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I. Motivation – the need for (U)WBG detectors
• Radiation detectors are key components for 

numerous products and applications. 

• Elementary detectors have many limitations 
related to their intrinsic material properties.

– Harsh environment
– Cooling and compromised density
– High Voltage operation

• Wide and ultrawide bandgap semiconductors 
are much less susceptible to displacement 
damage by particle irradiation than elemental 
and narrow bandgap compound 
semiconductors.
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I. Motivation – Ga2O3 for radiation detection
• β-Ga2O3 has many material advantages

– Thermal stability (M. P. > 1800 οC)
– The least mature and most recent ultrawide bandgap material

(4.5 – 5.1 eV)
– Very high breakdown electric field (8 MV/m)
– Control of n-type conductivity via doping and post-growth processes
– High-quality bulk single crystals from melt
– Cost-effective large-scale manufacturability

• β-Ga2O3 holds high promise for addressing many radiation detection 
application needs not met by currently used materials

– Harsh environment applicability
– Versatile and cost-effective synthesis and fabrication
– High detector performance

4

J. Zhang et al., “Recent progress on the electronic 
structure, defect, and doping properties of Ga2O3,” APL 

Materials, 8, 2, 20906, 2020.
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II. Introduction – X-ray sensors based on β-Ga2O3
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• One previous study published in 2018-2019
– Annealed at 1500 οC in air atmosphere 

for 48 hours
– Double-side chemical mechanical 

polishing (CMP)
• Response linearity was demonstrated with no 

saturation effect. 
• High photo-to-dark current ratio exceeding 

800 at –15 V.
• When biased at 0V, the detector showed 

perfect photovoltaic characteristics, 
demonstrating the great potential of using β-
Ga2O3 SBDs as passive X-ray detectors or 
X-ray photocells.

(100) undoped β-Ga2O3 EFG based x-
ray sensors

X. Lu et al., “X-ray Detection 
Performance of Vertical Schottky 

Photodiodes Based on a Bulk β-Ga2O3
Substrate Grown by an EFG Method,” 
ECS J. Solid State Sci. Technol. 8, 7, 

Q3046–Q3049, 2019.
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II. Introduction – X-ray sensors based on β-Ga2O3
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• Two different time constants are obtained for 
the photocurrent rising process (τr1 = 13.8 s 
and τr2 = 1.4 s), while during the photocurrent 
decaying process the two time-constants are 
τd1 = 17.1 s and τd2 = 4.0 s.

• The fast response of an unbiased SBD 
detector corresponds to a photovoltaic 
mechanism, where the photo-generated 
carriers in the space-charge region are swept 
out rapidly by the build-in electric filed.

X. Lu et al., “X-ray Detection Performance of Vertical Schottky Photodiodes Based on a 
Bulk β-Ga2O3 Substrate Grown by an EFG Method,” ECS J. Solid State Sci. Technol. 8, 

7, Q3046–Q3049, 2019.
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III. Optical and electrical characterization – bandgap
• Optical bandgap deducted from Tauc plot was 4.45 eV 

based on direct band gap treatment.

• No near band-gap shoulder was shown.

• The UWB opens the path for UV detection and the 
possibility for x-ray, γ-ray detection as well as charged 
particles.
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Tauc Plot showing optical bandgap of 4.45 eV. Inset shows optical 
absorption curve raw data which was used for Tauc plot construction.



III. Optical and electrical characterization – resistivity
• 4x4 𝑚𝑚𝑚𝑚2 Au/Ti (50/50 nm) electrodes were 

deposited on both sides of 5x5 𝑚𝑚𝑚𝑚2 sample.
• DC sputtering for Ti, e-beam for Au

• Very high resistivity in the order of 1014 Ω.cm 
was revealed from I-V measurement.

• 4x4 𝑚𝑚𝑚𝑚2 Au/Ti (50/50 nm) and Au/Ni (40/50 
nm) electrodes were deposited for testing 
Schottky behavior; however the I-V behavior 
was not different from the Au/Ti Ohmic sample.

