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EXECUTIVE SUMMARY

The E-Area Low-Level Waste Facility (ELLWF) Probabilistic Aquifer Model (PAM) utilizes GoldSim®
Monte Carlo simulation software (GTG, 2017) to evaluate the transport of a tracer species as it travels from
the water table below the disposal unit footprint, through the aquifer, to the Point of Assessment (POA) at
the 100-meter boundary. This report documents the development and calibration of PAM as well as the
implementation of plume interaction. PAM is a key component of the effort to include uncertainty
guantification and sensitivity analysis (UQSA) in the next revision of the E-Area Performance Assessment
(PA), considering recommendations from the 2015 PA strategic planning team outlined by Butcher and
Phifer (2016). The Aquifer Model and associated optimized geometric parameters will be implemented in
the future GoldSim® (GS) system model that will simulate subsurface flow and radionuclide transport from
the ground surface to the 100-meter POA.

Simulations were performed to develop a methodology for calibrating PAM to PORFLOW (PF) tracer
simulation results for both steady-state and pulse source terms. The East Aquifer Model had more disposal
units (DUs) with errors over 5% and required additional calibration to better match PF results compared to
the West and Center Aquifer Models. This is likely due to the plume traveling partially in the high-velocity
transmissive zone (TZ) and the low-velocity tan clay confining zone (TCCZ) and lower aquifer zone (LAZ),
as well as the streamtraces not being oriented perpendicular to the DU’s cross-section. Overall percent
errors, shown in Figure 0-1, between the calibrated Aquifer Model and the PF tracer simulations average
4% for the 32.8-foot and 10-foot dispersivity cases and 12% for the 100-foot dispersivity cases. Compared
to the West and Center Aquifer Models, the East Aquifer Model has consistently larger Plume Overlap
Factors with 22 factors exceeding 0.50 for the 32.8-foot dispersivity, steady-state simulations. As expected,
the factors are larger where the streamtraces for neighboring DUs are nearby.

Key findings and recommendations include:

o Use of a single GS aquifer element for each DU adequately reproduces 3D PORFLOW tracer
simulation results.

e Implementation of plume overlap will not utilize the built-in GS plume function because this
correction factor requires calibration to the ratio between the PF-calculated plume contribution and
the GS concentration. Instead, the ratio itself will be directly used as the Plume Overlap Factor
(POF) as a simpler means of accounting for co-mingling of plumes.

Vi
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Figure 0-1. GS Aquifer Model pulse and steady-state source errors in tracer concentration
compared to PF results
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1.0 Introduction

The E-Area Low-Level Waste Facility (ELLWF) Probabilistic Aquifer Model (PAM) utilizes GoldSim®
Monte Carlo simulation software (GTG, 2017) to evaluate the transport of a tracer radionuclide as it travels
from the water table below the disposal unit footprint, through the aquifer, to the Point of Assessment
(POA) at the 100-meter boundary. DOE Manual 435.1-1 stipulates “The performance assessment shall
include a sensitivity/uncertainty analysis.” This model is part of the effort to address recommendations from
the 2015 PA strategic planning team outlined by Butcher and Phifer (2016) to include uncertainty
guantification and sensitivity analysis (UQSA) in the next revision of the ELLWF Performance Assessment
(PA). UQSA is necessary to provide a reasonable expectation that the Performance Objectives (PO) will be
met. PAM was developed as an initial step in implementing UQSA and contains the aquifer region beneath
all E-Area disposal units (Figure 1-1). This report details the development of the model as well as the
calibration procedure, including benchmarking comparisons of the breakthrough curves predicted by
PORFLOW (PF) and GoldSim® (GS).

The 2009 Composite Analysis (CA) model parameterization (Hamm, 2009) utilized from the General
Separations Area (GSA) flow model approximately 1,000 three-dimensional (3D) PF streamtraces
emanating from each disposal unit to the POA. From these simulations, average one-dimensional (1D)
aquifer parameters were obtained for each unit in addition to statistical information. PAM, on the other
hand, obtains the GS aquifer parameters from PF tracer simulations. Specifically, GS parameters are
calibrated to tracer breakthrough curves at the nodes having the maximum concentrations at the POA.

This report discusses benchmarking between the deterministic PF model and the stochastic GS model run
in deterministic mode. PF is a higher-fidelity simulation of multi-dimensional transport phenomena while
GS is a 1D transport model with a much lower computational time. Therefore, calibration to PF results is
necessary to obtain accurate abstractions and to quantify the GS model systemic bias resulting from reduced
dimensionality. The initial work to address the Department of Energy (DOE) Low-Level Waste (LLW)
Disposal Facility Federal Review Group’s (LFRG) recommendations is to (1) create a new aquifer model
using the GS simulation software (GTG, 2017), (2) develop the method for calibration, and (3) understand
the sensitivity of the 100-meter POA concentration to the geometric variables utilized in the model. PAM
simulates the subsurface advective transport of a tracer through the aquifer from the water table beneath
each disposal unit (DU) to the POA at the 100-meter boundary.

PAM addresses only the aquifer portion of solute transport and can model several disposal units (DUS) in
a single simulation. When modeling several DUs, the contribution of neighboring units (i.e., plume
interactions) can be considered. To evaluate ELLWF plume interactions, a correction ratio based directly
on PF and GS POA breakthrough results is used, instead of implementing the built-in “plume function”
feature in GS. The rationale for this approach was to minimize the additional effort required to calibrate the
plume function variables. This report, therefore, focuses on the calibration of geometric parameters utilized
in the GS Aquifer Model using plume centerline concentrations.
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Figure 1-1. E-Area LLW Facility disposal units (unlabeled numbered units are slit trenches; ET
units are engineered trenches; CIG units are component-in-grout trenches; ILV is the intermediate
level vault; LAWYV is the low-activity waste vault; 7E and 26E are naval reactor component
disposal areas; 8A, 8B, and 8C are future slit or engineered trenches)

2.0 PORFLOW Reference Simulations

The most recent groundwater flow model of the General Separations Area (GSA) was developed in 2016 —
2017 by Flach et al. (2017) and is referred to as the “GSA2016” model. The GSA2016 model reflects
updated characterization and monitoring data, and use of the PEST optimization code to perform model
calibration. The DOE LFRG recommended automated calibration in a 2008 review of the ELLWF PA
(Bagwell and Flach, 2016). The final calibration phase produced four variants termed “GSA2016.LU,”
“GSA2016.LW,” “GSA2016.HU,” and “GSA2016.HW,” where

e “L” = Layer-cake conductivity field

o “H” = Heterogeneous conductivity field
e “U” = Unweighted calibration targets

o “W” =Weighted calibration targets

The GSA2016.LW flow field was identified as the best-estimate calibration result and recommended for
baseline analysis. The remaining three flow fields were recommended for uncertainty quantification and
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sensitivity analysis. Thus, the GSA2016.LW model was chosen as the reference for GS Aquifer Model
development.

Flach (2018a) recommended refinement of the GSA2016 grid and velocity field to a horizontal grid
resolution of 25 feet (ft) and a vertical resolution of approximately 3 ft, to avoid significant numerical
dispersion in solute transport simulations supporting the next revision of the ELLWF PA. Refining the
entire GSA2016 grid to this resolution would create far too many grid cells for available computing
resources, and be unnecessary for transport confined to E-Area. Therefore, refinement is typically confined
to a reduced model extent. Feasible mesh sizes can be achieved by dividing E-Area into the overlapping
“West,” “Center” and “East” footprints shown in Figure 2-1. Mesh and velocity field refinement is currently
performed using the MESH3D code (Danielson, 2017). Also shown in Figure 2-1 are simulated
groundwater pathlines and the 100-meter perimeter. The three overlapping cutouts are collectively capable
of simulating solute transport from any E-Area DU to the 100-meter compliance boundary.

