## Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

## **Disclaimer:**

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

SRNL-STI-2017-00728



Date: November 30, 2017

TO: B. T. Butcher, 773-42A

FROM: J. A. Dyer, 773-42A

REVIEWER: T. L. Danielson, 703-41A

**Topic 3.5.1: Vadose Zone Models** 

Recommendation 150: Decide how to represent intact and subsided conditions for the proposed new conceptual closure cap design for the purpose of calculating infiltration. Produce new intact and subsided infiltration cases based on new conceptual design.

### E-Area Low-Level Waste Facility Vadose Zone Model: Confirmation of Water Mass Balance for Subsidence Scenarios

### <u>Scope</u>

In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.

### **Conclusions**

The analysis confirmed closure of the infiltration water mass balance to within 0.1% for the 5 percent and 10 percent subsidence cases as currently implemented in the PORFLOW vadose-zone model. In addition, for scenarios where one of the one or more subsided areas is located at the bottom edge of the cap to catch any remaining runoff or drainage from upslope, modeling results revealed that the spatially averaged infiltration rate (or total mass/volume of infiltrating water as a function of time) is independent of percent subsidence for all subsidence scenarios up to and including 100%. Scenarios where a subsided area is located at the cap's bottom edge represent bounding cases at a fixed percent subsidence because they maximize the mass of water that will contact the waste below.

Note that independence with respect to percent subsidence applies to spatially averaged <u>infiltration</u>, not to waste disposal <u>limits</u>. Limits will depend on additional considerations, including percent subsidence and how the subsided areas are distributed across the cap surface. For example, lower percent subsidence and fewer subsided areas mean that less waste will be contacted by the infiltrating water. In addition, the infiltration rates contained in this report are preliminary and should not be used for final design and modeling purposes.

#### SRNL-STI-2017-00728

#### Discussion

A flow and radionuclide transport model of the vadose zone located beneath the proposed E-Area LLWF closure cap is being developed using PORFLOW. Figure 1 displays the approximately 25-acre central slit trench (SLIT or ST) region of the proposed E-Area closure cap. The initial vadose-zone trench model is based on Cross-section E. For the HELP infiltration model simulations, this region is represented as two simplified conceptual model cases (3% slope by 585-foot slope length and 2% slope by 150-foot slope length) as shown in Figure 2 (Dyer, 2017).

#### Conceptual Model of Cap Subsidence

A generalized conceptual model for cap subsidence is presented by Dyer (2017) as shown in Figure 3. The conceptual model is valid regardless of cap crest orientation with respect to the long axis of the disposal units (i.e., longitudinal or latitudinal). Importantly, the model assumes that 100% of the lateral drainage (i.e., infiltrating water shed through the closure cap drainage layer) and surface run-off from the intact portion of the cap directly upslope of the subsided region (light-blue-shaded areas in Figure 3) enters the subsided region (orange-shaded areas) as run-on. The total run-on (flux) to the subsided region in inches/year, therefore, is directly proportional to the ratio of the



Figure 1. Basis for Vadose-Zone Model (from SRP Drawing Nos. C-CT-E-00083 and C-CT-E-00084)



Figure 2. HELP Model Simulation Cases for Section E in Figure 1



Figure 3. Conceptual Approach to Cap Subsidence

upslope intact area (UA1 or UA2) to the downslope subsided area (SA1 or SA2) as given by:

$$Run-on = (Area_{UAi}/Area_{SAi})(Lateral Drainage + Surface Run-off)_{HELP Intact Case}$$
(1)

Figure 4 displays one implementation of this conceptual model in the PORFLOW vadose-zone trench model where multiple subsided regions are evenly spaced on either side of the cap crestline and one subsided area is located at the bottom edge of the cap on each side.



