Contract No.:

This manuscript has been authored by Savannah River Nuclear Solutions (SRNS), LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

1	Anion-exchanged and quaternary ammonium functionalized MIL-101-Cr metal-organic
2	framework (MOF) for ReO ₄ ⁻ /TcO ₄ ⁻ sequestration from groundwater
3	
4	Dien Li ^{a,*} , Natalia B. Shustova ^b , Corey R. Martin ^b , Kathryn Taylor-Pashow ^a , John C. Seaman ^c ,
5	Daniel I. Kaplan ^a , Jake W. Amoroso ^a , Roman Chernikov ^d
6	
7	^a Savannah River National Laboratory, Aiken, SC 29808, USA
8	^b Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC
9	29208, USA
10	° Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
11	^d Canadian Light Source, Saskatoon, SK S7N 0X4, Canada
12	
13	* Corresponding author.
14	Email: <u>Dien.Li@srs.gov</u> (D. Li).
15	
16	ABSTRACT: There are few effective technologies for the sequestration of highly water-soluble
17	pertechnetate (TcO4 ⁻) from contaminated water despite the urgency of environmental and public
18	health concerns. In this work, anion exchanged and cetyltrimethylammonium bromide (CTAB)
19	functionalized MIL-101-Cr-NO ₃ were investigated for perrhenate (ReO ₄ ⁻), a surrogate of TcO ₄ ⁻ ,

20 sequestration from artificial groundwater. Cl^- , I^- , and $CF_3SO_3^-$ exchanged MIL-101-Cr proved

21 more effective at ReO_4^- removal than the parent MIL-101-Cr-F. Compared to the parent

framework, CTAB functionalized MIL-101-Cr-NO₃ increased ReO₄⁻ removal capacity from 39 to

139 mg/g, improved the reaction kinetics from ~30 to < 10 minutes to reach full adsorption capacity and the selectivity for ReO_4^- over competing NO_3^- , CO_3^{2-} , SO_4^{2-} , and Cl^- . Spectroscopic data indicated that the chemical speciation of Re in the exchanged MIL-101-Cr remained ReO_4^- , indicating synergistic sequestration through both anion exchange and non-ion exchange binding with the positively charged ligand of CTAB. These studies foreshadow potential applications of MOFs for the remediation of ⁹⁹TcO₄⁻ from contaminated environments.

29

30 *Keywords:* Pertechnetate, Perrhenate, CTAB functionalization, MIL-101-Cr, Sequestration

31

32 **1. Introduction**

Pertechnetate (TcO_4^{-}) is the most common Tc contaminant species found at nuclear waste 33 storage and management sites. It is highly water-soluble and mobile, and presents challenges for 34 its sequestration (Icenhower et al., 2010; Meena and Arai, 2017). Previous methodologies for 35 36 removal of TcO₄⁻ such as ion-exchange resins, layered double hydroxides, granular activated carbon, and organoclay materials have been employed with limited TcO₄⁻ loading capacities from 37 aqueous media (Daniels et al., 2019; Gu et al., 2000; Li et al., 2019; Valenta et al., 2010). An 38 39 alternative approach for TcO₄⁻ immobilization is the use of reducing agents (e.g., zero-valent iron, iron sulfides, stannous chloride, and reducing bacteria) (Darab et al., 2007; McBeth et al., 2011; 40 Pierce et al., 2010; Plymale et al., 2011). Recently, studies indicated that TcO₄⁻ can be reduced to 41 form Tc-sulfide phases (Asmussen et al., 2018; Fan et al., 2013; Pearce et al., 2018) or incorporated 42 into a Fe(OOH) structure or corroded steel (Liu et al., 2012) through reductive co-precipitation 43 (Um et al., 2011). There are also several studies to demonstrate that perrhenate (ReO₄⁻), a non-44 radioactive chemical analog for TcO_4^- , can be incorporated into a sodalite structure (Dickson et 45

al., 2015; Pierce et al., 2017). However, removing TcO₄⁻ from environmental systems remains a
largely unsolved challenge, and new technologies are required for Tc sequestration and nuclear
waste treatment to minimize any potential risk to the environment and human health.

49 In comparison to other porous materials, metal-organic frameworks (MOFs) may prove to be an exceptional material for TcO₄⁻ sequestration due to their tunable pore sizes, impressively high 50 51 surface areas, unprecedented modularity, and recyclability (Furukawa et al., 2010; Howarth et al., 2017; Yaghi et al., 1998). MOFs have been investigated over the last two decades primarily for 52 gas adsorption (e.g., hydrogen storage, acetylene separation, and carbon dioxide capture), light 53 harvesting and energy storage, efficient sensors, catalysis, and drug-delivery systems (Furukawa 54 et al., 2013; Li et al., 2012). Recently, zeolitic imidazolate frameworks (ZIFs), zirconium-based 55 frameworks, and several other MOFs have demonstrated chemically stability in aqueous media 56 over a wide pH range 0-14 (Bosch et al., 2014; Howarth et al., 2016a; Wang et al., 2016), and 57 have a high capacity for removing arsenate, selenate and selenite, sulfate, and other oxyanions 58 59 from aqueous systems (Deng et al., 2019; Desai et al., 2016; Howarth et al., 2015a; Howarth et al., 2015b; Howarth et al., 2016b). These recent findings open a very attractive avenue for MOF 60 61 applications for environmental remediation of various contaminants (Mon et al., 2018) and nuclear 62 waste treatment (Banerjee et al., 2016b; Dolgopolova et al., 2018). More recently, several MOFs (Banerjee et al., 2016a; Banerjee et al., 2016c; Drout et al., 2018; Fei et al., 2011; Li et al., 2017b; 63 Mei et al., 2019; Rapti et al., 2018; Sheng et al., 2019; Sheng et al., 2017; Xu et al., 2019; Zhu et 64 al., 2017a) and cationic organic framework (Da et al., 2019; Ding et al., 2020; He et al., 2019; Li 65 et al., 2018; Liu and Han, 2020; Samanta et al., 2018; Shen et al., 2017; Sun et al., 2019; Zhu et 66 67 al., 2017b) have demonstrated the ability to trap ReO₄⁻ from aqueous media.

The overarching objective of the present study is to investigate the effects of anions (e.g., NO_3^- , 68 F^{-} , Cl^{-} , I^{-} , and triflate group (CF₃SO₃⁻)) and cetyltrimethylammonium bromide (CTAB) 69 70 functionalized MIL-101-Cr (MIL, Matérial Institut Lavoisier) for ReO₄⁻/TcO₄⁻ sequestration from groundwater under natural oxic conditions. The chemical formula of MIL-101-Cr is 71 $Cr_3NO_3(H_2O)_2O(BDC)_3 \cdot nH_2O$ (n ~ 25; BDC = 1,4-benzenedicarboxylate; NO_3^- can be substituted 72 by F⁻, Cl⁻, I⁻, or CF₃SO₃⁻). The chromium terephthalate metal–organic framework or MIL-101-73 Cr comprises of trimeric chromium(III) octahedral clusters interconnected by 1,4-74 benzenedicarboxylates, resulting in a highly porous 3-dimentional structure (Fig. 1). This makes 75 76 it an ideal MOF material for contaminant treatment studies. More specifically, MIL-101-Cr materials were synthesized and characterized via a series of analytical techniques, including 77 78 powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and 79 thermogravimetric analysis (TGA). The CTAB-functionalized MIL-101-Cr framework was 80 81 extensively evaluated for its removal capacity of ReO₄⁻, including the effects of reaction time, solution pH values, as well as the impact of coexisting anions on ReO₄⁻ adsorption, desorption, 82 83 and resorption behavior using batch experiments. The MIL-101-Cr frameworks were further 84 characterized after ReO₄⁻ adsorption by PXRD, FTIR, EDS, Re L₃-edge X-ray absorption near-85 edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy to 86 understand their hydrolytic stability, Re chemical speciation, and binding mechanisms within the 87 MIL-101-Cr matrix. The batch experiments were conducted primarily using an artificial 88 groundwater, if not specified, under oxidative conditions. Perrhenate (ReO₄⁻) was chosen as a surrogate for TcO₄⁻ to evaluate its adsorption behavior because of their similar physiochemical 89

properties (e.g., oxidation states, ionic radius, and energy of hydration) (Darab and Smith, 1996;
Icenhower et al., 2010).