As discussed by Flach (2018a), groundwater modeling practitioners generally assume a longitudinal
dispersivity, a;, that is 10% (10~1) of the plume travel distance L, unless site-specific data or conditions
indicate otherwise. Plume travel distances in E-Area range from 100 meters (m) to several hundred meters,
and are typically around 200 m. A representative range, excluding East DUs, is 100 m < a; < 200 m, or
328 ft < a; < 656 ft. The corresponding dispersivity range under the 10% rule-of-thumb is 32.8 ft < a; <
65.6 ft. Considering data uncertainty, Flach (2018a) notes that a lower «; equal to 3.16%L (10~'>L) is also
a credible setting. For 100 m < L < 200 m, the lower dispersivity range is 3.16 m < a; < 6.32 m, or
approximately 10 ft < «; < 20 ft. Considering variability in both «; /L and L, three dispersivity values are
considered representative of variability in «;:

o q;=10ft approximately one-half order of magnitude lower than 32.8 ft
o ;=328ft minimumLand a;/L =10%
o «;=100ft approximately one-half order of magnitude larger than 32.8 ft

To provide reference results for GS Aquifer Model development, transport simulations were performed for
each E-Area DU with a; = 10 ft, 32.8 ft, and 100 ft. Because sorption affects the timing but not the shape
of a solute plume (see Flach, 2018b), plume simulations were conducted with a non-sorbing tracer species.
Two simulations were performed for each DU. The “Steady-State” (SS) simulation assumed a constant
tracer source of 1.0 gram per year (g/yr) in source cells within the DU footprint and residing just beneath
the water table. The simulation was run until steady-state conditions were achieved. The “Pulse” simulation
assumed instantaneous placement of 1 gram (g) tracer in aquifer source cells, leading to a pulse of solute
traveling toward the 100-meter perimeter. Tracer breakthrough was monitored at the 100-meter boundary.
The time step was set to 0.1 years in the simulations to avoid significant numerical dispersion. PF results
are compared to GoldSim® predictions in the next section. To guide initial parameterization of PAM,
streamtraces emanating from the centers of DUs were analyzed for travel distance and time to the 100-
meter POA. Table 2-1 summarizes travel distance, s, travel time, t, and calculated average Darcy velocity,
U.
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Figure 2-1. West, Center, and East refinements of the GSA2016 grid
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Table 2-1. Travel distance, travel time, and Darcy velocity from streamtraces

TransportEast TransportCenter TransportWest
DU S t ut DU S t u!? DU S t ut
(m) | (yn | (miyn) (m) (yr) | (miyr) (m) () | (miyr)

ST01 209 7.20 7.26
ST02 208 8.28 6.28
ST03 208 9.00 5.77
ST04 211 9.36 5.63
STO05 208 9.14 5.69 STO0S 207 9.11 5.67
STO06 208 | 10.18 5.12 STO06 208 10.18 | 5.12
ST07 207 | 10.47 4.94 ST07 208 10.50 | 4.96

ST08 206 5.11 10.07
ST09 207 5.01 10.36
ST10 196 486 | 10.07 | ST10 198 4.92 10.09
ST11 196 5.79 8.46 ST11 200 5.87 8.5

ST14 290 | 15.70 4.62 ST14 290 15.70 | 4.62
ST15 307 | 15.53 4.94
ST16 334 | 17.38 4.81
ST17 342 | 17.86 4.79
ST18 361 | 18.88 4.78
ST19 387 | 19.71 4.9

ST20 424 | 21.91 4.83
ST21 600 | 29.59 5.07

CIG1 209 9.09 5.75
CIG2 209 9.31 5.61 CIG2 208 9.28 5.59
ETO1 331 | 14.34 5.77 ETO01 331 1434 | 5.77
ET02 307 | 1231 6.23 ET02 305 1228 | 6.21

ETO3 282 6.52 10.8
ET04 500 12.98 9.63

LAWV | 325 | 16.36 4.97

ILV 338 9.96 8.49
NRCD
A26E 335 8.22 10.19
DUBA 200 5.05 9.89
DU8B 207 4.74 10.91
DU8C 173 341 12.68

LU (m/yr) = (Merr) (s)/t where nett (effective porosity) = 0.25.
3.0 ELLWF Probabilistic Aquifer Model

3.1 Model Abstraction

PORFLOW and GoldSim® solve the same solute transport equation representing advection, diffusion,
dispersion, linear sorption, and radioactive (first-order) decay and ingrowth processes. Therefore, no
abstraction of PF physical processes is required in developing a GS model. However, PF simulates three-
dimensional transport using a 3D flow field, while GS simulates 1D transport in a constant-area streamtube
using an average (Darcy) flow velocity. Reducing dimensionality from 3D to 1D introduces geometric
abstraction challenges, even in the simplest case.
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Suppose the velocity field is spatially uniform (constant) and the solute originates from injection of a fixed
tracer mass at a point. The peak concentration, ijak, of the moving solute pulse in three dimensions is

(Crank, 1975, Equation 3.5):

M M
Cpoar(t) = /n = /n )

(47‘[3,/DLDTDVt)3/2 (47‘[3,/aLaTocht)3/2

where M is the mass of the solute; n is the porosity; D;, Dy, and Dy, are the diffusion coefficients in the
longitudinal, transverse, and vertical directions, respectively; a;, ar, and ay, are the dispersivities in the
longitudinal, transverse, and vertical directions, respectively; v is the velocity; and t is time.

Typical assumptions for the transverse dispersivities are (see Flach, 2018a):

OCT = OlaL (2)
Combining Equations (1) through (3) yields:
M/n

C30 (D) = o (a ut)~ 13 4)

(4m0.1ar, vt)3/2

For one dimension, the peak concentration of the moving solute pulse is given by Bear (1972, Equation
10.6.10) and Crank (1975, Equation 2.6):

M/n M/n
(4nD )12 (4ma vt)l/?

Cpoar(t) = o (a,vt) 0% ®)

The exponents in Equations (4) and (5) differ by a factor of 3 because dispersion is occurring in three
directions versus one direction, respectively. The differing proportionalities have an important implication
for GS model calibration. For a specific longitudinal dispersivity value (and velocity and distance/time),
GS flow area can be adjusted to achieve agreement with GSA2016 or another 3D model. However, this
calibration will not be valid at other dispersivity settings because Equations (4) and (5) have a different
functional dependence on «; . Rather, each dispersivity requires a separate calibration.

The flow field in the above scenario (v = constant) is easily abstracted to a 1D streamtube. Additional
abstraction challenges occur when the flow field is more complicated. The water table resides above the
tan clay confining zone (TCCZ) in roughly the eastern half of E-Area. Both hydraulic conductivity and pore
velocity are significantly higher in the transmissive zone (TZ) above the TCCZ. Between a DU in this
region and the 100-meter POA, part of the plume travels horizontally in the TZ while the remainder crosses
the TCCZ and descends into the lower aquifer zone (LAZ). As discussed later in the report, this multi-
dimensional behavior can be difficult to reproduce in a 1D streamtube.
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3.2 Model Development

Similar to the PF overlapping, West, Center, and East footprints, PAM comprises three submodels
containing several DUs each as shown in Figure 3-1. The illustration shows each DU represented by red
polygons and the PF simulation boundaries outlined in blue. The grey shaded regions indicate DUs that
were not included in the indicated submodel because they were implemented in a neighboring submodel.
An example of the arrangement of individual DUs as localized containers is given in Figure 3-2. Each DU
is created inside a localized container to simplify development because many parameters use the same name
within each DU. If the container was not localized, unit-specific nomenclature would be required. Each
model realization produces results for all DUs and allows for the evaluation of plume overlap. Two different
aquifer pathways are created for each dispersion value, representing a steady-state and pulse source.
Consistent with the PF reference simulations, the steady-state source assumes a 1 gram per year constant
mass rate while the pulse source assumes a 1 gram initial inventory. Each pathway is represented by three
elements: an inlet cell, an aquifer element composed of multiple internal cells, and a sink cell. The aquifer
element has several input values that are utilized for calibration.

