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EXECUTIVE SUMMARY 
The development of algorithms for machine learning and data analysis for the 3013 Surveillance Program 
is a collaborative effort by the Savannah River National Laboratory (SRNL) and the University of South 
Carolina (USC).  For corrosion detection, Laser Confocal Microscope (LCM) or Wide Area 3D 
Measurement System (WAMS) data is extracted from large binary files, with software written to convert 
the data to physical attributes (e.g. height, color and grayscale values; all as functions of a location in a 
plane projection).  It is the objective of this project to produce a user-friendly interface that incorporated 
all operations needed to perform surface examination.  For this reason, a Matlab-based Graphical User 
Interface (GUI) was created to integrate data input with software developed for processing and 
evaluation.  In summary, the GUI permits selective downloading of binary data, interrogation of 
attributes, data labeling, flagging of significant features, execution of Machine Learning (ML) algorithms, 
output of parameters for trained ML algorithms, reports of ML model accuracy with respect to labeled 
data, and generation of graphical representations of various analyses.   

Machine learning algorithms for determining the presence of cracks and corrosion are at various stages of 
development.  The algorithms are designed to be input to the GUI as modules that can be easily 
exchanged as their development progresses and specialized needs arise. 

In addition to the suite of LCM data that was initially used, and which represents the majority of the work 
presented in this report, WAMS image data was also reviewed at a preliminary level.  The review 
included a comparison between image resolution and dynamic range for each method.  WAMS (ZON 
file) image data was found to have a pixel pitch of 3.69μm compared to 1 μm for the LCM (vk4 file) data, 
which implies a lower resolution for the WAMS images.  Conversely, the ratio of dynamic range of the 
WAMS data to the LCM data was approximately 41:20 for height data, suggesting that information from 
WAMS should more accurately determine the depth of pits.  At this point, the significance of the reduced 
image resolution and greater dynamic range of the WAMS data relative to the LCM data in the detection 
of corrosion and cracking is not apparent. 
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1.0 Introduction 
Through-wall penetration from stress corrosion cracking (SCC) of the 3013 inner container has been 
identified as the most credible condition for failure withing the 50-years lifetime1.  Chlorides contained in 
Pu-bearing material, together with intra-canister humidity levels, metallurgical conditions, and internal 
stresses have been found to produce corrosion in the Inner Container Closure Weld Region (ICCWR) of 
the 3013 canister system, which is used throughout the DOE complex.  A Laser Confocal Microscope 
(LCM) is used as part of the 3013 Surveillance Program protocol to identify the prevalence of corrosion 
and corrosion-related cracking in the ICCWR2.  With the LCM, a close visual examination is made of the 
ICCWR surface along with measurements of corrosion-related features [2].  LCM inspections produce 
immense amounts of image data: approximately 6000 images per can, having 786,432 pixels per image, 
with 8 layers of data for each pixel.  There is currently an 8-year backlog of images, with approximately 
45 canisters that must be evaluated.  Simplistic computer-aided image analysis can flag some basic 
surface characteristics, such as pit depth, to guide manual examinations for corrosion.  However, while 
this approach greatly improves the efficiency of the examination process compared to unaided manual 
screening, it is still excessively time consuming.  A more efficient and sophisticated approach is to assess 
the data using Machine Learning (ML) algorithms to identify corrosion without manual intervention.   

The objective of this project was the development of computer-facilitated methods to facilitate rapid 
identification of corrosion and corrosion-related damage in 3013 canisters from very large sets of LCM 
(vk4 files) and (more recently) Wide Area 3D Measurement System (WAMS) data (ZON files).  The 
LCM data includes: RGB, RGB + laser intensity, grayscale + laser intensity and height data.  Height and 
RGB and data from WAMS files were examined at a preliminary level.   

Computational methods for identifying surface corrosion and cracking include user-specified thresholds 
for flagging, covariance, morphological filtering and machine learning.  While all of these methods were 
implemented at some stage of development for this project, the latter, machine learning, was a major 
focus area due to its potential for rapid interpretation of surface data and direct incorporation into 
statistical methods.  In this study, the development of algorithms for machine learning and data analysis 
was a collaborative effort by the Savannah River National Laboratory (SRNL) and the University of 
South Carolina, Columbia (USC).   

