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Motivation – A strong need for (U)WBG detectors
• Radiation detectors are key components 

for numerous products and applications. 
• Elementary detectors have many 

limitations related to their intrinsic material 
properties.

– Harsh environment.
– Cooling and compromised density.
– High Voltage operation. 

• Wide and ultrawide bandgap 
semiconductors are much less susceptible 
to displacement damage by particle 
irradiation than elemental and narrow 
bandgap compound semiconductors.
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Linear attenuation coefficient of Ga2O3 (6.44 g/cm3) compared 
to several current and candidate X-ray sensing material.



Motivation – Ga2O3 for radiation detection
• β-Ga2O3 has many material advantages

– Thermal stability (M. P. > 1800 οC)
– The least mature and most recent ultrawide bandgap material 

(4.5 – 5.1 eV)
– Very high breakdown electric field (8 MV/m)
– High quality bulk single crystals from melt
– Cost-effective large-scale manufacturability

• β-Ga2O3 holds high promise for fitting many radiation 
detection application needs not met by currently used 
materials

– Harsh environment applicability
– Versatile and cost-effective synthesis and fabrication
– High detector performance
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S. J. Pearton et al., “A review of Ga2O3 materials, 
processing, and devices,” Appl. Phys. Rev., vol. 5, 

no. 1, p. 011301, Jan. 2018.



Ga2O3 properties
• Control of conductivity through doping and mitigation of trap 

states is key to realizing device applications.

• Mg, N, and Fe compensate n-type conductivity.

• Si, Sn, Ge, F and Cl are n-type dopants.

• Atmosphere dependent post-growth annealing can be used 
to control conductivity as well (annealing in oxygen reduces 
the free electron density, while annealing in nitrogen or 
hydrogen leads to an increase in n-type conductivity).
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S. J. Pearton et al., “A review of Ga2O3 materials, processing, and 
devices,” Appl. Phys. Rev., vol. 5, no. 1, p. 011301, Jan. 2018.



Different Ga2O3 samples were used in our study

• Ga2O3 grown by the floating zone (FZ) method and the 
edge-defined film-fed growth (EFG) method

• Undoped Ga2O3, Fe-doped Ga2O3 and Mg-doped Ga2O3 
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Bandgap Analysis: Mg and Fe doping in FZ 
samples

● Tauc plots were created from transmission 
data using a Deuterium-Halogen light source

● The Mg-doped sample has an estimated 
indirect bandgap of 4.39 eV

● The Fe-doped sample has an estimated 
indirect bandgap of 4.26 eV

● These band gaps are on the lower end of 
reported values 

● Traditional bandgap values of undoped 
Ga2O3 range near 4.8-4.9 eV

● One possible explanation is high levels of 
dopants/impurities  
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TOF-SIMS: Mg-Doping

● Time of flight - secondary ion mass 
spectrometry (TOF-SIMS) can be used to 
observe dopant/impurity distributions within 
the sample

● The distribution of Mg was uniform across 
the sampling area

● Direct comparison of dopant/impurity counts 
from the spectrometer are not appropriate 
due to different secondary ion potentials

● The presence of Si was also observed, which 
could be due to the unintensional doping 
from the raw materials and processing steps
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TOF-SIMS: Mg-Doping

● Interestingly there appeared to be higher 
levels of Cr and Fe at some localized areas

● Note the spatial distributions are different at 
different locations - especially Si has a hot 
concentration spot

● These impurity/dopants are important to 
understand as they could pertain to the 
cathodoluminescence (CL) results and 
possible emission mechanisms
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Cathodoluminescence (CL): Mg-Doping 
● Beam: 944 pA at 15 keV

● Ga2O3 traditionally has a UV blue-green 
luminescence. 

● The origin of the green luminescence ~ 550 nm is 
not completely clear as many studies report it in 
undoped samples and others report it only arises 
through intentional doping with Sn for example. 

● Our sample did not emit the traditional broad blue 
luminescence but did yield green luminescence

● This blue luminescence is believed to result from 
the recombination from a donor level oxygen 
vacancy to an acceptor level Schottky defect or 
gallium vacancy

● Two possible explanations: 
○ Another emission mechanism has quenched 

the blue luminescence. 
○ FZ yielded extremely low levels of oxygen 

vacancies 
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Cathodoluminescence (CL): Mg-Doping 

● Undoped Ga2O3 does not emit luminescence in 
the 600-800 nm range. Thus, this should be 
dopant/impurity driven.

● Similar to the higher energy emissions, all 
emission peaks increase in intensity down to near 
-130 oC then drop only slightly in intensity with 
further decreases in temperature.

● As in the previous figure, every peak increases in 
intensity to near -130 oC.
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Electrode Deposition

● A vertical sandwich electrode configuration 
was used for both samples.

● 50 nm for each layer: Au/Ti - Ga2O3 - Au

● Based on previous works and the work 
function of Au, it can produce a Schottky 
contact with Ga2O3.

● To enhance the electrode contacts, a rapid 
anneal at 400 oC for 1 minute was performed.

● Short annealing times are required as the Ti 
electrode tends to create a TiO2 layer for 
longer anneals, which increases the series 
resistance. 

Vertical Electrode 
Structure 



I-V Characteristics: Mg Doping

● Although the Au electrode was expected to 
create a Schottky diode, the I-V curve still 
showed some ohmic behavior.