92 2. Materials and Methods

93 2.1 MIL-101-Cr synthesis

94 Chromium(III) nitrate nonahydrate (98.5%, Beantown Chemical), aluminum(III) chloride hexahydrate (99%, Alfa Aesar), aluminum(III) iodide (95%, Strem Chemicals), aluminum(III) 95 trifluoromethanesulfonate (99%, Oakwood Chemical), terephthalic acid (99%, TCI Chemicals), 96 97 cetyltrimethylammonium bromide (99%, Oakwood Chemical) hydrofluoric acid (48%, Oakwood Chemical), nitric acid (70%, Sigma-Aldrich), N.N-dimethylformamide (ACS grade, BDH), 98 chloroform (ACS grade, BDH), ethanol (200 proof, Decon Laboratories, Inc) were used as 99 received. MIL-101-Cr-NO₃ and MIL-101-Cr-F was prepared by modified literature procedures 100 101 (Skobelev et al., 2013; Zhao et al., 2015). A modified anion-stripping procedure was used to functionalize MIL-101-Cr-F with Cl, I, and triflate (Mao et al., 2014). A procedure for 102 functionalizing MIL-101-Cr-NO₃ with CTAB was modified from the literature (Li et al., 2017a). 103 All prepared MIL-101 based solids were characterized for phase identification using powder X-104 105 ray diffraction and spectroscopic analysis, and for thermal stability by thermogravimetric analysis. MIL-101-Cr-NO3. Chromium(III) nitrate nonahydrate (0.800 g, 2.00 mmol) and terephthalic 106 acid (0.328 g, 1.97 mmol) were placed in a Teflon-lined autoclave followed by the addition of 4.60 107

mL deionized water and 0.400 mL of HNO₃ (5.00 M, 2.00 mmol). The autoclave was then sealed
and placed in an oven at 210 °C for 8 h. Upon cooling, the resulting green solid was centrifuged

and washed three times with dimethylformamide (DMF), water, and ethanol for 12 h at 80 °C,

111 respectively. Detailed material characterization is described below.

MIL-101-Cr-Cl. An aqueous aluminum(III) chloride hexahydrate solution (15.0 mL, 30.0 mM) was added to a 20 mL vial containing 30.0 mg of MIL-101-Cr-F. The vial was then placed in a preheated oven at 90 °C for 18 h. Upon cooling, the resulting green solid was filtered and washed with 50.0 mL of water three times and 50.0 mL of ethanol three times.

MIL-101-Cr-I. An aqueous aluminum(III) iodide solution (15.0 mL, 30.0 mM) was added to
 a 20 mL vial containing 30.0 mg of MIL-101-Cr-F. The vial was then placed in a preheated oven
 at 90 °C for 18 h. Upon cooling, the resulting green solid was filtered and washed with 50.0 mL
 of water three times and 50.0 mL of ethanol three times.

MIL-101-Cr-CF₃SO₃. An aqueous aluminum(III) trifluoromethanesulfonate (Al(CF₃SO₃)₃)
solution (15.0 mL, 30.0 mM) was added to a 20 mL vial containing 30.0 mg of MIL-101-Cr-F.
The vial was then placed in a preheated oven at 90 °C for 18 h. Upon cooling, the resulting green
solid was filtered and washed with 50.0 mL of water three times and 50.0 mL of ethanol three
times.

MIL-101-Cr-NO₃-CTAB. Under a nitrogen atmosphere, MIL-101-Cr-NO₃ (0.200 g),
 cetyltrimethylammonium bromide (0.300 g), and chloroform (10.0 mL) were added to a 75 mL

heavy-wall high-pressure flask. The flask was sealed and heated at 110 °C while stirring for 3 d.
The resulting green solid was centrifuged and washed three times with chloroform (20.0 mL) and
then dried under vacuum for 3 h.

137 *2.2. Material characterization*

138 PXRD patterns were recorded on a Rigaku Miniflex II diffractometer using Cu Kα radiation $(\lambda = 1.5406 \text{ Å})$ with accelerating voltage and current of 30 kV and 15 mA, respectively. The PXRD 139 data were collected at 20 from 2° to 30°, with a 0.01° step size and a rate of 1°/min. EDS data was 140 141 collected on a TESCAN Vega-3 SBU scanning electron microscope equipped with a backscattered electron detector and EDS capability. TGA was performed on an SDT Q600 thermogravimetric 142 143 analyzer using an alumina boat as a sample holder at a heating rate of 5 °C/min. Fourier-transform infrared spectra were obtained on a PerkinElmer Spectrum 100 using an attenuated total reflection 144 145 accessory.

146 2.3. Batch adsorption experiments

Sodium perrhenate (NaReO₄) was purchased from Sigma-Aldrich (St. Louis, MO, USA). A 147 known amount of NaReO₄ was dissolved in artificial groundwater (AGW) to prepare a 5×10^{-3} M 148 perrhenate stock solution, which was used for sorption experiments. AGW is a simulant of typical 149 uncontaminated groundwater from the Department of Energy's Savannah River Site (SRS), 150 151 located near Aiken, South Carolina, USA (Strom and Kaback, 1992). Batch sorption experiments for obtaining Re adsorption isotherms were conducted in the AGW under ambient atmosphere and 152 temperature (22 °C). For each set of experiments, a sorbent-free control was included at the initial 153 154 Re concentration for qe calculation (described below in Eq. 1) and to provide an indication of Re sorption to the reaction tube during the experiment. Approximately 0.05 g of the solid and a known 155

volume of AGW were added to 15 mL polypropylene centrifuge tubes. Then, the AGW solution 156 was spiked with an appropriate amount of 5×10^{-3} M NaReO₄ stock AGW solution so that the 5 157 mL working solution had a Re concentration ranging from 5×10^{-5} to 5×10^{-3} M. Given the high 158 fission yield for Tc-99 and its long half-life (211,000 yrs), the Re concentrations used are relevant 159 to Tc-99 remediation scenarios. For example, the Tc-99 concentration in low level tank waste at 160 the DOE Savannah River Site (SRS) is ~2 mg/L or 2×10^{-5} M, while the highest Tc concentration 161 measured in any of the SRS high-level waste tanks was $\sim 84 \text{ mg/L}$ or $8.5 \times 10^{-4} \text{ M}$ (Stallings et al., 162 2004). The suspensions were equilibrated on a reciprocating shaker for 6 d to remain consistent 163 with past batch experiments. For one set of batch samples, pH values were not adjusted and 164 measured to be ~4.0 after the 6 d equilibration, but for the other set of batch samples, the pH was 165 adjusted to ~9.0 daily. Each suspension was passed through 0.2 µm pore-size nylon membrane 166 syringe filters. The filtrate was acidified for preservation (2% HNO₃) and analyzed for Re by 167 inductively coupled plasma mass spectrometry (ICP-MS; NexION 300X, Perkin Elmer, Inc.) in 168 169 accordance with the quality assurance and quality control protocols of EPA method 6020A (USEPA, 2007). 170

Similarly, batch experiments were conducted to evaluate ReO_{4^-} adsorption on MIL-101-Cr-NO₃-CTAB in AGW in relation to reaction time, pH values, and co-existing anions, as well as ReO₄⁻ desorption/resorption cycles. Unless specified, typical experimental conditions were: [ReO₄⁻] = 5 × 10⁻⁵ M, solid/liquid = 10 g/L, reaction time = 1 d, pH = ~4.0 (without pH adjustment), and two replicates. However, it is noted that de-ionized water was used for the evaluation of co-existing anions on Re adsorption. The sorption/resorption experiments were also conducted using pH ~4.0 AGW with an initial ReO₄⁻ concentration of 5 × 10⁻⁵ M and solid/liquid

ratio of 10 g/L, while the Re desorption experiment was conducted using 1 M potassium iodide
(KI) solution. KI was purchased from Fisher Scientific (Hampton, NH, USA).

180 *2.4. Synchrotron XANES and EXAFS measurements*

After the batch adsorption experiments, the solid samples were air dried and collected for 181 182 spectroscopic characterization. 50.0 mg of each of the air-dried powder samples was pressed into a 6.3-mm diameter disk pellet and sealed by Kapton tape. Rhenium L₃-edge XANES and EXAFS 183 spectra were collected using the Canadian Light Source (CLS) Biological X-ray Absorption 184 185 Spectroscopy (BioXAS, 07ID-2) beamline (Saskatoon, SK, Canada). The BioXAS beamline is optimized for high sensitivity and high-resolution hard X-Ray absorption spectroscopy 186 experiments. Double crystal Si (220) monochromator was used to scan the photon energy in the 187 vicinity of Re L₃ absorption edge at 10535 eV. Rh-coated toroidal mirrors performed the rejection 188 of 2^{nd} and higher harmonics and moderate beam focusing down to $0.6 \times 2 \text{ mm}^2$ in the sample 189 position with total flux in the order of 10^{12} photons/s. The experiment was carried out in the energy 190 dispersive fluorescent mode, where the characteristic X-Ray fluorescence from Re was collected 191 by a Canberra 32-element Ge detector and the incident by N₂-filled ionization chamber. Tungsten 192 193 L_3 edge (10207 eV) absorption on the tungsten reference foil was measured with every scan for energy calibration. The CLS storage ring was operated at 140–200 mA during the measurements. 194

All the collected spectra were processed and analyzed using the IFEFFIT software package including Athena and Artemis (Ravel and Newville, 2005). Data from multiple scans were processed using Athena by aligning and merging the spectra followed by background subtraction using the AUTOBK algorithm. Rhenium L₃-edge EXAFS data analysis was conducted on the merged and normalized spectra using Artemis. Theoretical models were constructed with the program FEFF7 (Ravel and Newville, 2005). Sodium perrhenate was used as a reference structural model (Atzesdorfer and Range, 1995). Fits to the Re EXAFS data were made in R space (R from 1 to 3.2 Å) and obtained by taking the Fourier transform (FT) of $\chi(k)$ (k from 2 to 14) with a k weighting of 2.

