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ABSTRACT: 

Crack assessment methods use the linear elastic or elastic-

plastic fracture mechanics that requires calculation of stress 

intensity factor, K, in the fitness for service codes, such as API 

579 and ASME BPVC Section XI. For surface cracks in a 

pressurized cylinder, the K calculation becomes calculating the 

influence coefficients G0 and G1 of K in those codes. API 579 

provided accurate tabular data of G0 and G1 for selected cylinder 

sizes (t/Ri), crack aspect ratios (a/c), crack depths (a/t), and crack 

tip locations based on the 3D finite element analyses. For other 

cylinder or crack sizes, three-parameter interpolations are needed 

to calculate G0 and G1. Recently, Xu et al. (PVP2014) and 

(PVP2016) obtained the curve-fit solutions of G0 and G1 for API 

selected cylinder sizes. For other cylinders, interpolations are still 

needed to calculate G0 and G1. 

To obtain a more general K solution for any thick-wall 

cylinder and crack sizes, this paper adopts the state-of-the-art 

machine learning technology to develop data-driven K solutions 

based on the tabular datasets of G0 and G1 given in API 579 for 

axial outside semi-elliptical surface cracks in cylinders at the 

deepest and surface points. The machine learning method utilizes 

an artificial neural network (ANN), activation function, and 

optimal learning algorithm to learn and to determine G0 and G1 

as a function of the cylinder size (t/Ri), aspect ratio (a/c), and 

crack depth (a/t) for axial outside surface cracks at the deepest 

and surface points. The proposed data-driven solutions of G0 and 

G1 for the axial outside surface cracks are validated by the curve-

fit solutions obtained by Xu et al. (PVP2016). 

Keywords: stress intensity factor, influence coefficient, curve 

fit, machine learning, API 579, ASME BPVC  

 

1. INTRODUCTION 

Many failures of pressure vessels have been traced to surface 

cracks. Thus, accurate stress analyses of these surface cracked 

components are needed for reliable prediction of their crack 

growth rates and fracture strengths. In the flaw evaluation, all 

industry fitness-for-service (FFS) codes, such as the American 

Petroleum Institute (API) 579 [1] and American Society for 

Mechanical Engineers (ASME) Boiler and Pressure Vessel Code 

(BPVC) Section XI [2], adopt the linear elastic or elastic-plastic 

fracture mechanics method that requires the calculation of stress 

intensity factor, K, for surface cracks of interest. Because of the 

complexities of surface crack problems, all investigators have 

used either engineering estimates or approximate analytical 

methods to obtain the K factor solutions in the engineering 

critical analysis (ECA) of pressure vessels. 

Early engineering estimates of the K factor for surface 

cracks in pressurized cylinders were made by Underwood [3] and 

Kobayashi [4] without consideration of the wall thickness effect 

and by Kobayashi et al. [5] with consideration of the wall 

thickness effect. The early three-dimensional (3D) finite element 

analysis (FEA) of the K factor for semi-elliptical surface cracks 

in pressurized cylinders were performed by McGowan and 

Raymond [6] and Newman and Raju [7, 8] for a couple of 

selected cylinder sizes. Ten years later, Wang and Lamber [9] 

validated the 3D FEA results of the K factor obtained by Raju 

and Newman [8] for axial outside surface cracks in cylinders and 

developed a closed-form solution of the K factor for a thin-wall 

pipe with one inside radius to wall thickness ratio Ri/t=10 in 

reference to the FEA results and using the weight function 
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method.  Recently, with the modern FEA simulations, Akhi and 

Dhar [10] obtained more accurate FEA results of the K factor and 

verified the accuracy of the FEA data of the K factor obtained by 

Raju and Neman [8].  

To estimate the K factor for an axial surface crack in a thick-

wall cylinder subject to an arbitrarily distributed hoop stress, 

Newman and Raju [7, 8] developed a two-step estimate method. 

First, they fit an arbitrarily nonlinear hoop stress on the crack 

surface using a 3rd-degree polynomial function that contains the 

uniform, linear, quadratic, and cubic terms. Then, the K factor 

was calculated using the 3D FEA results as the sum of the four 

specific K factors that were referred to as the boundary correction 

factors, G0 for the uniform stress, G1 for the linear stress, G2 for 

the quadratic stress, and G3 for the cubic stress. However, their 

FEA results were obtained only for two selected cylinders of 

t/Ri=0.1 and 0.25. Thus, Anderson et al. [11] performed a large 

number of 3D FEA calculations for surface cracks in a wide 

range of cylinder sizes with t/Ri from 0 to 1, and obtained a set 

of tabular data of G0 and G1 for a variety of surface cracks in the 

cylinders. These FEA-based tabular data were adopted by API 

579 [1]. Delliou and Chapuliot [12] compared the tabular data of 

K in API 579 with those used in French pressure vessel code 

RSE-M, and showed that the K solutions in both standards agree 

satisfactorily. Ceelho et al. [13] performed the case study of 

surface cracks in cylinders using the advanced 3D FEA 

simulations, and showed that the tabular data of K in API 579 are 

generally accurate and adequate to use for the FFS evaluation of 

pressure vessels. Recently, Li and Hasegawa [14, 15] further 

obtained the FEA results of K for surface cracks in cylinders with 

high aspect ratios that are not considered in API 579. 

