Contract No:

This document was prepared in conjunction with work accomplished under Contract No. 89303321CEM000080 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

A U.S. DEPARTMENT OF ENERGY NATIONAL LAB • SAVANNAH RIVER SITE

A Semi-Automated Approach for Curating a Glossary of Key Terms for Open-Source **Data Queries**

T. L. Danielson

September 2022 SRNL-STI-2022-00462, Revision 0

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: Natural Language Processing

Machine Learning Nuclear Energy

Retention: Varies

A Semi-Automated Approach for Curating a Glossary of Key Terms for Open-Source Data Queries

T. L. Danielson

September 2022

REVIEWS AND APPROVALS

AUTHORS:	
	D.
T. L. Danielson, SRNL, Environmental Sciences & Dosimetry	Date
TECHNICAL REVIEW:	
S. Branney, SRNL, Nonproliferation Policy Support	Date
APPROVAL:	
Marion Cofer, Manager SRNL, Environmental Sciences & Dosimetry	Date

PREFACE OR ACKNOWLEDGEMENTS

This work is funded by the National Nuclear Security Administration's Office of Defense Nuclear Non-Proliferation Research and Development (NA-22).

EXECUTIVE SUMMARY

In FY20, the Savannah River National Laboratory (SRNL) was funded by the National Nuclear Security Administration's Office of Defense Nuclear Non-Proliferation Research and Development (NA-22) to build a machine learning based modeling pipeline that could extract proliferation events of interest from open text-based data sources. As a test case, the research team targeted the identification/fusion of events and indicators that fissile core fabrication would be executed at the Savannah River Site prior to its official announcement in May of 2018. The demonstration prototype proved successful by applying natural language processing and graph theoretical techniques to identify contextual shifts in key words and phrases that acted as indicators that pit production would be carried out at the Savannah River Site up to two years prior to the official announcement.

Having demonstrated proof-of-concept, the team was funded in FY22 to continue development on the prototype modeling pipeline by applying it to a domain of the worldwide landscape of civil nuclear power activities. A key challenge in using open-source data is that the continuously expanding volume of content can produce significant noise from out-of-domain data. Therefore, a key step in the modeling pipeline is the acquisition of sufficient, primarily domain-specific data. A common approach to curate a sufficiently large, domain-specific dataset is to develop a "glossary of key terms" that can be used to formulate queries to data sources, generally with input from subject matter experts. Manually performing this task risks overlooking key terms that have high specificity and can result in missing data or excessive noise from more general uses of a term. Likewise, a broad topical domain such as the worldwide landscape of civil nuclear power might require a team of multiple experts to capture sufficient relevant terminology, reducing the accessibility of applying the pipeline to broad domains of interest. Therefore, to overcome these challenges, the SRNL team has developed a semi-automated approach for curating a glossary of key terms that recursively refines the vocabulary extracted from readily available, domain-specific sources. Here, the approach is outlined and the preliminary datasets that were extracted using the glossary are characterized to demonstrate the effectiveness of the approach.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
1.0 Introduction	1
2.0 Algorithmic Approach	1
3.0 Preliminary Characterization of Datasets	3
4.0 Conclusions and Future Work	6
5.0 References	
Appendix A . Glossary of Key Terms	A-1

LIST OF TABLES

Table 3-1. Top 10 most similar words from word embedding models trained individually on the full internet archive and Twitter datasets for select key terms. Red terms indicate that the term appears in both lists.
LIST OF FIGURES
Figure 3-1. Tweets per month and articles per month from the two data sources
Figure 3-2. Total number of Tweets (left) and articles (right) for the top 50 keywords returned by the data queries
Figure 3-3. Top 50 most similar words over time to "Rosatom". Colored markers indicate a potential entity of interest for the current study
Figure 3-4. Principal component analysis plot of word vectors from the glossary of key terms, demonstrating that key terms from similar sub-domains are in close proximity