204 **3. Results**

205 3.1. Characterization and ReO_4^- Removal of MIL-101-Cr with Different Anions

PXRD patterns of MIL-101-Cr with various anions (i.e., NO₃⁻, F⁻, Cl⁻, I⁻, and CF₃SO₃⁻) are 206 shown in Fig. 2A. The PXRD patterns are in agreement with the simulated pattern of MIL-101-Cr 207 208 (Zhao et al., 2015), due to the isostructural nature of the prepared frameworks. The EDS spectra of F-, Cl-, I-, and CF₃SO₃-exchanged MIL-101-Cr MOFs are shown in Fig. 2B which contain the 209 210 characteristic peaks for F, Cl, I, and S, respectively, reaffirming successful preparation of the anion-exchanged MIL-101-Cr materials. The SEM images of the MIL-101-Cr with different 211 anions are also shown in Fig. S1 (Supporting Information), which indicated the locations where 212 the EDS spectra were collected. All these MIL-101-Cr samples were fine powder. The TGA 213 profiles of the MIL-101-Cr with different anions possess similar features for all materials as shown 214 215 in Fig. 2C and are in agreement with the literature data (Zhao et al., 2015).

Batch ReO_4^- adsorption experiments were conducted from AGW at equilibrium pH values to compare the sequestration performance among these MIL-101-Cr derivatives with different exchangeable anions. The mass of Re sorbed (q_e, mg/g) was calculated using equation 1:

219
$$q_e = \frac{(C_0 - C_e) \times V}{M} \tag{1}$$

where C_0 (mg/L) is the initial concentration in the control samples, C_e (mg/L) is the final concentration remaining in the solution, V is the volume of the solution (mL), and M is the mass 222 of the sorbent (g). Fig. 2D shows that with MIL-101-Cr-NO₃ as a baseline, MIL-101-Cr-F was slightly less effective for ReO₄⁻ removal; while Cl-, I-, and CF₃SO₃-exchanged MIL-101-Cr 223 224 materials had improved capacity for ReO₄⁻ sequestration. The ranking of anion-exchanged MIL-101-Cr for ReO₄⁻ removal was $F^- < NO_3^- < Cl^- \approx I^- \approx CF_3SO_3^-$, which, within batch experimental 225 uncertainty, was essentially in agreement with the so-called Hofmeister order for predicting anion 226 227 partitioning or exchange in liquid/liquid systems (Custelcean and Moyer, 2007). These results can be explained in terms of ionic radius and standard Gibbs energies of hydration ($\Delta G_{\rm h}^{\circ}$) (Custelcean 228 229 and Moyer, 2007; Darab and Smith, 1996). I⁻ and CF₃SO₃⁻ have a similar ionic radius and $\Delta G_{\rm h}^{\circ}$ 230 to those of $\text{ReO}_4^-/\text{TcO}_4^-$, which is favorable for ReO_4^- exchange in the corresponding MIL-101-Cr materials and improves the ReO₄⁻ removal performance. On the other hand, the ionic radius 231 and $\Delta G_{\rm h}^{\circ}$ of F⁻ are much smaller than those of ReO₄⁻/TcO₄⁻, which is not favorable for ReO₄⁻ 232 exchange into MIL-101-Cr-F. However, MIL-101-Cr-Cl was an exception, with the ionic radius 233 and $\Delta G_{\rm h}^{\circ}$ of Cl⁻ smaller than those of NO₃⁻, and much smaller than those of ReO₄⁻/TcO₄⁻, but the 234 235 ReO₄⁻ removal capacity by MIL-101-Cr-Cl was meaningfully improved compared to that of conventional MIL-101-Cr-NO₃. 236

237 3.2. Characterization CTAB-functionalized MIL-101-Cr-NO₃

Conventional MIL-101-Cr-NO₃ was selected for CTAB functionalized based on a modified literature procedure and was further studied for its improved ReO_4^- removal capacity and binding chemistry. PXRD patterns, FTIR spectra, and TGA profiles of MIL-101-Cr-NO₃ with and without CTAB functionalization are shown in Fig. 3A, 3B, and 3C, respectively. After CTAB functionalization, the PXRD pattern remained unchanged, indicating that the derivative remained isostructural to MIL-101-Cr. Two characteristic FTIR stretches at 2861 cm⁻¹ and 2925 cm⁻¹ indicated the presence of CTAB (Li et al., 2008), and therefore, confirmed successful functionalization of MIL-101-Cr-NO₃ (Campbell et al., 2004). The TGA profiles of MIL-101-CrNO₃ with and without CTAB functionalization possess similar features.

247 3.3. ReO₄⁻ removal of CTAB-functionalized MIL-101-Cr-NO₃

248 ReO_4^- Removal Isotherms. Adsorption isotherms of ReO₄⁻ onto MIL-101-Cr-NO₃ with and249without CTAB functionalization were obtained and are shown in Fig. 4A at an equilibration pH250~4.0 and Fig. 4B at an equilibration pH ~9.0. The Langmuir isotherm model (equation 2) was used251to describe the data for ReO₄⁻ adsorption on MIL-101-Cr-NO₃-CTAB, as shown in the inset of252Fig. 4:

253
$$\frac{C_e}{q_e} = \frac{1}{q_{\text{max}}} C_e + \frac{1}{K_L \times q_{\text{max}}}$$
(2)

where q_e is the mass of ReO₄⁻ sorbed onto the sorbent at equilibrium, q_{max} is the saturation sorption 254 255 capacity, C_e is the Re concentration in solution at equilibrium, and K_L is the Langmuir constant that is directly related to the binding site affinity. The obtained saturation capacity of MIL-101-256 Cr-NO₃-CTAB for ReO₄⁻ removal from AGW was 139 mg ReO₄^{-/}/g sorbent ($R^2 = 0.948$) at the 257 equilibrium pH value of ~4.0 and 39 mg ReO₄^{-/}g sorbent ($R^2 = 0.942$) at the equilibrium pH value 258 259 of ~9.0. In addition, we attempted to fit Re isotherm data for MIL-101-Cr-NO₃ (without CTAB functionalization) at pH values of ~4.0 and ~9.0 to both the Langmuir and Freundlich models, but 260 261 neither model produces satisfactory results with R^2 values of < 0.90. However, the saturation capacity of MIL-101-Cr-NO₃ for ReO₄⁻ removal from AGW was ~50 mg ReO₄⁻/g sorbent at pH 262 4.0 and ~14 mg ReO₄^{-/}g sorbent at pH 9.0 (Fig. 4, red). Therefore, CTAB functionalization on 263 MIL-101-Cr-NO₃ significantly improved its capacity for ReO₄⁻ removal at pH 4.0 and 9.0 AGW. 264 It is noted that the ReO₄⁻ removal capacity obtained for CTAB functionalized MIL-101-Cr-NO₃ 265 was not far behind that of NU-1000 (i.e., 210 mg ReO₄^{-/}/g sorbent) (Drout et al., 2018); however, 266

several recently reported MOF or cationic organic polymer materials have demonstrated much
higher sorption capacities up to 1000 mg ReO₄^{-/}/g sorbent (Da et al., 2019; He et al., 2019; Li et
al., 2017b; Liu and Han, 2020; Mei et al., 2019; Sheng et al., 2017; Sun et al., 2019; Xu et al.,
2019; Zhu et al., 2017a; Zhu et al., 2017b).

Effect of Contact Time. Batch experiments to obtain Re isotherms (Fig. 4) of the MIL-101-271 272 Cr-NO₃ samples with and without CTAB functionalization were initially conducted for 6 d, based on our previous experiments. The effect of contact time of ReO₄⁻ with these two MOF samples 273 274 was further investigated to evaluate the anion exchange rate and equilibrium time. As shown in Fig. 5A, under specified experimental conditions, ~90% of ReO₄⁻ in AGW was removed by MIL-275 101-Cr-NO₃ within 30 min, while nearly 100% of ReO₄⁻ in AGW was removed by CTAB 276 functionalized MIL-101-Cr-NO₃ within 10 min. Although the kinetic rate constant was not 277 attempted to quantify, these results indicate that CTAB functionalized MIL-101-Cr-NO₃ improves 278 sorption kinetics and provides higher capacity for ReO₄⁻ removal compared to MIL-101-Cr-NO₃. 279

Effect of Solution pH. As shown in Fig. 5B, the ReO₄⁻ removal percentage diminished to 280 nearly zero for MIL-101-Cr-NO₃ and to ~15% for MIL-101-Cr-NO₃-CTAB at pH ~10.0, which is 281 282 in agreement with previous results indicating that the saturation capacity for ReO_4^- removal from pH 4.0 AGW was much higher than from pH 9.0 AGW (Fig. 4). These results may indicate that 283 these MIL-101-Cr materials have limited applications to $\text{ReO}_4^-/\text{TeO}_4^-$ sequestration from alkaline 284 285 media such as legacy liquid nuclear waste. Furthermore, these two samples were evaluated to determine if they are effective at $\text{ReO}_4^-/\text{TcO}_4^-$ removal from acidic aqueous media since used fuel 286 rods are usually dissolved in highly concentrated nitric acid solutions. As shown in Fig. 5B, for 287 288 both MIL-101-Cr-NO₃ samples with and without CTAB functionalization, the ReO₄⁻ removal capacity diminished with a decreasing pH and its removal rate was reduced to ~13% in a 3 M nitric 289

acid solution. These results indicate that the MIL-101-Cr-NO₃ samples become less effective for ReO₄⁻/TcO₄⁻ removal in strongly acidic aqueous media; however, it could prove effective for ReO₄⁻/TcO₄⁻ removal from weekly acidic to neutral aqueous media like contaminated groundwater. Although the samples recovered from the 3 M nitric acid solution were not evaluated for the hydrolytic stability, the MIL-101-Cr MOF should be stable in this acidic solution, as it has been proven to be stable in pH = 0 HCl solution for two months (Leus et al., 2016).

