Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Analysis of Tank 38H (HTF-38-17-52, -53) and Tank 43H (HTF-43-17-54, -55) Samples for Support of the Enrichment Control and Corrosion Control Programs

M. S. HayC. J. ColemanD. P Diprete

August 2017 SRNL-STI-2017-00472, Rev. 0

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: 2H Evaporator System Supernate Analysis, Radionuclides

Retention: Permanent

Analysis of Tank 38H (HTF-38-17-52, -53) and Tank 43H (HTF-43-17-54, -55) Samples for Support of the Enrichment Control and Corrosion Control Programs

M. S. Hay

C. J. Coleman

D. P. Diprete

August 2017

Date

REVIEWS AND APPROVALS

AUTHORS: M. S. Hay, Advanced Characterization and Processing Date C. J. Coleman, Analytical R&D Programs and Material Characterization Date D. P. Diprete, Nuclear Measurements Date TECHNICAL REVIEW: W. D. King, Advanced Characterization and Processing Date APPROVAL: B. J. Wiedenman, Manager Date Advanced Characterization and Processing D. E. Dooley, Director Date Environmental & Chemical Process Technology Research Programs

N. R. Pasala, Process Safety & Regulatory Manager

SRR, Tank Farm/ETP Process Engineering

EXECUTIVE SUMMARY

SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the table show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations within the range of values measured on previous samples. The four samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.

V

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
1.0 Introduction	1
2.0 Experimental Procedure	1
3.0 Results and Discussion	3
4.0 Conclusions	5
5.0 Acknowledgements	5
6.0 References	6

LIST OF ABBREVIATIONS

AD Analytical Development

DI De-ionized

CCP Corrosion Control Program
ECP Enrichment Control Program

IC Ion Chromatography

ICP-ES Inductively Coupled Plasma Emission Spectroscopy
ICP-MS Inductively Coupled Plasma Mass Spectrometry

%RSD Percent Relative Standard Deviation SRNL Savannah River National Laboratory

SRR Savannah River Remediation

TIC Total Inorganic Carbon

1.0 Introduction

Feed limits have been established for the 2H-Evaporator system to ensure nuclear criticality is not possible and corrosion is minimized.¹ These limits are protected by the Enrichment Control Program (ECP) and the Corrosion Control Program (CCP) that require periodic sampling and analysis to confirm that the waste supernate composition stays within the limits.^{2,3}

Savannah River Remediation (SRR) obtained samples from two different heights within each of the two waste tanks supporting the 2H-Evaporator operations. The Tank 38H (evaporator drop tank) and Tank 43H (evaporator feed tank) samples were received by the Savannah River National Laboratory (SRNL) Shielded Cells on June 13, 2017. The analysis of these samples provides information necessary for determining compliance with the ECP and CCP. The sample characterization was requested via a Technical Task Request⁴ and conducted based on a Task Technical and Quality Assurance Plan.⁵

2.0 Experimental Procedure

The samples from Tank 38H and 43H were opened in the SRNL Shielded Cells and poured into clear plastic beakers. The beakers were photographed and the masses of the samples determined. Table 2-1 provides the sampling height and mass of each sample. Figure 2-1 shows a photograph of the samples in the clear beakers. The surface samples from each tank (HTF-38-17-52 and HTF-43-17-54) were mostly clear and showed no visible undissolved solids when poured into the plastic beakers. The sub-surface sample from Tank 38H (HTF-38-17-53) was darker colored and contained some visible undissolved solids while the sub-surface sample from Tank 43H (HTF-43-17-55) was mostly clear similar to the surface samples.

All four samples received the analyses required by the ECP that includes determination of uranium isotopes by inductively coupled plasma-mass spectrometry (ICP-MS) and determination of plutonium isotopes by radiochemical separation and counting methods. All four samples were also submitted for inductively coupled plasma-emission spectroscopy (ICP-ES) to determine Na, Al, Si, and other metals. Only the two surface samples received the analyses required by the CCP. The CCP analysis suite includes determination of free hydroxide, gamma spectroscopy, and ion chromatography (IC). The total inorganic carbon (TIC) was also determined on the surface samples to provide a concentration for the carbonate present in the samples.

Density measurements were made on decanted (unfiltered) aliquots of the samples using calibrated volumetric tubes at ambient cell temperature (29 °C).

