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EXECUTIVE SUMMARY 
 

In tritium process systems, vacuum pumps are typically used to evacuate volumes and piping, as well as 
transfer gas to other parts of the process. This was done using the combination of an all-metal scroll pump 
with a metal bellows backing pump. The all-metal scroll pump, manufactured by Normetex, has been 
unavailable since 2012, and efforts continue to find a suitable replacement. The main obstacle is finding a 
pump that has no oils or polymer components, which degrade when exposed to tritium and introduce 
corrosive and/or hazardous impurities into the process. 
 
Since turbomolecular pumps are used in tritium processing, it is thought that pumps similar to the 
turbomolecular pumps would be of interest. The pumps would need to operate at lower rotational speeds to 
handle higher pressures and flow rates, which is best suited for Molecular Drag Pumps (MDP). To 
determine this, the vacuum pump characteristics must be determined for the MDP. This report details pump 
characteristics using an MDP backed by a Metal Bellows (Met-Bel) pump under static and flow conditions 
for various gases. 
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1.0 Introduction 
The Normetex® Model 15 all-metal scroll pump, backed by a Senior Aerospace Metal Bellows pump, has 
been the standard pump used worldwide for tritium processing. However, in 2012, Normetex® halted 
production of the scroll pumps. Since then, researchers worldwide have been searching for a viable 
replacement for the Normetex® scroll pumps. There have been studies using just metal bellows (Met-Bel) 
pumps in series1 and a Molecular Drag Pump (MDP) backed by an off-the-shelf (OTS) scroll pump.2 The 
Met-Bel pumps in series cannot achieve the vacuum levels of the Normetex® pumps, and the MDP backed 
by an OTS scroll pump contains components that are not compatible for tritium service. This led to 
identifying the MDP backed by a Met-Bel as a possible alternative to the Normetex® pumps, but more 
information was needed on how the pumps performed while in series. This report details the pumping 
characteristics of the MDP with the Met-Bel backing pump under static and flow conditions for select gases. 
 

1.1 Identification of the Primary Pump  
 
The Normetex® pump that has been in use worldwide has a set of highly desired characteristics for tritium 
processing: no oil lubricants, no polymer wetted-materials, vacuum levels as low as 0.001 torr at the inlet, 
and discharge pressures up to 250 torr.3 A possible alternative is the use of mercury pumps, which are 
capable of the same pressures and characteristics. However, due to the health hazards associated with 
mercury, and that mercury vapors will contaminate the system if not properly trapped, mercury pumps are 
not being considered.  
 
Mechanical pumps appear to be the best replacement option, but the currently available pumps have either 
greased bearings or polymer seals. OTS scroll pumps have PTFE tip seals, in which HF is present as an off-
gas when exposed to tritium.4 Met-Bel pumps have an all-metal wetted component design similar to the 
Normetex® , but the Met-Bel pumps can only achieve vacuum levels around 30 to 50 torr at the inlet (with 
discharge to 1 atm), which is orders of magnitude higher than the Normetex®  pumps.  
 
Another pump type that is currently used in tritium service are turbomolecular pumps. They are capable of 
very high vacuum levels on the inlet but are typically limited to approximately 3 torr maximum discharge. 
Since the Met-Bel pumps are limited to around 30 torr at the inlet, use of turbomolecular pumps will not be 
sufficient if backed by the Met-Bel pump. However, a similar pump to the turbomolecular is the MDP. 
Using a different design, the MDP is rated for a continuous discharge pressure of 30 torr and a max 
continuous inlet pressure of 7.5 torr, both for nitrogen. Also, the MDP has an operational rotation speed of 
27,000 rpm, while the turbomolecular pump has a rotation speed of 90,000 rpm. Data from the manufacturer 
is limited, as the data used a backing pump that was capable of <1 torr ultimate vacuum. It is of interest to 
determine the pumping characteristics of the MDP with a backing pump that has an ultimate vacuum greater 
than 10 torr. 