Effect of Competing Anions. There is generally an excess of competing anions, such as NO₃⁻, 296 CO₃²⁻, SO₄²⁻, and Cl⁻, in contaminated environmental systems, which usually have detrimental 297 effects on the selective sequestration of ReO₄^{-/}/TcO₄⁻. Thus, ReO₄⁻ removal by the two MOF 298 samples was investigated in the presence of one of these competing anions in deionized water. Fig. 299 5C shows ReO_4^- removal quantity and percentage in the presence of 5 mM NO₃⁻, CO₃²⁻, SO₄²⁻ or 300 Cl⁻ in comparison with de-ionized water. 5 mM of each competing anion was 100 times the 301 concentration of ReO₄⁻ (i.e., 5×10^{-5} M) in the tested systems. For MIL-101-Cr-NO₃, the presence 302 of 5 mM NO₃⁻, CO₃²⁻, or Cl⁻ reduced ReO₄⁻ removal capacity by 32%, 34%, and 23%, 303 respectively, while the presence of 5 mM SO_4^{2-} reduced ReO_4^{-} removal capacity by 89%. These 304 results indicated that MIL-101-Cr-NO₃ had moderate affinity and selectivity for ReO₄⁻ over NO₃⁻, 305 CO_3^{2-} , or Cl⁻, but SO_4^{2-} significantly reduced the affinity and selectivity of MIL-101-Cr-NO₃ for 306 ReO₄⁻ removal. On the other hand, for MIL-101-Cr-NO₃-CTAB, the presence of 5 mM NO₃⁻, 307 CO₃²⁻, and Cl⁻ reduced ReO₄⁻ removal capacity by 7%, 5%, and 2%, respectively, while the 308 presence of 5 mM SO_4^{2-} reduced ReO₄⁻ removal capacity by only 18%. These results indicate that 309 310 with CTAB functionalization, MIL-101-Cr-NO₃ substantially improves sorption affinity and selectivity for ReO₄⁻ over all tested competing anions. 311

ReO₄⁻ Desorption and Resorption Studies. ReO₄⁻ desorption and resorption behavior of 312 MIL-101-Cr-NO₃ with and without CTAB functionalization was investigated by using 1 M KI 313 314 solution as an extracting agent. Fig. 5D shows ReO₄⁻ removal percentages of MIL-101-Cr-NO₃ and MIL-101-Cr-NO₃-CTAB during sorption/desorption cycles. Within batch experimental 315 uncertainty, the ReO₄⁻ sorption/desorption of the two MOF materials were similar. Initially 92-316 317 97% of ReO₄⁻ was removed by the sorbent materials, then 60–62% of the anion was eluted during the first desorption step; and then $\sim 98\%$ of ReO₄⁻ was sorbed by these two MOFs during the 318 319 subsequent two resorption steps. These results indicate that ReO_4^- was not completely eluted by 1 320 M KI solution, and after the KI desorption step, the materials remained effective for ReO₄⁻ removal until reaching its saturation capacity. 321

322 *3.3. Characterization of CTAB-functionalized MIL-101-Cr-NO₃ after* ReO₄⁻ *reaction*

PXRD, FTIR and EDS. After batch experiments, solid samples were retrieved and air-dried 323 for further characterization to determine hydrolytic stability of the sorbents, Re chemical 324 speciation and binding mechanisms. Fig. 6 shows PXRD patterns (A), and FTIR spectra (B) of 325 MIL-101-Cr-NO₃-CTAB that was exposed to 5×10^{-4} M ReO₄⁻ in pH 4.1 and 8.5 AGW, in 326 comparison with original MIL-101-Cr-NO₃-CTAB without ReO₄⁻ exposure. The PXRD patterns 327 indicated that MIL-101-Cr-NO₃-CTAB preserved its integrity and was stable in pH 4.1 AGW; but 328 exhibited some sign of instability in pH 8.5 AGW. However, the SEM images of MIL-101-Cr-329 330 CTAB after ReO₄⁻ exposure in pH 4.1 and 8.5 AGW are shown in Fig. S2 (Supporting Information), which indicated that the morphology of this sample after ReO_4^- reaction at pH 4.1 331 and 8.5 was little changed, but slightly different from the morphology of MIL-101-Cr-NO₃-CTAB 332 333 without reaction with ReO₄⁻ (Fig. S1F, Supporting Information).

334	The resonance at ~910 cm ^{-1} in the FTIR spectra of MIL-101-Cr-NO ₃ -CTAB exposed to ReO ₄ ^{-1}
335	is a characteristic peak for ReO_4^- indicating that ReO_4^- was removed from both the pH 4.1 and 8.5
336	solutions and captured by the MIL-101-Cr-NO ₃ -CTAB samples (He et al., 2019). However, it is
337	noted that in the sample retrieved from pH 8.5 batch experiment, there was an additional peak at
338	~1550 cm ⁻¹ and the peaks at 2861 and 2925 cm ⁻¹ for CTAB were stronger in intensity (Li et al.,
339	2008), compared to the sample retrieved from the pH 4.1. The EDS spectra of these samples are
340	shown in Fig. 6C. For MIL-101-Cr-NO ₃ -CTAB without ReO_4^- exposure, the peak at ~2.63 keV
341	was Cl, due to chloroform residue, and the peak at ~1.49 keV was Br, indicating that Br^- was
342	partially exchanged into MIL-101-Cr-NO3 when CTAB was functionalized onto its surfaces. For
343	MIL-101-Cr-NO ₃ -CTAB samples exposed to ReO_4^- , the peak at ~1.83 keV was Re, further
344	confirming Re removal by the MOF. It is noted that the Re peak in the pH 8.5 sample is stronger
345	than that in the pH 4.1 sample, in agreement with FTIR data. While both FTIR and EDS spectra
346	indicated that Re loading onto the sample at pH 8.5 was higher than that in the sample at pH 4.1,
347	this contrast the batch experimental data which indicated that the quantity of Re removed was 34
348	mg ReO ₄ ^{-/} g sorbent on the pH 8.5 sample, and 46 mg ReO ₄ ^{-/} g sorbent on the pH 4.1 sample.

Re L3-edge XANES and EXAFS. The Re L3-edge XANES spectra of MIL-101-Cr-NO3 and 349 MIL-101-Cr-NO₃-CTAB after exposure to 5×10^{-4} M ReO₄⁻ in pH 4.1 and 8.5 AGW are shown 350 in Fig. 7A, in comparison with the spectrum of a standard, sodium perrhenate (NaReO₄). The L₃-351 edge absorption peaks of this MOF sample exposed to ReO₄⁻ were at 10535.1 eV, with another 352 peak at about 10546.4 eV. Linear combination fitting indicated that all the Re associated with the 353 two samples was ReO₄⁻. Thus, graphical comparison and linear combination fitting clearly 354 indicated that the sequestered Re species by MIL-101-Cr-NO₃-CTAB in AGW at an equilibrium 355 356 pH of 4.1-8.5 was ReO₄⁻, in agreement with FTIR.

Re L₃-edge EXAFS spectra in k-space, Fourier transform plots in R magnitude and real R of 357 these two samples are shown in Fig. 7B, 7C, and 7D, respectively, together with the corresponding 358 359 spectrum of NaReO₄. The experimental data are shown as dotted lines, and EXAFS fits are shown as colored lines. The fitted EXAFS parameters of these samples are summarized in Table 1. The 360 Re L₃-edge EXAFS data of the MIL-101-Cr-NO₃-CTAB samples exposed to ReO₄⁻ were fitted 361 362 with tetrahedral Re-O paths at a Re-O distance of 1.730 ± 0.004 Å with a coordination number of 3.8 ± 0.3 . Including the second Re-O path barely improved their fitting statistics. The EXAFS data 363 fitting of these samples was acceptable as measured by the R factor of 0.01-0.02 (Table 1). Thus, 364 365 the Re L₃-edge EXAFS spectra of MIL-101-Cr-NO₃-CTAB exposed to ReO₄⁻ in both pH 4.1 and 8.5 AGW confirmed that the Re species associated with the sorbents was ReO₄⁻. In addition, the 366 Re L₃-edge XANES and EXAFS spectra of MIL-101-Cr with different exchangeable anions (i.e., 367 NO₃⁻, F⁻, Cl⁻, I⁻, and CF₃SO₃⁻) exposed to 5×10^{-4} M ReO₄⁻ in pH 3.5–3.8 AGW are shown in 368 Fig. S3 (Supporting Information). The Re L₃-edge XANES and EXAFS spectra of selected MIL-369 370 101-Cr-NO₃-CTAB samples from the isotherm batch experiments are also shown in Fig. S4 (Supporting Information). All these results consistently confirmed that Re chemical speciation in 371 the MIL-101-Cr materials studied in the present work was ReO₄⁻. 372

