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LANA Introduction
Historically relevant work
• He-3 Release
• Controlled Oxidation
Thermal Stability Testing
Path Forward
Acknowledgements
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• LANA beds are limited 
lifetime components due 
to decay of tritium to He-
3 within the metal matrix

• Tritium aging effects on 
isotherms
– Formation of “heel”

• Inventory hold-up
• Reduced capacity

– Decreased plateau 
pressure

– Eventual loss of plateau
– Eventual weeping of He-3

Holdup (virgin)
Holdup (aged)

Reversible capacity  (aged)

Reversible capacity  (virgin)

Tritium Aging of LaAl4.25Al0.75 (LANA.75)
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Thermal Release of He-3 from Tritium-Aged LANA
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Controlled Oxidation of Tritium-Aged LANA – XRD Results of Argon Testing
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Isotherm Results
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Assume:
• 50-year facility life
• ~10 years/bed life
• X beds in the facility

Beds Replaced

Year No Regeneration 1 Regeneration 2 Regenerations 4 Regenerations

10 X ‐ ‐ ‐

20 X X ‐ ‐

30 X ‐ X ‐

40 X X ‐ ‐

Total New Beds 4X 2X X 0

If crystallinity is restored, isotherm performance should also be restored.
It may be possible to design LANA beds that can be regenerated in place.

Potential Impacts
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• Crystallinity restored as measured by 
XRD

• Released significant fraction of He-3 
trapped in the metal

• Reduced/eliminated “heel” of 
hydrogen trapped in the metal

• Restored reversible capacity of the 
hydride

• Exhibited a higher plateau pressure 
than a “virgin” sample
– Differences in sample heating?
– Loss of aluminum?

Regenerated LANA.75 Summary
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Load sample to test cell (~5 g)
Activate hydride/perform heel exchanges 

on hydride in test cell at 80 °C
Test Activities

• Collect verification isotherm at 80 °C
• Recover pre-anneal material for 

analytical testing (~1.5 g)
• Collect pre-anneal isotherms at 80, 

100, and 120 °C
• Anneal under vacuum at 750°C for 

200 hours
• Collect post-anneal isotherms at 80, 

100, and 120 °C 
• Recover post-anneal material for 

analytical testing – Particle Size, ICP, 
XRD, SEM (~1.5 g)

Thermal Stability Test Plan
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Thermal Stability Testing – Pre-Anneal Isotherms
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Thermal Stability Testing – Post-Anneal Isotherms
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Virgin Material

Post‐Anneal 
Material

* Ca and Mg also detected above instrument detection limits,
but were 3-5 orders of magnitude lower than La, Ni, or Al.

MV (m) MA (m) MN (m)  (m)

Virgin Material 548.6 474.6 148.5 120.1

Pre‐Anneal Material 17.98 14.45 9.04 8.17

Post‐Anneal Material 21.37 18.83 13.42 6.97

Composition

Virgin Material La1.00Ni4.21Al0.77
Pre‐anneal Material La1.00Ni4.20Al0.74
Post‐anneal Material La1.00Ni4.24Al0.72

No loss of Al

Thermal Stability Testing – Particle Size Analysis and ICP-ES Results
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• Little to no contamination of the material
• Heating the material does not change the 

crystalline structure

XRD of virgin 
LANA.75

XRD of pre‐anneal 
LANA.75

XRD of post‐anneal 
LANA.75

Thermal Stability Testing – XRD Results
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XRD of virgin 
LANA.75

XRD of pre‐
anneal LANA.75

XRD of post‐
anneal LANA.75

• Cracks form when virgin material is 
exposed to hydrogen due to decrepitation

• Unusual growths appeared on the post‐
anneal material

Thermal Stability Testing – SEM Results
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EDS performed on all materials
– Flat surfaces show La, Ni, and Al as chemical composition
– Growths on virgin and post-anneal materials show excess oxygen
– Growths are oxides due to passivation of pre-anneal material?

XRD of pre‐
anneal LANA.75

XRD of post‐
anneal LANA.75

Thermal Stability Testing – Growths on Post-Anneal Material
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Conclusions
– Pre-anneal material and post-anneal material isotherms have similar shapes, but the 

plateau region of the post-anneal material is flatter
– Particle size analysis showed that the pre-anneal and post-anneal material had 

similar sizes
– ICP analysis showed no significant changes in the elemental composition
– XRD analysis showed that there was no change in the crystalline structure due to 

heating
– SEM analysis showed growths on the post-anneal material

Path Forward
– Additional testing on the material with no passivation or recovery of sample prior to 

the annealing process

Conclusions / Path Forward
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Thank you for your attention

Questions?
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