The tabular data of the K factor in API 579 have been 

obtained extensive applications in the ECA or FFS evaluation of 

pressure vessels. However, due to discrete data nature, three-

parameter interpolations are needed for arbitrary cylinder or 

crack sizes. Thus, a closed-form solution of stress intensity factor 

was desired for engineering application. Accordingly, based on 

the tabular data of the K factor given in API 579, Xue et al. [16, 

17] employed the nonlinear regression method, and obtained a 

set of curve-fit solutions of the influence coefficients G0 and G1 

for axial inside and outside semi-elliptical surface cracks for the 

API selected cylinder sizes. Those closed-form solutions of the 

K factor are applicable to any crack sizes for API selected 

cylinder sizes, but interpolations are still needed for other 

cylinder sizes with an arbitrary Ri/t ratio. 

So motivated, this paper attempts to develop a more general 

solution of K for axial outside surface cracks in pressurized 

cylinders using the state-of-the-art machine learning technology. 

Based on the tabular datasets of G0 and G1 given in API 579 for 

axial outside semi-elliptical surface cracks in thick-wall 

cylinders at the deepest and surface points, data-driven solutions 

of K are obtained. The machine learning method utilizes an 

artificial neural network (ANN), activation function and optimal 

learning algorithm to learn and to determine a general solution of 

K as a function of the cylinder size (t/Ri), aspect ratio (a/c), and 

crack depth (a/t) for an axial outside surface crack at its deepest 

and surface points. The proposed data-driven solutions of G0 and 

G1 for the axial outside surface cracks are validated by the curve-

fit solutions obtained by Xu et al. [17]. 

 

 

2. TABULAR DATA OF K FACTOR IN API 579 

 

2.1  Engineering estimates of K factor 
Consider an axial outside semi-elliptical surface crack in a 

pressurized cylindrical pressure vessel, as shown in Fig. 1, where 

𝑅𝑖 is the inside radius of the cylinder, t is the wall thickness, a is 

the crack depth, c is one half of the crack length and 𝑙 = 2𝑐 is the 

crack length. In addition,  denotes the parametric angle of the 

semi-elliptical crack and 𝛽 =
2𝜑

𝜋
 is the normalized parametric 

angle of the semi-elliptical crack. The parametric angle defines 

the location of a point of interest at the elliptical crack front. As 

shown in Fig. 1, Point 1 denotes the deepest point of the crack 

with 𝜑 =
𝜋

2
 or =1, and Point 2 denotes the surface point of the 

crack with =0 or =0. 

 

 
Figure 1: An axial outside semi-elliptical surface crack in a 
cylinder 

 

As previously introduced, the tabular data of the K that are 

given in API 579 [1] for surface cracks in cylinders were 

obtained by Anderson et al. [11] based on their extensive 3D FEA 

results. These authors adopted the two-step engineering estimate 

method that was developed by Newman and Raju [7, 8]. At first, 

the method estimates the representative stress at the crack 

location, and then the representative stress is used to estimate the 

corresponding stress intensity factor. Specifically, the first step is 

to determine the stress distribution at the crack surface location 

through the stress analysis of the cracked component under an 

applied loading in absence of the crack, and the actual stress 

distribution at the crack location is represented by a curve-fit 4th-

degree polynomial function that contains the uniform, linear, 

quadratic, cubic and quartic terms.  In the second step, the 
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representation of the general stress distribution at the crack 

location is used with the standardized influence coefficients G0, 

G1, G2, G3 and G4 that are given in API 579 to calculate the K 

factor for the specific stress on the surface crack in cylinders, 

where G0, G1, G2, G3, and G4 are four nondimensional stress 

intensity factors that correspond to the uniform stress, linear 

stress, quadratic stress, cubic stress, and quartic stress acting on 

the crack surface, respectively. 

These standardized tabular data of the K factor make the 

engineering estimate method very convenient and efficient to use 

in estimating the stress intensity factor for surface cracks. 