The process for detection of corrosion and cracking in the 3013 ICCWR consists of first extracting 
surface data from large binary files.  This data is processed by using software that was written to convert 
it into physical attributes.  Data taken by LCM and WAMS measurements consisted of height, color and 
grayscale values; all as functions of a location in a plane projection.  To facilitate this operation, a user-
friendly Graphical User Interface (GUI) was developed to selectively download binary data and 
interrogate its attributes.  The GUI is a complete package that: 

• Reads binary data files to enable viewing and processing of both height and optical data. 
• Stitches individual LCM images into a mosaic with matched edges to give a panoramic view of 

the surface. 
o The image “view” can include height as well as optical data. 

• Can zoom and rotate images and 3D height data for local and regional examination.   
• Allows height thresholds, input by the user, to automatically flag surface features of interest, 

especially pits and other surface irregularities.  
• Permits an expert to label features for training ML algorithms.   
• Computes histograms that summarize the distribution of features.   
• Can incorporate and execute ML algorithms.   
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o The ML algorithms are implemented as a module so that they can readily be replaced as 
they are improved or exchanged with algorithms better suited to a particular data set or 
application. 

• Can apply and visualize statistical operations to surface features.   

Currently, ML algorithms are being refined and developed to identify corrosion and cracking.  Figure 1 
shows a flowchart for the overall development of the methodology, as applied to LCM data.   

2.0 FY2020 Objectives 
The FY2020 objectives for this project were: 

• Develop machine learning methods, based on computer vision, to analyze data (including both 
optical and height data) for corrosion. 

• Identify 3013 data sets, and numerical methods, suitable for near-term development. 
• Determine preliminary sets of attributes for training supervised ML algorithms. 
• Assemble training sets; train and test ML algorithms. 
• Classify features by size, quantity, density, and location. 
• Utilize computer vision to reduce amount of data needing manual analysis. 

3.0 Approach  
Corrosion is strongly, but not exclusively, associated with surface pitting and cracking, coloration, along 
with shapes and patterns of surface features, see Figure 2.  Conversely, not all pits and surface lesions are 
the result of corrosion: some are artifacts of fabrication, impact, scoring or other non-corrosion events.  
Corrosion is identified via the combined properties of pit depth, area, edge contour, color and clustering.  
Software was developed to extract these features from large binary files generated by the LCM, and 
analogously will apply to images from WAMS data.  The individual images, which collectively span the 
ICCWR were stitched together and corrected to eliminate the effect of the canister surface curvature on 
measurement of the local height.  Various image processing methods were tested for identifying the 
presence of cracks and corrosion.  The methods included Deep Neural Networks (DNNs), gradient 
methods, statistical characterization, correlations and filters3,4.  The process is shown schematically in 
Figure 1.   

Samples of LCM image data taken for the 3013 Surveillance Program containing identified cracks, pits 
and other features characteristic of corrosion were used as training data for ML algorithms.  The low 
incidence of corrosion and cracking in the actual ICCWR samples made it necessary to incorporate data 
augmentation schemes for proper training of the ML algorithms developed for this application.  Images 
containing cracks were augmented by generating vertical and horizontal translations of the original 
labeled image (Figure 3).  Capability for labeled image rotation was also developed (Figure 4).  To 
provide an efficient means for handling large amounts of binary image data a GUI was developed to serve 
as an interface with the data files, manipulate and group images, label features for training the ML 
algorithm, group features with user-defined thresholds, correct for sample tilt and curvature, stitch 
images, train ML algorithms, and apply the algorithms for crack and corrosion identification.  Further, 
methods were developed to read binary WAMS data, which has recently been adopted for 3013 image 
interrogation.  After preprocessing, images obtained from LCM and WAMS data were partitioned into 
tiles (rectangular blocks of pixels).  Image data used for training and testing ML algorithms was labeled 
on a per-tile basis.  Studies conducted during FY 20 emphasized that larger views, represented by image 
tiles containing a larger number of pixels, improve the accuracy of crack detection by the ML algorithms.   
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4.0 Results/Discussion 
Cracks, pits and color patterns are all associated in various forms with corrosion.  Pits can readily be 
detected using height data thresholds.  However, cracks, particularly “hairline” cracks, do not always have 
a definitive height signature.  Rather, crack identification is a combination of grayscale image intensity 
(pixel value) and height data.  Initially, it was hoped that standard edge detection methods could be used 
with pixel values to extract crack edges.  Methods considered included: erosion and dilation, blurring, 
Fourier and Gaussian filters, and gradient methods.  Unfortunately, other surface features combined to 
create background noise that was similar in frequency to that associated with crack edges.  To overcome 
this problem, crack identification was attempted through the use of DNNs.   