LIST OF ABBREVIATIONS

SRNL Savannah River National Laboratory

NA-22 National Nuclear Security Administration Office of Defense Nuclear

Non-Proliferation Research and Development

SME Subject Matter Expert

1.0 Introduction

In FY20, the Savannah River National Laboratory (SRNL) was funded by the National Nuclear Security Administration's Office of Defense Nuclear Non-Proliferation Research and Development (NA-22) to build a machine learning based modeling pipeline that could extract proliferation events of interest from open text-based data sources. As a test case, the research team targeted the identification/fusion of events and indicators that fissile core fabrication would be executed at the Savannah River Site prior to its official announcement in May of 2018. The initial development efforts were centered around two datasets: a decahose Twitter database (i.e., a global sampling of one in every ten Tweets) and a broad internet archive (e.g., long-form news articles). The prototype modeling pipeline was built on a foundation of natural language processing, and more specifically, time dependent word embedding models. The analysis of the temporal embedding models included a graph theoretical approach that detects contextual shifts in key words and phrases, indicating an event of interest in previous time windows. The FY20-21 prototype demonstrated success by identifying indicators that fissile core fabrication would occur nearly two years prior to the official announcement (Danielson, 2022a).

In FY22, SRNL was funded by NA-22 to continue development efforts on the modeling pipeline to detect new developments, and/or previously unknown interests, in civil nuclear power activities around the world. Development on this broader topical domain will allow testing of the modeling pipeline's capability to extract meaningful events in a worldwide data environment that incorporates potential location-dependent variations in the availability of open-source data, as well as several examples of civil nuclear reactors that are in different phases of completion (e.g., see Danielson, 2022b). A successful modeling pipeline will be capable of extracting events of interest regarding the planning, construction, operation, and shutdown of reactors worldwide, and ideally demonstrate the capability to allow inference.

A potentially limiting step in the modeling pipeline's ability to identify and extract events of interest related to civil nuclear power is the acquisition of sufficient data to train word embedding models. Furthermore, with hundreds of millions of Tweets per day, it is necessary to have a filtration step in the pipeline that reduces the overall noise and captures primarily domain-specific data. A common approach to curate a sufficiently large, domain-specific dataset is to develop a "glossary of key terms" that can be used to formulate queries to data sources, generally with input from subject matter experts (SMEs). Performed manually, SMEs may miss key terms that have high specificity, resulting in missing data or excessive noise from more general uses of the term. Likewise, a broad topical domain such as the worldwide landscape of civil nuclear power might require a team of SMEs to capture sufficient relevant terminology, reducing the accessibility of applying the pipeline to broad domains of interest. Therefore, to overcome these challenges, the SRNL team has developed a semi-automated approach for curating a glossary of key terms that iteratively refines the vocabulary extracted from readily available, domain-specific sources.

In the following sections, the algorithmic approach will be described, and the glossary of key terms will be presented. Additionally, a preliminary characterization of the datasets returned from queries will be outlined to provide an evaluation of the performance of the approach.

2.0 Algorithmic Approach

The algorithmic approach has been designed to be semi-automated, whereby n-gram keyword phrases are extracted from a user-specified text-based data source and post-processed to a significantly reduced set for fine tuning. Here, the online Information Library that is compiled by the World Nuclear Association has been used as a resource for capturing keywords that are relevant in a worldwide context related to civil nuclear power. Rather than extracting all n-grams (e.g., 1-, 2-, 3-, ..., grams) and recording the frequency of occurrence, as was done in FY20-21, the current approach only extracts n-gram noun phrases from the source text. Subsequently, the noun phrases are reduced by recursively identifying n-1-grams that are

substrings of longer n-grams in the terms list. This approach reduces the number of extracted noun phrases to approximately 5% of the initial set, leaving a much more manageable list of key terms for SME fine tuning.

The algorithm, as implemented in the current work, is outlined by the following steps:

- 1) Scrape text from the Information Library on world-nuclear.org¹
 - a. All "Country Profiles" pages²
 - b. "Nuclear Power Reactors" page³
 - c. "Nuclear Energy and Sustainable Development" page⁴
 - d. All "Nuclear Fuel Cycle" pages⁵
 - e. All "Safety and Security" pages⁶
 - f. All "Current and Future Generation" pages⁷
- 2) Label and group noun phrases from the text (77,010 noun phrases extracted)
 - a. Remove punctuation and/or stop words from each n-gram's tokens
 - b. Lemmatize each token in the noun phrases
- 3) Create a vocabulary of lemmatized⁹ 1-grams from all noun phrases captured in Step 2 (22,762 total words)
- 4) Remove all noun phrases from Step 2 that occur only one time (20,175 n-grams remaining)
- 5) For all remaining n-grams greater than length 1
 - a. Use fuzzy string matching ¹⁰ to match n-grams to a single 1-gram that has the highest similarity, creating a mapping of 1-grams to a list of n-grams (e.g., the word "nuclear" is mapped to 3,320 n-grams, such as "nuclear activities", "nuclear assets", "nuclear fission", etc.)
 - i. Note: numerical tokens in an n-gram are kept, but ignored, in fuzzy string matching
 - b. Eliminate all 1-grams that are mapped to fewer than four n-grams (10,758 total n-gram terms remaining mapped to 1,270 root one grams)
- 6) Recursively identify all n-1 grams that are substrings of n-grams in the terms list from Step 5b (e.g., "advanced nuclear reactor" can be simplified to the substring "nuclear reactor")
 - a. 1-grams that appear in a 2-gram are removed from the list
 - b. Note: The simplification is stopped at 2-grams (2,425 n-grams remaining)
- 7) SME down selection, fine tuning, and addition of Boolean logic (e.g., "fission" AND "nuclear")

The SME down-selection process involves several different actions, such as adding abbreviations and acronyms, adding alternative spellings as necessary (e.g., "nuclear programme" versus "nuclear program"), and eliminating key phrases that are too broad and/or potentially out of domain. Additionally, key terms that have ambiguity (e.g., "fission", which might refer to nuclear fission or biological fission in the open source) are given additional terms that must be found in the document (i.e., Tweet or article) for the document to be returned in the query. Ultimately, the size of the final list of terms is tailored based on the cost and efficiency of submitting queries in addition to capturing the breadth of the topical domain of interest. Here, the final list contains 501 key terms, listed in Appendix A.

¹ https://www.world-nuclear.org/information-library.aspx

² https://www.world-nuclear.org/information-library/country-profiles.aspx

³ https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/nuclear-power-reactors.aspx

⁴ https://www.world-nuclear.org/information-library/energy-and-the-environment/nuclear-energy-and-sustainable-development.aspx

⁵ https://www.world-nuclear.org/information-library/nuclear-fuel-cycle.aspx

⁶ https://www.world-nuclear.org/information-library/safety-and-security.aspx

⁷ https://www.world-nuclear.org/information-library/current-and-future-generation.aspx

⁸ Noun phrases are grouped using the Python package spaCy

⁹ Lemmatization is performed using NLTK's WordNetLemmatizer

¹⁰ Fuzzy string matching is based on the token sort ratio as implemented in the Python package fuzzywuzzy

3.0 Preliminary Characterization of Datasets

Two data sources have been queried using the glossary of key terms that is shown in Appendix A: a decahose Twitter database and a broad internet archive (e.g., news articles, blogs, and licensed content) sourced from newsapi.ai. To evaluate the datasets, preliminary exploratory data analysis was performed prior to pushing the data through the FY20-21 prototype modeling pipeline so that the glossary of key terms could be modified if need be. Because the team already had access to a Twitter database that spanned from August of 2014 through April of 2018, this timeline was maintained for a preliminary data pull. In the case of the internet archive dataset, a query parameter was allowed for returning only English language articles. This option was used which circumvented the need to translate query terms and the returned documents that are returned to/from several languages. Contrastingly, no language filtration was performed on the Twitter dataset, though approximately twenty percent of the Tweets returned were non-English (they were captured by non-translated keywords because of the use of English "hashtags" that also appear in the glossary of terms). Given the shorter length of Tweets, the preliminary exploratory data analysis was performed by applying open-source translation tools to non-English Tweets. Preliminary evaluations of translated Tweets indicate that the translations are sufficient for the word2vec-type word embeddings that will be trained.

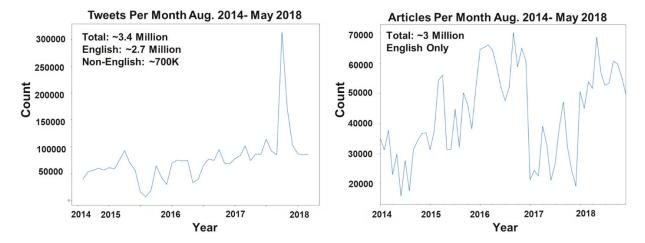


Figure 3-1. Tweets per month and articles per month from the two data sources.