 

2.2  Polynomial representation of stress distribution 
For a thick-wall cylinder subject to a combined loading, the 

hoop stress should be a nonlinear distribution through the wall 

thickness. The actual stress at the crack  surface location can be 

accurately curve-fitted to a 4th-degree polynomial function over 

the wall thickness that is represented in API 579 [1] by:  

 

𝜎(𝑥) = 𝜎0 + 𝜎1 (
𝑥

𝑡
) + 𝜎2 (

𝑥

𝑡
)

2

+ 𝜎3 (
𝑥

𝑡
)

3

+ 𝜎4 (
𝑥

𝑡
)

4

 (1) 

 

where (x) is the representation of actual hoop stress distribution 

through the wall thickness, x is a local coordinate and measured 

from the origin on the crack mouth toward the deepest point of 

the surface crack (see Fig. 1), and j denotes five curve-fit 

parameters of the polynomial function of general stress 

distributed on the crack surface. Particularly, (0)=0 is the hoop 

stress on the outside surface of the cylinder, and 𝜎(𝑡) = 𝜎0 +
𝜎1 + 𝜎2 + 𝜎3 + 𝜎4 is the hoop stress on the inside surface. Those 

two stresses lead to membrane stress and bending stress at the 

crack location. 

For a thick-wall cylinder subject to internal pressure only, 

the well-known Lamè hoop stress [1] is: 

 

𝜎𝜃𝜃 =
𝑃𝑅𝑖

2

𝑅0
2−𝑅𝑖

2 [1 + (
𝑅0

𝑟
)

2

]  (2) 

 

where R0 is the outside radius of the cylinder, P is the internal 

pressure, and r is the polar coordinate in a range of 𝑅𝑖 ≤ 𝑟 ≤ 𝑅0. 

Using the local x coordinate, the hoop stress can be approximated 

by the following Taylor series: 

 

𝜎𝜃𝜃 =
𝑃𝑅𝑖

2

𝑅0
2 − 𝑅𝑖

2 [2 + 2 (
𝑎

𝑅0

)
1

(
𝑥

𝑎
)

1

+ 3 (
𝑎

𝑅0

)
2

(
𝑥

𝑎
)

2

 

+ 4 (
𝑎

𝑅0
)

3

(
𝑥

𝑎
)

3

+ 5 (
𝑎

𝑅0
)

4

(
𝑥

𝑎
)

4

]  (3) 

 

2.3 Stress intensity factor solutions 
For the 4th-degree polynomial representation of the general 

stress distribution over the crack surface location as expressed in 

Eq. (1), the corresponding stress intensity factor is calculated 

using the following equation: 

𝐾𝐼 = ∑ 𝜎𝑗 (
𝑎

𝑡
)

𝑗

𝐺𝑗 (
𝜋𝑎

𝑄
)

1

24
𝑗=0  (4)  

where a is the crack length, c is one half of the crack length, j is 

the coefficient of stress representation, Gj is the influence 

coefficients of KI that correspond to j, KI is the stress intensity 

factor for Model-I cracks, and Q is the surface crack shape factor 

that was defined by Newman and Raju [7, 8] in the following 

expression: 

𝑄 = {
1 + 1.464 (

𝑎

𝑐
)

1.65

,       𝑓𝑜𝑟
𝑎

𝑐
≤ 1

1 + 1.464 (
𝑐

𝑎
)

1.65

,       𝑓𝑜𝑟
𝑎

𝑐
> 1

  (5) 

 

For a thick-wall cylindrical pressure vessel, using the 

representative series of the hoop stress in Eq. (1), the stress 

intensity factor in Eq. (4) becomes: 

 

𝐾𝐼 = (
𝜋𝑎

𝑄
)

1

2 𝑃𝑅𝑖
2

𝑅0
2−𝑅𝑖

2 [2𝐺0 + 2 (
𝑎

𝑅0
)

1

𝐺1 + 3 (
𝑎

𝑅0
)

2

𝐺2 +

                                  4 (
𝑎

𝑅0
)

3

𝐺3 + 5 (
𝑎

𝑅0
)

4

𝐺4]  (6) 

 

For axial semi-elliptical surface cracks on the outside 

surface of cylinders, the tabular data of the influence coefficients 

G0 and G1 in API 579 [1] cover the t/Ri ratios in a wide range of 

0 to 1, the a/t ratio in a range of 0 to 0.8, and the a/c ratios in a 

range of 0.03125 to 2.  For axial surface cracks with a/c = 0 on 

the outside surface of cylinders, API 579 [1] covers the Ri/t ratio 

from 1 to 1000 and the a/t ratio from 0 to 0.8.  In API 579, the 

influence coefficients G0 and G1 are expressed in the following 

6th-degree polynomial functions of the parametric angle, and the 

coefficients were obtained by the curve fitting from the FEA 

results obtained by Anderson et al. [11]: 

 

𝐺0 = 𝐴00 + 𝐴10𝛽 + 𝐴20𝛽2 + 𝐴30𝛽3 + 𝐴40𝛽4 + 𝐴50𝛽5 + 𝐴60𝛽6  
 (7) 

𝐺1 = 𝐴01 + 𝐴11𝛽 + 𝐴21𝛽2 + 𝐴31𝛽3 + 𝐴41𝛽4 + 𝐴51𝛽5 + 𝐴61𝛽6  
 (8) 

 

where Aij are the curve-fit parameters, their values are given in 

Table 9B.13 in API 579 [1].  Table 1 is an example of a partial 

Table 9B.13 that gives Aij values for G0 and G1 for an axial 

outside semi-elliptical surface cracks in a thick-wall cylinder, 

where t/Ri=1, a/c=0.0625 and 0.125, a/t=0, 0.2, 0.4, 0.6 and 0.8. 