Generally, the training of the DNN algorithms suffered due to the small amount of crack data available 
and the severe imbalance between the amount of crack data and the amount of non-crack surface.  This 
was particularly true in the early stages of algorithm development.  The lack of images containing cracks 
was offset somewhat by using augmented image data to synthesize additional labeled crack data.   

Studies conducted during FY 20 indicated that larger views, represented by image tiles containing a larger 
number of pixels, improved the accuracy of crack detection by the ML algorithms.  Increasing the amount 
of labeled training data through augmentation, adjusting the DNN algorithms, and increasing the image 
tile size from 64x64 to 112x112 pixels improved the precision and recall for crack identification.  
Examples of labeled training data for cracks, taken from LCM images are shown in Figure 5.  It was 
found that the greatest accuracy was obtained by using a consensus drawn from an ensemble of randomly 
generated Convolutional Neural Network (CNN) algorithms, having the following characteristics: 

• 2 channel input – grayscale contrast-adjusted peak intensity and tilt/curvature-corrected height. 
• A CNN depth of 1 to 5 layers, with each layer consisting of a convolution layer using a Rectified 

Linear Unit (RELU) activation function and a maximum value pooling layer. 
o The convolution layers had kernel sizes ranging from 1x1 to 3x3, with 1 to 128 feature 

maps.   
o The pooling kernel size ranged from 1x1 to 3x3, with strides that ranged from 1x1 to 3x3. 

• The final layer of the CNN consisted of a fully connected layer of 1 to 128 neurons. 

The consensus was a vote by all models in the ensemble on whether or not an image contained a crack.  
Results from this classification method are shown in Figure 6, which compares consensus accuracy with 
that of a single model and shows that the ensemble reached an accuracy greater than that of any individual 
algorithm within it.  It was found that that accuracy was improved when training sets contained an 
approximately an equal number of tiles with and without cracks, achieved via data augmentation of the 
crack tiles.   

5.0 FY2020 Accomplishments 
The FY2020 accomplishments were the result of a collaborative effort by USC and SRNL.  

• The functions developed for image analysis are now available through user-friendly GUIs 
developed specifically for this application.  Functions executed by the GUI include: 

o Data input. 
o Data labeling, flagging of features of interest, and other diagnostics.  Includes zoom 

capability. 
o 3D surface display of height data. 
o Implementation of ML algorithms. 

 ML training methods can be implemented through the GUI. 
 Trained ML algorithms can be applied using the GUI. 
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 ML algorithms are not yet in final form, but GUI access is modular so that 
updated algorithms can readily be imported, replacing the current ones. 

• Different forms of ML algorithms were tested. 
o The algorithms included well regarded CNN’s: such as ResNet 50, AlexNet, and custom 

CNN’s, which gave the best performance so far. 
o It was determined that overfitting (excessive response when applied to test data) and 

recall (a measure of the rate of false negative predictions) need to be improved in CNN 
algorithm development. 

o It was found that deeper neural networks don’t necessarily result in better performance. 
o Hyperparameter optimization was performed, including genetic algorithm methods. 

