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Background and Problems with CdTe-Based Detectors

2020 IEEE Nuclear Science Symposium and Medical Imaging Conference
27th International Symposium on Room-Temperature Semiconductor Detectors

31 October – 7 November 2020, Boston, Massachusetts, USA – Virtual Conference

 CdTe-based detectors have the major advantage of operating at room temperature 
without cryogenic cooling.

 Cadmium zinc telluride selenide (CdZnTeSe) is emerging as a promising material for 
low-cost production of room-temperature nuclear and radiological detection systems.

 Problems with CdTe-Based Detectors: 
 Defects limits the performance of large-volume CdTe-based crystals for X-rays and 

gamma-rays detection.

 Defects: 
 Te inclusions, dislocations, sub-grain boundaries, and precipitates.



Advantages of  CZTS over CZT
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 Better compositional uniformity, which could increase the overall yield of 
detector-grade material.

 Less Te inclusions and sub-grain boundary network. 

 Thus, better uniformity in spatial charge transport properties.

 Hence, increased performance and yield of high-quality detectors.

 Better material hardness.

 Better energy resolution are being obtained within shorter R&D period.



CZTS Growth by Traveling Heater Method (THM)
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 Material composition of Cd1−x ZnxTe1−ySey:
 x = 0.1 and y = 0.04. for Ingot-1 and x = 0.1 and y = 0.02. for Ingot-2.

 It was doped with indium. 

 CZTS was synthesized from predetermined stoichiometric amounts of 6N-purity CdZnTe 
and CdSe. 

 The inner walls of the conically-tipped quartz ampoules were carbon coated. 

 The CZTS was grown in a Te-rich solution. 

 The tellurium and indium were of 6N purity. 

 The THM process was carried out in a 3-zone furnace. 

 The growth process (THM) described in detail by Roy et al. Scientific Reports volume 9, 
Article number 7303 (2019). https://www.nature.com/articles/s41598-019-43778-3

https://www.nature.com/articles/s41598-019-43778-3


Planar Detectors: Fabrication and Characterization
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 Wafers were cut from as-grown CZTS ingots.

 The wafer was polished successively 800 grit, 
1000 grit and 1200 grit silicon carbide 
abrasive papers. 

 Further smoothed by successively polishing on 
MultiTex pads with alumina powder of varying 
sizes (from 3.0 µm to 0.1 µm). 

 The wafer was rinsed in distilled water and 
dried using compressed air. 

 Gold electrical contacts where deposited on 
the two opposite sides of the wafer using an 
electroless deposition technique.

Sample 1 Size: 7.0 x 4.7 x 2.7 mm3 (from Ingot-1)
Sample 2 Size: 5.9 x 6.0 x 1.6 mm3 (from Ingot-2)

Wafer from ingot-1 (7.0 mm × 4.7 mm). 

Infrared transmission images:

Wafer from ingot-2 (5.9 mm × 6.0 mm). 



Planar Detectors: I-V Plot and Resistivity
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Sample Size: 7.0 x 4.7 x 2.7 mm3 (from Ingot-1)
Resistivity: 1.3 x 1010 Ω-cm.

(Similar results for Ingot-2: 1.4 x 1010 Ω-cm)



Planar Detectors: Energy Resolution and Electron 
Mobility-Lifetime (μτ) Product of  Sample 1
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Planar Detectors: Energy Resolution and Electron 
Mobility-Lifetime (μτ) Product of  Sample 2
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Frisch-Grid  Detectors: Fabrication and Characterization
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 The 4.3 x 4.3 x 10 mm3 Frisch-grid detector was fabricated from 
an as-grown CZTS ingot.

 It was grown by THM in a Te-rich solution and with indium doping.
 Gold electrical contacts where deposited on the two opposite sides 

of the wafer using an electroless deposition technique.

Schematic of virtual Frisch-grid detector configuration. 
Not drawn to scale. Electrons (e-) drift towards the 
anode and holes (h+) drift towards the cathode.

From: Egarievwe et al. IEEE Access, Vol. 8, July 2020. 
https://ieeexplore.ieee.org/document/9149582

3-D view Cross section

Infrared Transmission Images of CZTS Frisch-grid Detector 
showing a low concentration of Te Inclusions. 

https://ieeexplore.ieee.org/document/9149582


Frisch-Grid  Detectors: I-V Plot and Resistivity
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 The resistivity of the detector is 4.63 x 1010 Ω−cm.

I-V of Frisch- grid detector after gold-contact deposition.



Frisch-Grid  Detectors: Energy Resolution and Electron 
Mobility-Lifetime (μτ) Product 
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 Resolution (with no correction) for 662-keV 
gamma line of 137Cs is 1.1%.

 Mobility-lifetime product of 5 x 10-3 cm2/V.

Response of the CZTS Frisch-grid detector to the 662-keV 
gamma line of 137Cs at 2300 V.



Effects of  Chemical Treatment: Etching in Bromine 
Methanol (BM) 
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Current-voltage plot of the 6.7 x 5.7 x 1.8 mm3 CZTS 
planar detector.

Energy Resolution on polished only and BM 
etched surface.



Effects of  Chemical Treatment: Passivation in NH4F 
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Our recent work: Egarievwe et al. Sensors 2019. 
https://www.mdpi.com/1424-8220/19/15/3271

 Sample from Ingot-1.

 The passivation process was 
accomplished by dipping the wafer in a 
10% by weight of aqueous solution of 
NH4F in three consecutive dips for five 
minutes. 

 The sample was then dried, and gold 
contacts applied by electroless method.

https://www.mdpi.com/1424-8220/19/15/3271


Effects of  Chemical Treatment: 
Passivation in NH4F 
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Our recent work: Egarievwe et al. Sensors 2019. 
https://www.mdpi.com/1424-8220/19/15/3271

Applied 
Voltage 

(V)

FWHM before 
Passivation 

(%)

FWHM after 
Passivation 

(%)

Improvement in 
Energy 

Resolution

−35 17.9 12.0 33%

−65 12.9 10.0 22%

−100 9.9 8.0 19%

−120 10.1 8.1 20%

−140 10.0 7.2 28%

−160 9.3 6.9 26%

−180 8.9 6.4 28%

−200 8.7 6.7 23%

https://www.mdpi.com/1424-8220/19/15/3271


Summary
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 CZTS has shown great advantages over CZT.
 The resistivity of the material was in the order of 1010 Ω-cm. 
 For the planar detector, energy resolution of 6.6% FWHM was obtained 

for the 59.6-keV gamma line of Am-241.
 CZTS Frisch-grid detector give energy resolution of 1.1% FWHM for the 

662-keV gamma line of Cs-137.
 The leakage currents were observed to be higher for the BM-etched 

wafer at applied voltages above 150 V. The leakage currents were 
similar for lower voltages.
 Passivation with ammonium fluoride solution improved energy resolution 

of CZTS.



Minority Training and Workforce Development
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