1.2 Pump Test Scope 
The scope of the pump testing includes baseline pump curves with the MDP backed by a Met-Bel for 
various gases. The MDP/Met-Bel combination is being tested to determine if it is a comparable replacement 
to the Normetex/Met-Bel combination for certain applications with the understanding the MDP has greased 
bearings. The pump curves of interest are pressure comparisons of the suction and discharge of the MDP 
under static and gas flow conditions. The gases of interest include nitrogen (N2), argon (Ar), helium (He), 
hydrogen (H2), and deuterium (D2).  
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2.0 Experimental Procedure 

2.1 Experimental Approach 
The system fabricated to test the MDP/Met-Bel combination was constructed to have the capabilities for 
conducting both the static and gas flow tests. A schematic of the system is shown in Figure 2-1. The MDP 
is an MDP Model 5011 manufactured by Pfeiffer Vacuum Products, formerly Adixen Alcatel. The Met-
Bel is a MB-601 manufactured by Senior Aerospace Metal Bellows, with the heads piped in series. The 
system was built primarily of VCR fittings and welded tubing. The thermocouples (TCs) were held in place 
with Swagelok compression fittings, and the rupture disks (RD) and MB-601 were NPT/Swagelok unions. 
Four MKS Baratron Model 690 (10, 100, 1,000, and 10k torr) and one MKS Baratron Model 390 (10k torr) 
pressure transducers (PTs) were used to monitor the pressures of the system. Four MKS GE50A Flow 
Controllers (MFCs) were used to control the gas flow. The ranges for the MFCs were, in sccm: 5, 50, and 
500, all with H2 as the reference gas. As a note, the gas correction factor (GCF) of hydrogen is 1.01. One 
control volume, 0.3 L, was used to incrementally dose the system under static conditions, and a second 
control volume, 1 L, was used to dampen the pressure oscillations caused by the MB-601 as well as create 
a buffer against over-pressurization of the discharge section. TCs were located along the flow path of each 
pressure transducer for temperature-related pressure corrections. A cold cathode ion vacuum gauge 
monitored the MDP inlet to measure the high vacuum levels of the MDP. A thermocouple vacuum gauge 
(TCVG) was placed on the MDP outlet to monitor the vacuum levels during system evacuation and low-
pressure static dosing. 
 

 
Figure 2-1: Schematic of the pump test system 

 
The PTs, TCs, and MFCs were connected to a LabVIEW Data Acquisition System for data collection, along 
with supplying the mass flow controller setpoints.  
 

2.2 Static Testing 
The static tests were conducted by first closing the system vent valve and evacuating the system using an 
Adixen Drytel 1025 pumping station with an AMD4 diaphragm pump. Next, the CV01 was dosed using 
either the 50 sccm or 500 sccm MFCs, depending on the dose pressure, with set increments of the target 
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gas and then opened to the MDP. This was repeated until the MDP suction pressure was 6 torr or the MDP 
was unable to maintain full rotational speed of 27,000 rpm.  

2.3 Flow Testing 
The flow tests were conducted by first closing the system vent valve and evacuating the system with using 
an Adixen Drytel 1025 pumping station with an AMD4 diaphragm pump. Next, the system was pressurized 
to approximately 800 torr using the 5 sccm MFC before opening the system vent valve, where the discharge 
was maintained at approximately 750 torr. Flow was then stopped to record the zero-flow pressures. The 
MFCs were then set at increasing increments up to 400 sccm, with pressure measurements taken before 
increasing the flow rate.  

3.0 Results and Discussion 

3.1 Static Testing 
Several tests were performed to measure the suction pressure and discharge pressure of the MDP backed 
by the MB-601. The flow path for the static testing is shown in Figure 3-1. These tests included 
incrementally dosing the MDP and the Met-Bel was discharging to a control volume while the vent valve 
was shut. This was done using N2, Ar, He, H2, and D2 gases separately.  
 

 
Figure 3-1: Flow path for static testing 

 
The pressure comparison for the MDP and the MB-601 are shown in Figure 3-2 and Figure 3-3, respectively. 
It should be noted that a cold cathode ion gauge was used for suction pressures below 7.0E-03 torr. Above 
these values, the measurements were taken using a Baratron (capacitance manometer), so a slight 
discontinuity appears in the figures. As the suction pressure plateaus (5.5E-05 for N2 and Ar, 3.5E-05 for 
He), the MDP is reaching the vacuum limits for that particular gas in the current test system. The MDP is 
rated for a vacuum level of 1.0E-06, but that is with backing pumps that maintain lower MDP discharge 
pressures than the MB-601.  
 
The MDP pressure comparison indicates that nitrogen and argon are able to be discharged at higher 
pressures (>40 torr) while maintaining suction pressures below 0.01 torr. However, it should be noted that 
at an argon discharge pressure of 56 torr, the MDP was not able to maintain full rotational speed of 27,000 
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rpm. The MDP was not able to maintain the suction pressures lower than 1.0E-02 torr, above a discharge 
of 12 torr for hydrogen, 20 torr for deuterium, 33 torr for helium, 42 torr for nitrogen, and 52 torr for argon.  

 
Figure 3-2: MDP static suction vs discharge pressures.  