Once the influence coefficients G0 and G1 are obtained, the 

higher-order influence coefficients G2, G3 and G4 can be 

determined from G0 and G1 using the weight function approach, 

see Paragraph 9B.14.3 and 9B.14.4 in API 579 [1] for details. For 

a thinner wall Ri/t=10, it may be good to use G0 and G1 only. 
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Table 1. Example of Table 9B.13 – Influence Coefficients for A Longitudinal Semi-Elliptical Surface Crack in A Cylinder – 

Outside Surface [1] 

 

 

3. CURVE-FIT SOLUTIONS OF K 

API 579 [1] considers infinite and finite axial surface cracks 

separately. For very long or infinite axial surface cracks, a/c0, 

the surface crack becomes a regular one-dimensional crack that 

is described by the crack depth only. From the tabular data of G0 

and G1 that covers the Ri/t ratio of 1 to 1000 and the a/t ratio of 

0 to 0.8, Xue et al. [17] obtained the curve-fit solutions of G0 and 

G1 as a function of a/t and Ri/t with a high accuracy. This paper 

will not further consider these kinds of simple cracks.  

For finite axial surface cracks, the crack aspect ratio a/c>0,  

as illustrated in Fig. 1., API 579 [1] provided the tabular data of 

G0 and G1, as shown in Table 1, for those finite surface cracks 

with the crack aspect ratio a/c in a range of 0.03125 to 2 and the 

crack depth ratio a/t in a range of 0 to 0.8.  For an analysis of 

crack initiation, growth, or failure, the ECA analysis only focuses 

on the deepest and surface points, and the new semi-elliptical 

surface crack shape will be determined by the crack increments 

estimated at these two points. As a result, Xue et al. [17] 

determined the best curve fit of closed-form relation of G1 and 

G2 from the tabular data at those two points. For ASME Section 

XI applications, crack depth does not exceed one half of the crack 

length, i.e., a/c ≤ 1, and thus Xue et al. [17] utilized API tabular 

data within these aspect ratios in their curve fitting.  

 

3.1  Data source  

The G0 and G1 values at the deepest point and the surface 

point are taken from API 579 [1] for the following cylinder and 

crack sizes that are used in the curve fitting to obtain the closed-

form relations:  

• Seven Ri/t ratios = 1, 3, 5, 10, 20, 60, 100   

• Five a/t ratios = 0, 0.2, 0.4, 0.6, 0.8   

• Six a/c ratios = 0.03125, 0.0625, 0.125, 0.25, 0.5, 1  

 

3.2  Data curve fitting   

Because of the extreme complexity and difficulty, Xue et al. 

[17] did not attempt to use the three-parameter curve-fit approach 

to obtain closed-form relations of G0 or G1 as a function of Ri/t, 

a/t and a/c ratios. Instead, they utilized the two-parameter curve-

fitting approach and obtained a set of closed-form relations of G0 

and G1 as a function of a/t and a/c ratios for each given Ri/t ratio.  

During the curve fitting, those authors employed the commercial 

data fitting software TableCurve2D and SigmaPlot.  

 

3.3 Curve-fit solutions of G0 and G1   

Xue et al. [17] reported a set of the curve-fit solutions of G0 

and G1 at the deepest and surface points for the API selected 

cylinders with seven Ri/t ratios = 1, 3, 5, 10, 20, 60, and 100. For 

each of these cylinders, there are two curve-fit equations for G0 

and G1. And so, for the seven cylinders, there are 14 curve-fit 

equations for G0 and G1. This results in a total of 28 curve-fit 

equations being developed by those authors. 

As an example, the following two curve-fit equations of G0 

and G1 at the deepest point are taken from Xue et al. [17] for the 

cylinder with Ri/t=10 that represents a transition cylinder size 

between thick-wall cylinders and thin-wall cylinders: 

 

 



 

 5  

 

𝐺0 = 𝐴0 + 𝐴1 (
𝑎

𝑡
)

1.5

+ 𝐴2 (
𝑎

𝑡
)

2

+ 𝐴3 (
𝑎

𝑡
)

3

 (9) 

where 

 𝐴0 = 1.14 + 0.0019 (
𝑎

𝑐
)

−0.5

− 0.078 (
𝑎

𝑐
)

0.5

− 0.0084 (
𝑎

𝑐
)

1

− 0.0069 (
𝑎

𝑐
)