 Due to the number of hyperparameters, internal gradients (a custom method), 
may be used for optimization. 

• The fine scale detail associated with cracks (in terms of grayscale and color intensity, along with 
height variation) was found to complicate the process of distinguishing them from scratches, 
tooling marks, and sequences of pits/protrusions on the surface. 

o The horizontal machining marks in particular are visually similar to linear cracks, and all 
of the currently identified cracks overlap the machined region, posing challenges for the 
algorithm. 

• Developed Convolutional Autoencoder (CAE) to obtain transfer learning for CNN’s used for 
image analysis. 

o The CAE supports transfer learning for accelerating the training of the CNN’s, to help 
compensate for a relatively small amount of training data. 

• Developed data labeling and augmentation capability.  Labeled data is necessary for training the 
CNN’s and a means for rapid labeling is necessary due to the volume of data required to train the 
algorithms. 

o Developed software to enable rapid labeling of corrosion training data.  
 Completed software for mouse click labeling of corrosion training data for 

supervised learning (Figure 7).  This method associated pixel tagging with tile 
labeling. 

 Labeled pixels are retained during geometric transformation for data 
augmentation (Figure 4). 

 Automated pit flagging functionality and k-means clustering on optical data 
facilitates rapid labeling of multi-tile regions (which can be fine-tuned during 
final labeling). 

o Developed baseline software for data augmentation via simulated geometric variations 
(Figures 3, 4, 7). 

• Developed software that enables reading of WAMS binary data files. 
o USC has provided the software to the Los Alamos National Laboratory (LANL) statistics 

group. 
o SRNL will compare surface contour data from WAMS with that from the LCM files. 

 Tests will include proportionality between data sets for areas and heights of pits 
and protrusions. 

• SRNL is collaborating with the LANL statistics directorate on image analysis methods, possibly 
coupling ML based corrosion/defect identification with statistical evaluation. 

6.0 Conclusions 
A user-friendly Matlab GUI that reads data from either LCM or WAMS files was developed.  The GUI 
can label features for reference, further examination, archival storage, or for development of a training set 
for machine learning.  Features can be called out by user-specified thresholds, manual labeling or 
machine learning algorithms when they have been completed.  The ability to rapidly label data is 
important because of the volume of data required for training machine learning algorithms. 
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The GUI has the flexibility to allow addition of improved ML algorithms, methods for data visualization, 
and statistical computations.  Available data statistics include areas of pits within a defined range of pit 
depths, correlations between RGB or grayscale intensity and relative surface height, covariances between 
values associated with features, and feature histograms. 

Overall, the development of supervised learning algorithms is hindered by a lack of training data.  The 
machine learning algorithms for crack identification are in a state of partial development and require 
improvements to the true positive rate.  This shortcoming is an artifact of the limited training data 
currently used, perhaps more so than the structure of the neural networks.  The best results are had from 
an ensemble consensus of CNN models that differ in their hyperparameters.  The training accuracy of the 
ensemble consensus attained true positive and true negative rates of 100% for ensembles containing more 
than 10 networks.  Upon testing, the consensus accuracy leveled off for ensembles consisting of 25-35 
networks with a true negative rate of approximately 88%, but a true positive rate of only around 14%. 

Data used to train the neural networks used for the machine learning algorithms consisted of unaltered 
LCM images augmented by translated images as shown in Figure 3.  The capability for augmentation via 
rotated images has also been developed.  Although not used for training the algorithms discussed in this 
report, image rotation will be used for future efforts.   

WAMS (ZON file) image data was found to have a pixel pitch of 3.69μm compared to 1 μm for the LCM 
(vk4 file) data.  The significance of the lower resolution for the WAMS data with regards to corrosion and 
crack identification is not clear at this point and will require further evaluation.  Further, the ratio of 
dynamic range of the height data from WAMS to that from the LCM was approximately 41:20.   This 
implies that the WAMS data should more accurately determine height than the LCM data.  Again, the 
significance of the greater dynamic range of the WAMS data relative to the LCM data has not yet been 
evaluated. 

