Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Analysis of H-Canyon 6.4D Dissolver Solids

T. E. Smith T. S. Rudisill D. H. Jones T. B. Edwards January 2020 SRNL-STI-2018-00404, Revision 0

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: H-Canyon, Solids, Dissolver

Retention: Permanent

Analysis of H-Canyon 6.4D Dissolver Solids

T. E. Smith T. S. Rudisill D. H. Jones T. B. Edwards

January 2020

Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

REVIEWS AND APPROVALS

AUTHORS:

T. E. Smith, Separations & Actinide Science Programs	Date
T. S. Rudisill, Separations & Actinide Science Programs	Date
D. H. Jones, Environmental Stewardship Directorate Operations	Date
T. B. Edwards, Immobilization Technologies	Date
TECHNICAL REVIEW:	
P. M. Almond, Nuclear Material Systems	Date
W. H. Clifton, Jr., H-Canyon Outside Facilities & Technical Support	Date
APPROVAL:	
C. C. DiPrete, Group Leader Separations & Actinide Science Programs	Date
T. L. Tice, Manager Materials Disposition Engineering	Date
S. D. Fink, Director Chemical Processing Technologies	Date

EXECUTIVE SUMMARY

During reconfiguration of the 6.4D dissolver for the dissolution of High Flux Isotope Reactor (HFIR) fuel, solid material was observed on the bottom of the dissolver pot. Samples of the solids were taken from the north and south side of the 6.4D pot and were transported to the Savannah River National Laboratory (SRNL) for characterization. The samples were initially dried, and then a small portion of each sample set was removed, and rinsed with either 1 M HNO₃ or 6 M HNO₃. A portion of each unrinsed and rinsed sample was dissolved and analyzed for elemental and radiochemical concentrations. Results from the analyses indicated that the solids were primarily Si, Fe, Al, and Cr. The U content in the initial dried, unrinsed solids was 0.380 wt %, but was reduced to 0.057 wt % in the rinsed solids, indicating the majority of the U was mostly soluble in HNO₃. Small amounts of Pu were measured at 0.010 wt % in both the rinsed and unrinsed solids.

Undissolved solids (e.g., noble metal fission products and SiO₂ from U silicide (U₃Si or U₃Si₂) research reactor fuels) are a product of Spent Nuclear Fuel (SNF) dissolution and are regularly transferred from the dissolver and removed from the dissolving solution by centrifugation in Head End and transferred to waste. Based on the estimated volume of solids present in the 6.4D dissolver and the measured density, the bounding total masses of U and Pu present were 359 ± 45 g (126 ± 20 g U-235) and 8.6 ± 1.4 g, respectively, at 95% confidence limits for the unrinsed solids. The total masses of U and Pu present in the rinsed solids were 54 ± 6 g (12 ± 2 g of U-235) and 9.4 ± 1.1 g, respectively, at 95% confidence limits.

The calculated masses of U and Pu in the 6.4D dissolver solids were substantially reduced when more aggressive dissolving conditions were used. Contact with near boiling 7 M HNO₃ reduced the U and Pu masses to 39.4 ± 5.5 g (7.24 ± 1.17 g U-235) and 7.89 ± 1.13 g, respectively, at 95% confidence limits. When 0.1 M fluoride was added to the near boiling HNO₃, the remaining U and Pu masses were 16.9 ± 2.9 g (4.25 ± 0.91 g U-235) and 4.46 ± 1.12 g, respectively, at 95% confidence limits. The more aggressive dissolution conditions also reduced the mass of the solids by 50-70% leaving primarily Si as SiO₂. Continued dissolution of SNF in the 6.4D dissolver (using starting HNO₃ concentrations of approximately 7 M) should slowly dissolve the very small quantities of U and Pu remaining in the dissolver and address any significant accumulation of fissile material in the future. A dissolver clean-out may be performed using nominally 7 M HNO₃ containing 0.1 M fluoride which will reduce the total amounts of solids and fissionable materials. Based on this work, these solid are expected in either H-Canyon dissolver during SNF dissolution flowsheet is functioning as expected.

TABLE OF CONTENTS

LIST OF TABLESvii
LIST OF FIGURES
LIST OF ABBREVIATIONSviii
1.0 Introduction
2.0 Experimental Procedure
2.1 Phase 1: Initial Characterization of Solids
2.2 Phase 2: Secondary Rinse
2.3 Phase 3: Dissolution in 7 M HNO ₃
2.4 Phase 4: Dissolution in 7 M HNO ₃ containing 0.1 M Fluoride3
2.5 Quality Assurance
3.0 Results and Discussion
3.1 Phase 1 & 2: Characterization of Solids
3.2 Phase 3 & 4: Dissolution Strategy11
3.3 U Isotopic Concentrations of Solids13
3.4 Fissionable Mass in Dissolved Solids
4.0 Conclusions15
5.0 References
Appendix A . Analytical Results

LIST OF TABLES

Table 3-1. ICPES Analysis of Solids Before and After Rinse
Table 3-2. ICPES Analysis of Rinse Filtrate 5
Table 3-3. ICPMS Analysis of Solids Before and After Rinse
Table 3-4. ICPMS Analysis for Rinse Filtrate
Table 3-5. Radiochemical Analysis of Solids Before and After Rinse
Table 3-6. Dissolved Solids Summary
Table 3-7. Calculated Density of Dry Solids 10
Table 3-8. Estimated Mass of Fissionable Species 10
Table 3-9. Dissolution Mass Balance 11
Table 3-10. ICPES and Radiochemical Analyses for Solids Dissolutions 11
Table 3-11. ICPMS Analyses for Solids Dissolutions 12
Table 3-12. U Isotopic Concentrations in Dissolved Solids 13
Table 3-13. Fissionable Concentration in Dissolved Solids 14
Table 3-14. Mass of Fissionable Solids in the 6.4D Dissolver Following HNO ₃ Dissolutions

LIST OF FIGURES

LIST OF ABBREVIATIONS

APHA	alpha pulse height analysis
CVAAS	cold vapor atomic absorption spectroscopy
GPHA	gamma pulse height analysis
HFIR	High Flux Isotope Reactor
ICPES	inductively-coupled plasma emission spectrometry
ICPMS	inductively-coupled plasma mass spectroscopy
SEM	scanning electron microscopy
SNF	spent nuclear fuel
SRNL	Savannah River National Laboratory
TTA	thenoyltrifluoroacetone
XRD	X-ray diffraction

1.0 Introduction

During reconfiguration of the 6.4D dissolver for the dissolution of High Flux Isotope Reactor (HFIR) fuel, solid material was observed on the bottom of the vessel. Samples of the solids were taken by H-Canyon Operations from the north (HCA-North) and south side (HCA-South) of the 6.4D dissolver pot. The samples were transported to the Savannah River National Laboratory (SRNL) for characterization. H-Canyon Engineering requested that the SRNL determine the elemental content of the solids to verify that fissile materials (e.g., U and Pu) dissolved as expected during the dissolution of Spent Nuclear Fuel (SNF). Characterization of the solids included radiochemical analyses (e.g., actinides, fission products, and total alpha and beta emitters) and elemental analysis by inductively-coupled plasma mass spectrometry (ICPMS). Performing both radiochemical and ICPMS analyses provided a comparison of the measured amount of insoluble and soluble fissile materials by independent methods. Other characterization techniques performed included surface examination by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis in an attempt to provide information on crystal structure and phase identification. The SRNL was also requested to measure the bulk density and settling times of the solids.¹

Insoluble materials have been observed in equipment associated with H-Canyon dissolvers in the past. In 2007 during a periodic inspection of the physical spacers located within the 6.1D Dissolver MK-12 insert, a significant deposit of solid material was found in the spacer support structure (Figure 1-1).

Figure 1-1. Solids Deposited in the MK-12 Insert Support Structure

A sample of the solids was collected and transported to SRNL for characterization. Data from the radiochemical and elemental analyses showed that the solids contained 0.15 wt % U (60% U-235 enrichment) with a relative standard deviation of 15%. The Pu and Np concentrations in the solids were 0.032 and 0.00066 wt % respectively, with relative standard deviations of 5 and 15%, respectively. The majority of the mass associated with the solids were fission product Zr and Mo oxides. X-ray diffraction analysis indicated that the only crystalline compound present was $Zr[Mo_2O_7(OH_2)(H_2O)_2]$.²

The precipitation of solids from completely dissolved fuels has been observed during intermediate storage of solutions. A number of hydrated oxides have been identified. Precipitated solids include compounds containing Mo, Tc, Ru, Rh, Pd, Te, Zr, U, and Pu.³⁻⁴ The presence of Pu and U in these materials is generally associated with zirconium molybdate. The studies concerning the characterization and chemical behavior of the solids are limited; however, structures proposed for the zirconium molybdate include $Zr(MoO_4)_2 \cdot H_2O$ and $ZrMo_2O_7(OH)_2 \cdot H_2O$. Zirconium molybdate is known to act as a host lattice for Pu and can co-precipitate significant amounts of Pu from solution.⁵⁻⁶

The source of 6.4D dissolver solids was not known upon the receipt of the samples at SRNL. Postdissolution precipitation of fission products with co-precipitation of U and Pu, like the process which deposited solids on the MK-12 insert support structure, was a possible mechanism. Incomplete dissolution of spent nuclear fuel processed in the 6.4D dissolver or subsequent precipitation of a component of the fuel were also possible mechanisms for generating solids. Uranium silicide fuels have been processed in the 6.4D dissolver in recent campaigns.⁷ Following dissolution of silicide fuels during flowsheet development experiments using irradiated miniplates, precipitation of silica from the solution was observed.⁸ During these experiments, there was no evidence that either U or Pu precipitated with the solids. During the characterization of the samples from the 6.4D dissolver, presented in this report, it was important to distinguish the fissile materials (i.e., U and Pu) which may be physically associated with the solids. In anticipation that soluble U may be present in the solids, both unrinsed solids and solids rinsed with HNO₃ were dissolved and analyzed. A dissolution flowsheet was also tested which may be used to clean-out the dissolver pot by dissolving any residual solids.

2.0 Experimental Procedure

The HCA-North and HCA-South samples from the 6.4D dissolver were received into the SRNL Shielded Cells due to high beta/gamma dose rates. The samples were damp and dark gray in color. Each of the samples was weighed, transferred into 50-mL glass beakers, and dried in an oven overnight at 120 °C. The dry samples were then reweighed.

2.1 Phase 1: Initial Characterization of Solids

An initial characterization of the solids was performed to measure the elemental composition. A small portion (e.g., 0.25 g) of the unrinsed, dried HCA-North and HCA-South samples was removed from the beakers and dissolved using a sodium peroxide fusion method to prepare samples for elemental and radiochemical analyses.

A slightly larger portion (e.g., 0.7 g) of the HCA-North and HCA-South samples was rinsed to remove any soluble elements associated with the original liquid contained in the as received solids. The solids were placed in a beaker and rinsed with 50 mL of 1 M HNO₃. Each sample was initially combined with approximately 25 mL of HNO₃, shaken, and poured over a 0.45 μ m vacuumed filter. Then the remaining approximately 25 mL aliquot of solution was transferred by slurry pipette to flush solids from the beaker and rinse the filtered solids. Samples of the filtrates were collected for elemental and radiochemical analyses. The rinsed solids were dried at ambient conditions on the filter for approximately 3 hours, so that they could be easily transferred into separate beakers and placed into an oven to dry overnight at 120 °C. Approximately 0.25 g each of the dry, rinsed solids were dissolved using the sodium peroxide fusion method to prepare samples for elemental and radiochemical analyses. The samples rinsed using 1 M HNO₃ were designated HCA-North 1 M and HCA-South 1 M.

Another small portion (e.g., 0.7 g) of the unrinsed, dried HCA-North and HCA-South samples was subsequently transferred to small beakers for rinsing with 50 mL of 6 M HNO₃ using the same rinse and dry procedure prior to the preparation of samples by the sodium peroxide fusion method for analysis. The samples rinsed using 6 M HNO₃ were designated HCA-North 6 M and HCA-South 6 M.

The filtrate and solutions generated from the sodium peroxide fusion dissolution method were analyzed using liquid scintillation counting (for total alpha and beta emitters), gamma pulse height analysis (GPHA) (for gamma emitters), GPHA with Cs removal (for lower activity gamma emitters), thenoyltrifluoroacetone (TTA) extraction/alpha pulse height analysis (APHA) (for Pu-238 and Pu-239/240), cold vapor atomic absorption spectroscopy (CVAAS) (for Hg), ICPMS (for fission products, actinides, and U/Pu isotopic information), and inductively-coupled plasma emission spectroscopy (ICPES) (for U and low molecular

weight fission and corrosion products). A portion of the rinsed and unrinsed solids was prepared for surface analysis by SEM and XRD.

