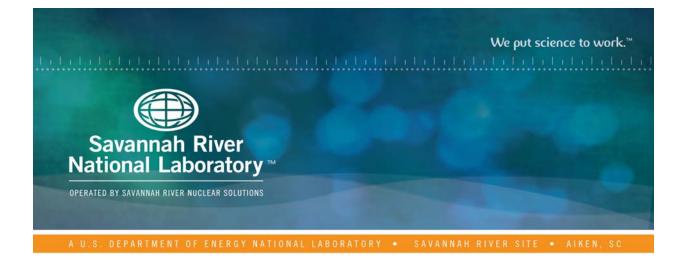
#### Contract No:


This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

#### **Disclaimer:**

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.



# Preparation and Evaporation of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Simulant

Duane J. Adamson Charles A. Nash Anthony M. Howe Daniel H. Jones Daniel J. McCabe August 2017 SRNL-STI-2017-00465, Revision 0

SRNL.DOE.GOV

#### DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

#### Printed in the United States of America

Prepared for U.S. Department of Energy

**Keywords:** *decontamination, evaporation, DFLAW* 

**Retention:** Permanent

## Preparation and Evaporation of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Simulant

Duane J. Adamson Charles A. Nash Anthony M. Howe Daniel H. Jones Daniel J. McCabe

August 2017



Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

## **REVIEWS AND APPROVALS**

## AUTHORS:

| Duane J. Adamson, Process Technology Programs                          | Date |
|------------------------------------------------------------------------|------|
| Charles A. Nash, Advanced Characterization and Processing              | Date |
| Charles A. Ivash, Auvanceu Characterization and Processing             | Date |
| Anthony M. Howe, Process Technology Programs                           | Date |
| Daniel J. McCabe, Waste Form Processing Technologies                   | Date |
| TECHNICAL REVIEW:                                                      |      |
| Devon L. McClane, Chemical Processing Technology, Reviewed per E7 2.60 | Date |
| APPROVAL:                                                              |      |
| Connie C. Herman, Manager<br>Hanford Mission Programs                  | Date |
| Ridha B. Mabrouki, Manager<br>Washington River Protection Solutions    | Date |

#### **EXECUTIVE SUMMARY**

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter.

The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatory-impacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step.

This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF evaporator to aid in planning for their disposition, and (3) generate concentrated evaporator bottoms for use in immobilization testing. This phase of testing added more hazardous constituents to the core simulant formulation to examine their reactivity and fate during evaporation, and included antifoam in order to determine if organomercury species are formed. A future report will document the leaching properties of the hazardous constituents in the immobilized waste forms.

The results indicate that the simulant can easily be concentrated via evaporation. During the pH adjustment step in simulant preparation, ammonium was quickly converted to ammonia, and most of the ammonia was stripped from the simulated waste and partitioned to the condensate. Additionally, after evaporating to the target concentration of 15 weight % total solids (~6.5X the feed concentration) and cooling the simulant, a trace amount of zinc precipitated out of solution and it was slightly cloudy. The reason for zinc precipitation is not known, but the cloudiness is attributed to the antifoam since it was milky in appearance prior to use. With the exception of ammonia, analysis of the condensate indicated very low to below detectable levels of many of the constituents in the simulant, yielding very high decontamination factors (DF), which exceeded 11,000 based on sodium analysis.

Organomercury analysis indicated that trace amounts of monomethyl mercury formed and collected in the knock-out pot (a secondary condensate collection container). The concentration of the monomethyl mercury was marginally above the detection limit, but beneath the reporting

limit. There was also a difference in analysis results for total mercury and inorganic mercury, suggesting that there were other forms present. However, the specific analysis for metallic, methyl, and dimethyl mercury did not account for this difference. The difference in total and inorganic mercury analysis result is tentatively attributed to a matrix effect from the other transition metals in the simulant that react with the chemical reagents used in the sample preparation. The analysis of soluble mercury before and after evaporation and the analysis of inorganic mercury before and after evaporation have nearly identical concentration ratios, further indicating that the discrepancy is due to analysis interferences.

Measurement of organoarsenic compounds is by difference between the total and inorganic arsenic, not a direct measurement of their presence. Analyses indicate that more total arsenic was present than inorganic arsenic, suggesting that organoarsenic compounds may have formed in the evaporator. However, the results are within the quality control limits, so it cannot be confirmed that there is a statistically significant difference between total and inorganic arsenic. Similar to the mercury analysis, the ratios of total and inorganic arsenic have similar concentration ratios, further indicating that the discrepancy is due to analysis issues. It does not seem likely that organoarsenic species form, but further analytical analysis work would be needed to confirm if organoarsenic compounds form under these conditions by determining if there are interferences with the inorganic arsenic analysis method in this matrix and by using a method that directly quantifies organoarsenic compounds.

The evaporator concentrate generated during this test will be used in an upcoming test to generate an immobilized waste form and measure its leaching behavior.

## **TABLE OF CONTENTS**

| 1.0 Introduction                                        | 1 |
|---------------------------------------------------------|---|
| 1.1 Testing Basis and Objective                         | 1 |
| 1.2 Simulant Formulation                                | 5 |
| 2.0 Experimental Procedure                              | 7 |
| 2.1 Evaporator Test Apparatus                           | 7 |
| 2.2 Quality Assurance                                   |   |
| 3.0 Results and Discussion                              |   |
| 3.1 Evaporator operation                                |   |
| 3.2 Sample Analysis Results                             |   |
| 4.0 Conclusions                                         |   |
| 5.0 Future Work                                         |   |
| 6.0 References                                          |   |
| 7.0 Appendicies                                         |   |
| 7.1 Appendix A. Concentration Factor Sample Calculation |   |
| 7.2 Appendix B. PSAL Results                            |   |
| 7.3 Appendix C. Analytical Development Results          |   |
| 7.4 Appendix D. Eurofins Results                        |   |
| 7.5 Appendix E. Southwest Research Institute Results    |   |

## LIST OF TABLES

| Table 1-1. EMF Core Condensate Simulant Formulation              | 5  |
|------------------------------------------------------------------|----|
| Table 1-2. EMF Core Simulant Filtrate Analysis Results           | 6  |
| Table 2-1. M&TE Equipment used during the EMF Evaporator Testing | 9  |
| Table 2-2. Pot Sample Concentrations                             | 12 |
| Table 3-1. Concentrate Analytical Results                        | 20 |
| Table 3-2. Average Concentrate and Expected Analytical Results   | 21 |
| Table 3-3. Condensate Analytical Results                         | 23 |
| Table 3-4. Total Volume and Ammonium Balance                     | 25 |
| Table 3-5. Knockout Pot Analysis Results                         | 26 |
| Table 3-6. Eurofins Sample Analysis                              | 27 |
| Table 3-7. Eurofins Sample Analysis                              | 29 |
| Table 3-8. SWRI Sample Analysis, Cyanide                         | 30 |

## LIST OF FIGURES

| Figure 1-1. Simplified LAW Off-gas System                                   | 3  |
|-----------------------------------------------------------------------------|----|
| Figure 1-2. Simplified Schematic of the Direct Feed LAW (DFLAW) Scenario    | 4  |
| Figure 2-1. EMF Evaporator Test Apparatus                                   | 7  |
| Figure 2-2. Image of EMF Evaporator Apparatus                               | 8  |
| Figure 2-3. Knockout Pot (KOP) in Dewar with Dry Ice                        | 9  |
| Figure 2-4. Feed Simulant Filtration Step                                   | 10 |
| Figure 2-5. Xiameter ACP-3183 Antifoam                                      | 11 |
| Figure 3-1. Test Conditions, Temperature and Pressure                       | 13 |
| Figure 3-2. Simulant Boiling in the Evaporator Pot                          | 14 |
| Figure 3-3. Evaporator Concentrtae Samples (~6.4X concentrated)             | 15 |
| Figure 3-4. Condensate Samples Removed from Condensate Tank during the Test | 15 |
| Figure 3-5. Knockout Pot Sample Collected                                   | 16 |
| Figure 3-6. Evaporator Concentrate (6.5X) at the End of Boil-down           | 17 |

| Figure 3-7. Filter Paper (dried) after Filtering Concentrate   |    |
|----------------------------------------------------------------|----|
| Figure 3-8. EDS Map of Solid on Concentrate Filter Paper       | 19 |
| Figure 3-9. EDS Analysis of Solids on Concentrate Filter Paper | 19 |
| Figure 3-10. 6.5X Concentrated Simulnat, Cation                |    |
| Figure 3-11. 6.5X Concentrated Simulant, Anion                 |    |
| Figure 3-12. Mercury Concentration in the 6.5X Concentrate     |    |
| Figure 3-13. Ammonia Concentration in Condensate               | 24 |

#### LIST OF ABBREVIATIONS

| ACTL     | Aiken Count Technology Laboratory                                        |
|----------|--------------------------------------------------------------------------|
| DFLAW    | Direct Feed Low-Activity Waste                                           |
| DI       | deionized water                                                          |
| DOE      | Department of Energy                                                     |
| EDS      | energy dispersive X-ray spectroscopy                                     |
| EMF      | Effluent Management Facility                                             |
| ETF      | Effluent Treatment Facility                                              |
| g        | grams                                                                    |
| hr       | hour                                                                     |
| ICP-OES  | Inductively Coupled Plasma – Optical Emission Spectroscopy               |
| inHg     | Inches of mercury (pressure)                                             |
| Kg       | kilogram                                                                 |
| КОР      | Knock-out Pot                                                            |
| L        | Liter                                                                    |
| LAW      | Low Activity Waste (reject- hyphen is not routine convention at Hanford) |
| LMOGC    | LAW Melter Off-Gas Condensate                                            |
| M&TE     | Measurement and Test Equipment                                           |
| mg       | milligram                                                                |
| mL       | milliliter                                                               |
| PSAL     | Process Science Analytical Laboratory in SRNL                            |
| RPD      | Relative Percent Difference                                              |
| SBS      | Submerged Bed Scrubber                                                   |
| SEM      | Scanning Electron Microscope                                             |
| Sim      | Simulant                                                                 |
| SRNL     | Savannah River National Laboratory                                       |
| Std. Dev | Standard Deviation                                                       |
| UNC      | Uncertainty                                                              |
| VSL      | Vitreous State Laboratory – Catholic University                          |
| WESP     | Wet Electrostatic Precipitator                                           |
| WRPS     | Washington River Protection Solutions                                    |
| Wt%      | Weight percent                                                           |
| WTP      | Waste Treatment and Immobilization Plant                                 |
|          |                                                                          |

#### **1.0 Introduction**

The Hanford Low Activity Waste Melter Off-Gas Condensate (LMOGC) waste stream will be generated in the Waste Treatment and Immobilization Plant (WTP) by condensation and scrubbing of the Low Activity Waste (LAW) melter off-gas system by a Submerged Bed Scrubber (SBS) and Wet Electrostatic Precipitator (WESP), as shown in Figure 1-1. This stream, which will contain substantial amounts of chloride, fluoride, ammonium, and sulfate ions, as well as technetium-99 (<sup>99</sup>Tc) and other radionuclides, will get recycled to the LAW melter after evaporation. During Direct Feed LAW (DFLAW) operations, the evaporation will be performed in the planned Effluent Management Facility (EMF), as shown in Figure 1-2. Under normal operations the evaporator bottoms will be returned to the LAW melter, but may be returned to the tank farm without evaporation when the EMF evaporator is unavailable [1]. The volatile halide and sulfate components that accumulate in this stream are only marginally soluble in glass, and often dictate the LAW glass waste loading [2], thereby impacting the total quantity of glass canisters produced. This further impacts WTP by increasing the number of glass canisters produced, extending the mission duration, and causing higher corrosion rates. The radionuclides present in this stream that are key contributors to the long-term dose consequences for onsite disposal are <sup>99</sup>Tc and iodine-129 (<sup>129</sup>I) [3]. These radionuclides are volatile in the melter and accumulate in the LAW system. Diverting this LAW Melter Off-Gas Condensate stream to an alternate disposal path would have substantial beneficial impacts on the cost, life cycle, and operational complexity of WTP [4]. This work focuses on the non-radioactive constituents in this stream, but it should be recognized that disposition of <sup>99</sup>Tc and <sup>129</sup>I must also be appropriately managed.

#### 1.1 Testing Basis and Objective

The scope of this task is to support Washington River Protection Solutions (WRPS) in determining the composition and behavior of the concentrate and condensate waste streams produced during evaporation of the LMOGC, determining waste stream compatibility with existing facilities, and planning alternate disposition options [5]. Analytical results of melter offgas condensate samples from two DuraMelter-10 tests at Vitreous State Laboratory (VSL) at the Catholic University of America were used as the basis for the simulant of this stream [6]. This small-scale melter has been used extensively in testing for the Hanford WTP. The off-gas system is a scaled-down version of the system for WTP, including a SBS and WESP, which generated the aqueous condensate stream used as the basis for this simulant. At the time condensate samples used for the basis for the simulant were generated, the simulant being fed to the DuraMelter-10 were based on actual wastes expected during the DFLAW operations. Preparation and analysis of the core LMOGC simulant by SRNL has been described elsewhere [7]. This work added arsenic, selenium, cyanide, and mercury to the composition in order to quantify their fate and disposition. For this test, a vacuum evaporator system was assembled and is similar in construction to a system used previously [8]. Details of the experimental apparatus are described in Section 2.0 below. Evaporator conditions were selected to be similar to those used in prior testing for comparison and are consistent with the operating conditions of the 242-A evaporator at Hanford [9]. The target concentration for evaporation was 15 wt% solids in the concentrate, based on criteria by WTP for the evaporator, which correlated to 6.5X the simulant feed concentration.

During tests at VSL, the SBS and WESP condensate was found to be near neutral pH. Prior to evaporation in the EMF evaporator during DFLAW operations, the pH will be raised to 12 to minimize corrosion of the evaporator material [10]. Note that a significant cation in the stream is ammonium, which will largely convert to ammonia during this adjustment (>98% at pH=11 [11]), and will then largely vaporize in the evaporator. It is important to determine the distribution of ammonium and ammonia in the evaporator because the overhead condensate will be dispositioned in the Effluent Treatment Facility (ETF). This task will provide evidence of the partitioning of ammonia and other components to the ETF, so that the effects on the facility can be anticipated. Additionally, a significant component of this waste stream is boric acid, which will consume one equivalent of hydroxide ions to reach pH 11. It is important to experimentally determine the total equivalents of hydroxide consumed by the ammonium to ammonia conversion, and the boric acid reaction, to determine the amount needed to overcome any other buffers, such as forming zinc hydroxides, and actually raise the pH to the target. Then, during evaporation, it is important to determine that the target pH is high enough to maintain the high pH in the evaporator, which will then allow an accurate characterization of the bottoms to be obtained. Since solids can precipitate from the bottoms, it is important to experimentally validate the evaporation end point so that it can be determined if insoluble solids form, particularly if they impact the handling and disposition options by impacting contaminant leachability or if they form scale that adheres to the evaporator components, limiting heat transfer. Finally, hazardous components, As, Se, Hg, and cyanide, were added to the simulant to determine their distribution after evaporation. Samples were analyzed for organomercury compounds, since Hg has the potential to react with the added antifoam to produce organomercury compounds. The evaporator was also used to produce the concentrated simulant for subsequent use in immobilization testing.

5 M NaOH Input liquid Input gas Off-gas — Liquid Ammonia Offgas Mercury stack Absorbers condensate & send to LERF/ETF Vessel RLD-VSL-00017A/B(combined w/ evaporator Caustic Collection Vessel LVP-VSL-LAW Melter Scrubber 00001 Offgas Thermal Catalytic Oxidizer/Reducer water HEPAs Air To Alkaline Effluent Simplified LAW Off-gas System – Baseline WTP operations SBS Condensate Vessel LOP-VSL-00005 WESP LOP-WESP-0001 Pathway Diverted To alternate disposition Condensate Vessel LOP-VSL-00001 SBS Pathway Baseline **Bed Scrubber** Submerged LOP-SCB-00001 tank TLP-VSL-00009A/B in Pretreatment facility LAW Evaporator Feed **Recycle To Treated Drain Sump Collection** Recycle stream shown in red Film Cooler RLD-VSL-00004 LAW Off-Gas Condensate Drains LAW Melter C3/C5 Air Plant Wash vessel Vessel & sump RLD-VSL-00003 LFP-VSL-00002 To Waste Feed ← **Evaporator Feed** pretreatment & **Tank PWD-VSL-**Feed Vessel glass formers LAW Melter washes LAW from 00044

Figure 1-1. Simplified LAW Off-gas System

Note: (adapted from 24590-WTP-RPT-PT-02-005, Rev. 6; yellow indicates SBS/WESP LAW Off-Gas Condensate collection tanks, red lines indicate the collected off-gas condensate pathway)

SRNL-STI-2017-00465 Revision 0

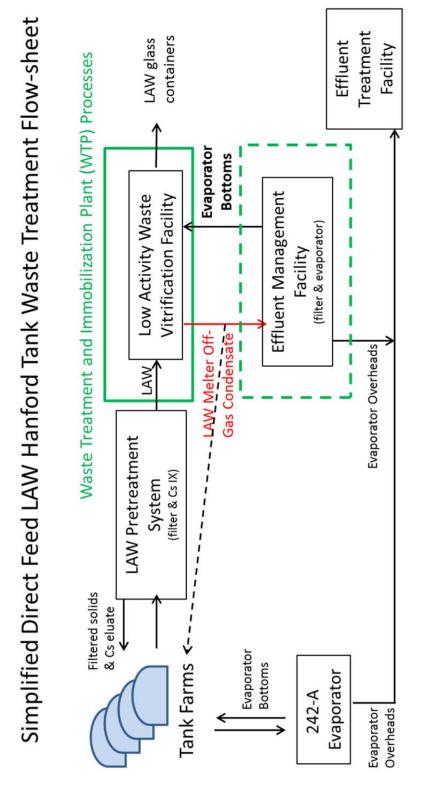



Figure 1-2. Simplified Schematic of the Direct Feed LAW (DFLAW) Scenario

#### 1.2 Simulant Formulation

Results of the LMOGC stream analysis from VSL tests 4 and 6 were used as the basis for the core simulant chemical composition because these were generated while the melter was being fed a simulant of AN-105 and AN-104, respectively, which are in the queue for DFLAW processing. The preparation and analysis of the core simulant has been previously reported [6]. The target formulation is shown in Table 1-1. The amount of added silica was decreased compared to the previous formulation in order to add only the measured soluble amount. Selection of the Se and As species to add was based on the oxidation state of the volatile species. Selenium vaporizes from melters as SeO<sub>2</sub> at 317 °C, and As<sub>2</sub>O<sub>3</sub> readily sublimes at 315 °C [12]

| Chemical                           | Formula                                             | Target<br>Mass (g)/L<br>simulant* | Target<br>Molarity |  |
|------------------------------------|-----------------------------------------------------|-----------------------------------|--------------------|--|
| Potassium fluoride                 | KF                                                  | 1.252                             | 0.0216             |  |
| Sodium chloride                    | NaCl                                                | 0.275                             | 0.0047             |  |
| Ammonium nitrate                   | NH <sub>4</sub> NO <sub>3</sub>                     | 0.910                             | 0.0114             |  |
| Ammonium sulfate                   | $(NH_4)_2SO_4$                                      | 0.642                             | 0.0049             |  |
| Sodium sulfate                     | Na <sub>2</sub> SO <sub>4</sub>                     | 0.963                             | 0.0068             |  |
| Potassium sulfate                  | $K_2SO_4$                                           | 2.20                              | 0.0126             |  |
| Ammonium chloride                  | NH <sub>4</sub> Cl                                  | 2.343                             | 0.0438             |  |
| Silica                             | SiO <sub>2</sub>                                    | 0.005                             | 0.0001             |  |
| Boric acid                         | B(OH) <sub>3</sub>                                  | 5.250                             | 0.0849             |  |
| Zinc nitrate                       | $Zn(NO_3)_2$                                        | 0.241                             | 0.0013             |  |
| Sodium oxalate                     | $Na_2C_2O_4$                                        | 0.077                             | 0.0006             |  |
| Potassium hydroxide                | КОН                                                 | 0.980                             | 0.0175             |  |
| Sodium hydroxide (50<br>wt %)      | NaOH                                                | Adjust to pH 11.9                 |                    |  |
| Sodium chromate                    | Na <sub>2</sub> CrO <sub>4</sub>                    | 0.108                             | 0.0007             |  |
| Sodium nitrite                     | NaNO <sub>2</sub>                                   | 8.350                             | 0.1210             |  |
| Lithium carbonate                  | Li <sub>2</sub> CO <sub>3</sub>                     | 0.213                             | 0.0029             |  |
| Arsenic(III) oxide                 | As <sub>2</sub> O <sub>3</sub>                      | 0.079                             | 4.0E-4             |  |
| Selenium(IV) oxide                 | SeO <sub>2</sub>                                    | 0.084                             | 7.6E-4             |  |
| Sodium cyanide                     | NaCN                                                | 0.027                             | 5.5E-4             |  |
| Mercury(II) nitrate<br>monohydrate | Hg(NO <sub>3</sub> ) <sub>2</sub> ·H <sub>2</sub> O | 0.017                             | 5.0E-5             |  |

 Table 1-1. EMF Core Condensate Simulant Formulation

\*calculated weights assumes anhydrous reagent is used except mercury nitrate

Analytical results of the simulant used for this test are shown in Table 1-2. The results represent duplicate analyses of two samples; the first was collected when the simulant was first prepared, and the second was collected and analyzed in the course of this evaporation test. Most analytes are near the target. The mercury analysis is 29% above the target, but subsequent analysis by Eurofins Frontier Global Sciences indicates 10.2-10.4 mg/L (see Table 3-6). The silica is high as

well, but is likely due to trace quantities of silica in the other chemicals and the challenge of weighing 0.005-0.0101 mg of silicon dioxide during simulant production.

|                              |         | Result  |       |            |
|------------------------------|---------|---------|-------|------------|
|                              | Target  | average | Std.  | Percent of |
| Species                      | (mg/L)  | (mg/L)  | Dev.* | Target     |
| В                            | 918     | 923     | 23    | 101        |
| Cr                           | 35      | 34.3    | 0.41  | 98.0       |
| K                            | 2511    | 2381    | 6.4   | 94.8       |
| Li                           | 40      | 42.1    | 0.48  | 105        |
| Na                           | 6765    | 6772    | 81    | 100        |
| Si                           | 2.8     | 6.10    | 0.26  | 218        |
| Zn                           | 83      | 72.5    | 10    | 87.4       |
| As                           | 60      | 62.6    | 3.3   | 104        |
| Se                           | 60      | 58.8    | 1.0   | 98.0       |
| Hg                           | 10      | 12.9    | 3.7   | 129        |
| $\mathrm{NH_4}^+$            | 1171    | 877     | 9.9** | 74.9       |
| Cl                           | 1720    | 1681    | 5.0   | 97.7       |
| F-                           | 409     | 408     | 2.1   | 99.7       |
| NO <sub>3</sub> <sup>-</sup> | 863     | 888     | 44    | 103        |
| $NO_2^-$                     | 5568    | 5900    | 53    | 106        |
| $SO_4^{-2}$                  | 2331    | 2525    | 96    | 108        |
| $CO_3^{-2}$                  | 173     | NA      | NA    | NA         |
| CN                           | 14      | 15.4*** | ***   | 110        |
| oxalate                      | 50      | < 100   | -     | -          |
| Wt%                          |         |         |       |            |
| solids                       | 2.9     | 2.68    | 0.24  | 92.4       |
| pН                           | 11.9-12 | 12.3    | 0.1   | -          |

Table 1-2. EMF Core Simulant Filtrate Analysis Results

\* Standard deviation of the average of 4 measured values

(single analyses of four samples).

\*\*Two measurements of feed batch samples

\*\*\* single measurement of composited feed

NA = not analyzed; - = not applicable because of single

measurement or less than detection limit

The simulant was prepared in three batches, two 2-L batches and one 1-L batch. The latter was originally prepared without Hg in order to obtain a "blank" for the mercury analysis, which was subsampled, and then Hg was spiked into the remaining 0.9 L. The composited batch, ~4.9 L of simulant, was clear yellow and was filtered prior to use to ensure that there were no insoluble solids. The density of the filtered simulant was 1.018 g/mL. The final, measured simulant pH was 12.3, slightly above the target (11.9-12). The total amount of 50 wt% sodium hydroxide solution added to achieve this pH was equivalent to 12.02 g/L based on the final liquid volume (in addition to the potassium hydroxide that was added during the preparation).

#### **2.0 Experimental Procedure**

#### 2.1 Evaporator Test Apparatus

Figure 2-1 is a schematic of the EMF Evaporator Test Apparatus used for the simulant testing. During the design and construction, care was taken to have as few polymer parts as practicable. This would prevent the simulant in the evaporator pot and the off-gas from coming into contact with polymeric materials. This was as a precautionary measure, since if hydrophobic organometallic species like dimethylmercury formed, they might absorb into such materials and thereby avoid detection in the aqueous phases. The apparatus was constructed mostly with glass and stainless steel tubing. All testing was conducted inside a fume hood at SRNL's Aiken County Technical Laboratory (ACTL). The evaporator pot was a 1,000 mL modified glass beaker. The simulant was heated using a hot plate/stirrer (Torrey Pines Scientific) and continuously stirred with a glass-coated magnetic stir bar.

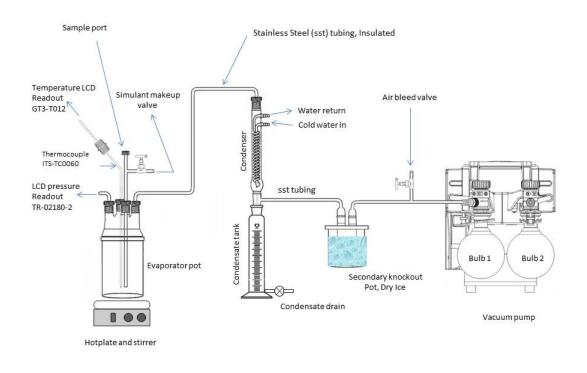



Figure 2-1. EMF Evaporator Test Apparatus

The contents of the pot were kept under a vacuum, typically at an absolute pressure of 2.4 inches of Hg (inHg) (equivalent to 60 torr). As a result, the simulant boiled at approximately 42 °C. The vapors traveled unrestricted to the glass condenser. There was no engineered demisting element designed into the off-gas line to knock out entrained particles, but the stainless steel line

was 58 cm high, which should have precluded entrainment. As the gases cooled in the condenser, the condensate drained into the glass Condensate Tank.

The Condenser was cooled using a Haake<sup>®</sup> Chiller (Model K20). The chiller, which was located outside the hood, maintained the cooling water at approximately 4 °C. Any vapors that passed through the condenser were condensed in the glass secondary Knockout Pot (KOP). The KOP was completely redesigned for this test campaign so that it was at a lower temperature to ensure that if any organomercury formed, it would be captured. The KOP was submersed in a Dewar with dry ice, where the temperature was maintained at approximately -78 °C. The vacuum in the system was created by a Vacuubrand<sup>®</sup> Diaphragm Vacuum pump, Type: MZ 2C. Figure 2-2 is an image of the EMF evaporator test apparatus.



Figure 2-2. Image of EMF Evaporator Apparatus

Figure 2-3 is an image of the KOP inserted in an aluminum tube submerged in the dry ice. The contents collected in the KOP were emptied each time the evaporator was shut down to empty the condensate tank. The contents collected inside the KOP were always frozen when it was disconnected and had to be thawed before they could be poured into the sample collection bottle. Care was taken to transfer the liquid as soon as it had thawed to minimize vapor losses. During the test campaign, two separate KOPs were used, one to allow time to thaw the collected contents and the other placed back into the dry ice to allow testing to continue.