West Model

Center Model

Figure 3-1. Illustration of the aquifer submodels in PAM. The blue overlapping squares represent
the PORFLOW boundaries, the red polygons represent the disposal units and the grey-shaded
areas represent the disposal units not implemented in the submodel
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StdDev_Error_100f Pulse_max_conc_Error1008S_max_cone_Error_100ft

Results_Graphs

Figure 3-2. Screen shot of the West Aquifer Model; each disposal unit is enclosed in a localized
container

Each DU utilizes the same template (Figure 3-3), only varying the geometric parameters and PF tracer
results. The conceptual model implemented within the aquifer element is a row of linked computational
cells having no-flow boundaries on the top, bottom and sides, allowing 1D transport solely in the aquifer
flow direction. In the 2009 CA model (SRNL, 2009), the aquifer was composed of 200 cells, of which 100
represented the area directly beneath the waste zone footprint, 40 were mixed sandy/clayey soil cells, and
60 were sandy soil cells. In the current model, only a single aquifer element is used. While this cuts down
the computational cost, it also constrains the aquifer to have a single infill medium. This restriction does
not influence E-Area simulations because no streamtube encounters the Gordon confining unit clay zone.
During the simulation, the aquifer element creates a temporary set of linked cell elements that represent the
aquifer pathway.

Each aquifer element contains several geometric and transport parameters (the aquifer element data entry
screen is shown in Figure 3-4) to simulate the entire aquifer zone, including a source region where the tracer
species is uniformly placed. Figure 3-5 is a Tecplot representation of steady-state PF results utilized to
estimate the source-zone length and aquifer area. The overall aquifer element length is the summation of
the PF streamtrace travel distance, s (Table2-1) and one-half the source zone length estimate
(SourceZoneenqep), because the streamtrace simulations place the tracer source at the center of the DU.
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Figure 3-4. GoldSim® aquifer element illustrating some of the required geometric variables

The initial estimate for Darcy velocity is the ratio of the PF travel distance and arrival time, times effective
porosity (nerr = 0.25). The number of cells used to discretize the aquifer pathway controls numerical
dispersion and thus affects pulse concentrations. The humber of cells (Num_.;;s) was set to:

Aqiengen + SourceZoneengen 1

Num_,;;¢ = round +1 (6)

Dispersivity 2

so that numerical dispersion would approximately match the desired physical dispersion. Longitudinal
dispersivity was set to zero.

Because Dispersivity is used to determine the number of cells, this parameter was not modified in the
calibration procedure. PF travel distance was also kept fixed during model calibration. Calibration
parameters include streamtube projected cross-sectional area (Aq_Area), Darcy velocity (Darcy_vel), and
source zone length (SourceZone;eng:h). Streamtube projected cross-sectional area affects the peak tracer
concentration, Darcy velocity affects the plume arrival time, and the source zone length affects plume
spread. Darcy velocity is particularly uncertain in the eastern section of E-Area because a portion of the
tracer plume travels in the high-velocity TZ and the rest in the low-velocity TCCZ and LAZ. The effective
source length is more uncertain for those DUs whose long axis is not aligned with the direction of flow. A
schematic representation of the aquifer element is given in Figure 3-6. AQiengih in Equation 6 is represented
by the blue-shaded area in Figure 3-6.
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Figure 3-5. Tecplot representation of the steady-state PORFLOW results utilized in estimating the
source length and aquifer area *(Note the different views do not have the same magnification)
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Figure 3-6. Schematic representation of the aquifer element

The initial estimates for the calibration parameters were placed in a separate subfolder, shown in Figure 3-7.
Also noted in Figure 3-7 are the multipliers utilized in the calibration procedure discussed in Section 3.3.
These data elements were then multiplied by the initial estimates to give the geometric parameters utilized
in the aquifer element. This process is repeated for each of the 31 DUs studied in this report.
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Figure 3-7. Parameter subfolder showing the variables utilized in the calibration procedure

3.3 Calibration

A total of six PF results were utilized in the calibration process: both a pulse and steady-state source at three
different dispersivities. There were four different model output results to analyze for each DU: steady-state
peak concentration, pulse peak concentration, pulse time-of-peak (TOP), and the pulse concentration profile
shape. GS has a built-in optimization feature that minimizes the percent error of a result (objective function)
by iteratively searching the solution space with different optimization variable values until convergence.
The optimization screens displaying the optimization parameters are shown in Figure 3-8.

In this study, steady-state peak concentration, pulse peak concentration, and pulse TOP were optimized
using this method where the objective function was the percent error of these results and the optimization
variables were the aquifer area, Darcy velocity, and source-length multipliers. The optimization feature did
not work well calibrating the source-length multiplier parameter to match plume spread; therefore, a script
was created that performs separate GS simulations with a range of source-length multiplier values. The
script opens the Aquifer Model and replaces the source-length multiplier element value as well as a book-
keeping data element with the desired value. Within the script, this line is repeated several times using a
range of source-length multiplier element values (from 0.20 to 1.58). The model utilizes a spreadsheet
element to report the standard deviation (plume spread) and several other input and output data; the element
is offset by the recordkeeping parameter to prevent overwriting. The proposed calibration flow diagram is
given in Figure 3-9.
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Figure 3-8. Optimization screens showing input parameters
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Figure 3-9. Calibration flow diagram

All multiplier elements were initially given a value of 1, so that the area, velocity, and source length were
the estimated values obtained from the DU’s PF results. Utilizing GS’s optimization feature, the aquifer
area is calibrated to minimize the error between the steady-state peak concentration predicted by GS and
PF for the 32.8-foot dispersion tracer simulations. Applying the multiplier for aquifer area from the
optimization routine, the Darcy velocity is calibrated next, minimizing the error between the TOP of the
pulse simulation predicted by GS and PF. The shape of the pulse profile was found to be dependent on the
source length, which was optimized by reducing the error in the standard deviation of the pulse
concentration profile for the 32.8-foot dispersion case. For some DUSs, this “simple” calibration procedure
was adequate. In fact, a small subset of the DUs where the simple calibration procedure was adequate did
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not even require the source-length scan to match the pulse concentration profile’s standard deviation (i.e.,
source-length multiplier equal to 1.0). For example, see Figure 3-10.

On the other hand, for many DUs, the simple calibration procedure above produced 32.8-foot dispersivity
pulse source results comparable to PF; however, the steady-state results were unacceptable. For these cases,
multiple iterations of the optimization routine as well as manual calibration (i.e., visual check of peak shape
and manual increase/decrease of variables) were required. An example of how manual calibration reduced
the error in the GS results is shown in Figure 3-11.
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5.0E-09

0.0E+00

20 25 30 0 10 20 30 40 50 60
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Figure 3-10. Example results from a successful “simple” calibration (dashed = PF, solid = GS)
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Figure 3-11. GS results showing concentration profiles before and after manual calibration
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3.4 Plume Interaction

Because PAM is a one-dimensional representation of a three-dimensional transport process, the calculated
solute concentrations include no spatial dispersion perpendicular to the direction of flow. In reality,
radionuclide transport will disperse and may increase the solute concentrations at one or more neighboring
DU’s POA, as shown schematically in Figure 3-12. To calculate the contribution of solute mass from one
DU (e.g., Conc from unit C in Figure 3-12) to a neighboring POA, the GS Plume Function was initially
considered. This analytic function is a built-in feature of GS and produces a multiplier applied to streamtube
concentration to estimate concentrations off the streamtube centerline (Tauxe, 2014). In the context of
Figure 3-12, the Plume Function can be used to estimate the concentrations at POAA resulting from solute
plumes emanating from DU sources B and C. However, the Plume Function requires several input
parameters based on the geometry of the unit itself as well as the distances from the origin to the neighboring
POAs. Upon testing, additional calibration was found to be required to match the PF results. To be more
efficient, the decision was made to directly use the ratio of the PF contribution at the neighboring POA to
the GS concentration at the origin POA as a correction factor. For example, the peak concentration
generated by PF emanating from disposal unit C (Figure 3-12) at POAa is divided by Concc from GS to
obtain the Plume Overlap Factor (POF).

