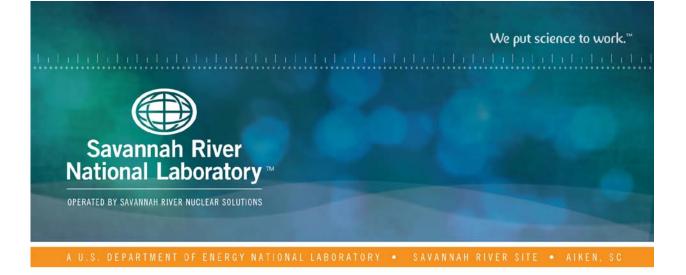
Contract No:


This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

P.S. Korinko & D.N. Maxwell, Sr. Materials Science and Technology, Energy Materials

January 2018

SRNL-STI-2017-00646, Revision 0

SRNL.DOE.GOV

Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

P.S. Korinko & D. N. Maxwell, Sr.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

1.0 APPROVALS/TASK TECHNICAL REQUEST IDENTIFICATION

Author:	Signature:	Organization:	Date:
P.S. Korinko	Signature on file	SRNL-MS&T-EM	1-17-2018
Team Lead:	Signature:	Organization:	Date:
D.N. Maxwell, Sr.	Signature on file	SRNL-MS&T-ME	1/18/2018
Design Verification by Document Review:	Signature:	Organization	Date:
S.R. Howard	Signature on file	SRNL-MS&T-ME	1/23/2018
Responsible Manager:	Signature:	Organization:	Date:
T.E. Skidmore	Signature on file	SRNL-MS&T-ME	1/23/2018
QA Representative:	Signature:	Organization:	Date:
M.S. Garrett	Signature on file	SRNL-QA	1/26/18
Customer:	Signature:	Organization:	Date:
E.J. Freed	Signature on file	LWO-D&S-FE	1-29-18

Task Technical Request Title:	TTR Number:	TTR Date:
Support Testing/Evaluation of Canisters S04480 and	M-TTR-S-00041	10/11/2016
S04500 for Low Weld Peak Current Values		
	Revision: 0	

	LIST OF REVISIONS	
Revision Number	Summary of Changes	Date
0	Initial Issue	1/17/2018
 [
I		

CONTENTS

PAGE(S)

LIST OF FIGURES	6
LIST OF TABLES	6
LIST OF ACRONYMS	
INTRODUCTION	8
EXPERIMENTAL APPROACH	8
RESULTS OF ACTIVITIES	9
DISCUSSION	10
CONCLUSION	10
REFERENCES	11

LIST OF FIGURES

PAGE

1.	Schematic of Heat Tint Measurements and Photo	12
2.	Burst Test Nozzle in Gun Barrel	13
3.	Typical Post Burst Test Photos of Welded Test Nozzles and Plugs	14
4.	Low Magnification Optical Photographs from Test Nozzle WP04445 Plug	15
5.	Macrophotographs Of Bending Fracture Test Samples Removed from Nozzle/Plug ID No. TN00275/WP04448	16
6.	Fracture Surface Photo	17
7.	Montage of SEM Photomicrographs	18
8.	SEM Photomicrographs/Higher Magnification	19
9.	Typical Weld Microstructure of the Resistance Closure Weld	20

LIST OF TABLES

1.	Canister Closure Weld Parameter Chart	8
2.	Actual Conditions used for Production and Test Nozzle Welds	21
3.	Heat Tint Width Measurements from the Test Nozzle Welds	21
4.	Plug Height Measurements for the Test Nozzle Welds	21
5.	Ultrasonic Test Results of Test Nozzle Welds	22
6.	Leak and Burst Test Results for the Test Nozzle Welds	22
7.	Bond Lengths Estimated from the SEM Fractography	22
8.	Weld Throat Measurements Based on Metallographic Sample Examination of Nozzle/Plug TN00275/WP04448	22

LIST OF ACRONYMS

Acronym	Definition
ARDP&MC	Analytical Research and Development Programs and Materials Characterization
ATM	Atmosphere
AWS	American Welding Society
сс	Cubic Centimeters
DAS	Data Acquisition System
DWPF	Defense Waste Processing Facility
D&S-FE	DWPF and Saltstone Facility Engineering
E	Energy
He	Helium
HPL	High Pressure Laboratory
Ι	Current
ICC	Inner Canister Closure
kA	Kilo-amperes
LWO	Liquid Waste Operations
M&TE	Measurement and Test Equipment
MS&T	Materials Science and Technology
NCW	Nonconforming Weld
QA	Quality Assurance
RDE	Research and Development Engineering
RFW	Resistance Forge Weld
RPD	Radiological Protection Department
sec	Seconds
SEM	Scanning Electron Microscope
SRNL	Savannah River National Laboratory
TNW	Test Nozzle Weld
TTQAP	Task Technical and Quality Assurance Plan
V	Voltage

2.0 **INTRODUCTION**

Two closure welds on filled Defense Waste Processing Facility (DWPF) canisters failed to be within the acceptance criteria in the DWPF operating procedure SW4-15.80-2.3 (1). In one case, the weld heat setting was inadvertently provided to the canister at the value used for test welds (i.e., 72%) and this oversight produced a weld at a current of nominally 210 kA compared to the operating procedure range (i.e., 82%) of 240 kA to 263 kA. The second weld appeared to experience an instrumentation and data acquisition upset. The current for this weld was reported as 191 kA. Review of the data from the Data Acquisition System (DAS) indicated that three of the four current legs were reading the expected values, approximately 62 kA each, and the fourth leg read zero current. Since there is no feasible way by further examination of the process data to ascertain if this weld was actually welded at either the target current or the lower current, a test plan was executed to provide assurance that these Nonconforming Welds (NCWs) meet the requirements for strength and leak tightness. Acceptance of the welds is based on evaluation of Test Nozzle Welds (TNW) made specifically for comparison. The TNW were nondestructively and destructively evaluated for plug height, heat tint, ultrasonic testing (UT) for bond length and ultrasonic volumetric examination for weld defects, burst pressure, fractography, and metallography. The testing was conducted in agreement with a Task Technical and Quality Assurance Plan (TTQAP) (2) and applicable procedures.