Figure 2-3. Knockout Pot (KOP) in Dewar with Dry Ice

Table 2-1 is a list of Measurement and Test Equipment (M&TE) equipment used in the test apparatus during the EMF evaporator testing. (The numbers are unique identifiers that can be traced to calibration records.) The temperature of the simulant and the pressure in the system was monitored in the evaporator pot using a thermocouple and pressure transducer, respectively.

| Equipment               | M&TE       |
|-------------------------|------------|
| Pressure Transducer     | TR-02180-2 |
| Temperature LCD Readout | GT3-T012   |
| Thermocouple, K type    | ITS TC0060 |
| Balance/scale           | ITS-BL014  |
| Balance/scale           | ACTL-BL01  |

Table 2-1. M&TE Equipment used during the EMF Evaporator Testing

Before simulant testing, water was run through the EMF evaporator several times to ensure that all of the equipment and instruments were operating correctly. The water runs were conducted using only deionized (DI) water. The system operated under a vacuum at approximately 2.4

inHg and a temperature of 42 °C. This compares well with CRC Steam Tables [13] that show a boiling point of water at 108.0 °F (42.2 °C) at 1.2030 psia (2.45 inHg). The boil-off rate was approximately 5.2 mL/min. All equipment and instruments that made up the test apparatus operated as expected, as indicated by calibrated instrument readings and no evidence of pressure leaks.

The simulant used for the EMF testing was previously prepared and analyzed by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) for metals and Ion Chromatography for anions and cations (ammonium). Before bench-scale EMF evaporator testing began, the approximate 4.9 liters of simulant was filtered using a 0.2 micron filter as shown in Figure 2-4 below. The feed simulant was filtered to remove insoluble solids, although none were visible prior to filtering. Similarly, no solids were visible after filtering the simulant.



Figure 2-4. Feed Simulant Filtration Step

As shown in the image, a vacuum (vacuum line is attached at the orange screw-on lid) was used to filter the simulant through the filter media. After filtering, there was 4,866.1 g of feed simulant, which was weighed into a separate container for use.

Xiameter ACP-3183 (lot# 0008884021) antifoam was added to the feed simulant during the evaporation (antifoam selection was specified by WRPS). The antifoam was diluted to 5% in DI water, and was cloudy white in appearance. To prepare the 5% antifoam solution, 3.0 mL of antifoam was mixed with 57 mL of DI water. The ACP-3183 mixed well with the DI water. For each 100 mL of simulant fed to the evaporator pot, 200  $\mu$ L of diluted antifoam solution was added. This maintained a concentration of 100 mg/L of undiluted antifoam in the simulant throughout the experiment. Figure 2.5 is a picture of the concentrated Xiameter ACP-3183 antifoam, which is milky in appearance.

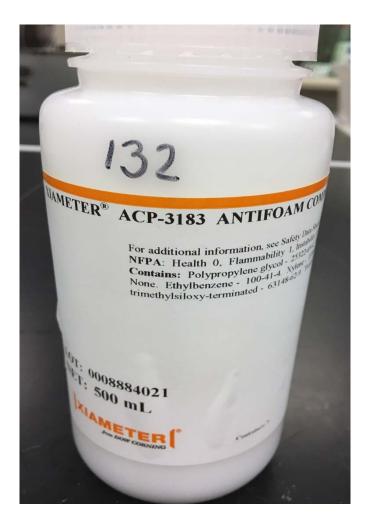



Figure 2-5. Xiameter ACP-3183 Antifoam

Initially, 400 mL of feed simulant with 800  $\mu$ L of diluted antifoam was loaded into the evaporator pot. The pressure was adjusted to approximately 2.4 inches of mercury (inHg)

(equivalent 8.1 kPa; 60 torr, absolute, comparable to conditions used for previous boil-down tests performed by SRNL [8, 14] and the Hanford 242-A evaporator [9].

The simulant was heated using a hot plate and stirred continuously with a glass-coated magnetic stir-bar. The pressure in the system was 2.4 inHg and the solution boiled at approximately 42 °C. In order to achieve the desired concentration factor of 6.5X, and mimic a semi-continuous process, each time ~200 mL of condensate was collected ~200 mL of fresh simulant was added to the evaporator pot. During the first "concentration phase", a portion of the simulant was initially concentrated to the target concentration factor. As this phase progressed, after evaporating 200 mL from the evaporator pot, an additional 200 mL of (room temperature) feed simulant and 400 µL of diluted anti-foam was added to the pot to replenish the liquid level. This cycle was repeated until 1400 mL of simulant was evaporated down to an equivalent of 216 mL (accounting for extracted samples). At this point, boiling was paused and a  $\sim 100$  mL sample was withdrawn from the evaporator pot, and the accumulated condensate was collected. These first concentrate and condensate samples were used in the organometallic analyses because they had been at evaporator temperature for the longest period of time of any subsequent sample and so was believed to be most likely to contain these species, if produced under these conditions. Fresh simulant was then added to the remaining concentrate in the evaporator pot, and boiling resumed. This was the "production phase," where some concentrated liquid from the evaporator pot was periodically removed, and fresh simulant and antifoam were added to restore the liquid level. At the end of the test campaign, the concentrated simulant density was 1.1 g/mL (including trace insoluble solids that formed after the liquid cooled).

Six 100 mL concentrated samples, collected from the pot at various points during the campaign when the concentration was projected to correspond to 6.5X, are detailed in Table 2-2. Correspondingly, seven condensate samples  $\sim$ 400-650 mL each) were pulled during the experiment. Each aliquot of feed and condensate were weighed and those masses were used to calculate concentrations in the evaporator pot to ensure that the experiment reached as close to the target 6.5X concentration factor as possible. In practice, the measured final concentration factors varied due to the ability to control the sample volume, and ranged from 6.26– 6.52X and averaged 6.40X, based on volume, for the six concentrated pot samples collected. (An example calculation is shown in Appendix A)

| Sample Name        | Cumulative Total<br>Simulant added to<br>pot* (mL) | Cumulative<br>Condensate & KOP<br>collected (mL) | Concentrate<br>density (g/mL) | Concentration<br>Factor |
|--------------------|----------------------------------------------------|--------------------------------------------------|-------------------------------|-------------------------|
| Concentrate Pull 1 | 1402.8                                             | 1183.8                                           | 1.09                          | 6.41X                   |
| Concentrate Pull 2 | 2101.4                                             | 1773.1                                           | 1.11                          | 6.26X                   |
| Concentrate Pull 3 | 2802.8                                             | 2364.3                                           | 1.12                          | 6.43X                   |
| Concentrate Pull 4 | 3504.3                                             | 2954.3                                           | 1.11                          | 6.29X                   |
| Concentrate Pull 5 | 4205.7                                             | 3547.3                                           | 1.10                          | 6.47X                   |
| Concentrate Pull 6 | 4706.7                                             | 3971.4                                           | 1.10                          | 6.52X                   |
|                    |                                                    |                                                  | Average                       | 6.40X                   |

 Table 2-2. Pot Sample Concentrations

\*Includes 200 µL of diluted antifoam added per 100 mL of feed simulant

#### 2.2 Quality Assurance

Requirements for performing reviews of technical reports and the extent of review are established in manual E7 2.60. SRNL documents the extent and type of review using the SRNL Technical Report Design Checklist contained in WSRC-IM-2002-00011, Rev. 2. Results are recorded in Electronic Laboratory Notebook #O8825-00233-02. This report documents completion of Tasks 3.2 and 3.3 in the Task Technical and Quality Assurance Plan SRNL-RP-2015-01038, Rev. 1 [5].

#### 3.0 Results and Discussion

#### 3.1 Evaporator operation

The evaporator was operated under vacuum at approximately 2.4 inHg and boiling at approximately 42 °C for the entire test campaign. The temperature of the simulant and the pressure in the system was measured in the evaporator pot. The boil-off rate of the condensate was approximately 5.2 mL/min during the simulant test. As shown in Figure 3-1 the variance in pressure was minor over the entire test campaign, ranging from 2.21 inches Hg to 2.47 inches Hg. Likewise, only minor fluctuations in the temperature were observed. After initial heating, temperature readings ranged from 42.10 °C to 45.20 °C.

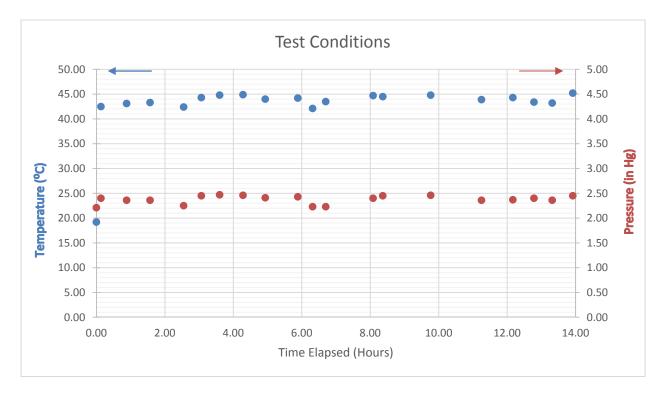



Figure 3-1. Test Conditions, Temperature and Pressure

Figure 3-2 is an image of the simulant boiling in the evaporator pot. The evaporator pot was typically insulated during operation, but insulation on the side of the evaporator pot was periodically moved to allow for visual observation. The liquid continued to boil during these brief evolutions and did not interrupt the experiment.



Figure 3-2. Simulant Boiling in the Evaporator Pot

The first 100 mL concentrate sample was pulled from the evaporator pot after boiling down (concentrating) to 6.41X, within ~1% of the target of 6.5X. This concentration was reached after the addition of approximately 1,400 mL of simulant and the collection of approximately 1,180 mL of condensate. All six of the 100 mL concentrate samples were taken from the pot at consecutive points when the concentration factor was re-established to ~6.5X. An image of the six samples is shown in Figure 3-3. Each 100 mL sample was removed from the evaporator pot using a large syringe to draw the liquid through stainless steel tubing into a glass bottle, and the sample was then weighed and the density was measured to obtain the actual volume of liquid withdrawn. All samples of liquid were collected and stored in glass bottles with polytetrafluoroethylene-lined caps.



Figure 3-3. Evaporator Concentrate Samples (~6.4X concentrated)

The evaporator was shut down seven times to collect the condensate from the condensate tank. Other than Condensate Pull 1, all the condensate was collected when the concentrate in the evaporator pot was calculated to be at 6.5X. Condensate Pull 1 was collected midway through the initial concentration phase, so the pot was not yet at 6.5X. Figure 3-4 is an image of the seven collections from the Condensate Tank. All of the condensate samples were clear and colorless.

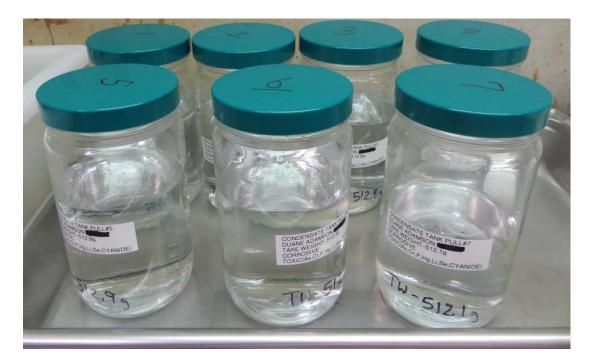



Figure 3-4. Condensate Samples Removed from Condensate Tank during the Test

At the end of the test campaign, the KOP had collected a total of 55.32 grams of condensate. The condensate collected in the KOP was collected each time the Condensate Tank was emptied. Typically, 7 to 8 mL were collected from the thawed KOP each time. The KOP condensate was kept in an ice chest to prevent the sample from warming up to room temperature, which could have allowed loss of semi-volatile species, such as the organomercury compounds. The KOP sample was stored in ice as it was accumulated, and the subsample sent for organomercury analysis was stored in a refrigerator overnight and shipped in coolers packed with gel packs and shipped via overnight delivery to the analytical laboratory. The KOP condensate was clear and colorless as depicted in Figure 3-5. In the image, the sample bottle appears frosted, but this is due to condensation from the air since it had just been removed from the ice chest. The KOP sample was also submitted for analysis for volatile organics, ammonia, total inorganic and organic carbon, and organomercury compounds.



Figure 3-5. Knockout Pot Sample Collected

Figure 3-6 is an image of the concentrated bottoms in the EMF evaporator pot at the end of the test campaign. There were traces of insoluble black solids visible in the pot. After the concentrate cooled, the solution appeared slightly cloudy with white precipitates, probably due to the antifoam, since it was cloudy when introduced to the evaporator.

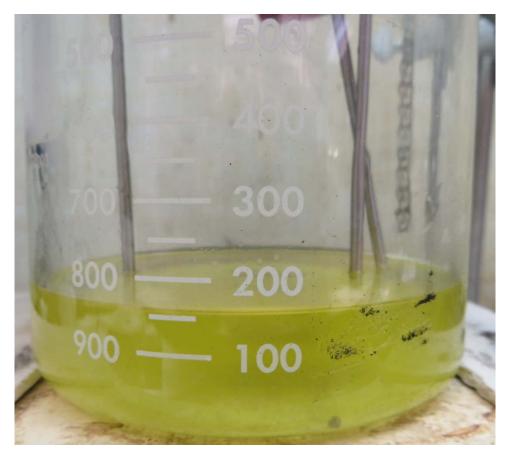



Figure 3-6. Evaporator Concentrate (~6.5X) at the End of Boil-down

A portion of the concentrate from the evaporator pot at the end of the test campaign was filtered to remove solids. Figure 3-7 is an image of the dried filter paper after filtering approximately 20 mL of the 6.5X concentrate. The filter paper was analyzed at the Process Science Analytical Laboratory in SRNL (PSAL) and using Scanning Electron Microscope scanning electron microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). It was concluded that it was not plausible to quantify the mass of insoluble solids because of the trace amount of insoluble solids versus the high soluble solids content, but is visually <<1 wt%. The insoluble solids did not dissolve in hydrofluoric acid at room temperature, and analysis of the HF solution did not indicate an increase in the relative amounts of Si or Zn.



Figure 3-7. Filter Paper (dried) after Filtering Concentrate

Figure 3-8 is from SEM/EDS analysis. It was determined that the dark particles were mostly Zn on the filter, as shown in Figure 3-9. There were also traces of Si that appears to be a fiber (probably from the glass fiber insulation).

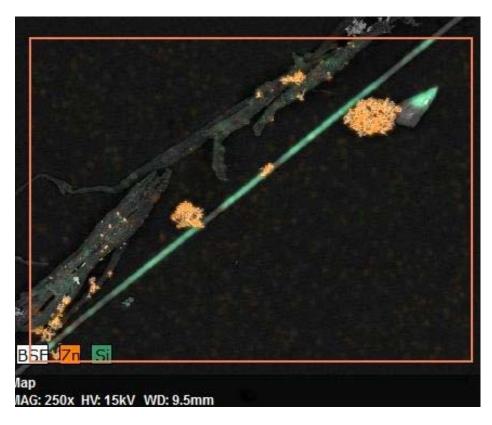



Figure 3-8. EDS Map of Solid on Concentrate Filter Paper

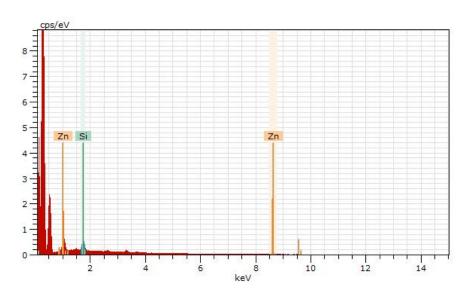



Figure 3-9. EDS Analysis of Solids on Concentrate Filter Paper

#### 3.2 Sample Analysis Results

Evaporator Concentrate 1, Concentrate 3, Concentrate 5, and Concentrate 6 were analyzed for the same chemical species as the original EMF simulant. The concentrations of the individual species (metals, cations, and anions) are mainly uniform across the four concentrate samples, as depicted in Figure 3-10 and Figure 3-11. Weight percent (wt%) solids and the pH of the concentrate samples were also consistent. Weight percent solids ranged from 15.2% to 15.7% and the pH measurements ranged from 11.5-11.7.

| Species                      | Evapo<br>Concen                                                                                   |              |                   |              |                   |              | vaporator<br>ncentrate 6 |              |
|------------------------------|---------------------------------------------------------------------------------------------------|--------------|-------------------|--------------|-------------------|--------------|--------------------------|--------------|
|                              | Results<br>(mg/L)                                                                                 | Std.<br>Dev. | Results<br>(mg/L) | Std.<br>Dev. | Results<br>(mg/L) | Std.<br>Dev. | Results<br>(mg/L)        | Std.<br>Dev. |
| В                            | 5.82E+03                                                                                          | 9.00E+01     | 5.70E+03          | 2.00E+02     | 6.18E+03          | 1.49E+02     | 6.06E+03                 | 2.05E+02     |
| Cr                           | 2.01E+02                                                                                          | 3.08E+00     | 2.05E+02          | 6.74E-01     | 2.12E+02          | 1.30E+01     | 2.09E+02                 | 1.05E+01     |
| K                            | 1.64E+04                                                                                          | 2.12E+02     | 1.60E+04          | 7.07E+01     | 1.59E+04          | 0.00E+00     | 1.55E+04                 | 7.07E+01     |
| Li                           | 2.01E+02                                                                                          | 1.90E+00     | 2.06E+02          | 1.07E-01     | 2.13E+02          | 1.14E+01     | 2.11E+02                 | 9.69E+00     |
| Na                           | 4.56E+04                                                                                          | 7.07E+01     | 4.38E+04          | 2.12E+02     | 4.40E+04          | 2.12E+02     | 4.29E+04                 | 7.07E+01     |
| Si                           | 2.13E+01                                                                                          | 1.05E+00     | 3.83E+01          | 3.93E+00     | 1.96E+01          | 1.18E-01     | 1.72E+01                 | 1.31E+00     |
| Zn                           | 3.14E+02                                                                                          | 7.47E+00     | 3.54E+02          | 1.21E+01     | 3.70E+02          | 2.30E+01     | 3.78E+02                 | 1.70E+01     |
| As                           | 3.82E+02                                                                                          | 3.35E+00     | 3.90E+02          | 6.00E+00     | 4.03E+02          | 2.39E+01     | 4.06E+02                 | 1.89E+01     |
| Se                           | 3.65E+02                                                                                          | 4.90E+00     | 3.74E+02          | 5.15E+00     | 3.84E+02          | 2.41E+01     | 3.84E+02                 | 2.95E+01     |
| Hg                           | 9.59E+01                                                                                          | 8.47E-01     | 9.34E+01          | 6.92E-01     | 9.34E+01          | 1.66E+00     | 8.81E+01                 | 1.67E-01     |
| $\mathrm{NH_4}^+$            | 9.17E+01                                                                                          | -            | NA                | -            | NA                | -            | 7.88E+01                 | -            |
| Cl-                          | 1.10E+04                                                                                          | 7.07E+01     | 1.11E+04          | 2.12E+02     | 1.11E+04          | 2.12E+02     | 1.12E+04                 | 7.07E+01     |
| F                            | 2.57E+03                                                                                          | 7.07E+00     | 2.59E+03          | 5.66E+01     | 2.58E+03          | 4.24E+01     | 2.61E+03                 | 2.12E+01     |
| NO <sub>3</sub> -            | 6.15E+03                                                                                          | 7.07E+00     | 6.20E+03          | 1.30E+02     | 6.17E+03          | 9.19E+01     | 6.21E+03                 | 6.36E+01     |
| NO <sub>2</sub> <sup>-</sup> | 3.67E+04                                                                                          | 7.17E+01     | 3.69E+04          | 7.07E+02     | 3.69E+04          | 4.96E+02     | 3.72E+04                 | 4.24E+02     |
| $SO_4^{-2}$                  | 1.51E+04                                                                                          | 0.00E+00     | 1.53E+04          | 3.54E+02     | 1.52E+04          | 1.41E+02     | 1.53E+04                 | 1.41E+02     |
| oxalate                      | 3.30E+02                                                                                          | 7.11E-01     | 3.31E+02          | 8.49E+00     | 3.31E+02          | 3.54E+00     | 3.33E+02                 | 4.24E+00     |
| Wt% solids                   | 1.52E+01                                                                                          | -            | 1.57E+01          | -            | NA                | -            | 1.57E+01                 | -            |
| pН                           | 1.15E+01                                                                                          | -            | 1.15E+01          | -            | NA                | -            | 1.17E+01                 | -            |
| NA = not analyz              | NA = not analyzed; - = standard deviation is not applicable, since these were single measurements |              |                   |              |                   |              |                          |              |

#### Table 3-1. Concentrate Analytical Results

The average concentrations calculated from the four concentrate samples are shown in Table 3-2 with the expected analytical results (based on the measured EMF simulant composition multiplied by a concentration factor of 6.5). The average concentrations generally align with the

expected results, except for Li, Si, Zn, and Hg. In general, these results help confirm that the concentration in the evaporator pot was consistently close to 6.5X as concentrate samples were pulled.

| Analytes/Analysis                                                                                                                  | Aver<br>Concer    | 0            | Expected<br>6.5X Concentr | Percent of                                |                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|---------------------------|-------------------------------------------|-----------------|--|--|
|                                                                                                                                    | Results<br>(mg/L) | Std.<br>Dev. | Results<br>(mg/L)         | Std.<br>Dev.                              | Target          |  |  |
| В                                                                                                                                  | 5.94E+03          | 2.16E+02     | 6.00E+03                  | 1.48E+02                                  | 99.0            |  |  |
| Cr                                                                                                                                 | 2.07E+02          | 4.79E+00     | 2.23E+02                  | 2.67E+00                                  | 92.7            |  |  |
| K                                                                                                                                  | 1.59E+04          | 3.68E+02     | 1.55E+04                  | 4.14E+01                                  | 102             |  |  |
| Li                                                                                                                                 | 2.08E+02          | 5.38E+00     | 2.74E+02                  | 3.12E+00                                  | 75.9            |  |  |
| Na                                                                                                                                 | 4.40E+04          | 1.12E+03     | 4.40E+04                  | 5.27E+02                                  | 100             |  |  |
| Si                                                                                                                                 | 2.41E+01          | 9.61E+00     | 3.97E+01                  | 1.69E+00                                  | 60.8            |  |  |
| Zn                                                                                                                                 | 3.54E+02          | 2.85E+01     | 4.71E+02                  | 6.78E+01                                  | 75.1            |  |  |
| As                                                                                                                                 | 3.95E+02          | 1.12E+01     | 4.07E+02                  | 2.11E+01                                  | 97.1            |  |  |
| Se                                                                                                                                 | 3.77E+02          | 9.14E+00     | 3.82E+02                  | 6.57E+00                                  | 98.6            |  |  |
| Hg                                                                                                                                 | 9.27E+01          | 3.29E+00     | 8.39E+01                  | 2.41E+01                                  | 110             |  |  |
| $\mathrm{NH_4}^+$                                                                                                                  | 8.53E+01          | 9.12E+00     |                           | actor of 6.5 not app<br>mmonia volatility | plicable due to |  |  |
| Cl <sup>-</sup>                                                                                                                    | 1.11E+04          | 8.16E+01     | 1.09E+04                  | 3.25E+01                                  | 101             |  |  |
| F                                                                                                                                  | 2.59E+03          | 1.68E+01     | 2.65E+03                  | 1.38E+01                                  | 97.6            |  |  |
| NO <sub>3</sub> <sup>-</sup>                                                                                                       | 6.18E+03          | 2.87E+01     | 5.77E+03                  | 2.84E+02                                  | 107             |  |  |
| $NO_2^-$                                                                                                                           | 3.69E+04          | 2.27E+02     | 3.84E+04                  | 3.42E+02                                  | 96.2            |  |  |
| $SO_4^{-2}$                                                                                                                        | 1.52E+04          | 8.54E+01     | 1.64E+04                  | 6.26E+02                                  | 92.7            |  |  |
| VOA                                                                                                                                | < 0.25            | -            | N/A                       | N/A                                       | N/A             |  |  |
| Total Carbon                                                                                                                       | 2.12E+02          | 8.50E+00     | N/A                       | N/A                                       | N/A             |  |  |
| Total Inorganic Carbon                                                                                                             | 1.46E+02          | 6.03E+00     | N/A                       | N/A                                       | N/A             |  |  |
| Total Organic Carbon                                                                                                               | 6.60E+01          | 2.50E+00     | N/A                       | N/A                                       | N/A             |  |  |
| VOA = volatile organic analysis; NA = not analyzed; - = standard deviation is not applicable, since these were single measurements |                   |              |                           |                                           |                 |  |  |

 Table 3-2 Average Concentrate and Expected Analytical Results

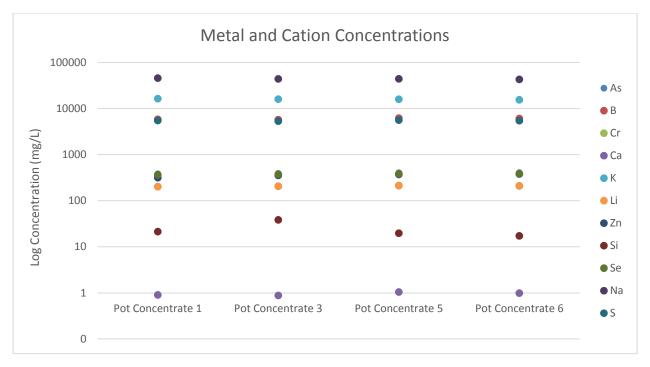



Figure 3-10. Concentrated Simulant, Cations

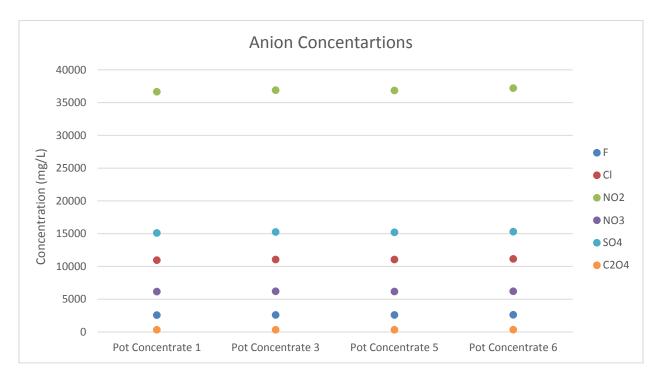
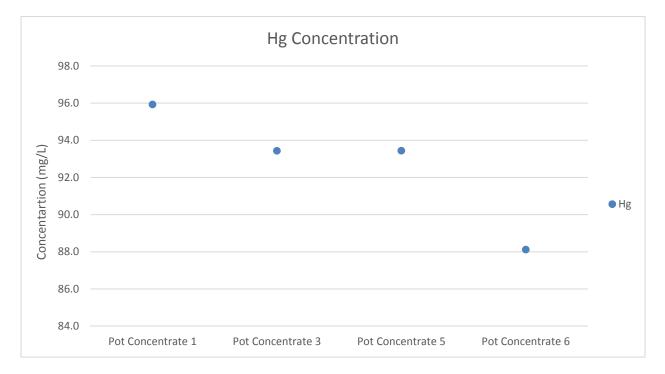





Figure 3-11. Concentrated Simulant, Anions

The mercury concentrations obtained from the same concentrate samples are depicted in Figure 3-12. The mercury concentration ranged from 95.9 mg/L (Pot Concentrate 1) to 88.1 mg/L (Pot Concentrate 6).