The number of articles per month from the Twitter and internet archive databases is shown in Figure 3-1. Note that in late 2017, a large spike occurs in the volume of Tweets that were returned from the query. This appears to be most significantly attributed to the key term "uranium", where a significant multi-national event occurred related to uranium during that time. This example illustrates the "viral" nature of how headline events spread through social media data sources. While potentially relevant, these "viral" topics within the dataset were shown to cause a significant contextual shift across large portions of the key terms of interest in the FY20-21 efforts and therefore, identifying them in the early phases of the research can help to explore the impact on the modeling pipeline in the downstream efforts. The top 50 most frequently occurring key terms from the glossary that have returned Tweets/articles from the data queries are shown in Figure 3-2. Notably, in comparing the two lists, 25 out of 50 terms are the same. In general, the 25 terms that are only in the top 50 most frequently occurring for the Twitter dataset appear to have higher specificity than those from the internet archive dataset. This might be due to the more succinct nature of Tweets compared to longer-form articles.

¹¹ The Python package deep translator was used for translation by employing the GoogleTranslator.

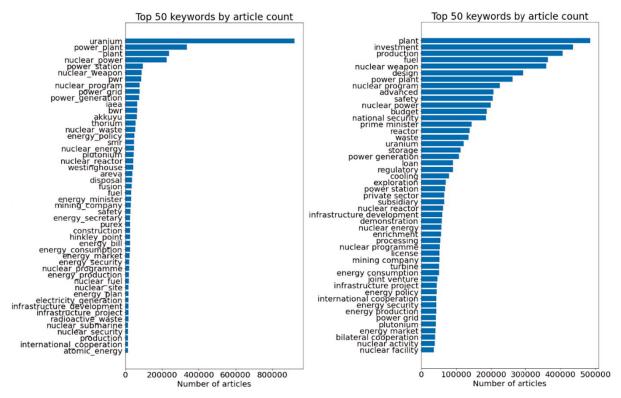


Figure 3-2. Total number of Tweets (left) and articles (right) for the top 50 keywords returned by the data queries.

Word embedding models were trained on the individual corpuses to evaluate the contextual representation of the key terms that could be obtained from the queries. Table 3-1 provides the top ten most similar (i.e., based on cosine similarity) words mapped to a subset of the key terms that are related to worldwide civil nuclear power activities, including contractors, reactors in various stages of development, and a reactor type. The lists of most similar terms show a realistic contextual representation, indicating that there is likely sufficient data for the event extraction modeling pipeline that will leverage the use of time dependent word embedding models and metrics, such as the cosine similarity over time for identifying contextual shifts. Preliminary time dependent word embedding models using 30-day, growing windows (i.e., Window 1 = 30days of data, Window 2 = 60 days of data, etc.) were trained on the Twitter dataset to explore the top 50 most similar words over time for a selected entity, Rosatom, shown in Figure 3-3. Notably, several entities that will serve as strong case studies appear in the evolving list, indicating that events across time, and throughout the world, can be identified using the prototype modeling pipeline. Finally, Figure 3-4 shows a principal component analysis plot of word vectors representing the glossary of key terms in an embedding model that was trained on the full internet archive dataset. Notably, key terms that belong to similar subdomains (e.g., broad nuclear reactor terms, cooperative/diplomatic terms, and energy infrastructure terms) are grouped closely together, indicating the embedding model has a strong contextual representation of civil nuclear power. Note that these are only examples of possible sub-domains that could potentially be broken into more descriptive and/or complete sub-domains as development continues.

Table 3-1. Top 10 most similar words from word embedding models trained individually on the full internet archive and Twitter datasets for select key terms. Red terms indicate that the term appears in both lists.