The bulk density of each of the prepared samples: HCA-North, HCA-South, HCA-North 1 M, HCA-South 1 M, HCA-South 6 M, and HCA-South 6 M, was measured by placing approximately 1 mL of material in a graduated cylinder and recording the weight and volume.

2.2 Phase 2: Secondary Rinse

A small portion of the HCA-North, HCA-South, and HCA-South 1 M rinsed solids was transferred to a glovebox for additional density measurements. A secondary rinse was also performed on the HCA-South 1 M sample. The bulk density was measured by placing approximately 1 mL of material in a small graduated cylinder. Once the solids were added, the weight of the solids was obtained. This process was repeated twice per sample.

The HCA-North and HCA-South samples were prepared for an additional density/settling test. Approximately 5 mL of pre-weighed 1 M HNO₃ was added to 1 mL of pre-weighed HCA-North solids. The mixture was then swirled in a beaker, poured back into the graduated cylinder, and timed to measure how long the solids took to settle. Once the solids settled, the volume was measured, and density calculated from the mass balance. This procedure was repeated for the HCA-South sample.

The South 1M rinsed solids (from Phase 1) were rinsed a second time and prepared for additional analysis. Approximately 0.20 g of the sample was rinsed with a total of 50 mL of 1 M HNO₃. It was first mixed with 25 mL of HNO₃ and filtered using a 0.45 μ m vacuumed filter. The filtered solids were then rinsed with the remaining 25 mL of HNO₃ using a pipette. Both the (dissolved) solids and a sample of the filtrate were analyzed by GPHA (for gamma emitters), GPHA with Cs removal (for lower activity gamma emitters), TTA extraction/APHA (for Pu-238 and Pu-239/240), ICPMS (for fission products, actinides, and U/Pu isotopic information), and ICPES (for U and low molecular weight fission and corrosion products).

2.3 Phase 3: Dissolution in 7 M HNO₃

A portion of the HCA-North, HCA-South, and the rinsed solids samples (both the 1 M and 6 M rinse for each sample) were prepared for solubility testing in the SRNL Shielded Cells. A starting weight was obtained for each of the six solid samples. The HCA-North and HCA-South samples were combined into one sample of non-rinsed solids, while the 1 M and 6 M rinsed solids were combined into one rinsed sample. A total weight was obtained for both combined samples. A target mass of 0.4 g each of both samples was added to 50 mL of pre-weighed 7 M HNO₃. The solutions were placed on a hot plate, covered with a watch glass that contained a small amount of water to reduce evaporation losses, and heated to near boiling while stirring. The solution was held at near boiling for approximately 3 hours and then observed for visible solids. Afterwards, the solutions were left to cool and again observed for changes in the solution and solids. Once cooled, the solutions were poured through a 0.45 µm vacuumed filter. A sample of each filtrate was collected for analysis. The solids were dried in ambient air for approximately 1 hour, then transferred to a pre-weighed crucible and dried in an oven at 120 °C before being weighed. Samples of the (dissolved) solids and the filtrate solutions were analyzed by GPHA (for gamma emitters), GPHA with Cs removal (for lower activity gamma emitters), TTA extraction/APHA (for Pu-238 and Pu-239/240), ICPMS (for fission products, actinides, and U/Pu isotopic information), and ICPES (for U and low molecular weight fission and corrosion products).

2.4 Phase 4: Dissolution in 7 M HNO3 containing 0.1 M Fluoride

To demonstrate a chemical cleanout flowsheet that could be utilized in the H-canyon 6.4D dissolver, approximately 0.5 g of rinsed solids (from both the HCA-North and HCA-South samples) were placed in 100 mL of pre-weighed 7 M HNO₃ containing 0.1 M fluoride. The solution was placed on a hot plate,

covered with a watch glass that contained a small amount of water to reduce the evaporation rate, and heated to near boiling while stirring. The solution was held at near boiling for approximately 12 hours over the course of two shifts. The solution was periodically checked for evaporation and when more than 20 mL of solution evaporated an additional aliquot was added. After completing the dissolution, the solution was cooled and poured through a 0.45 µm vacuumed filter. The remaining solids were dried in ambient air for approximately one hour and transferred to a pre-weighed crucible which was dried in an oven at 120 °C before being weighed. A sample of the (dissolved) solids was analyzed by GPHA (for gamma emitters), GPHA with Cs removal (for lower activity gamma emitters), TTA extraction/APHA (for Pu-238 and Pu-239/240), ICPMS (for fission products, actinides, and U/Pu isotopic information), and ICPES (for U and low molecular weight fission and corrosion products).

2.5 Quality Assurance

A Functional Classification of Safety Significant was applied to this work. Analytical measurement systems with a General Service functional classification were used to collect data during the characterization of solids from the 6.4D Dissolver. Standards used to calibrate these systems were purchased at level 2 with a certificate of analysis. Chemical reagents used in experiments and sample preparation were purchased at levels 2 or 3. Standards used for analytical measurements were traceable to NIST or equivalent per manual 1Q, 2-7 section 5.2.3.

To match the requested functional classification, this report received technical review by design verification. Requirements for performing reviews of technical reports and the extent of review are established in manual E7 2.60. SRNL documents the extent and type of review using the SRNL Technical Report Design Checklist contained in WSRC-IM-2002-00011, Rev. 2.

3.0 Results and Discussion

3.1 Phase 1 & 2: Characterization of Solids

Elemental concentrations were measured by ICPES, ICPMS (reported by m/z numbers), and TTA/GPHA for the rinsed and unrinsed solids. Unrinsed solids are designated "unrinsed" and the rinsed solids are identified using the concentration of HNO₃ used for the rinse solution. A second rinse was performed on the South-1M material, which is designated as South-1M-B. The ICPES results for selected elements provided in Table 3-1 indicate that solids are mostly comprised of Si, Fe, Al, and Cr and would include a corresponding anion (e.g., oxide or nitrate). The analytical results for all elements are provided in Appendix A (Table A-1).

Element	North- Unrinsed	South- Unrinsed	North- 1M	South- 1M	South- 1M-B	North-6M	South-6M
	wt %	wt %	wt %	wt %	wt %	wt %	wt %
Al	4.88	5.15	0.337	0.357	0.388	0.314	0.386
Са	0.380	0.323	0.311	0.251	0.481	0.357	0.262
Cr	1.340	0.347	0.508	0.164	0.176	0.475	0.205
Fe	4.95	1.31	1.90	0.642	0.717	1.79	0.831
Mg	0.023	0.026	0.002	< 0.001	< 0.014	< 0.002	0.003
Ni	0.733	0.193	0.261	0.083	< 0.169	0.260	0.117
Si	18.8	26.2	32.2	27.6	33.2	31.2	28.6

Table 3-1. ICPES Analysis of Solids Before and After Rinse

The ICPES filtrate results for selected elements are provided in Table 3-2. The analytical results for all elements are provided in Appendix A (Table A-3). The data for the solids (Table 3-1) and filtrate analyses

show that much of the Al, Fe, Cr and Ni was removed from the solids by both the 1 and 6 M HNO₃ rinses. There does not appear to be a significant impact of the second rinse with 1 M HNO₃ (Table 3-1). The filtrate results also show that U was rinsed from the solids; however, the U concentration in the solids was below the ICPES detection limit. The filtrate results indicate that Si was not dissolved by either of the acid rinses. Rinses with 1 M HNO₃ removed more Al, Fe, Cr, and Ni than rinses using 6 M HNO₃.

Element	North-1M	South-1M	North-6M	South-6M
	wt %	wt %	wt %	wt %
Al	12.6	15.0	10.2	10.5
Ba	0.012	0.015	0.010	0.011
Ca	0.055	0.048	0.045	0.039
Cr	0.321	0.377	0.257	0.258
Fe	1.135	1.348	0.894	0.854
La	< 0.008	0.010	< 0.009	0.008
Mn	0.033	0.040	0.026	0.028
Ni	0.173	0.214	0.142	0.149
Si	< 0.065	< 0.071	< 0.076	< 0.061
Sr	0.006	0.008	0.005	0.005
U	0.858	1.156	0.657	0.811
Zr	0.061	0.089	0.091	0.091

Table 3-2. ICPES Analysis of Rinse Filtrate

The most prevalent elements measured by the ICPMS analysis for the solids are shown in Table 3-3. The filtrate results are provided in Table 3-4. The analytical results for all elements are provided in Appendix A (Table A-4 and Table A-6, respectively). The ICPMS method reports the mass of isotopes with the same mass number divided by charge number. Therefore, using the decay chain of U-235 and half-lives of the isotopes, the most likely species were provided in the tables. Fissionable species were further resolved with radiochemical analytical techniques.

Most Likely Isotope	Other Possible Isotopes	m/z	North- Unrinse d	South- Unrinse d	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
			wt %	wt %	wt %	wt %	wt %	wt %	wt %
Nb-93	Zr-93 Mo-93	93	0.164	0.168	0.212	0.197	0.184	0.207	0.212
Mo-95		95	0.024	0.013	0.018	0.011	0.011	0.016	0.013
Mo-96	Zr-96 Ru-96	96	0.444	0.464	0.382	0.401	0.369	0.45	0.397
Mo-97	Tc-97	97	0.021	0.011	0.017	0.01	0.01	0.014	0.012
Mo-98	Ru-98 Tc-98	98	0.025	0.013	0.018	0.011	0.011	0.016	0.013
Ru-100 Mo-100		100	0.022	0.012	0.018	0.011	0.01	0.015	0.013
Ru-101	Rh-101	101	0.005	0.009	0.007	0.009	0.009	0.01	0.01
Te-126	Sn-126	126	0.021	0.025	0.030	0.026	0.033	0.030	0.027
Gd-156		156	0.009	0.011	0.001	0.001	0.001	0.001	0.001
Gd-158		158	0.011	0.013	0.001	0.001	0.001	0.001	0.001
Gd-160		160	0.009	0.012	0.001	0.001	0.001	0.001	0.001
Hf-177		177	0.024	0.026	0.017	0.018	0.019	0.022	0.017
Hf-178		178	0.035	0.038	0.025	0.027	0.028	0.032	0.025
Hf-179	Ta-179	179	0.018	0.02	0.013	0.014	0.014	0.017	0.013
Hf-180	Ta-180 W-180	180	0.045	0.049	0.032	0.034	0.035	0.042	0.033
Ta-181		181	0.001	0.001	0.001	0.001	0.003	0.001	0.001
W-182		182	0.013	0.008	0.012	0.008	0.011	0.011	0.009
W-183		183	0.008	0.005	0.008	0.005	0.007	0.007	0.006
W-184		184	0.016	0.010	0.016	0.010	0.014	0.014	0.012
W-186		186	0.014	0.008	0.014	0.009	0.012	0.012	0.01
Pt-196		196	0.001	0.001	0.000	0.000	0.000	0.001	0.000
U-232	Th-232	232	0.01	0.01	0.02	0.016	0.019	0.02	0.02
U-235	Np-235	235	0.12	0.147	0.012	0.013	0.007	0.01	0.014
U-236	Np-236 Pu-236	236	0.015	0.018	0.002	0.002	0.001	0.001	0.002
Np-237		237	0.001	0.001	0.000	0.000	0.000	0.000	0.000
U-238	Pu-238	238	0.205	0.251	0.042	0.041	0.026	0.041	0.046
Pu-239		239	0.007	0.008	0.008	0.008	1.682	0.008	0.009
Pu-240		240	0.002	0.002	0.002	0.002	0.104	0.002	0.002