The measured concentrations of components in the simulant are tabulated in Appendix B. As discussed above, the contents of the condensate tank were emptied seven times during the run and stored in separate glass bottles. These storage bottles were subsampled and 20 mL of each was submitted for analysis. Table 3-3 gives the summary of results from the condensate analysis. The silicon in the condensate may have resulted from the glassware utilized in the EMF evaporator system or the glass storage bottles. Trace amounts of inorganic carbon are attributed to absorption of carbon dioxide from the air. All other analytes were below detection.

|              | Na                |              | Si                |              | NH4+              | pН             | VOA    | SVOA  | TC                   | TIC  | TOC |
|--------------|-------------------|--------------|-------------------|--------------|-------------------|----------------|--------|-------|----------------------|------|-----|
| Sample       | Results<br>(mg/L) | Std.<br>Dev. | Results<br>(mg/L) | Std.<br>Dev. | Results<br>(mg/L) | Results (mg/L) |        |       | Results<br>(µg C/mL) |      |     |
| Condensate 1 | 2.91              | 0.072        | 3.70              | 0.132        | 562               | 11             | < 0.05 | < 0.1 | < 3                  | 2.00 | < 1 |
| Condensate 2 | 3.80              | 0.292        | 5.01              | 0.812        | 706               | 10.9           | < 0.05 | < 0.1 | < 3                  | 1.88 | < 1 |
| Condensate 3 | 2.86              | 0.024        | < 1.00            | -            | 545               | 10.9           | < 0.05 | < 0.1 | < 3                  | 2.08 | < 1 |
| Condensate 4 | 3.54              | 0.029        | 7.03              | 0.054        | 552               | 10.9           | < 0.05 | < 0.1 | < 3                  | 1.80 | < 1 |
| Condensate 5 | 3.98              | 0.009        | 5.06              | 0.078        | 555               | 10.8           | < 0.05 | < 0.1 | < 3                  | 1.92 | < 1 |
| Condensate 6 | 3.69              | 0.005        | < 1.00            | -            | 580               | 10.9           | < 0.05 | < 0.1 | < 3                  | 1.32 | < 1 |
| Condensate 7 | 3.26              | 0.042        | 4.50              | 0.409        | 565               | 10.8           | < 0.05 | <0.1  | < 3                  | 1.92 | < 1 |

Table 3-3. Condensate Analytical Results

VOA = volatile organic analysis; SVOA = semivolatile organic analysis; TC = total carbon; TIC = total inorganic carbon, TOC = total organic carbon

The condensate ICP-OES results gave very low to below detectable levels of many of the constituents in the simulant, shown in Appendix B. Since sodium is the dominant species, any entrainment would be most easily detected by analyzing sodium. Other non-volatile components would be expected to have comparable entrainment behavior, and thus have comparable decontamination factors, but are beneath the analysis detection limits so cannot be calculated. The sodium concentration in the condensate is less than 4 mg/L. Therefore, the decontamination factor (i.e., evaporator concentrate concentration divided by condensate concentration) for sodium exceeds 11,000.

Ammonium  $(NH_4^+)$  was present in all the condensate samples as shown in Figure 3-13. The ammonia concentration typically ranged from 545 mg/L to 580 mg/L, except for Condensate 2. In this case, the ammonium concentration was 706 mg/L, but the reason this one is higher has not been identified.

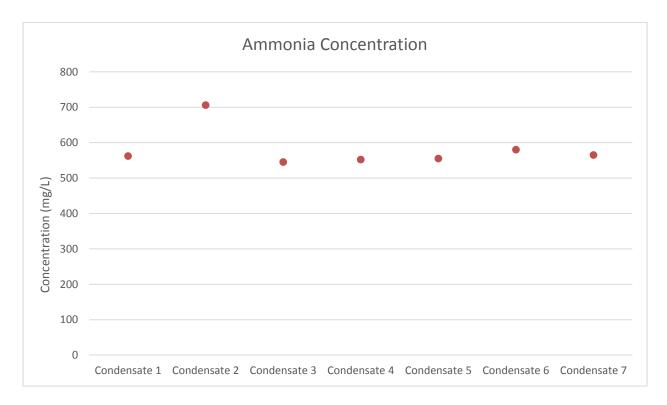



Figure 3-13. Ammonia Concentration in Condensate

Table 3-4 depicts a total volume and ammonium mass balance. A total of 4700 mL of simulant, containing 4122 mg of ammonium, was fed to the evaporator over the course of testing. From the condensate, KOP, and concentrate, 4729 mL of liquid was recovered. This liquid volume corresponds to a percent recovery of 100.6%. Due to its volatility, it was predicted that virtually all ammonium would convert to ammonia and evaporate and be present in the condensate. The condensate and concentrate, however, only contained approximately 2309 mg and 64 mg of ammonium, respectively. This corresponds to a percent recovery of 57.6%. Water and ammonia

are the two major volatile species in the experiment. Table 3-4 shows an excellent water balance, as calculated by volume. In contrast, ammonium shows a significant loss. The imbalance is unlikely due to analytical error in ammonium measurement in the condensate since the condensate had little other than ammonium and water and therefore should not have had interferences. There was instead perhaps interference in the evaporator concentrate analysis, since it has a wide range of potentially interfering species, or a reaction that caused its loss. The reason for the poor mass balance for ammonium is not currently known. Prior work [14] had good mass balance, and demonstrated that essentially all of the ammonia partitioned to the condensate.

| Sample                                        | Total Liquid<br>Volume<br>(mL) | NH4+<br>(mg/L)        | NH4+<br>(mg)    |  |
|-----------------------------------------------|--------------------------------|-----------------------|-----------------|--|
| Simulant + antifoam                           | 4709                           | 877                   | 4122            |  |
| Condensate 1                                  | 596                            | 562                   | 334             |  |
| Condensate 2                                  | 573                            | 706                   | 404             |  |
| Condensate 3                                  | 583                            | 545                   | 317             |  |
| Condensate 4                                  | 584                            | 552                   | 322             |  |
| Condensate 5                                  | 583                            | 555                   | 324             |  |
| Condensate 6                                  | 586                            | 580                   | 339             |  |
| Condensate 7                                  | 419                            | 565                   | 236             |  |
| Knockout Pot                                  | 55                             | 600                   | 33              |  |
| Concentrate                                   | 750 <sup>1</sup>               | <b>85<sup>2</sup></b> | 64 <sup>2</sup> |  |
| SUM (Condensate,<br>Knockout,<br>Concentrate) | 4729                           |                       | 2373            |  |
| Percent Recovery                              | 100.4%                         | -                     | 57.6%           |  |

#### Table 3-4. Total Volume and Ammonium Balance

<sup>1</sup> Sum of collected concentrate

<sup>2</sup> Average value

The volume (55.32 mL) of condensate in the Knockout Pot was collected over time during the test campaign. Results of the analysis of the condensate collected in the knockout pot are shown in Table 3-5. The ammonium concentration is in line with the condensate samples. The extreme cold of the KOP did not change the ammonium to water ratio in KOP concentrate, indicating that ammonia probably did not exit the system. Physical loss of ammonia appears unlikely.

A Gas Chromatography-Mass Spectroscopy (GC-MS) of the KOP sample assigned the volatile organic species as two acrylate compounds based on the fragmentation pattern of the molecules in the ionizer. Whether these are actually the compounds present, or some similar species is not known. The origin of these species are not known, but could be due to trace organic materials in the system, such as polymeric bottle cap liners, stopcock grease, antifoam, or plastic tubing that connected the KOP to the vacuum pump.

| Analyte/Analysis                | Concentration<br>(mg/L) | % UNC    |  |  |  |
|---------------------------------|-------------------------|----------|--|--|--|
| $\mathrm{NH_4}^+$               | 600                     | 10       |  |  |  |
| Methyl Acrylate                 | 1.3                     | 20       |  |  |  |
| Isobornyl<br>Acrylate           | 0.85                    | 20       |  |  |  |
| All other SVOA                  | < 0.01                  | 20       |  |  |  |
| VOA                             | < 0.05                  | 20       |  |  |  |
| Total Carbon                    | <8                      | 10       |  |  |  |
| Total Inorganic                 |                         |          |  |  |  |
| Carbon                          | 7.2                     | 10       |  |  |  |
| Total Organic                   |                         |          |  |  |  |
| Carbon                          | 10                      |          |  |  |  |
| VOA = volatile organic analysis |                         |          |  |  |  |
| SVOA = semivolatile             |                         |          |  |  |  |
| %UNC = percent unc              | ertainty; 1 standard d  | eviation |  |  |  |

Table 3-5. Knockout Pot Analysis Results

Table 3-6 and Table 3-7 are summary tables of the analysis that was performed by Eurofins Frontier Global Sciences Inc. (Bothell, WA). Details of the analysis are provided in Appendix C. The samples were prepared by subsampling the liquids and diluting them to the vendor-specified concentration. The water used for dilution, and bottles used for shipping were provided by Eurofins Frontier Global Sciences Inc. Samples for monomethyl mercury and inorganic arsenic were diluted into 0.18% degassed hydrochloric acid. All other samples were diluted into water and shipped in either clear or amber bottles, as specified by Eurofins. The bottles were shipped overnight in coolers packed with frozen gel packs in an attempt to maintain their temperature at 4 °C. One of the coolers did not arrive in the overnight shipment, and was not received by Eurofins until three days later. The temperature of the samples in that cooler upon arrival was 19.5 °C. Regardless of this, the samples in that cooler were analyzed as planned, since it is unlikely that significant changes would have occurred during storage.

| Analyte              | Sample Description        | Dilution<br>Corrected<br>Concentration<br>(mg/L) | Std. Dev. |
|----------------------|---------------------------|--------------------------------------------------|-----------|
|                      | EMF Simulant w/o Hg       | 6.43E+01                                         | -         |
|                      | EMF Simulant w/ Hg        | 7.05E+01                                         | 3.39E+00  |
| Total Arsenic        | EMF Concentrate (Bottoms) | 4.37E+02                                         | 3.92E+01  |
|                      | EMF Condensate            | 2.9E-02                                          | 1.8E-04   |
|                      | EMF Knockout pot          | 1.3E-02                                          | 1.9E-04   |
|                      | EMF Simulant w/o Hg       | 5.99E+01                                         | -         |
|                      | EMF Simulant w/ Hg        | 4.98E+01                                         | 5.84E+00  |
| Inorganic<br>Arsenic | EMF Concentrate (Bottoms) | 3.11E+02                                         | 4.35E+00  |
| Aiseine              | EMF Condensate            | 1.01E-02                                         | 7.95E-04  |
|                      | EMF Knockout pot          | 8.61E-04                                         | 2.90E-04  |
|                      | EMF Simulant w/o Hg       | 1.55E-02                                         | -         |
|                      | EMF Simulant w/ Hg        | 1.04E+01                                         | 7.33E-01  |
| Total Mercury        | EMF Concentrate (Bottoms) | 7.87E+01                                         | 8.34E+00  |
|                      | EMF Condensate            | 2.83E-03                                         | 3.63E-05  |
|                      | EMF Knockout pot          | 1.08E-03                                         | 5.85E-05  |
|                      | EMF Simulant w/o Hg       | 9.87E-03                                         | -         |
|                      | EMF Simulant w/ Hg        | 1.02E+01                                         | 6.92E-01  |
| Dissolved            | EMF Concentrate (Bottoms) | 7.06E+01                                         | 9.37E+00  |
| Mercury              | EMF Condensate            | 2.62E-03                                         | 3.06E-05  |
|                      | EMF Knockout pot          | 8.51E-04                                         | 5.61E-05  |
|                      | EMF Simulant w/o Hg       | 1.15E-02                                         | -         |
|                      | EMF Simulant w/ Hg        | 4.65E+00                                         | 8.09E-01  |
| Inorganic            | EMF Concentrate (Bottoms) | 2.94E+01                                         | 6.85E+00  |
| Mercury              | EMF Condensate            | 2.16E-03                                         | 3.56E-04  |
|                      | EMF Knockout pot          | 2.45E-04                                         | 9.82E-05  |
|                      | EMF Simulant w/o Hg       | 4.83E-03                                         | -         |
|                      | EMF Simulant w/ Hg        | 1.96E-02                                         | 2.28E-02  |
| Mercury (0)          | EMF Concentrate (Bottoms) | 7.20E-02                                         | 9.03E-03  |
|                      | EMF Condensate            | 2.01E-04                                         | 1.12E-04  |
|                      | EMF Knockout pot          | 1.08E-04                                         | 3.08E-05  |

## Table 3-6. Eurofins Sample Analysis

The difference between the arsenic and inorganic arsenic measurements were intended to reveal if any organoarsenic compounds formed. The total arsenic for one sample of EMF simulant

w/Hg was 70.5 mg/L of which 49.8 mg/L was inorganic arsenic, which would suggest some organoarsenic had formed. However, this is not possible, since these are feed samples, and no organic compounds containing methyl groups had been added at that point, only oxalate ion. The EMF concentrate (bottoms) sample indicates 437 mg/L of arsenic and 311 mg/L of inorganic arsenic. This suggests that an organoarsenic compound was present, but is not conclusive, since these measurements are indirectly derived by difference, rather than directly by a quantitative organoarsenic method. Furthermore, the Relative Percent Difference (RPD) for the method for total arsenic measurement is 20%, and 35% for the inorganic arsenic, not including the error due to these large dilutions. The largest difference in the results are between the total and inorganic arsenic for the EMF Simulant with Hg, with 70.5 mg/L for the total and 49.8 mg/L for the inorganic arsenic. Applying the RPD to both of these values shows that the range of the results overlap, indicating that the total and inorganic arsenic concentrations are not statistically different, within the quality control limits. Further, inspection of the inorganic arsenic measurements reveals that the results of the EMF Concentrate sample was 311 mg/L, which is 6.2X the EMF Simulant w/ Hg (49.8 mg/L). The same ratio of 6.2X was measured for the total arsenic in EMF concentrate (437 mg/L) versus EMF simulant w/Hg (70.5 mg/L). Prior to addition of organic antifoam and evaporation, it was not possible for organoarsenic compounds to be present, so it is not possible that this could indicate organoarsenic compounds. Since the results indicate roughly the appropriate ratio of concentrations of total arsenic and inorganic arsenic in the evaporator feed to evaporator concentrate (6.2X vs. 6.4X), this further indicates that the difference between total arsenic and inorganic arsenic is due to analysis variance and not organoarsenic compounds.

The total soluble, dissolved, and inorganic mercury measurements indicate a small background of mercury contamination in the chemicals used to prepare the simulant, with  $\sim 0.02$  mg/L in the simulant prepared without mercury. According to correspondence from Eurofins, this is not unusual. The total soluble and dissolved mercury indicate that the concentration in the EMF simulant with mercury was about as expected at  $\sim 10$  mg/L, however, the inorganic mercury was only half of what was expected, which should have also been  $\sim 10 \text{ mg/L}$ . The reason for this is not known, but is not due to the presence of other forms of mercury, since no methylated organic chemicals had been added at this point, and the mercury (0) measurement does not indicate that any of the mercuric nitrate added was reduced. Similar to the organoarsenic analysis results, the total and dissolved mercury are roughly twice the inorganic mercury analysis result, suggesting an organomercury compound. However, there are differences in the preparation of the total and soluble mercury samples before the analysis. During sample preparation, the total and soluble mercury samples are pre-oxidized with bromine monochloride, and then that solution is reduced with hydroxylamine hydrochloride, followed by stannous chloride addition that converts the mercury to metallic form for vapor analysis. Conversely, the sample preparation for inorganic mercury involves only treatment with the stannous chloride. It is plausible that the hydroxylamine hydrochloride reduces some of the other transition metals in the total and soluble mercury samples, such as chromium, which would otherwise be reduced by the subsequent stannous chloride addition. Since the inorganic mercury analysis method does not have this hydroxylamine hydrochloride addition, those metals would not be pre-reduced, and the stannous chloride may be consumed by those other transition metals, preventing complete reduction of mercury by stannous ion and causing a lower than expected result. Further work would be needed to confirm that this is the cause. Regardless, it is evident from the speciation results that the unaccounted for mercury is not present as metallic, methyl, or dimethyl mercury, so is not

expected to be problematic since they are not volatile since they are not in the condensate at appreciable concentration. Further, similar to the organoarsenic discussion above, the ratios between dissolved mercury before and after evaporation (70.6 mg/L vs. 10.2 mg/L or 6.9X) and between inorganic mercury before and after evaporation (29.4 mg/L vs. 4.65 mg/L or 6.3X) indicates that the discrepancy is analysis variability or a matrix effect.

The total soluble, dissolved, and inorganic mercury are consistent for the EMF condensate and knockout pot samples, with  $\sim 0.002 \text{ mg/L}$  and  $\sim 0.0008 \text{ mg/L}$ , respectively. These are probably due to trace carryover. The mercury (0) is consistently low in all of these samples.

As indicated in Table 3-7, methyl mercury and dimethyl mercury were below detection limits in all but one sample. Methyl mercury was detected in the Knockout pot sample with a concentration of 0.127  $\mu$ g/L. This value, however, is below the reporting limit of 0.225  $\mu$ g/L and only slightly above the detection limit of 0.116  $\mu$ g/L. The results were reviewed by Eurofins Frontier Global Sciences Inc. and confirmed to be a valid, measured result.

| Analyte             | Sample Description             | Dilution<br>Corrected<br>Concentration<br>(µg/L) | Dilution<br>Corrected<br>Detection<br>Limit<br>(µg/L) | Dilution<br>Corrected<br>Reporting<br>Limit<br>(µg/L) |  |
|---------------------|--------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|
|                     | EMF Simulant w/o Hg            | < 5.80E+00                                       | 5.80E+00                                              | 1.13E+01                                              |  |
| Methyl              | EMF Simulant w/ Hg             | < 5.80E+00                                       | 5.80E+00                                              | 1.13E+01                                              |  |
| Mercury<br>(as      | EMF Concentrate (Bottoms)      | < 2.90E+01                                       | 2.90E+01                                              | 5.63E+01                                              |  |
| Mercury)            | EMF Condensate < 1.16E-01      |                                                  | 2.255.01                                              |                                                       |  |
|                     | EMF Knockout pot               | 1.27E-01                                         | 1.16E-01                                              | 2.25E-01                                              |  |
|                     | EMF Simulant w/o Hg < 6.00E-01 |                                                  | ( 00E 01                                              |                                                       |  |
| Dimethyl<br>Mercury | EMF Simulant w/ Hg             | < 6.00E-01                                       | 6.00E-01                                              | 1.00E+00                                              |  |
|                     | EMF Concentrate (Bottoms)      | < 3.00E+00                                       | 3.00E+00                                              | 5.00E+00                                              |  |
| wiciculy            | EMF Condensate                 | < 1.20E-02                                       | 1 205 02                                              | 2.005.02                                              |  |
|                     | EMF Knock out pot              | < 1.20E-02                                       | 1.20E-02                                              | 2.00E-02                                              |  |

**Table 3-7. Eurofins Sample Analysis** 

Table 3-8 is a summary table of the cyanide analysis on the samples. The analysis was performed by Southwest Research Institute (SWRI) located in Warner Robins, GA. Results of the feed to the EMF were as expected, containing  $\sim 14$  mg/L, although the EMF concentrate contained only 56.4 mg/L versus a calculated 91 mg/L. This is perhaps due to analytical analysis interference. The condensate samples did not contain appreciable cyanide, as expected, because the EMF feed is pH>12, which would tend to favor the cyanide ion and inhibit formation of semi-volatile hydrogen cyanide.

| Analyte       | Sample Description         | Result (mg/L) |
|---------------|----------------------------|---------------|
|               | EMF Feed w/o Hg            | 13.1*         |
| Total Cyanide | EMF Feed w/o Hg; Duplicate | 14.2*         |
|               | EMF Feed w/ Hg             | 15.4          |
|               | EMF Concentrate Bottoms 1  | 56.4          |
|               | EMF Condensate 2           | 0.222         |
|               | EMF Condensate 4           | 0.235         |

### Table 3-8. SWRI Sample Analysis, Cyanide

\*These are duplicate analysis of one sample;

Relative Percent Difference of duplicate analyses: 8.06%

## 4.0 Conclusions

- A simulant of the projected feed to the EMF evaporator at Hanford's WTP was successfully evaporated in a bench-scale EMF Evaporator.
- At the end of the test campaign, the simulant had been concentrated to the target 6.5X with a density of 1.10 g/mL.
- No insoluble solids were visible in the concentrate at the end of the test campaign when it was still hot, but it became slightly cloudy and trace amounts of dark insoluble solids appeared, estimated at much less than 1 wt%, as it cooled. SEM/EDS indicated that the solids contained zinc, and the cloudiness could be due to the antifoam.
- The evaporation caused most of the ammonia to strip and partition to the condensate stream, although the mass balance was poor for unknown reasons.
- Decontamination factor for this experiment exceeded 1.1E+04, based on sodium concentrations in the pot versus the condensate.
- Despite adding antifoam that contained organic chemicals, the mercury did not convert to dimethyl mercury and only trace amounts of monomethyl mercury were found in the knock-out pot sample, although it was below the analysis method reporting limit. Essentially all of the mercury remained in the pot in an inorganic form, >99.95%.
- While analysis results indicate that the majority of total arsenic and cyanide remained in the pot, there was detectable carryover of these into the condensate.
- Total and inorganic arsenic results in the evaporator feed and concentrate do not agree, and although this could indicate that some organoarsenic may have also formed in the evaporator pot, this is not considered likely. It cannot be confirmed that the total and inorganic concentrations are different because the analysis results overlap within the quality control limits. Also, the initial sample, prior to addition of organic chemicals that would be needed to form organoarsenic compounds, had the same ratio of total and inorganic arsenic, indicating that there is an interference in the analytical analysis method. Further, the analysis is an indirect method using a difference of total versus inorganic arsenic, and is not a direct method that would confirm its formation.
- A discrepancy was also seen with mercury analysis, where the total and soluble mercury were nearly twice the inorganic mercury measurement, suggesting another form was

present. However, the ratios of soluble and inorganic mercury in the evaporator feed and concentrate were very similar to the concentration factor, indicating that there are interferences in the analysis method. This is tentatively attributed to the sample preparation method that may not have consistently reduced all of the mercury to the metallic form prior to measurement.

### 5.0 Future Work

Further testing is underway to use the evaporator pot samples to perform immobilization tests. The objective of this testing is to determine if an immobilized waste form can be produced that passes the disposal criteria for the hazardous constituents.

### 6.0 References

- 1. Britton, M.D., Evaluation of EMF Evaporator Down Time Returns to Tank Farms, RPP-RPT-59257, Rev 0A, June, 2016
- 2. Vienna, J.D, Kim, D.S., Skorski, D.C., Matyas, J., Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts, PNNL-22631, EWG-RPT-003, July, 2013
- 3. Mann, F.M., Puigh, R.J., Khaleel, R., Finfrock, S., McGrail, B.P., Bacon, D.H., Serne, R.J., Risk Assessment Supporting the Decision on the Initial Selection of Supplemental ILAW Technologies, RPP-17675, Rev. 0, September 29, 2003.
- 4. Duignan, M.R., Adamson, D.J., Calloway, T.B., Fowley, M.D., Qureshi, Z.H., Steimke, J.L., Williams, M.R., Zamecnik, J.R., Final Report: RPP-WTP Semi-Integrated Pilot Plant, WSRC-TR-2005-00105, June, 2005.
- 5. McCabe, D.J., Task Technical and Quality Assurance Plan for (ICP) Secondary Liquid Waste Stream Technology Maturation, SRNL-RP-2015-01038, Rev. 1, November 16, 2016
- Abramowitz, H., Brandys, M., Cecil, D'Angelo, N., Matlack, K.S., Muller, I.S., Pegg, I.L., Callow, R.A., Joseph, I., Technetium Retention in WTP LAW Glass with Recycle Flow-Sheet: DM10 Melter Testing, VSL-12R2640-1, Rev. 0, RPP-54130, September, 2012
- 7. McCabe, D.J., Nash, C.A., Adamson, D.J., Formulation and Preparation of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant, SRNL-STI-2016-00313, Rev. 0, June, 2016.
- 8. Adamson, D.J., Nash, C.A. McCabe, D.J. Crawford, C.L., Wilmarth, W.R., Laboratory Evaporation Testing of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant, SRNL-STI-2013-00713, January, 2014
- 9. Tu, T.A., The Flammability Analysis and Time to Reach Lower Flammability Limit Calculations on the Waste Evaporation at 242-A Evaporator, RPP-CALC-29700, Rev. 1, October, 2007

- 10. 24590-BOF-3PS-MEVV-T0001, Rev 0, DFLAW Effluent Management Facility Process System (DEP) Evaporator System
- 11. Ammonia, National Research Council, University Park Press, Baltimore, MD (1979)
- 12. Volf, M.B. Chemical Approach to Glass, 1984, Glass Science and Technology, V. 7 Elsevier. QD139.G5 V6413 1984
- 13. CRC Handbook of Chemistry and Physics, 61<sup>st</sup> edition, 1980-1981, CRC Press, Boca Raton, FL
- Adamson, D.J., Nash, C.A., McClane D. L., McCabe D.J., Evaporation of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant, SRNL-STI-2016-00408, September, 20

## 7.0 Appendices

Appendix A. Concentration Factor Sample Calculation

Appendix B. PSAL Results

Appendix C. Analytical Development Results

Appendix D. Eurofins Results

Appendix E. Southwest Research Institute Results

### 7.1 Appendix A. Concentration Factor Sample Calculation

#### **Concentration Factors were calculated as follows:**

Concentration Factor = Incremental Feed Added (mL) / [Pre Sample Pot Level (mL) – Post Sample Pot Level (ml)\*]

Pre Sample Pot Level (mL) = Incremental Feed Added (mL) – Condensate & KOP Removed (mL) + Post Sample Pot Level (ml)\*]

Post Sample Level (mL) = Pre Sample Pot Level (mL) – Concentrate Removed (mL)

\*Post sample pot level from previous sample pull

### **Sample Calculations**

Concentrate Pull # 1:

Pre Sample Pot Level (mL) = 1402.8 mL - 1183.8 mL + 0 mL\* = 219.0 mL

Post Sample Level (mL) = 219.0 mL - 100 mL = 119.0 mL

Concentration Factor = 1402.8 mL / [219.0 mL - 0\* mL] = 6.41

Concentrate Pull # 2:

Pre Sample Pot Level (mL) = 701.4 mL - 589.3 mL + 119.0\* = 231.1 mL

Post Sample Level (mL) = 231.1 mL - 100 mL = 131.1 mL

Concentration Factor = 701.4 mL / [231.1 mL - 119.0\* mL] = 6.26

\*Post sample pot level from previous sample pull

## 7.2 <u>Appendix B. PSAL Results</u>

| Species/Analysis      | As    | В      | Ca    | Cr    | к       | Li    | Na           | S      | Se       | Si             | Zn       | Hg      | F      | Cl      | NO <sub>2</sub> | NO <sub>3</sub> | SO4     | C <sub>2</sub> O <sub>4</sub> | Total<br>Solids | рН         |
|-----------------------|-------|--------|-------|-------|---------|-------|--------------|--------|----------|----------------|----------|---------|--------|---------|-----------------|-----------------|---------|-------------------------------|-----------------|------------|
|                       | mg/L  | mg/L   | mg/L  | mg/L  | mg/L    | mg/L  | mg/L         | mg/L   | mg/L     | mg/L           | mg/L     | mg/L    | mg/L   | mg/L    | mg/L            | mg/L            | mg/L    | mg/L                          | %               | -          |
| Pot Concentrate 1-1   | 384   | 5750   | 0.796 | 204   | 16200   | 202   | 45500        | 5400   | 368      | 20.5           | 309      | 95.3    | 2560   | 10900   | 36600           | 6140            | 15100   | 329                           | 15.2            | 11.5       |
| Pot Concentrate 1-2   | 380   | 5890   | 1.00  | 199   | 16500   | 199   | 45600        | 5560   | 361      | 22.0           | 319      | 96.5    | 2570   | 11000   | 36700           | 6150            | 15100   | 330                           | NA              | NA         |
| Pot Concentrate 1-avg | 381.9 | 5820.0 | 0.9   | 201.4 | 16350.0 | 200.8 | 45550.0      | 5480.0 | 364.7    | 21.3           | 314.0    | 95.9    | 2565.0 | 10950.0 | 36650.0         | 6145.0          | 15100.0 | 329.5                         | -               | -          |
| Std. Dev.             | 3.35  | 98.99  | 0.15  | 3.08  | 212.13  | 1.90  | 70.71        | 113.14 | 4.90     | 1.05           | 7.47     | 0.85    | 7.07   | 70.71   | 70.71           | 7.07            | 0.00    | 0.71                          | -               | -          |
| Pot Concentrate 3-1   | 386   | 5840   | 0.854 | 205   | 15900   | 206   | 43600        | 5410   | 370      | 35.5           | 345      | 92.9    | 2630   | 11200   | 37400           | 6290            | 15500   | 337                           | 15.7            | 11.5       |
| Pot Concentrate 3-2   | 395   | 5560   | 0.898 | 206   | 16000   | 206   | 43900        | 5220   | 377      | 41.1           | 362      | 93.9    | 2550   | 10900   | 36400           | 6110            | 15000   | 325                           | NA              | NA         |
| Pot Concentrate 3-avg | 390.4 | 5700.0 | 0.9   | 205.0 | 15950.0 | 205.6 | 43750.0      | 5315.0 | 373.7    | 38.3           | 353.8    | 93.4    | 2590.0 | 11050.0 | 36900.0         | 6200.0          | 15250.0 | 331.0                         | -               | -          |
| Std. Dev.             | 5.99  | 197.99 | 0.03  | 0.67  | 70.71   | 0.11  | 212.13       | 134.35 | 5.15     | 3.93           | 12.09    | 0.69    | 56.57  | 212.13  | 707.11          | 127.28          | 353.55  | 8.49                          | -               | -          |
| Pot Concentrate 5-1   | 386   | 6280   | 1.06  | 203   | 15900   | 205   | 44100        | 5720   | 367      | 19.7           | 354      | 92.3    | 2550   | 10900   | 36500           | 6100            | 15100   | 328                           | NA              | NA         |
| Pot Concentrate 5-2   | 420   | 6070   | 1.02  | 221   | 15900   | 221   | 43800        | 5460   | 401      | 19.5           | 386      | 94.6    | 2610   | 11200   | 37200           | 6230            | 15300   | 333                           | NA              | NA         |
| Pot Concentrate 5-avg | 403.4 | 6175.0 | 1.0   | 211.8 | 15900.0 | 212.6 | 43950.0      | 5590.0 | 384.2    | 19.6           | 370.2    | 93.4    | 2580.0 | 11050.0 | 36850.0         | 6165.0          | 15200.0 | 330.5                         | -               | -          |
| Std. Dev.             | 23.93 | 148.49 | 0.02  | 12.96 | 0.00    | 11.42 | 212.13       | 183.85 | 24.10    | 0.12           | 22.60    | 1.66    | 42.43  | 212.13  | 494.97          | 91.92           | 141.42  | 3.54                          | -               | -          |
| Pot Concentrate 6-1   | 419   | 6200   | 0.998 | 216   | 15500   | 218   | 42800        | 5330   | 405      | 18.1           | 390      | 88.0    | 2590   | 11100   | 36900           | 6160            | 15200   | 330                           | 15.7            | 11.7       |
| Pot Concentrate 6-2   | 393   | 5910   | 0.970 | 201   | 15400   | 204   | 42900        | 5540   | 363      | 16.3           | 366      | 88.2    | 2620   | 11200   | 37500           | 6250            | 15400   | 336                           | NA              | NA         |
| Pot Concentrate 6-avg | 405.9 | 6055.0 | 1.0   | 208.8 | 15450.0 | 210.7 | 42850.0      | 5435.0 | 384.0    | 17.2           | 377.9    | 88.1    | 2605.0 | 11150.0 | 37200.0         | 6205.0          | 15300.0 | 333.0                         | -               | -          |
| Std. Dev.             | 18.88 | 205.06 | 0.02  | 10.45 | 70.71   | 9.69  | 70.71        | 148.49 | 29.53    | 1.31           | 16.95    | 0.17    | 21.21  | 70.71   | 424.26          | 63.64           | 141.42  | 4.24                          | -               | -          |
| Condensate 1-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 2.96         | <1.00  | <1.00    | 3.80           | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | < 0.10          | 11         |
| Condensate 1-2        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 2.86         | <1.00  | <1.00    | 3.61           | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | NA              | NA         |
| Condensate 1-avg      | -     | -      | -     | -     | -       | -     | 3.69         | -      | -        | 3.70           | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Std. Dev.             | -     | -      | -     | -     | -       | -     | 0.072        | -      | -        | 0.132          | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Condensate 2-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.59         | <1.00  | <1.00    | 5.58           | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | 0.2             | 10.9       |
| Condensate 2-2        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 4.00         | <1.00  | <1.00    | 4.44           | <1.00    | <0.100  | <100   | <100    | <100            | <500            | <500    | <100                          | NA              | NA         |
| Condensate 2-avg      | -     | -      | -     | -     | -       | -     | 3.80         | -      | -        | 5.01           | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Std. Dev.             | -     | -      | -     | -     | -       | -     | 0.292        | -      | -        | 0.812          | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Condensate 3-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 2.87         | <1.00  | <1.00    | <1.00          | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | 0.1             | 10.9       |
| Condensate 3-3        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 2.84         | <1.00  | <1.00    | <1.00          | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | NA              | NA         |
| Condensate 3-avg      | -     | -      | -     | -     | -       | -     | 2.86         | -      | -        | -              | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Std. Dev.             | -     | -      | -     | -     | -       | -     | 0.0244       | -      | -        | -              | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Condensate 4-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.56         | <1.00  | <1.00    | 7.07           | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | < 0.10          | 10.9       |
| Condensate 4-2        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.52         | <1.00  | <1.00    | 6.99           | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | NA              | NA         |
| Condensate 4-avg      | -     | -      | -     | -     | -       | -     | 3.54         | -      | -        | 7.03           | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Std. Dev.             | -     | -      | -     | -     | -       | -     | 0.0285       | -      | -        | 0.0538         | -        | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Condensate 5-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.99         | <1.00  | <1.00    | 5.01           | <1.00    | < 0.100 | <100   | <100    | <100            | <500            | <500    | <100                          | < 0.10          | 10.8       |
| Condensate 5-2        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.97         | <1.00  | <1.00    | 5.12           | <1.00    | <0.100  | <100   | <100    | <100            | <500            | <500    | <100                          | NA              | NA         |
| Condensate 5-avg      | -     | -      | -     | -     | -       | -     | 3.98         | -      |          | 5.06           |          | -       | -      |         | -               | -               | -       |                               | -               | -          |
| Std. Dev.             | -     | -      | -     | -     | -       | -     | 0.0091       | -      | -        | 0.0781         | -        | -       | -      | -       | -               | -               | -       | -                             | -               | <u> </u>   |
| Condensate 6-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.68         | <1.00  | <1.00    | <1.00          | <1.00    | <0.100  | <100   | <100    | <100            | <500            | <500    | <100                          | <0.10           | 10.9       |
| Condensate 6-2        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.69         | <1.00  | <1.00    | <1.00          | <1.00    | <0.100  | <100   | <100    | <100            | <500            | <500    | <100                          | <0.10<br>NA     | 10.5<br>NA |
| Condensate 6-avg      | -     | -      | -     | -     |         | -     | 3.69         | -      | -        | -              | -        |         |        | -       |                 |                 |         |                               | -               | -          |
| Std. Dev.             | -     | -      | -     | -     | -       | _     | 0.0054       | -      | <u> </u> | -              | <u> </u> | -       | -      | -       | -               | -               | -       | -                             | -               | -          |
| Condensate 7-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.29         | <1.00  | <1.00    | 4.79           | <1.00    | <0.100  | <100   | <100    | <100            | <500            | <500    | <100                          | <0.10           | 10.8       |
| Condensate 7-1        | <1.00 | <1.00  | <1.00 | <1.00 | <1.00   | <1.00 | 3.29         | <1.00  | <1.00    | 4.79           | <1.00    | <0.100  | <100   | <100    | <100            | <500            | <500    | <100                          | <0.10<br>NA     | 10.8<br>NA |
| Condensate 7-2        | <1.00 | -      |       | <1.00 | - 1.00  | -     | 3.25<br>3.26 | <1.00  | - 1.00   | 4.21           | - 1.00   | -       | - 100  | - 100   | - 100           | -               |         | - 100                         | - NA            | - NA       |
| Std. Dev.             |       | -      |       |       |         | -     | 0.0422       |        |          | 4.30<br>0.4085 |          |         |        |         |                 |                 |         | -                             |                 | +          |

| 7.3 Appendix C. Analytical Development Results |
|------------------------------------------------|
|------------------------------------------------|

| Sample               | NH4 <sup>+</sup><br>(10% unc) | VOA<br>( 20% unc) | SVOA<br>(20% unc) | Methyl<br>Acrylate<br>(20% unc) | Isobornyl<br>Acrylate<br>(20 % unc) | Total<br>Carbon<br>(10 % unc) | Inorganic<br>Carbon<br>(10 % unc) | Organic<br>Carbon<br>(10 % unc) |
|----------------------|-------------------------------|-------------------|-------------------|---------------------------------|-------------------------------------|-------------------------------|-----------------------------------|---------------------------------|
|                      | μg/mL                         | μg/mL             | μg/mL             | µg/mL                           | µg/mL                               | µg C/mL                       | μg C/mL                           | µg C/mL                         |
| EMF<br>Condensate 1  | 562                           | < 0.05            | < 0.1             | NA                              | NA                                  | < 3                           | 2.00                              | < 1                             |
| EMF<br>Condensate 2  | 706                           | < 0.05            | < 0.1             | NA                              | NA                                  | < 3                           | 1.88                              | < 1                             |
| EMF<br>Condensate 3  | 545                           | < 0.05            | < 0.1             | NA                              | NA                                  | < 3                           | 2.08                              | < 1                             |
| EMF<br>Condensate 4  | 552                           | < 0.05            | < 0.1             | NA                              | NA                                  | < 3                           | 1.80                              | < 1                             |
| EMF<br>Condensate 5  | 555                           | < 0.05            | < 0.1             | NA                              | NA                                  | < 3                           | 1.92                              | < 1                             |
| EMF<br>Condensate 6  | 580                           | < 0.05            | < 0.1             | NA                              | NA                                  | < 3                           | 1.32                              | < 1                             |
| EMF<br>Condensate 7  | 565                           | < 0.05            | < 0.1             | NA                              | NA                                  | < 3                           | 1.92                              | < 1                             |
| КОР                  | 600                           | < 0.05            | < 0.1             | 1.3                             | 0.85                                | < 8                           | 7.20                              | < 1                             |
| Pot<br>Concentrate 1 | 91.7                          | < 0.25            | NA                | NA                              | NA                                  | 203                           | 140                               | 63.2                            |
| Pot<br>Concentrate 2 | 75.8                          | < 0.25            | NA                | NA                              | NA                                  | 212                           | 145                               | 66.8                            |
| Pot<br>Concentrate 3 | NA                            | NA                | NA                | NA                              | NA                                  | NA                            | NA                                | NA                              |
| Pot<br>Concentrate 4 | NA                            | NA                | NA                | NA                              | NA                                  | NA                            | NA                                | NA                              |
| Pot<br>Concentrate 5 | NA                            | NA                | NA                | NA                              | NA                                  | NA                            | NA                                | NA                              |
| Pot<br>Concentrate 6 | 78.8                          | < 0.25            | NA                | NA                              | NA                                  | 220                           | 152                               | 68.0                            |

# 7.4 Appendix D. Eurofins Results



# Frontier Global Sciences

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

30 June 2017

Daniel McCabe Savannah River Nuclear Solutions SRNS, Bldg 773-42A Aiken, SC 29808 RE: Mercury and Arsenic Speciation

Enclosed are the analytical results for samples received by Eurofins Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amy Goodall Project Manager



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID                           | Laboratory ID | Matrix | Date Sampled    | Date Received   |
|-------------------------------------|---------------|--------|-----------------|-----------------|
| G16945 Blank-A                      | 1705610-01    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16945 Blank-A Dissolved            | 1705610-02    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16946 Blank-B                      | 1705610-03    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16190 Blank-C                      | 1705610-04    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170329 Blank-D                     | 1705610-05    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16948 Blank preserved-A            | 1705610-06    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170341 Blank preserved-B           | 1705610-07    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16949 Evap Feed-A                  | 1705610-08    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16949 Evap Feed-A Dissolved        | 1705610-09    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16950 Evap Feed-B                  | 1705610-10    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16950 Evap Feed-B Dissolved        | 1705610-11    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16951 Evap Feed-C                  | 1705610-12    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16952 Evap Feed-D                  | 1705610-13    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16191 Evap Feed-E                  | 1705610-14    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16192 Evap Feed-F                  | 1705610-15    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170343 Evap Feed-G                 | 1705610-16    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170345 Evap Feed-H                 | 1705610-17    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16954 Evap Feed Preserved-A        | 1705610-18    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16955 Evap Feed Preserved-B        | 1705610-19    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170331 Evap Feed Preserved-C       | 1705610-20    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170344 Evap Feed Preserved-D       | 1705610-21    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16956 Evap Concentrate-A           | 1705610-22    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16956 Evap Concentrate-A Dissolved | 1705610-23    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16957 Evap Concentrate-B           | 1705610-24    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16957 Evap Concentrate-B Dissolved | 1705610-25    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16958 Evap Concentrate-C           | 1705610-26    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID                          | Laboratory ID | Matrix | Date Sampled    | Date Received   |
|------------------------------------|---------------|--------|-----------------|-----------------|
| G17012 Evap Concentrate-D          | 1705610-27    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G17008 Evap Concentrate-E          | 1705610-28    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16199 Evap Concentrate-F          | 1705610-29    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170334 Evap Concentrate-G         | 1705610-30    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170339 Evap Concentrate-H         | 1705610-31    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16962 Evap Conc Preserved-A       | 1705610-32    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16964 Evap Conc Preserved-B       | 1705610-33    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170328 Evap Conc Preserved-C      | 1705610-34    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170340 Evap Conc Preserved-D      | 1705610-35    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16965 Evap Condensate-A           | 1705610-36    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16965 Evap Condensate-A Dissolved | 1705610-37    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16967 Evap Condensate-B           | 1705610-38    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16967 Evap Condensate-B Dissolved | 1705610-39    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16968 Evap Condensate-C           | 1705610-40    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16969 Evap Condensate-D           | 1705610-41    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16200 Evap Condensate-E           | 1705610-42    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16196 Evap Condensate-F           | 1705610-43    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170335 Evap Condensate-G          | 1705610-44    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170347 Evap Condensate-H          | 1705610-45    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16973 Evap Cond Preserved-A       | 1705610-46    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16974 Evap Cond Preserved-B       | 1705610-47    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170337 Evap Cond Preserved-C      | 1705610-48    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170338 Evap Cond Preserved-D      | 1705610-49    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16970 Evap Knock Out-A            | 1705610-50    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16970 Evap Knock Out-A Dissolved  | 1705610-51    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16975 Evap Knock Out-B            | 1705610-52    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID                         | Laboratory ID | Matrix | Date Sampled    | Date Received   |
|-----------------------------------|---------------|--------|-----------------|-----------------|
| G16975 Evap Knock Out-B Dissolved | 1705610-53    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16976 Evap Knock Out-C           | 1705610-54    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16977 Evap Knock Out-D           | 1705610-55    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16197 Evap Knock Out-E           | 1705610-56    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16198 Evap Knock Out-F           | 1705610-57    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170330 Evap Knock Out-G          | 1705610-58    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170333 Evap Knock Out-H          | 1705610-59    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16978 Evap Knock Out Preserv-A   | 1705610-60    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| G16980 Evap Knock Out Preserv-B   | 1705610-61    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170336 Evap Knock Out Preserv-C  | 1705610-62    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| B170342 Evap Knock Out Preserv-D  | 1705610-63    | Water  | 17-May-17 00:00 | 19-May-17 09:45 |
| Laboratory Filter Blank           | 1705610-64    | Water  | 19-May-17 19:00 | 19-May-17 09:45 |
| Laboratory Filter Blank           | 1705610-65    | Water  | 24-May-17 18:00 | 19-May-17 09:45 |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### SAMPLE RECEIPT

Client sent the samples in five coolers. Four of those coolers were at Eurofins Frontier Global Sciences (EFGS) on 5/19/2017 9:45:00 AM . The samples were received intact, on-ice within sealed coolers at 6.9, 3.4, 9.9, and 5.1 degrees Celsius.

The fifth cooler was received on 5/22/17 at ambient temperature and contained samples 'G16956 Evap Concentrate-A -> B170339 Evap Concentrate-H'. When this 5th cooler was received, the sample bottle for 1705610-27, 'G17012 Evap Concentrate-D', was found to have been broken in transit and the lab was unable to perform the analysis. The client was notified, and requested that we use one of the unpreserved bottles from the same set of samples. Volume was taken from sample 1705610-29, 'G16199 Evap Concentrate-F'.

### SAMPLE PREPARATION AND ANALYSIS

Samples were prepared and analyzed for total and dissolved mercury by flow injection atomic fluorescence spectrometry (FI-AFS) in accordance with EPA 1631E.

Inorganic mercury speciation was also performed according to a modified EPA 1631E

Samples were prepared and analyzed for methyl mercury and dimethyl mercury by cold vapor gas chromatography atomic fluorescence spectrometry (CV-GC-AFS) in accordance with a modified EPA 1630.

Samples were prepared and analyzed for inorganic arsenic speciation by hydride generation cryogenic trapping gas chromatography atomic absorption spectrometry (HG-CT-GC-AAS) in accordance with EPA 1632.

Samples were prepared and analyzed for total recoverable metals by inductively coupled plasma mass spectrometry (ICP-MS) in accordance with EPA 200.8.

### ANALYTICAL AND QUALITY CONTROL ISSUES

Method blanks were prepared for every preparation to assess possible blank contribution from the sample preparation procedure. The method blanks were carried through the entire analytical procedure. All blanks fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

Liquid spikes, certified reference material (CRM) or a quality control samples (QCS) were prepared for every preparation as a measure of accuracy. All liquid spikes, CRMs and/or QCS samples fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

Eurofins Frontier Global Sciences, Inc.



# **Frontier Global Sciences**

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

As an additional measure of the accuracy of the methods used and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries fell within the established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

A reasonable measure of the precision of the analytical methods is the relative percent difference (RPD) between a matrix spike recovery and a matrix spike duplicate recovery and between laboratory control sample recovery and laboratory control sample duplicate recoveries. All of the relative percent differences fell within established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

Eurofins Frontier Global Sciences, Inc.



**Frontier Global Sciences** 

|                        |                  | Sample F            | Receipt Checkli                      | ist       | EFGS Work Order:       | 705610            |
|------------------------|------------------|---------------------|--------------------------------------|-----------|------------------------|-------------------|
| Client: Savannal       | River            |                     | Date & Time Received: $\frac{5}{22}$ | 2/17 9:30 | Date Labeled: 52       | 319Labeled By: Ba |
| Project:               |                  |                     | Received By:                         |           | Label Verified         |                   |
| # of Coolers Received: | Samples          | Arrived By: Shippir | ng Service Courier                   | Hand      | Other (Specify:        | )                 |
| Coolant: 🛛 None/Amb    | ient 🛛 Loose Ice | Gel Ice Dry Ice     | Coolant Required: Y / N              | Temp B    | lank Used: Y/N for Coc | bler(s):          |

Notify Project Manager if packages/coolers are received without coolant or with thawed coolant and at a temperature in excess of 6°C. PM notified: Y/N

| Cooler Information:                            | Y/N/NA | Comments | TID: 522     | S CF  | : O °C     | Dat | e/time: 5/2 | 2/7 | 9:30 By: | Bi |
|------------------------------------------------|--------|----------|--------------|-------|------------|-----|-------------|-----|----------|----|
| The coolers do not appear to be tampered with: | Y      |          | Cooler 1: 19 | 1.5°C | w/ CF:   ၅ | 5°C | Cooler 4:   | °C  | w/ CF:   | °C |
| Custody Seals are present and intact:          | Ň      |          | Cooler 2:    | °C    | w/ CF:     | °C  | Cooler 5:   | °C  | w/CF:    | °C |
| Custody seals signed:                          | N      |          | Cooler 3:    | °C    | w/ CF:     | °C  | Cooler 6:   | °C  | w/CF:    | °C |

| Y/N/NA | Comments | Sample Condition/Integrity:                       | Y/N/NA                                                                                                                                                                                                                                                                                                                                                                               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|----------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N/     |          | Sample containers intact/present:                 | Y                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 vx   |          | Sample labels are present and legible:            | 4                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 141    |          | Sample ID on container/bag matches COC:           | 4                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| W      |          | Correct sample containers used:                   |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aw     |          | Samples received within holding times:            | 11                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| W.V    |          | Sample volume sufficient for requested analyses:  |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| INN    |          | Correct preservative used for requested analyses: | 4                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | Y y y    | Y W<br>W<br>W<br>W                                | Sample containers intact/present:         Sample containers intact/present:         Sample labels are present and legible:         Sample ID on container/bag matches COC:         Correct sample containers used:         Samples received within holding times:         Sample volume sufficient for requested analyses:         Correct preservative used for requested analyses: | Sample containers intact/present:       1/N/N         Sample containers intact/present:       Y         Sample labels are present and legible:       Y         Sample ID on container/bag matches COC:       Y         Correct sample containers used:       Y         Samples received within holding times:       Y         Sample volume sufficient for requested analyses:       Y         Correct presentative used for requested analyses:       Y |

Anomalies/Non-conformances (attach additional pages if needed):

1528 6954 Cooler 2: 79 

G1701 ZEVap Sample 1705610-2 broken oncentra

| 🔅 eurofins                                            | Always check on-line for validity.<br>Potential Radioactive Shipment Receipt Report | Ver. 1                                 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|
| Document number:<br>EFQA-S-HS-WI7545                  |                                                                                     | Instruction                            |
| Old Reference:                                        |                                                                                     |                                        |
| Version:<br>1                                         |                                                                                     | Organisation level:<br>4-Business Unit |
| Approved by: UDWU, UPGS<br>Effective Date 21-SEP-2016 | Document users:<br>5_EUUSBO2_S-and-R                                                | Responsible:<br>5_EUUSBO2_QA           |

- 1.) Basic Information
- 2.) Instrument Information
- 3.) Visual Inspection of outer package (cooler)
- 4.) Condition of Package Contents
- 5.) Instrument Operational Check
- 6.) Shipment Paperwork Check-Circle all that were received in package
- 7.) Measurements (Perform after approximately 5 minute warm up time)

## 1.) Basic Information

Name: Binion Woldelint Date: 5/22/17

Client Name: Savannah River

| LIMS number: |  |
|--------------|--|
|--------------|--|

# 2.) Instrument Information

| Identification: G | SM-110: S/N 7169 |
|-------------------|------------------|
| Last Calibrated:_ | 9/22/16          |

## 3.) Visual Inspection of outer package (cooler)

| Good Broken/Punctured |  | Crushed | Leaking |
|-----------------------|--|---------|---------|
| Other:                |  |         |         |

## 4.) Condition of Package Contents

| Good | Broken/Punctured | Crushed | Leaking |  |
|------|------------------|---------|---------|--|
|      |                  |         |         |  |

| Oth | or  |   |   |
|-----|-----|---|---|
| ou  | 101 | • | _ |

## 5.) Instrument Operational Check

| Battery | Charge | Sufficient | (circle | one) | ): |
|---------|--------|------------|---------|------|----|
| Dattery | Charge | Suncient   | (circie | one  | ); |

(No)\*

Verify Response with check source(Po-210) (circle one): (Positive Response) (No Response)\*

(Yes)

\*Do not proceed if instrument does not have sufficient battery power or show a positive response.



Frontier Global Sciences

|                                                                                                                                                        |           |          | Sample | Receipt           | Checklist                         | EFGS    | EFGS Work Order: 1705610 |               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------|-------------------|-----------------------------------|---------|--------------------------|---------------|--|--|--|
| Client: _avanvo                                                                                                                                        | h Rive    | ev       |        | Date & Time R     | Received: 5/19/17                 | _ Dat   | Date Labeled.            |               |  |  |  |
| Project:                                                                                                                                               |           |          |        | Received By:_     |                                   | Lab     | el Verified By:          | ~             |  |  |  |
| # of Coolers Received: <u>4</u> Samples Arrived By: <u>Shipping Service</u> Courier Hand Other (Specify: )                                             |           |          |        |                   |                                   |         |                          |               |  |  |  |
| Notify Project Manager if packages/coolers are received without coolant or with thawed coolant and at a temperature in excess of 6°C. PM notified: Y/N |           |          |        |                   |                                   |         |                          |               |  |  |  |
| Cooler Information:                                                                                                                                    | 1         | Y/N/NA   | Commer | nts               | TID: 5225 CF: 00                  | °C Dat  | e/time: 5/19/17          | By: BCW       |  |  |  |
| The coolers do not appear to                                                                                                                           |           | - Ť      |        |                   | Cooler 1: ¿ .9 °C w/ Cl           | :6.9 °C | Cooler 4: 9. 9 °C        | w/ CF:9.9 °C  |  |  |  |
| Custody Seals are present an                                                                                                                           | d intact: | Ĭ        |        |                   |                                   |         | Cooler 5: 5 \ °C         | w/ CF: 5 1 °C |  |  |  |
| Custody seals signed:                                                                                                                                  |           | <u> </u> |        |                   | Cooler 3: 3-4 °C w/ Cl            | :34°c   | Cooler 6: °C             | w/ CF: °C     |  |  |  |
| Chain of Custody:                                                                                                                                      | Y/N/NA    | Comn     | nents  | Sample Conditio   |                                   | Y/N/NA  | Comme                    | ents          |  |  |  |
| Sample ID/Description:                                                                                                                                 | Y         |          |        | Sample containe   | rs intact/present:                | y       |                          |               |  |  |  |
| Date and time of collection:                                                                                                                           | Y         |          |        | Sample labels are | e present and legible:            | Y       |                          |               |  |  |  |
| Sampled by:                                                                                                                                            | V<br>T    |          |        | Sample ID on cor  | tainer/bag matches COC:           | Y       |                          |               |  |  |  |
| Preservation type:                                                                                                                                     | Y         |          |        | Correct sample c  | ontainers used:                   |         |                          |               |  |  |  |
| Requested analyses:                                                                                                                                    | Y         |          |        | Samples received  | within holding times:             | 1       |                          |               |  |  |  |
| Required signatures:                                                                                                                                   | 2         |          |        |                   | ufficient for requested analyses: |         |                          |               |  |  |  |
| Internal COC required:                                                                                                                                 | N         |          |        |                   | ive used for requested analyses:  | 1       |                          |               |  |  |  |

Anomalies/Non-conformances (attach additional pages if needed):

| Cooler 3: 7791 6954 1540                               | Cooler 1: 7791 6954 1860                                         |          |
|--------------------------------------------------------|------------------------------------------------------------------|----------|
| 100 5/19/17 Bur 5/19/17<br>Coolar 5 779 6954 Has 18/00 |                                                                  |          |
| -Cooler 5 - 7-191 - 54 168/860                         | Cooler 4: 7791 6954 1675                                         |          |
| Cooler 2                                               | Drum 1: 7791 6908 3225 2763 BC 5/19/17<br>Drum 2: 7791 6908 2325 |          |
| cooler 5: 7791 6954 1355                               | Drum 3 : 7791 6908 3233                                          |          |
|                                                        | Drum 4: 7791 6908 3152                                           |          |
| EFGS Sample Receipt Checklist Revision 6; 7/21/2014    | Drums: 7791 6908 3071                                            | Page 9 c |

f 33

L 705610 Chain of Custody Record & Laboratory Analysis Request: Air, Water, Sediments, Plant and Animal Tissue, Hvdrocarbon & Other Samples