0

8

1/17/2018

3.0 **EXPERIMENTAL APPROACH**

All testing was conducted in agreement with standard operating procedures (3 & 4) or task specific written instructions. The requirements and measurement techniques that were employed for this task were:

Criteria	Limits
Visual	Workmanship
Leak (5)	$\leq 1 \times 10^{-4}$ atm-cc/sec He
Burst (5)	≥ 2600 psi
Bond Length (5)	≥ 0.335 inch
Plug Height	For information only
Heat tint coloration	For information only

Leak and burst data were directly measured from tests conducted using standard testing procedures (4). The bond length was inferred from ultrasonic examination of all six test welds. Weld ligament was measured based on the fracture surfaces of the burst test sample and measured on the metallographic sample and the process defined in Reference 3.

Table 1. Weld parameters used for production and proposed for test nozzle welds.

Canister Closure Weld Parameter Chart			
Type of WeldRam Force (LBS.)Welding Current $(kA)^1$ Weld Duratio $(Sec.)^2$			
Production ³	79,000 - 85,000	240 - 263	1.50 - 1.67
Test Nozzle	(same as above)	186 -196 (i.e., 191 <u>+</u> 5)	(same as above)

NOTES:

- 1. Current is the only variable that is being intentionally changed from the production parameters.
- 2. Pulsed DC weld.
- 3. Allowable range is as specified in Manual SW4-15.80-Section 2.3, Welding a Canister Automatic Mode (1).

Savannah River National Laboratory	Laboratory SRNL-STI-2017-0064	
MS&T, Energy Materials	Revision:	0
	Date:	1/17/2018
	Page:	9

Visual inspection was conducted under ambient light conditions for the TNW.

Leak testing was conducted using a commercial leak detector with a Level 3 certified technician in agreement with Reference 4.

Burst testing was conducted in the Savannah River National Laboratory (SRNL), RDE High Pressure Laboratory. The test nozzles were filled with water and pressurized with gas to failure, in agreement with Reference 3.

The bond length was measured using UT. Ultrasonic examinations were conducted from the outer cap using a Sigma SSFA4 4 MHz, .26" X .26", 45 and a 60-degree shear wave transducer measuring the projected distance from the weld top and the weld bottom. The bond length was measured on each of the test nozzles in eight locations, i.e., at approximately 45° intervals.

The plug height was measured using a Measurement and Test Equipment (M&TE) calibrated dial indicator in agreement with Reference 3.

The heat tint width was measured during optical inspection. The transition from yellow to metallic gray was measured using a scale incremented at 32^{nds} of an inch and performed in accordance with a schematic as shown in Figure 1. The edge of the transition was determined having a single operator evaluate the TNW.

The TNWs with the lowest and highest burst pressures were selected for fractographic examination. The plugs were sectioned into pieces that could be easily fit into the Scanning Electron Microscope (SEM) in the 723-A Materials Laboratory. An accelerating voltage of 20 kV was used. The samples were examined from low to high magnifications. Low magnifications were used to correlate the measured bond lengths with ultrasonic data bond length measurements.

One test nozzle weld was selected for metallographic examination and fracture mode characterization. Six segments were removed from the TNW at nominally equal locations, approximately 60° apart. Four metallographic samples were mounted in epoxy and mechanically polished to 1 µm and then etched electrolytically with oxalic acid. The bond length was measured based on the shortest weld ligament (3). The remaining two samples were fractured through the weld by clamping in a vice and breaking the sample. These fracture surfaces were examined to determine the failure process (i.e., ductile or brittle).

4.0 **RESULTS of ACTIVITIES (Reference Attachment 3)**

Activity 1 (TTR Task #3c – Attachment 2) installed a voltage meter that can be used to calculate the weld heat. The previous acceptance of NCWs was accomplished without requiring extensive weld trials since the weld heat was readily calculated based on the measured current and voltage (6). Maintaining this data capture capability for use in the future may decrease or eliminate the need for additional testing in the event another NCW event occurs.

Activity 2 (TTR Task 2a, 2b, 2c, 2e, 3a, 3b, 3c) provided the primary data to ascertain the acceptability of the NCW canisters. The test nozzles were welded at currents of 191 ± 5 kA and were tested for comparison to the NCW S04480 and S04500; Table 1 lists the proposed weld parameters and Table 2 is comprised of the actual weld parameters. A total of six test welds were made in the target range of 191 \pm 5 kA, five test welds were used for leak and burst testing (Activity 2) and one for metallographic analysis, Activity 3. The welds were:

Savannah River National Laboratory	SRNL-STI-	SRNL-STI-2017-00646	
MS&T, Energy Materials	Revision:	0	
	Date:	1/17/2018	
	Page:	10	

- Visually examined for workmanship and heat tint with typical heat tint images from the test nozzles shown in Figure 1. The dimensions of the heat tint are indicated in Table 3 and the value of this measurement is seen in the comparison of the TNW made at the production parameters, which exhibits a slightly larger heat tint zone.
- Measured for plug height at approximately four locations around the weld/plug circumference using an M&TE calibrated dial indicator. Measurements are recorded in Table 4, these are all greater than the values reported in the parametric weld qualification report (7).
- Ultrasonically tested for bond length determination with results listed in Table 5. As noted the bond length compared favorably with that shown from the SEM fractography samples, Table 7.
- All the TNW were leak tested and five were burst tested with the results listed in Table 6, and exhibit an average burst pressure of 9026.6 psi with a standard deviation of 586.7 psi. A typical burst test pressurization-assembly is shown in Figure 2. The burst data were statistically analyzed and are reported in Reference 8. A typical nozzle and plug after testing are shown in Figure 3. Four of the samples failed by complete separation of the plug from the nozzle and one failed along approximately 98% of the circumference. As seen from the burst tested nozzle, the length of the weld ligament is apparent. Low magnification images from each segment are shown in Figures 4 and 6; the bond lengths estimated at each location are listed in Table 7. The fracture surfaces of two plugs were examined in the scanning electron microscope (SEM). Higher magnification images of the fracture surface, shown in Figure 8 indicate that the weld separated in a ductile fashion and exhibits the classic cup and cone fracture expected for Type 304 stainless steel.