Table 3-3. ICPMS Analysis of Solids Before and After Rinse

Most Likely Isotope	Other Possible Isotopes	m/z	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
			wt %	wt %	wt %	wt %	wt %
Zr-90	Sr-90	90	0.006	0.009	0.000	0.008	0.008
Zr-91	Nb-91 Y-91	91	0.012	0.017	0.000	0.017	0.017
Zr-92	Nb-92 Mo-92	92	0.011	0.016	0.000	0.015	0.016
Nb-93	Zr-93 Mo-93	93	0.014	0.020	0.005	0.019	0.019
Zr-94	Mo-94 Nb-94	94	0.012	0.018	0.000	0.017	0.018
Mo-95		95	0.004	0.006	0.000	0.004	0.004
Mo-96	Zr-96 Ru-96	96	0.011	0.016	0.004	0.015	0.016
Mo-97	Tc-97	97	0.004	0.006	0.000	0.003	0.004
Mo-98	Ru-98 Tc-98	98	0.004	0.006	0.000	0.004	0.004
Ru-99	Тс-99 Мо-99	99	0.004	0.005	0.000	0.003	0.003
Ru-100 Mo-100		100	0.004	0.006	0.000	0.004	0.004
Ru-101	Rh-101	101	0.004	0.005	0.000	0.003	0.004
Ru-102	Pd-102	102	0.003	0.005	0.000	0.003	0.003
Sn-119		119	0.009	0.013	0.000	0.007	0.009
Cs-133	Ba-133	133	0.006	0.008	0.000	0.004	0.005
Cs-137	Ba-137	137	0.006	0.008	0.000	0.004	0.005
Ba-138	La-138 Ce-138	138	0.008	0.010	0.000	0.007	0.007
La-139		139	0.007	0.010	0.000	0.006	0.007
Ce-140		140	0.007	0.009	0.000	0.006	0.007
Pr-141		141	0.006	0.009	0.000	0.005	0.007
Ce-142	Nd-142	142	0.007	0.010	0.000	0.006	0.007
Nd-143		143	0.006	0.008	0.000	0.004	0.005
Nd-144	Ce-144	144	0.008	0.010	0.000	0.006	0.007
Nd-145	Pm-145 Sm-146	145	0.004	0.006	0.000	0.003	0.004
Nd-146 Eu-154	Pm-146	146	0.004	0.005	0.000	0.003	0.004
Sm-154		154	0.003	0.004	0.000	0.002	0.003
Gd-155		155	0.017	0.023	0.000	0.013	0.016
Gd-156		156	0.024	0.031	0.000	0.018	0.022
Gd-157		157	0.018	0.024	0.000	0.014	0.017
Gd 160		158	0.029	0.038	0.000	0.022	0.026
Df 100		160	0.026	0.034	0.000	0.020	0.024
Hg-198	T C C C	198	0.030	0.045	0.000	0.024	0.031
Hg-204	Ti-204 Pb-204	204	0.017	0.025	0.000	0.014	0.018
U-234		234	0.005	0.006	0.000	0.004	0.004
U-235	Np-235	235	0.318	0.433	0.005	0.256	0.299
U-236	Np-236 Pu-236	236	0.040	0.055	0.001	0.032	0.038
U-238	Pu-238	238	0.494	0.671	0.007	0.392	0.453
Pu-239		239	0.003	0.004	0.008	0.002	0.003

Table 3-4. ICPMS Analysis for Rinse Filtrate

The most prevalent species in the solids identified by ICPMS are Mo, Nb, and U. Solid and filtrate results indicate U is readily rinsed out. Niobium and Mo mostly remain as a solid. Uranium, Hg, and Gd are the most abundant species in the filtrate. Uranium and Hg appear slightly more soluble in 1 M HNO₃; whereas Gd appears to be equally soluble in both acid concentrations. The slight increase in solubility may be due to the dynamic equilibrium of the nitrate salts.

Radiochemical analyses were performed to better resolve the concentrations of the fissionable species in the solids. The analytical results for selected isotopes are provided in Table 3-5. Complete results for the solids and filtrates are provided in Appendix A (Table A-8 and Table A-10 respectively). Very low concentrations of the radionuclides were measured in the filtrates causing most of the calculated mass percentages to be less than 0.000 wt % (to three significant digits). The solids contained low amounts of Pu-238, which also resulted in calculated mass percentages less than 0.000 wt %. Some Pu-239 and Pu-240 were measured that does not appear to rinse out. However, the total Pu content of the solids was very low, averaging 0.010 wt %. The significantly higher concentrations of Pu-239 and Pu-240 measured in sample South-1MB is due to cross-contamination from performing the work in a glovebox which was highly contaminated with weapons grade Pu.

	North- Unrinsed	South- Unrinsed	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
	wt %	wt %	wt %	wt %	wt %	wt %	wt %
Sn-126	0.002	0.003	0.003	0.002	0.005	0.003	0.002
Cs-137	0.002	0.000	0.000	0.000	0.000	0.000	0.000
Pu-238	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pu-239	0.007	0.008	0.007	0.008	1.752	0.008	0.008
Pu-240	0.002	0.002	0.002	0.002	0.108	0.002	0.002
Am-241	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 3-5. Radiochemical Analysis of Solids Before and After Rinse

The primary contents of the solids are summarized in Table 3-6. Because the solids were wet when received at SRNL, then dried as necessary for proper analysis, it was difficult to determine which species were present in the 6.4D dissolver as solids verses solids generated by evaporation (i.e., drying) after receipt at SRNL. The analysis of the rinsed solids indicate that the primary components are Si, Fe, Mo and Al. Uranium is present in the unrinsed samples at 0.342 wt % (0.120 wt % U-235) (HCA-North) and 0.418 wt % (0.147 wt % U-235) (HCA-South). The U content of the rinsed solids (0.052 to 0.062 wt % total U) is much lower than the unrinsed solids indicating that a majority of the U present in the solids is soluble in HNO₃. It is likely that the soluble U was present in the dried, unrinsed solids either interstitially or as nitrate crystals that formed during evaporation. The second rinse, South-1M-B, removed only slightly more Nb, and U.

Unrinsed Solids				Rinsed Solids						
		North- Unrinsed	South- Unrinsed			North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
Species	Method	wt %	wt %	Species	Method	wt %	wt %	wt %	wt %	wt %
Si	ICPES	18.8	26.2	Si	ICPES	32.2	27.6	33.2	31.2	28.6
Al	ICPES	4.88	5.15	Fe	ICPES	1.90	0.642	0.717	1.79	0.831
Fe	ICPES	4.95	1.31	Mo-96	ICPMS	0.401	0.382	0.369	0.450	0.397
Mo-96	ICPMS	0.464	0.444	Al	ICPES	0.337	0.357	0.388	0.314	0.386
Cr	ICPES	1.34	0.347	Ca	ICPES	0.311	0.251	0.481	0.357	0.262
U-238	ICPMS	0.205	0.251	Cr	ICPES	0.508	0.164	0.176	0.475	0.205
Ni	ICPES	0.733	0.193	Ni	ICPES	0.261	0.083	< 0.169	0.26	0.117
Nb-93	ICPMS	0.168	0.164	U-238	ICPMS	0.042	0.041	0.026	0.041	0.046
U-235	ICPMS	0.120	0.147	U-235	ICPMS	0.012	0.013	0.007	0.010	0.014
Pu-239	ICPMS	0.007	0.008	Pu-239	ICPMS	0.008	0.008	-	0.008	0.009
Pu-240	Pu TTA	0.002	0.002	Pu-240	Pu TTA	0.002	0.002	-	0.002	0.002

Table 3-6. Dissolved Solids Summary

The bulk density was measured by placing dry solids into a graduated cylinder to determine the volume and to weigh the material. In addition, 5 mL of pre-weighed, 1 M HNO₃ was mixed with the dried solids. The solids were allowed to settle over time in the graduated cylinder. The settling times were less than one minute. The volume of the settled solids in the solution and the total mass were measured to calculate an alternative ('settling') density. Results of the density tests are summarized in Table 3-7. Test Set 1 was performed in the SRNL Shielded Cells using manipulators. Test Sets 2-5 were performed manually in a glovebox.

The average density of the dry and settled solids was 0.6 ± 0.1 g/cm³. H-Canyon Engineering personnel estimated that 157,000 cm³ of solids were present on the bottom of the 6.4D dissolve pot.⁹ Based on this volume and the measured density, the total mass of solids was 94.4 kg. Undissolved solids (e.g., noble metal fission products and SiO₂ from U silicide (U₃Si or U₃Si₂) research reactor fuels) are always a product of SNF dissolution and are regularly transferred from the dissolver to be removed from the solution by centrifugation in Head End and then transferred to waste. Visual inspection of the 6.4D dissolver pot indicated the solids were primarily located on the high side of the vessel away from the jet, which may be a result of the solids settling during the transfer of solution.⁹

Test	Sample ID:	Solids Mass	Solid Volume	Calculated Density	Method	
Set	Location- Rinse	σg	cm ³	g/cm ³		
	North-Unrinsed	0.72	1.1	0.7	Bulk	
	North-1M	0.45	0.8	0.6	Bulk	
1	North-6M	0.33	0.6	0.5	Bulk	
1	South- Unrinsed	0.57	1.1	0.5	Bulk	
	South-1M	0.60	1.0	0.6	Bulk	
	South-6M	0.38	0.7	0.5	Bulk	
	North- Unrinsed	0.72	1.0	0.7	Bulk	
2	South	0.58	1.0	0.6	Bulk	
	South-1M	0.20	0.3	0.7	Bulk	
	North- Unrinsed	0.68	1.0	0.7	Bulk	
3	South- Unrinsed	0.55	1.0	0.6	Bulk	
	South-1M	0.21	0.3	0.7	Bulk	
	North- Unrinsed	0.74	1.0	0.7	Bulk	
4	South- Unrinsed	0.59	1.0	0.6	Bulk	
	South-1M	0.21	0.3	0.7	Bulk	
5	North- Unrinsed	0.40	0.8	0.5	Settling	
3	South- Unrinsed	0.30	0.8	0.4	Settling	
			Avg.	0.6 ± 0.1		

Table 3-7. Calculated Density of Dry Solids

Using the analytical results for the unrinsed material (Table 3-6), the bounding total masses of U and Pu present were 359 ± 45 g (126 ± 20 g U-235) and 8.6 ± 1.4 g, respectively, at 95% confidence limits. The total masses of U and Pu present in the rinsed solids were 54 ± 6 g (12 ± 2 g U-235) and 9.4 ± 1.1 g, respectively, at 95% confidence limits. The confidence limits in the masses of the fissionable materials were calculated by GUM Workbench¹⁰ using propagation of error techniques based on the uncertainty in the ICPMS method (a one sigma uncertainty of 10%), the individually measured uncertainties of the Pu isotopes from the TTA/APHA method (a one sigma uncertainty of 5-10%), and the uncertainty in the average density of the solids. The volume of the solids in the 6.4D dissolver was a bounding value; therefore, an uncertainty was not used in the calculations. A summary of the estimated masses and 95% confidence limits of the fissionable material in the 6.4D dissolver solids is provided in Table 3-8.

 Table 3-8. Estimated Mass of Fissionable Species

Isotope	Unrinsed			1 M	6 M		
	Mass	Uncertainty	Mass	Uncertainty	Mass	Uncertainty	
	(g)	(g)	(g)	(g)	(g)	(g)	
U-234	1.78	0.29	0.16	0.03	0.15	0.03	
U-235	126	20	11.8	1.9	11.7	1.9	
U-236	15.7	2.5	1.56	0.25	1.57	0.26	
U-238	215	35	39.4	6.3	41.1	6.6	
Total U*	359	45	52.9	7.1	54.5	7.4	
Pu-238	0.16	0.03	0.13	0.02	0.13	0.02	
Pu-239	6.86	1.28	7.34	1.23	7.71	1.32	
Pu-240	1.53	0.30	1.67	0.30	1.75	0.32	
Total Pu*	8.55	1.45	9.14	1.36	9.59	1.47	

* Isotopic masses may not sum to the elemental total due to rounding.

3.2 Phase 3 & 4: Dissolution Strategy

To evaluate the dissolution behavior of the solids using more aggressive conditions (similar to conditions in the 6.4D dissolver during SNF dissolution), samples of the unrinsed and rinsed solids were contacted with near boiling 7 M HNO₃. North and South samples were combined to create two distinct composites (unrinsed and rinsed). A subsample of each composite, designated as Unrinsed-7M and Rinsed-7M, was then contacted with the HNO₃ solution for about three hours. To demonstrate a chemical cleanout method that could be utilized in the 6.4D dissolver, a sample of the rinsed composite was also contacted with near boiling 7 M HNO₃ containing 0.1 M KF (Rinsed-7M-F) for approximately 12 hours. The resulting mass balances for the dissolution experiment are shown in Table 3-9.

	Starting Solids Mass	Ending Solids Mass	Mass Loss	Mass Loss
	(g)	(g)	(g)	(%)
Unrinsed-7M	0.427	0.166	0.261	61.1%
Rinsed-7M	0.465	0.133	0.332	71.4%
Rinsed-7M-F	0.515	0.257	0.258	50.1%

Table 3-9. Dissolution Mass Balance

The analytical results for the elements and isotopes of interest from the ICPES and radiochemical analyses for the solids dissolution experiments are provided in Table 3-10 and the ICPMS results for the three samples are provided in Table 3-11. The complete analysis of the samples are provided in Appendix A (Table A-2, Table A-3, Table A-5, Table A-7, Table A-9, and Table A-11). The initial element and isotope concentrations for the unrinsed and rinsed composite samples are also provided in the two tables. The concentrations were calculated from data in Table 3-1, Table 3-3, and Table 3-5 using a weighted average based on the masses of the combined solids. There is a significant reduction in the amount of Al, Fe, and Cr, when compared to the unrinsed solids. The dissolved solids still contain very high amounts of Si due to the low solubility of SiO₂ in HNO₃ solutions.¹¹ The undissolved solids remaining from contact with the 7 M HNO₃ solution containing 0.1 M fluoride appear to be primarily Si, consistent with the low solubility of SiO₂ in HNO₃. The Pu concentration in the solids remained nearly constant and was only reduced in concentration when contacted with the HNO₃ containing fluoride. During dissolution of the composite solids with 7M HNO₃, which is similar to the conditions for dissolution of SNF in H-Canyon,^{12,13} the U concentration appears to have reached a relatively constant value in the solids. The U concentrations following the HNO₃ dissolution for both the rinsed and unrinsed solids are nearly the same. The U isotopic concentrations are 0.007-0.008 wt % U-235, 0.001 wt % U-236, and 0.029-0.033 wt % U-238 (Table 3-11). The addition of 0.1 M fluoride to the HNO₃ solution reduced the total U concentration to 0.018 wt %.