### 11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 Phone: 425-686-1996

# **eurofins**

Frontier Global Sciences

info@frontieras.com

Fax: 425-686-3096

of \_5 Page 1 http://www.frontiergs.com Client: Savannah River Nuclear Solutions Contact: Susan Goodwin EFGS PM: Amy Goodall Analyses Requested Address: Aiken, SC 29808 Phone: 803-725-6072 Fax: Date: (%) E-mail: susan.goodwin@srs.gov TAT (business days):20 (std) Project Name: Contract/PO: 0000313073 15 10 5 4 3 2 24 hrs. Other Report To: Daniel McCabe Invoice To: Susan Goodwin, SRNS, LLC (For TAT < 10 days, contact PM. Surcharges apply for expedited TAT) Field Filtered (Y/N) Inorganic Arsenic Address: SRNS, Bldg 773-42A Address: SRNS, Bldg 773-41A, Aiken, Elemental/Ionic Hg Total/soluble Hg Preserved: 3 HCI BrCI Saturday delivery? 
Y X N Aiken, SC 29808 SC 29808 (If yes, please contact PM) Dimethyl Hg Phone:803-725-8238 Fax: 803-725-8829 Phone: 803-725-6072 Fax: Sampled By Field Presen HNO<sub>3</sub> HCI I EDD DY DN Methyl Hg E-mail: daniel.mccabe@srnl.doe.gov E-mail: srns-acctspay@srs.gov Arsenic x Standard D High QA Engraved # of No. Sample ID Matrix Date & Time Bottle ID Comments Bottles G16945 1 Blank-A 1 WW 5/17/17 On bottle HKH N G16946 2 Blank-B 5/17/17 On bottle 1 WW HKH N X G16190 3 Blank-C 1 WW 5/17/17 On bottle HKH N X B170329 Blank-D 4 1 WW 5/17/17 On bottle HKH N Х G16948 5 Blank preserved-A 5/17/17 On bottle 1 WW HKH N HC X B170341 6 Blank preserved-B 1 5/17/17 On bottle ww HKH N HCI Х For Laboratory Use Only Matrix Codes: FW: Fresh Water COC Seal: Yes Comments: WW: Waste Water Cooler Temp: SB: Sea and Brackish Water SS: Soil and Sediment Carrier: FedEx TS: Plant and Animal Tissue HC: Hydrocarbons VTSR: 9:45 TR: Trap # of Coolers: OT: Other Sample Disposal: Return (shipping fees may apply) you authorize EFGS to perform the specified analyses. x Standard Disposal – 30 Days after report weeks after report (storage fees may apply) Retain for Customer Approval: Date: Page 10 of 33 BGN Birliam Wolden +

170560Chain of Custody Record & Laboratory Analysis Request: Air, Water, Sediments, Plant and Animal Tissue,

🐝 eurofins

# Hydrocarbon & Other Samples

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 Phone: 425-686-1996 Fax: 425-686-3096 info@frontiergs.com

Frontier Global Sciences

Page \_2\_ of \_5\_

http://www.frontiergs.com

| Clion         | t: Savannah Divo                                       | r Nuclear Solutions  | Conto                 | et Cuer C                   | `o o du utu |           | 90 _2_    | <u></u> |      |                | 1                                             |                  |                    |                 | -              |                |                | http://www.frontiergs.com                                              |
|---------------|--------------------------------------------------------|----------------------|-----------------------|-----------------------------|-------------|-----------|-----------|---------|------|----------------|-----------------------------------------------|------------------|--------------------|-----------------|----------------|----------------|----------------|------------------------------------------------------------------------|
|               | ress: Aiken, SC 29                                     |                      |                       | ct: Susan G<br>: 803-725-   |             | v.        |           |         |      |                |                                               |                  | Ana                | lyses           | Real           | leste          | t              | EFGS PM: Amy Goodall                                                   |
|               | 2251 / 11101/ 00 2.                                    |                      |                       | : susan.go                  |             |           |           |         |      |                | (%)                                           | -                | 1                  | 1               | 1              | 1              | 1              | Date:                                                                  |
| Proje         | ect Name:                                              |                      |                       | act/PO: 000                 |             |           |           |         |      |                |                                               |                  |                    |                 |                |                |                | TAT (business days): <u><b>20</b></u> (std)<br>15 10 5 4 3 2 24 hrs.   |
| Repo          | ort To: Daniel McC                                     | Cabe                 | Invoic                | e To: Susa                  | n Goodw     | in, SRNS  | S, LLC    |         |      |                | Other                                         |                  |                    |                 |                |                |                | (For TAT < 10 days, contact PM.                                        |
|               | ress: SRNS, Bldg 7                                     | 73-42A               | Addres                | ss: SRNS,                   | Bldg 7      | 73-41A,   | Aiken     |         |      | (N)            | 0                                             | þ                | 臣                  |                 |                |                | lic            | Surcharges apply for expedited TAT)<br>Saturday delivery? $\Box$ Y x N |
|               | n, SC 29808                                            |                      | SC 29                 | 808                         | -           |           |           |         |      | SP             | Brod                                          | le F             | Dic                | б               |                |                | Arsenic        | (If yes, please contact PM)                                            |
|               |                                                        |                      |                       | : 803-725-                  |             | 2014/1/   |           |         |      | Filtered (Y/N) | C Ser                                         | g                | al/Ic              | I I             |                | Ъд             | ic A           |                                                                        |
| C-1116        | ail: daniel.mccabe                                     | @srni.doe.gov        | E-mail                | srns-acct                   | tspay@s     | rs.gov    |           | ped -   |      | Ħ              | Pre                                           | al/so            | lent               | eth             | snic           | ГÂЧ            | gan            | QA x Standard 🗆 High                                                   |
| No.           | Engraved<br>Bottle ID                                  | Sample ID            |                       | # of<br>Bottles             | Matrix      | Date 8    |           | Sampled |      | Field          | Field Preserved:<br>HNO <sub>3</sub> HCI BrCI | Total/soluble Hg | Elemental/Ionic Hg | Dimethyl Hg     | Arsenic        | Methyl Hg      | Inorganic      | Comments                                                               |
|               | G16949                                                 | Evap Feed-A          |                       | 1                           | ww          | 5/17/17 C | On bottle | НКН     | N    |                |                                               | X                |                    |                 |                |                |                |                                                                        |
| 8             | G16950                                                 | Evap Feed-B          |                       | 1                           | ww          | 5/17/17 C | On bottle | НКН     | N    |                |                                               | X                |                    |                 |                |                | 100            |                                                                        |
| 9             | G16951                                                 | Evap Feed-C          | (c. 04) <u>- 1985</u> | 1                           | ww          | 5/17/17 C | On bottle | нкн     | N    |                |                                               |                  | x                  | 1               |                | 1              | -              | 1                                                                      |
| 10            | G16952                                                 | Evap Feed-D          |                       | 1                           | ww          | 5/17/17 C | On bottle | нкн     | N    |                |                                               | -                | x                  |                 |                | 1              |                | -                                                                      |
| 11            | G16191                                                 | Evap Feed-E          | 8                     | 1                           | ww          | 5/17/17 C | n bottle  | НКН     | N    |                |                                               |                  |                    | x               | -              |                |                | -                                                                      |
| 12            | G16192                                                 | Evap Feed-F          |                       | 1                           | ww          | 5/17/17 C | n bottle  | нкн     | N    |                |                                               |                  |                    | X               |                | -              |                | -                                                                      |
| 13            | B170343                                                | Evap Feed-G          |                       | 1                           | ww          | 5/17/17 C | n bottle  | нкн     | N    |                |                                               |                  | -                  |                 | x              |                |                | -                                                                      |
| 14            | B170345                                                | Evap Feed-H          |                       | 1                           | ww          | 5/17/17 0 | n bottle  | нкн     | N    |                |                                               |                  | 1                  |                 | X              |                |                | -                                                                      |
| 15            | G16954                                                 | Evap Feed Preserve   | ed-A                  | 1                           | ww          | 5/17/17 0 | n bottle  | нкн     | N    |                | НСІ                                           |                  | <u> </u>           |                 | <u> </u>       | x              |                | -                                                                      |
| 16            | G16955                                                 | Evap Feed Preserve   | ed-B                  | 1                           | ww          | 5/17/17 0 | n bottle  | нкн     | N    |                | HCI                                           |                  |                    |                 |                | X              |                | -                                                                      |
| 17            | B170331                                                | Evap Feed Preserve   | ed-C                  | 1                           | ww          | 5/17/17 0 | n bottie  | нкн     | N    |                | HCI                                           |                  |                    |                 |                |                | x              | -                                                                      |
| 18            | B170344                                                | Evap Feed Preserve   | ed-D                  | 1                           | ww          | 5/17/17 0 | n bottle  | нкн     | N    | 71             | HCI                                           |                  | <u> </u>           |                 |                |                | x              | -                                                                      |
|               | For Labora                                             | atory Use Only       |                       | Mat                         | rix Codes   | :         | ł         |         |      |                |                                               |                  |                    |                 | 1              |                | ~              |                                                                        |
| coc           | Seal:                                                  | Comments:            |                       | FW: Fresh W<br>WW: Waste    |             |           |           |         |      |                |                                               |                  |                    |                 |                |                |                |                                                                        |
| Cool          | er Temp:                                               |                      |                       | SB: Sea and                 | Brackish W  | ater      | r         |         |      |                |                                               |                  |                    |                 |                |                |                |                                                                        |
| Carri         | er:                                                    |                      |                       | SS: Soil and STS: Plant and | Animal Tis  | sue       | c         |         |      |                |                                               |                  |                    |                 |                |                |                |                                                                        |
| VTSF          | 8:                                                     |                      |                       | HC: Hydrocar<br>TR: Trap    | rbons       |           | 0         |         |      |                |                                               |                  |                    |                 |                |                |                |                                                                        |
| # of          | Coolers:                                               |                      |                       | OT: Other                   |             |           | 1         |         |      |                |                                               |                  |                    |                 |                |                |                |                                                                        |
| □ Re<br>x Sta |                                                        | 30 Days after report |                       | s may appl                  |             |           | -         | you au  | itho | orize          | EFGS to                                       | e tha<br>perf    | at yo<br>orm I     | u agr<br>the sj | ee w<br>pecifi | ith E<br>ed ar | FGS'<br>nalyse |                                                                        |
|               | Retain for weeks after report (storage fees may apply) |                      |                       |                             |             |           |           | Custor  | ner  | Арр            | roval:                                        |                  |                    |                 |                |                |                | Date: Page 11 of 33                                                    |

[ 705610 Chain of Custody Record & Laboratory Analysis Request: Air, Water, Sediments, Plant and Animal Tissue, Hydrocarbon & Other Samples

# 💸 eurofins

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011

Phone: 425-686-1996

Fax: 425-686-3096 info@frontiergs.com

Frontier Global Sciences

Page \_3\_ of \_5\_

| Clie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt: Savannah Rive                                                          | er Nuclear Solutions                                             | Conta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct: Susan G                 | `ooduuin                | Page _5_          | <u></u>                     | -    |                      |                                               | <u> </u>      |                    |                 |                | -               |                   | http://www.frontiergs.com                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------------------|-----------------------------|------|----------------------|-----------------------------------------------|---------------|--------------------|-----------------|----------------|-----------------|-------------------|-------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lress: Aiken, SC 2                                                         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 803-725-                  |                         | ~                 |                             |      |                      |                                               |               | Anal               | vses            | Real           | iested          | 4                 | EFGS PM: Amy Goodall                                              |
| 1 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : susan.go                  |                         |                   | -                           |      |                      |                                               | 1999          | 1                  | 1,505           | T              | T               | -                 | Date:                                                             |
| Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ject Name:                                                                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | act/PO: 000                 |                         |                   | - 33                        |      |                      | (%)                                           |               | þ                  |                 |                |                 |                   | TAT (business days):20 (std)                                      |
| Concession of the local division of the loca | ort To: Daniel Mc                                                          | Cabe                                                             | Contraction of the local division of the loc |                             |                         | in, SRNS, LLC     | 1.55                        |      |                      | Other                                         |               |                    |                 |                |                 |                   | 15 10 5 4 3 2 24 hrs.<br>(For TAT < 10 days, contact PM.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ress: SRNS, Bldg<br>en, SC 29808                                           | 773-42A                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss: SRNS,                   |                         | 73-41A, Aiken     | ,                           |      | (N/A)                |                                               | Ę             | c Hg               |                 |                |                 | enic              | Surcharges apply for expedited TAT)<br>Saturday delivery? □ Y x N |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            | Fax: 803-725-8829                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : 803-725-                  | 6072 Ea                 | <b>v</b> •        | <u>ه</u>                    |      | ed                   | B P                                           | ble           | Ioni               | Ę               |                |                 | Ars               | (If yes, please contact PM)                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ail: daniel.mccabe                                                         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : srns-acct                 |                         |                   |                             |      | Iter                 | HCI                                           |               | tal/               | 1×              | 0              | БН              | nic               |                                                                   |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Engraved                                                                   | Sample ID                                                        | <u>12 man</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # of<br>Bottles             | Matrix                  |                   | Sampled                     |      | Field Filtered (Y/N) | Field Preserved:<br>HNO <sub>3</sub> HCI BrCI | Total/soluble | Elemental/Ionic Hg | Dimethyl Hg     | Arsenic        | Methyl Hg       | Inorganic Arsenic | QA x Standard □ High<br>Comments                                  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G16956                                                                     | Evap Concentrate-                                                | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      |                                               | x             | +                  |                 |                | +               |                   |                                                                   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G16957                                                                     | Evap Concentrate-                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | НКН                         | N    |                      |                                               | X             | -                  | -               | -              | -               |                   | -                                                                 |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G16958                                                                     | Evap Concentrate-                                                | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      |                                               |               | x                  |                 |                |                 |                   | -                                                                 |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G17012                                                                     | Evap Concentrate-                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      |                                               |               | X                  |                 |                |                 |                   | -                                                                 |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G17008                                                                     | Evap Concentrate-                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      |                                               |               | -                  | x               |                |                 |                   | -                                                                 |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G16199                                                                     | Evap Concentrate-                                                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | НКН                         | N    |                      |                                               |               |                    | x               |                |                 |                   | -                                                                 |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B170334                                                                    | Evap Concentrate-                                                | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      |                                               |               |                    |                 | x              |                 |                   | -                                                                 |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B170339                                                                    | Evap Concentrate-                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      |                                               |               | -                  |                 | x              |                 | -                 | -                                                                 |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G16962                                                                     | Evap Conc Preserve                                               | ed-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    | - <u>0</u>           | нсі                                           |               |                    |                 |                | x               |                   | -                                                                 |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G16964                                                                     | Evap Conc Preserve                                               | ed-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    | -                    | HCI                                           |               |                    |                 |                | X               |                   | -                                                                 |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B170328                                                                    | Evap Conc Preserve                                               | ed-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      | HCI                                           |               |                    |                 |                |                 | Х                 | -                                                                 |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B170340                                                                    | Evap Conc Preserve                                               | ed-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           | ww                      | 5/17/17 On bottle | нкн                         | N    |                      | HCI                                           |               |                    |                 |                |                 | x                 | -                                                                 |
| 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | For Labor                                                                  | atory Use Only                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | rix Codes               | 5:                |                             |      |                      |                                               |               | r i                | 1               |                |                 |                   | 1                                                                 |
| coc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seal:                                                                      | Comments:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FW: Fresh W<br>WW: Waste    |                         |                   |                             |      |                      |                                               |               |                    |                 |                |                 |                   |                                                                   |
| Coo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ler Temp:                                                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB: Sea and                 | Brackish W              | /ater             |                             |      |                      |                                               |               |                    |                 |                |                 |                   |                                                                   |
| Carr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ier:                                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS: Soil and STS: Plant and | Sediment<br>I Animal Ti | ssue              |                             |      |                      |                                               |               |                    |                 |                |                 |                   |                                                                   |
| VTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R:                                                                         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HC: Hydrocar<br>TR: Trap    | rbons                   |                   |                             |      |                      |                                               |               |                    |                 |                |                 |                   |                                                                   |
| # of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coolers:                                                                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OT: Other                   |                         |                   |                             |      |                      |                                               |               |                    |                 |                |                 |                   |                                                                   |
| □ R<br>x Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ple Disposal:<br>eturn (shipping fea<br>andard Disposal –<br>etain for wee | es may apply)<br>30 Days after report<br>eks after report (stora | age fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s may appl                  | v)                      |                   | By sigi<br>you au<br>Custon | itho | rize                 | EFGS to                                       | e tha<br>perf | at yoi<br>orm t    | u agr<br>:he sj | ee w<br>Decifi | ith El<br>ed ar | FGS'<br>nalyse    |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | //                      |                   | Custor                      | ner  | Ahh                  |                                               |               |                    | -               |                |                 |                   | Date: Page 12 of 33                                               |

.

1705610 Chain of Custody Record & Laboratory Analysis Request: Air, Water, Sediments, Plant and Animal Tissue, Hydrocarbon & Other Samples

### 11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 Phone: 425-686-1996 Fax: 425-686-3096 info@frontiergs.com

Frontier Global Sciences

💸 eurofins

Page \_4\_ of \_5\_

http://www.frontiergs.com

| Client: Savannah River Nuclear Solutions                                                                                                     | Conta                                                                                          | ontact: Susan Goodwin           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                             |     |                | The sea                                      | T                |                    |                 |                |                 |                   | http://www.frontiergs.com                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-----|----------------|----------------------------------------------|------------------|--------------------|-----------------|----------------|-----------------|-------------------|--------------------------------------------------------------------------------------------|
| Address: Aiken, SC 29808                                                                                                                     |                                                                                                | : 803-725-6                     | And an all and an an an and an | x:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 100                         |     |                |                                              |                  | Anal               | yses            | Requ           | ested           | ł                 |                                                                                            |
| na manananan walan datasi Salah dan sekeri 🖡 data taka ku 🦉 Salah Salah ing Kalabis                                                          |                                                                                                | : susan.go                      |                                | 100 C |        |                             |     |                | (%)                                          | -                |                    | T               | T              |                 | T                 |                                                                                            |
| Project Name:                                                                                                                                |                                                                                                | act/PO: 000                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                             |     |                | 1                                            |                  |                    |                 |                |                 |                   | EFGS PM: Amy Goodall<br>Date:<br>TAT (business days): <b>20</b> (st<br>15 10 5 4 3 2 24 hr |
| Report To: Daniel McCabe                                                                                                                     | Invoic                                                                                         | e To: Susar                     | n Goodw                        | in, SRNS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LLC    | 1                           |     |                | Other                                        |                  |                    |                 |                |                 |                   | (For TAT < 10 days, contact PM,                                                            |
| Address: SRNS, Bldg 773-42A                                                                                                                  | Addres                                                                                         | ss: SRNS,                       | Bldg 7                         | 73-41A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aiken  |                             |     | (N)            |                                              | þ                | ЪЪ                 |                 |                |                 | nic               | Surcharges apply for expedited TAT)                                                        |
| Aiken, SC 29808                                                                                                                              | SC 29                                                                                          | 808                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 2                           |     | SE             |                                              | le T             | nic                | 0               |                |                 | LSEI              | (If yes, please contact PM)                                                                |
| Phone:803-725-8238 Fax: 803-725-8829                                                                                                         |                                                                                                | : 803-725-                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | <u>B</u>                    |     | Filtered (Y/N) | CI                                           | dul              | ol/le              | Ĭ               |                | P               | ic A              |                                                                                            |
| E-mail: daniel.mccabe@srnl.doe.gov                                                                                                           | E-mail                                                                                         | : srns-acct                     | spay@s                         | rs.gov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | led                         |     | ŧ              | Prese                                        | I/sc             | enta               | t)              | nic            | 1×              | Jan               | QA x Standard 🗆 High                                                                       |
| No. Engraved Sample ID                                                                                                                       |                                                                                                | # of<br>Bottles                 | Matrix                         | Date &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | Sampled                     |     | Field          | Field Preserved<br>HNO <sub>3</sub> HCI BrCI | Total/soluble Hg | Elemental/Ionic Hg | Dimethyl Hg     | Arsenic        | Methyl Hg       | Inorganic Arsenic | Comments                                                                                   |
| 31 G16965 Evap Condensate-                                                                                                                   | A                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | Ν   |                |                                              | Х                |                    |                 |                |                 |                   |                                                                                            |
| 32 G16967 Evap Condensate-                                                                                                                   | В                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | Ν   |                |                                              | x                |                    |                 |                | 100 M           |                   |                                                                                            |
| 33 G16968 Evap Condensate-                                                                                                                   | С                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | N   |                |                                              |                  | x                  |                 |                |                 |                   |                                                                                            |
| 34 G16969 Evap Condensate-                                                                                                                   | D                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | N   |                |                                              |                  | x                  |                 |                |                 |                   | 8                                                                                          |
| 35 G16200 Evap Condensate-                                                                                                                   | E                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | N   |                |                                              |                  |                    | Х               |                |                 | -                 |                                                                                            |
| 36 G16196 Evap Condensate-                                                                                                                   | F                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | N   |                |                                              |                  |                    | X               |                |                 |                   |                                                                                            |
| 37 B170335 Evap Condensate-                                                                                                                  | G                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | Ν   |                |                                              |                  |                    | 1485            | x              |                 |                   |                                                                                            |
| 38 B170347 Evap Condensate-                                                                                                                  | Н                                                                                              | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | N   |                |                                              |                  |                    |                 | x              | -               |                   |                                                                                            |
| 39 G16973 Evap Cond Preserv                                                                                                                  | ed-A                                                                                           | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | N   |                | НСІ                                          |                  |                    |                 | 101297         | x               |                   |                                                                                            |
| 40 G16974 Evap Cond Preserv                                                                                                                  | ed-B                                                                                           | 1                               | ww                             | 5/17/17 On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottle | нкн                         | N   |                | НСІ                                          |                  |                    |                 |                | x               |                   |                                                                                            |
| 41 B170337 Evap Cond Preserv                                                                                                                 | ed-C                                                                                           | 1                               | ww                             | 5/17/17 On I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bottle | НКН                         | N   |                |                                              |                  |                    |                 |                |                 | x                 |                                                                                            |
| 42 B170338 Evap Cond Preserv                                                                                                                 | ed-D                                                                                           | 1                               | ww                             | 5/17/17 On I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bottle | нкн                         | N   |                |                                              |                  |                    |                 |                |                 | X                 |                                                                                            |
| For Laboratory Use Only                                                                                                                      |                                                                                                |                                 | rix Codes                      | : R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | olinau | ichod P                     |     |                |                                              | <b>D</b>         | • •                | 0               |                | L               | 1992              |                                                                                            |
| COC Seal: Comments:                                                                                                                          |                                                                                                | FW: Fresh W.<br>WW: Waste       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                             |     |                |                                              |                  |                    |                 |                |                 |                   |                                                                                            |
| Cooler Temp:                                                                                                                                 |                                                                                                | SB: Sea and                     | Brackish W                     | ater N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                             |     |                |                                              |                  |                    |                 |                |                 |                   |                                                                                            |
| Carrier:                                                                                                                                     |                                                                                                | SS: Soil and S<br>TS: Plant and |                                | ssue O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                             |     |                |                                              |                  |                    |                 |                |                 |                   |                                                                                            |
| VTSR:                                                                                                                                        |                                                                                                | HC: Hydrocar<br>TR: Trap        | bons                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                             |     |                |                                              |                  |                    |                 |                |                 |                   |                                                                                            |
| # of Coolers:                                                                                                                                |                                                                                                | OT: Other                       |                                | Π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                             |     |                |                                              |                  |                    |                 |                |                 |                   |                                                                                            |
| Sample Disposal:<br>□ Return (shipping fees may apply)<br>x Standard Disposal – 30 Days after repor<br>□ Retain for weeks after report (stor | mple Disposal:<br>Return (shipping fees may apply)<br>Standard Disposal – 30 Days after report |                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | By sigr<br>you au<br>Custon | tho | orize E        | EFGS to                                      | e tha<br>perf    | at you<br>orm t    | u agr<br>:he sp | ee w<br>Decifi | ith El<br>ed ar | FGS'<br>nalyse    | Date:                                                                                      |
|                                                                                                                                              |                                                                                                |                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 345(011                     |     | , ppi          |                                              |                  |                    |                 |                |                 |                   | Date: Page 13 of 33                                                                        |

1705610 Chain of Custody Record & Laboratory Analysis Request: Air, Water, Sediments, Plant and Animal Tissue, Hydrocarbon & Other Samples

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 Phone: 425-686-1996

#### Phone: 425-686-1996 Fax: 425-686-3096

Frontier Global Sciences

🖑 eurofins

Page \_5\_\_ of \_5\_\_

info@frontiergs.com http://www.frontiergs.com

| Client: Savannah Rive                                                                     | induced Solutions    | IN CONTAC | ict: Susan Goodwin                                                                                              |            |                    |          |                  | C) 1 1 1 1 |               |                                               |                   |                    |                 |                |                 |                   |                                                               |
|-------------------------------------------------------------------------------------------|----------------------|-----------|-----------------------------------------------------------------------------------------------------------------|------------|--------------------|----------|------------------|------------|---------------|-----------------------------------------------|-------------------|--------------------|-----------------|----------------|-----------------|-------------------|---------------------------------------------------------------|
| Address: Aiken, SC 29                                                                     |                      |           | : 803-725-6                                                                                                     |            |                    | _        |                  |            |               |                                               |                   | Anal               | vses            | Reau           | lested          | 1                 | EFGS PM: Amy Goodall                                          |
| Address Aikery SC Z:                                                                      |                      |           | : susan.god                                                                                                     |            |                    |          |                  |            |               | (%)                                           |                   | 1                  | 1               | 1              | T               | 1                 | Date:                                                         |
| Project Name:                                                                             |                      |           | ct/PO: 000                                                                                                      |            |                    | -        |                  |            |               | And a second second second                    |                   |                    |                 |                |                 |                   | TAT (business days): <u>20</u> (std)<br>15 10 5 4 3 2 24 hrs. |
| Report To: Daniel McC                                                                     | Cabe                 |           | The second se |            | in, SRNS, LL       | C        |                  |            |               | Other                                         |                   |                    |                 |                |                 |                   | (For TAT $< 10$ days, contact PM.                             |
| Address: SRNS, Bldg 7                                                                     | 73-42A               |           |                                                                                                                 |            | 73-41A, Aik        |          |                  |            | (N/N)         | ō                                             | БН                | Ę                  |                 |                |                 | iCi l             | Surcharges apply for expedited TAT)                           |
| Aiken, SC 29808                                                                           |                      | SC 29     | 808                                                                                                             | Diag /     | /5 /1/ , / II      | ien,     |                  |            | S             | SrCl %                                        | ен                | nic                |                 |                |                 | rser              | Saturday delivery?  Y X N (If yes, please contact PM)         |
| Phone:803-725-8238 I                                                                      |                      |           | : 803-725-                                                                                                      |            |                    |          | By               |            | Filtered      | Cles L                                        | Idul              | I/Io               | H Hg            |                | ę               | C A               |                                                               |
| E-mail: daniel.mccabe                                                                     | @srnl.doe.gov        | E-mail:   | srns-acct                                                                                                       | spay@s     | rs.gov             |          | led              | 1          | Filte         | Pre                                           | l/so              | enta               | sthy            | nic            | 1<br>T          | Jani              | QA x Standard □ High                                          |
| No. Engraved<br>Bottle ID                                                                 | Sample ID            |           | # of<br>Bottles                                                                                                 | Matrix     | Date & Tim         |          | Sampled          |            | Field         | Field Preserved:<br>HNO <sub>3</sub> HCI BrCI | Total/soluble     | Elemental/Ionic Hg | Dimethyl H      | Arsenic        | Methyl Hg       | Inorganic Arsenic | Comments                                                      |
| 43 G16970                                                                                 | Evap Knock Out-A     |           | 1                                                                                                               | WW         | 5/17/17 On bot     | tle H    | KH               | Ν          |               |                                               | X                 |                    |                 |                |                 |                   |                                                               |
| 44 G16975                                                                                 | Evap Knock Out-B     |           | 1                                                                                                               | ww         | 5/17/17 On bot     | tle H    | KH               | N          |               |                                               | x                 |                    |                 |                | 1               | 00010             | -                                                             |
| 45 G16976                                                                                 | Evap Knock Out-C     |           | 1                                                                                                               | ww         | 5/17/17 On bot     | tle H    | KH               | Ν          |               |                                               | 8                 | X                  |                 |                |                 |                   | -                                                             |
| 46 G16977                                                                                 | Evap Knock Out-D     |           | 1                                                                                                               | ww         | 5/17/17 On bot     | tle H    | КН               | N          |               |                                               |                   | x                  |                 |                |                 | -                 | -                                                             |
| 47 G16197                                                                                 | Evap Knock Out-E     |           | 1                                                                                                               | ww         | 5/17/17 On bott    | tle H    | KH               | N          |               |                                               |                   |                    | x               | 1              |                 |                   | -                                                             |
| 48 G16198                                                                                 | Evap Knock Out-F     |           | 1                                                                                                               | ww         | 5/17/17 On bott    | tle H    | КН               | N          |               |                                               |                   |                    | X               |                |                 |                   |                                                               |
| 49 B170330                                                                                | Evap Knock Out-G     |           | 1                                                                                                               | ww         | 5/17/17 On bott    | tle HI   | КН               | N          |               | en a                                          |                   |                    |                 | x              |                 |                   | -                                                             |
| 50 B170333                                                                                | Evap Knock Out-H     |           | 1                                                                                                               | ww         | 5/17/17 On bott    | tle HI   | КН               | N          | - 14 - 18 - 1 |                                               | 1999 (1997)<br>19 |                    |                 | X              |                 |                   | -                                                             |
| 51 G16978                                                                                 | Evap Knock Out Prese | erv-A     | 1                                                                                                               | ww         | 5/17/17 On bott    | le HI    | КН               | N          |               | HCI                                           |                   |                    |                 | <u> </u>       | x               |                   | -                                                             |
| 52 G16980                                                                                 | Evap Knock Out Prese | erv-B     | 1                                                                                                               | ww         | 5/17/17 On bott    | le HI    | KH               | N          | -             | HCI                                           |                   |                    |                 |                | x               |                   | -                                                             |
| 53 B170336                                                                                | Evap Knock Out Prese | erv-C     | 1                                                                                                               | ww         | 5/17/17 On bott    | le Hi    | КН               | N          |               | HCI                                           |                   |                    |                 |                | -               | x                 | -                                                             |
| 54 B170342                                                                                | Evap Knock Out Prese | erv-D     | 1                                                                                                               | ww         | 5/17/17 On bott    | te H     | KH               | N          |               | HCI                                           |                   |                    |                 |                |                 | x                 | -                                                             |
| For Labora                                                                                | atory Use Only       | 25052     | Matr                                                                                                            | ix Codes   | : Re               |          |                  | 1          |               | ,                                             |                   |                    |                 |                |                 |                   | · _                                                           |
| COC Seal:                                                                                 | Comments:            | 0.00      | FW: Fresh Wa<br>WW: Waste V                                                                                     |            |                    |          |                  |            |               |                                               |                   |                    |                 |                |                 |                   |                                                               |
| Cooler Temp:                                                                              |                      |           | SB: Sea and I                                                                                                   | Brackish W | <sup>ater</sup> Na |          |                  |            |               |                                               |                   |                    |                 |                |                 |                   | -                                                             |
| Carrier:                                                                                  |                      |           | SS: Soil and STS: Plant and                                                                                     |            |                    |          |                  |            |               |                                               |                   |                    |                 |                |                 |                   | -                                                             |
| VTSR:                                                                                     |                      |           | HC: Hydrocarbons                                                                                                |            | Da                 |          |                  |            |               |                                               |                   |                    |                 |                |                 |                   | -                                                             |
| # of Coolers:                                                                             |                      |           | TR: Trap<br>OT: Other                                                                                           |            |                    | y        |                  |            |               |                                               |                   |                    |                 |                |                 |                   | -                                                             |
| Sample Disposal:<br>□ Return (shipping fee<br>× Standard Disposal – 3<br>□ Retain for wee |                      | age fee   | s may appl                                                                                                      | v)         |                    | By<br>yo | v sign<br>ou aut | ing<br>tho | rize E        | u declar<br>EFGS to<br>oval:                  | e tha<br>perf     | at you<br>orm t    | u agr<br>the sp | ee w<br>pecifi | ith El<br>ed ar | FGS'<br>nalyse    |                                                               |
|                                                                                           |                      | 92.00     |                                                                                                                 |            |                    | Cu       | ISCOTT           |            | Ahhu          |                                               |                   |                    |                 |                |                 |                   | Date: Page 14 of 33                                           |