Activity 3 (TTR Task 2d) provided metallographic sample data to compare the weld throat measurements and fracture surface with that observed during the parametric study, as indicated in Table 8 and Figure 5. The typical weld microstructure is shown in Figure 9.

5.0 DISCUSSION

Test Weld Nozzles that were prepared at a current of 191 ± 5 kA were subjected to a series of evaluations to determine the suitability to retain vitrified nuclear waste. These evaluations are similar to those previously performed during the closure weld qualification efforts (9 & 10). The test welds were successfully leak and burst tested, and were fractographically and metallographically examined. The samples met all the technical requirements defined in the TTQAP (2), Waste Form Compliance Plan (WCP) (11), and Waste Acceptance Product Specifications (WAPS) (12). In addition, data generated for information purposes only provided useful reference data to infer weld heat, and weld integrity for the TNW. Additional data is required for these data to be deployed as a quality metric and for potential future use.

6.0 CONCLUSIONS

This report completed TTR tasks 2a - 2e and 3a - 3c for the test weld nozzles, Attachment 2. None of the work for the conforming welds was accomplished. The data for TTR Activity 1 was also developed based on the efforts reported herein. TTR task 1 was reported in Ref. 8.

The test welds prepared at currents that are approximately 50 kA lower than that allowed by the closure welding operating procedure (1) successfully passed the leak and burst (weld) strength requirements of the WCP and WAPS. Therefore, the NCWs performed on production canisters S04480 and S04500 are expected to meet the leak and burst strength requirements of the WCP and WAPS.

The welding range as specified in the operating procedure (1) should not be modified based on these results, despite the welds meeting the burst and leak requirements.

The weld force and time must remain consistent within the range specified in the operating procedures.

The microstructures were acceptable and consistent with the expected weld conditions.

Future closure welds performed outside of the weld parameters (1) specified in the operating procedures shall be evaluated.

7.0 **REFERENCES**

- 1. Manual SW4-15.80, Section 2.3, Rev. 43, Welding a Canister Automatic Mode, Savannah River Site, Mar. 2017.
- 2. SRNL-RP-2016-00637, Rev. 3, Task Technical and Quality Assurance Plan (TTQAP) for the DWPF Weld Current Validation, P.S. Korinko, Jan. 2018.
- 3. L9.3, Procedure R-MST-5600, Rev. 0, Testing of DWPF Closure Welds, Savannah River National Laboratory, Jan. 2017.
- 4. Manual L9.4, Procedure 10100, Rev. 5, Pressure Test/Leak Test Procedure, Savannah River National Laboratory, June 2016.
- 5. WSRC-TR-94-00402, Rev. 1, Burst Test Qualification Analysis of DWPF Canister-Plug Weld (U), N.K. Gupta & C. Gong, Feb. 1995.
- 6. OPS-DTE-970056, Rev. 2, Canister S00424 Acceptance Justification (U), G.R. Cannell & R.B. Heise, Nov. 1997.
- 7. WSRC-TR-94-024, Rev. 1, DWPF Welder Parametric Study, M.J. Plodinec & J. Harbour, August 1995.
- 8. SRNL-TR-2017-00197, Rev.0, Statistical Analysis of Burst Pressure Data for DWPF Weld Current Validation, S.P. Harris, May 2017.
- 9. WSRC-TR-2001-00369, Rev. 0, Testing and Evaluation of Welded Mockup Test Nozzles Associated with the Closure Weld of Canister S01079 (U), W. L. Daughtery & D.N. Maxwell, Oct. 2001.
- 10. SRT-SCS-2001-00058, Rev. 0, Statistical Analysis of Burst Pressure Data for Disposition of DWPF Canister S01079 (U), S.P. Harris, Dec. 2001.
- 11. WSRC-IM-91-116-0, Rev. 11, DWPF Waste Form Compliance Plan (U), Savannah River Remediation LLC, July 2016.
- 12. DOE/EM-0093, EM-WAPS, Rev. 2, Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms, Office of Environmental Management, Dec. 1996.

Savannah River National Laboratory	SRNL-STI-	SRNL-STI-2017-00646	
MS&T, Energy Materials	Revision:	0	
	Date:	1/17/2018	
	Page:	12	

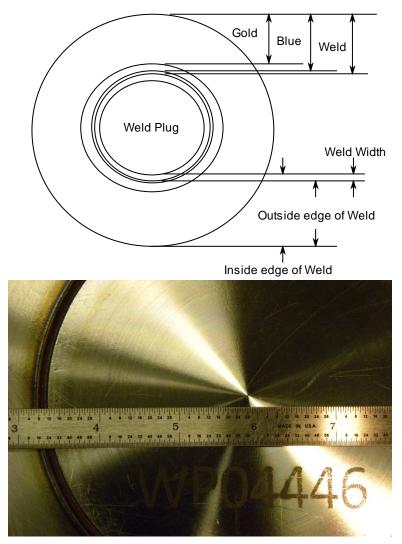


Figure 1. (a) Schematic of heat tint measurement approach and (b) a photo of test nozzle weld plug WP04446.