Table 3-10. ICPES and Radiochemical Analyses for Solids Dissolutions

Element	Initial Unrinsed	Unrinsed-7M		Initial Rinsed	Rinsed-7M		Rinsed-7M-F	
	Solids	Solids	Filtrate	Solids	Solids	Filtrate	Solids	Filtrate
	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
Al	5.069	0.460	9.133	< 0.012	0.448	0.265	0.329	-
Ba	< 0.007	0.020	0.010	0.307	0.025	< 0.001	< 0.004	-
Be	0.000	< 0.003	0.001	< 0.006	< 0.004	< 0.001	0.000	-
Cr	0.646	0.080	0.283	0.000	0.073	0.059	< 0.018	-
Fe	2.405	0.337	1.063	0.286	0.351	0.300	< 0.086	-
Gd	< 0.030	< 0.046	0.093	1.092	< 0.052	< 0.014	< 0.011	-
Li	0.014	< 0.147	< 0.043	0.012	< 0.167	< 0.044	0.015	-

Element	Initial Unrinsed	Unrins	ed-7M	Initial Rinsed-7M		d-7M	Rinsed-7M-F		
	Solids	Solids	Filtrate	Solids	Solids	Filtrate	Solids	Filtrate	
	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	
Mg	0.025	< 0.010	0.093	< 0.024	< 0.011	0.033	0.030	-	
Mn	< 0.007	< 0.008	0.027	0.002	< 0.010	0.003	< 0.002	-	
Na	-	-	0.115	-	-	0.226	-	-	
Ni	0.355	< 0.421	0.145	0.152	< 0.478	< 0.124	< 0.059	-	
Si	23.975	20.0	0.119	26.01	40.0	0.168	28.5	-	
Sr	< 0.083	0.000	0.005	< 0.066	< 0.005	< 0.001	< 0.009	-	
U	< 0.183	1.76	0.696	< 0.144	< 2.00	< 0.520	< 0.426	-	
Zn	< 0.010	< 0.027	0.013	< 0.007	< 0.037	0.008	< 0.006	-	
Zr	-	-	0.187	-	-	0.173	-	-	
Pu-239	0.008	0.007	0.000	0.008	0.007	0.000	0.004	0.000	
Pu-240	0.002	0.002	0.000	0.002	0.002	0.000	0.001	0.000	

Table 3-11. ICPMS Analyses for Solids Dissolutions

Most likely	Possible	m/z	Initial unrinsed	Unring	sed-7M	Initial unrinsed	Rinse	ed-7M	Rinsec	I-7M-F
			solids	solids	filtrate	solids	solids	filtrate	solids	filtrate
			wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
		90	-	-	0.007	-	-	0.007	-	0.061
		91	-	-	0.017	-	-	0.014	-	0.161
		92	-	-	0.017	-	-	0.014	-	0.148
Nb-93	Zr-93 Mo-93	93	0.167	0.218	0.019	0.206	0.211	0.218	0.140	0.219
		94	-	-	0.018	-	-	0.015	-	0.171
Mo-95		95	0.016	0.010	0.007	0.014	0.007	0.005	0.004	0.019
Mo-96	Zr-96 Ru-96	96	0.458	-	0.017	0.404	-	0.014	-	0.150
Mo-97	Tc-97	97	0.014	0.009	0.006	0.013	0.006	0.005	0.004	0.018
Mo-98	Ru-98 Tc-98	98	0.016	0.010	0.006	0.014	0.007	0.005	0.004	0.020
Ru-100 Mo-100		100	0.015	0.001	0.006	0.014	0.001	0.005	0.004	0.019
Ru-101	Rh-101	101	0.008	0.010	0.002	0.009	0.006	0.001	0.006	0.007
Ru-102	Pd-102	102	0.007	0.009	0.002	0.008	0.009	0.000	0.005	0.006
Rh-103		103	0.004	0.008	0.001	0.004	0.008	0.000	0.003	0.004
Ru-104	Pd-104	104	0.004	0.005	0.001	0.005	0.004	0.000	0.003	0.003
		106	0.009	0.014	0.000	0.007	0.019	0.000	0.010	0.000
Pd-107	Ag-107	107	0.003	0.005	0.000	0.003	0.007	0.000	0.010	0.000
		108	0.003	0.005	0.000	0.002	0.007	0.000	0.010	0.000
Sn-118		118	0.005	0.006	0.001	0.004	0.008	0.000	0.005	0.002
Te-126	Sn-126	126	0.024	0.026	0.002	0.028	0.032	0.002	0.027	0.027
Pr-141		141	0.003	0.000	0.005	0.000	0.000	0.000	0.000	0.000
Gd-156		156	0.010	0.001	0.009	0.001	0.000	0.000	0.000	0.001
Gd-157		157	0.008	0.000	0.007	0.001	0.000	0.000	0.000	0.001
Gd-158		158	0.012	0.001	0.011	0.001	0.001	0.000	0.001	0.000
Lu-176	Hf-176 Yb-176	176	0.007	0.010	0.000	0.005	0.014	0.000	0.006	0.000
Hf-177		177	0.026	0.038	0.000	0.018	0.053	0.000	0.023	0.000
Hf-178		178	0.037	0.057	0.000	0.027	0.079	0.000	0.033	0.000
Hf-179	Ta-179	179	0.019	0.027	0.000	0.014	0.038	0.000	0.017	0.000
Hf-180	Ta-180 W-180	180	0.048	0.074	0.000	0.035	0.100	0.000	0.043	0.000
W-182		182	0.009	0.012	0.001	0.010	0.009	0.001	0.004	0.014
W-183		183	0.006	0.007	0.000	0.006	0.005	0.001	0.003	0.008
W-184		184	0.012	0.015	0.001	0.012	0.011	0.001	0.006	0.018

Most likely	Possible	m/z	Initial unrinsed	Unrinsed-7M		Initial unrinsed	Rinsed-7M		Rinsed-7M-F	
			solids	solids	filtrate	solids	solids	filtrate	solids	filtrate
			wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
W-186		186	0.010	< 0.013	0.001	0.011	0.009	0.001	0.005	0.016
Pt-198		198	0.005	0.001	0.012	0.001	0.000	0.000	0.000	0.001
Hg-198										
U-232		232	0.011	0.018	0.001	0.016	0.021	0.000	0.021	0.005
Th-232										
U-235	Np-235	235	0.139	0.008	0.131	0.013	0.007	0.005	0.005	0.018
U-236	Np-236 Pu-236	236	0.017	0.001	0.016	0.002	0.001	0.001	0.000	0.003
U-238	Pu-238	238	0.237	0.037	0.201	0.042	0.029	0.009	0.013	0.060
Pu-239		239	0.007	0.007	0.002	0.008	0.007	0.000	0.004	0.009

3.3 U Isotopic Concentrations of Solids

The U isotopic concentrations measured in the solids are given in Table 3-12. The average U-235 enrichment in the unrinsed solids is slightly greater than 35 wt %. The U-235 enrichment of the U in the rinsed solids was significantly less, ranging from about 19 to 23 wt %. The solids contacted with 7 M HNO₃ acid show further evidence of the preferential dissolution of U-235 and U-236; however, the addition of fluoride to the 7 M HNO₃ solution results in a reduction in the U-238 concentration. Based on these data, it is apparent that solids containing different enrichment levels exist. The solids containing U at approximately 35 wt % U-235 enrichment are more soluble than the other solids in the dissolver; however, the addition of U in all solids.

Isoto	Isotope	North- Unrinsed	South- Unrinsed	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M	Unrinsed- 7M	Rinsed- 7M	Rinsed- 7M-F
		wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
	U-234	0.5	0.5	0.3	0.3	0.4	0.2	0.3	0.2	0.2	0.3
ids	U-235	35.1	35.2	21.8	22.7	21.2	19.5	23.1	18.0	18.9	25.1
Sol	U-236	4.4	4.4	2.9	3.0	2.8	2.6	3.1	2.6	2.5	2.5
	U-238	60.1	59.9	75.0	74.0	75.7	77.7	73.5	79.1	78.4	72.1
	U-234	-	-	0.5	0.5	0.6	0.6	0.6	0.5	0.5	0.3
rate	U-235	-	-	37.1	37.2	37.9	37.4	37.6	37.4	35.1	22.0
Filt	U-236	-	-	4.7	4.7	4.3	4.7	4.8	4.7	4.4	3.2
	U-238	-	-	57.6	57.6	57.3	57.3	57.0	57.4	60.0	74.5

Table 3-12. U Isotopic Concentrations in Dissolved Solids

A review of the recent 6.4D dissolver SNF batch charging history shows the average U-235 content was approximately 35-36 wt %, which is consistent with the U concentrations measured in the unrinsed solids samples. Various MTR type fuels have been previously dissolved that initially contained approximately 19-20 wt % U-235 before irradiation which is consistent with the concentrations measured in the rinsed solids.

3.4 Fissionable Mass in Dissolved Solids

The analytical data in Table 3-10 and Table 3-11 show that contacting the 6.4D dissolver solids with near boiling HNO₃ (with and without fluoride) reduces the concentrations of the U and Pu isotopes. The concentrations of the fissionable isotopes following dissolution in 7 M HNO₃ with and without using 0.1 M fluoride are summarized in Table 3-13. The measured concentrations following the dissolution of the rinsed and unrinsed solids were averaged.

Testere	Dissolution-7M	Dissolution-7M-F
Isotope	wt %	wt %
U-234	0.000	0.000
U-235	0.008	0.005
U-236	0.001	0.000
U-238	0.033	0.013
Total U	0.042	0.018
Pu-238	0.000	0.000
Pu-239	0.007	0.004
Pu-240	0.002	0.001
Total Pu	0.009	0.005

Table 3-13. Fissionable Concentration in Dissolved Solids

The concentrations measured in the 6.4D dissolver solids were used to calculate the masses of the U and Pu isotopes remaining in the solids following dissolution in the HNO₃ solutions. The average density of the dry and settled solids (Table 3-7) and the estimated volume of solids present on the bottom of the 6.4D dissolver pot⁹ were used for the calculations. The 95% confidence limits in the masses of the fissionable isotopes were calculated by GUM Workbench¹⁰ using propagation of error techniques based on the uncertainty of the ICPMS method (a one sigma uncertainty of 10%), the individually measured uncertainties of the Pu isotopes from the TTA/APHA method (a one sigma uncertainty of 5-10%), and the uncertainty in the average density of the solids. The volume of the solids in the 6.4D dissolver was a bounding value; therefore, an uncertainty was not used in the calculations. A summary of the estimated masses of fissionable isotopes remaining in the 6.4D dissolver following dissolution with 7 M HNO₃ and 7 M HNO₃ containing 0.1 M fluoride is given in Table 3-14.

Isotope	7 M HNO3		7 M HNO ₃ /0.1 M Fluoride			
	Total Remaining Mass	Uncertainty	Total Remaining Mass	Uncertainty		
	(g)	(g)	(g)	(g)		
U-234	0.089	0.014	0.046	0.010		
U-235	7.24	1.17	4.25	0.91		
U-236	1.00	0.16	0.43	0.09		
U-238	31.0	5.0	12.2	2.6		
Total U*	39.4	5.5	16.9	2.9		
Pu-238	0.10	0.01	0.05	0.01		
Pu-239	6.34	1.03	3.59	0.98		
Pu-240	1.45	0.25	0.83	0.24		
Total Pu*	7.89	1.13	4.46	1.12		

Table 3-14. Mass of Fissionable Solids in the 6.4D Dissolver Following HNO₃ Dissolutions

* Isotopic masses may not sum to the elemental total due to rounding.

The calculated masses of U and Pu in the 6.4D dissolver solids were substantially reduced when more aggressive dissolving conditions were used. The mass of U was reduced from 53-54 g (Table 3-8) in the samples rinsed with HNO₃ to 39 g in the solids when contacted with near boiling 7 M HNO₃. When the solids were contacted with near boiling 7 M HNO₃ containing 0.1 M fluoride, the total mass of U was further reduced to 17 g. Likewise the Pu mass in the solids was reduced from 9-10 g when rinsed with HNO₃ to 7.9 g and 4.5 g when contacted with near boiling 7 M HNO₃ and near boiling 7 M HNO₃ containing 0.1 M fluoride, respectively. Therefore, continued dissolution of SNF in the 6.4D dissolver (using starting HNO₃ concentrations of approximately 7 M) should slowly dissolve the very small quantities of U and Pu remaining in the dissolver and address any significant accumulation of fissile material in the future. A dissolver clean-out may be performed using nominally 7 M HNO₃ containing 0.1 M fluoride. The more

aggressive conditions would facilitate the removal of a higher percentage of the fissionable materials and reduce the amount of Si-containing solids in the 6.4D vessel.