3

 (10a) 

𝐴1 = 2.6 + 0.43 (
𝑎

𝑐
)

−0.5

− 19.67 (
𝑎

𝑐
)

0.5

+ 21.06 (
𝑎

𝑐
)

1

− 4.47 (
𝑎

𝑐
)

3

 (10b) 

𝐴2 = 2.11 − 1.3 (
𝑎

𝑐
)

−0.5

+ 29.14 (
𝑎

𝑐
)

0.5

− 39.15 (
𝑎

𝑐
)

1

+ 9.7 (
𝑎

𝑐
)

3

 (10c) 

𝐴3 = 11.96 + 0.43 (
𝑎

𝑐
)

−0.5

− 56.09 (
𝑎

𝑐
)

0.5

+ 54.05 (
𝑎

𝑐
)

1

− 10.72 (
𝑎

𝑐
)

3

 (10d) 

 

and  

𝐺1 = 𝐵0 + 𝐵1 (
𝑎

𝑡
)

0.5

+ 𝐵2 (
𝑎

𝑡
)

1

+ 𝐵3 (
𝑎

𝑡
)

1.5

 (11) 

where 

𝐵0 = 0.7 − 0.397 (
𝑎

𝑐
)

1

+ 3.876 (
𝑎

𝑐
)

2

− 6.63 (
𝑎

𝑐
)

2.5

+ 3.19 (
𝑎

𝑐
)

3

 (12a) 

𝐵1 = 1.96 − 21.12 (
𝑎

𝑐
)

1

+ 109.9 (
𝑎

𝑐
)

2

− 150.3 (
𝑎

𝑐
)

2.5

+ 59.44 (
𝑎

𝑐
)

3

 (12b) 

𝐵2 = −7.86 + 80.32 (
𝑎

𝑐
)

1

− 431.1 (
𝑎

𝑐
)

2

+ 603.4 (
𝑎

𝑐
)

2.5

− 244.4 (
𝑎

𝑐
)

3

 (12c) 

𝐵3 = 8.77 − 80.07 (
𝑎

𝑐
)

1

+ 424.5 (
𝑎

𝑐
)

2

− 596.4 (
𝑎

𝑐
)

2.5

+ 243 (12d) 

 

 

Figures 2 and 3 compare the curve-fit results with API 579 

tabular data of the influence coefficient G0 and G1, respectively 

at the deepest point of the surface crack in a pressurized cylinder 

with Ri/t=10. As shown in the figures, the curve-fit results and 

the API 579 tabular data agree very well. This indicates the curve 

fitting has a high accuracy. Through detailed comparisons, Xue 

et al. [17] concluded that the curve-fit results are very accurate 

for most data points, and the fitting errors are generally within 

5% for the closed-form relations of G0 and G1 at the deepest 

point for all data points. For the closed-form relation of G0 and 

G1 at the surface point, the fitting errors are within 5% for most 

data points. There is only one data point for G0 at the surface 

point with the fitting error larger than 5%. However, there are 

many data points for G1 at the surface point with the fitting errors 

larger than 5%, but the absolute G1 values are very small. The 

largest error is -32.65%. In general, the overall accuracy of the 

curve fitting results is satisfactory. 

Noted that Xue et al. [16, 17] obtained the curve-fit closed-

form solutions of the influence coefficients G0 and G1 of the K 

factor for both axial inside and outside semi-elliptical surface 

cracks in pressurized cylinders, and sooner those closed-form 

solutions of K were adopted by ASME BPVC Section XI [2] in 

its 2021 version. Even so, the closed-from solutions of G0 and 

G1 can be only used in the ECA for the API selected cylinder 

sizes, i.e., Ri/t=1, 3, 5, 10, 20, 60 and 100. For other cylinder 

sizes, the one-parameter interpolation is still needed to 

interpolate G0 and G1 based on the Ri/t ratio. As a result, a more 

general solutions of the K factor without use of interpolation are 

still desired for the FFS evaluation of pressure vessels. 

 

 

 

 

 
Figure 2: Comparison of curve-fit results with API 579 

tabular data of the influence coefficient G0 at the deepest 

point for Ri/t = 10 
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Figure 3: Comparison of curve-fit results with API 579 

tabular data of the influence coefficient G1 at the deepest 

point for Ri/t = 10 

 

4. DATA-DRIVEN SOLUTIONS OF K BY MACHINE 

LEARNING 

4.1  Machine learning method and neural network 

To obtain a general solution of the K factor for surface 

cracks in cylinders without use of interpolation, a data-driven 

model is developed here using the machine learning technology. 

Specifically, artificial neural network (ANN) modeling will be 

used. It is a supervised machine learning approach to learn from 

previous experience (i.e., labeled input/output data) through 

built-in learning functions and algorithms, and to make future 

predictions. A brief technical review on the basic concepts, 

categories, architectures, activation functions, cost function, 

model error measures, and modeling procedures of the ANN 

machine learning approach was given by Zhu et al. [19]. 