______ o poa, S0
]
cfafs
I |

Figure 3-12. Schematic of plume interaction

4.0 Results

4.1 West Aquifer Model

Overall, the DUs in the West Aquifer Model required only simple calibration of the DUs and produced
concentrations and time-of-peak values that were comparable to PF results. The relative ease of calibration
is a result of the water table being located in the LAZ below the TCCZ, which avoids the plume being split
by the TCCZ. Percent errors are listed in Table 4-1 while the optimized area, Darcy velocity, and source
length are listed in Table 4-2.
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Table 4-1. West Aquifer Model concentration and time-of-peak errors
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Steady-State Error Pulse Error Time-of-Peak Error

aL — 32.8 ft 10 ft 100 ft 32.8ft 10 ft 100 ft 32.8ft 10 ft 100 ft
DUBA 0% 6% 1% 2% 0% 0% 0% 0% 3%
DU8B 0% 3% 6% 4% 0% 2% 0% 6% 4%
DU8sC 0% 5% 0% 7% 2% 5% 4% 3% 5%
ETO3 6% 10% 5% 3% 17% 4% 0% 0% 9%
ET04 10% 5% 10% 0% 0% 0% 2% 15% 0%
ILV 0% 10% 12% 3% 11% 0% 0% 1% 0%
NRCDA26E 8% 16% 8% 2% 14% 4% 0% 1% 0%
STO8 9% 3% 7% 0% 0% 0% 0% 2% 5%
ST09 0% 14% 12% 2% 0% 0% 0% 4% 5%
ST10 13% 13% 16% 0% 0% 0% 0% 13% 30%

Table 4-2. Calibrated West Aquifer Model geometric parameter multiplier values

wish | acion | acioon | Oaroyveloiy | SouceLengn
(m?) () ()

DUBA 1189 585 2326 1.26 1.00
DU8B 1225 686 2333 1.38 1.00
ETO3 2689 1656 4568 1.10 1.35
ET04 2513 1624 5326 1.01 1.58
ILV 2569 1696 4619 0.90 1.00
NRCDA26E 2004 1303 3719 1.01 1.15
ST08 1430 775 2972 0.94 1.00
ST09 1395 710 2979 0.88 1.00

4.1.1 Disposal Units 8A, 8B, & 8C

Figure 4-1 compares the GS DU 8A, 8B, and 8C POA concentrations for steady-state and pulse sources to
the PF results. DU 8A and 8B required the simple calibration only, whereas calibration of DU 8C needed
additional adjustment of the source-length and area multipliers to reduce the errors observed between the
PF and GS steady-state results. The final calibrations produced small errors (less than 10%) for each case.
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Figure 4-1. GS POA concentrations for DU 8A-C compared to PF results

4.1.2 West Engineered Trenches

Figure 4-2 compares the GS Engineered Trench (ET) 3 and 4 POA concentrations for steady-state and pulse
sources to PF results. ET 4 required the simple calibration only whereas calibration of ET 3 needed
additional adjustment of the source-length and area multipliers to reduce the errors observed between the
PF and GS steady-state and pulse source results. Interestingly, the pulse source concentration profile for
the PF 10-foot dispersivity tracer case displays a ‘shoulder’ that appears after the initial breakthrough. The
shoulder could result from the water table passing partially through the TCCZ. The final calibrations
produced small errors (<10%) for all other results.
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Figure 4-2. GS POA concentrations for ET 3 and 4 compared to PF results
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4.1.3 Intermediate Level Vault & Naval Reactor Component Disposal Area

Figure 4-3 compares the GS Intermediate Level Vault (ILV) and Naval Reactor Component Disposal Area
(NRCDA) 26E POA concentrations for steady-state and pulse sources to the PF results. The ILV required
the simple calibration with no source-length correction (source-length multiplier equals 1.0) because the
shape of the pulse concentration profile matched the PF results well using the uncorrected source-length
estimate value. NRCDA 26E, on the other hand, needed additional adjustment of both the source-length
and area multipliers to reduce the errors observed between the PF and GS steady-state source results.
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Figure 4-3. GS POA concentrations for ILV and NRCDA 26E compared to PF results

4.1.4 West Slit Trenches

Figure 4-4 compares POA concentrations for GS Slit Trenches (ST) 8, 9, and 10 to the PF results for steady-
state and pulse sources. There was good agreement in the shapes of the concentration profiles for the GS
and PF pulse-source simulations for all West ST models when using the initial source-length estimate value;
therefore, only the simple calibration without source-length modification was required. Like ET 4, the
ST 10 PF pulse-source tracer results display a ‘shoulder’ that appears during the initial breakthrough for
both the 10-foot and 32.8-foot dispersivity cases. Again, the shoulder can be attributed to the water table

passing partially through the TCCZ and is the source of the somewhat larger (13-30%) errors observed for
this disposal unit.

18



SRNL-STI-2018-00160

Revision A
Pulse Pulse Pulse

__ 3.0E-08 _ 3.0E-08 _ 3.0E-08

2 2.0E-08 2 2.0E-08 2 2.0E-08

g g g

§ 1.0E-08 Y § 1.0E-08 A ;é 1.0E-08

§ 0.0E+00 § 0.0E+00 e § 0.0E+00

5 0 10 20 308 0 10 20 305 0 10 20 30
© Time (Y1) © Time (Y1) © Time (Y1)

STOS pulse 10 ft STOS pulse 100 fi ST09 pulse 10 ft ST09 pulse 100 fi ST10 pulse 10 ft ST10 pulse 100 ft
STO8 pulse 32 ft — — — PF STO08 pulse 10 ft ST09 pulse32ft = — — PF ST09 pulse 10 ft ST10 pulse 32 ft — — — PF ST10 pulse 10 ft
— = = PF STO08 pulse 100 ft = = = PF ST08 pulse 32 ft = = = PF ST09 pulse 100 ft = = = PF ST09 pulse 32 ft = = = PF ST10 pulse 100 ft = = = PF ST10 pulse 32 ft
Steady State Steady State Steady State

S LSBT oo _ 20807 . 2.0B-07
50 W 15B07 | _ pmmmmm 8 15E07 m=---ommm e oo -
L e e — 5 10807 _ [ §OLOE07 bofioo oo
E S 5.0B-08 £ SOE08 L4
3 § 0.0E+00 § 0.0E+00

S 20 40 60 g 0 20 40 60 g 0 20 40 60
© Time (Y1) © Time (Y1) “ Time (Y1)

STO8 SS 10ft ST08 S8 100 ft ST09 88 10t ST09 S5 100 ft ST108S 10ft ST10 88 100 ft
STO8SS 32t = — — PF 88 10ft ST00SS32f — — — DF SS 10ft STI08832ft = — — PF SS 10ft
- — —PFSS100f — — —DPFSS32ft — — —PFSS100ff — — — PFSS32ft — — —DFSS100f — — —DPFSS32ft

Figure 4-4. GS POA concentrations for ST 8-10 compared to PF results

4.2 Center Aquifer Model

The center ST DUs required only simple calibration with no modifications to the initial PF source-length
estimates. The Components-in-Grout (CIG) trenches, on the other hand, required additional calibration,
including manual manipulation of both the area and source-length multipliers to better match PF results.
The percent errors are listed in Table 4-3 and the optimized area, Darcy velocity multiplier, and source-

length multiplier are listed in Table 4-4.