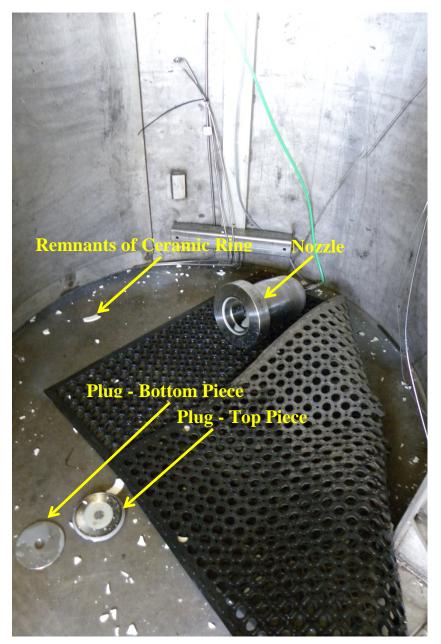
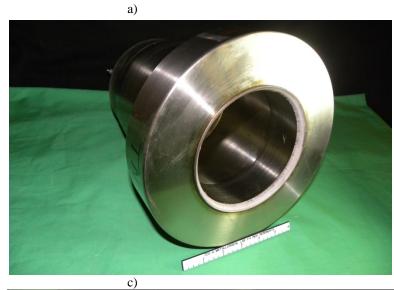
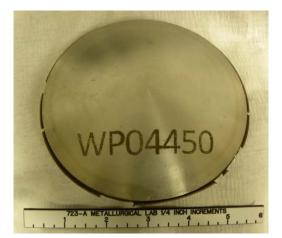
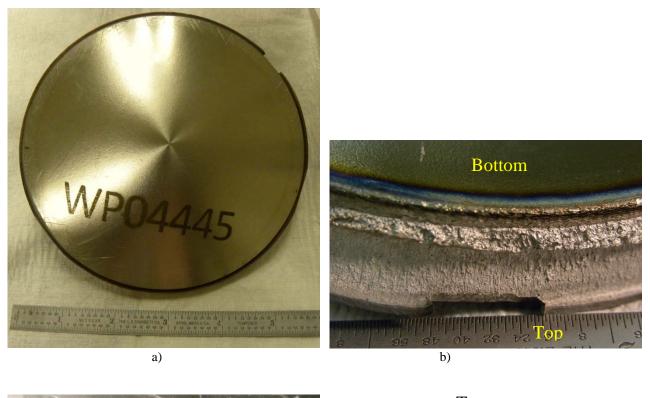




Figure 2. Burst tested nozzle in the gun barrel showing complete separation of the nozzle and plug.

SRNL-STI-2017-00646		
Revision:	0	
Date:	1/17/2018	
Page:	14	

b)



d)

e)

Figure 3 - Typical post burst test photos of welded test nozzles and plugs a) a fully separated plug b) top of plug WP04450 c) test nozzle d) internal side of plug WP04450 e) Plug WP04450 and nozzle.

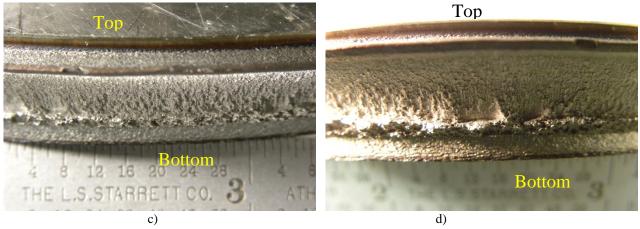


Figure 4. Low magnification optical photographs from test nozzle WP04445 Plug a) overview b) area with a large piece missing c) a typical area d) a second typical area, all of the close-up images indicate ductile fracture.

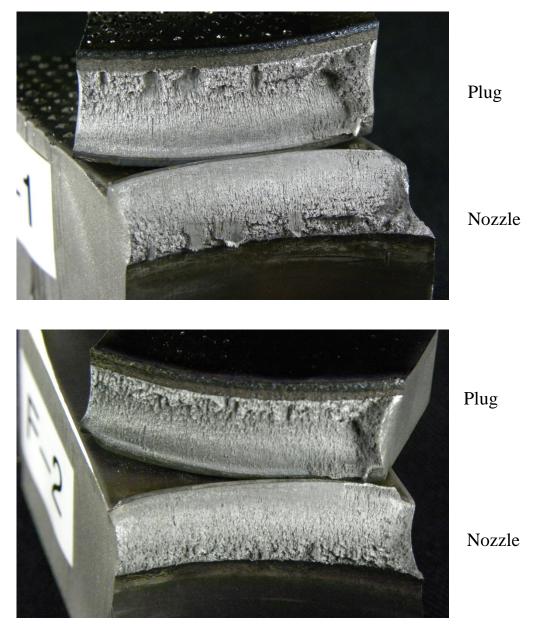


Figure 5. Macrophotographs of bending fracture test samples removed from nozzle/plug ID No. TN00275/WP04448, a) sample F-1; b) sample F-2 both test samples exhibit ductile fracture.

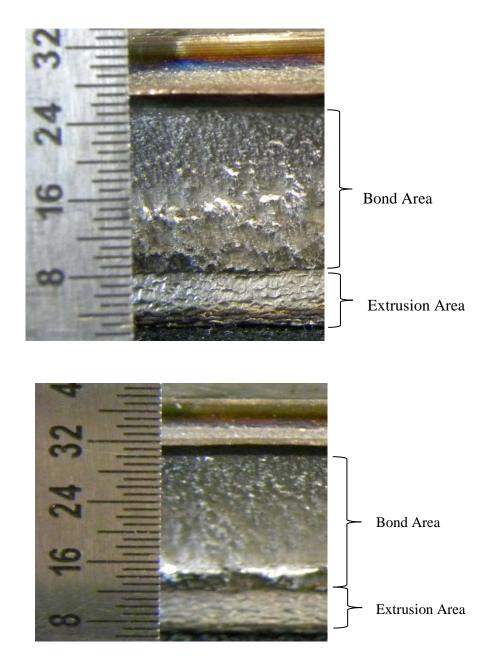


Figure 6. Showing fracture surface and method to determine the bond length for a burst tested sample.