Let’s consider a simple ANN model that consists of three 

layers: input, hidden and output layer. The first layer is an “input 

layer”, which corresponds to independent input variables. The 

last layer is an “output layer”, which corresponds to output 

variables. The layers between the input and output layers are 

named as “hidden layers” or a “black box”, which contain the 

hidden neurons. In general, the numbers of both hidden layers 

and hidden neurons are unknown and are usually determined 

using the trial-and-error analysis. In many cases, one hidden 

layer is sufficient for engineering data analyses. In an ANN 

model, each neuron receives multiple input data, and then adds 

them through analysis. After that, the combined results are 

processed with an activation function and a specific algorithm. 

The value processed by the activation function becomes an 

output value to other neurons in the next layer or a final output 

data. 

The connection between neurons of different layers is 

achieved by parametric weights that denote the strength of the 

connection. Signals received at neuron i can be described by the 

following combined linear function: 

 

𝑢𝑖 =  ∑ 𝑤𝑖𝑗𝑥𝑗
𝑁
𝑗=1 + 𝑏𝑖 (13) 

 

And the output data is processed by a transfer function: 

 

𝑦𝑖 = 𝑓(𝑢𝑖) (14) 

 

where ui is the linear combined variable from the input data in 

Eq. (13); x1, x2, …, xN are the independent input variables; N is 

the total number of input variables; yi is the dependent output 

variable of the neuron that can be the final output or the input to 

another hidden layer;  wi1, wi2, …, wiN are the weights of input 

variables at neuron i; f is an  activation function; and bi denotes a 

bias. The activation function is needed to introduce nonlinear 

real-world data to the ANN model. This paper adopts the 

commonly used sigmoid function, as shown in Fig. 4, to activate 

connections of neurons between input and hidden layers, whereas 

a linear activation function is used to activate the connections of 

neurons between hidden and output layers. The other often used 

nonlinear activation function is the hyperbolic tangent function 

and ReLU function. 

 

 
Figure 4: Sigmoid function 

 

During the learning, an initial network architecture is created 

with an assumed number of hidden layers and hidden neurons 

and assumed initial random values of weights and biases being 

applied to the connections. Observation yi enters the ANN model, 

and the output 𝑦𝑖̂ is obtained. There must be an error between the 

ANN prediction 𝑦𝑖̂ and the real observation yi. Different indices 

have been proposed to measure the model error, and the most 

often used error measure is the root mean squared error (RMSE) 

in the form of: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1    (15) 
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4.2 Construction of ANN model 

As discussed in Section 3.1, API 579 [1] provides a large 

amount of tabular data for the influence coefficients G0 and G1 

of the K factor for pressurized cylindrical pressure vessels with 

seven Ri/t ratios of 1, 3, 5, 10, 20, 60, and 100.  In order to obtain 

a better data-driven model by machine learning, this work only 

considers thick-wall cylinders with four Ri/t ratios of 1, 3, 5, 10. 

For each cylinder, six crack aspect ratios are considered as a/c = 

0.03125, 0.0625, 0.125, 0.25, 0.5, 1. For each crack aspect ratio, 

five crack depth ratios are considered as a/t = 0, 0.2, 0.4, 0.6, 0.8. 

This results in a total of 4x6x5 = 120 data points for G0 or G1 at 

the deepest or surface point of surface cracks in the thick-wall 

cylinders that can be extracted from the data tables in API 579 

[1].  Since there are only four Ri/t ratios that were considered by 

API, all four Ri/t ratios or 120 data points are used as training 

data to develop the ANN models. 

The G0 and G1 functions are modeled separately in this 

work, and each influence coefficient has three input variables: 

Ri/t, a/c, and a/t, and one output variable: G0 or G1. On this basis, 

a three-layer ANN model can be constructed, as shown in Fig. 5. 

In this model, the input layer has three input variables: x1=Ri/t, 

x2=a/c, and x3=a/t, and the output layer has one output variable 

y=G0 or G1. One hidden layer with five hidden neurons is 

assumed based on our previous experience on the similar AAN 

modelling [19] for predicting the dynamic strength of resistance 

spot welds in high strength steels. Therefore, this ANN model is 

simply denoted as 3x5x1. This ANN model contains 20 weights 

and six biases as marked in Fig. 5. The 120 data points from API 

579 are used for this ANN model to learn and to determine the 

26 unknown parameters (weights and biases) through iterations. 

The Excel Solver is utilized to minimize the RMSE error of the 

cost function, and the 26 unknown parameters take random 

values as their initial values. Once a minimal RMSE error is 

reached, the weights and biases are determined from the datasets 

and the ANN model is completely determined. 