Table 4-3. Center Aquifer Model concentration and time-of-peak errors

_ Steady-State Erro_r _ Pulse Error _ Time-of-Peak Error
in Peak Concentration in Peak Concentration
aL — 32.8 ft 10 ft 100 ft 32.8 ft 10 ft 100 ft 32.8 ft 10 ft 100 ft

STO1 0% 4% 22% 2% 0% 0% 0% 1% 10%
ST02 0% 1% 19% 1% 0% 0% 0% 2% 8%
STO03 0% 5% 18% 3% 0% 0% 0% 2% 8%
STO04 0% 12% 19% 6% 0% 0% 0% 3% 10%
ST11 0% 2% 22% 7% 0% 0% 0% 3% 8%
ClG1 0% 0% 1% 0% 5% 22% 3% 3% 44%
ClG2 0% 9% 14% 0% 0% 17% 3% 6% 59%
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Table 4-4. Calibrated Center Aquifer Model geometric parameter multiplier values

Fin_a I?,,zb\geg Finfil fg?? Finilll,(é)\gefa; Darcy Source-Length

o o) oL ) oL ) Multiplier Multiplier
STO01 1592 947 2835 1.00 1.00
ST02 1422 867 2633 1.22 1.00
STO03 1399 927 2588 1.29 1.00
ST04 1390 1013 2518 1.28 1.00
ST11 1655 985 3073 0.85 1.00
CiGl 1482 062 3230 1.12 0.87
CIG2 1480 1065 2886 1.16 0.75

4.2.1 Center Slit Trenches
Figure 4-5 compares the GS center ST (ST 1, 2, 3, 4 and 11) POA concentrations for steady-state and pulse
sources to the PF results. The center ST DUs required only the simple calibration with no modifications to
the initial PF source-length estimates; pulse and time-of-peak results were excellent (<10%). The 100-foot
dispersivity steady-state simulations resulted in larger errors (18-22%), but are still acceptable.

4.2.2 Components-in-Grout Trenches

POA concentration profiles from the GS and PF simulations for CIG 1 and 2 steady-state and pulse sources
are compared in Figure 4-6. CIG 1 required the simple calibration only, but with source-length calibration.
CIG 2 needed additional manual adjustment of the source-length and area multipliers to reduce the errors
observed between the PF and GS steady-state and pulse source simulations. While the CIG DUs 32.8-foot
and 10-foot dispersivity simulations produced errors less than 10%, the 100-foot pulse simulations
produced TOP errors larger than 20% and the peak concentration errors ranged from 17-22%.
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Figure 4-5. GS POA concentrations for ST 1-4 & 11 compared to PF results
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Figure 4-6. GS POA concentrations for CIG 1 & 2 compared to PF results

4.3 East Aquifer Model

All East DUs required additional calibration, including manual manipulation of both the area and source-
length multipliers, to better match the PF results. This is likely due to the plume traveling partially in the
high-velocity TZ and the low-velocity TCCZ and LAZ, as well as the streamtraces not being oriented
perpendicular to the DU’s cross-section. The percent errors are listed in Table 4-5 and the optimized area,
Darcy velocity multiplier, and source-length multiplier are listed in Table 4-6.

4.3.1 East Slit Trenches

Figure 4-7 and Figure 4-8 compare the GS East ST’s POA concentration profiles for steady-state and pulse
sources to the PF results. Most East ST simulation results are comparable to PF’s with errors less than 20%.
More specifically, all 32.8-foot dispersivity cases have errors less than 15%, while errors in peak
concentration for ST 5, 6, and 7 assuming a 100-foot dispersivity were greater than 20% (e.g., the ST 5
error for a steady-state source with 100-foot dispersivity was 124% with the next largest error being 35%).
It should be noted that ST 21’°s aquifer length is exceptionally long, approximately 600 meters. For the 10-
foot dispersivity case, 114 cells were needed for an accurate representation of dispersivity. Because the GS
aquifer element comprises a maximum of only 100 cells, this introduces another source of error.
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Table 4-5. East Aquifer Model concentration and time-of-peak errors

Steady-State Error Pulse Error Time-of-Peak Error
oL — 32 ft 10 ft 100 ft 32 ft 10 ft 100 ft 32.8ft 10 ft 100 ft
STO05 3% 5% 124% 4% 2% 23% 0% 4% 81%
STO06 11% 0% 20% 5% 0% 27% 0% 18% 3%
STO07 11% 1% 35% 4% 4% 20% 3% 18% 3%
ST14 3% 11% 18% 0% 3% 9% 2% 2% 16%
ST15 8% 10% 17% 1% 0% 0% 3% 7% 3%
ST16 5% 0% 24% 0% 0% 12% 1% 5% 7%
ST17 0% 0% 17% 8% 6% 12% 0% 0% 8%
ST18 10% 0% 14% 0% 11% 12% 1% 4% 13%
ST19 4% 1% 16% 0% 0% 10% 0% 4% 11%
ST20 0% 14% 14% 0% 0% 5% 1% 2% 4%
ST21 13% 9% 19% 10% 3% 0% 0% 0% 7%
ET1 7% 0% 9% 9% 2% 8% 2% 2% 8%
ET2 8% 2% 15% 7% 2% 0% 0% 3% 13%
LAWV 14% 4% 12% 0% 1% 5% 2% 2% 4%

Table 4-6. Calibrated East Aquifer Model geometric parameter multiplier values

Fin_a I?é;e?t Fimil ﬁ)r](jta Finilll,(é)\gefa; Darcy Source-Length

o * ) ) Multiplier | Multiplier
ST05 1550 1007 2790 1.08 0.80
ST06 951 608 2377 2.43 1.15
STO07 962 601 2116 2.48 1.10
ST14 1099 720 2369 3.53 1.31
ST15 1003 619 2062 3.65 1.58
ST16 1622 1165 3325 2.43 1.30
ST17 1825 1347 4105 2.22 1.15
ST18 2012 1300 4098 2.41 1.18
ST19 2030 1315 4162 2.43 1.38
ST20 2184 1259 4413 2.47 1.58
ST21 5054 3469 9143 112 1.35
ETO1 1236 808 2540 2.95 1.33
ETO02 1135 717 1987 3.12 1.16
LAWYV 1349 902 2834 2.97 1.28
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Figure 4-7. GS POA concentrations for ST 5, 6, 7, 14 and 16 compared to PF results
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Figure 4-8. GS POA concentrations for ST 17, 18, 19, 20, and 21 compared to PF results

4.3.2 East Engineered Trenches and Low-Activity Waste Vault
GS-predicted POA concentrations for steady-state and pulse sources for the GS East ETs and Low-Activity
Waste Vault (LAWY) are compared to PF results in Figure 4-9. All units required additional modification
of the multiplication data elements to reduce the steady-state concentration errors. After final calibration,

the maximum error for these units was

15%.
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Figure 4-9. GS POA concentrations for ET 1 & 2 and LAWY compared to PF results

4.4 Plume Overlap Factors

The steady-state source plume overlap factors (POF) are derived in this section for each PAM submodel
(i.e., disposal unit) as well as for the overlap from DUs located in neighboring models (i.e., East, Central,
and West). Ideally, the steady-state and pulse sources would have very similar POFs as only one overlap
factor will be utilized in the GS system model. Unfortunately, for many DUs, the steady-state POFs were
larger/smaller than the corresponding pulse POFs. In the ELLWF system model, PAM’s input will be mass
flux at the water table. Because many of the radionuclides produce long-lasting fluxes (as opposed to
peaking and falling to zero within the simulation time) and most of the steady-state POFs are greater than
POFs for their pulse counterparts, the steady-state POF results were chosen for presentation in this report.
The pulse POFs are summarized in Appendix A. Note that only POFs larger than or equal to 0.01are listed
in the tables.