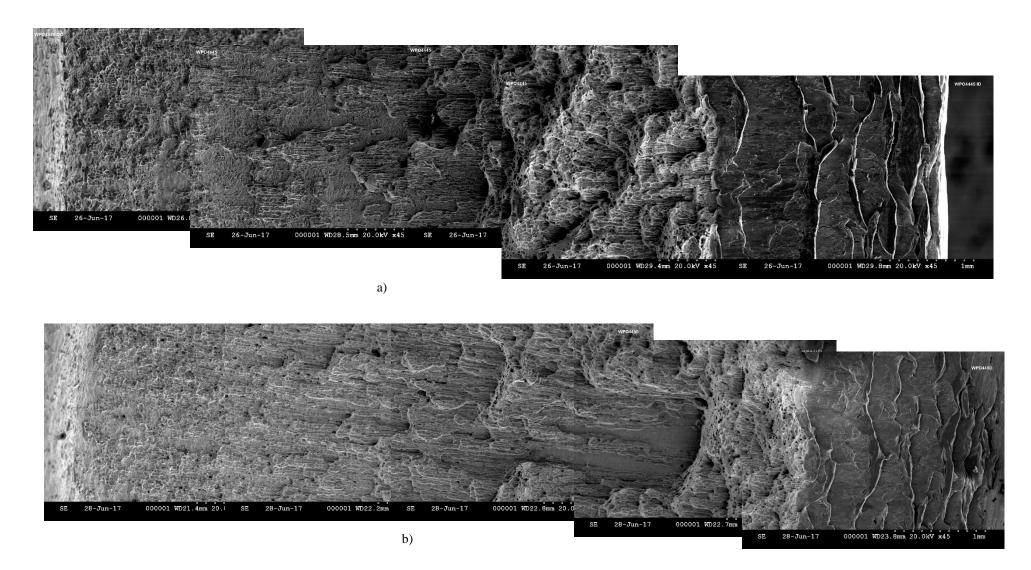
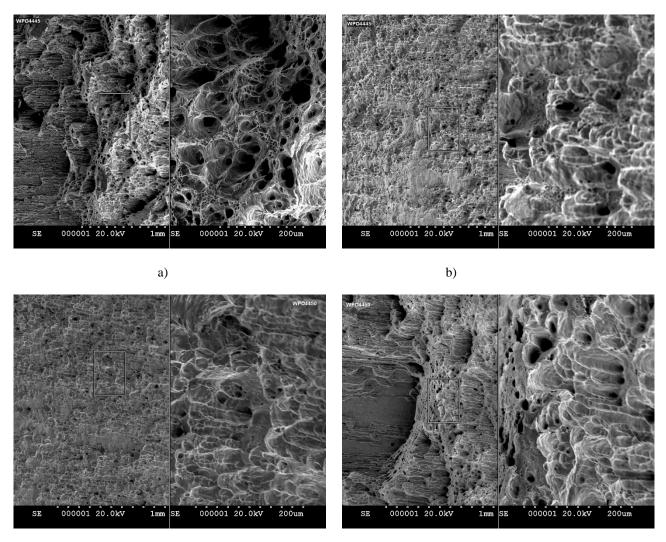



Figure 7. SEM fractographs from two areas of the TNW showing the top of the plug on the left and bottom on the right that exhibit ductile fracture. a) Plug WP04445 and b) WP04450.

Savannah River National Laboratory MS&T, Energy Materials

SRNL-STI-	2017-00646
Revision:	0
Date:	1/17/2018
Page:	19

c)

d)

Figure 8. Higher magnification fractographic images of TNW plug a) WP04445 area 1, b) WP04445 area 2, c) WP04450 area 1, and d) WP04450 area 2 all of the images exhibit ductile fracture.

0

<u>20</u>

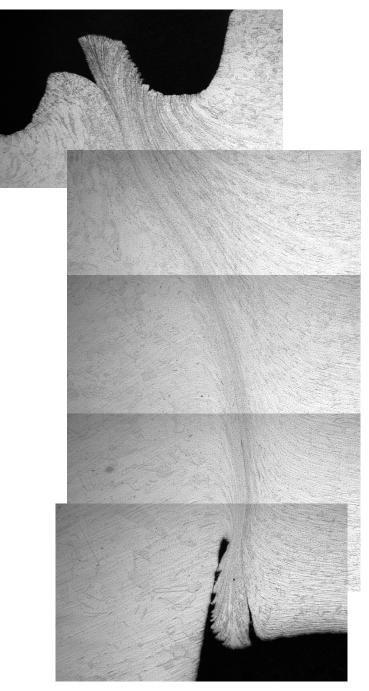


Figure 9. Typical weld microstructures showing the plug to nozzle resistance closure weld extending from the bottom of the plug to the top of the plug of Test Nozzle Weld No. TN00275/WP04448.