US EUUSBO2 Frontier - EFQA-S-HS-WI7545 - Potential Radioactive Shipment Receipt Report, ver. 1

| 🔅 eurofins                                            | Always check on-line for validity.<br>Potential Radioactive Shipment Receipt Report | Level:                                 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|
| Document number:<br>EFQA-S-HS-WI7545                  |                                                                                     | Instruction                            |
| Old Reference:                                        |                                                                                     |                                        |
| Version:<br>1                                         |                                                                                     | Organisation level:<br>4-Business Unit |
| Approved by: UDWU, UPGS<br>Effective Date 21-SEP-2016 | Document users:<br>5_EUUSBO2_S-and-R                                                | Responsible:<br>5_EUUSBO2_QA           |

- 1.) Basic Information
- 2.) Instrument Information
- 3.) Visual Inspection of outer package (cooler)
- 4.) Condition of Package Contents
- 5.) Instrument Operational Check
- 6.) Shipment Paperwork Check-Circle all that were received in package
- 7.) Measurements (Perform after approximately 5 minute warm up time)

## 1.) Basic Information

| Name: Binan Weldent   | Date: 5/19/17     |
|-----------------------|-------------------|
| Client Name: Savannah | River (4 cooters) |
| LIMS number:          |                   |

# 2.) Instrument Information

| Identification: G |   | *  | eren een en brokkensen.<br>Er |
|-------------------|---|----|-------------------------------|
| Last Calibrated:_ | 9 | 22 | 116                           |

# 3.) Visual Inspection of outer package (cooler)

| Good   | Broken/Punctured | Crushed | Leaking |
|--------|------------------|---------|---------|
| Other: |                  |         |         |

#### 4.) Condition of Package Contents Good Broken/Punctured

| Good    | Broken/Punctured                              | Crushed                                    | Leaking                                  |   |
|---------|-----------------------------------------------|--------------------------------------------|------------------------------------------|---|
| Othe    | /                                             | 10-11-11-12-11-11-11-11-11-11-11-11-11-11- |                                          |   |
| 5.) 1   | Instrument Operational Che                    | ck                                         |                                          |   |
|         | Battery Charge Sufficient (circle             | one): (Yes                                 | s) (No)*                                 |   |
| Page 15 | Verify Response with check sour<br>Response)* | ce(Po-210) (circl                          | e one): (Positive Response) (No          |   |
| 5 of 33 | *Do not proceed if instrument do<br>response. | oes not have suff                          | ficient battery power or show a positive | 9 |

//d4-us.eurofins.local/

9/21/2016

US EUUSBO2 Frontier - EFQA-S-HS-WI7545 - Potential Radioactive Shipment Receipt Report, ver. 1

|                                                       | Always check on-line for validity.            | Level:                         | L A  |
|-------------------------------------------------------|-----------------------------------------------|--------------------------------|------|
| Document number:                                      | Potential Radioactive Shipment Receipt Report | Work<br>Instruction            |      |
| Old Reference:                                        |                                               |                                |      |
| Version:<br>1                                         |                                               | Organisation lev<br>4-Business |      |
| Approved by: UDWU, UPGS<br>Effective Date 21-SEP-2016 | Document users:<br>5_EUUSBO2_S-and-R          | Responsible:<br>5_EUUSBO       | 2_QA |

- 1.) Basic Information
- 2.) Instrument Information
- 3.) Visual Inspection of outer package (cooler)
- 4.) Condition of Package Contents
- 5.) Instrument Operational Check
- 6.) Shipment Paperwork Check-Circle all that were received in package
- 7.) Measurements (Perform after approximately 5 minute warm up time)

### 1.) Basic Information

| Name: Binian  | n Woldeht | Date: 5 | 19 | 17 |       |   |
|---------------|-----------|---------|----|----|-------|---|
| Client Name:_ | Savannah  | River   | r  | (5 | drums | ) |

LIMS number:\_\_\_\_\_

# 2.) Instrument Information

| Identification: GSM- | ·110: S/N 7169 |
|----------------------|----------------|
| Last Calibrated:     | 9/22/16        |

# 3.) Visual Inspection of outer package (cooler)

| Good   | Broken/Punctured | Crushed | Leaking |
|--------|------------------|---------|---------|
| Other: |                  |         |         |

# 4.) Condition of Package Contents

| Good  | Broke                        | n/Punctured          | Crushed           | Leak          | ng              |                |
|-------|------------------------------|----------------------|-------------------|---------------|-----------------|----------------|
| Other | •                            |                      | (0-0-0-0))))      |               |                 |                |
| 5.) I | nstrument C                  | perational Che       | eck               | _             |                 |                |
|       | Battery Charge               | e Sufficient (circle | one): (Ye         | (N            | lo)*            |                |
| Pane  | Verify Respons<br>Response)* | e with check sour    | rce(Po-210) (circ | ele one); (   | Positive Respo  | nse) (No       |
| 16    | *Do not proce                | ed if instrument d   | oes not have sui  | ficient batte | ery power or sh | now a positive |

*"Do not proceed it instrument does not have sufficient battery power or show a positiv response.* 

://d4-us.eurofins.local/



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### Arsenic

| Sample Name                | Lab Number     | Result   | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared  | Sequence | Analyzed  | Method    | Notes |
|----------------------------|----------------|----------|--------------------|--------------------|-----------|----------|---------|-----------|----------|-----------|-----------|-------|
| Sample Preparation: EFGS   | 5-052 Closed V | essel Ni | tric Over          | n Digestion        | n         |          |         |           |          |           |           |       |
| B170329 Blank-D            | 1705610-05     | 12.3     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 |       |
| B170343 Evap Feed-G        | 1705610-16     | 11.4     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 |       |
| B170345 Evap Feed-H        | 1705610-17     | 11.7     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 |       |
| B170334 Evap Concentrate-G | 1705610-30     | 15.1     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 |       |
| B170339 Evap Concentrate-H | 1705610-31     | 14.1     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 |       |
| B170335 Evap Condensate-G  | 1705610-44     | 0.27     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 | J     |
| B170347 Evap Condensate-H  | 1705610-45     | 0.26     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 | J     |
| B170330 Evap Knock Out-G   | 1705610-58     | 0.12     | 0.10               | 0.30               | μg/L      | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 | J     |
| B170333 Evap Knock Out-H   | 1705610-59     | 0.12     | 0.10               | 0.30               | $\mu g/L$ | 1        | F706568 | 23-Jun-17 | 7F29015  | 29-Jun-17 | EPA 200.8 | J     |

Eurofins Frontier Global Sciences, Inc.



٦

# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Dimethyl Mercury (as Mercury)**

| Sample Name               | Lab Number | Result | Detection<br>Limit | Reporting<br>Limit | Units | Dilution | Batch   | Prepared  | Sequence | Analyzed  | Method  | Notes |
|---------------------------|------------|--------|--------------------|--------------------|-------|----------|---------|-----------|----------|-----------|---------|-------|
| Sample Preparation: No P  | reparation |        |                    |                    |       |          |         |           |          |           |         |       |
| G16190 Blank-C            | 1705610-04 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G16191 Evap Feed-E        | 1705610-14 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G16192 Evap Feed-F        | 1705610-15 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G17008 Evap Concentrate-E | 1705610-28 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G16199 Evap Concentrate-F | 1705610-29 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G16200 Evap Condensate-E  | 1705610-42 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G16196 Evap Condensate-F  | 1705610-43 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G16197 Evap Knock Out-E   | 1705610-56 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |
| G16198 Evap Knock Out-F   | 1705610-57 | ND     | 0.120              | 0.200              | ng/L  | 2        | F706410 | 08-Jun-17 | 7F09004  | 08-Jun-17 | FGS-070 | U     |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Inorganic Arsenic**

| Sample Name                                      | Lab Number     | Result | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared  | Sequence | Analyzed  | Method   | Notes |
|--------------------------------------------------|----------------|--------|--------------------|--------------------|-----------|----------|---------|-----------|----------|-----------|----------|-------|
| Sample Preparation: EFG                          | S-022 Preparat |        |                    |                    | Waters    |          | Daten   | Tropurou  | 1        |           |          |       |
| B170341 Blank preserved-B                        | 1705610-07     | 10.2   | 0.090              | 0.300              | μg/L      | 30       | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| B170331 Evap Feed<br>Preserved-C                 | 1705610-20     | 10.1   | 0.300              | 1.00               | μg/L      | 100      | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| B170344 Evap Feed<br>Preserved-D                 | 1705610-21     | 8.37   | 0.150              | 0.500              | $\mu g/L$ | 50       | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| B170328 Evap Conc<br>Preserved-C                 | 1705610-34     | 11.6   | 0.225              | 0.750              | $\mu g/L$ | 75       | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| B170340 Evap Conc<br>Preserved-D                 | 1705610-35     | 12.4   | 0.225              | 0.750              | μg/L      | 75       | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| B170337 Evap Cond<br>Preserved-C                 | 1705610-48     | 0.099  | 0.003              | 0.010              | μg/L      | 1        | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| B170338 Evap Cond<br>Preserved-D                 | 1705610-49     | 0.089  | 0.003              | 0.010              | $\mu g/L$ | 1        | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| B170336 Evap Knock Out<br>Preserv-C              | 1705610-62     | 0.010  | 0.003              | 0.010              | μg/L      | 1        | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 |       |
| Preserv-C<br>B170342 Evap Knock Out<br>Preserv-D | 1705610-63     | 0.006  | 0.003              | 0.010              | μg/L      | 1        | F706319 | 05-Jun-17 | 7F05013  | 05-Jun-17 | EPA 1632 | J     |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Inorganic Mercury**

| Sample Name Sample Preparation: No Pr | Lab Number | Result | Detection<br>Limit | Reporting<br>Limit | Units | Dilution | Batch   | Prepared  | Sequence | Analyzed  | Method       | Notes |
|---------------------------------------|------------|--------|--------------------|--------------------|-------|----------|---------|-----------|----------|-----------|--------------|-------|
| G16946 Blank-B                        | 1705610-03 | 2.29   | 0.08               | 0.50               | ng/L  | 1        | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G16951 Evap Feed-C                    | 1705610-12 | 847    | 15.4               | 100                | ng/L  | 200      | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G16952 Evap Feed-D                    | 1705610-13 | 999    | 7.70               | 50.0               | ng/L  | 100      | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G16958 Evap Concentrate-C             | 1705610-26 | 1100   | 15.4               | 100                | ng/L  | 200      | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G17012 Evap Concentrate-D             | 1705610-27 | 1540   | 7.70               | 50.0               | ng/L  | 100      | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G16968 Evap Condensate-C              | 1705610-40 | 24.6   | 1.54               | 10.0               | ng/L  | 20       | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G16969 Evap Condensate-D              | 1705610-41 | 19.4   | 0.77               | 5.00               | ng/L  | 10       | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G16976 Evap Knock Out-C               | 1705610-54 | 3.22   | 0.08               | 0.50               | ng/L  | 1        | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |
| G16977 Evap Knock Out-D               | 1705610-55 | 1.79   | 0.08               | 0.50               | ng/L  | 1        | F706613 | 27-Jun-17 | 7F28025  | 27-Jun-17 | EPA 1631 Mod |       |

Eurofins Frontier Global Sciences, Inc.



| Frontier Global Sciences |
|--------------------------|
|--------------------------|

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

Mercury

| Sample Name                            | Lab Number  | Result   | Detection<br>Limit | Reporting<br>Limit | Units | Dilution | Batch   | Prepared  | Sequence | Analyzed  | Method    | Notes   |
|----------------------------------------|-------------|----------|--------------------|--------------------|-------|----------|---------|-----------|----------|-----------|-----------|---------|
| Sample Preparation: EPA 1              | 631E BrCl O | xidation | l                  |                    |       |          |         |           |          |           |           |         |
| G16945 Blank-A                         | 1705610-01  | 3.05     | 0.08               | 0.50               | ng/L  | 1        | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16945 Blank-A Dissolved               | 1705610-02  | 1.94     | 0.08               | 0.50               | ng/L  | 1        | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16949 Evap Feed-A                     | 1705610-08  | 2270     | 33.4               | 200                | ng/L  | 400      | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16949 Evap Feed-A Dissolved           | 1705610-09  | 2220     | 33.4               | 200                | ng/L  | 400      | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16950 Evap Feed-B                     | 1705610-10  | 2160     | 33.4               | 200                | ng/L  | 400      | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16950 Evap Feed-B Dissolved           | 1705610-11  | 2120     | 33.4               | 200                | ng/L  | 400      | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16956 Evap Concentrate-A              | 1705610-22  | 3280     | 208                | 1250               | ng/L  | 2500     | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16956 Evap Concentrate-A<br>Dissolved | 1705610-23  | 2880     | 33.4               | 200                | ng/L  | 400      | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16957 Evap Concentrate-B              | 1705610-24  | 3190     | 208                | 1250               | ng/L  | 2500     | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16957 Evap Concentrate-B<br>Dissolved | 1705610-25  | 2910     | 33.4               | 200                | ng/L  | 400      | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16965 Evap Condensate-A               | 1705610-36  | 28.7     | 0.83               | 5.00               | ng/L  | 10       | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16965 Evap Condensate-A<br>Dissolved  | 1705610-37  | 26.6     | 0.83               | 5.00               | ng/L  | 10       | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16967 Evap Condensate-B               | 1705610-38  | 29.3     | 0.83               | 5.00               | ng/L  | 10       | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16967 Evap Condensate-B<br>Dissolved  | 1705610-39  | 27.2     | 0.83               | 5.00               | ng/L  | 10       | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16970 Evap Knock Out-A                | 1705610-50  | 11.8     | 0.83               | 5.00               | ng/L  | 10       | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16970 Evap Knock Out-A<br>Dissolved   | 1705610-51  | 9.40     | 0.83               | 5.00               | ng/L  | 10       | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| G16975 Evap Knock Out-B                | 1705610-52  | 11.0     | 0.83               | 5.00               | ng/L  | 10       | F705667 | 24-May-17 | 7F01008  | 31-May-17 | EPA 1631E |         |
| G16975 Evap Knock Out-B<br>Dissolved   | 1705610-53  | 8.62     | 0.83               | 5.00               | ng/L  | 10       | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E |         |
| Laboratory Filter Blank                | 1705610-64  | ND       | 0.08               | 0.50               | ng/L  | 1        | F706305 | 24-May-17 | 7F05020  | 02-Jun-17 | EPA 1631E | FB, U   |
| Laboratory Filter Blank                | 1705610-65  | ND       | 0.08               | 0.50               | ng/L  | 1        | F706331 | 24-May-17 | 7F06024  | 06-Jun-17 | EPA 1631E | O-04, U |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

Mercury (0)

| Sample Name               | Lab Number | Result | Detection<br>Limit | Reporting<br>Limit | Units | Dilution | Batch   | Prepared  | Sequence | Analyzed  | Method       | Notes |
|---------------------------|------------|--------|--------------------|--------------------|-------|----------|---------|-----------|----------|-----------|--------------|-------|
| Sample Preparation: No Pr | reparation |        |                    |                    |       |          |         |           |          |           |              |       |
| G16946 Blank-B            | 1705610-03 | 0.96   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G16951 Evap Feed-C        | 1705610-12 | 0.73   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G16952 Evap Feed-D        | 1705610-13 | 6.84   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G16958 Evap Concentrate-C | 1705610-26 | 3.51   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G17012 Evap Concentrate-D | 1705610-27 | 2.95   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G16968 Evap Condensate-C  | 1705610-40 | 1.24   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G16969 Evap Condensate-D  | 1705610-41 | 2.85   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G16976 Evap Knock Out-C   | 1705610-54 | 0.88   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |
| G16977 Evap Knock Out-D   | 1705610-55 | 1.32   | 0.08               | 0.50               | ng/L  | 1        | F706612 | 27-Jun-17 | 7F28024  | 27-Jun-17 | EPA 1631 Mod |       |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### Methyl Mercury (as Mercury)

| Sample Name Sample Preparation: EFGS | Lab Number | Result<br><b>Ig Disti</b> | Limit | Reporting<br>Limit | Units | Dilution | Batch   | Prepared  | Sequence | Analyzed  | Method              | Notes |
|--------------------------------------|------------|---------------------------|-------|--------------------|-------|----------|---------|-----------|----------|-----------|---------------------|-------|
| G16948 Blank preserved-A             | 1705610-06 | ND                        | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | U     |
| G16954 Evap Feed Preserved-A         | 1705610-18 | ND                        | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | U     |
| G16955 Evap Feed Preserved-B         | 1705610-19 | ND                        | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | U     |
| G16962 Evap Conc Preserved-A         | 1705610-32 | ND                        | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | U     |
| G16964 Evap Conc Preserved-B         | 1705610-33 | ND                        | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | U     |
| G16973 Evap Cond Preserved-A         | 1705610-46 | ND                        | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | U     |
| G16974 Evap Cond Preserved-B         | 1705610-47 | ND                        | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | U     |
| G16978 Evap Knock Out<br>Preserv-A   | 1705610-60 | 1.17                      | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | J     |
| G16980 Evap Knock Out<br>Preserv-B   | 1705610-61 | 1.49                      | 1.16  | 2.25               | ng/L  | 50       | F706466 | 13-Jun-17 | 7F14013  | 13-Jun-17 | EPA<br>1630/FGS-070 | J     |

Eurofins Frontier Global Sciences, Inc.



٦

| Frontier | Global | Sciences |
|----------|--------|----------|
|          |        |          |

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Quality Control Data**

| Analyte                           | Result  | Detection<br>Limit | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-----------------------------------|---------|--------------------|--------------------|-------|----------------|------------------|-----------|----------------|-------|--------------|-------|
| Batch F705667 - EPA 1631E BrCl Ox | idation |                    |                    |       |                |                  |           |                |       |              |       |
| Blank (F705667-BLK1)              |         |                    |                    |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | ND      | 0.08               | 0.50               | ng/L  |                |                  |           |                |       |              | τ     |
| Blank (F705667-BLK2)              |         |                    |                    |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | ND      | 0.08               | 0.50               | ng/L  |                |                  |           |                |       |              | τ     |
| Blank (F705667-BLK3)              |         |                    |                    |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | ND      | 0.08               | 0.50               | ng/L  |                |                  |           |                |       |              | ι     |
| LCS (F705667-BS1)                 |         |                    |                    |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | 15.64   | 0.08               | 0.50               | ng/L  | 15.679         |                  | 99.8      | 80-120         |       |              |       |
| LCS Dup (F705667-BSD1)            |         |                    |                    |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | 15.66   | 0.08               | 0.50               | ng/L  | 15.679         |                  | 99.9      | 80-120         | 0.122 | 24           |       |
| Duplicate (F705667-DUP1)          |         | Source:            | 1705610-08         |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | 2280    | 33.4               | 200                | ng/L  |                | 2275             |           |                | 0.243 | 24           |       |
| Matrix Spike (F705667-MS1)        |         | Source:            | 1705610-08         |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | 10260   | 33.4               | 200                | ng/L  | 8096.2         | 2275             | 98.6      | 71-125         |       |              |       |
| Matrix Spike (F705667-MS2)        |         | Source:            | 1705610-10         |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | 10270   | 33.4               | 200                | ng/L  | 8096.2         | 2161             | 100       | 71-125         |       |              |       |
| Matrix Spike Dup (F705667-MSD1)   |         | Source:            | 1705610-08         |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | 10450   | 33.4               | 200                | ng/L  | 8096.2         | 2275             | 101       | 71-125         | 1.87  | 24           |       |
| Matrix Spike Dup (F705667-MSD2)   |         | Source:            | 1705610-10         |       | Prepared &     | Analyzed:        | 31-May-17 |                |       |              |       |
| Mercury                           | 10220   | 33.4               | 200                | ng/L  | 8096.2         | 2161             | 99.5      | 71-125         | 0.459 | 24           |       |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Quality Control Data**

| Analyte                           | Result  | Detection<br>Limit | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-----------------------------------|---------|--------------------|--------------------|-------|----------------|------------------|-----------|----------------|------|--------------|-------|
| Batch F706305 - EPA 1631E BrCl Ox | idation |                    |                    |       |                |                  |           |                |      |              |       |
| Blank (F706305-BLK1)              |         |                    |                    |       | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | 0.16    | 0.08               | 0.50               | ng/L  |                |                  |           |                |      |              |       |
| Blank (F706305-BLK2)              |         |                    |                    |       | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | ND      | 0.08               | 0.50               | ng/L  |                |                  |           |                |      |              |       |
| Blank (F706305-BLK3)              |         |                    |                    |       | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | ND      | 0.08               | 0.50               | ng/L  | *              |                  |           |                |      |              |       |
| LCS (F706305-BS1)                 |         |                    |                    |       | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | 15.42   | 0.08               | 0.50               | ng/L  | 15.679         |                  | 98.3      | 80-120         |      |              |       |
| LCS Dup (F706305-BSD1)            |         |                    |                    |       | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | 15.73   | 0.08               | 0.50               | ng/L  | 15.679         |                  | 100       | 80-120         | 2.01 | 24           |       |
| Duplicate (F706305-DUP1)          |         | Source:            | 1705600-02         | 1     | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | 1.43    | 0.08               | 0.50               | ng/L  |                | 1.52             |           |                | 6.21 | 24           |       |
| Matrix Spike (F706305-MS1)        |         | Source:            | 1705600-02         |       | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | 6.09    | 0.08               | 0.50               | ng/L  | 5.0601         | 1.52             | 90.4      | 71-125         |      |              |       |
| Matrix Spike (F706305-MS2)        |         | Source:            | 1705600-08         | 5     | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | 6.26    | 0.08               | 0.50               | ng/L  | 5.0601         | 1.58             | 92.6      | 71-125         |      |              |       |
| Matrix Spike Dup (F706305-MSD1)   |         | Source:            | 1705600-02         |       | Prepared &     | c Analyzed:      | 02-Jun-17 |                |      |              |       |
| Mercury                           | 6.38    | 0.08               | 0.50               | ng/L  | 5.0601         | 1.52             | 96.1      | 71-125         | 4.64 | 24           |       |
| Matrix Spike Dup (F706305-MSD2)   |         | Source:            | 1705600-08         | ;     | Prepared &     | Analyzed:        | 02-Jun-17 |                |      |              |       |
| Mercury                           | 6.42    | 0.08               | 0.50               | ng/L  | 5.0601         | 1.58             | 95.6      | 71-125         | 2.44 | 24           |       |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Quality Control Data**

|                                   |              | Detection    | Reporting   |           | Spike                          | Source      |           | %REC   |      | RPD   |       |
|-----------------------------------|--------------|--------------|-------------|-----------|--------------------------------|-------------|-----------|--------|------|-------|-------|
| Analyte                           | Result       | Limit        | Limit       | Units     | Level                          | Result      | %REC      | Limits | RPD  | Limit | Notes |
| Batch F706319 - EFGS-022 Preparat | ion for Cryo | o Speciation | 1 of Waters |           |                                |             |           |        |      |       |       |
| Blank (F706319-BLK1)              |              |              |             |           | Prepared &                     | Analyzed:   | 05-Jun-17 |        |      |       |       |
| Inorganic Arsenic                 | 0.007        | 0.003        | 0.010       | $\mu g/L$ |                                |             |           |        |      |       |       |
| Blank (F706319-BLK2)              |              |              |             |           | Prepared &                     | Analyzed:   | 05-Jun-17 |        |      |       |       |
| Inorganic Arsenic                 | 0.005        | 0.003        | 0.010       | μg/L      |                                |             |           |        |      |       |       |
| LCS (F706319-BS1)                 |              |              |             |           | Prepared &                     | a Analyzed: | 05-Jun-17 |        |      |       |       |
| Inorganic Arsenic                 | 0.032        | 0.003        | 0.010       | μg/L      | 0.030000                       |             | 107       | 50-150 |      |       |       |
| LCS Dup (F706319-BSD1)            |              |              |             |           | Prepared & Analyzed: 05-Jun-17 |             |           |        |      |       |       |
| Inorganic Arsenic                 | 0.034        | 0.003        | 0.010       | μg/L      | 0.030000                       |             | 114       | 50-150 | 6.20 | 35    |       |
| Matrix Spike (F706319-MS1)        |              | Source:      | 1705860-12  | 1         | Prepared &                     | Analyzed:   | 05-Jun-17 |        |      |       |       |
| Inorganic Arsenic                 | 6.065        | 0.150        | 0.500       | μg/L      | 5.0000                         | 1.309       | 95.1      | 50-150 |      |       | AS    |
| Matrix Spike (F706319-MS2)        |              | Source:      | 1705861-05  | ;         | Prepared &                     | Analyzed:   | 05-Jun-17 |        |      |       |       |
| Inorganic Arsenic                 | 5.652        | 0.150        | 0.500       | μg/L      | 5.0000                         | 1.236       | 88.3      | 50-150 |      |       | AS    |
| Matrix Spike Dup (F706319-MSD1)   |              | Source:      | 1705860-12  |           | Prepared &                     | Analyzed:   | 05-Jun-17 |        |      |       |       |
| Inorganic Arsenic                 | 5.611        | 0.150        | 0.500       | μg/L      | 5.0000                         | 1.309       | 86.0      | 50-150 | 7.79 | 35    | AS    |
| Matrix Spike Dup (F706319-MSD2)   |              | Source:      | 1705861-05  | ;         | Prepared &                     | Analyzed:   | 05-Jun-17 |        |      |       |       |
| Inorganic Arsenic                 | 5.136        | 0.150        | 0.500       | μg/L      | 5.0000                         | 1.236       | 78.0      | 50-150 | 9.58 | 35    | AS    |
| Batch F706331 - EPA 1631E BrCl Ox | idation      |              |             |           |                                |             |           |        |      |       |       |
| Blank (F706331-BLK1)              |              |              |             |           | Prepared &                     | Analyzed:   | 06-Jun-17 |        |      |       |       |
| Mercury                           | 0.11         | 0.08         | 0.50        | ng/L      | 1                              | <u> </u>    | -         |        |      |       | -     |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Project: Mercury and Arsenic Speciation        |                                                |
|------------------------------------------------|------------------------------------------------|
| Project Number: Mercury and Arsenic Speciation | Reported:                                      |
| Project Manager: Daniel McCabe                 | 30-Jun-17 14:00                                |
|                                                | Project Number: Mercury and Arsenic Speciation |