For the two surface samples, de-ionized (DI) water dilutions were made in triplicate from well-mixed (unfiltered) sample and submitted to Analytical Development (AD) for analysis. A blank of the DI water was also prepared along with the samples. The water dilutions were analyzed by ion chromatography, total inorganic carbon, and free hydroxide methods. Nitric acid dilutions of well-mixed (unfiltered) sample from the two surface samples were made in triplicate and submitted to AD for analysis by ICP-MS, ICP-ES, plutonium isotopics, and gamma spectroscopy. A blank of the diluting acid (2 M HNO₃) was also prepared along with the samples.

Table 2-1. Sampling Height and Sample Mass of the Tank 38H and 43H Samples

Sample ID	Sample Type	Sampling Height (inches from bottom)	Sample Mass (g)
HTF-38-17-52	Surface	surface	105.3
HTF-38-17-53	Sub-surface	265"	104.7
HTF-43-17-54	Surface	surface	97.1
HTF-43-17-55	Sub-surface	161"	96.7

Figure 2-1. Samples from Tank 38H and 43H

Triplicate aliquots of the well mixed (unfiltered) sample from each sub-surface sample were prepared for analysis using the warm acid strike method.⁶ A reagent blank and three silicon standard solutions were submitted for analysis with the samples. The samples prepared by warm acid strike were submitted to AD for analysis by ICP-ES, ICP-MS, plutonium isotopics, and gamma spectroscopy.

Quality Assurance

Requirements for performing reviews of technical reports and the extent of review are established in Manual E7, Procedure 2.60. SRNL documents the extent and type of review using the SRNL Technical Report Design Checklist contained in WSRC-IM-2002-00011, Rev. 2. Data are recorded in the electronic laboratory notebook system as notebook/experiment number Y7081-00081-18.

3.0 Results and Discussion

Table 3-1 contains the results from the analysis of the Tank 38H and Tank 43H samples. The tables show the average concentration and the percent relative standard deviations (%RSD) for the triplicate sample preparations. Results preceded by "<" indicate the analyte was below the limits of quantification. Results preceded by "<" indicate that at least one of the replicates for the sample was above the limits of quantification while one or more of the replicates were below detection. The %RSD presented in the table only includes the uncertainty associated with subsampling and sample preparation in the Shielded Cells. The %RSD does not include tank sampling uncertainty. The estimated one sigma percent uncertainty provides an indication of the uncertainty associated with the analytical method as reported by AD. Neither of these measures of uncertainty includes the uncertainty associated with sampling a large waste tank. Previous investigations indicate the uncertainty from taking a small sample from a large waste tank can be significant.^{7,8,9}

The uranium results in Table 3-1 appear consistent between the two samples from Tank 38H and the two samples from Tank 43H. The total uranium in the Tank 38H surface sample was 41.0 mg/L while the sub-surface sample was 43.6 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements.

The plutonium results in the table show a large difference between the surface and sub-surface sample concentrations for Tank 38H. This elevated plutonium concentration in the Tank 38H subsurface sample has been observed several times in recent samples typically when suspended solids were found in the sample. The Tank 43H plutonium results closely match the range of values measured on previous samples.

The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples.

The non-radioactive components of the samples such as the metals from the ICP-ES analysis and anions from the IC analysis appear self-consistent. The sum of the major cations versus the sum of the major anions shows a difference of <10% for the two surface samples providing an indication of good data quality for the non-radioactive analytes in the table. The sodium concentration measured in the Tank 38H samples show consistency between samples and fall within the range of recent analyses. The sodium concentrations in the Tank 43H samples also show consistency between samples but appear slightly lower than the concentrations measured in recent samples. The table shows slightly higher concentrations of nitrate, nitrite, and free hydroxide concentrations in the Tank 38H surface and slightly lower concentrations in the Tank 43H surface sample versus recent analyses.

Table 3-1. ECP, CCP, and other Analytical Data for Tank 38H and 43H Samples. (Averages and %RSD values are of triplicate measurements)