	rosato	n	akku	ıyu	pa	ıks	vve	r	el d	abaa
	NewsAPI	Twitter	NewsAPI	Twitter	NewsAPI	Twitter	NewsAPI	Twitter	NewsAPI	Twitter
1	atomstroyexport	fennovoima	el-dabaa	rosatoms	belene	hungary	vver	generation_iii	kureimat	dabaa
2	technopromexport	hanhikivi	mersin	mersin	akkuyu	hungarian	vvers	mwe	zayt	shabab
3	rusnano	pyhjoki	belene	dabaa	n-plant	belarus	klt	rivne	el_nino	egypt
4	rostec	rusatom	atravyets	turkey	bohunice	belarusian	pressurized-water	vessel	gabal	beni
5	energoatom	energoatom	paks	sinop	temelin	armenia	wwer	npp	balah	zamaleksc
6	rosenergoatom	fortum	visaginas	belarusian	kozloduy	dabaa	vver-type	bohunice	gouna	sisi
7	tvel	subsidiary	khmelnytsky	pyhjoki	astravyets	mochovce	russian-designed	oskarshamn	el	sissi
8	likhachev	tenex	kozloduy	kozloduy	mochovce	dukovany	ritm	rostov	foum	cairo
9	turboatom	krienko	dabaa	tomari	opole	budapest	lwrs	atucha	talkha	burullus
10	tekhnopromexport	rosatoms	hanhikivi	ruppur	visaginas	atucha	cpr	cernavoda	arish	suef



Figure 3-3. Top 50 most similar words over time to "Rosatom". Colored markers indicate a potential entity of interest for the current study.

Figure 3-4. Principal component analysis plot of word vectors from the glossary of key terms, demonstrating that key terms from similar sub-domains are in close proximity.

4.0 Conclusions and Future Work

The semi-automated approach that was described in Section 2.0 has offered an improved technique over the approach in FY20-21, requiring significantly less upfront manual fine tuning of the glossary of key terms. Likewise, this general approach can be transferred to any domain of interest, provided the user can identify a text-based data source that broadly captures the relevant language (i.e., noun phrases). During the development stages of the modeling pipeline, the team is using a retrospective dataset. However, in a real deployment of the proposed modeling pipeline, where data may be streaming or periodically updated, this approach could also be applied for dynamically updating query terms as new information is obtained (e.g., if a previously unknown event occurs) and more data becomes necessary.

The exploratory data analysis presented in Section 3.0 has demonstrated that the glossary of key terms has proven effective at obtaining a domain-specific corpus of documents and Tweets related to civil nuclear power around the world. At this time, no additional key terms will be added, however additional data, spanning from May of 2018 to August of 2022, will be obtained using the glossary, thereby providing the team with a more up-to-date database for testing and development of the modeling pipeline. In the next stages of the work, the datasets will be fed through the prototype modeling pipeline that was developed in FY20-21 so that events of possible interest can be extracted.

5.0 References

Danielson, 2022a. T. L. Danielson, B. Mayer, N. Muralidhar, J. Miller, H. Dogan, N. Self, P. Butler, F. Liu. *Machine Learning Modeling Pipeline for Extracting Nuclear Proliferation Events of Interest from Open Data Sources (U)*. SRNL-STI-2022-00036, Rev. 0. January, 2022.

Danielson, 2022b. T. L. Danielson and E. D. LaBone. *Hierarchical Conceptual Model Event and Activity Domains for Forecasting State-Sponsored Civil Nuclear Power Activities*. SRNL-STI-2022-00120, Rev. 0. March, 2022.

Appendix A. Glossary of Key Terms

The following terms were used to formulate queries to the data sources. The base term is listed in the column "Query N-Gram". The queries are keyword based and therefore if the term appears in the article/Tweet, the article/Tweet is added to the dataset. Some terms, such as "enrichment", require higher specificity to ensure noise is not introduced into the dataset (e.g., educational enrichment versus uranium enrichment). Therefore, in some cases, Boolean logic is used to enhance the specificity of the query term. For example, the query for "enrichment" would also require "nuclear" or "uranium" to appear in the article/Tweet in order to return the article/Tweet.