Figure 4. Implementation of Evenly Spaced Subsided Areas in PORFLOW Vadose-Zone Model

#### Water Mass Balance

For the conceptual subsidence model adopted here where a subsided area is located at the bottom edge on each side, the total mass of water infiltrating the surface of the closure cap (i.e., the sum of intact plus subsided area infiltration) is essentially equal regardless of the assumed number and percentage of subsided areas. This approximate equality holds because the area-averaged infiltration rate of water at the cap surface (i.e., mass rainfall minus mass evapotranspiration) for subsided cases (M<sub>TOT X% SUBSIDENCE</sub>) is <u>approximately</u> equal to the quantity "rainfall minus evapotranspiration" for the 100% intact case (M<sub>TOT INTACT</sub>) where the drainage and barrier layers have been removed from the HELP model.

$$M_{\text{TOT INTACT}} = M_{\text{TOT 3\%}} \text{ subsidence} = M_{\text{TOT 5\%}} \text{ subsidence} = M_{\text{TOT 10\%}} \text{ subsidence}$$
(2)

$$M_{\text{TOT INTACT}} = \text{Mass Rainfall}_{intact} - \text{Mass Evapotranspiration}_{intact}$$
(3)

$$M_{\text{TOT X\% SUBSIDENCE}} = \sum_{i}^{n_{intact}} I_{i \text{ intact}} A_{i \text{ intact}} + \sum_{j}^{n_{subsided}} I_{j \text{ subsided}} A_{j \text{ subsided}}$$
(4)

where  $I_i$  and  $I_j$  are the infiltration rates and  $A_i$  and  $A_j$  are the areas for each intact and subsided segment, respectively. A demonstration of this equality concept is provided below in the sections *Mass Balance Model* and *Relationship* to the Intact Case.

When considering radionuclide transport and waste disposal limits, however, percent subsidence as well as the number and distribution of subsided areas will matter. For example, lower percent subsidence and fewer subsided areas mean that less waste will be contacted by the infiltrating water. The water mass balance provides a convenient reality check for any proposed subsidence scenario implemented in PORFLOW, and is demonstrated in more detail below.

#### Mass Balance Model

A water mass-balance model based on Figure 4 was developed in Microsoft Excel. The bases for the model were:

- 5% and 10% subsidence cases.
- Upslope intact area to downslope subsided area ratio is 18.6:1 and 8.9:1 at 5% and 10% subsidence, respectively
- Width of cap slice is 1 foot (ft.).
- Percent slope and slope lengths are as shown in Figures 2 and 4.
- Cap extends beyond (overhangs) waste disposal unit footprint by 40 ft. on each end.
- Locations of subsided regions are as shown in Figure 4.
- Infiltration rate (*I*) is a normalized volumetric flux expressed in units of inches (in.) per year (yr.) [volume (*V<sub>i</sub>*) per yr. per unit area].
- Surficial area of Section *i* of cap surface is slope length  $L_i$  x slope width 1 ft. =  $L_i$  square feet (ft<sup>2</sup>).
- Mass of water infiltrating Section *i* is  $(I_i)(L_i)(1 \text{ ft.}/12 \text{ in.})(62.43 \text{ pounds/cubic feet}) = m_i \text{ pounds (lbs.)}.$
- Total mass of water infiltrating through the cap is the  $\Sigma m_i$ .

For illustration purposes, infiltration rates were generated by HELP v4.0 (Dixon, 2017) using the same design (number, type, and material properties of layers) as the F-Area Tank Farm (FTF) closure cap (Phifer et al., 2007 and Phifer et al., 2009). The infiltration rates are preliminary and should not be used for final design and vadose zone modeling purposes.

The water mass balances at three points on the infiltration-rate-versus-time curve were analyzed: 0 hours, 1,000 hours, and 10,000 hours following installation of the closure cap system. Subsidence is conservatively assumed to occur immediately at time zero.

Figures 5, 6, and 7 compare the mass balance results for 5% and 10% subsidence at 0, 1,000, and 10,000 years following cap installation, respectively. At each time step, the difference in the total volume of infiltration water between the 5% and 10% subsidence scenarios is less than 0.1% as shown in Table 1.