						*****		*****		* ****	
analyte r	method	units	est.	HTF-38-1		HTF-38-1		HTF-43-1		HTF-43-1	
	(TPO)	g/mL	1σ 5%	average 1.32	RSD 0.5%	average 1.33	RSD 0.4%	average 1.24	RSD 0.5%	average 1.22	RSD 0.2%
density @ 23°C		-									
U-233	ICP-MS	mg/L	10%	<1.28E-02		<4.95E-03	2.40/	<1.30E-02		<5.03E-03	
U-234	ICP-MS	mg/L	10%	<1.28E-02		2.08E-02	2.4%	<1.30E-02		5.80E-03	6.3%
U-235	ICP-MS	mg/L	10%	2.59E-01	0.7%	2.70E-01	1.0%	1.77E-01	1.2%	1.74E-01	0.9%
U-236	ICP-MS	mg/L	10%	1.65E-02	6.3%	1.98E-02	5.0%	<1.30E-02		1.10E-02	1.4%
U-238	ICP-MS	mg/L	10%	4.10E+01	0.3%	4.32E+01	0.5%	2.83E+01	1.0%	2.79E+01	0.2%
Total U	calc.	mg/L		4.13E+01	0.3%	4.35E+01	0.5%	2.85E+01	1.0%	2.81E+01	0.2%
U-235 / U	calc.	%		0.63%	0.4%	0.62%	1.1%	0.62%	0.6%	0.62%	0.9%
Pu-238	PuTTA	mg/L	10%	4.01E-04 5.09/	5.0%	3.61E-03	6.2%	2.80E-04	6.7%	2.60E-04	15%
Fu-238	FullA	dpm/mL		1.52E+04	1.3	1.37E+05	0.270	1.06E+04	0.770	9.89E+03	
Pu-239 a	PuTTA	mg/L	60%	1.95E-03	270/	9.84E-03	520/	1.86E-03	26%	5.35E-03	65%
Pu-239/240	PuTTA	dpm/mL	60%	2.70E+02	27%	1.36E+03	52%	2.56E+02	26%	7.38E+02	
D 241	D 220/41	mg/L	200/	8.05E-06	120/	8.63E-05	4.10/	≤8.24E-06		≤5.39E-06	
Pu-241	Pu238/41	dpm/mL	20%	1.84E+03	13%	1.97E+04	4.1%	≤1.88E+03		≤1.23E+03	
Cs-137	gamma			3.33E+08		3.08E+08	1.5%	2.26E+08		2.12E+08	1.5%
Ba-137m	scan	dpm/mL 5%	5%	3.15E+08	2.2%	2.91E+08		2.14E+08	2.1%	2.01E+08	
OH .	titration	M	10%	2.86E+00	3.1%			1.93E+00	1.9%		
F .	IC	М	10%	<1.35E-02				<1.38E-02			
CHO ₂	IC	M	10%	3.86E-02	0.3%			2.65E-02	1.0%		
Cl -	IC	М	10%	<7.22E-03				<7.38E-03			
NO ₂	IC	M	10%	2.31E+00	1.5%			1.57E+00	1.3%		
Br -	IC	М	10%	<3.20E-03				<3.27E-03			
NO ₃	IC	M	10%	1.25E+00	0.7%			8.72E-01	1.3%		
PO ₄ 3-	IC	M	10%	4.11E-03	2.9%			<2.75E-03			
SO ₄ 2-	IC	M	10%	6.13E-02	3.2%			4.43E-02	0.5%		
C ₂ O ₄ ²⁻	IC	M	10%	8.39E-03	0.3%			7.96E-03	1.4%		
CO ₃ 2-	TIC	M	10%	6.54E-01	4.1%			4.59E-01	0.5%		
Al	ICP-ES	mg/L	10%	2.52E+03	1.1%	2.66E+03	1.2%	1.71E+03	0.6%	1.59E+03	0.0%
В	ICP-ES	mg/L	10%	1.81E+02	0.9%	1.76E+02	0.8%	1.25E+02	0.8%	1.13E+02	0.8%
Ca	ICP-ES	mg/L	10%			<2.44E+00		<3.22E+00		<2.48E+00	
Cr	ICP-ES	mg/L	10%		0.9%	9.85E+01	1.2%	7.09E+01	0.6%		0.2%
Fe	ICP-ES	mg/L	10%	One experience		1.75E+01	39%	<5.29E+00		7.80E+00	29%
K	ICP-ES		10%		7.4%	6.32E+02	10%	4.81E+02	1.5%	4.05E+02	2.0%
-	1000 NO. 1000 NO. 1000	mg/L	0.000	6.54E+02	10700000000000		100000000000000000000000000000000000000			11-2-17-17-17-17-17-17-17-17-17-17-17-17-17-	CONTRACTOR NO.
Li	ICP-ES	mg/L	10%	9.02E+01	1.8%	9.82E+01	0.6%	6.09E+01	0.9%	6.51E+01	1.2%
Na ICP-ES	CP-ES mg/L 1	10%	1.83E+05	- 1.2%	1.77E+05	0.9%	1.28E+05	0.5%	1.14E+05	0.5%	
	ICD DC	M	100/	7.96E+00	2.20/	7.71E+00	2.20/	5.58E+00	2.20/	4.94E+00	1.00/
	ICP-ES	mg/L	10%	1.72E+02	2.2%	2.28E+02	2.2%	1.16E+02	2.3%	1.10E+02	1.0%
Si	ICP-ES	mg/L	10%	1.68E+02	1.1%	1.59E+02	1.0%	1.31E+02	0.2%	1.24E+02	0.0%
Zn	ICP-ES	mg/L	10%	<2.83E+00		<4.45E+00		<2.88E+00		<4.52E+00	