Query N-Gram	AND Terms	OR Terms
advanced	nuclear	
aes92	nuclear	
akkuyu		
angarsk	nuclear	
ap1000	nuclear	
apr1400	nulcear	
areva		
athabasca basin	nuclear	
atmea		
atomic energy		
atomic radiation		
atomic research		
atomic reactor		
atommash		
atomenergoprom		
atomredmetzoloto		
atomspetstrans		
atomstroyexport		
atomtechexport		
atrium	nuclear	
beryllium	nuclear	
bharat heavy electricals		
bidding process	nuclear	
bilateral cooperation		
bilateral safeguard		
bismuth		
bn800	nuclear	
bochvar national research institute		
bohunice	nuclear	
boiling water reactor		
borosilicate glass		
breeder reactor		
brest	nuclear	

brussels convention		
budget	nuclear	
build own operate		
bwr		
cameco		
candu		
cap1400	nuclear	
cea	nuclear	
kyzylkum	uranium	
central research institute	nuclear	
centrifuge plant	110000	
chemical combine	nuclear	
china general nuclear	11001001	
china huadian		
china national nuclear		
china nuclear engineering		
cigar lake	uranium	
civil nuclear		
cnnc international		
cnnc overseas		
cogeneration plant		
commercial reactor		
construction company	nuclear	
construction contract	nuclear	
construction permit	nuclear	
construction project	nuclear	
consulting service	nuclear	
containment building	nuclear	
containment structure	nuclear	
containment vessel	nuclear	
contaminated material	nuclear	
control rod		
conversion facility	nuclear	
coolant	nuclear	reactor
cooling	nuclear	
cooperation agreement	nuclear	
cpr1000	nuclear	
daya bay	nuclear	
dco application	nuclear	
decommissioning	nuclear	
demonstration	nuclear	
desalination plant		
design	nuclear	

development agreement	nuclear	
development company	nuclear	
director general	nuclear	
disposal	nuclear	waste
dongfang electric		
dry cask	nuclear	
el dabaa		
electricity demand		
electricity generation		
electricity grid		
electricity infrastructure		
electricity production		
elliot lake	nuclear	uranium
emergency planning	nuclear	
energy bill		
energy commission		
energy consumption		
energy cooperation		
energy demand		
energy export		
energy information administration		
energy market		
energy minister		
energy plan		
energy policy		
energy production		
energy regulator		
energy regulatory commission		
energy research		
energy secretary		
energy security		
energy strategy		
energy trading		
energy trade		
energy technology		
energy union		
engineering service	nuclear	
enrichment	nuclear	uranium
environmental approval	nuclear	
environmental assessment	nuclear	
environmental contamination	nuclear	
environmental impact	nuclear	
environmental management	nuclear	
	I	1

environmental protection epr euratom european sustainable nuclear industrial initiative eurodif experimental reactor exploration export control export market fast breeder reactor fast neutron reactor feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
euratom european sustainable nuclear industrial initiative eurodif experimental reactor exploration export control export market fast breeder reactor fast neutron reactor feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
european sustainable nuclear industrial initiative eurodif experimental reactor exploration export control export market fast breeder reactor fast neutron reactor fast reactor feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
eurodif experimental reactor exploration uranium export control export market fast breeder reactor fast neutron reactor fast reactor feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
experimental reactor exploration uranium export control nuclear export market fast breeder reactor fast neutron reactor fast reactor feasibility study nuclear feed-in tariff fergana valley fhr fissile nuclear fission product fission research flibe salt
exploration uranium export control nuclear export market fast breeder reactor fast neutron reactor fast reactor feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
export control export market fast breeder reactor fast neutron reactor fast reactor feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
export market fast breeder reactor fast neutron reactor fast reactor feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
fast breeder reactor fast neutron reactor fast reactor feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
fast neutron reactor fast reactor feasibility study nuclear feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
fast reactor feasibility study nuclear feed-in tariff fergana valley fhr fissile nuclear fission product fission research flibe salt
feasibility study feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
feed-in tariff fergana valley fhr fissile fission product fission research flibe salt
fergana valley fhr fissile nuclear fission product fission research flibe salt
fhr fissile nuclear fission product fission research flibe salt
fissile nuclear fission product fission research flibe salt
fission product fission research flibe salt
fission research flibe salt
flibe salt
floating nuclear
fluoride salt nuclear
fnr nuclear
foreign investment nuclear
forte energy
framework agreement nuclear
framatome
fuel nuclear
fusion nuclear
gansu nuclear
gas import
gas cooled reactor
gaseous diffusion
ge energy nuclear
ge hitachi nuclear
gen iv nuclear
gen4 module nuclear
general atomics nuclear
general electric nuclear
generation ii nuclear
generation iii nuclear
generation iv nuclear
george besse nuclear