Test Weld No	Nozzle No.	Plug No	Current (kA)	Voltage (VDC)	Force (lbs.)	Weld Duration (sec)	
0*	TN000279	WP04444	185.7	2.5875	80,250	1.563	
1	TN00271	WP04445	189.7	2.3995	80,031	1.567	
2	TN00268	WP04446	191.1	2.9458	80,607	1.567	
3	TN00280	WP04447	190.7	2.3289	80,802	1.567	
4	TN00275	WP04448	188.5	2.3790	80,096	1.567	
5	TN00272	WP04449	190.0	2.2964	80,023	1.567	
6	TN00267	WP04450	188.7	2.4655	80,007	1.567	
7*	TN00278	WP04451	247.6	2.2794	80,023	1.587	
Nonconforming	Nonconforming Welds						
1	S04480	WP04325	210.2	NA	84,274	1.577	
2	S04500	WP04335	191.6	NA	81,621	1.587	

 Table 2. Actual Conditions used for Production and Test Nozzle Welds

*Test nozzle welds were tested and examined for information only; weld parameters outside scope of TTQAP.

Table 3. Heat Tint Width Measurements from the Test Nozzle Welds

Test No.	Nozzle ID/Plug No	Gold Tint (in) (G)	Blue Tint (in) (B)	Outside Edge of Weld (in.) (O _e)	Inside Edge of Weld (in.) (I _e)	Weld Width (in.) (I _e -O _e)	Heat Tint Width (in) (O _e -G)
0*	TN00279/WP04444	1.67969	1.85938	1.90625	2.02734	0.12109	0.22656
1	TN00271/WP04445	1.67188	1.84375	1.89063	2.02734	0.13672	0.21875
2	TN00268/WP04446	1.6875	1.83984	1.88672	2.03125	0.14408	0.19922
3	TN00280/WP04447	1.67969	1.84375	1.89063	2.03125	0.14063	0.21094
4	TN00275/WP04448	1.67969	1.84766	1.88281	2.02344	0.14063	0.20312
5	TN00272/WP04449	1.67188	1.84375	1.88672	2.03906	0.15234	0.21484
6	TN00267/WP04450	1.67188	1.80859	1.88281	2.02734	0.14453	0.21093
7*	TN00278/WP04451	1.58203	1.75000	1.82422	2.03125	0.20703	0.24219

*Test nozzle welds were tested and examined for information only; weld parameters outside scope of TTQAP.

Test Weld No.	Nozzle No.	Plug No	0 °	90°	180°	270°	Plug Height Avg. (in)
0*	TN00279	WP04444	.164	.162	.161	.172	0.1623
1	TN00271	WP04445	.136	.135	.134	.134	0.1348
2	TN00268	WP04446	.129	.130	.128	.128	0.1288
3	TN00280	WP04447	.125	.124	.126	.125	0.1250
4	TN00275	WP04448	.138	.139	.139	.139	0.1388
5	TN00272	WP04449	.125	.124	.125	.125	0.1248
6	TN00267	WP04450	.141	.142	.140	.142	0.1413
7*	TN00278	WP04451	.075	.076	.076	.075	0.0760

Table 4. Plug Height Measurements for the Test Nozzle Welds

*Test nozzle welds were tested and examined for information only; weld parameters outside scope of TTQAP.

Test No	Nozzle	Plug	Bond Length (in)
0*	TN00279	WP04444	0.26275
1	TN00271	WP04445	0.29025
2	TN00268	WP04446	0.29625
3	TN00280	WP04447	0.30000
4	TN00275	WP04448	0.28625
5	TN00272	WP04449	0.30025
6	TN00267	WP04450	0.28375
7*	TN00278	WP04451	0.34900

Table 5. Ultrasonic Test Results of Test Nozzle Welds

*Test nozzle welds were tested and examined for information only; weld parameters outside scope of TTQAP.

Table 6. Leak and Burst Test Results for The Test Nozzle Welds

Test No	Nozzle	Plug	Leak (std cc he/sec)	Burst (psig)
0*	TN00279	WP04444	< 9.6E-10	6,187
1	TN00271	WP04445	< 9.6E-10	8,195
2	TN00268	WP04446	< 9.4E-10	9,351
3	TN00280	WP04447	< 8.9E-10	8,661
4	TN00275	WP04448	< 9.5E-10	NA
5	TN00272	WP04449	< 8.9E-10	9,282
6	TN00267	WP04450	< 9.6E-10	9,644
7*	TN00278	WP04451	NA	NA

*Test nozzle welds were tested and examined for information only; weld parameters outside scope of TTQAP.

Table 7. Bond Lengths Estimated from the SEM Fractography

Nozzle	Plug	Bond Length (in)	Fracture Process
TN00271	WP04445	.2960	Ductile
TN00267	WP04450	.2810	Ductile

Table 8. Weld Throat Measurements Based on Metallographic Sample Examination of Nozzle/Plug TN00275/WP04448

Section No	Measurement 1 (in)	Measurement 2 (in)	Weld Throat (in)
C-1	0.3729	0.3559	0.3559
C-2	0.3572	0.3014	0.3014
D-1	0.3708	0.3509	0.3509
D-2	0.3709	0.3588	0.3588