373 4. Discussion

The determination of ReO_4^- binding chemistry in MIL-101-Cr-NO₃-CTAB is less certain. The signals beyond the first Re-O path were relatively weak in Re L₃-edge EAXFS spectra (Fig. 7). Although including the second Re-O path slightly improved their fitting statistics, it is hard to distinguish whether the Re second path was Re-O, Re-N or Re-C in this sample, because O, N and C are light scatters similarly. Likely, ReO₄⁻ was bound and removed by MIL-101-Cr-NO₃-CTAB through two pathways. First, ReO₄⁻ was ion exchanged to substitute for NO₃⁻/Br⁻ in MIL-101-Cr380 NO₃-CTAB, as expected. Second, ReO₄⁻ might also be bound with the positively charged sites of CTAB, in agreement with Re desorption data (Fig. 5D). A 1 M solution of KI was able to desorb 381 382 ~60% of Re sorbed on MIL-101-Cr-NO₃-CTAB, this was likely the proportion of ReO_4^- bound with the positively charged sites of CTAB, as 1 M KI has been demonstrated to desorb >90% of 383 384 ReO_4^- sorbed by quaternary ammonium organoclays. The desorption mechanism is likely due to 385 I⁻ ion exchange for ReO₄⁻ bound with quaternary ammonium ligand like CTAB (Li et al., 2019). In contrast, the portion of ReO_4^- exchanged into the MIL-101-Cr-NO₃ pores might not be 386 effectively desorbed by 1 M KI solution. This evidence also supports that ReO₄⁻ is sequestered by 387 CTAB functionalized MIL-101-Cr-NO₃ through two possible mechanisms: anion exchange with 388 NO₃⁻ and a non-ion exchange binding with the ligand of the functionalized CTAB molecule. 389

390 5. Conclusions

CTAB functionalized MIL-101-Cr-NO₃ was significantly effective for ReO₄⁻ removal from 391 week acid to near neutral groundwater. The ReO₄⁻ removal capacity was 139 mg/g, the reaction 392 kinetics were fast, reaching full capacity within 10 minutes, and the selectivity for ReO₄⁻ was 393 enhanced over co-existing competing anions (i.e., NO₃⁻, CO₃²⁻, SO₄²⁻, and Cl⁻), which was 394 especially significant for SO₄²⁻. ReO₄⁻ might be synergistically sequestered through both anion 395 exchange with NO₃⁻/Br⁻ and non-ion exchange binding with the positively charged ligand of the 396 functionalized CTAB molecule. These studies suggest that functionalized MOF materials may be 397 applied to the sequestration and remediation of $^{99}\text{TcO}_4^-$ from contaminated environmental systems 398 with high efficiencies. It is noted that these materials were very effective at ${}^{99}\text{TcO}_4^-$ removal from 399 acidic to neutral pH groundwater; however, they became less stable and effective with increased 400 401 pH values in groundwater.

402 Acknowledgements

403 This work was supported by the Laboratory Directed Research and Development (LDRD) program (Grant No.: LDRD-2018-00055) within the Savannah River National Laboratory 404 405 (SRNL). Work was conducted at SRNL under the U.S. Department of Energy Contract DE-AC09-96SR18500. Dr. Seaman's participation in the current research was supported through a 406 407 Cooperative Agreement (DEFC09-07-SR22506) between the U.S. Department of Energy and The 408 University of Georgia Research Foundation. This research also used the BioXAS beamline of the Canadian Light Source (CLS) that was supported by the NSERC of Canada, the NRC of Canada, 409 410 the Canadian Institutes of Health Research, and the Province of Saskatchewan. N.B.S. gratefully 411 acknowledges the support of the Center for Hierarchical Wasteform Materials (CHWM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science 412 under Award DE-SC0016574, the Dreyfus Teaching-Scholar Award supported by the Dreyfus 413 foundation, and the Sloan Research Fellowship provided by the Alfred P. Sloan foundation. 414

415 Supporting Information

The Supporting Information related to this article can be found, on the online version, atDOI,

A figure showing scanning electron microscopy images of MIL-101-Cr with different anions and

419 CTAB functionalized MIL-101-Cr-NO₃ (Fig. S1). A figure showing scanning electron

420 microscopy (SEM) images of MIL-101-Cr-CTAB after ReO₄⁻ adsorption from pH 4.1 and 8.5

421 artificial groundwater (Fig. S2). A figure showing Re L3-edge X-ray absorption spectra of MIL-

422 101-Cr with different anions after exposure to 5×10^{-4} M ReO₄⁻ in artificial groundwater at pH

423 ~4.0 (Fig. S3). A figure showing Re L₃-edge X-ray absorption spectra of MIL-101-Cr-NO₃-

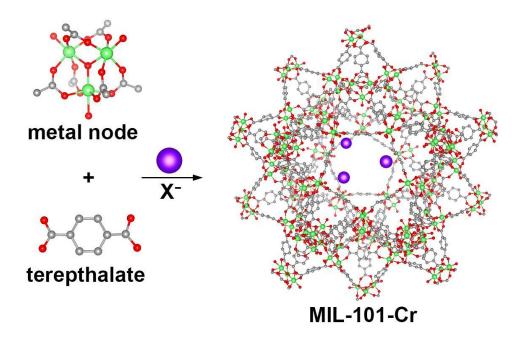
424 CTAB after exposure to ReO_4^- of varying concentrations in artificial groundwater at pH ~4.0

425 and ~9.0 (Fig. S4).

426	References
427	
428	Asmussen, R. M., Pearce, C. I., Miller, B. W., Lawter, A. R., Neeway, J. J., Lukens, W. W.,
429	Bowden, M. E., Miller, M. A., Buck, E. C., Serne, R. J., and Qafoku, N. P. (2018). Getters
430	for improved technetium containment in cementitious waste forms. J. Hazard. Mater. 341,
431	238-247.
432	Atzesdorfer, A., and Range, K. J. (1995). Sodium metaperrhenate, NaReO4 - High-pressure
433	synthesis of single-crystals and structure refinement. Zeits. Naturf. Sect. B - J. Chem. Sci.
434	50, 1417-1418.
435	Banerjee, D., Elsaidi, S. K., Aguila, B., Li, B. Y., Kim, D., Schweiger, M. J., Kruger, A. A.,
436	Doonan, C. J., Ma, S. Q., and Thallapally, P. K. (2016a). Removal of pertechnetate-related
437	oxyanions from solution using functionalized hierarchical porous frameworks. Chem.
438	<i>Euro</i> . J. 22, 17581-17584.
439	Banerjee, D., Kim, D., Schweiger, M. J., Kruger, A. A., and Thallapally, P. K. (2016b). Removal
440	of TcO ₄ ⁻ ions from solution: Materials and future outlook. <i>Chem. Soc. Rev.</i> 45, 2724-2739.
441	Banerjee, D., Xu, W. Q., Nie, Z. M., Johnson, L. E. V., Coghlan, C., Sushko, M. L., Kim, D.,
442	Schweiger, M. J., Kruger, A. A., Doonan, C. J., and Thallapally, P. K. (2016c). Zirconium-
443	based metal-organic framework for removal of perrhenate from water. Inorg. Chem. 55,
444	8241-8243.
445	Bosch, M., Zhang, M., and Zhou, H. C. (2014). Increasing the stability of metal-organic
446	frameworks. Adv. Chem. 2014, 182327.
447	Campbell, R. A., Parker, S. R. W., Day, J. P. R., and Bain, C. D. (2004). External reflection FTIR
448	spectroscopy of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) on
449	an overflowing cylinder. <i>Langmuir</i> 20, 8740-8753.
450	Custelcean, R., and Moyer, B. A. (2007). Anion separation with metal-organic frameworks. Euro.
451	J. Inorg. Chem., 1321-1340.
452	Da, H. J., Yang, C. X., and Yan, X. P. (2019). Cationic covalent organic nanosheets for rapid and
453	selective capture of perrhenate: An analogue of radioactive pertechnetate from aqueous
454	solution. <i>Environ. Sci. Technol.</i> 53, 5212-5220.
455	Daniels, N., Franzen, C., Murphy, G. L., Kvashnina, K., Petrov, V., Torapava, N., Bukaemskiy,
456	A., Kowalski, P., Si, H., Ji, Y., Holzer, A., and Walther, C. (2019). Application of layered
457	double hydroxides for Tc-99 remediation. Appl. Clay Sci. 176, 1-10.
458	Darab, J. G., Amonette, A. B., Burke, D. S. D., Orr, R. D., Ponder, S. M., Schrick, B., Mallouk, T.
459	E., Lukens, W. W., Caulder, D. L., and Shuh, D. K. (2007). Removal of pertechnetate from
460	simulated nuclear waste streams using supported zerovalent iron. <i>Chem. Mater.</i> 19, 5703-5713.
461 462	Darab, J. G., and Smith, P. A. (1996). Chemistry of technetium and rhenium species during low-
462 463	level radioactive waste vitrification. <i>Chem. Mater.</i> 8, 1004-1021.
403 464	Deng, S. Q., Mo, X. J., Zheng, S. R., Jin, X., Gao, Y., Cai, S. L., Fan, J., and Zhang, W. G. (2019).
465	Hydrolytically stable nanotubular cationic metal-organic framework for rapid and efficient
466	removal of toxic oxo-anions and dyes from water. <i>Inorg. Chem.</i> 58, 2899-2909.
400 467	Desai, A. V., Manna, B., Karmakar, A., Sahu, A., and Ghosh, S. K. (2016). A water-stable cationic
467	metal-organic framework as a dual adsorbent of oxoanion pollutants. Angew. Chem.
469	Internat. Edit. 55, 7811-7815.
105	Internat. Dati. 55, 1011-1015.