government approval	nuclear
government funding	nuclear
graphite	nuclear
grid capacity	
grid connection	
grid infrastructure	
grid operator	
grid stability	
grs	nuclear
gulf cooperation council	
gurvan saihan	
hangzhou	nuclear
hanhikivi	
harbin electric	
health hazard	nuclear
health impact	nuclear
health risk	nuclear
heat exchanger	
heathgate resource	
heavy water	
heu fuel	
high temperature reactor	
high enriched uranium	
high level waste	
highly enriched uranium	
high temperature reactor	
hinkley point	
holding company	nuclear
hualong	
hydrogen production	
iaea	
ignalina	nuclear
industrial development	
inertial confinement	
infrastructure development	
infrastructure project	
inpro	nuclear
in situ leach	
integrated nuclear infrastructure review	
integrated regulatory review service	
inter rao	
intergovernmental agreement	
intermediate level waste	

international agreement		
international atomic energy agency		
international control		
international cooperation		
international energy agency		
investment	nuclear	
irradiation facility		
irrs	nuclear	
isl	uranium	
isotope production		
isotope separation		
izhorskiye zavody		
jiangxi province		
joint convention	nuclear	
joint ore reserves convention		
joint stock company	nuclear	
jsc	nuclear	
joint venture	nuclear	
jorc	nuclear	
kansai electric power		
kara balta	nuclear	
kepco		
khan resource		
klt40	reactor	
korea hydro		
kota	nuclear	
kozloduy	nuclear	
kurchatov institute		
kyushu electric power		
la hague	nuclear	
lead cooled		
licence	nuclear	uranium
license	nuclear	uranium
life extension	nuclear	
lifetime extension	nuclear	
light water reactor		
ling ao		
lithium beryllium fluoride		
loan	nuclear	
loviisa		
lwr		
magnesium diuranate		
magnox		
	I	1

mayak	nuclear	
medical isotope	Hacical	
milling operation		
mining company		
mining operation		
mixed oxide fuel		
molten chloride		
molten lithium		
molten salt		
mox	nuclear	
msr	nuclear	
national agency	nuclear	
national atomic energy agency	Hacical	
national energy administration		
national energy policy		
national nuclear centre		
national nuclear safety administration		
national nuclear security administration		
national policy	nuclear	
national security	nuclear	
naval fuel	Hucicai	
naval reactor		
nci	nuclear	
neutron irradiation	Hacical	
neutron moderation		
next generation nuclear		
ninh thuan	nuclear	
nitride fuel	Hacical	
nnc	nuclear	
non-proliferation treaty	11001001	
nuclear accident		
nuclear activity		
nuclear component		
nuclear control		
nuclear cooperation		
nuclear damage		
nuclear development		
nuclear device		
nuclear disarmament		
nuclear electric		
nuclear electricity		
nuclear energy		
nuclear engineering		

nuclear equipment	
nuclear facility	
nuclear fuel	
nuclear future	
nuclear generation	
nuclear industrial safety agency	
nuclear industry	
nuclear infrastructure	
nuclear installation	
nuclear insurance	
nuclear liability	
nuclear material	
nuclear operator	
nuclear policy	
nuclear power	
nuclear program	
nuclear programme	
nuclear project	
nuclear proliferation	
nuclear reactor	
nuclear regulation	
nuclear regulator	
nuclear regulatory	
nuclear research	
nuclear risk	
nuclear science	
nuclear security	
nuclear site	
nuclear submarine	
nuclear supplier	
nuclear technology	
nuclear threat initiative	
nuclear trade	
nuclear unit	
nuclear utility	
nuclear waste	
nuclear weapon	
nukem technologies	
occupational exposure	nuclear
occupational health	nuclear
okbm afrikantov	
olkiluoto	
olympic dam	nuclear

oman	nuclear
open pit mining	
operating company	nuclear
ore reserve	
oxide fuel	
paks	nuclear
parent company	nuclear
passive shutdown	nuclear
peak load	nuclear
pebble bed	
phosphate deposit	
phosphate production	
phwr	
pilot scale	nuclear
placer deposit	nuclear
plant	nuclear
plutonium	
podolsk	nuclear
powder river basin	nuclear
power demand	
power generation	
power grid	
power market	
power plant	
power production	
power reactor	
power station	
pressurised water reactor	
prime minister	nuclear
prism unit	nuclear
private sector	nuclear
processing	nuclear
production	nuclear
project management	nuclear
proryv	nuclear
public opposition	nuclear
purex	
pwr	
qinshan	nuclear
radiation damage	
radiation exposure	
radiation hazard	
radiation protection	