Attachment 2. Liquid Waste (LW) Task Technical Request, M-TTR-S-00041

Rev. 3		LW FORM		Savannah River Site (SRS)	
02/25/2014 LIQUID WASTE (LW) TECHNICAL TASK REQUEST				Page 1 of 3	
	Reference E7 2.02	2A, LW Baseline Technical Tas	k Requests		
TTR Title					
Support Testing/Evalua	ation of Canisters S04480	and S04500 for Low Weld Pe	eak Current Values		
Funding Source		Modification Traveler No.	Technical Task Request No.	Revision	
SLA-SRNL-00052, Line	e Item #1	N/A	M-TTR-S-00041	0	
Design Authority Engine	eer			Date	
Cleo Raiford				8-17-2016	
Performing Organizatio	n	Design Authority Manage	r* (Signature)	Date	
Savannah River Nation	al Laboratory (SRNL)			10-10-16	
Task and Scope Descri	iption		Due Date TBD when Fu	nding Authorized	
	authorized. Task work Facility Engineering (I		itten Defense Waste Process	ing Facility	
	y (, worto-rit-o02-	 established ranges for weld 	er operating parameters which	determined	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti	ed by this study require a an applied RAM force of 8	peak weld current of 248,000 0,000 lbs (+25,000/-5,000).	er operating parameters which 0 Amps (± 22,000) for a duration Welding within this "parametric for leak tightness and meet we	on of 1.58 window"	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti	ed by this study require a an applied RAM force of 8 ng weld will meet the was	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). te acceptance requirements) Amps (± 22,000) for a duratic Velding within this "parametric	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements.	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background)	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). te acceptance requirements) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background) ion	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). It te acceptance requirements to d, Task and Scope Descript) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements.	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background)	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements i d, Task and Scope Descript) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements i d, Task and Scope Descript) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat Safety Class Safety Significant	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements i d, Task and Scope Descript) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat Safety Class Safety Significant Functional Requirement	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements i d, Task and Scope Descript) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat Safety Class Safety Significant Functional Requirement	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements i d, Task and Scope Descript) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat Safety Class Safety Significant Functional Requirement N/A	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service ents	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements i d, Task and Scope Descript) Amps (± 22,000) for a duration Nelding within this "parametric for leak tightness and meet we	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat Safety Class Safety Significant Functional Requirements N/A	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service ents	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements i d, Task and Scope Descript	D Amps (± 22,000) for a duration Welding within this "parametric for leak tightness and meet we ion continue on Page 3 of 3)	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat Safety Class Safety Significant Functional Requirements N/A Quality Requirements All activities are to	ed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service ents	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements in d, Task and Scope Descript port	D Amps (± 22,000) for a duration Welding within this "parametric for leak tightness and meet we ion continue on Page 3 of 3)	on of 1.58 window" Id strength	
acceptable welds. Acceptable welds defin seconds (± 0.25) with a ensures that the resulti requirements. Functional Classificat Safety Class Safety Significant Functional Requirements N/A Quality Requirements All activities are to	eed by this study require a an applied RAM force of 8 ng weld will meet the was (Background ion Production Supp General Service ents be performed and docum lan to be developed as ar	peak weld current of 248,000 0,000 lbs (+25,000/-5,000). A te acceptance requirements in d, Task and Scope Descript port	D Amps (± 22,000) for a duration Welding within this "parametric for leak tightness and meet we ion continue on Page 3 of 3)	on of 1.58 window" Id strength	

Attachment 2. Lie	iquid Waste (LW) Task 🛛	Technical Request, M-TTR-S-00041
-------------------	-------------------------	----------------------------------

OSR 46-529 Rev. 3 02/25/2014		W FORM ECHNICAL TASK REQUEST	Savannah River Site (SRS) Page <u>2</u> of <u>3</u>
Not applicable to t Calculations Drawings Specifications DSA Other Reviews / Repo No Yes Define Review Proces	Technical Report Temp Mod Change Notio CHA Quality Inspection Plans Orts Required? s, Specify ss for TTR Output Documents	Technical Requirements and Criteria SOW Alternative Studies Other, Specify	
Technical Agency Ac Technical Agency SRNL	per Manual E7, Procedure 2.60. ceptance	Name (print)	
Acceptance of Task ()	ignature of Technical Agency Ma	R.L. Bickford nager)	Date
Closure / Deliverables F	Provided		
Design Authority Eng	lineer		Date
Design Authority Mar	nager*		Date
* Design Au	thority Manager's signature requi	red if request is not associated with an MT.	

Continued on next page...

Attachment 2. Liquid Waste (LW) Task Technical Request, M-TTR-S-00041

Rev. 3		I	W FORM			River Site (S	SRS)
02/25/2014	LIQUID WASTE (LW) TECHNICAL TASK REQUEST					Page <u>3</u> of <u>3</u>	
Continuation	Page:						
Non-conformir requirements (D continuation: ng Canisters S04480 a (i.e., 240,000 – 263,00). Weld data recorded Weld Peak Current (240 – 263) kAmps 210.2 191.6	0 Amps), as well a	s, outside of the	Parametric Stud	y requirements (i.e.,		ure
acceptability a canister having practices. Act 1) Complete a 2) Perform me a. Ultrasor b. Helium I c. Burst Te d. Metallog e. Fractog 3) Perform ev with consid a. Examina b. Measure		justification which s met. The evalua he following: al Report PF test nozzle wel prmal production ca g: hts	shows that the w tions should be t ds including: anister welds, tes	veld strength for based on statistic	both canisters is cor cal analysis and sou	nparable to a nd engineerii	ng
2. TTQAP rev	ES: D&S-FE once work h iewed and approved b eports for Task 1, 2, a	y SRNL, SRNL Qu			Quality Assurance,	and D&S-FE	
QUALITY ASSURANCE (QA)/RW-0333P: The QA requirements of RW-0333P shall be applied to this wasteform affecting activity associated with verification of weld acceptability. The TTQAP shall identify the specific RW-0333P implementation procedures that will be used to control the task using a checklist of QA implementing procedures. As specified by QAP 2-3, Attachments 8.1 and 8.2, the Task Technical/QA Plan must identify any additional QA requirements. The Task activities shall be performed using approved E7, 1Q, and other applicable procedures. Personnel qualified to RW-0333P must perform and review this work. The following documents shall be treated by SRNL as lifetime records: Technical Report, Personnel Qualification Records, and any other pertinent documents that may be generated.							
 SW4-15.80 SW4-V5-C WSRC Inte Justification Y16.1-WPS SRNL-RP-2 	5: 94-024, Rev. 1, "DWF -2.3, Rev. 42, "Weldin T-2.04, Rev. 5, "Techr r-Office Memorandum ı" (Ref: 96-NCR-05-01 S-P8-RW(DWPF), Rev 2016-00637, Rev. Dra d Current Validation T	g A Canister - Auto ical Task Requests OPS-DTE-970056 38, 2006-NCR-05- : 4, "Austenitic S/S ft October 2016, "T	omatic Mode" s" [QA Requirem 5, R/2, dated 11/1 0074) Resistance Wel	18/97 "Canister S ding"	600424 Acceptance	for the	