Plume overlap factors from neighboring models (e.g., the contribution of ST11 from the Center Aquifer
Model to ST10 in the West Aquifer Model) were calculated from the PF concentration contribution results
taken from the aquifer model where the POA is located. For example, the ST11 concentration contribution
to the ST10 POA concentration is taken from the west PF tracer simulations because the ST10 POA lies
near the boundary with the Center Aquifer Model where ST11 is located (as seen in Figure 2-1).

4.4.1 West Aquifer Model

The West Aquifer Model’s POFs for the steady-state source 32.8-foot, 10-foot, and 100-foot dispersivity
simulations are listed in Table 4-7, Table 4-8, and Table 4-9, respectively. As expected, the factors are
larger where the streamtraces (Figure 2-1) for neighboring DUs are in close proximity. The largest POF is
the contribution of NRCDA 26E to the centerline POA of ET03 and vice versa. Note that these POFs exceed
1.00, because GS underestimates the centerline POA concentrations for these units. The contributions of
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ILV and ST09 to each other are also large (0.75/0.70). Only two DUs from the Center Aquifer Model
contribute to West Aquifer Model POAs: ST11 and STO1. The largest contribution for the 32.8-foot
dispersivity, steady-state case was from ST11, which contributes 0.10 times its centerline POA
concentration to ST10.

Table 4-7. West Aquifer Model’s plume overlap factors: 32.8-foot dispersivity, steady-state source

DU—)

poAy | STO8 | STO9 | sTio | ETO3 | ETO4 | 1LV N';gEA DUSA | DUSB | DUSC geTnltelr geTn(:elr
STO8 0.26 | 0.02 032 | 002

ST09 | 018 0.19 0.75 0.01

ST10 0.20 0.43 010 | 0.01
ET03 | 008 | 002 007 | 003 | 102 0.02

ET04 0.75 0.07 002 | 042

LV | 008 | 070 | 024 0.01
NFEEEDA 0.06 | 001 101 | 008 | 003 0.01

DUSA

DUSB 0.03 0.10

DUSC | 0.01 013 | 034 0.02 0.19

Table 4-8. West Aquifer Model’s plume overlap factors: 10-foot dispersivity, steady-state source

DU—
POA|

ST08

ST09

ST10

ETO3

ETO04

ILvV

NRCDA
26E

DUSA

DuU8B

DusC

ST11
Center

STO08

0.08

0.01

0.21

0.03

ST09

0.21

0.08

0.54

ST10

0.21

0.33

0.02

ETO03

0.01

0.09

1.15

0.01

ET04

0.53

0.04

0.01

0.08

LV

0.09

0.46

0.09

NRCDA
26E

0.01

0.81

0.10

DUSA

DusB

0.06

DuscC

0.04

0.10

0.12

Table 4-9. West Aquifer Model’s plume overlap factors: 100-foot dispersivity, steady-state source

DU—

poa, | STOB | ST09 | ST10 | ETO03 | ETO4 | ILV NF;E'EDA DUSA | DUSB | DUSC geTnlt:r g;g:r
STO8 057 | 012 | 009 | 0.01 | 056 | 0.14 0.02

ST09 | 0.33 042 | 001 0.74 | 001 0.07 | 001
STI0 | 005 | 035 0.46 0.26 | 003
ET03 | 027 | 011 | 003 026 | 014 | 082 0.10

ETo4 | 0.06 | 002 | 001 | 0.78 003 | 032 009 | 0.7

ILV 0.24 | 0.76 | 0.48 0.01 0.07 | 001
NngA 0.26 | 0.0 | 0.02 | 096 | 029 | 0.14 0.09

DUSA 0.01 0.02

DUSB 0.04 | 021 002 | o021 0.03
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4.4.2 Center Aquifer Model

The Center Aquifer Model’s POFs for the steady-state source 32.8-foot, 10-foot, and 100-foot dispersivity
simulations are listed in Table 4-10, Table 4-11, and Table 4-12, respectively. The POFs for the Center
Aquifer Model DUs are smaller than those for the West and East Aquifer Models. This is expected because
the streamtraces are more distant from each other and have little overlap. The largest POF is the contribution
of STO1 to the centerline POA of ST11 (POF = 0.27). Although four West Aquifer Model DUs are predicted
to contribute to ST11, CIG1 and CIG2, only the contribution from ST05 to CIG2’s centerline POA has a
POF at or above 0.01 for both the 32.8-foot and 10-foot dispersivity cases.

Table 4-10. Center Aquifer Model’s plume overlap factors: 32.8-foot dispersivity, steady-state
source

DU— ST10 | ILV STOS5 | STO6
POA| STO1 STO02 ST03 | ST04 | ST11 | CIG1 | CIG2 West | West East East

STO1 0.24 0.15
ST02 | 0.13 0.24
STO3 0.11 0.19
ST04 0.12 0.14
ST11 | 0.27 0.01
CIG1 0.10 0.13
CIG2 0.12 0.12

Table 4-11. Center Aquifer Model’s plume overlap factors: 10-foot dispersivity, steady-state source

DU— ST10 | ILV STO5 | STO6
POA| STO01 | STO2 | STO3 | STO4 | ST11 | CIG1l | CIG2 West | West East East

STO1 0.17 0.18
ST02 0.14 0.18
STO3 0.13 0.17
ST04 0.16 0.13
ST11 0.15
CIG1 0.14 0.13
CIG2 0.15 0.12

Table 4-12. Center Aquifer Model’s plume overlap factors: 100-foot dispersivity, steady-state

source
DU— ST10 | ILV ST05 | STO06
POA| STO1 | STO02 | STO3 | STO4 | ST11 | CIG1l | CIG2 West | West East East
STO1 0.42 0.07 0.29
ST02 0.28 0.42 0.06 0.02
STO3 0.02 0.28 0.37 0.05
ST04 0.02 0.29 0.36 0.03
ST11 0.47 0.10 0.01 0.01 | 0.04
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CIG1 0.02 0.27 0.32 0.03
CIG2 0.02 0.36 0.29 0.05

4.4.3 East Aquifer Model

The East Aquifer Model’s POFs for the steady-state source 32.8-foot, 10-foot, and 100-foot dispersivity
simulations are listed in Table 4-13, Table 4-14, and Table 4-15, respectively. As expected, ST05, ST06,
and STO7 have relatively small POFs because their streamtraces are separated when compared to other DUs
in the East Aquifer Model. Compared to the West and Center Aquifer Models, the East Aquifer Model has
consistently larger POFs with 22 factors exceeding 0.50 for the 32.8-foot dispersivity, steady-state
simulations. The largest POF (0.97) is for the contribution of LAWYV to the centerline POA for ST15. In
most cases, the larger POFs (0.80 and above) arise because of mass contributions of the more southern DUs

(from LAWYV to ST20) to the DU plume of interest located immediately to the north.