 
 

Could not maintain 
rotational speed 

IVG  

Baratron 
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Figure 3-3: MB-601 static suction vs discharge pressures.  

The discharge and suction comparisons raise an interesting trend in the pumping capability of the gases. 
For suction pressures less than 0.01 torr the discharge pressures capable for a given suction pressure are 
aligned closer to the distribution of molar masses for the gases, except for helium and deuterium with 
similar molar mass, as shown in Table 3-1. Helium and deuterium, despite having similar molar masses, 
have drastically different pumping behaviors that are more in line with the differences in viscosity. Helium 
and nitrogen have similar viscosities at 20°C, and the suction pressures are very close for discharge 
pressures above 45 torr. The different pumping behaviors of the gases need to be accounted for in future 
process designs. 
 

Table 3-1: Viscosity and molar mass of test gases 

Gas Viscosity5 
(x107 poise) 

Molar Mass 
(g) 

H2 920 2.016 
He 1950 4.003 
D2 1250 4.024 
N2 1760 28.014 
Ar 2200 39.948 

 

3.2 Flow Testing 
Several tests were performed to determine the operational suction and discharge pressures of the MDP 
backed by a MB-601 under gas flow conditions. The flow path of the flow tests is shown in Figure 3-4. 
These tests included testing the previous gases, except deuterium, at increasing flow rates, in sccm: 1, 2, 3, 
4, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400 with H2 reference. Deuterium was measured at flow rated up to 
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50 sccm. To accomplish the flow tests, the system initially evacuated using the OTS MDP pumping station. 
The system was then pressurized, with the pumps energized, to 800 torr before opening the vent valve. The 
MB-601 discharge pressure was nominally 754 torr during the testing. 
 

 
Figure 3-4: Flow path schematic for flow tests 

The suction and discharge pressure comparisons under gas flow are shown in Figure 3-5, and the suction 
pressure/flow rate comparison is shown in Figure 3-6. Deuterium and helium are able to continue pumping 
at discharge pressures up to 64 torr, hydrogen up to 78 torr, and nitrogen up to 50 torr, but argon is only 
able to be pumped up to 44 torr discharge pressure. At an argon flow rate of 200 sccm flow with hydrogen 
reference (275 sccm with GCF), the MDP is unable to maintain the 27,000 rpm rotational speed. No 
additional testing was performed for argon above 200 sccm (275 sccm with GCF). This indicates that with 
atmospheric pressure at the discharge of the MB-601, the MDP could maintain the 27,000 rpm rotational 
speed with 400 sccm of gas for nitrogen (396 sccm with GCF) and hydrogen, and 400 sccm for helium (575 
sccm with GCF). Deuterium was only measured to 50 sccm (49.5 sccm with GCF), and at that point the 
MDP was able to maintain 27,000 rpm.  
 
The limits of the MDP/Met-Bel combination appear to be the ultimate vacuum the Met-Bel can achieve. If 
the Met-Bel could achieve a suction pressure below 40 torr, the MDP would be able to achieve much higher 
vacuum levels at the inlet. In the current configuration, the MDP is limited by the MB-601 compression 
ratio when discharging to near atmospheric pressure. 
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Figure 3-5: MDP suction vs discharge pressures with gas flow 

 
 

 
Figure 3-6: MDP suction pressure vs flow rate with GCF applied 

Could not maintain 
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4.0 Conclusions 
The results obtained show baseline pump characteristics of the Pfeiffer Vacuum Products MDP 5011 and 
Senior Aerospace Metal Bellows MB-601 pump combination. The test conditions were not standard for the 
MDP, as the discharge pressures of the MDP during static tests went above the recommended maximum 
operating pressure of 30 torr, and all flow tests were performed above the 30 torr manufacturer 
recommended threshold. The MDP was able to function at full rotational speeds for all the tests except with 
argon when the discharge pressure of the MDP was above 55 torr for a static system or a flow rate of 200 
sccm (275 sccm with GCF).  
 

5.0 Recommendations, Path Forward or Future Work 
The discharge pressure of the MDP is dependent on the suction capabilities of the MB-601. Additional 
testing to determine the system performance at pressures higher and lower than atmospheric would expand 
the baseline data needed for process design. Also, the MDP manufacturer, Pfeiffer Vacuum, has indicated 
that the control unit for the MDP 5011 will no longer be sold individually, other than in a pumping station. 
A comparable alternative was recommended as the Pfeiffer Vacuum HiPace 80 Hybrid Turbopump, which 
has an adjustable operating rotational speed between 45,000 - 90,000 rpm. Additional testing is 
recommended to determine the baseline characteristics of the HiPace 80. 
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