Figure 8 displays the results of the water balance for all time steps in the infiltration rate curve (0 to 10,000 years) assuming 10% subsidence. The last two columns in the table shown in Figure 8 compare the area-averaged infiltration rate calculated across the entire cap surface area (including the 40-foot overhangs) and across the total footprint of the waste zone only. The area-averaged infiltration rates are independent of percent subsidence for all subsidence scenarios up to and including 100% because one of the subsided areas is located at the bottom edge of the cap.

|            | Section # | Intact/<br>Subsided | l: (in/vr) | L: (ft) | V: (ft <sup>3</sup> ) | m: (lb)  |
|------------|-----------|---------------------|------------|---------|-----------------------|----------|
|            | 1         | 1                   | 0.00008    | 40      | 0.000267              | 0.016648 |
|            | 2         | s                   | 323.72238  | 2.806   | 75.69708              | 4725.769 |
| 2%, 150 ft | 3         | 1                   | 0.00008    | 52.194  | 0.000348              | 0.021723 |
|            | 4         | s                   | 323.72238  | 2.806   | 75.69708              | 4725.769 |
|            | 5         | 1                   | 0.00008    | 52.194  | 0.000348              | 0.021723 |
|            | 6         | 1                   | 0.00037    | 87.2    | 0.002689              | 0.167853 |
|            | 7         | S                   | 323.64999  | 4.634   | 124.9828              | 7802.679 |
|            | 8         | 1                   | 0.00037    | 86.2    | 0.002658              | 0.165929 |
|            | 9         | s                   | 323.64999  | 4.634   | 124.9828              | 7802.679 |
|            | 10        | 1                   | 0.00037    | 86.2    | 0.002658              | 0.165929 |
|            | 11        | S                   | 323.64999  | 4.634   | 124.9828              | 7802.679 |
| 3% 585 ft  | 12        | 1                   | 0.00037    | 86.2    | 0.002658              | 0.165929 |
|            | 13        | S                   | 323.64999  | 4.634   | 124.9828              | 7802.679 |
|            | 14        | 1                   | 0.00037    | 86.2    | 0.002658              | 0.165929 |
|            | 15        | S                   | 323.64999  | 4.634   | 124.9828              | 7802.679 |
|            | 16        | 1                   | 0.00037    | 86.2    | 0.002658              | 0.165929 |
|            | 17        | S                   | 323.64999  | 4.634   | 124.9828              | 7802.679 |
|            | 18        | 1                   | 0.00037    | 40      | 0.001233              | 0.076997 |
|            | Sum       |                     |            | 736.0   | 901.3094              | 56268.74 |

Figure 5. Results of Water Mass Balance 5% and 10% Subsidence at 0 Years

| 5% Subsid                | ence         |             |                        |                     |                                   |                     |
|--------------------------|--------------|-------------|------------------------|---------------------|-----------------------------------|---------------------|
| me = 1,0                 | 00 yr after  | cap install | ation                  |                     |                                   |                     |
|                          |              | Intact/     |                        |                     |                                   |                     |
|                          | Section #    | Subsided    | l <sub>i</sub> (in/γr) | L <sub>i</sub> (ft) | V <sub>i</sub> (ft <sup>3</sup> ) | m <sub>i</sub> (lb) |
|                          | 1            | 1           | 2.47387                | 40                  | 8.246233                          | 514.8123            |
|                          | 2            | S           | 278.20209              | 2.806               | 65.05292                          | 4061.254            |
| L50 ft                   | 3            | 1           | 2.47387                | 52.194              | 10.7601                           | 671.7529            |
|                          | 4            | S           | 278.20209              | 2.806               | 65.05292                          | 4061.254            |
|                          | 5            | 1           | 2.47387                | 52.194              | 10.7601                           | 671.7529            |
|                          | 6            | 1           | 5.56575                | 87.2                | 40.44445                          | 2524.947            |
|                          | 7            | S           | 219.39183              | 4.634               | 84.72181                          | 5289.183            |
|                          | 8            | 1           | 5.56575                | 86.2                | 39.98064                          | 2495.991            |
|                          | 9            | S           | 219.39183              | 4.634               | 84.72181                          | 5289.183            |
|                          | 10           | 1           | 5.56575                | 86.2                | 39.98064                          | 2495.991            |
|                          | 11           | S           | 219.39183              | 4.634               | 84.72181                          | 5289.183            |
| 3% 585 ft                | 12           | 1           | 5.56575                | 86.2                | 39.98064                          | 2495.991            |
|                          | 13           | S           | 219.39183              | 4.634               | 84.72181                          | 5289.183            |
|                          | 14           | 1           | 5.56575                | 86.2                | 39.98064                          | 2495.991            |
|                          | 15           | S           | 219.39183              | 4.634               | 84.72181                          | 5289.183            |
|                          | 16           | 1           | 5.56575                | 86.2                | 39.98064                          | 2495.991            |
|                          | 17           | S           | 219.39183              | 4.634               | 84.72181                          | 5289.183            |
|                          | 18           | 1           | 5.56575                | 40                  | 18.5525                           | 1158.233            |
|                          | Sum          |             |                        | 736.0               | 927.1033                          | 57879.06            |
|                          |              |             |                        |                     |                                   |                     |
| Average In               | filtration R | ate Over To | otal Cap Surfa         | ce                  | 15.12                             | in/yr               |
| Σ Vi / (Σ L <sub>i</sub> | * 1.0 ft) *  | 12.0 in/ft  |                        |                     |                                   |                     |