Table 4-13. East Aquifer Model’s plume overlap factors: 32.8-foot dispersivity, steady-state source

DU | ST | ST | ST | ST | ST | ST | ST | ST | ST | ST | ST | ET | ET | ,un | CIG2
POAL | 05 | 06 | 07 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 01 | 02 Center
STO5 0.15 0.12
stos | %7 0.10 0.06
ST07 0.15 0.03 | 0.19
ST14 0.84 | 027 | 015 | 0.08 | 0.04 | 0.02 | 0.01 | 0.20 0.52
ST15 0.16 057 | 034 | 024 | 013 | 0.08 | 0.04 0.97
ST16 0.02 0.81 | 0.65 | 042 | 026 | 0.16 0.65
ST17 0.72 091 | 062 | 040 | 0.27 0.09
ST18 0.05 | 057 0.96 | 0.69 | 0.40
ST19 0.10 | 065 0.92 | 031
ST20 0.03 | 0.43 | 0.95 0.25
ST21 001 | 017 | 028 | 047 | 0.58 | 0.68 0.08
ETO1 067 | 0.41 | 009 | 004 | 0.01 | 0.01 006 | 0.22
ET02 031 | 0.17 | 001 0.64 0.05

LAWY 047 | 081 | 052 | 039 | 0.24 | 0.14 | 0.08
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Table 4-14. East Aquifer Model’s plume overlap factors: 10-foot dispersivity, steady-state source

DU— | ST ST ST ST ST ST ST ST ST ST ST ET ET LAWY CIG2
POA| 05 06 07 14 15 16 17 18 19 20 21 01 02 Center
ST05 0.16 0.16
ST06 | 0.03 0.07 0.01

STO07 0.13 0.01 | 0.05

ST14 0.76 | 0.24 | 0.10 | 0.04 | 0.01 0.22 0.49

ST15 0.11 0.61 | 0.33 | 0.16 | 0.06 | 0.02 | 0.01 0.96

ST16 0.01 0.90 | 0.62 | 0.34 | 0.14 | 0.06 0.45

ST17 0.55 0.89 | 0.58 | 0.28 | 0.14 0.05

ST18 0.03 | 0.44 0.94 | 059 | 0.29

ST19 0.07 | 0.49 0.81 | 0.24

ST20 0.02 | 0.29 | 0.82 0.20

ST21 0.02 | 0.07 | 0.18 | 0.34 | 0.46

ETO1 0.57 | 0.34 | 0.05 | 0.02 0.09 0.15

ETO02 0.18 | 0.10 | 0.01 0.43 0.03
LAWYV 0.30 | 0.88 | 0.57 | 0.32 | 0.14 | 0.05 | 0.02

Table 4-15. East Aquifer Model’s plume overlap factors: 100-foot dispersivity, steady-state source

DU— | ST ST ST ST ST ST ST ST ST ST ST ET ET LAWYV CIG2
POA|] 05 06 07 14 15 16 17 18 19 20 21 01 02 Center
STO5 0.49 | 0.18 | 0.04 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.09 | 0.17 0.02 0.31
ST06 | 0.27 0.57 | 0.06 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 0.01 | 0.12 | 0.26 0.02 0.11
STO7 | 0.13 | 0.58 0.11 | 0.06 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.21 | 0.38 0.04 0.04
ST14 0.76 | 0.48 | 040 | 0.33 | 0.26 | 0.21 | 0.17 | 0.74 | 0.16 0.67

ST15 0.70 0.67 | 059 | 050 | 0.41 | 0.33 | 0.24 | 0.39 | 0.04 0.86

ST16 0.23 | 0.53 082 | 0.76 | 0.65 | 0.54 | 0.34 | 0.06 0.83

ST17 0.10 | 0.31 | 0.75 0.85 | 0.75 | 0.64 | 0.37 | 0.02 0.64

ST18 0.02 | 0.11 | 0.54 | 0.77 0.85 | 0.77 | 0.38 0.34

ST19 0.01 | 0.04 | 0.34 | 0.59 | 0.77 0.79 | 0.34 0.17

ST20 0.03 | 0.27 | 052 | 0.72 | 0.81 0.32 0.12

ST21 0.16 | 0.27 | 0.48 | 0.61 | 0.74 | 0.81 | 0.87 0.09 | 0.01 0.43

ETO1 0.01 | 0.03 | 0.75 | 0.56 | 0.29 | 0.24 | 0.19 | 0.15 | 0.13 | 0.11 0.53 0.44

ET02 0.04 | 0.15 | 053 | 0.35 | 0.16 | 0.13 | 0.10 | 0.08 | 0.07 | 0.06 | 0.80 0.26
LAWYV 047 | 075 | 0.75 | 0.71 | 0.62 | 051 | 0.42 | 0.28 | 0.19 | 0.01

5.0 Conclusions

An extensive number of GoldSim® and PORFLOW simulations were performed to develop a methodology
for calibrating PAM to PF tracer simulation results. Overall percent errors, shown in Figure 5-1, between
the calibrated GS Aquifer Model and the PF tracer simulations are less than 20% and average 4% for the
32.8-foot and 10-foot dispersivity cases. This level of agreement is considered acceptable for UQSA in the
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next revision of the ELLWF PA. Larger discrepancies were observed for the 100-foot dispersivity results.
However, a dispersivity of 100 ft lies at the upper end of the uncertainty range and is less likely than a
dispersivity equal to 32.8 ft or 10 ft. Therefore, the lower level of agreement is acceptable for a; = 100 ft.

Plume overlap implementation in the system model will not utilize the built-in GS plume function because
this correction factor requires calibration to the ratio between the PF-calculated plume contribution and the
GS concentration. Therefore, the ratio itself will be utilized as the Plume Overlap Factor (POF). Compared
to the West and Center Aquifer Models, the East Aquifer Model has consistently larger POFs with 22
factors exceeding 0.50 for the 32.8-foot dispersivity, steady-state simulations. As expected, the factors are
larger where the streamtraces (Figure 2-1) for neighboring DUs are nearby. The Aquifer Model and
optimized geometric parameters will be implemented in the future GS system model which will simulate
subsurface flow and radionuclide transport from the ground surface to the 100-meter POA.
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Figure 5-1. GS Aquifer Model pulse and steady-state source errors in tracer concentration
compared to PF results

31



SRNL-STI-2018-00160
Revision A

6.0 References

Bagwell, L. A. and Flach, G. P. General Separations Area (GSA) Groundwater Flow Model Update:
Program and Execution Plan. SRNL-ST1-2016-00261, Revision 0. April 2016.

Butcher, B. T. and Phifer, M. A. 2016. Strategic Plan for Next E-Area Low-Level Waste Facility
Performance Assessment. SRNL-STI-2015-00620, Revision 0. February 2016.

Danielson, T. Software Quality Assurance Plan for Aquifer Model Refinement Tool (MESH3D). Q-SQP-
G-00003, Revision 2. September 2017.

Flach, G. P. Recommended Aquifer Grid Resolution for E-Area PA Revision Transport Simulations. SRNL-
STI-2018-00012. January 2018a.

Flach, G. P. Preliminary Disposal Limits, Plume Interaction Factors, and Final Disposal Limits. SRNL-
STI1-2018-00020 Rev. 0. January 2018b.

Flach, G. P., Bagwell, L. A., and Bennett, P. L. 2017. Groundwater Flow Simulation of the Savannah River
Site General Separations Area. SRNL-STI-2017-00008 Revision 1. September 2017.

GTG. 2017. GoldSim® User’s Guide Version 12.0. GoldSim® Technology Group. Issaquah, WA. February
2017.

Hamm, L. L., Smith, F. G., Phifer, M. A., and Collard, L. B. 2009. Savannah River Site Composite Analysis:
Aquifer Flow Path Parameters. SRNL-STI-2009-00438, Revision 0. August 2009.

SRNL. 2009. Savannah River Site DOE 435.1 Composite Analysis. SRNL-ST1-2009-00512, Revision 0.
Savannah River Nuclear Solutions. Aiken, SC. June 2009.