7.0 Recommendations for Future Work 
• Improvement to ML for crack detection. 

o Include hyperparameter optimization and other forms of classification algorithms, e.g. 
decision trees, support vector machines, etc. 

o Further development of AI for corrosion detection based on surface image and height 
data. 

• Testing of ML training based on multiclass labeling.  
o Separately labeling non-crack features that are visually similar to cracks, such as 

machining marks, may help to drive the learning process to learn distinguishing features 
between them and thus improve crack identification over binary labeling.  

o Multiclass training/classification allows for detection of separate classes of corrosion 
features, e.g., cracks versus pitting.  

• Processing of WAMS image data using the GUI interfaces. ML training using WAMS data 
(which requires sufficient WAMS files containing identified cracks/corrosion). 

• Provide a more complete assessment of the impact of reduced image resolution for WAMS 
images on ML capability for identification of cracks and corrosion. 

• Evaluate parity between LCM and WAMS measurements for areas associated with depressions, 
and for pit areal density (individual pits per area). 

• Interface ML crack and corrosion assessments with data statistics. 
o Collaborate with LANL statistics group. 
o Incorporate advanced statistical methods developed by LANL into the GUI. 

• Acquisition of additional training data. 
o Augmentation via geometric manipulation. 
o Using data from corrosion coupons. 
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o Make use of baseline canister images as a large collection of relatively easily labeled 
data, i.e. images demonstrating canister features in the absence of corrosion.  In 
conjunction with multiclass labeling, this data could help to refine classification of non-
corroded surfaces.  (Note: Training on baseline canister images solely as “non-
crack”/“non-corrosion” data in binary-class training would further imbalance the training 
set and thus be detrimental to crack identification.) 

• Investigate potential for using AI methods to relate surface features to diagnostic data for 
subsurface corrosion, voiding and deterioration. 

o Investigate whether there are surface features associated with subsurface voids and cracks 
observed in tomography images. 
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9.0 Figures 

   
Figure 1. Flowchart for data processing and application of machine learning and other analysis 

methods for identification of corrosion and cracking in LCM and WAMS data. 

 

 

 

 
Figure 2. Crack and corrosion data from LCM images.  Data channels include RGB, grayscale and 

height. 
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Figure 3. Data augmentation by translation of image.  Translated offsets are shown in gray. 

 
Figure 4. Data augmentation by rotation of crack image.  The images are cropped show the highlighted 

region at a larger scale.  Green dots (barely visible) along crack are pixels manually selected 
by the analyst by mouse click.  The baseline orientation is shown in (A).  When the image is 
divided into tiles, those containing a crack pixel are highlighted with a red boundary and 
labeled as a crack containing tile.  Tiles that do not contain a crack pixel are defined and 
labeled as not containing a crack and are not highlighted.  In (B) the image and crack pixels 
are rotated 30 degrees in the counterclockwise direction and the image is divided into tiles.  
Again, those tiles containing a crack pixel are highlighted with a red boundary and labeled as 
a crack containing tile.  Tiles that do not contain crack pixels are labeled as such, and not 
highlighted.  Similarly, (C) shows a rotation 60 degrees in the counterclockwise direction.  
The tile labeling based on the marked pixels updates automatically in each new orientation, 
resulting in a multiple distinct sets of crack tiles from the same baseline image. 

 

         
[1]                                        (B)                                                            (C) 

Crack 

Labeled  
Pixels 
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Figure 5. Examples of labeled data consisting of 112x112 pixel tiles (blocks).  The training process 

used bootstrapped data samples that were augmented using horizontal and vertical translation.  
Highlighted regions are tiles that contain cracks. 

 
Figure 6. Comparison of the accuracy of crack identification from an ensemble consensus of CNN 

algorithms with the accuracy of a single model.   
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Figure 7. Pixels selected by mouse click are highlighted by green dots.  The pixels are used to label the 

crack in rotational transformations that augment available data. 

 
Figure 8. Close up of RGB data for the “Acrux” training feature from VK4 (left) and WAMS (right). 
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