4.0 Conclusions

Two solid samples taken from the 6.4D dissolver pot were transferred to SRNL for characterization. The samples were dried. The density of the dried solids was 0.6 ± 0.1 g/cm³. A small portion of each sample set was removed, and rinsed with 1 or 6 M HNO₃. A portion of the unrinsed and rinsed solids was dissolved and analyzed for elemental and radiochemical concentrations. Results from the analyses indicated that the solids were primarily Si, Fe, Al, and Cr. Comparison of the analysis of the rinsed solids and filtrate to the analysis of unrinsed solids indicated that U was mostly soluble. Based on the estimated volume of solids present in the 6.4D dissolver (157,000 cm³),⁹ the bounding total masses of U and Pu present in the unrinsed solids were 359 ± 45 g (126 ± 20 g U-235) and 8.6 ± 1.4 g, respectively, at 95% confidence limits. The masses of U and Pu in the rinsed solids were 54 ± 6 g (12 ± 2 g of U-235) and 9.4 ± 1.1 g, respectively, at 95% confidence limits.

The calculated masses of U and Pu in the 6.4D dissolver solids were substantially reduced when more aggressive dissolving conditions were used. Contact with near boiling 7 M HNO₃ reduced the U and Pu masses to 39.4 ± 5.5 g (7.24 ± 1.17 g U-235) and 7.89 ± 1.13 g, respectively, at 95% confidence limits. When 0.1 M fluoride was added to the near boiling HNO₃, the remaining U and Pu masses were 16.9 ± 2.9 g (4.25 ± 0.91 g U-235) and 4.46 ± 1.12 g, respectively, at 95% confidence limits. The dissolution experiments also reduced the mass of the solids by 50-70% leaving primarily Si as SiO₂. Continued dissolution of SNF in the 6.4D dissolver (using starting HNO₃ concentrations of approximately 7 M) should slowly dissolve the very small quantities of U and Pu remaining in the dissolver and address any significant accumulation of fissile material in the future. As an alternative, a dissolver clean-out could be performed using nominally 7 M HNO₃ containing 0.1 M fluoride to reduce the total amounts of solids and fissionable materials. A periodic clean-out of the dissolver could also be considered. Based on this work, the H-Canyon SNF dissolution flowsheet is functioning as expected.

5.0 References

- 1. W. H. Clifton Jr., *Determination of 6.4D Solids*, NMMD-HTS-2017-3398, Savannah River Nuclear Solutions, Aiken, SC (September 20, 2017).
- 2. K. P. Crapse, N. E. Bibler, and J. H. Gray, *Analysis of H-Canyon Dissolver 6.1D Insert Spacer Solids*, SRNL-ATS-2001-00058, Savannah River National Laboratory, Aiken, SC (September 18, 2007).
- 3. H. Kleykamp, *The Chemical State of Fission Products in Oxide Fuels at Different Stages of the Nuclear Fuel Cycle*, Nucl. Technol., Vol. 80, No. 3, p 412-422 (1988).
- 4. H. Kleykamp, *Post-irradiation Examinations and Composition of the Residues from Nitric Acid Dissolution Experiments of High Burn-up LWR Fuel*, Indira Gandhi Cent. At. Res., Kalpakkam, (Rep.) IGC, No. IGC-121 C, Techniques for Materials Characterisation, p 67-75 (1991).
- 5. J. Lausch, R. Berg, L. Koch, M. Coquerelle, J. P. Glatz, C. T. Walker, and K. Mayer, *Dissolution Residues of Highly Burnt Nuclear Fuels*, J. Nucl. Mater., Vol. 208, No. 1-2, p 73-80 (1994).
- B. S. M. Rao, E. Gantner, J. Reinhardt, D. Steinert, and H. J. Ache, *Characterization of the Solids Formed from Simulated Nuclear Fuel Reprocessing Solutions*, J. Nucl. Mater., Vol. 170, No. 1, p 39-49 (1990).
- 7. P. M. Almond, W. E. Daniel, and T. S. Rudisill, *Flowsheet Modifications for Sodium Reactor Experiment and Denmark Reactor-3 Used Nuclear Fuel Processing*, SRNL-STI-2014-00228, Savannah River National Laboratory, Aiken, SC (June 2014).
- 8. G. C. Rodrigues and A. P. Gouge, *Reprocessing RERTR Silicide Fuels*, DP-1657, E. I. du Pont de Nemours & Co., Aiken, SC (May 1983).

- 9. H. M. Hamm, 6.4D Solids Volume Determination, SRNS-E1121-2017-00003, Savannah River Nuclear Solutions, Aiken, SC (November 6, 2017).
- 10. GUM Workbench: User Manual for Version 1.3, 2.3, and 2.4, Metrodata GmbH, Braunschweig, Germany (2009).
- 11. T. H. Elmer and M. E. Nordberg, *Solubility of Silica in Nitric Acid Solutions*, J Am Ceram Soc, Vol. 41, No. 12, p. 517-520 (1958).
- 12. W. E. Daniel, T. S. Rudisill, and P. E. O'Rourke, *Dissolution of Material Test Reactor Fuel in an H-Canyon Dissolver*, SRNL-STI-2016-00725, Rev 1, Savannah River National Laboratory (May 2018).
- W. E. Daniel, T. S. Rudisill, P. E. O'Rourke, and N. S. Karay, *Dissolution Flowsheet for High Flux Isotope Reactor Fuel*, SRNL-STI-2016-00485, Rev 1, Savannah River National Laboratory, Aiken, SC (December 2017).

Appendix A. Analytical Results

The ICPES analytical results from the analysis of the solutions following dissolution of unrinsed and rinsed solids are provided in Table A-1.

Element	North- Unrinsed	South- Unrinsed	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
	wt %	wt %	wt %	wt %	wt %	wt %	wt %
Ag	< 0.017	< 0.015	< 0.015	< 0.012	< 0.101	< 0.017	< 0.013
Al	4.88	5.15	0.337	0.357	0.388	0.314	0.386
В	< 0.018	< 0.016	< 0.016	< 0.013	< 0.129	< 0.018	< 0.014
Ba	< 0.008	< 0.007	< 0.007	< 0.006	< 0.025	< 0.008	< 0.006
Be	0.000	0.000	0.000	0.000	0.003	0.000	0.000
Са	< 0.380	< 0.323	< 0.311	< 0.251	< 0.481	< 0.357	< 0.262
Cd	< 0.015	< 0.013	< 0.013	< 0.011	< 0.099	< 0.015	< 0.011
Ce	< 0.039	< 0.035	< 0.035	< 0.028	< 0.307	< 0.039	< 0.029
Со	< 0.015	< 0.013	< 0.014	< 0.011	< 0.107	< 0.015	< 0.011
Cr	1.340	0.347	0.508	0.164	0.176	0.475	0.205
Cu	< 0.050	< 0.045	< 0.045	< 0.037	< 0.360	< 0.051	< 0.038
Fe	4.95	1.31	1.90	0.642	0.717	1.79	0.831
Gd	< 0.032	< 0.029	< 0.029	< 0.024	< 0.076	< 0.033	< 0.024
К	< 1.200	< 1.070	< 1.080%	< 0.876	< 1.940	< 1.210	< 0.906
La	< 0.011	< 0.010	< 0.010	< 0.008	< 0.060	< 0.011	< 0.008
Li	< 0.014	< 0.013	< 0.013	< 0.011	< 0.103	< 0.015	< 0.011
Mg	0.023	0.026	0.002	< 0.001	< 0.014	< 0.002	0.003
Mn	< 0.007	< 0.006	< 0.006	< 0.005	< 0.014	< 0.007	< 0.005
Mo	0.087	< 0.071	< 0.071	< 0.058	< 0.307	< 0.080	< 0.060
Ni	0.733	0.193	0.261	0.083	< 0.169	0.260	0.117
Р	< 0.192	< 0.171	< 0.172	< 0.140	< 1.370	< 0.194	< 0.145
Pb	< 0.191	< 0.171	< 0.171	< 0.139	-	< 0.193	< 0.144
S	< 10.0	< 10.0	< 10.0	< 8.73	-	< 10.0	< 9.04
Sb	< 0.201	< 0.179	< 0.180	< 0.146	< 1.440	< 0.203	< 0.151
Si	18.8	26.2	32.2	27.6	33.2	31.2	28.6
Sn	< 0.121	< 0.108	< 0.108	< 0.088	< 0.863	< 0.122	< 0.091
Sr	< 0.090	< 0.081	< 0.081	< 0.066	< 0.007	< 0.091	< 0.068
Th	< 0.005	< 0.004	< 0.004	< 0.003	< 0.033	< 0.005	< 0.003
Ti	< 0.043	< 0.038	< 0.038	< 0.031	< 0.306	< 0.043	< 0.032
U	< 0.198	< 0.176	< 0.177	< 0.144	< 1.410	< 0.199	< 0.149
V	< 0.006	< 0.006	< 0.006	< 0.005	< 0.040	< 0.007	< 0.005
Zn	< 0.010	< 0.009	< 0.009	< 0.007	< 0.039	< 0.010	< 0.008

Table A-1. ICPES Analyses of HCA-North and HCA-South Solids

The ICPES analytical results from the analysis of the solutions generated from the dissolution of unrinsed and rinsed solids remaining from contact with near boiling 7 M HNO₃ solutions are provided in Table A-2.

Element	Unrinsed- 7M	Rinsed- 7M	Rinsed- 7M-F
	wt %	wt %	wt %
Ag	< 0.074	< 0.084	< 0.018
Al	0.460	0.448	0.329
В	< 0.078	< 0.089	-
Ba	0.020	0.025	< 0.004
Be	< 0.003	< 0.004	0.000
Са	0.432	0.509	< 0.351
Cd	< 0.060	< 0.068	< 0.015
Ce	< 0.169	< 0.192	< 0.045
Со	< 0.090	< 0.103	< 0.016
Cu	< 0.004	< 0.248	< 0.053
Cr	0.080	0.073	< 0.018
Fe	0.337	0.354	< 0.086
Gd	< 0.046	< 0.052	< 0.011
К	1.17	< 1.34	< 0.500
La	< 0.047	< 0.053	0.011
Li	< 0.147	< 0.167	0.015
Mg	< 0.010	< 0.011	0.030
Mn	< 0.008	< 0.010	< 0.002
Na	-	-	-
Ni	< 0.421	< 0.478	< 0.059
Мо	< 0.186	< 0.211	< 0.045
Р	< 0.832	< 0.946	< 0.202
Pb	< 0.832	< 0.946	< 0.201
S	< 52.2	< 59.4	< 10.0
Sb	< 1.70	< 1.94	< 0.211
Si	20.0	40.0	28.5
Sn	< 0.524	< 0.596	< 0.127
Sr	< 0.004	< 0.005	< 0.009
Th	< 0.357	< 0.451	< 0.055
Ti	< 0.358	< 0.407	< 0.049
U	1.76	< 2.00	< 0.426
V	< 0.028	< 0.032	< 0.007
Zn	< 0.027	< 0.037	< 0.006
Zr	-		-
Pu-239	0.007	0.007	0.004
Pu-240	0.002	0.002	0.001

Table A-2. ICPES Analysis for Dissolution of Solids

The ICPES analytical results from the analysis of the filtrate solutions generated from rinsing the solids in 1 and 6 M HNO₃ and dissolution of unrinsed and rinsed solids in near boiling 7 M HNO₃ are provided in Table A-3.