• DC sputtering for Ti, e-beam for Au and Ni

• Controlled 10-minute air annealing at 400 oC 
didn’t change I-V behavior for both samples.
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Au/Ti/β-Ga2O3/Ti/Au I-V characteristic curve

Au/Ni/β-Ga2O3/Ti/Au  and  Au/Ti/β-Ga2O3/Ti/Au

In-house built versatile testing box used for I-
V, XRIC and UVIC measurements
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IV. XRIC Characterization
• Zero Voltage mode (Passive operation) (45 KV, 

40 mA)
• X-ray induced current reaching -21 pA 
• Dark transient current of -0.15 (+/-0.05) pA
• SNR = 139
• No experimental lag
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IV. XRIC Characterization
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IV. XRIC Characterization
• SNR for operating voltages between -5 V 

and -50 V stays above 800 and 
decreases for the higher applied 
voltages.

• SNR stays above 1000 for applied 
voltages between -5 V and -20 V, and it is 
further optimized at -5 V exceeding 1200.

• μτ factor calculated from single carrier 
Hecht model treatment was 2.28x10-5

cm2/V 
• 45.6 μm carrier drift length for 10 V.
• 456 μm carrier drift length for 100 V.
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IV. XRIC Characterization
• Highly stable XRIC even at very low operating 

voltages (5,-5,0 V)

• Small exponential decay within the first minute 
that stabilizes after that 

• 𝜏𝜏1 = 57.7 𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜏𝜏2 > 106 𝑠𝑠𝑠𝑠𝑠𝑠, stability
• Less than 10% decrease in the first 

minute

• Operation status independent (for the ON/OFF 
frequency used)

• Indicating ion migration and charge 
accumulation

• Slight polarization effect
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IV. XRIC Characterization
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• a-Ga2O3 : (H. Liang et al., “Flexible X-ray Detectors Based on 
Amorphous Ga2O3 Thin Films,” ACS Photonics, vol. 6, no. 2, pp. 
351–359, 2019.)

• Unintentionally doped β-Ga2O3: (X. Lu et al., “Schottky x-ray 
detectors based on a bulk β-Ga2O3 substrate,” Appl. Phys. Lett., 
vol. 112, no. 10, p. 103502, 2018.) and (X. Lu et al., “X-ray 
Detection Performance of Vertical Schottky Photodiodes Based on 
a Bulk β-Ga2O3 Substrate Grown by an EFG Method,” ECS J. Solid 
State Sci. Technol., vol. 8, no. 7, pp. Q3046–Q3049, 2019.)
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V. Temperature-dependent CL β-Ga2O3 (Fe)
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Defect Defect type Signature

VGa+VO Vacancy B1-4
(acceptor)

VO Vacancy B5 and UV1-3
(donor)

VGa Vacancy B5 (acceptor)

FeGa
Substitutional 

(dopant)
UV1

(acceptor)

STH Electronic 
defect UV2-4

• HT air annealing potentially decreases VO
concentration and eliminates VGa+VO complexes.

• Potential change in VGa nature and/or 
concentration.

• Red luminescence possible origins are (1) 
Nitrogen diffusion and (2) Cr impurities. New 

evidence points to the latter.

I. Hany et al., “Low temperature cathodoluminescence study of Fe-doped β-Ga2O3,” Materials Letters 257, 126744, 2019.



VI. Summary
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• β-Ga2O3 (Fe) was investigated as a direct X-ray detection material motivated by its high resistivity and 
ultra-low leakage current.

• High SNR under three operation modes 

• High linearity between X-ray induced photocurrent and X-ray tube current

• Improved transport properties
• Controlling Fe and Cr distribution may increase µτ-factor

• High stability upon continuous illumination for 15 minutes.
• VO and VGa potentially assist in the initial polarization effect

• The results demonstrate the great potential of β-Ga2O3(Fe) as a radiation resistant X-ray detector with 
excellent temporal response for a wide range of applications.
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Thank you for your attention!
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