le de Co	
radiation safety	
radioactive material	
radioactive release	
radioactive waste	
rao ues	
ratch china	
rbmk	
research and development	nuclear
rde	nuclear
reactor building	
reactor component	
reactor construction	
reactor containment	
reactor core	
reactor fuel	
reactor module	
reactor power	
reactor safety	
reactor system	
reactor technology	
reactor unit	
reactor vendor	
reactor vessel	
reactor wall	
refuelling outage	nuclear
regulatory	nuclear
remote handling	nuclear
renewal application	nuclear
repository	nuclear
reprocessing	nuclear
research centre	nuclear
research facility	nuclear
research infrastructure	nuclear
research institute	nuclear
research laboratory	nuclear
research program	nuclear
research reactor	
rte	nuclear
rosatom	
rusatom	
rosenergoatom	
ryst kuil	
safeugard	nuclear

safety	nuclear
sek	nuclear
shanghai electric	Hadical
site preparation	nuclear
site selection	nuclear
solvenske elektrarne	Tideleai
small modular reactor	
smart reactor	+
smr	
sodium diuranate	
solid waste	nuclear
solvent extraction	nuclear
south urals	nuclear
spent fuel	nuclear
spent nuclear fuel	Hadicar
stable salt reactor	
state nuclear power technology corporation	
state owned company	nuclear
steam generator	Hadical
steam supply system	nuclear
storage	nuclear
strategic cooperation	nuclear
strategic investor	nuclear
strategic relationship	nuclear
subsidiary	nuclear
sulfuric acid	nuclear
technical cooperation	nuclear
technical feasibility	nuclear
technology development	nuclear
technology transfer	nuclear
test assembly	nuclear
test reactor	nuclear
thorium	
tractebel	nuclear
transport cask	nuclear
triso fuel	
turbine	nuclear
tvel	
type 30b cylinder	nuclear
type b package	nuclear
un general assembly	nuclear
un security council	nuclear
underground mine	

uniper	nuclear
,	
united nations	nuclear
uranium	
uranyl carbonate	
urenco	
urex process	
vienna convention	nuclear
vver	
vvertoi	
waste directive	nuclear
waste facility	nuclear
waste management	nuclear
waste policy	nuclear
waste product	nuclear
waste stream	nuclear
waste treatment	nuclear
water moderator	nuclear
water reactor	
water cooled reactor	
westinghouse	
xenotime	
yucca mountain	
zirconium cladding	

Distribution:

- M. J. Barnes, mark.barnes@srnl.doe.gov
- J. S. Bollinger, james02.bollinger@srnl.doe.gov
- N. J. Bridges, Nicholas.Bridges@srnl.doe.gov
- P. Butler, pabutler@vt.edu
- G. R. Cefus, gregory.cefus@srnl.doe.gov
- T. L. Danielson, Thomas.Danielson@srnl.doe.gov
- C. C. Herman, connie.herman@srnl.doe.gov
- C. M. Gregory, clint.gregory@srnl.doe.gov
- R. B. James, Ralph.James@srnl.doe.gov
- R. D. Jeffcoat, ron.jeffcoat@srnl.doe.gov
- B. Mayer, bmayer@cs.vt.edu
- P. R. Nuessle, patterson.nuessle@srnl.doe.gov
- N. Self, nwself@vt.edu
- M. Taylor, marc.taylor@srnl.doe.gov
- T. P. Taylor, tammy.taylor@srnl.doe.gov
- S. J. Branney, sean.branney@srnl.doe.gov
- M. Cofer, marion.cofer@srnl.doe.gov
- L. T. Brown, lindsay.brown@srnl.doe.gov
- B. Lee, brady.lee@srnl.doe.gov
- M. Duff, martine.duff@srnl.doe.gov
- W. Kuhne, wendy.kuhne@srnl.doe.gov
- L. Erikson, luke.erikson@nnsa.doe.gov
- C. T. Sloan, craig.sloan@nnsa.doe.gov

Records Administration (EDWS)