### Figure 6. Results of Water Mass Balance 5% and 10% Subsidence at 1,000 Years

|           |           | Intact/  |                        |                     |                                   |                     |
|-----------|-----------|----------|------------------------|---------------------|-----------------------------------|---------------------|
|           | Section # | Subsided | l <sub>i</sub> (in/yr) | L <sub>i</sub> (ft) | V <sub>i</sub> (ft <sup>3</sup> ) | m <sub>i</sub> (lb) |
|           | 1         | 1        | 10.46534               | 40                  | 34.88447                          | 2177.837            |
|           | 2         | S        | 130.48732              | 2.806               | 30.51228                          | 1904.882            |
| %, 150 ft | 3         | 1        | 10.46534               | 52.194              | 45.519                            | 2841.751            |
|           | 4         | S        | 130.48732              | 2.806               | 30.51228                          | 1904.882            |
|           | 5         | 1        | 10.46534               | 52.194              | 45.519                            | 2841.751            |
|           | 6         | 1        | 11.47058               | 87.2                | 83.35288                          | 5203.72             |
|           | 7         | S        | 103.84832              | 4.634               | 40.10276                          | 2503.615            |
|           | 8         | 1        | 11.47058               | 86.2                | 82.397                            | 5144.045            |
|           | 9         | S        | 103.84832              | 4.634               | 40.10276                          | 2503.615            |
|           | 10        | 1        | 11.47058               | 86.2                | 82.397                            | 5144.045            |
|           | 11        | S        | 103.84832              | 4.634               | 40.10276                          | 2503.615            |
| % 585 ft  | 12        | 1        | 11.47058               | 86.2                | 82.397                            | 5144.045            |
|           | 13        | S        | 103.84832              | 4.634               | 40.10276                          | 2503.615            |
|           | 14        | 1        | 11.47058               | 86.2                | 82.397                            | 5144.045            |
|           | 15        | S        | 103.84832              | 4.634               | 40.10276                          | 2503.615            |
|           | 16        | 1        | 11.47058               | 86.2                | 82.397                            | 5144.045            |
|           | 17        | S        | 103.84832              | 4.634               | 40.10276                          | 2503.615            |
|           | 18        | 1        | 11.47058               | 40                  | 38.23527                          | 2387.028            |
|           | Sum       |          |                        | 736.0               | 961.1367                          | 60003.77            |