Element	North- 1M	South- 1M	North- 6M	South- 6M	Unrinsed- 7M	Rinsed- 7M
	wt %	wt %				
Ag	< 0.010	< 0.011	< 0.012	< 0.009	< 0.022	< 0.022
Al	12.6	15.0	10.2	10.5	9.133	0.265
В	< 0.013	< 0.014	< 0.015	< 0.012	< 0.023	< 0.023
Ba	0.012	0.015	0.010	0.011	0.010	< 0.001
Be	0.000	0.000	0.000	0.000	0.001	< 0.001
Ca	0.055	0.048	0.045	0.039	0.157	0.132
Cd	< 0.010	< 0.011	< 0.011	< 0.009	< 0.018	< 0.018
Ce	< 0.026	< 0.028	< 0.031	< 0.024	< 0.049	< 0.050
Со	< 0.011	< 0.012	< 0.012	< 0.010	< 0.026	< 0.027
Cr	0.321	0.377	0.257	0.258	0.283	0.059
Cu	< 0.035	< 0.039	< 0.042	< 0.033	< 0.064	< 0.065
Fe	1.135	1.348	0.894	0.854	1.063	0.300
Gd	< 0.023	< 0.025	< 0.027	< 0.021	0.093	< 0.014
K	< 0.190	< 0.209	< 0.225	< 0.179	< 0.344	< 0.348
La	< 0.008	0.010	< 0.009	0.008	< 0.014	< 0.014
Li	< 0.010	< 0.011	< 0.012	< 0.010	< 0.043	< 0.044
Mg	< 0.079	< 0.087	< 0.094	< 0.075	0.093	0.033
Mn	0.033	0.040	0.026	0.028	0.027	0.003
Мо	< 0.030	< 0.033	< 0.036	< 0.028	< 0.055	< 0.055
Na	< 0.157	< 0.172	< 0.186	< 0.148	0.115	0.226
Ni	0.173	0.214	0.142	0.149	0.145	< 0.124
Р	< 0.134	< 0.148	< 0.159	< 0.127	< 0.244	< 0.246
Pb	< 0.134	< 0.147	< 0.158	< 0.126	< 0.244	< 0.246
S	< 8.39	< 9.22	< 9.94	< 7.93	< 15.29	< 15.45
Sb	< 0.141	< 0.155	< 0.167	< 0.133	< 0.499	< 0.504
Si	< 0.065	< 0.071	< 0.076	< 0.061	0.119	0.168
Sn	< 0.085	< 0.093	< 0.100	< 0.080	< 0.153	< 0.155
Sr	0.006	0.008	0.005	0.005	0.005	< 0.001
Th	< 0.008	< 0.008	< 0.009	< 0.007	< 0.116	< 0.117
Ti	< 0.030	< 0.033	< 0.036	< 0.028	< 0.105	< 0.106
U	0.858	1.156	0.657	0.811	0.696	< 0.520
V	< 0.004	< 0.004	< 0.005	< 0.004	< 0.008	< 0.008
Zn	< 0.015	< 0.016	< 0.017	< 0.014	0.013	0.008
Zr	0.061	0.089	0.091	0.091	0.187	0.173

Table A-3. ICPES Analysis of Rinse Filtrate

The ICPMS analytical results from the analysis of the solutions following dissolution of unrinsed and rinsed solids are provided in Table A-4.

Most Likely Isotope	Possible Other Isotopes	m/z	North- Unrinsed	South- Unrinsed	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
			wt %	wt %	wt %	wt %	wt %	wt %	wt %
Ni-59	Co-59	59	0.004	0.001	0.002	0.001	0.001	0.002	0.001
		82	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		84	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rb-85		85	0.000	0.000	0.000	0.000	0.000	0.000	0.000
51.05		86	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Rb-87		87	0.001	0.001	0.000	0.000	0.000	0.001	0.001
Sr-88		88	0.003	0.002	0.002	0.001	0.002	0.002	0.001
1-89	7r 03	89	0.001	0.002	0.000	0.000	0.000	0.000	0.000
Nb-93	Mo-93	93	0.164	0.168	0.212	0.197	0.184	0.207	0.212
Mo-95		95	0.024	0.013	0.018	0.011	0.011	0.016	0.013
Mo-96	Zr-96 Ru-96	96	0.444	0.464	0.382	0.401	0.369	0.45	0.397
Mo-97	Tc-97	97	0.021	0.011	0.017	0.01	0.01	0.014	0.012
Mo-98	Ru-98 Tc-98	98	0.025	0.013	0.018	0.011	0.011	0.016	0.013
Ru-100		100	0.022	0.012	0.018	0.011	0.01	0.015	0.013
Ru-101	Rh-101	101	0.005	0.009	0.007	0.009	0.009	0.01	0.01
Ru-99	Tc-99 Mo-99	99	0.164	0.168	0.212	0.197	0.184	0.207	0.212
Ru-102	Pd-102	102	0.004	0.008	0.007	0.008	0.008	0.009	0.009
Rh-103	1 0 102	102	0.444	0.464	0.382	0.401	0.369	0.450	0.397
Ru- 104	Pd-104	104	0.021	0.012	0.017	0.010	0.010	0.014	0.012
		105	0.025	0.013	0.018	0.011	0.011	0.016	0.013
		106	0.002	0.003	0.001	0.001	0.001	0.001	0.001
Pd-107	Ag-107	107	0.022	0.013	0.018	0.011	0.010	0.015	0.013
		108	0.005	0.009	0.007	0.009	0.009	0.010	0.010
Ag-109	Cd-109	109	0.004	0.008	0.007	0.008	0.008	0.009	0.009
Pd-110	Cd-110 Ag-110	110	0.004	0.004	0.004	0.004	0.005	0.004	0.005
Cd-111		111	0.003	0.005	0.004	0.005	0.005	0.005	0.005
Cd-112	Sn-112	112	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		113	0.009	0.009	0.006	0.007	0.007	0.008	0.007
Cd-114	Sn-114	114	0.003	0.003	0.002	0.003	0.010	0.003	0.003
Cd-116	Sn-116	116	0.003	0.003	0.002	0.002	0.003	0.003	0.002
<u>Sn-117</u>		117	0.000	0.000	0.000	0.000	0.007	0.000	0.000
Sn-118		118	0.004	0.004	0.003	0.003	0.003	0.004	0.003
Sn-119 Sn 120		119	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sh-120		120	0.002	0.002	0.001	0.001	0.001	0.001	0.001
Sn-122	Te-122	121	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sb-123	Te-123	123	0.002	0.003	0.003	0.002	0.003	0.003	0.002
Sn-124	Te-123	124	0.002	0.002	0.002	0.001	0.002	0.002	0.001
Te-125	Sb-125	125	0.002	0.005	0.004	0.003	0.005	0.002	0.001
Te-126	Sn-126	126	0.021	0.025	0.03	0.026	0.033	0.03	0.027
Te-128		128	0.005	0.006	0.002	0.002	0.002	0.002	0.002
Te-130	Ba-130	130	0.005	0.006	0.006	0.005	0.008	0.006	0.004
Cs-133	Ba-133	133	0.002	0.002	0.002	0.002	0.003	0.002	0.002
Cs-134	Ba-134	134	0.002	0.002	0.002	0.002	0.003	0.002	0.002
Ba-135		135	0.002	0.003	0.003	0.002	0.004	0.003	0.002
Ba-136		136	0.003	0.004	0.004	0.003	0.005	0.004	0.003
Cs-137	Ba-137	137	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ba-138	La-138 Ce-138	138	0.021	0.025	0.030	0.026	0.033	0.030	0.027

Table A-4. ICPMS Analysis of Unrinsed and Rinsed Solids

Most Likelv	Possible Other	m/z	North-	South-	North-	South-	South-	North-	South-
Isotope	Isotopes	-	Unrinsed	Unrinsed	1M	1M	1M-B	6M	6M
			wt %	wt %	wt %	wt %	wt %	wt %	wt %
La-139		139	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce-140		140	0.002	0.002	0.002	0.001	0.001	0.001	0.002
Pr-141		141	0.003	0.003	0.001	0.001	0.001	0.001	0.001
Ce-142	Nd-142	142	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nd-143		143	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nd-144	Ce-144	144	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Nd-145	Pm-145	145	0.002	0.003	0.001	0.000	0.001	0.001	0.001
Nd-146	Sm-146 Pm-146	146	0.003	0.004	0.001	0.000	0.002	0.001	0.000
Sm-147	Pm-147	147	0.003	0.003	0.000	0.000	0.000	0.000	0.000
Nd-148	Sm-148	148	0.003	0.003	0.000	0.000	0.000	0.000	0.000
Sm-149		149	0.002	0.003	0.000	0.000	0.000	0.000	0.000
Sm-150 Nd-150		150	0.000	0.003	0.003	0.000	0.000	0.000	0.000
Eu-151		151	0.002	0.002	0.000	0.000	0.000	0.000	0.000
Sm-152	Gd-152	152	0.003	0.003	0.000	0.000	0.000	0.000	0.000
Eu-153		153	0.002	0.002	0.000	0.000	0.000	0.000	0.000
Eu-154 Sm-154	Gd-154	154	0.001	0.002	0.000	0.000	0.000	0.000	0.000
Eu-155 Gd-155		155	0.010	0.001	0.001	0.000	0.000	0.000	0.000
Gd-156		156	0.009	0.011	0.001	0.001	0.001	0.001	0.001
Gd-157		157	0.001	0.001	0.000	0.000	0.000	0.000	0.000
Gd-158		158	0.011	0.013	0.001	0.001	0.001	0.001	0.001
Tb-159		159	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Gd-160		160	0.009	0.012	0.001	0.001	0.001	0.001	0.001
		161	0.001	0.001	0.000	0.000	0.000	0.000	0.000
		162	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		163	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		164	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		165	0.001	0.001	0.000	0.000	0.000	0.000	0.000
		166	0.006	0.008	0.001	0.001	0.000	0.001	0.001
		167	0.009	0.011	0.001	0.001	0.001	0.001	0.001
		168	0.007	0.008	0.001	0.001	0.000	0.001	0.001
		169	0.011	0.013	0.001	0.001	0.001	0.001	0.001
		170	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		171	0.009	0.012	0.001	0.001	0.001	0.001	0.001
		172	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		173	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1/4	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Цf 174	1/3	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Lu-176	Yb-176	176	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hf-177		177	0.024	0.026	0.017	0.018	0.019	0.022	0.017
Hf-178		178	0.035	0.038	0.025	0.027	0.028	0.032	0.025
Hf-179	Ta-179	179	0.018	0.02	0.013	0.014	0.014	0.017	0.013
Hf-180	Ta-180 W-180	180	0.045	0.049	0.032	0.034	0.035	0.042	0.033
Ta-181		181	0.001	0.001	0.001	0.001	0.003	0.001	0.001
W-182		182	0.013	0.008	0.012	0.008	0.011	0.011	0.009
W-183		183	0.008	0.005	0.008	0.005	0.007	0.007	0.006
W-184		184	0.016	0.01	0.016	0.01	0.014	0.014	0.012
Ke-185		185	0.000	0.000	0.000	0.000	0.000	0.000	0.000
W-186		186	0.014	0.008	0.014	0.009	0.012	0.012	0.01
Ke-18/		18/	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IF-191 Ir 102		191	0.000	0.000	0.000	0.000	0.000	0.000	0.000
II-195		193	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Most Likely Isotope	Possible Other Isotopes	m/z	North- Unrinsed	South- Unrinsed	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
			wt %	wt %	wt %	wt %	wt %	wt %	wt %
		194	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		195	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pt-196		196	0.001	0.001	0.000	0.000	0.000	0.001	0.000
Pt-198 Hg-198		198	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-		203	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Hg-204	Ti-204 Pb204	204	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	<u> </u>	205	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pb-206		206	0.007	0.007	0.005	0.005	0.005	0.006	0.005
Pb-207		207	0.024	0.026	0.017	0.018	0.019	0.022	0.017
Pb-208	Bi-208 Po-208	208	0.035	0.038	0.025	0.027	0.028	0.032	0.026
		230	0.018	0.020	0.013	0.014	0.014	0.017	0.013
		233	0.045	0.049	0.032	0.034	0.035	0.042	0.033
U-232	Th-232	232	0.01	0.01	0.02	0.016	0.019	0.02	0.02
U-234		234	0.001	0.001	0.001	0.001	0.003	0.001	0.001
U-235	Np-235	235	0.12	0.147	0.012	0.013	0.007	0.01	0.014
U-236	Np-236 Pu-236	236	0.015	0.018	0.002	0.002	0.001	0.001	0.002
Np-237		237	0.001	0.001	0.000	0.000	0.000	0.000	0.000
U-238	Pu-238	238	0.205	0.251	0.042	0.041	0.026	0.041	0.046
Pu-239		239	0.007	0.008	0.008	0.008	1.682	0.008	0.009
Pu-240		240	0.002	0.002	0.002	0.002	0.104	0.002	0.002
Pu-241	Am-241	241	0.013	0.008	0.012	0.008	0.011	0.011	0.009
Pu-242	Am-242	242	0.008	0.005	0.008	0.005	0.007	0.007	0.006
		243	0.016	0.010	0.016	0.010	0.014	0.014	0.012
		244	0.000	0.000	0.000	0.000	0.000	0.000	0.000

The ICPMS analytical results from the analysis of the solutions generated from the dissolution of unrinsed and rinsed solids remaining from contact with near boiling 7 M HNO₃ solutions are provided in Table A-5.

