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Figure 1 MAX phase unit cells: (a) 

211, (b) 312, and (c) 413 phases.1
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MAX phase materials and MXenes as hydrogen barrier coatings

• Most structural alloys used in neutron 
environments display high diffusivities of 
hydrogen and its isotopes. 

• Permeation barriers are a key supporting 
technology for both next generation fusion 
reactors and the national security 
enterprise

• Previous research suggests that most 
barrier materials which perform well in 
laboratory experiments fail when placed in 
radiation environments.

MAX phase materials
• A class of layered carbides and nitrides 
• currently being investigated for fission 

applications 
• excellent stability under neutron irradiation

Figure 2 SEM image (a) and EDX maps (b-e) of 

MO2c grown on a AG-Cu alloy using CVD

Figure 3 a)Raw permeation data measured on Cu and graphene coated Cu and b) C vacancy in a graphene lattice

Figure 2: SEM images and EDS maps 

comparing the Mo2C flake sizes on Low-, 

Medium-, and High-Cu, Ag-Cu alloys 

grown at 1000 C.

Figure 3: Mo2C synthesis on an In-Cu alloy 

substrate at 800 C.

Figure 4: Comparison of the permeation data 

between the annealed Cu and graphene coated 

Cu. The PRF at 624 K is ~28 
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