### **Quality Control Data**

| Analyte                            | Result | Detection<br>Limit | Reporting<br>Limit    | Units | Spike<br>Level                 | Source<br>Result               | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |  |
|------------------------------------|--------|--------------------|-----------------------|-------|--------------------------------|--------------------------------|-----------|----------------|-------|--------------|-------|--|
| Batch F706331 - EPA 1631E BrCl Oxi | dation |                    |                       |       |                                |                                |           |                |       |              |       |  |
| Blank (F706331-BLK2)               |        |                    |                       |       | Prepared & Analyzed: 06-Jun-17 |                                |           |                |       |              |       |  |
| Mercury                            | ND     | 0.08               | 0.50                  | ng/L  |                                |                                |           |                |       |              | τ     |  |
| Blank (F706331-BLK3)               |        |                    |                       |       | Prepared &                     | Analyzed:                      | 06-Jun-17 |                |       |              |       |  |
| Mercury                            | ND     | 0.08               | 0.50                  | ng/L  |                                |                                |           |                |       |              | τ     |  |
| LCS (F706331-BS1)                  |        |                    |                       |       | Prepared &                     | Prepared & Analyzed: 06-Jun-17 |           |                |       |              |       |  |
| Mercury                            | 15.24  | 0.08               | 0.50                  | ng/L  | 15.679                         |                                | 97.2      | 80-120         |       |              |       |  |
| LCS Dup (F706331-BSD1)             |        |                    |                       |       | Prepared & Analyzed: 06-Jun-17 |                                |           |                |       |              |       |  |
| Mercury                            | 15.72  | 0.08               | 0.50                  | ng/L  | 15.679                         |                                | 100       | 80-120         | 3.04  | 24           |       |  |
| Duplicate (F706331-DUP1)           |        | Source:            | Source: 1705849-01 Pr |       |                                | Analyzed:                      | 06-Jun-17 |                |       |              |       |  |
| Mercury                            | 3.06   | 0.08               | 0.50                  | ng/L  |                                | 2.97                           |           |                | 2.88  | 24           |       |  |
| Matrix Spike (F706331-MS1)         |        | Source:            | 1705849-01            |       | Prepared & Analyzed: 06-Jun-17 |                                |           |                |       |              |       |  |
| Mercury                            | 12.80  | 0.08               | 0.50                  | ng/L  | 10.120                         | 2.97                           | 97.1      | 71-125         |       |              |       |  |
| Matrix Spike (F706331-MS2)         |        | Source:            | 1705849-02            |       | Prepared &                     | Analyzed:                      | 06-Jun-17 |                |       |              |       |  |
| Mercury                            | 12.07  | 0.08               | 0.50                  | ng/L  | 10.120                         | 2.50                           | 94.6      | 71-125         |       |              |       |  |
| Matrix Spike Dup (F706331-MSD1)    |        | Source:            | 1705849-01            |       | Prepared &                     | Analyzed:                      | 06-Jun-17 |                |       |              |       |  |
| Mercury                            | 12.91  | 0.08               | 0.50                  | ng/L  | 10.120                         | 2.97                           | 98.2      | 71-125         | 0.829 | 24           |       |  |
| Matrix Spike Dup (F706331-MSD2)    |        | Source:            | 1705849-02            |       | Prepared &                     | Analyzed:                      | 06-Jun-17 |                |       |              |       |  |
| Mercury                            | 12.60  | 0.08               | 0.50                  | ng/L  | 10.120                         | 2.50                           | 99.8      | 71-125         | 4.24  | 24           |       |  |
| Batch F706410 - No Preparation     |        |                    |                       |       |                                |                                |           |                |       |              |       |  |
| Blank (F706410-BLK1)               |        |                    |                       |       | Prepared &                     | Analyzed:                      | 08-Jun-17 |                |       |              |       |  |
| Dimethyl Mercury (as Mercury)      | ND     | 0.060              | 0.100                 | ng/L  | 1                              | <u> </u>                       |           |                |       |              | Ţ     |  |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Quality Control Data**

|                                 |        | Detection | Reporting          |       | Spike      | Source                         |           | %REC   |      | RPD   |       |
|---------------------------------|--------|-----------|--------------------|-------|------------|--------------------------------|-----------|--------|------|-------|-------|
| Analyte                         | Result | Limit     | Limit              | Units | Level      | Result                         | %REC      | Limits | RPD  | Limit | Notes |
| Batch F706410 - No Preparation  |        |           |                    |       |            |                                |           |        |      |       |       |
| Blank (F706410-BLK2)            |        |           |                    |       | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | ND     | 0.060     | 0.100              | ng/L  |            |                                |           |        |      |       | τ     |
| Blank (F706410-BLK3)            |        |           |                    |       | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | ND     | 0.060     | 0.100              | ng/L  |            |                                |           |        |      |       | τ     |
| Blank (F706410-BLK4)            |        |           |                    |       | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | ND     | 0.060     | 0.100              | ng/L  |            |                                |           |        |      |       | τ     |
| LCS (F706410-BS1)               |        |           |                    |       | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | 1.17   | 0.060     | 0.100              | ng/L  | 1.1018     |                                | 106       | 75-125 |      |       |       |
| LCS Dup (F706410-BSD1)          |        |           |                    |       | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | 1.25   | 0.060     | 0.100              | ng/L  | 1.1018     |                                | 114       | 75-125 | 6.74 | 25    |       |
| Duplicate (F706410-DUP1)        |        | Source:   | 1705558-06         | 5     | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | 35.7   | 2.40      | 4.00               | ng/L  |            | 31.9                           |           |        | 11.3 | 35    |       |
| Matrix Spike (F706410-MS1)      |        | Source:   | 1705558-06         | i     | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | 89.1   | 2.40      | 4.00               | ng/L  | 44.072     | 31.9                           | 130       | 65-130 |      |       |       |
| Matrix Spike (F706410-MS2)      |        | Source:   | 1705558-07         | ,     | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | 84.8   | 2.40      | 4.00               | ng/L  | 44.072     | 36.3                           | 110       | 65-130 |      |       |       |
| Matrix Spike Dup (F706410-MSD1) |        | Source:   | Source: 1705558-06 |       |            | Prepared & Analyzed: 08-Jun-17 |           |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | 79.3   | 2.40      | 4.00               | ng/L  | 44.072     | 31.9                           | 108       | 65-130 | 11.6 | 35    |       |
| Matrix Spike Dup (F706410-MSD2) |        | Source:   | 1705558-07         | ,     | Prepared & | Analyzed:                      | 08-Jun-17 |        |      |       |       |
| Dimethyl Mercury (as Mercury)   | 87.8   | 2.40      | 4.00               | ng/L  | 44.072     | 36.3                           | 117       | 65-130 | 3.48 | 35    |       |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Quality Control Data**

|                                   |                | Detection   | Reporting  |       | Spike                          | Source     |           | %REC   |      | RPD   |       |
|-----------------------------------|----------------|-------------|------------|-------|--------------------------------|------------|-----------|--------|------|-------|-------|
| Analyte                           | Result         | Limit       | Limit      | Units | Level                          | Result     | %REC      | Limits | RPD  | Limit | Notes |
| Batch F706466 - EFGS-013 Methyl H | Ig Distillatio | on for Wate | r          |       |                                |            |           |        |      |       |       |
| Blank (F706466-BLK1)              |                |             |            |       | Prepared &                     | Analyzed:  | 13-Jun-17 |        |      |       |       |
| Methyl Mercury (as Mercury)       | ND             | 1.16        | 2.25       | ng/L  |                                |            |           |        |      |       | τ     |
| Blank (F706466-BLK2)              |                |             |            |       | Prepared &                     | Analyzed:  | 13-Jun-17 |        |      |       |       |
| Methyl Mercury (as Mercury)       | ND             | 1.16        | 2.25       | ng/L  |                                |            |           |        |      |       | τ     |
| Blank (F706466-BLK3)              |                |             |            |       | Prepared &                     | Analyzed:  | 13-Jun-17 |        |      |       |       |
| Methyl Mercury (as Mercury)       | ND             | 1.16        | 2.25       | ng/L  |                                |            |           |        |      |       | τ     |
| LCS (F706466-BS1)                 |                |             |            |       | Prepared &                     | 13-Jun-17  |           |        |      |       |       |
| Methyl Mercury (as Mercury)       | 126.6          | 1.16        | 2.25       | ng/L  | 100.10                         |            | 126       | 70-130 |      |       |       |
| LCS Dup (F706466-BSD1)            |                |             |            |       | Prepared &                     | Analyzed:  | 13-Jun-17 |        |      |       |       |
| Methyl Mercury (as Mercury)       | 112.8          | 1.16        | 2.25       | ng/L  | 100.10                         |            | 113       | 70-130 | 11.6 | 35    |       |
| Duplicate (F706466-DUP1)          |                | Source:     | 1705610-18 | RE1   | Prepared & Analyzed: 13-Jun-17 |            |           |        |      |       |       |
| Methyl Mercury (as Mercury)       | ND             | 1.16        | 2.25       | ng/L  |                                | ND         |           |        |      | 35    | τ     |
| Matrix Spike (F706466-MS1)        |                | Source:     | 1705610-18 | RE1   | Prepared &                     | Analyzed:  | 13-Jun-17 |        |      |       |       |
| Methyl Mercury (as Mercury)       | 11.79          | 1.16        | 2.25       | ng/L  | 12.512                         | ND         | 94.2      | 65-130 |      |       |       |
| Matrix Spike Dup (F706466-MSD1)   |                | Source:     | 1705610-18 | RE1   | Prepared &                     | Analyzed:  | 13-Jun-17 |        |      |       |       |
| Methyl Mercury (as Mercury)       | 8.552          | 1.16        | 2.25       | ng/L  | 12.512                         | ND         | 68.3      | 65-130 | 31.8 | 35    |       |
| Batch F706612 - No Preparation    |                |             |            |       |                                |            |           |        |      |       |       |
| Blank (F706612-BLK1)              |                |             |            |       | Prepared &                     | Analyzed:  | 27-Jun-17 |        |      |       |       |
| Mercury (0)                       | ND             | 0.08        | 0.50       | ng/L  | i icparcu d                    | / maryzou. | 27-3un-17 |        |      |       |       |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Project: Mercury and Arsenic Speciation        |                                                |
|------------------------------------------------|------------------------------------------------|
| Project Number: Mercury and Arsenic Speciation | Reported:                                      |
| Project Manager: Daniel McCabe                 | 30-Jun-17 14:00                                |
|                                                | Project Number: Mercury and Arsenic Speciation |

### **Quality Control Data**

|                                |        | Detection | Reporting  |       | Spike                          | Source    |           | %REC   |      | RPD   |       |
|--------------------------------|--------|-----------|------------|-------|--------------------------------|-----------|-----------|--------|------|-------|-------|
| Analyte                        | Result | Limit     | Limit      | Units | Level                          | Result    | %REC      | Limits | RPD  | Limit | Notes |
| Batch F706612 - No Preparation |        |           |            |       |                                |           |           |        |      |       |       |
| Blank (F706612-BLK2)           |        |           |            |       | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Mercury (0)                    | 0.08   | 0.08      | 0.50       | ng/L  |                                |           |           |        |      |       |       |
| Blank (F706612-BLK3)           |        |           |            |       | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Mercury (0)                    | ND     | 0.08      | 0.50       | ng/L  |                                |           |           |        |      |       | ١     |
| Duplicate (F706612-DUP1)       |        | Source:   | 1705610-40 | RE2   | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Mercury (0)                    | 1.21   | 0.08      | 0.50       | ng/L  |                                | 1.24      |           |        | 2.56 | 24    |       |
| Batch F706613 - No Preparation |        |           |            |       |                                |           |           |        |      |       |       |
| Blank (F706613-BLK1)           |        |           |            |       | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Inorganic Mercury              | ND     | 0.08      | 0.50       | ng/L  |                                |           |           |        |      |       | ١     |
| Blank (F706613-BLK2)           |        |           |            |       | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Inorganic Mercury              | ND     | 0.08      | 0.50       | ng/L  |                                |           |           |        |      |       | ١     |
| Blank (F706613-BLK3)           |        |           |            |       | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Inorganic Mercury              | ND     | 0.08      | 0.50       | ng/L  |                                |           |           |        |      |       | ۱     |
| LCS (F706613-BS1)              |        |           |            |       | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Inorganic Mercury              | 18.10  | 0.08      | 0.50       | ng/L  | 20.040                         |           | 90.3      | 80-120 |      |       |       |
| LCS Dup (F706613-BSD1)         |        |           |            |       | Prepared &                     | Analyzed: | 27-Jun-17 |        |      |       |       |
| Inorganic Mercury              | 16.05  | 0.08      | 0.50       | ng/L  | 20.040                         |           | 80.1      | 80-120 | 12.0 | 24    |       |
| Duplicate (F706613-DUP1)       |        | Source:   | 1705610-26 | 6RE1  | Prepared & Analyzed: 27-Jun-17 |           |           |        |      |       |       |
| Inorganic Mercury              | 1083   | 30.8      | 200        | ng/L  |                                | 1097      |           |        | 1.25 | 24    |       |

Eurofins Frontier Global Sciences, Inc.



11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

# Frontier Global Sciences

| Savannah River Nuclear Solutions                                                                              |  | Project: Mercury and Arsenic Speciation |           |          |         |        |  |                 |  |     |  |
|---------------------------------------------------------------------------------------------------------------|--|-----------------------------------------|-----------|----------|---------|--------|--|-----------------|--|-----|--|
| SRNS, Bldg 773-42AProject Number: Mercury and Arsenic SpeciationAiken SC, 29808Project Manager: Daniel McCabe |  |                                         |           |          |         |        |  | Reported:       |  |     |  |
|                                                                                                               |  |                                         |           |          |         |        |  | 30-Jun-17 14:00 |  |     |  |
|                                                                                                               |  |                                         | Quality   | v Contro | ol Data |        |  |                 |  |     |  |
|                                                                                                               |  |                                         |           |          |         |        |  |                 |  |     |  |
|                                                                                                               |  | Detection                               | Reporting |          | Spike   | Source |  | %REC            |  | RPD |  |

| Matrix Spike (F706613-MS1)      | Source: | Source: 1705610-26RE1 |           |      | Prepared & Analyzed: 27-Jun-17 |           |           |        |       |    |  |
|---------------------------------|---------|-----------------------|-----------|------|--------------------------------|-----------|-----------|--------|-------|----|--|
| Inorganic Mercury               | 5718    | 30.8                  | 200       | ng/L | 4008.0                         | 1097      | 115       | 71-124 |       |    |  |
| Matrix Spike Dup (F706613-MSD1) |         | Source:               | 1705610-2 | 6RE1 | Prepared &                     | Analyzed: | 27-Jun-17 |        |       |    |  |
| Inorganic Mercury               | 5690    | 30.8                  | 200       | ng/L | 4008.0                         | 1097      | 115       | 71-124 | 0.487 | 24 |  |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

### **Quality Control Data**

|                                    |               | Detection  | Reporting  |           | Spike       | Source      |             | %REC     |      | RPD   |       |
|------------------------------------|---------------|------------|------------|-----------|-------------|-------------|-------------|----------|------|-------|-------|
| Analyte                            | Result        | Limit      | Limit      | Units     | Level       | Result      | %REC        | Limits   | RPD  | Limit | Notes |
| Batch F706568 - EFGS-052 Closed Ve | ssel Nitric ( | Oven Diges | tion       |           |             |             |             |          |      |       |       |
| Blank (F706568-BLK1)               |               |            |            |           | Prepared: 2 | 23-Jun-17 A | nalyzed: 2  | 9-Jun-17 |      |       |       |
| Arsenic                            | 0.14          | 0.10       | 0.30       | μg/L      |             |             |             |          |      |       |       |
| LCS (F706568-BS1)                  |               |            |            |           | Prepared: 2 | 23-Jun-17 A | analyzed: 2 | 9-Jun-17 |      |       |       |
| Arsenic                            | 52.01         | 0.50       | 1.50       | μg/L      | 50.010      |             | 104         | 85-115   |      |       |       |
| LCS Dup (F706568-BSD1)             |               |            |            |           | Prepared: 2 | 23-Jun-17 A | analyzed: 2 | 9-Jun-17 |      |       |       |
| Arsenic                            | 50.93         | 0.50       | 1.50       | μg/L      | 50.010      |             | 102         | 85-115   | 2.08 | 20    |       |
| Matrix Spike (F706568-MS1)         |               | Source:    | 1706230-01 |           | Prepared: 2 | 23-Jun-17 A | analyzed: 2 | 9-Jun-17 |      |       |       |
| Arsenic                            | 117.2         | 0.51       | 1.52       | μg/L      | 100.02      | 6.09        | 111         | 70-130   |      |       |       |
| Matrix Spike (F706568-MS2)         |               | Source:    | 1706230-01 |           | Prepared: 2 | 23-Jun-17 A | nalyzed: 2  | 9-Jun-17 |      |       |       |
| Arsenic                            | 210.6         | 0.50       | 1.51       | μg/L      | 205.00      | 6.09        | 99.8        | 70-130   |      |       | A     |
| Matrix Spike Dup (F706568-MSD1)    |               | Source:    | 1706230-01 |           | Prepared: 2 | 23-Jun-17 A | analyzed: 2 | 9-Jun-17 |      |       |       |
| Arsenic                            | 111.5         | 0.51       | 1.52       | $\mu g/L$ | 100.02      | 6.09        | 105         | 70-130   | 5.01 | 20    |       |
| Matrix Spike Dup (F706568-MSD2)    |               | Source:    | 1706230-01 |           | Prepared: 2 | 23-Jun-17 A | analyzed: 2 | 9-Jun-17 |      |       |       |
| Arsenic                            | 222.0         | 0.50       | 1.51       | μg/L      | 205.00      | 6.09        | 105         | 70-130   | 5.23 | 20    | A     |

Eurofins Frontier Global Sciences, Inc.



# Frontier Global Sciences

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

| Savannah River Nuclear Solutions | Project: Mercury and Arsenic Speciation        |                 |
|----------------------------------|------------------------------------------------|-----------------|
| SRNS, Bldg 773-42A               | Project Number: Mercury and Arsenic Speciation | Reported:       |
| Aiken SC, 29808                  | Project Manager: Daniel McCabe                 | 30-Jun-17 14:00 |

#### **Notes and Definitions**

- U Analyte was not detected and is reported as less than the LOD or as defined by the client. The LOD has been adjusted for any dilution or concentration of the sample.
- O-04 This sample was analyzed outside of the recommended holding time.
- J The result is an estimated concentration.
- FB This blank is a filtration blank. Data is reported for informational purposes only.
- AS This MS and/or MSD is an analytical spike and/or an analytical spike duplicate.

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Eurofins Frontier Global Sciences, Inc.

DET Analyte DETECTED

# 7.5 Appendix E. Southwest Research Institute Results

# SOUTHWEST RESEARCH INSTITUTE®

6220 CULEBRA ROAD 78238-5166 • P.O. DRAWER 28510 78228-0510 • SAN ANTONIO, TEXAS, USA • (210) 684-5111 • WWW.SWRI.ORG

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY





July 6, 2017

Savannah River Nuclear Solutions, LLC 6160 Woodside Executive Court Aiken, South Carolina 29808

Attention: Natalia E. Johnson

Subject: Contract No.: 78769 Delivery No: SWR-17-W-17031 SDG Number: 616432 SwRI Project Number: 17995.24.00X SwRI Task Order Number: 170609-5 SwRI Sample Receipt Number: 59851 Samples Received 06.09.17 Line Item(s): 282

Dear Ms. Johnson:

Please find the enclosed results for the five (5) overall samples received on the above referenced date. Should you have any questions, please feel free to contact me at 210-522-3320, or at jacqueline.ranger@swri.org.



SOUTHWEST RESEARCH INSTITUTE CLIENT: Savannah River Nuclear SwRI PROJECT#: 17995.24.001 SwRI TASK ORDER: 170609-5 SwRI SRR: 59851 SDG: 616432 CONTRACT: 78769 ORDER: SWR-17-W-17031 RECEIVED: 06/09/2017

# **Chain of Custody**

| CHAIN                                                            |                                                                       | Aqueous                               | ] Soil 🔲 Solid | Sludge gr water Sm                                                                                                                                   | 0100002e1 of <u>2</u>                                                                                                       |
|------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 17031                                                            | Customer Name: HILL, KAT<br>Customer Department: E&CPT                |                                       | LQB            | Company: SWR<br>9503 West Comme                                                                                                                      |                                                                                                                             |
| Contract Number 0000078769                                       | Customer Address: 999-W 39<br>Customer Phone/Beeper: 819-8469         | 1<br>10395                            | Ship to        | <b>O:</b> Address: San Antonio, TX 78<br>Attention: Michael Dammann                                                                                  |                                                                                                                             |
|                                                                  | River Nuclear Solutions<br>Aiken, SC 29808                            | Sample ID:<br>W - 1703 /              | -00001         | Sample ID:<br>W - 17031 - 0000 2                                                                                                                     | Sample ID:<br>W-17031-00003                                                                                                 |
| Environn                                                         | nental Services Section<br>nple Management Group                      | Collect Date                          | 3/17           | Collect Date<br>618/17                                                                                                                               | Collect Date<br>6/8/17                                                                                                      |
| Matrix: S=Soil,SO=Solid                                          | COC creation date. 6/5/17<br>,SL=Sludge,O=Organic,A=Aqueous, SM=Smear | Collect Time                          | 100            | Collect Time<br>U9 DO<br>No. Containers                                                                                                              | Collect Time                                                                                                                |
| Sample Analysis Reque                                            | ested                                                                 | Matrix                                | A              | Matrix A                                                                                                                                             | Matrix A                                                                                                                    |
| Cyanide-Total (spectro                                           | ophotometric manual) (282)                                            | i/                                    |                | V                                                                                                                                                    |                                                                                                                             |
|                                                                  | ······································                                |                                       |                |                                                                                                                                                      |                                                                                                                             |
|                                                                  |                                                                       |                                       |                |                                                                                                                                                      |                                                                                                                             |
|                                                                  | ·                                                                     |                                       |                | Client: Savannah River Nuclear Solution<br>SwRI Project # 17995.24.001<br>VTSR: 6669/17 10:30<br>Battery Check: Y<br>Cooler/Container Wipe: <150 cpm | Case: 1/031<br>Sample(s) Received: Intact<br>Background Check: <150 cpm (Lab 103)<br>Temp.: 2,5°C ( blue ice) / SN # 021055 |
|                                                                  | · · · · · · · · · · · · · · · · · · ·                                 | · · · · · · · · · · · · · · · · · · · |                | Total cpm-mR/h (samples); -150 cpm; <<br>(see Radioactive Material Receiving For                                                                     | 0.5 mR/hr Wipe Frisk Description: Coolers - (1)<br>m for more information)                                                  |
| TAT Days     Activity Coc       28     08YRL3C0       1     Prin |                                                                       |                                       |                | RAD SCREEN RE<br>NO                                                                                                                                  | EQUIRED? STR Authorization                                                                                                  |
| Sig<br>3_I<br>Prir<br>Sig                                        |                                                                       |                                       |                |                                                                                                                                                      |                                                                                                                             |
|                                                                  |                                                                       |                                       |                |                                                                                                                                                      |                                                                                                                             |

| CHAIN                                                                     |                                                                                                                            | Aqueous                                                                                       | Soil 🗌 Solid       | □ Sludge □ gr water                                                                                                             | 0100433egLof <u>2</u><br>□ Smears □ Swipes □ Gas                                                                                                            |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17031                                                                     | Customer Name: HILL, KAT<br>Customer Department: E&CPT<br>Customer Address: 999-W 39                                       | IE                                                                                            | LQB<br>Ship t      | Company: SWR<br>9503 West C                                                                                                     | ommerce                                                                                                                                                     |
| 0000078769                                                                | Customer Phone/Beeper: 819-8469                                                                                            | 10395                                                                                         |                    | Attention: Michael Dam                                                                                                          |                                                                                                                                                             |
| Environr<br>Waste Sar<br>Matrix: S=Soil,SO=Solic<br>Sample Analysis Reque | nental Services Section<br>nple Management Group<br>COC creation date. 6/5/17<br>I,SL=Sludge,O=Organic,A=Aqueous, SM=Smear | Sample ID:<br>W - 1703   -<br>Collect Date 61<br>Collect Time 090<br>No. Containers<br>Matrix | е <u>н</u><br>8/17 | Sample ID:<br>W - 1703 1 - 00005<br>Sample 5<br>Collect Date<br>6/3/17<br>Collect Time<br>0000<br>No. Containers<br>Matrix<br>A | Sample ID:<br>Collect Date<br>UB (17)<br>Collect Time<br>0900<br>No. Containers<br>Matrix<br>Matrix                                                         |
| Cyanide-Total (spectr                                                     | ophotometric manual) (282)                                                                                                 |                                                                                               |                    | Client: Savannah River Nuclear Solution<br>SwRI Project # 17995.24.001<br>VTSR: 0609/17 10:30                                   | Case: 1/031<br>Sample(s) Received: Intact                                                                                                                   |
| TAT Days Activity Co<br>28 08YRL3C0                                       |                                                                                                                            |                                                                                               |                    |                                                                                                                                 | Eackground Check: <150 cpm (Lab 103)<br>Temp: 3.5 °C (blue ice) (SN # 02105<br>c0.5 mR/hr Wipe Frisk Description: Coolers - (1)<br>rm for more information) |
| 1 Reli<br>(Print)<br>(Sign)<br>3 Reli<br>(Print)<br>(Sign)                |                                                                                                                            |                                                                                               |                    |                                                                                                                                 |                                                                                                                                                             |

ESO-RG-20170600026

# Savannah River Site Electronic Shipping Orders

## Emergency Contact Number: (803) 725-3333

| Purchase Orde      | r/PCP N  | lumber   |    | Return Authorization Number                        | Shipping Order Number |           |
|--------------------|----------|----------|----|----------------------------------------------------|-----------------------|-----------|
| 0000078769         |          |          |    | N/A                                                |                       |           |
| Supplier Conta     | ct Nam   | e        |    | Supplier Contact Phone                             |                       |           |
| MICHAEL DAI        | MMAN     | N        |    | 210-522-5428                                       |                       |           |
| Third Party Billir | ng Addre | ess      |    | ShipTo                                             |                       |           |
| N/A                |          |          |    | SOUTHWEST RES<br>9503 WEST COMM<br>SAN ANTONIO, TX | ERCE                  |           |
|                    |          |          |    |                                                    | W                     | eight     |
| Item No            |          | Packages | HM | Short Description                                  | Pounds                | Kilograms |
|                    | No       | Туре     |    |                                                    |                       |           |
| ITM-0001           | 1        | Cooler   |    | EMF SIMULANT (JOB NUMBER 17030)                    | 30                    | 14        |
| Totals             |          |          |    |                                                    | 30                    | 14        |

#### **Expanded Description and HMTR Comments**

## Shipping Item Comments for: ITM-0001 - <No ELI Number>

Originator's Comments: EMF SIMULANT (JOB NUMBER 17030)

> Client: Savannah River Nuclear Solutions,LLC SwRI # 5f SwRI Project # 17995.24.001 Case: 17i VTSR: G6/08/17 10:30 Backgrox Battery Check: Y Temp.: 3.5 Cooler/Container Wipe: <150 cpm; <0.5 mR/hr Wipe Frisk I (see Radioactive Material Receiving Form for more information)

SwRI # 59851 Case: 17031 Sampiels, Received: Intact Background Check: <150 cpm (Lab 103) Temp: 3:57 ( blue ice) / SN # 021055 Wipe Frisk Description: Coolers - (1) formation)

### 010005

SOUTHWEST RESEARCH INSTITUTE CLIENT: Savannah River Nuclear SwRI PROJECT#: 17995.24.001 SwRI TASK ORDER: 170609-5 SwRI SRR: 59851 SDG: 616432 CONTRACT: 78769 ORDER: SWR-17-W-17031 RECEIVED: 06/09/2017

# **Sample Receipt Paperwork**

## 010006

## Sample Receipt Sample Receipt Number: 59851

VTSR: 06/09/17

Time: 10:30:00

Proj Case Client: annah River Nuclear Solutions, LLC

Southwest Research Institute

Notes Samples were received intact. Fed Ex Tracking #(s): - 3.5°C (blue ice) 7793 3243 6580 Test requirements located on Task Order. See chain-of-custody as part of the SRR system for more information. ALL SAMPLE CONTAINERS / APPLICABLE ITEMS WERE RECEIVED OK. Phases: 001 - admin 006 - metals/radchem 007 - drg Backaround CPM: <150 cpm Container Wipe CPM: <150 cpm Total CPM: <150 System ID CED Containers Special Regs. **Customer ID** Matrix 616432 W-17031-00001 06/08/17 Aqueous 1 616433 W-17031-00002 06/08/17 Aqueous 1 1 06/08/17 616434 W-17031-00003 Aqueous 616435 W-17031-00004 06/08/17 Aqueous 1 06/08/17 616436 W-17031-00005 Aqueous 1 Samples: 5 **Containers: 5** 

These documents are associated with this receipt: 223187[COC for SRR 59851], 223189[Paperwork for SRR 59851]

Thermometer: 021055 Temperature: 3.5

0 8 J S avannah River Nucl D Ŵ R U.