Most Likely	Other Possible	m/z	Unrinsed- 7M	Rinsed-	Rinsed- 7M F
isotopes	Isotopes		wt %	wt %	wt %
Ni-59	Co-59	59	0.000	0.000	0.000
		82	0.000	0.000	0.000
		84	0.000	0.000	0.000
Rb-85		85	0.000	0.000	0.000
		86	0.000	0.000	0.000
Rb-87		87	0.000	0.000	0.000
Sr-88		88	0.002	0.003	0.001
Y-89		89	0.000	0.000	0.000
Nb-93	Zr-93 Mo-93	93	0.218	0.211	0.140
		94	-	-	-
Mo-95		95	0.010	0.007	0.004
Mo-96	Zr-96 Ru-96	96	-	-	-
Mo-97	Tc-97	97	0.009	0.006	0.004
Mo-98	Ru-98 Tc-98	98	0.010	0.007	0.004
Ru-99	Tc-99 Mo-99	99	0.218	0.211	0.140
Ru-100 Mo-100		100	0.001	0.001	0.004

Table A-5. ICPMS Analysis for Dissolution of Solids

Most Likely	Other Possible	m/z	Unrinsed-	Rinsed-	Rinsed-
Isotopes	Isotopes	111/ 2	7M	7M	7M-F
			wt %	wt %	wt %
Ru-101	Rh-101	101	0.010	0.006	0.006
Ru-102	Pd-102	102	0.009	0.009	0.005
Rh-103		103	0.008	0.008	0.003
Ru- 104	Pd-104	104	0.005	0.004	0.003
		105	0.010	0.007	0.004
		106	0.014	0.019	0.010
Pd-107	Ag-107	107	0.010	0.007	0.004
		108	0.005	0.007	0.010
Ag-109	Cd-109	109	0.008	0.008	0.005
Pd-110	Cd-110 Ag-110	110	0.005	0.004	0.003
Cd-111	6	111	0.005	0.004	0.003
Cd-112	Sn-112	112	0.001	0.001	0.000
		113	0.014	0.019	0.010
Cd-114	Sn-114	114	0.005	0.007	0.010
Cd-116	Sn-116	116	0.005	0.007	0.010
Sn-117		117	0.001	0.001	0.002
Sn-118		118	0.006	0.008	0.005
Sn-119		119	0.001	0.001	0.003
Sn-120		120	0.002	0.003	0.002
Sh-120		121	0.000	0.000	0.000
Sn-122	Te-122	122	0.000	0.000	0.000
Sh-122	Te-123	123	0.004	0.005	0.003
50 125	Sn-123	125	0.001	0.005	0.005
Sn-124	Te-124	124	0.002	0.003	0.002
Te-125	Sb-125	125	0.006	0.008	0.005
Te-126	Sn-126	126	0.026	0.032	0.027
Te-128		128	0.003	0.003	0.002
Te-130	Ba-130	130	0.008	0.011	0.006
Cs-133	Ba-133	133	0.002	0.003	0.003
Cs-134	Ba-134	134	0.003	0.004	0.002
Ba-135		135	0.002	0.004	0.003
Ba-136		136	0.005	0.006	0.004
Cs-137	Ba-137	137	0.000	0.000	0.000
Ba-138	La-138 Ce-138	138	0.026	0.032	0.027
La-139		139	0.000	0.000	0.000
Ce-140		140	0.001	0.001	0.000
Pr-141		141	0.000	0.000	0.000
Ce-142	Nd-142	142	0.000	0.000	0.000
Nd-143		143	0.000	0.000	0.000
Nd-144	Ce-144	144	0.000	0.000	0.000
Nd-145	Pm-145	145	0.000	0.000	0.000
Nd-146	Sm-146 Pm-146	146	0.001	0.001	0.001
Sm-147	Pm-147	147	0.000	0.000	0.000
Nd-148	Sm-148	148	0.000	0.000	0.000
Sm-149		149	0.000	0.000	0.000
Sm-150		150	0.000	0.000	0.000
En 151		151	0.000	0.000	0.000
Eu-131 Sm 152	Cd 152	151	0.000	0.000	0.000
SIII-132 Ex 152	0u-152	152	0.000	0.000	0.000
Eu-135 En 154		133	0.000	0.000	0.000
Sm-154	Gd-154	154	0.000	0.000	0.000
Eu-155 Gd-155		155	0.000	0.000	0.000
Gd-156			0.009	0.000	0.000

Most Likely	Other Possible	m/z	Unrinsed-	Rinsed-	Rinsed-
Isotopes	Isotopes	III, 2	7M	7M	7M-F
01157		1.57	wt %	wt %	wt %
Gd-157		157	0.000	0.000	0.000
Gd-158		158	0.000	0.000	0.000
16-159		159	0.000	0.000	0.000
		161	0.000	0.000	0.000
		162	0.000	0.000	0.000
		163	0.000	0.000	0.000
		164	0.000	0.000	0.000
		165	0.000	0.000	0.000
		166	0.000	0.000	0.000
		16/	0.001	0.000	0.000
		168	0.000	0.000	0.000
		169	0.001	0.001	0.001
		170	0.000	0.000	0.000
		1/1	0.001	0.001	0.001
		172	0.000	0.000	0.000
		1/3	0.000	0.000	0.000
		1/4	0.000	0.000	0.000
	IIf 176	1/3	0.000	0.000	0.000
Lu-176	HI-176 Yb-176	176	0.010	0.014	0.006
Hf-177		177	0.038	0.053	0.023
Hf-178		178	0.057	0.079	0.033
Hf-179	Ta-179	179	0.027	0.038	0.017
Hf-180	Ta-180 W-180	180	0.074	0.100	0.043
W-182		182	0.012	0.009	0.004
W-183		183	0.007	0.005	0.003
W-184		184	0.015	0.011	0.006
Re-185		185	0.000	0.000	0.000
W-186		186	< 0.013	0.009	0.005
Re-187		187	0.000	0.000	0.000
Ir-191		191	0.000	0.000	0.000
Ir-193		193	0.000	0.000	0.000
		194	0.000	0.000	0.000
		195	0.000	0.000	0.000
Pt-198 Hg-198		198	0.001	0.000	0.000
		203	0.000	0.000	0.000
Hg-204	Ti-204 Pb204	204	0.000	0.000	0.000
		205	0.000	0.000	0.000
Pb-206		206	0.010	0.014	0.006
Pb-207		207	0.038	0.053	0.023
Pb-208	Bi-208 Po-208	208	0.057	0.079	0.033
		230	0.027	0.038	0.017
U-232 Th-232		232	0.018	0.021	0.021
		233	0.074	0.100	0.043
U-234		234	0.001	0.001	0.003
U-235	Np-235	235	0.008	0.007	0.005
U-236	Np-236 Pu-236	236	0.001	0.001	0.000
U-238	Pu-238	238	0.0037	0.029	0.013
Pu-239		239	0.007	0.007	0.004
Pu-241	Am-241	241	0.012	0.009	0.004
Pu-242	Am-242	242	0.007	0.005	0.003
		243	0.015	0.011	0.006

Most Likely Isotopes	Other Possible Isotopes	m/z	Unrinsed- 7M	Rinsed- 7M	Rinsed- 7M-F
			wt %	wt %	wt %
		244	0.000	0.000	0.000

The ICPMS analytical results from the analysis of the filtrate solutions generated from rinsing the solids in 1 and 6 M HNO₃ ae provided in Table A-6.

Most Likely Isotope	Possible Other Isotopes	m/z	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
•	•		wt %	wt %	wt %	wt %	wt %
Ni-59	Co-59	59	0.001	0.002	0.000	0.001	0.001
		82	0.000	0.000	0.000	0.000	0.000
		84	0.000	0.000	0.000	0.000	0.000
Rb-85		85	0.001	0.001	0.000	0.000	0.000
		86	0.000	0.000	0.000	0.000	0.000
Rb-87		87	0.001	0.002	0.000	0.001	0.001
Sr-88		88	0.003	0.004	0.000	0.002	0.002
Y-89		89	0.003	0.004	0.000	0.003	0.003
Zr-90	Sr-90	90	0.006	0.009	0.000	0.008	0.008
Zr-91	Nb-91 Y-91	91	0.012	0.017	0.000	0.017	0.017
Zr-92	Nb-92 Mo-92	92	0.011	0.016	0.000	0.015	0.016
Nb-93	Zr-93 Mo-93	93	0.014	0.020	0.005	0.019	0.019
Zr-94	Mo-94 Nb-94	94	0.012	0.018	0.000	0.017	0.018
Mo-95		95	0.004	0.006	0.000	0.004	0.004
Mo-96	Zr-96 Ru-96	96	0.011	0.016	0.004	0.015	0.016
Mo-97	Tc-97	97	0.004	0.006	0.000	0.003	0.004
Mo-98	Ru-98 Tc-98	98	0.004	0.006	0.000	0.004	0.004
Ru-99	Tc-99 Mo-99	99	0.004	0.005	0.000	0.003	0.003
Ru-100 Mo-100		100	0.004	0.006	0.000	0.004	0.004
Ru-101	Rh-101	101	0.004	0.005	0.000	0.003	0.004
Ru-102	Pd-102	102	0.003	0.005	0.000	0.003	0.003
Rh-103		103	0.002	0.003	0.000	0.002	0.002
Ru-104		104	0.002	0.002	0.000	0.001	0.002
		105	0.000	0.000	0.000	0.000	0.000
		106	0.000	0.000	0.000	0.000	0.000
Pd-107	Ag-107	107	0.000	0.000	0.000	0.000	0.000
		108	0.000	0.000	0.000	0.000	0.000
Ag-109	Cd-109	109	0.000	BDL	0.000	0.000	0.000
Pd-110	Cd-110 Ag-110	110	0.000	0.000	0.000	0.000	0.000
Cd-111		111	0.000	0.000	0.000	0.000	0.000

 Table A-6. ICPMS Analysis of Filtrate Solution from HNO3 Rinses

Most Likely Isotope	Possible Other Isotopes	m/z	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
•			wt %	wt %	wt %	wt %	wt %
Cd-112	Sn-112	112	0.000	0.000	0.000	0.000	0.000
Cd-114	Sn-114	114	0.000	0.000	0.000	0.000	0.000
Cd-116	Sn-116	116	0.000	0.000	0.000	0.000	0.000
Sn-117		117	0.000	0.000	0.000	0.000	0.000
Sn-118		118	0.001	0.001	0.000	0.001	0.001
Sn-119		119	0.009	0.013	0.000	0.007	0.009
Sn-120		120	0.000	0.000	0.000	0.000	0.000
Sb-121		121	0.000	0.000	0.000	0.000	0.000
Sn-122	Te-122	122	0.000	0.000	0.000	0.000	0.000
Sb-123	Te-123 Sn-123	123	0.000	0.000	0.000	0.000	0.000
Sn-124	Te-124	124	0.000	0.000	0.000	0.000	0.000
Te-125	Sb-125	125	0.000	0.000	0.000	0.000	0.000
Te-126	Sb-126	126	0.001	0.001	0.000	0.001	0.001
Te-128		128	0.000	0.000	0.000	0.000	0.000
Te-130	Ba-130	130	0.001	0.001	0.000	0.001	0.001
Cs-133	Ba-133	133	0.006	0.008	0.000	0.004	0.005
Cs-134	Ba-134	134	0.000	0.001	0.000	0.000	0.000
Ba-135		135	0.001	0.001	0.000	0.001	0.001
Ba-136		136	0.000	0.000	0.000	0.000	0.000
Cs-137	Ba-137	137	0.006%	0.008%	0.000%	0.004%	0.005%
Ba-138	La-138 Ce-138	138	0.008	0.010	0.000	0.007	0.007
La-139		139	0.007	0.010	0.000	0.006	0.007
Ce-140		140	0.007	0.009	0.000	0.006	0.007
Pr-141		141	0.006	0.009	0.000	0.005	0.007
Ce-142	Nd-142	142	0.007	0.010	0.000	0.006	0.007
Nd-143		143	0.006	0.008	0.000	0.004	0.005
Nd-144	Ce-144	144	0.008	0.010	0.000	0.006	0.007
Nd-145	Pm-145	145	0.004	0.006	0.000	0.003	0.004
Nd-146	Sm-146, Pm-146	146	0.004	0.005	0.000	0.003	0.004
Sm-147	Pm-147	147	0.002	0.003	0.000	0.002	0.002
Nd-148	Sm-148	148	0.002	0.003	0.000	0.002	0.002
Sm-149		149	0.000	0.000	0.000	0.000	0.000
Sm-150 Nd-150		150	0.002	0.003	0.000	0.002	0.002
Eu-151		151	0.000	0.000	0.000	0.000	0.000
Sm-152	Gd-152	152	0.001	0.001	0.000	0.001	0.001
Eu-153		153	0.000	0.000	0.000	0.000	0.000
Eu-154 Sm-154	Gd-154	154	0.003	0.004	0.000	0.002	0.003
Eu-155 Gd-155		155	0.017	0.023	0.000	0.013	0.016
Gd-156		156	0.024	0.031	0.000	0.018	0.022
Gd-157		157	0.018	0.024	0.000	0.014	0.017