Note that the same ANN model as shown in Fig. 5 is used to 

determine four data-driven models for G0 and G1 at the deepest 

and surface points of axial elliptical surface cracks in thick-wall 

cylindrical pressure vessels, as discussed next. 

 

4.3 Data-driven model of G0 at the deepest point 

Figures 6(a) and 6(b) compare the ANN model predictions 

(output data) with the API 579 target data of G0 at the deepest 

point of axial outside surface cracks for all 120 data points in 

normalized values and actual values, respectively. These figures 

show that the ANN predictions agree very well with the API 

target data at the deepest point, and the goodness-of-fit measure 

R2
 = 0.9983 for all 120 data points. This indicates that the 

proposed ANN model is very accurate for predicting the G0 

values at the deepest point in comparison to the tabular data given 

in API 579. 

Figures 7(a) to 7(c) compares the ANN predictions with API 

data of G0 at the deepest point for Ri/t=10, 5, and 3. Again, it is 

observed that the ANN predictions match well with the API data 

of G0 for all API cylinders and the model errors for most data 

points are less than 2%. 

 

 
Figure 5: Architecture of ANN model 

 

(a) 

 

(b) 

 

Figure 6: Comparison of ANN model predictions with targe 
data of G0 at the deepest point from API 579 (a) normalized 
values, and (b) actual values 
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(a) 

 
(b) 

 
(c) 

 
Figure 7: Comparison of ANN predictions with API data of 

G0 at the deepest point for (a) Ri/t=10, (b) Ri/t=5, (c) Ri/t=3 

 

4.4 Data-driven model of G1 at the deepest point 

Figures 8(a) and 8(b) compare the ANN model predictions 

(output data) with the API 579 target data of G1 at the deepest 

point of axial outside surface cracks for all 120 datasets in 

normalized values and actual values, respectively. These figures 

show that the ANN predictions agree with API given or target 

data at the deepest point, and the goodness-of-fit measure R2
 = 

0.9975 for all 120 data points. This indicates that the proposed 

ANN model is very accurate for predicting the G1 values at the 

deepest point in comparison to the tabular data given in API 579. 

Figures 9(a) to 9(c) compare the ANN predictions with API 

data of G1 at the deepest point for Ri/t=10, 5, and 3. Again, it is 

observed that the ANN predictions match well with the API data 

of G1 for all cylinders considered in API 579, and the model 

errors at most data points are less than 2%. 

 

(a) 

 

 

(b) 

 

Figure 8: Comparison of ANN model predictions with targe 
data of G1 at the deepest point from API 579 (a) normalized 
values, and (b) actual values 
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(a) 

 
(b) 

 
(c) 

 
Figure 9: Comparison of ANN predictions with API data of 

G1 at the deepest point for (a) Ri/t=10, (b) Ri/t=5, (c) Ri/t=3 

 

 

4.5 Data-driven model of G0 at the surface point 

Figures 10(a) and 10(b) compare the ANN model 

predictions (output data) with the API 579 target data of G0 at 

the surface point of axial outside surface cracks for all 120 data 

points in normalized values and actual values, respectively. 

These figures show that the ANN predictions agree with most of 

API target data at the surface point, and the goodness-of-fit 

measure R2
 = 0.9964 for all 120 data points.  This indicates that 

the proposed ANN model is accurate for predicting the G0 values 

at the surface point in comparison to the tabular data given in API 

579. 

Figures 11(a) to 11(c) compare the ANN predictions with 

API data of G0 at the surface point for Ri/t=10, 5, and 3. Again, 

it is observed that the ANN predictions match well with the API 

data of G0 for all cylinders considered in API 579, and the model 

errors at most data points are less than 5%. 

 

(a) 

 

(b) 

 

Figure 10: Comparison of ANN model predictions with targe 
data of G0 at the surface point from API 579 (a) normalized 
values, and (b) actual values 
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(a) 

 
(b) 

 
(c) 

 
Figure 11: Comparison of ANN predictions with API data of 

G0 at the surface point for (a) Ri/t=10, (b) Ri/t=5, (c) Ri/t=3 

 

 

 

4.6 Data-driven model of G1 at the surface point 

Figures 12(a) and 12(b) compare the ANN model 

predictions (output data) with the API 579 target data of G1 at 

the surface point of axial outside surface cracks for all 120 data 

points in normalized values and actual values, respectively. It is 

shown that the ANN predictions agree with most of API given 

data at the deepest point, and the goodness-of-fit measure R2
 = 

0.9961 for all 120 data points. This indicates that the proposed 

ANN model is accurate for predicting the G1 values at the surface 

point in comparison to the tabular data given in API 579. 

Figures 13(a) to 13(c) compare the ANN predictions with 

API data of G1 at the surface point for Ri/t=10, 5, and 3. Again, 

it is observed that the ANN predictions match well with the API 

data of G1 for all cylinders considered in API 579, and the model 

errors at most points are less 5%. 