Tauxe, J. D. 2014. Notes on the GoldSim Plume Function. Neptune and Company, Inc. Los Alamos, NM.
August 2014

32



Appendix A. GS Aquifer Model Pulse Source Plume Overlap Functions

SRNL-STI-2018-00160

Revision A

Table A-1. West Aquifer Model’s plume overlap factors (POF): 32.8-foot dispersivity, pulse source

NRCDA ST11
STO8 | STO9 | ST10 | ETO3 | ETO4 | ILV | 26E | DUSA | DUSB | DUSC | Center
STO08 0.25 | 0.02 029 | 0.02
ST09 0.16 0.16 0.72 0.01
ST10 0.19 0.45 0.10
ETO3 0.07 | 0.02 0.06 | 0.03| 094 0.02
ET04 0.52 0.04 001 | 037
ILV 0.07 | 0.66 | 0.18
NRCDA
26E 0.05 | 0.01 0.90 | 0.07 | 0.02 0.02
DUSA
DUSB 0.03 0.09
DUSC 0.01 0.09 | 0.32 0.01 0.16

Table A-2. West Aquifer Model’s plume overlap factors (POF): 10-foot dispersivity, pulse source

NRCDA ST11
ST08 | ST09 | ST10 | ETO3 | ET04 | ILV | 26E | DUSA | DUSB | DUSC | Center

ST08 0.08 0.01 0.15 | 0.02

ST09 0.18 0.05 0.44

ST10 0.19 0.29 0.02

ETO3 0.01 0.08 0.86 0.02

ET04 0.33 0.02 0.01 | 0.07

ILV 0.09 | 0.42 | 0.07

NRCDA

26E 0.62 | 0.08 0.01

DUSA

DUSB 0.06

DUSC 0.03 | 0.11 0.11

Table A-3. West Aquifer Model’s plume overlap factors (POF): 100-foot dispersivity, pulse source

NRCDA ST11 [ STO1
ST08 | ST09 | ST10 | ETO3 | ET04 | ILV | 26E | DUBA | DUSB | DUSC | Center | Center

ST08 061 | 011 | 0.08 | 0.01 | 062 | 0.3 0.02

ST09 0.31 0.42 0.86 | 0.01 0.07 | 0.01

ST10 0.04 | 0.34 0.53 0.28 | 0.04

ETO3 0.22 | 0.09 | 0.02 0.28 | 0.13 | 0.89 0.08

ET04 0.04 | 0.02 | 0.00 | 0.61 003 | 026 0.06 | 068

ILV 021 | 0.78 | 047 0.06 | 0.01

NRCDA

26E 0.21 | 0.08 | 0.02 | 094 | 0.31 | 0.13 0.07

DUSA 0.01 0.01

DUSB 0.03 | 0.20 0.02 0.17 0.01

DUSC 0.03 | 0.01 0.27 | 064 | 002 0.11 0.23

A-1



SRNL-STI-2018-00160
Revision A

Table A-4. Center Aquifer Model’s plume overlap factors (POF): 32.8-foot dispersivity, pulse

source
ST10 ILV | STO05 | STO6

STO1 ST02 STO03 ST04 ST11 CIG1 CIG2 West | West | West | West
ST01 0.22 0.16
ST02 0.13 0.21
STO03 0.11 0.18
ST04 0.12 0.14
ST11 0.28 0.01
CIG1 0.09 0.11
CIG2 0.12 0.11

Table A-5. Center Aquifer Model’s plume overlap factors (POF): 10-foot dispersivity, pulse source

ST01

ST02

ST03

ST04

ST11

CIG1

CIG2

ST10
West

ILV
West

STO5
West

STO06
West

ST01

0.16

0.17

ST02

0.15

0.16

STO3

0.14

0.15

ST04

0.15

0.14

ST11

0.15

CIG1

0.13

0.11

CIG2

0.15

0.12

Table A-6. Center Aquifer Model’s plume overlap factors (POF): 100-foot dispersivity, pulse

source
ST10 ILV | STO05 | ST06

STO1 ST02 STO03 ST04 ST11 CIG1 CIG2 West | West | West | West
STO01 0.42 0.05 0.31
STO02 0.29 0.43 0.05 0.02
STO03 0.02 0.27 0.38 0.04
ST04 0.02 0.29 0.40 0.03
ST11 0.53 0.09 0.01 0.03
CIG1 0.01 0.27 0.34 0.03
CIG2 0.02 0.39 0.32 0.02
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Table A-7. East Aquifer Model’s plume overlap factors (POF): 32.8-foot dispersivity, pulse source

STO05 | ST06 | STO7 | ST14 | ST15 | ST16 | ST17 | ST18 | ST19 | ST20 | ST21 | ETO01 | ET02 | LAWV (?elr(?cgr
ST05 0.08 0.11
ST06 | 0.05 0.05 0.03
ST07 | 0.00 | 013 0.01 | 0.08
ST14 059 | 018 | 008 | 004 | 002 | 001 | 001 | 0.20 0.31
ST15 0.18 041 | 023 | 014 | 0.08 | 0.04 | 0.04 0.75
ST16 0.03 0.67 | 046 | 029 | 0.18 | 0.19 0.56
ST17 0.75 071 | 047 | 031 | 035 0.07
ST18 0.06 | 0.60 0.84 | 060 | 059
ST19 0.10 | 0.63 0.89 | 0.49
ST20 0.03 | 042 | 0.96 0.40
ST21 0.01 | 010 | 016 | 024 | 0.31 | 0.38 0.04
ETO1 0.41 | 0.23 | 005 | 0.02 | 0.01 0.02 | 011
ETO02 0.15 | 0.08 | 0.01 0.39 0.02
LAWYV 053 | 0.65 | 038 | 025 | 0.15 | 0.09 | 0.08
Table A-8. East Aquifer Model’s plume overlap factors (POF): 10-foot dispersivity, pulse source
CIG2
STO05 | ST06 | STO7 | ST14 | ST15 | ST16 | ST17 | ST18 | ST19 | ST20 | ST21 | ETO01 | ET02 | LAWV | Center
STO5 0.10 0.15
ST06 | 0.05 0.07 0.01
STO07 0.18 0.01 | 0.02
ST14 0.68 | 019 | 0.06 | 0.02 | 0.01 0.31 0.35
ST15 0.17 051 | 024 | 010 | 0.04 | 0.01 | 0.01 0.86
ST16 0.02 0.79 | 047 | 028 | 012 | 0.07 0.42
ST17 0.62 0.73 | 050 | 0.26 | 0.18 0.05
ST18 0.04 | 0.48 0.91 | 0.60 | 0.41
ST19 0.08 | 0.49 0.90 | 0.36
ST20 0.02 | 031 | 0.90 0.30
ST21 0.01 | 0.04 | 010 | 021 | 031
ETO1 0.44 | 024 | 0.04 | 0.01 0.05 | 0.09
ET02 0.11 | 0.06 0.32 0.02
LAWYV 043 | 077 | 045 | 023 | 011 | 004 | 0.02
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Table A-9 East Aquifer Model’s plume overlap factors (POF): 100-foot dispersivity, pulse source

STO05 | ST06 | STO7 | ST14 | ST15 | ST16 | ST17 | ST18 | ST19 | ST20 | ST21 | ETOL | ET02 | LAWY gelrﬁgr
STO5 0.28 | 0.02 0.02 0.32
STO6 | 0.24 0.27 0.01 | 005 0.01
sT07 | 001 | 041 0.01 0.04 | 013
ST14 0.65 | 0.26 | 047 | 041 | 007 | 006 | 010 | 042 0.40
ST15 0.41 056 | 037 | 024 | 016 | 012 | 018 | 0.02 0.82
ST16 0.12 0.90 | 0.62 | 044 | 031 | 041 0.82
ST17 0.01 | 0.99 087 | 0.64 | 046 | 056 0.29
ST18 0.27 | 0.92 098 | 076 | 073 0.02
ST19 0.05 | 0.38 | 0.89 0.97 | 0.68
ST20 0.02 | 023 | 074 | 110 0.63
sT21 0.02 | 008 | 032 | 041 | 045 | 048 | 050 0.20
ETOL 059 | 0.29 | 0.0 | 007 | 004 | 003 | 003 | 0.05 010 | 017
ET02 025 | 042 | 0.04 | 002 | 002 | 001 | 001 | 0.02 | 059 0.06
LAWY 0.06 | 0.68 | 0.82 | 057 | 038 | 026 | 018 | 0.26
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