Activity	Tasks
1 (TTR Task 3c)	Capture Weld Voltage
Responsible	DWPF Instrumentation Engineer
Prerequisites	Develop temporary facility modification documentation and approvals.
Deliverables	Validation that the instrument works during a "current test" and voltage, current, pressure, force data from the conforming welds performed to support this TTQAP.
2a	Weld Current Test – Determine Heat Settings
Responsible	DWPF Weld Operators
Prerequisites	Activity 1 and review of production weld data to draw a two-point calibration curve for nominal weld heat % and current from production weld and canister S04480.
Deliverables	% heat setting and measured current for current test to achieve a current of 191 ± 5 kA.
2b (TTR Task 2a, 2b, 2c, 2d, 2e, 3a, 3b, & 3c)	Weld Six Test Welds at Nominally 191kA for Testing
Responsible	DWPF Weld Operators,
Prerequisites	Temporary weld procedure & Activity 2a
Requirements	• Weld six test assemblies without ICC plugs at nominally 191 kA, 80,000 lbs force, for 1.50 – 1.67 seconds.
Deliverables	Six test weld nozzles for evaluation with weld data
2c (TTR Task 2a, 2b, 2c, 2d, 2e, 3a, 3b, & 3c)	Clear Test Nozzle Welds for Release to SRNL
Responsible	DWPF RPD Staff
Prerequisites	Activities 2a & 2b
Requirements	• Clear test welds from DWPF and transport to SRNL Building 723-A.
Deliverables	Eight cleared test weld nozzles

Attachment 3. Task Activity Matrix

Continued next page

2d (TTR Task 2a)	Conduct UT Measurement
Responsible	SRNL MS&T
Prerequisites	Activities 2a, 2b, & 2c
Requirements	• Conduct UT on the samples to determine the bond length and report the data from at least 4 locations including tabulating the minimum, maximum and average values.
Deliverables	UT Data Report
2e (TTR Task 2b)	Prepare Test Nozzle Welds for Leak and Burst Testing
Responsible	SRNL RDE
Prerequisites	Activities 2a, 2b, & 2c
Requirements	• Leak tight welded tubing compatible with high pressure testing
Deliverables	Five welded test nozzles with high pressure tubing attached
2f (TTR Task 2b)	Conduct Leak Tests on all Six Test Nozzle Welds
Responsible	SRNL RDE HPL
Prerequisites	Activities 2a, 2b, 2c, & 2e
Requirements	• Conduct leak tests on welded samples to verify they meet 1X10 ⁻⁴ atm-cc / sec He leak requirements.
Deliverables	Data reports
2g (TTR Task 3a & 3b)	Perform Plug Height and Heat Tint Measurements
Responsible	SRNL MS&T
Prerequisites	Activities 2a, 2b, & 2c
Requirements	• Measure and record the plug height at 4 locations around the weld, roughly 90° apart.
Deliverables	Completed data sheets

Attachment 3. Task Activity Matrix

Continued next page

2h (TTR Task 2c)	Conduct Burst Tests on Five Test Nozzle Welds
Responsible	SRNL RDE HPL
Prerequisites	Activities 2a, 2b, 2c, 2d, & 2e
Requirements	• Conduct Burst Testing of Five test welded articles and provide reports.
Deliverables	Data reports
2i (TTR Task 2e)	Conduct SEM on at Least One Burst Tested Test Nozzle Weld Sample
Responsible	SRNL MS&T
Prerequisites	Activities 2a, 2b, 2c, 2d, 2e, 2g, & 2h
Requirements	• Inspect the welded plug after burst testing to measure the bonded ligament.
Deliverables	SEM images

Attachment 3. Task Activity Matrix

Continued next page

Attachment 3. Task Activity Matrix

3a (TTR Task 2d)	Conduct Metallographic Examination of One Test Nozzle Weld at a Minimum of Locations where UT Indicates Minimum, Maximum and Two Nominal Weld Lengths
Responsible	SRNL MS&T
Prerequisites	Activity 2a, 2b, & 2c
Requirements	 Section welded plug at areas that indicate shortest ligament length based on UT results, lowest weld heat based on heat tint, and at four representative areas. Mount sections for metallographic preparation, polish, and etch electrolytically with 10% oxalic acid. Measure bond length, take photographs showing overall weld length and at higher magnifications to show interfacial conditions.
Deliverables	Photomicrographs showing the overall bond lengths at the minimum, maximum, and nominal conditions. Dimensional data from same.
3b (TTR Task 2d)	Conduct Bend Fracture of Weld, Characterize Fracture Surface and Determine Bond Length
Responsible	SRNL MS&T
Prerequisites	Activity 2a, 2b, 2c, & 2f
Requirements	• Section welded plug to prepare a fracture sample.
	• Fracture weldment and examine the fracture surface for failure mode and correlation to UT bond length measurements.
Deliverables	Fractographs of the surfaces.

DISTRIBUTION LIST

Name:
C. Raiford
J.W. Ray
R.R. Arrington
J.F. Daniel
K.M. Brotherton
V.M. Kmiec
E.J. Freed
J.F. Iaukea
S.R. Howard
P.S. Korinko
T.E. Skidmore
K.E. Zeigler
B.J. Wiersma
S.P. Harris Jr.
D.N. Maxwell Sr.
M.S. Garrett
G.E. Adondakis
T.D. Mills
C.H. Beheler
B.L. Garcia-Diaz