| Section # Subside I <sub>1</sub> (in/yr) L <sub>1</sub> (ft)   1 1 10.46534 40 3   2 S 70.91422 5.55555 3   2%,150 ft 3 I 10.46534 49.4445 4   4 S 70.91422 5.5555 3   5 I 10.46534 49.4445 4   6 I 10.46534 49.4445 4   6 I 10.46534 49.4445 4   6 I 11.47058 82.658249 7   7 S 58.16453 9.1750842 4   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7 | V; (ft <sup>3</sup> )<br>34.88447<br>32.83062<br>33.12108<br>32.83062<br>33.12108<br>79.0115<br>44.47204<br>79.05562 | m; (lb)<br>2177.837<br>2049.616<br>2692.049<br>2049.616<br>2692.049<br>4932.688 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1 I 10.46534 40 3   2 S 70.91422 5.55555 3   2%, 150 ft 3 I 10.46534 49.44445 4   4 S 70.91422 5.5555 3   5 I 10.46534 49.44445 4   6 I 11.47058 82.658249 7   7 S 58.16453 9.1750842 4   8 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.                  | 4.88447<br>32.83062<br>3.12108<br>32.83062<br>3.12108<br>79.0115<br>14.47204<br>78.05562                             | 2177.837<br>2049.616<br>2692.049<br>2049.616<br>2692.049<br>4932.688            |
| 2 S 70.91422 5.5555 3<br>2%,150 ft 3 I 10.46534 49.44445 4<br>4 S 70.91422 5.5555 3<br>5 I 10.46534 49.44445 4<br>6 I 11.47058 82.658249 7<br>7 S 58.16453 9.1750842 4<br>8 I 11.47058 81.658249 7<br>9 S 58.16453 9.1750842 4<br>10 I 11.47058 81.658249 7<br>11 S 58.16453 9.1750842 4<br>10 I 11.47058 81.658249 7<br>11 S 58.16453 9.1750842 4<br>13 S 58.16453 9.1750842 4<br>14 I 11.47058 81.658249 7                                               | 32.83062<br>3.12108<br>32.83062<br>3.12108<br>79.0115<br>44.47204<br>78.05562                                        | 2049.616<br>2692.049<br>2049.616<br>2692.049<br>4932.688                        |
| 2%, 150 ft 3 I 10.46534 49.44445 4<br>4 S 70.91422 5.55555 3<br>5 I 10.46534 49.44445 4<br>6 I 11.47058 82.658249 7<br>7 S 58.16453 9.1750842 4<br>8 I 11.47058 81.658249 7<br>9 S 58.16453 9.1750842 4<br>10 I 11.47058 81.658249 7<br>11 S 58.16453 9.1750842 4<br>13 S 58.16453 9.1750842 4<br>14 I 11.47058 81.658249 7                                                                                                                                | 3.12108<br>32.83062<br>3.12108<br>79.0115<br>4.47204                                                                 | 2692.049<br>2049.616<br>2692.049<br>4932.688                                    |
| 4 S 70.91422 5.5555 3   5 I 10.46534 49.44445 4   6 I 11.47058 82.658249 7   7 S 58.16453 9.1750842 4   8 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                   | 2.83062<br>3.12108<br>79.0115<br>4.47204                                                                             | 2049.616<br>2692.049<br>4932.688                                                |
| 5 I 10.46534 49.44445 4   6 I 11.47058 82.658249 7   7 S 58.16453 9.1750842 4   8 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                    | 43.12108<br>79.0115<br>14.47204                                                                                      | 2692.049<br>4932.688                                                            |
| 6 I 11.47058 82.658249 7   7 S 58.16453 9.1750842 4   8 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                                              | 79.0115                                                                                                              | 4932.688                                                                        |
| 7 S 58.16453 9.1750842 4   8 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                                                                                           | 4.47204                                                                                                              | 2776 200                                                                        |
| 8 I 11.47058 81.658249 7   9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   11 S 58.16453 9.1750842 4   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                                                                                                                      | 0 05562                                                                                                              | 2//0.385                                                                        |
| 9 S 58.16453 9.1750842 4   10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                                                                                                                                                                             | 0.05502                                                                                                              | 4873.013                                                                        |
| 10 I 11.47058 81.658249 7   11 S 58.16453 9.1750842 4   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                                                                                                                                                                                                        | 4.47204                                                                                                              | 2776.389                                                                        |
| 11 S 58.16453 9.1750842 4   3% 585 ft 12 I 11.47058 81.658249 7   13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                                                                                                                                                                                                                                    | 78.05562                                                                                                             | 4873.013                                                                        |
| 3% 585 ft 12 I 11.47058 81.658249 7<br>13 S 58.16453 9.1750842 4<br>14 I 11.47058 81.658249 7                                                                                                                                                                                                                                                                                                                                                              | 4.47204                                                                                                              | 2776.389                                                                        |
| 13 S 58.16453 9.1750842 4   14 I 11.47058 81.658249 7                                                                                                                                                                                                                                                                                                                                                                                                      | 78.05562                                                                                                             | 4873.013                                                                        |
| 14 I 11.47058 81.658249 7                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.47204                                                                                                              | 2776.389                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78.05562                                                                                                             | 4873.013                                                                        |
| 15 S 58.16453 9.1750842 4                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.47204                                                                                                              | 2776.389                                                                        |
| 16 I 11.47058 81.658249 7                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.05562                                                                                                             | 4873.013                                                                        |
| 17 S 58.16453 9.1750842 4                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.47204                                                                                                              | 2776.389                                                                        |
| 18 I 11.47058 40 3                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.23527                                                                                                              | 2387.028                                                                        |
| Sum 736.0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                | 961.145                                                                                                              | 60004.28                                                                        |

