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Motivation

Cadmium zinc telluride selenide (CZTS) is room-temperature semiconducting
material suitable for direct conversion of x-rays and gamma rays into electrical
signals

Selenium is found to be a very effective in reducing complications in cadmium
zinc telluride (CZT) such as Te inclusions or precipitates which decreases yield
and result in high cost of high-quality CZT radiation detectors

Deep levels are responsible for charge trapping and space charge formation
which decreases detector performance

Study of space charge dynamics and deep levels is critical for improving charge
collection efficiency of radiation detectors



Laser Induced Transient Current Technique (L-TCT)

* Based on measuring the current response of the detector to a
laser pulse

* Allows to characterize the charge transport
(mobility, lifetime, electric field profile)

* Bias polarity selects which carrier type drift thought detector
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Experimental results

In this study a semi-insulating p-type Cd,qZng; T€;9¢5€0.04
sample is used

L-TCT is combined with pulsed bias to study space charge
dynamics

Synchronization of laser pulse and bias pulse
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Without bias the detector is neutral without any space charge
Space charge formation starts after bias application

Changing the laser pulse delay allows study of space charge
dynamics

Space charge can be eliminated using pulsed bias and then
effects of space charge can be distinguished from effects of traps
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Monte Carlo Simulation

1D numerical simulation of charge transport in

semiconductor detector
Combined with numerical

solution of drift-

diffusion equation and Poisson’s equation

allows study of charge transport and space

charge dynamics
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Monte Carlo simulations - electrons
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Monte Carlo simulations - electrons
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Monte Carlo simulations - electrons

Detector - Pulsed bias
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Space charge dynamics

Electric field (kV/cm)
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Evaluated parameters

Hole-current waveforms

Same experiment was measured with positive
bias for holes
Identical electric field profile is obtained

Evaluated parameters are:
Electron mobility U, = 830 cm?%Vs

Hole mobility W, = 40 cm?%Vs
Electron lifetime T, =2.3 s
Hole lifetime T,=3.6 us
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Conclusion

e CZTS semiconductor has good electron- and hole-transport properties,
and single crystals are suitable for x-ray and gamma-ray detector
fabrication

* Transient current technique combined with pulsed bias allow to
observe charge transport and space charge dynamics inside detector

e The improvement of the crystal growth technology to suppress the
recombination level is recommended

More details in: J. Pipek, M. Betusiak, E. Belas, R. Grill, P. Praus, A. Musiienko, J. Pekarek, U. N.
Roy, and R. B. James, Charge Transport and Space-Charge Formation in Cdl-xZnxTel-ySey
Radiation Detectors, Phys. Rev. Appl. 15, (2021), doi: 10.1103/physrevapplied.15.054058.
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