 

(a) 

 

 

(b) 

 
Figure 12: Comparison of ANN model predictions with targe 
data of G1 at the surface point from API 579 (a) normalized 
values, and (b) actual values 
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(a) 

 
(b) 

 

(c) 

 
Figure 13: Comparison of ANN predictions with API data of 

G1 at the surface point for (a) Ri/t=10, (b) Ri/t=5, (c) Ri/t=3 

 

4.7 Validation of ANN models by the curve-fit results 

The ANN models of G0 and G1 developed above can be 

validated using the corresponding curve-fit results obtained by 

Xu et al. [17].  As shown in Figs 2 and 3, the curve-fit results of 

G0 and G1 are accurate and nearly identical to the API tabular 

data for most data points. Likewise, comparisons of the ANN 

model predictions with the curve-fit results are similar to those 

shown in Figs 7, 9, 11 and 13. Thus, all ANN models of G0 and 

G1 are validated by the corresponding curve-fit results.  

 

5. APPLICATION OF DATA-DRIVEN ANN MODEL 

As discussed above, four data-driven ANN models of the K 

factor influence coefficients have been developed for axial 

outside surface cracks in thick-wall cylinders at the deepest and 

surface cracks. The detailed comparisons demonstrate that the 

proposed data-driven models are accurate and adequate to use for 

the FFS engineering evaluation of pressure vessels. 

(a) 

 

(b) 

 
Figure 14: ANN model predictions of influence coefficients at 
the deepest point of surface cracks for a thick-wall cylinder 
with Ri/t=7 (a) G0, and (b) G1 
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To demonstrate the capacity of the proposed data-driven 

models to predict the K factor for any thick-wall cylinder, Figure 

14 and 15 show the model predictions of G0 and G1 at the 

deepest and surface points on elliptical surface cracks in a thick-

wall cylinder with Ri/t=7, respectively. Also included in those 

figures are the API tabular data of G0 and G1 for Ri/t=5. 

Comparisons show that all predictions of G0 and G1 for Ri/t=7 

are reasonable in the trend. With those predicted values of G0 

and G1, the K factor are determined, and then a crack growth or 

instability can be analyzed for that cylinder. 

 

(a) 

 
(b) 

 
Figure 15: ANN model predictions of influence coefficients 

at the surface point of surface cracks for a thick-wall 

cylinder with Ri/t=7 (a) G0, and (b) G1 

 

 

5. CONCLUSIONS 

This paper briefly reviewed the tabular data of the stress 

intensity factor given in API 579 for axial semi-elliptical surface 

cracks in pressurized cylinders and the corresponding curve-fit 

closed-form solutions of the influence coefficients G0 and G1 of 

the stress intensity factor that were obtained by Xu et al. [16, 17] 

at the deepest and surface points. It was found that the closed-

form solutions of G0 and G1 are only applicable to the API 

selected cylinder sizes. As a result, for any other cylinders that 

are different from the API cylinder sizes, the interpolations are 

needed based on the Ri/t ratio. To obtain a more general K 

solution for any thick-wall cylinder and crack sizes, this paper 

adopted the machine learning technology and developed four sets 

of data-driven models of G0 and G1 as a function of the cylinder 

size (t/Ri), aspect ratio (a/c), and crack depth (a/t) for axial 

outside surface cracks at the deepest and surface points. From 

those results, the following conclusions are drawn: 

 

(1) The ANN modeling is an effective machine learning 

approach used to determine data-driven models of stress 

intensity factors for the complex 3D surface problems. 

(2) The proposed ANN models having three input variables, one 

hidden layer with five hidden neurons, and one output 

variable are adequate to use for obtaining accurate 

predictions of the influence coefficients G0 and G1 in 

comparison to the API tabular data for axial surface cracks 

at the deepest and surface points. 

(3) The proposed data-driven solutions of G0 and G1 for the 

axial outside surface cracks are validated by the curve-fit 

solutions obtained by Xu et al. [17], and thus are adequate to 

use for predicting the stress intensity factor for the axial 

surface cracks in thick-wall cylinders. 

(4) With the proposed ANN models, one can accurately predict 

the influence coefficients G0 and G1 and then the stress 

intensity factor for any axial outside surface crack at the 

deepest and surface points in a thick-wall cylindrical 

pressure vessel. Once the stress intensity factor is estimated, 

the crack growth and instable tearing analysis can be made 

in an FFS analysis of pressure vessels. 

It is noted that the ANN data-driven models were developed 

based on the all 120 datasets that are available in API 579 for 

thick-wall pressure vessels as the training datasets, and there are 

no test datasets used to validate the ANN models built from the 

training datasets. The proposed ANN models were validated by 

the curve-fit data obtained by Xu et al. [17] and can be further 

validated using the 3D FEA results of the stress intensity factor 

for axial outside surface cracks in any specific cylinder of 

interest. 
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