Figure 7. Results of Water Mass Balance 5% and 10% Subsidence at 10,000 Years

| Time after Cap<br>Installation<br>(Years) | 5% Subsidence<br>Total Volume<br>Infiltration Water (ft <sup>3</sup> ) | 10% Subsidence<br>Total Volume<br>Infiltration Water (ft <sup>3</sup> ) | Difference |
|-------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|------------|
| 0                                         | 900.5970                                                               | 901.3094                                                                | 0.079%     |
| 1,000                                     | 926.4467                                                               | 927.1033                                                                | 0.071%     |
| 10,000                                    | 961.1450                                                               | 961.1367                                                                | -0.001%    |

| Table 1. Comparison of Water Datance for 570 and 1070 Substitutine Scenar | Table 1. | Compariso | n of Water | Balance | for 5% | and 10% | Subsidence | Scenari |
|---------------------------------------------------------------------------|----------|-----------|------------|---------|--------|---------|------------|---------|
|---------------------------------------------------------------------------|----------|-----------|------------|---------|--------|---------|------------|---------|

| <b>Area-Averag</b><br>Average infilt<br>Assumes 40 f<br>736 total len | ed Infiltration<br>tration rates a<br>t intact overh<br>gth of cap incl | n Rates as a Fu<br>ire independer<br>ang on both e<br>luding overhar | inction of Ti<br>nt of percent<br>nds of cap | me for Subs                                | ided Cases                           |                                               |                                      |                                             |                            |                                                              |                                                                     |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------------|----------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|
|                                                                       |                                                                         | Left Side                                                            | of Cap                                       |                                            |                                      | <b>Right Sid</b>                              | e of Cap                             |                                             |                            | Average                                                      | A                                                                   |
| Time after<br>Installation<br>of Cap (yr)                             | Intact<br>Infiltration<br>Rate Left                                     | 10%<br>Subsided<br>Infiltration<br>Rate Left                         | Length<br>Intact<br>Segment<br>Left Side     | Length<br>Subsided<br>Segment<br>Left Side | Intact<br>Infiltration<br>Rate Right | 10%<br>Subsided<br>Infiltration<br>Rate Right | Length<br>Intact<br>Segment<br>Right | Length<br>Subsided<br>Segment<br>Right Side | Length<br>Overhang<br>(ft) | Infiltration<br>Rate Over<br>Total Cap<br>Surface<br>(in/yr) | Average<br>Infiltration<br>Rate Over<br>Total Waste<br>Zone (in/yr) |
|                                                                       | Side(in/yr)                                                             | Side (in/yr)                                                         | (ft)                                         | (ft)                                       | Side (in/yr)                         | Side (in/yr)                                  | Side(ft)                             | (ft)                                        | 40                         | 44.60                                                        | 46.47                                                               |
| 0                                                                     | 0.00008                                                                 | 163.37                                                               | 49.444                                       | 5.550                                      | 0.00037                              | 163.34                                        | 81.658                               | 9.175                                       | 40                         | 14.68                                                        | 16.47                                                               |
| 100                                                                   | 0.00047                                                                 | 163.30                                                               | 49.444                                       | 5.550                                      | 0.0038                               | 163.29                                        | 81.008                               | 9.175                                       | 40                         | 14.68                                                        | 16.47                                                               |
| 200                                                                   | 0.0008                                                                  | 162.40                                                               | 49.444                                       | 5.556                                      | 0.005                                | 162.02                                        | 01.000                               | 9.175                                       | 40                         | 14.09                                                        | 16.40                                                               |
| 230                                                                   | 0.014                                                                   | 162.00                                                               | 49.444                                       | 5.556                                      | 0.15                                 | 161.05                                        | 91 659                               | 0.175                                       | 40                         | 14.70                                                        | 16.49                                                               |