● The Mg doping successfully increased the 
resistivity far above that of typical undoped 
samples.

● The resistivity at near 1014 Ω.cm allows for 
the potential of highly sensitive and low-
noise radiation detection.

● The I-V curve linearity extended up to 1000 V 
(system limits).



I-V Characteristics: Fe Doping

● Again, the Au electrode did not create a 
Schottky diode, but the I-V curve showed 
ohmic behavior.

● Resistivity: 7x1010 Ω.cm

● The resistivity is far lower than that of the 
Mg-doped sample.

● This could be a result of the large amount of 
unintentional Fe in the Mg-doped sample.

● The I-V curve linearity extended up to 1000 V 
(system limits).



X-ray sensors based on β-Ga2O3
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• One previous study published in 2018-2019
– Annealed at 1500 οC in an air 

atmosphere for 48 hours.
– Double-side chemical mechanical 

polishing (CMP).
• Response linearity was demonstrated with no 

saturation effect. 
• High photo-to-dark current ratio exceeding 

800 at –15 V.
• When biased at 0V, the detector showed 

perfect photovoltaic characteristics, 
demonstrating the great potential of using β-
Ga2O3 SBDs as passive X-ray detectors or 
X-ray photocells.

(100) undoped β-Ga2O3 EFG based x-
ray sensors.

X. Lu et al., “X-ray Detection Performance of 
Vertical Schottky Photodiodes Based on a 
Bulk β-Ga2O3 Substrate Grown by an EFG 

Method,” ECS J. Solid State Sci. Technol., vol. 
8, no. 7, pp. Q3046–Q3049, 2019.



X-ray sensors based on β-Ga2O3
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• Two different time constants are obtained for 
the photocurrent rising process (τr1 = 13.8 s 
and τr2 = 1.4 s), while during the photocurrent 
decaying process the two time-constants are 
τd1 = 17.1 s and τd2 = 4.0 s.

• The fast response of an unbiased SBD 
detector corresponds to a photovoltaic 
mechanism, where the photo-generated 
carriers in the space-charge region are swept 
out rapidly by the build-in electric filed.

(100) undoped β-Ga2O3 EFG based X-
ray sensors. (Lu, 2018)

(100) undoped β-Ga2O3 EFG based x-
ray sensors.

X. Lu et al., “X-ray Detection Performance of 
Vertical Schottky Photodiodes Based on a 
Bulk β-Ga2O3 Substrate Grown by an EFG 

Method,” ECS J. Solid State Sci. Technol., vol. 
8, no. 7, pp. Q3046–Q3049, 2019.



XRIC Characterization of EFG β-Ga2O3

• Zero Voltage mode (Passive operation) (45 KV, 
40 mA)

• X-ray induced current reaching -21 pA 
• Dark transient current of -0.15 (+/-0.05) pA
• SNR = 139
• No experimental lag
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XRIC Characterization
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• SNR for operating voltages between -5 V 
and -50 V stays above 800 and 
decreases for the higher applied 
voltages.

• SNR stays above 1000 for applied 
voltages between -5 V and -20 V, and it is 
further optimized at -5 V exceeding 1200.

• μτ factor calculated from single carrier 
Hecht model treatment was 2.28x10-5

cm2/V 
• 45.6 μm carrier drift length for 10 V.
• 456 μm carrier drift length for 100 V.
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XRIC Characterization
• SNR for operating voltages between -5 V 

and -50 V stays above 800 and 
decreases for the higher applied 
voltages.

• SNR stays above 1000 for applied 
voltages between -5 V and -20 V, and it is 
further optimized at -5 V exceeding 1200.

• μτ factor calculated from single carrier 
Hecht model treatment was 2.28x10-5

cm2/V 
• 45.6 μm carrier drift length for 10 V.
• 456 μm carrier drift length for 100 V.
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XRIC Characterization
• Highly stable XRIC even at very low operating 

voltages (5,-5,0 V)

• Small exponential decay within the first minute 
that stabilizes after that 

• 𝜏𝜏1 = 57.7 𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜏𝜏2 > 106 𝑠𝑠𝑠𝑠𝑠𝑠, stability
• Less than 10% decrease in the first 

minute.

• Operation status independent (for the ON/OFF 
frequency used)

• Indicating ion migration and charge 
accumulation.

• Slight polarization effect.
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UVIC Characterization
• Sub-band gap excitement with 365 nm LED (3.4 

eV) was used (band gap of β-Ga2O3(Fe) is 4.45 eV)

• 10%-90% rise/fall time improved from 2 sec/16 
sec at 5 V to 1 sec/10 sec at 200 V

21
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Summary
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• Ga2O3 has been explored as a new radiation detector material.
• CL spectra illustrated the well-known UV emissions but the absence of a broad blue 

emission. The green and red emissions are believed to be related to dopants/impurities.
• TOF-SIMS showed that Mg and Fe, which could act as acceptors, were both evident in the 

Mg-doped sample.
• The behaviors of high SNR were investigated under three operation modes for X-ray 

detection.
• We observed high linearity between X-ray induced photocurrent and X-ray tube current.
• The exciting timing performance of β-Ga2O3(Fe) detectors was demonstrated. 
• Our results show that Ga2O3 has great potential as a new radiation detector material with 

excellent temporal response for a wide range of applications.
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