppel@srs.gov ryan.mcnew@srs.gov spencer.isom@srs.gov terri.fellinger@srs.gov thomas.huff@srs.gov thomas.temple@srs.gov timothy.littleton@srs.gov tony.polk@srs.gov vijay.jain@srs.gov william.bates@srnl.doe.gov william.ramsey@srnl.doe.gov william.swift@srnl.doe.gov

Records Administration (EDWS)