| 340                                                                   | 0.070                                                                   | 162.30                                                               | 49.444                                       | 5 556                                      | 0.27                                 | 158 51                                        | 81.658                               | 9 175                                       | 40                         | 14.71                                                        | 16.45                                                               |
| 380                                                                   | 0.22                                                                    | 161.59                                                               | 49,444                                       | 5.556                                      | 0.83                                 | 156.11                                        | 81.658                               | 9.175                                       | 40                         | 14.75                                                        | 16.49                                                               |
| 560                                                                   | 0.64                                                                    | 157.81                                                               | 49.444                                       | 5.556                                      | 2.08                                 | 144.83                                        | 81.658                               | 9.175                                       | 40                         | 14.84                                                        | 16.48                                                               |
| 1000                                                                  | 2.47                                                                    | 141.59                                                               | 49.444                                       | 5.556                                      | 5.57                                 | 113.45                                        | 81.658                               | 9.175                                       | 40                         | 15.11                                                        | 16.46                                                               |
| 1800                                                                  | 7.32                                                                    | 98.40                                                                | 49.444                                       | 5.556                                      | 10.03                                | 71.54                                         | 81.658                               | 9.175                                       | 40                         | 15.46                                                        | 16.28                                                               |
| 2623                                                                  | 9.88                                                                    | 75.39                                                                | 49.444                                       | 5.556                                      | 11.24                                | 59.09                                         | 81.658                               | 9.175                                       | 40                         | 15.53                                                        | 16.14                                                               |
| 3200                                                                  | 10.04                                                                   | 74.02                                                                | 49.444                                       | 5.556                                      | 11.31                                | 58.63                                         | 81.658                               | 9.175                                       | 40                         | 15.56                                                        | 16.15                                                               |
| 5600                                                                  | 10.33                                                                   | 71.69                                                                | 49.444                                       | 5.556                                      | 11.42                                | 58.09                                         | 81.658                               | 9.175                                       | 40                         | 15.62                                                        | 16.19                                                               |
| 10000                                                                 | 10.47                                                                   | 70.91                                                                | 49.444                                       | 5.556                                      | 11.47                                | 58.16                                         | 81.658                               | 9.175                                       | 40                         | 15.67                                                        | 16.24                                                               |

Figure 8. Area-Averaged Infiltration Rates as a Function of Time for Subsidence Scenarios

#### Relationship to the Intact Case

The area-averaged infiltration rates across the waste zone footprint (last column in Figure 8) should be close in value to predicted infiltration rates for an intact scenario where the drainage and barrier layers have been removed from the HELP model. For this alternate intact cap configuration, the water mass balance reduces to:

Rainfall = Evapotranspiration + Infiltration

(5)

#### SRNL-STI-2017-00728

Surface runoff is predicted to be negligible because the barrier layers impeding downward flow of percolating water have been removed from the HELP model. For this alternate intact-cap configuration, HELP v4.0 calculates an area-averaged infiltration rate equal to approximately 16.5 inches per year. This is a second confirmation that the intact- and subsided-area infiltration profiles for the proposed closure cap have been correctly implemented in the PORFLOW vadose-zone model.