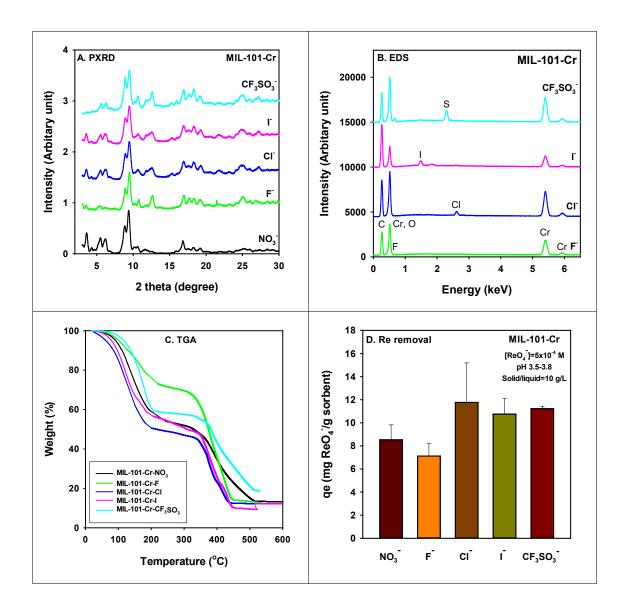
- Dickson, J. O., Harsh, J. B., Lukens, W. W., and Pierce, E. M. (2015). Perrhenate incorporation
 into binary mixed sodalites: The role of anion size and implications for technetium-99
 sequestration. *Chem. Geol.* 395, 138-143.
- Ding, M., Chen, L., Xu, Y. W., Chen, B., Ding, J., Wu, R. L., Huang, C., He, Y., Jin, Y. D., and
 Xia, C. Q. (2020). Efficient capture of Tc/Re(VII, IV) by a viologen-based organic polymer
 containing tetraaza macrocycles. *Chem. Eng. J.* 380: 122581.
- Dolgopolova, E. A., Rice, A. M., and Shustova, N. B. (2018). Actinide-based MOFs: A middle
 ground in solution and solid-state structural motifs. *Chem. Commun.* 54, 6472-6483.
- Drout, R. J., Otake, K., Howarth, A. J., Islamoglu, T., Zhu, L., Xiao, C. L., Wang, S., and Farha,
 O. K. (2018). Efficient capture of perrhenate and pertechnetate by a mesoporous Zr metalorganic framework and examination of anion binding motifs. *Chem. Mater.* 30, 1277-1284.
- Fan, D. M., Anitori, R. P., Tebo, B. M., Tratnyek, P. G., Pacheco, J. S. L., Kukkadapu, R. K.,
 Engelhard, M. H., Bowden, M. E., Kovarik, L., and Arey, B. W. (2013). Reductive
 sequestration of pertechnetate ⁹⁹TcO₄⁻ by nano zerovalent iron (nZVI) transformed by
 abiotic sulfide. *Environ. Sci. Technol.* 47, 5302-5310.
- Fei, H., Bresler, M. R., and Oliver, S. R. J. (2011). A new paradigm for anion trapping in high
 capacity and selectivity: Crystal-to-crystal transformation of cationic materials. J. Am. *Chem. Soc.* 133, 11110-11113.
- Furukawa, H., Cordova, K. E., O'Keeffe, M., and Yaghi, O. M. (2013). The Chemistry and
 Applications of Metal-Organic Frameworks. *Science* 341, Article 1230444.
- Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q.,
 O'Keeffe, M., Kim, J., and Yaghi, O. M. (2010). Ultrahigh porosity in metal-organic
 frameworks. *Science* 329, 424-428.
- Gu, B. H., Brown, G. M., Bonnesen, P. V., Liang, L. Y., Moyer, B. A., Ober, R., and Alexandratos,
 S. D. (2000). Development of novel bifunctional anion exchange resins with improved
 selectivity for pertechnetate sorption from contaminated groundwater. *Environ. Sci. Technol.* 34, 1075-1080.
- He, L. W., Liu, S. T., Chen, L., Dai, X., Li, J., Zhang, M. X., Ma, F. Y., Zhang, C., Yang, Z. X.,
 Zhou, R. H., Chai, Z. F., and Wang, S. (2019). Mechanism unravelling for ultrafast and
 selective ⁹⁹TcO₄⁻ uptake by a radiation-resistant cationic covalent organic framework: a
 combined radiological experiment and molecular dynamics simulation study. *Chem. Sci.*10, 4293-4305.
- Howarth, A. J., Katz, M. J., Wang, T. C., Platero-Prats, A. E., Chapman, K. W., Hupp, J. T., and
 Farha, O. K. (2015a). High efficiency adsorption and removal of selenate and selenite from
 water using metal-organic frameworks. *J. Am. Chem. Soc.* 137, 7488-7494.
- Howarth, A. J., Liu, Y. Y., Hupp, J. T., and Farha, O. K. (2015b). Metal-organic frameworks for
 applications in remediation of oxyanion/cation-contaminated water. *Crystengcomm* 17,
 7245-7253.
- Howarth, A. J., Liu, Y. Y., Li, P., Li, Z. Y., Wang, T. C., Joseph T. Hupp, J. T., and Farha, O. K.
 (2016a). Chemical, thermal and mechanical stabilities of metal–organic frameworks. *Nat. Rev. Mater.* 1, 1-15.
- Howarth, A. J., Peters, A. W., Vermeulen, N. A., Wang, T. C., Hupp, J. T., and Farha, O. K. (2017).
 Best practices for the synthesis, activation, and characterization of metal-organic frameworks. *Chem. Mater.* 29, 26-39.

- Howarth, A. J., Wang, T. C., Al-Juaid, S. S., Aziz, S. G., Hupp, J. T., and Farha, O. K. (2016b).
 Efficient extraction of sulfate from water using a Zr-metal-organic framework. *Dalton Trans.* 45, 93-97.
- Icenhower, J. P., Qafoku, N. P., Zachara, J. M., and Martin, W. J. (2010). The biogeochemistry of
 technetium: A review of the behavior of an artificial element in the natural environment.
 Am. J. Sci. 310, 721-752.
- Leus, K., Bogaerts, T., De Decker, J., Depauw, H., Hendrickx, K., Vrielinck, H., Van Speybroeck,
 V., and Van Der Voort, P. (2016). Systematic study of the chemical and hydrothermal
 stability of selected "stable" Metal Organic Frameworks. *Microporous Mesoporous Mater*.
 226, 110-116.
- Li, B. Y., Dong, X. L., Wang, H., Ma, D. X., Tan, K., Jensen, S., Deibert, B. J., Butler, J., Cure,
 J., Shi, Z., Thonhauser, T., Chabal, Y. J., Han, Y., and Li, J. (2017a). Capture of organic
 iodides from nuclear waste by metal-organic framework-based molecular traps. *Nat. Commun.* 8: 485.
- Li, D., Seaman, J. C., Kaplan, D. I., Heald, S. M., and Sun, C. J. (2019). Pertechnetate (TcO₄⁻)
 sequestration from groundwater by cost-effective organoclays and granular activated
 carbon under oxic environmental conditions. *Chem. Eng. J.* 360, 1-9.
- Li, J., Dai, X., Zhu, L., Xu, C., Zhang, D., Silver, M. A., Li, P., Chen, L. H., Li, Y. Z., Zuo, D. W.,
 Zhang, H., Xiao, C. L., Chen, J., Diwu, J., Farha, O. K., Albrecht-Schmitt, T. E., Chai, Z.
 F., and Wang, S. A. (2018). ⁹⁹TcO₄⁻ remediation by a cationic polymeric network. *Nat. Commun.* 9: 3007.
- Li, J. R., Sculley, J., and Zhou, H. C. (2012). Metal–organic frameworks for separations. *Chem. Rev.* 112, 869-932.
- Li, Y. X., Yang, Z. X., Wang, Y. L., Bai, Z. L., Zheng, T., Dai, X., Liu, S. T., Gui, D. X., Liu, W.,
 Chen, M., Chen, L. H., Diwu, J., Zhu, L. Y., Zhou, R. H., Chai, Z. F., Albrecht-Schmitt, T.
 E., and Wang, S. (2017). A mesoporous cationic thorium-organic framework that rapidly
 traps anionic persistent organic pollutants. *Nat. Commun.* 8: 1354.
- Li, Z. H., Jiang, W. T., and Hong, H. L. (2008). An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. *Spectrochim. Acta Part A* 71, 1525–1534.
- Liu, J., Pearce, C. I., Qafoku, O., Arenholz, E., Heald, S. M., and Rosso, K. M. (2012). Tc(VII)
 reduction kinetics by titanomagnetite (Fe_{3-x}Ti_xO4) nanoparticles. *Geochim. Cosmochim. Acta* 92, 67-81.
- Liu, Z. W., and Han, B. H. (2020). Evaluation of an imidazolium-based porous organic polymer
 as radioactive waste scavenger. *Environ. Sci. Technol.* 54, 216-224.
- Mao, C. Y., Kudla, R. A., Zuo, F., Zhao, X., Mueller, L. J., Bu, X. H., and Feng, P. Y. (2014).
 Anion stripping as a general method to create cationic porous framework with mobile
 anions. J. Am. Chem. Soc. 136, 7579-7582.
- McBeth, J. M., Lloyd, J. R., Law, G. T. W., Livens, F. R., Burke, I. T., and Morris, K. (2011).
 Redox interactions of technetium with iron-bearing minerals. *Mineral. Mag.* 75, 24192430.
- Meena, A. H., and Arai, Y. (2017). Environmental geochemistry of technetium. *Environ. Chem. Lett.* 15, 241-263.
- Mei, L., Li, F. Z., Lan, J. H., Wang, C. Z., Xu, C., Deng, H., Wu, Q. Y., Hu, K. Q., Wang, L.,
 Chai, Z. F., Chen, J., Gibson, J. K., and Shi, W. Q. (2019). Anion-adaptive crystalline
 cationic material for ⁹⁹TcO₄⁻ trapping. *Nat. Commun.* 10: 1532.