Most Likely Isotope	Possible Other Isotopes	m/z	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
			wt %	wt %	wt %	wt %	wt %
Gd-158		158	0.029	0.038	0.000	0.022	0.026
Tb-159		159	0.000	0.000	0.000	0.000	0.000
Gd-160		160	0.026	0.034	0.000	0.020	0.024
Lu-176	Hf-176 Yb-176	176	0.000	0.000	0.000	0.000	0.000
Hf-177		177	0.000	0.000	0.000	0.000	0.000
Hf-178		178	0.000	0.000	0.000	0.000	0.000
Hf-179	Ta-179	179	0.000	0.000	0.000	0.000	0.000
Hf-180	Ta-180 W-180	180	0.000	0.000	0.000	0.000	0.000
Ta-181		181	0.000	0.000	0.000	0.000	0.000
W-182		182	0.000	0.000	0.000	0.000	0.000
W-183		183	0.000	0.000	0.000	0.000	0.000
W-184		184	0.000	0.000	0.000	0.000	0.000
Re-185		185	0.000	0.000	0.000	0.000	0.000
W-186		186	0.000	0.000	0.000	0.000	0.000
Re-187		187	0.000	0.000	0.000	0.000	0.000
Ir-191		191	0.000	0.000	0.000	0.000	0.000
Ir-193		193	0.000	0.000	0.000	0.000	0.000
		194	0.000	0.000	0.000	0.000	0.000
		195	0.000	0.000	0.000	0.000	0.000
Pt-196		196	0.001	0.001	0.000	0.001	0.001
Au-197		197	-	-	0.000	-	-
Pt-198 Hg-198		198	0.030	0.045	0.000	0.024	0.031
		203	0.000	0.000	0.000	0.000	0.000
Hg-204	Ti-204 Pb-201	204	0.017	0.025	0.000	0.014	0.018
		205	0.000	0.000	0.000	0.000	0.000
Pb-206		206	0.000	0.000	0.000	0.000	0.000
Pb-207		207	0.000	0.000	0.000	0.000	0.000
Pb-208	Bi-208 Po-208	208	0.000	0.001	0.000	0.000	0.000
		230	0.000	0.000	0.000	0.000	0.000
U-232	Th-232	232	0.000	0.000	0.000	0.000	0.000
		233	0.000	0.000	0.000	0.000	0.000
U-234		234	0.005	0.006	0.000	0.004	0.004
U-235		235	0.318	0.433	0.005	0.256	0.299
U-236	Np-236 Pu-236	236	0.040	0.055	0.001	0.032	0.038
Np-237		237	0.001	0.002	0.000	0.001	0.001
U-238	Pu-238	238	0.494	0.671	0.007	0.392	0.453
Pu-239		239	0.003	0.004	0.008	0.002	0.003
Pu-240		240	0.001	0.001	0.000	0.001	0.001
Pu-241	Am-241	241	0.000	0.001	0.000	0.000	0.000
Pu-242	Am-242	242	0.000	0.000	0.000	0.000	0.000

Most Likely Isotope	Possible Other Isotopes	m/z	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
			wt %	wt %	wt %	wt %	wt %
		243	0.000	0.000	0.000	0.000	0.000
		244	0.000	0.000	0.000	0.000	0.000

The ICPMS analytical results from the analysis of the filtrate solutions generated from dissolution of unrinsed and rinsed solids remaining from contact with near boiling 7 M HNO₃ solutions in Table A-7.

Most Likely Isotope	Possible Other Isotopes	m/z	Unrinsed- 7M	Rinsed-7M	Rinsed- 7M-F
			wt %	wt %	wt %
Ni-59	Co-59	59	0.001	0.000	0.002
		82	0.000	0.000	0.000
		84	0.000	0.000	0.000
Rb-85		85	0.000	0.000	0.020
		86	0.000	0.000	0.000
Rb-87		87	0.001	0.000	0.008
Sr-88		88	0.001	0.000	0.001
Y-89		89	0.001	0.000	0.000
Rh-103		103	0.001	0.000	0.004
Ru-104		104	0.001	0.000	0.003
		105	0.000	0.000	0.000
		106	0.000	0.000	0.000
Pd-107	Ag-107	107	0.000	0.000	0.000
		108	0.000	0.000	0.000
Ag-109	Cd-109	109	0.000	0.000	0.000
Pd-110	Cd-110 Ag-110	110	0.000	0.000	0.000
Cd-111		111	0.000	BDL	0.000
Cd-112	Sn-112	112	0.000	0.000	0.001
Cd-114	Sn-114	114	0.000	0.000	0.000
Cd-116	Sn-116	116	0.000	0.000	0.001
Sn-117		117	0.000	0.000	0.001
Sn-118		118	0.001	0.000	0.002
Sn-119		119	0.000	0.000	0.002
Sn-120		120	0.000	0.000	0.003
Sb-121		121	0.000	0.000	0.002
Sn-122	Te-122	122	0.000	0.000	0.003
Sb-123	Te-123 Sn-123	123	0.000	0.000	0.003
Sn-124	Te-124	124	0.000	0.000	0.003
Te-125	Sb-125	125	0.000	0.000	0.020
Te-126	Sb-126	126	0.002	0.002	0.027
Te-128		128	0.000	0.000	0.000

Table A-7. ICPMS Analysis of Filtrate Solution from 7 M HNO₃ Dissolutions

Most Likely Isotope	Possible Other Isotopes	m/z	Unrinsed- 7M	Rinsed-7M	Rinsed- 7M-F
			wt %	wt %	wt %
Te-130	Ba-130	130	0.001	0.001	0.002
Cs-134	Ba-134	134	0.000	0.000	0.000
Ba-135		135	0.000	0.000	0.001
Ba-136		136	0.000	0.000	0.000
Sm-147	Pm-147	147	0.001	0.000	0.000
Nd-148	Sm-148	148	0.001	0.000	0.000
Sm-149		149	0.000	0.000	0.000
Sm-150 Nd-150		150	0.001	0.000	0.000
Eu-151		151	0.000	0.000	0.000
Sm-152	Gd-152	152	0.001	0.000	0.000
Eu-153		153	0.000	0.000	0.000
Tb-159		159	0.000	0.000	0.000
Lu-176	Hf-176 Yb-176	176	0.000	0.000	0.000
Hf-177		177	0.000	0.000	0.000
Hf-178		178	0.000	0.000	0.000
Hf-179	Ta-179	179	0.000	0.000	0.000
Hf-180	Ta-180 W-180	180	0.000	0.000	0.000
Ta-181		181	0.000	0.000	0.001
W-182		182	0.001	0.001	0.014
W-183		183	0.000	0.000	0.000
W-184		184	0.001	0.001	0.008
Re-185		185	0.000	0.000	0.000
W-186		186	0.001	0.001	0.016
Re-187		187	0.000	0.000	0.000
Ir-191		191	0.000	0.000	0.000
Ir-193		193	0.000	0.000	0.000
		194	0.000	0.000	0.000
		195	0.000	0.000	0.000
Pt-196		196	0.000	0.000	0.000
Au-197		197	0.000	0.000	0.000
		203	0.000	0.000	0.000
		205	0.000	0.000	0.000
Pb-206		206	0.000	0.000	0.000
Pb-207		207	0.000	0.000	0.000
Pb-208	Bi-208 Po-208	208	0.000	0.000	0.000
		230	0.000	0.000	0.000
U-232	Th-232	232	0.001	0.000	0.005
		233	0.000	0.000	0.002
Np-237		237	0.001	0.000	0.000
Pu-240		240	0.000	0.000	0.002
Pu-241	Am-241	241	0.000	0.000	0.000

Most Likely Isotope	Possible Other Isotopes	m/z	Unrinsed- 7M	Rinsed-7M	Rinsed- 7M-F
			wt %	wt %	wt %
Pu-242	Am-242	242	0.000	0.000	0.000
		243	0.000	0.000	0.000
		244	0.000	0.000	0.000

The radiochemical analysis for unrinsed solids and solids rinsed with 1 and 6 M HNO₃ are provided in Table A-8. The Pu isotopes were measured by initially performing a TTA extraction followed by APHA. All other isotopes were quantified by GPHA.

Isotope	North	South	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
	wt %	wt %	wt %	wt %	wt %	wt %	wt %
Co-60	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ru-103	0.000	-	-	0.000	-	-	0.000
Ru-106	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sb-125	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sb-126	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sn-126	0.002	0.003	0.003	0.002	0.005	0.003	0.002
Cs-134	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cs-137	0.002	0.000	0.000	0.000	0.000	0.000	0.000
Ce-144	0.000	0.000	0.000	0.000	-	0.000	0.000
Eu-154	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Eu-155	0.000	0.000	0.000	0.000	-	0.000	0.000
Pu-238	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pu-239	0.007	0.008	0.007	0.008	1.752	0.008	0.008
Pu-240	0.002	0.002	0.002	0.002	0.108	0.002	0.002
Am-241	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table A-8. Radiochemical Analysis of Unrinsed and Rinsed Solids

The Pu isotopic concentrations in the solids contacted by near boiling 7 M HNO₃ are provided in Table A-9. The concentrations were measured by initially performing a TTA extraction followed by APHA.

Table A-9. Radiochemical Analysis of Solids Contacted with Near Boiling 7 M HNO3

Isotope	Unrinsed- 7M	Rinsed- 7M	Rinsed- 7M-F	
	wt %	wt %	wt %	
Pu-239	0.007	0.007	0.004	
Pu-240	0.002	0.002	0.001	

The radiochemical analysis for the filtrate solutions generated from rinsing the solids with 1 and 6 M HNO₃ are provided in Table A-10. The Pu isotopes were measured by initially performing a TTA extraction followed by APHA. All other isotopes were quantified by GPHA.

Isotope	North- 1M	South- 1M	South- 1M-B	North- 6M	South- 6M
	wt %	wt %	wt %	wt %	wt %
Cs-134	0.000	0.000	BDL	0.000	0.000
Cs-137	0.000	0.000	0.000	0.000	0.000
Co-60	0.000	0.000	0.000	0.000	0.000
Ru-106	0.000	0.000	0.000	0.000	0.000
Sb-125	0.000	0.000	0.000	0.000	0.000
Sb-126	BDL	BDL	0.000	BDL	BDL
Sn-126	BDL	BDL	0.000	BDL	BDL
Ce-144	0.000	0.000	0.000	0.000	0.000
Eu-154	0.000	0.000	0.000	0.000	0.000
Eu-155	0.000	0.000	0.000	0.000	0.000
Pu-238	0.000	0.000	0.000	0.000	0.000
Pu-239	0.000	0.000	0.000	0.000	0.000
Pu-240	0.000	0.000	0.000	0.000	0.000
Am-241	0.000	0.000	0.000	0.000	0.000

Table A-10. Radiochemical Analysis of Filtrates from Rinsing Solids in HNO3

BDL - below detection limit

The Pu isotopic concentrations in the filtrate solutions from contacting solids with near boiling 7 MHNO₃ are provided in Table A-11. The concentrations were measured by initially performing a TTA extraction followed by APHA.

Table A-11. Radiochemical Analysis of Filtrates from Contacting Solids with Near Boiling HNO3

Isotope	Unrinsed -7M	Rinsed -7M	Rinsed -7M-F
	wt %	wt %	wt %
Pu-238	0.000	0.000	0.000
Pu-239	0.000	0.000	0.000
Pu-240	0.000	0.000	0.000

Distribution

alex.cozzi@srnl.doe.gov david.crowley@srnl.doe.gov c.diprete@srnl.doe.gov a.fellinger@srnl.doe.gov samuel.fink@srnl.doe.gov connie.herman@srnl.doe.gov dennis.jackson@srnl.doe.gov patricia.lee@srnl.doe.gov Joseph.Manna@srnl.doe.gov john.mayer@srnl.doe.gov daniel.mccabe@srnl.doe.gov Gregg.Morgan@srnl.doe.gov frank.pennebaker@srnl.doe.gov Amy.Ramsey@srnl.doe.gov William.Ramsey@SRNL.DOE.gov michael.stone@srnl.doe.gov Boyd.Wiedenman@srnl.doe.gov philip.almond@srnl.doe.gov daniel.jones@srnl.doe.gov tommy.edwards@srnl.doe.gov kim.crapse@srnl.doe.gov gene.daniel@srs.doe.gov jonathan.duffey@srnl.doe.gov harris.eldridge@srnl.doe.gov eddie.kyser@srnl.doe.gov robert.pierce@srnl.doe.gov tracy.rudisill@srnl.doe.gov john.scogin@srnl.doe.gov thomas.shehee@srnl.doe.gov nicholas.karay@srnl.doe.gov **Records Administration (EDWS)**

timothy.tice@srs.gov steven.brown@srs.gov brett.clinton@srs.gov tara.smith@srnl.doe.gov bill.clifton@srs.gov perry.levin@srs.gov hayley.williams@srs.gov james.therrell@srs.gov kenneth.burrows@srs.gov kevin.usher@srs.gov anthony.carraway@srs.gov sara.shirley@srs.gov jaclyn.fitzpatrick@srs.gov stephen.garrison@srs.gov anthony.carraway@srs.gov tracy.stover@srs.gov joshua.butler@srs.gov Richard.Burns@srs.gov