#### Summary

The analysis confirmed closure of the infiltration water mass balance to within 0.1% for the 5 percent and 10 percent subsidence cases as currently implemented in the PORFLOW vadose-zone model. In addition, for scenarios where one of the one or more subsided areas is located at the bottom edge of the cap to catch any remaining runoff or drainage from upslope, modeling results revealed that the spatially averaged infiltration rate (or total mass/volume of infiltrating water as a function of time) is independent of percent subsidence for all subsidence scenarios up to and including 100%. Scenarios where a subsided area is located at the cap's bottom edge represent bounding cases at a fixed percent subsidence because they maximize the mass of water that will contact the waste below.

Note that independence with respect to percent subsidence applies to spatially averaged <u>infiltration</u>, not to waste disposal <u>limits</u>. Limits will depend on additional considerations, including percent subsidence and how the subsided areas are distributed across the cap surface. For example, lower percent subsidence and fewer subsided areas mean that less waste will be contacted by the infiltrating water. In addition, the infiltration rates contained in this report are preliminary and should not be used for final design and modeling purposes.

### References

C-CT-E-00083 (2016) Preliminary E-Area Low Level Waste Facility (ELLWF) Conceptual Closure Cap – Overall Site Plan (Sheets 1 of 5 through 5 of 5).

C-CT-E-00084 (2016) Preliminary E-Area Low Level Waste Facility (ELLWF) Conceptual Closure Cap – Details (Sheets 1 of 4 through 4 of 4).

Dyer, J. A. (2017) Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations. SRNL-STI-2017-00678. Savannah River National Laboratory, Aiken, SC.

Dixon, K. L. (2017) HELP 4.0 Documentation Updates for Software and Data. SRNL-STI-2017-00104. Savannah River National Laboratory, Aiken, SC.

Phifer, M. A., Jones, W. E., Nelson, E. A., Denham, M. E., Lewis, M. R., and Shine, E. P. (2007) FTF Closure Cap Concept and Infiltration Estimates. WSRC-STI-2007-00184, Rev. 2. Washington Savannah River Company, Aiken, SC.

Phifer, M. A., Crapse, K. P., Millings, M., and Serrato, M. G. (2009) Closure Plan for the E-Area Low-Level Waste Facility. SRNL-RP-2009-00075. Savannah River National Laboratory, Aiken, SC.

#### **Distribution List**

timothy.brown@srnl.doe.gov alex.cozzi@srnl.doe.gov david.crowley@srnl.doe.gov david.dooley@srnl.doe.gov a.fellinger@srnl.doe.gov samuel.fink@srnl.doe.gov jeff.griffin@srnl.doe.gov nancy.halverson@srnl.doe.gov connie.herman@srnl.doe.gov john.mayer@srnl.doe.gov daniel.mccabe@srnl.doe.gov frank.pennebaker@srnl.doe.gov luke.reid@srnl.doe.gov boyd.wiedenman@srnl.doe.gov sebastian.aleman@srnl.doe.gov tom.butcher@srnl.doe.gov Thomas.Danielson@srnl.doe.gov kenneth.dixon@srnl.doe.gov James.Dyer@srnl.doe.gov gregory.flach@srnl.doe.gov luther.hamm@srnl.doe.gov thong.hang@srnl.doe.gov ralph.nichols@srnl.doe.gov Roger.Seitz@srnl.doe.gov Tad.Whiteside@srnl.doe.gov Jennifer.Wohlwend@srnl.doe.gov T. N. Foster, EM File, 773-42A – Rm. 243 (1 file copy and 1 electronic copy) Records Administration (EDWS)