- Mon, M., Bruno, R., Ferrando-Soria, J., Armentano, D., and Pardo, E. (2018). Metal-organic
 framework technologies for water remediation: towards a sustainable ecosystem. *J. Mater. Chem. A* 6, 4912-4947.
- Pearce, C. I., Icenhower, J. P., Asmussen, R. M., Tratnyek, P. G., Rosso, K. M., Lukens, W. W.,
 and Qafoku, N. P. (2018). Technetium stabilization in low-solubility sulfide phases: A
 review. ACS Earth Space Chem. 2, 532-547.
- Pierce, E. M., Lilova, K., Missimer, D. M., Lukens, W. W., Wu, L. L., Fitts, J., Rawn, C., Huq,
 A., Leonard, D. N., Eskelsen, J. R., Woodfield, B. F., Jantzen, C. M., and Navrotsky, A.
 (2017). Structure and thermochemistry of perrhenate sodalite and mixed guest
 perrhenate/pertechnetate sodalite. *Environ. Sci. Technol.* 51, 997-1006.
- Pierce, E. M., Serne, R. J., Um, W., Mattigod, S. V., Icenhower, J. P., Qafoku, N. P., Westsik, J.,
 J.H., and Scheele, R. D. (2010). "Review of Potential Candidate Stabilization Technologies
 for Liquid and Solid Secondary Waste Streams, PNNL-19122," Pacific Northwest National
 Laboratory, Richland, Washington 99352.
- Plymale, A. E., Fredrickson, J. K., Zachara, J. M., Dohnalkova, A. C., Heald, S. M., Moore, D. A.,
 Kennedy, D. W., Marshall, M. J., Wang, C. M., Resch, C. T., and Nachimuthu, P. (2011).
 Competitive reduction of pertechnetate ⁹⁹TcO₄⁻ by dissimilatory metal reducing bacteria
 and biogenic Fe(II). *Environ. Sci. Technol.* 45, 951-957.
- Rapti, S., Diamantis, S. A., Dafnomili, A., Pournara, A., Skliri, E., Armatas, G. S., Tsipis, A. C.,
 Spanopoulos, I., Malliakas, C. D., Kanatzidis, M. G., Plakatouras, J. C., Noli, F., Lazarides,
 T., and Manos, M. J. (2018). Exceptional TcO₄⁻ sorption capacity and highly efficient
 ReO₄⁻ luminescence sensing by Zr⁴⁺ MOFs. *J. Mater. Chem. A* 6, 20813-20821.
- Ravel, B., and Newville, M. (2005). Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541.
- Samanta, P., Chandra, P., Dutta, S., Desai, A., and Ghosh, S. K. (2018). Chemically stable ionic
 viologen-organic network: an efficient scavenger of toxic oxo-anions from water. *Chem. Sci.* 9, 7874-7881.
- Shen, J., Chai, W., Wang, K. X., and Zhang, F. (2017). Efficient removal of anionic radioactive
 pollutant from water using ordered urea-functionalized mesoporous polymeric
 nanoparticle. ACS Appl. Mater. Interfaces 9, 22440-22448.
- Sheng, D. P., Zhu, L., Dai, X., Xu, C., Li, P., Pearce, C. I., Xiao, C. L., Chen, J., Zhou, R. H.,
 Duan, T., Farha, O. K., Chai, Z. F., and Wang, S. (2019). Successful decontamination of
 ⁹⁹TcO₄⁻ in groundwater at legacy nuclear sites by a cationic metal-organic framework with
 hydrophobic pockets. *Angew. Chem. Internat. Edit.* 58, 4968-4972.
- Sheng, D. P., Zhu, L., Xu, C., Xiao, C. L., Wang, Y. L., Wang, Y. X., Chen, L. H., Diwu, J., Chen,
 J., Chai, Z. F., Albrecht-Schmitt, T. E., and Wang, S. A. (2017). Efficient and selective
 uptake of TcO₄⁻ by a cationic metal-organic framework material with open Ag⁺ Sites. *Environ. Sci. Technol.* 51, 3471-3479.
- Skobelev, I. Y., Sorokin, A. B., Kovalenko, K. A., Fedin, V. P., and Kholdeeva, O. A. (2013).
 Solvent-free allylic oxidation of alkenes with O₂ mediated by Fe- and Cr-MIL-101. J. *Catal.* 298, 61-69.
- Stallings, M. E., Barnes, M. J., Peters, T. B., Diprete, D. P., Fondeur, F. F., Hobbs, D. T., and Fink,
 S. D. (2004). "Characterization of Supernate Samples from High Level Waste Tanks 13H,
 30H, 37H, 39H, 45F, 46F and 49H, WSRC-TR-2004-00386 Revision 2," Westinghouse
 Savannah River Company, Aiken, SC 29808.

- Strom, R. N., and Kaback, D. S. (1992). "SRP Baseline Hydrogeologic Investigation: Aquifer
 Cheracterization. Groundwater Geochemistry of the Savannah River Site and Vicinity,
 WSRC-RP-92-450," Westinghouse Savannah River Company, Environmental Sciences
 Section, Aiken, SC.
- Sun, Q., Zhu, L., Aguila, B., Thallapally, P. K., Xu, C., Chen, J., Wang, S., Rogers, D., and Ma,
 S. Q. (2019). Optimizing radionuclide sequestration in anion nanotraps with record
 pertechnetate sorption. *Nat. Commun.* 10: 1646.
- Um, W., Chang, H. S., Icenhower, J. P., Lukens, W. W., Serne, R. J., Qafoku, N. P., Westsik, J.
 H., Buck, E. C., and Smith, S. C. (2011). Immobilization of 99-technetium (VII) by Fe(II)goethite and limited reoxidation. *Environ. Sci. Technol.* 45, 4904-4913.
- 615 USEPA (2007). Method 6020A, Rev. 0. Inductively coupled plasma-mass spectrometry. . *In* "Test
 616 Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846) ". Office of
 617 Solid Waste, Washington, DC.
- Valenta, M. M., Parker, K. E., and Pierce, E. M. (2010). "Tc-99 Ion Exchange Resin Testing,
 PNNL-19681," Pacific Northwest National Laboratory, Richland, Washington 99352.
- Wang, C. H., Liu, X. L., Demir, N. K., Chen, J. P., and Li, K. (2016). Applications of water stable
 metal-organic frameworks. *Chem. Soc. Rev.* 45, 5107-5134.
- Xu, H., Cao, C. S., Hu, H. S., Wang, S. B., Liu, J. C., Cheng, P., Kaltsoyannis, N., Li, J., and Zhao,
 B. (2019). High uptake of ReO₄⁻ and CO₂ conversion by a radiation-resistant thorium nickle Th₄₈Ni₆ nanocage-based metal-organic framework. *Angew. Chem. Internat. Edit.* 58, 6022-6027.
- Yaghi, O. M., Li, H. L., Davis, C., Richardson, D., and Groy, T. L. (1998). Synthetic strategies,
 structure patterns, and emerging properties in the chemistry of modular porous solids. *Accounts Chem. Res.* 31, 474-484.
- Zhao, T., Jeremias, F., Boldog, I., Nguyen, B., Henninger, S. K., and Janiak, C. (2015). High-yield,
 fluoride-free and large-scale synthesis of MIL-101(Cr). *Dalton Trans.* 44, 16791-16801.
- Zhu, L., Sheng, D. P., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y. X., Wang, Y. L.,
 Chen, L. H., Xiao, C. L., Chen, J., Zhou, R. H., Zhang, C., Farha, O. K., Chai, Z. F.,
 Albrecht-Schmitt, T. E., and Wang, S. (2017a). Identifying the recognition site for selective
 trapping of ⁹⁹TcO₄⁻ in a hydrolytically stable and radiation resistant cationic metal-organic
 framework. J. Am. Chem. Soc. 139, 14873-14876.
- Zhu, L., Xiao, C. L., Dai, X., Li, J., Gui, D. X., Sheng, D. P., Chen, L. H., Zhou, R. H., Chai, Z.
 F., Albrecht-Schmitt, T. E., and Wang, S. (2017b). Exceptional perrhenate/pertechnetate
 uptake and subsequent immobilization by a low-dimensional cationic coordination
 polymer: Overcoming the Hofmeister bias selectivity. *Environ. Sci. Technol. Lett.* 4, 316322.
- 641
- 642
- 643
- 644

Table 1.