calc. = calculation; est. 1σ = estimated one sigma percent uncertainty as reported by AD.

^a Pu-239 mass assumes entire Pu-239/240 activity is Pu-239

The standards used for the silicon analysis (50 mg/L silicon in the solution prepared by warm acid strike to final concentrations of 0.5, 1.0, and 2.0 mg/L) were all close to the target concentration with differences from the targeted concentrations of 3.0%, 1.5%, and 3.8% respectively. The silicon concentration was below detectible levels in the process blank. The four samples analyzed show silicon concentrations somewhat higher than the recent samples with values ranging from 124 to 168 mg/L.

4.0 Conclusions

The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the table show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.

5.0 Acknowledgements

The contributions of Rita Sullivan, in preparing the samples, and those of Amy Ekechukwu, Mark Jones, John Young, and Tom White, for providing analytical services, are appreciated and acknowledged.

6.0 References

- 1. D. A. Eghbali, *Nuclear Criticality Safety Evaluation: Operation of the 2H Evaporator System*, N-NCS-H-00180, Rev. 0, September, 2008.
- 2. H. Bui., *CSTF Evaporator Feed Qualification Program*, WSRC-TR-2003-00055, Rev. 10, December 2015.
- 3. K. B. Martin., *CSTF Corrosion Control Program*, WSRC-TR-2002-00327, Rev. 9, December 2015.
- 4. J. R. Jacobs, *Enrichment Control Program Sample Analysis of Tanks 38 and 43*, X-TTR-H-00054, Rev. 0, November, 2014.
- 5. C. J. Martino, Task Technical and Quality Assurance Plan for Analysis of Tank 38H and Tank 43H Enrichment Control Program and Corrosion Control Samples, SRNL-RP-2013-00522, Rev. 0, August 2013.
- 6. F.M. Pennebaker, C.J Coleman, M.A. Jones, W.R. Wilmarth, C.M. Jantzen and D.R. Click, Evaluation of Warm Acid Strike Treatment for Silicon Analysis in High Level Waste, WSRC-TR-2003-00036, Rev. 0, January, 2003.
- 7. C.J Coleman, T. B. Edwards, C. A. Nash, *Statistical Analysis of Sample Data from Tank* 48H, WSRC-TR-95-0325, Rev. 0, September 29, 1995.
- 8. D. D. Walker, W. T. Boyce, C. J Coleman, D. P. Diprete, T. B. Edwards, A. A. Ekechukwu, C. W. Hsu, S. F. Peterson, L. L. Tovo, M. J. Whitaker, *Tank 48H Waste Composition and Results of Investigations of Analytical Methods*, WSRC-TR-97-00063, Rev. 0, April 2, 1997.
- 9. M. S. Hay, T. B. Edwards, *Statistical Analysis of ESP Verification Test Samples*, WSRC-RP-94-1224, Rev. 0, November 4, 1994.

Distribution:

david.dooley@srnl.doe.gov a.fellinger@srnl.doe.gov timothy.brown@srnl.doe.gov samuel.fink@srnl.doe.gov connie.herman@srnl.doe.gov elizabeth.hoffman@srnl.doe.gov boyd.wiedenman@srnl.doe.gov frank.pennebaker@srnl.doe.gov bill.wilmarth@srnl.doe.gov chris.martino@srnl.doe.gov william02.king@srnl.doe.gov david.diprete@srnl.doe.gov charles02.coleman@srnl.doe.gov lawrence.oji@srnl.doe.gov christie.sudduth@srs.gov keisha.martin@srs.gov n-rao.pasala@srs.gov Christine.Ridgeway@srs.gov hilary.bui@srs.gov vijay.jain@srs.gov Records Administration (EDWS)