Contract No.:

This manuscript has been authored by Savannah River Nuclear Solutions (SRNS), LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

Cs₂LiCeCl₆: An intrinsic scintillator for dual gamma and neutron detector applications

U. N. Roy, G. S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, and R. B. James^{*}

Brookhaven National Laboratory, Upton, NY 11973, USA

S. Hunter, P. Beck, N. Cherepy, and S. Payne

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

*Present address: Savannah River National Laboratory, Aiken, SC 29808, USA

A CENTURY OF SERVICE

SRNL-STI-2017-00527

Introduction

Why are intrinsic materials preferred ?

Most of the scintillators are activated by foreign dopants e.g.; NaI:Tl, LaBr₃:Ce and SrI₂:Eu

Disadvantages: i) Segregation of dopants ii) Growth striations

a) Optical transmission picture of a LSO:Ce sample of dimensions ~20x6x6 mm³, b) X-ray response map, and (c) high magnification fluorescence map of Ce atoms (dopant).

The segregation and striations can severely degrade the uniformity and energy resolution of large-volume devices.

Advantage of intrinsic scintillators: Intrinsic compounds will ensure homogeneity of the material throughout the grown ingot, and thus a uniform detector response can be achieved at substantially lower cost for a large volume detector. The energy resolution is expected to be independent of detector volume.

Motivation

 $Cs_2LiYCl_6:Ce$ (CLYC) is the most well known dual gamma-neutron- detector material. In our present study $Cs_2LiCeCl_6$ (*CLCC*) was chosen as the intrinsic scintillator as a potential replacement for CLYC.

This material is from the Elpasolite family; it has a cubic crystal structure and a density of ~3.4 gm/cc.

Advantage of $Cs_2LiCeCl_6$: Intrinsic material; energy resolution is expected to be independent of the volume of the detector.

Growth of Cs₂LiCeCl₆

Crystals were grown by the vertical Bridgman technique.

The compound was synthesized from

 $2CsCl+CeCl_3+LiCl \rightarrow Cs_2LiCeCl_6$

99.999% pure anhydrous CsCl > 99.999% pure anhydrous CeCl₃ > 99% pure anhydrous LiCl

Same ampoule was used for synthesis and growth.

Loaded material in the quartz ampoule was heated to ~180 °C for 24 hrs under a dynamic vacuum.

The ampoule was sealed under dynamic vacuum of 2x10⁻⁶ torr.

Growth rate: ~1.4 cm/day.

Post growth cooling rate: 4 ^oC/hr.

Emission and excitation spectra of Cs₂LiCeCl₆ and fluorescence decay

Non-proportionality of CLCC and other elpasolites (activated by cerium) for comparison

Detector response of Cs₂LiCeCl₆ for gamma radiation

CLCC is brighter than CLYC. Light output of CLCC is ~34,000 ph/MeV, CLYC is ~22,000 ph/MeV

Detector response of Cs₂LiCeCl₆ to thermal neutron & gamma radiation

Neutron capture peak at 1.4 MeVee

Pulse height spectrum of Am-Be thermal-neutron and ¹³⁷Cs gamma source, measured at BNL. Resolution ~4%.

Neutron capture peak at 1.48 MeVee

Summary

- CLCC crystals can be grown in large volumes due to its cubic structure.
- CLCC is perhaps the only intrinsic scintillator capable of dual gamma- and neutron-detection.
- Because of intrinsic nature, the energy resolution of CLCC is expected to be independent of detector volume.
- CLCC has less trapping, and is capable of detecting lower-energy gamma rays compared to CLYC.
- CLCC is faster than CLYC.
- CLCC: brighter than CLYC.

CLCC appears to be very promising and has tremendous potential to compete with CLYC, especially for large-volume detectors.

There is enough room for further improvement of energy resolution after successive purification by zone refining of the starting material.

Acknowledgement

 This work was supported by Laboratory Directed Research and Development (LDRD) funding at Brookhaven National Laboratory.

Thank you all for your kind attention