646 Re L₃-edge EXAFS fitting data for Re species sequestered on MIL-101-Cr-NO₃-CTAB.

Samples ^a	рН	Scattering path	Interatomic distance (Å)	Coordination number	Debye–Waller factor, σ^2 (Å ²)	$\Delta E_0 (eV)$	R-factor
#3	8.5	Re-O1	1.730 ± 0.004	3.7 ± 0.2	0.0001 ± 0.0005	10.0 ± 1.0	0.0187
#1	4.1	Re-O1	1.730 ± 0.004	3.9 ± 0.2	0.0003 ± 0.0005	9.8 ± 0.9	0.0111
NaReO ₄	EXAFS	Re-O1	1.731 ± 0.007	2.8 ± 0.3	0.0028 ± 0.0009		0.0038
		Re-O2	3.037 ± 0.074	4	0.0314 ± 0.0163		
	X-ray	Re-O1	1.728	4			
	structure (Atzesdorfer and Range, 1995)	Re-O2	3.06	4			
^a Amplitude	e was set to 0.8						

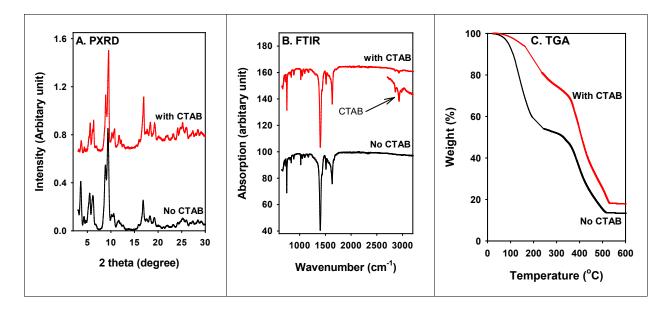


Fig. 1. The structure of MIL-101-Cr. The chromium(III) octahedral clusters are interconnected

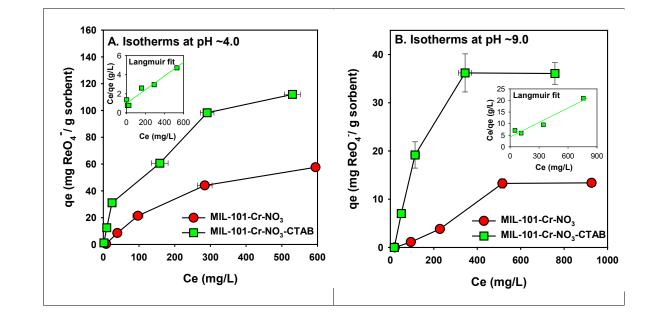
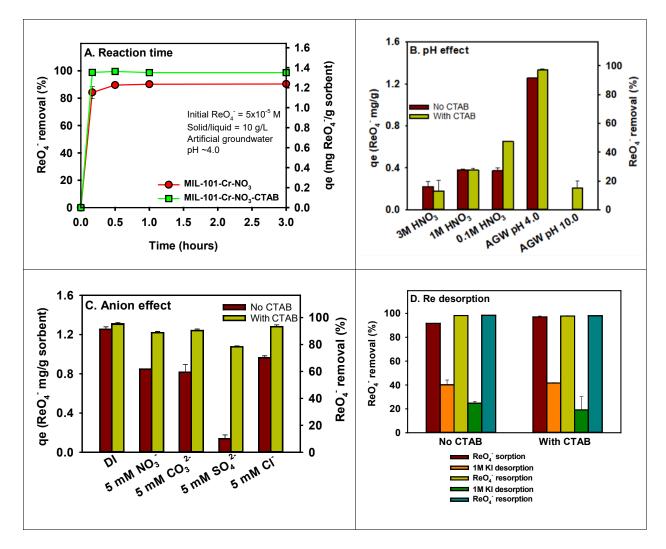

- by 1,4-benzenedicarboxylates (terephthalate), resulting in a highly porous 3-dimentional
- structure. Atom colors: Cr = green, O = red, C = gray, blue = exchangeable anions (i.e., NO_3^- ,
- 655 F^- , Cl^- , I^- , and $CF_3SO_3^-$).

Fig. 2. PXRD (A), EDS (B), TGA (C) characterization and Re removal (D) of MIL-101-Cr with different exchangeable anions (i.e., NO_3^- , F^- , Cl^- , I^- , and $CF_3SO_3^-$).

Fig. 3. PXRD (A), FTIR (B), and TGA (C) characterization of MIL-101-Cr-NO₃ (labeled as "No CTAB") and MIL-101-Cr-NO₃-CTAB (labeled as "with CTAB").


Fig. 4. Adsorption isotherms of ReO_4^- on MIL-101-Cr-NO₃ (red) and MIL-101-Cr-NO₃-CTAB

672 (green) in artificial groundwater at pH \sim 4.0 (A) and \sim 9.0 (B) for 6 d. All measurements represent 673 the average of two replicates. For MIL-101-Cr-NO₃-CTAB, Langmuir fits are shown in the insets,

the average of two replicates. For MIL-101-Cr-NO₃-CTAB, Langmuir fits are shown in the insets,
but the isotherm curves for MIL-101-Cr-NO₃ were not well fit by the Langmuir model. Small error

bars (2 standard deviation) may be hidden by symbols.

676

Fig. 5. ReO_4^- adsorption on MIL-101-Cr-NO₃-CTAB in artificial groundwater versus (A) reaction time, (B) pH value (the acidic solutions were prepared using DI water), (C) co-existing anions (the aqueous solutions were prepared using DI water), and (D) ReO_4^- desorption/resorption cycles. All measurements represent the average of two replicates. Unless specified, the experimental conditions were: $[\text{ReO}_4^-] = 5 \times 10^{-5} \text{ M}$, solid/liquid = 10 g/L, reaction time = 1 d, pH = ~4.0.

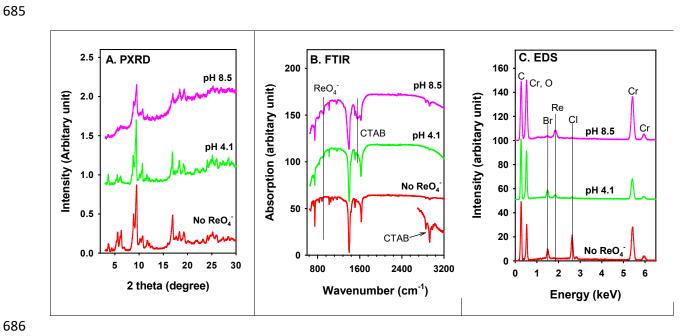
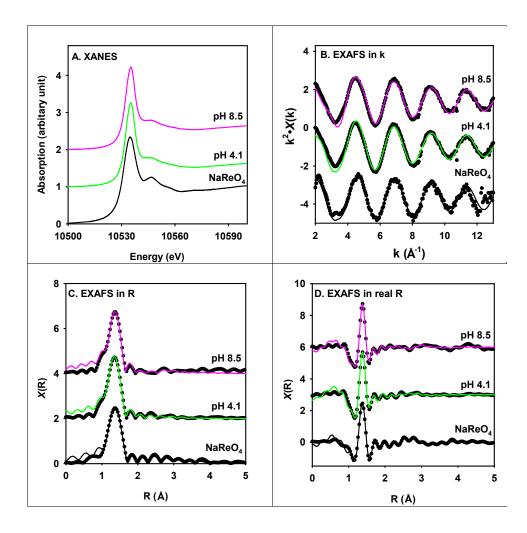



Fig. 6. PXRD (A), FTIR (B), and EDS (C) characterization of MIL-101-Cr-NO₃-CTAB before

(red) and after exposure to 5×10^{-4} M ReO₄⁻ in artificial groundwater (AGW) at pH 4.1 (green) and 8.5 (pink).

Fig. 7. Re L₃-edge X-ray absorption spectra of MIL-101-Cr-NO₃-CTAB after exposure to 5×10^{-4}

 $M \text{ReO}_4^-$ in artificial groundwater at pH 4.1 (green) and 8.5 (pink), in comparison with the spectra

695 of model compound $NaReO_4$ (black).