UП

Manager: DAMMANN, MIKE

Logged in by: DXGARCIA

Creation Date: 06/09/17

| ect: | 17995.24.001                         |
|------|--------------------------------------|
| e #: | 17031                                |
|      | Sayannah River Nuclear Solutions 110 |

Project(s): 17995.24.001

# Laboratory Task Order

TO #: 170609-5 Revision: 0

SDG: 616432 VTSR: 06/09/17 CASE: 17031 SRR #'s: 59851 Manager(s): DAMMANN, MIKE To Client: 07/06/17 Client(s): Savannah River Nuclear Solutions, LLC

Instructions Savannah River Nuclear Solutions, LLC. Contract 78769. Release Order # SWR-17-W-17031. SDG is 616432 28-day TAT. Using 26-day TAT for Report/EDD. FINAL DATA/HARDCOPY IS DUE TO THE CLIENT ON 07/07/2017. 5 overall simulant samples were received on 06/09/17, which are ALL listed here. REQUIRED: Cyanide-Total (spectrophotometric manual) \*\*\*\* PER REQUEST: \_ Pay Item: 282 \_ EPA 9012B Total and Amenable Cyanide See SAVANNAH SOW EC & ACP for all requirements. 3.1.2.7 Analytical Requirements 3.1.2.11.1 Analytical Data Report 3.1.2.11.2 Laboratory Case Narrative CONTACT: Ms. Natalia Johnson, natalia.johnson@srs.gov, 803.952.6203

Documents Related to this task order: 223187[COC for SRR 59851], 223189[Paperwork for SRR 59851]

Deliverables --> Hard Copy: no EDD: no PDF: -YES-

| Test: CN_<br>Section: V | VETCHEM   | Holding: 14 days fr<br>Total Cyanide by |               |           |             |  |  |
|-------------------------|-----------|-----------------------------------------|---------------|-----------|-------------|--|--|
| System ID               | Type Cont | Matrix                                  | Customer ID   | CED       | Method Date |  |  |
| 616432                  | 1         | Aqueous                                 | W-17031-00001 | 08 Jun 17 | 22 Jun 17   |  |  |
| 616433                  | 1         | Aqueous                                 | W-17031-00002 | 08 Jun 17 | 22 Jun 17   |  |  |
| 616434                  | 1         | Aqueous                                 | W-17031-00003 | 08 Jun 17 | 22 Jun 17   |  |  |
| 616435                  | 1         | Aqueous                                 | W-17031-00004 | 08 Jun 17 | 22 Jun 17   |  |  |
| 616436                  | 1         | Aqueous                                 | W-17031-00005 | 08 Jun 17 | 22 Jun 17   |  |  |



# Southwest Research Institute

Sample Custodian Signature:

| 1. Custody Seal     |
|---------------------|
| 2. Chain of Custody |
|                     |

3. Sample Tags Sample Tag Numbers

4. SMO Forms

NA Not Present Not on COC Present

Present

Present

Client: Savannah River Nuclear Solutions, LLC Project: 17995.24.001 Case: 17031 / SDG: <u>SEE †.6</u> Sample Receipt: 59851 Airbill: 7793 3243 6580

Custody Seal #(s): N/A

| Date Received Received | coc passed | CMO Semale # | Correspond             | Traffic Rpt, | Sample |                                         |           |
|------------------------|------------|--------------|------------------------|--------------|--------|-----------------------------------------|-----------|
|                        | Received   | COC Record   | SMO Sample #           | Sample Tag # | SwRI # | Tags, COC<br>Agree<br>YES<br>YES<br>YES | Condition |
| 06/09/17               | 10:30:00   | 17031        | W-17031-000 <b>0</b> 1 | N/A          | 616432 | YES                                     | Intact    |
| 06/09/17               | 10:30:00   | 17031        | W-17031-000 <b>0</b> 2 | N/A          | 616433 | YES                                     | Intact    |
| 06/09/17               | 10:30:00   | 17031        | W-17031-00003          | N/A          | 616434 | YES                                     | Intact    |
| 06/09/17               | 10:30:00   | 17031        | W-17031-00004          | N/A          | 616435 | YES                                     | Intact    |
| 06/09/17               | 10:30:00   | 17031        | W-17031-00005          | N/A          | 616436 | YES                                     | Intact    |

010009

### SAMPLE LOG-IN SHEET

| Lab  | Name                                                                                        |                                             |                      |                                        |                                 |                            |
|------|---------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|----------------------------------------|---------------------------------|----------------------------|
| Rec  | Southwest Rese<br>eived By (Print Name)                                                     | earch Institute                             |                      |                                        |                                 | Page 1 of 1<br>Log-in Date |
|      | DAVID GARCIA                                                                                |                                             |                      |                                        |                                 | 06/09/2017                 |
| Rec  | eived By (Signature)                                                                        |                                             |                      |                                        |                                 |                            |
| Cas  | e Number<br>17031                                                                           | ·····                                       | Sample Delivery Grou | No. A                                  |                                 | SAS Number                 |
| Ren  | Remarks: 17995.24.001                                                                       |                                             |                      | Согте                                  | Remarks:<br>Condition of Sample |                            |
|      |                                                                                             |                                             | EPA Sample #         | Sample Tag #                           | Assigned Lab #                  | Shipment, etc              |
| 1.   | Custody Seal(s)                                                                             | Present Absent*<br>Intac Broken             | W-17031-00001        | N/A                                    | 616432                          | Intact                     |
| 2.   | Custody Seal Nos.                                                                           | N/A                                         | w-17031-00002        | N/A                                    | 616433                          | Intact                     |
|      |                                                                                             |                                             | W-17031-00003        | N/A                                    | 616434                          | Intact                     |
| 3.   | Chain-of Custody Records                                                                    | Present Absent*                             | W-17031-00004        | N/A                                    | 616435                          | Intact                     |
| 4.   | Traffic Reports<br>or Packing Lists                                                         | Present Absent*                             | W-17031-00005        | N/A                                    | 616436                          | Intact                     |
| 5.   | Airbill                                                                                     | Airbill/Sticker<br>Present Absent*          |                      |                                        |                                 |                            |
| 6.   | Airbill No.                                                                                 | 7793 3243 6580                              |                      |                                        |                                 |                            |
| 7.   | Sample Tags                                                                                 | Present Absent                              |                      |                                        |                                 |                            |
|      | Sample Tag Numbers                                                                          | Listed Not<br>listed on Chain of<br>Custody |                      |                                        |                                 |                            |
| 8.   | Sample Condition                                                                            | Intact/Broken*/<br>Leaking                  | <u>\</u>             |                                        |                                 |                            |
| 9.   | Cooler Temperature                                                                          | 3.5C                                        | <u> </u>             |                                        |                                 |                            |
| 10.  | Does Information<br>on custody<br>records, traffic<br>reports, and<br>sample tags<br>agree? | (Tes) No*                                   |                      |                                        |                                 |                            |
| 11.  | Date Received at Lab                                                                        | 06/09/2017                                  |                      |                                        |                                 |                            |
| 12.  | Time Received                                                                               | 10:30:00                                    |                      |                                        |                                 |                            |
|      | Sample                                                                                      | Transfer                                    |                      |                                        |                                 |                            |
| Frac | tion 6                                                                                      | Fraction                                    | -                    |                                        |                                 |                            |
| Атеа | INDRY                                                                                       | Area #                                      |                      |                                        |                                 | /                          |
| By   | 12.13                                                                                       | Ву                                          |                      |                                        |                                 |                            |
|      | AVID GARCIA                                                                                 | On                                          |                      | ······································ |                                 |                            |
|      | 5/09/2017                                                                                   |                                             |                      |                                        |                                 | T                          |
|      | Contact SMO_and attach recor                                                                | d of resolution                             |                      |                                        |                                 |                            |
| Revi |                                                                                             |                                             |                      | Logbook No.                            | 9/ample Recei                   |                            |
| Date | ¥                                                                                           |                                             |                      | Logbook Page No. 🔪                     | 19846 SEC                       | 3 of 4                     |

SOUTHWEST RESEARCH INSTITUTE CLIENT: Savannah River Nuclear SwRI PROJECT#: 17995.24.001 SwRI TASK ORDER: 170609-5 SwRI SRR: 59851 SDG: 616432 CONTRACT: 78769 ORDER: SWR-17-W-17031 RECEIVED: 06/09/2017

**Total Cyanide Case Narrative**  Client: Savannah River Nuclear Solutions, LLC SDG: 616432 SwRI Project Number: 17995.24.00X SwRI Task Order Number: 170609-5

### WETCHEM ANALYSES-Total Cyanide

The samples were prepared for Total Cyanide using SW 846 9010C and analyzed using 9012B. All holding times were met.

Instrument QC: All instrument QC criteria were met. The recoveries were within 90-110% for the initial and continuing calibration verifications. No analytes were detected above SwRI's reporting limits in the initial and continuing calibration blanks.

Total Cyanide QC: Cyanide was not detected in the prep blanks above SwRI's RLs. The aqueous laboratory control sample and its duplicate were within 80-120% recovery. SwRI system ID 616432 was QC'd. All matrix spike recoveries for total cyanide were within their specified criteria and did not require any data qualifiers. The duplicate RPD was 8.06%, which is less than 35%; therefore, no flag was required.

Description of "Q" column qualifiers on SwRI report forms: "U" indicates that an analyte was not detected above SwRI's reporting limit (RL). SwRI's RLs were used as CRDLs for reporting. "D" indicates the result is reported from a dilution.

Laboratory Qualifiers used on Certificate of Analysis and EDD: "U" is used for non-detected analytes.

v

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the laboratory manager or his/her designee, as verified by the following signature. This report shall not be reproduced except in full without the written approval of SwRI."

Date

### 010012

SOUTHWEST RESEARCH INSTITUTE CLIENT: Savannah River Nuclear SwRI PROJECT#: 17995.24.001 SwRI TASK ORDER: 170609-5 SwRI SRR: 59851 SDG: 616432 CONTRACT: 78769 ORDER: SWR-17-W-17031 RECEIVED: 06/09/2017

# **Total Cyanide**

### SOUTHWEST RESEARCH INSTITUTE WetChem Report Cover Page

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5

SDG: 616432 SRR: 59851 Case: 17031 Project: 17995.24.001

| Client Sample ID | Lab Sample ID |
|------------------|---------------|
| W-17031-00001    | 616432        |
| W-17031-00001D   | 616432D       |
| W-17031-00001MS  | 616432S       |
| W-17031-00002    | 616433        |
| W-17031-00003    | 616434        |
| W-17031-00004    | 616435        |
| W-17031-00005    | 616436        |

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and the electronic data submitted has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature:

Name: Radonna Spies

Date:

Title: Principal Scientist

Cover Page

Certificate of Analysis

W-17031-00001

Type: Unknown

| Client: Savannah River Nuclear Solutions, LLC |
|-----------------------------------------------|
| Task Order: 170609-5                          |
| Lab ID: 616432                                |
| Result Units: mg/L                            |

SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA

| CAS No. | Analyte       | Result | Qual | М   | RL    | CRDL  | DF | Prep Batch    | Analysis Date/Time |
|---------|---------------|--------|------|-----|-------|-------|----|---------------|--------------------|
| 57-12-5 | Total Cyanide | 13.1   | D    | KNO | 0.250 | 0.500 | 10 | 20170621-P002 | 06/21/2017 19:03   |

| Data Reporting Qualifiers (Qual)                                         | Columns                         | Instruments/Methods (M) |
|--------------------------------------------------------------------------|---------------------------------|-------------------------|
| B - Result is greater than or equal to the SwRI Reporting Limit (RL) and | RL - SwRI Reporting Limit       | KNO - Konelab/NA        |
| less than the Contract Required Detection Limit (CRDL)                   | CRDL - Contract Req. Det. Limit | NA - Not Applicable     |
| U - Result is less than the SwRI Reporting Limit (RL)                    | DF - Dilution Factor            |                         |
| J - Matrix spike and/or matrix spike duplicate criteria was not met      | M - Instrument                  |                         |
| X - Analytical spike criteria was not met                                |                                 |                         |
| E - Result is estimated due to interferences                             |                                 |                         |
| D - Result is reported from a dilution                                   |                                 |                         |
| J - Duplicate criteria was not met                                       |                                 |                         |
|                                                                          |                                 |                         |

Certificate of Analysis

W-17031-00002

Type: Unknown

| Client: Savannah River Nuclear Solutions, LLC |
|-----------------------------------------------|
| Task Order: 170609-5                          |
| Lab ID: 616433                                |
| Result Units: mg/L                            |

SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA

| CAS No.    | Analyte      | Result | Qual | М   | RL    | CRDL  | DF | Prep Batch    | Analysis Date/Time |
|------------|--------------|--------|------|-----|-------|-------|----|---------------|--------------------|
| 57-12-5 To | otal Cyanide | 15.4   | D    | KNO | 0.250 | 0.500 | 50 | 20170621-P002 | 06/21/2017 19:03   |

| Data Reporting Qualifiers (Qual)                                    | Columns                               | Instruments/Methods (M) |
|---------------------------------------------------------------------|---------------------------------------|-------------------------|
|                                                                     | · · · · · · · · · · · · · · · · · · · | KNO - Konelab/NA        |
| less than the Contract Required Detection Limit (CRDL)              | CRDL - Contract Req. Det. Limit       | NA - Not Applicable     |
| U - Result is less than the SwRI Reporting Limit (RL)               | DF - Dilution Factor                  |                         |
| J - Matrix spike and/or matrix spike duplicate criteria was not met | M - Instrument                        |                         |
| X - Analytical spike criteria was not met                           |                                       |                         |
| E - Result is estimated due to interferences                        |                                       |                         |
| D - Result is reported from a dilution                              |                                       |                         |
| J - Duplicate criteria was not met                                  |                                       |                         |
|                                                                     |                                       |                         |

Certificate of Analysis

W-17031-00003

Type: Unknown

| Client: Savannah River Nuclear Solutions, LLC |
|-----------------------------------------------|
| Task Order: 170609-5                          |
| Lab ID: 616434                                |
| Result Units: mg/L                            |

SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA

| CAS No. | Analyte       | Result | Qual | М   | RL   | CRDL | DF  | Prep Batch    | Analysis Date/Time |
|---------|---------------|--------|------|-----|------|------|-----|---------------|--------------------|
| 57-12-5 | Total Cyanide | 56.4   | D    | KNO | 1.25 | 2.50 | 250 | 20170621-P002 | 06/21/2017 20:39   |

| Data Reporting Qualifiers (Qual)                                    | Columns                               | Instruments/Methods (M) |
|---------------------------------------------------------------------|---------------------------------------|-------------------------|
|                                                                     | · · · · · · · · · · · · · · · · · · · | KNO - Konelab/NA        |
| less than the Contract Required Detection Limit (CRDL)              | CRDL - Contract Req. Det. Limit       | NA - Not Applicable     |
| U - Result is less than the SwRI Reporting Limit (RL)               | DF - Dilution Factor                  |                         |
| J - Matrix spike and/or matrix spike duplicate criteria was not met | M - Instrument                        |                         |
| X - Analytical spike criteria was not met                           |                                       |                         |
| E - Result is estimated due to interferences                        |                                       |                         |
| D - Result is reported from a dilution                              |                                       |                         |
| J - Duplicate criteria was not met                                  |                                       |                         |
|                                                                     |                                       |                         |

Certificate of Analysis

W-17031-00004

Type: Unknown

SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA

| 57-12-5 Total Cyanide | 0.222 | KNO | 0.00500 | 0.0100 | 1 | 20170621-P002 | 06/21/2017 20:39 |
|-----------------------|-------|-----|---------|--------|---|---------------|------------------|

| Data Reporting Qualifiers (Qual)                                    | Columns                         | Instruments/Methods (M) |
|---------------------------------------------------------------------|---------------------------------|-------------------------|
|                                                                     | RL - SwRI Reporting Limit       | KNO - Konelab/NA        |
| less than the Contract Required Detection Limit (CRDL)              | CRDL - Contract Req. Det. Limit | NA - Not Applicable     |
| U - Result is less than the SwRI Reporting Limit (RL)               | DF - Dilution Factor            |                         |
| J - Matrix spike and/or matrix spike duplicate criteria was not met | M - Instrument                  |                         |
| X - Analytical spike criteria was not met                           |                                 |                         |
| E - Result is estimated due to interferences                        |                                 |                         |
| D - Result is reported from a dilution                              |                                 |                         |
| J - Duplicate criteria was not met                                  |                                 |                         |
|                                                                     |                                 |                         |

Certificate of Analysis

W-17031-00005

Type: Unknown

| Client: Savannah River Nuclear Solutions, LLC |
|-----------------------------------------------|
| Task Order: 170609-5                          |
| Lab ID: 616436                                |
| Result Units: mg/L                            |
|                                               |

SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA

| CAS No. | Analyte       | Result | Qual | М   | RL      | CRDL   | DF | Prep Batch    | Analysis Date/Time |
|---------|---------------|--------|------|-----|---------|--------|----|---------------|--------------------|
| 57-12-5 | Total Cyanide | 0.235  |      | KNO | 0.00500 | 0.0100 | 1  | 20170621-P002 | 06/21/2017 20:39   |

| Data Reporting Qualifiers (Qual)                                                                                                                                                                                                                                                                                                                            | Columns                                | Instruments/Methods (M)                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|
| B - Result is greater than or equal to the SwRI Reporting Limit (RL) and less than the Contract Required Detection Limit (CRDL)                                                                                                                                                                                                                             |                                        | KNO - Konelab/NA<br>NA - Not Applicable |
| <ul> <li>U - Result is less than the SwRI Reporting Limit (RL)</li> <li>J - Matrix spike and/or matrix spike duplicate criteria was not met</li> <li>X - Analytical spike criteria was not met</li> <li>E - Result is estimated due to interferences</li> <li>D - Result is reported from a dilution</li> <li>J - Duplicate criteria was not met</li> </ul> | DF - Dilution Factor<br>M - Instrument |                                         |

Certificate of Analysis

Type: Blank

SwRI ID

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: PB17F21PB1 Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Solid, Aqueous % Solids: NA Case: 17031 Project: 17995.24.001 Receipt Date: NA Collection Date: NA

010019

| CAS No. | Analyte       | Result  | Qual | М   | RL      | CRDL   | DF | Prep Batch    | Analysis Date/Time |
|---------|---------------|---------|------|-----|---------|--------|----|---------------|--------------------|
| 57-12-5 | Total Cyanide | 0.00500 | U    | KNO | 0.00500 | 0.0100 | 1  | 20170621-P002 | 06/21/2017 19:03   |

| Data Reporting Qualifiers (Qual)                                    | Columns                                 | Instruments/Methods (M) |
|---------------------------------------------------------------------|-----------------------------------------|-------------------------|
|                                                                     | · · = · · · · · · · · · · · · · · · · · | KNO - Konelab/NA        |
| less than the Contract Required Detection Limit (CRDL)              | CRDL - Contract Req. Det. Limit         | NA - Not Applicable     |
| U - Result is less than the SwRI Reporting Limit (RL)               | DF - Dilution Factor                    |                         |
| J - Matrix spike and/or matrix spike duplicate criteria was not met | M - Instrument                          |                         |
| X - Analytical spike criteria was not met                           |                                         |                         |
| E - Result is estimated due to interferences                        |                                         |                         |
| D - Result is reported from a dilution                              |                                         |                         |
| J - Duplicate criteria was not met                                  |                                         |                         |
|                                                                     |                                         |                         |

Form I-IN

PB17F21PB1

010020

Initial and Continuing Calibration Verification

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Result Units: mg/L Associated Analytical Batches: 20170705-A003 SDG: 616432 SRR: 59851 Initial Calibration Source: See Raw Data Continuing Calibration Source: See Raw Data Case: 17031 Project: 17995.24.001

|               | Ir    | nitial Calibrati | on Verificatio | on       | Continuing Calibration Verification |        |        |        |        |          |     |
|---------------|-------|------------------|----------------|----------|-------------------------------------|--------|--------|--------|--------|----------|-----|
| Analyte       | True  | Found            | %Rec           | Limit    | True                                | Found1 | %Rec   | Found2 | %Rec   | Limit    | М   |
| Total Cyanide | 0.680 | 0.702            | 103.2%         | 90%-110% | 0.680                               | 0.686  | 100.9% | 0.681  | 100.2% | 90%-110% | KNO |

Instruments/Methods (M) KNO - Konelab/NA

NA - Not Applicable

Form IIA-IN

010021

Initial and Continuing Calibration Verification

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Result Units: mg/L Associated Analytical Batches: 20170705-A003 SDG: 616432 SRR: 59851 Initial Calibration Source: See Raw Data Continuing Calibration Source: See Raw Data Case: 17031 Project: 17995.24.001

|               | Continuing Calibration Verification |        |        |        |        |        |        |          |     |
|---------------|-------------------------------------|--------|--------|--------|--------|--------|--------|----------|-----|
| Analyte       | True                                | Found3 | %Rec   | Found4 | %Rec   | Found5 | %Rec   | Limit    | М   |
| Total Cyanide | 0.680                               | 0.688  | 101.2% | 0.709  | 104.3% | 0.719  | 105.7% | 90%-110% | KNO |

Instruments/Methods (M) KNO - Konelab/NA

NA - Not Applicable

Form IIA-IN

# 010022

SOUTHWEST RESEARCH INSTITUTE WetChem Report - Form IIB Low Level Check Standard

SDG: 616432

SRR: 59851

Case: 17031 Project: 17995.24.001

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Result Units: mg/L Associated Analytical Batch: 20170705-A003

|               |         | L       | LC Standard | ls       |     |
|---------------|---------|---------|-------------|----------|-----|
| Analyte       | True    | Found1  | %Rec        | Limit    | М   |
| Total Cyanide | 0.00500 | 0.00394 | 78.8%       | 50%-150% | KNO |

Instruments/Methods (M) KNO - Konelab/NA

NA - Not Applicable

Form IIB-IN

010023

Blanks

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Preparation Blank Result Units: mg/L Initial/Continuing Blank Result Units: RL SDG: 616432 SRR: 59851 Preparation Blank Matrix: Aqueous Associated Prep Batches: 20170621-P002 Case: 17031 Project: 17995.24.001 Associated Analytical Batches: 20170705-A003

|               | Preparat<br>Blank | -    | Initial<br>Calibration | Blank | Continuing Calibration Blank |      |         |      |         |      |         |      |         |      |     |
|---------------|-------------------|------|------------------------|-------|------------------------------|------|---------|------|---------|------|---------|------|---------|------|-----|
| Analyte       | Result            | Qual | Found                  | Qual  | Found1                       | Qual | Found2  | Qual | Found3  | Qual | Found4  | Qual | Found5  | Qual | Μ   |
| Total Cyanide | 0.00500           | U    | 0.00500                | U     | 0.00500                      | U    | 0.00500 | U    | 0.00500 | U    | 0.00500 | U    | 0.00500 | U    | KNO |

| Data Reporting Qualifiers (Qual)                                                                                                                                                                                                                                                                                                                            | Instruments/Methods (M)                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| B - Result is greater than or equal to the SwRI Reporting Limit (RL) and less than the Contract Required Detection Limit (CRDL)                                                                                                                                                                                                                             | KNO - Konelab/NA<br>NA - Not Applicable |
| <ul> <li>U - Result is less than the SwRI Reporting Limit (RL)</li> <li>J - Matrix spike and/or matrix spike duplicate criteria was not met</li> <li>X - Analytical spike criteria was not met</li> <li>E - Result is estimated due to interferences</li> <li>D - Result is reported from a dilution</li> <li>J - Duplicate criteria was not met</li> </ul> |                                         |

Form III-IN

010024 Client Sample ID W-17031-00001MS/MSD

Matrix Spike/Matrix Spike Duplicate Sample Recovery

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: 616432S Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA Case: 17031 Project: 17995.24.001

| Analyte       | Parent<br>Sample<br>Result | Qual | MS<br>Result | MS<br>Spike<br>Added | MS<br>%Rec | MSD<br>Result | MSD<br>Spike<br>Added | MSD<br>%Rec | %RPD | Control<br>Limit<br>%Rec | Control<br>Limit<br>%RPD | М   | Note |
|---------------|----------------------------|------|--------------|----------------------|------------|---------------|-----------------------|-------------|------|--------------------------|--------------------------|-----|------|
| Total Cyanide | 13.1                       | D    | 15.9         | 2.50                 | 112.0%     | -             | -                     | -           | -    | 75%-125%                 | -                        | KNO | #    |

# Parent value exceeded 1 times the spike added, therefore MS/MSD %Recovery and %RPD are not required for evaluation.

| Data Reporting Qualifiers (Qual)                                                                                                                                                                                                                                                                                                                            | Columns                                                                            | Instruments/Methods (M)                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| B - Result is greater than or equal to the SwRI Reporting Limit (RL) and less than the Contract Required Detection Limit (CRDL)                                                                                                                                                                                                                             |                                                                                    | KNO - Konelab/NA<br>NA - Not Applicable |  |  |
| <ul> <li>U - Result is less than the SwRI Reporting Limit (RL)</li> <li>J - Matrix spike and/or matrix spike duplicate criteria was not met</li> <li>X - Analytical spike criteria was not met</li> <li>E - Result is estimated due to interferences</li> <li>D - Result is reported from a dilution</li> <li>J - Duplicate criteria was not met</li> </ul> | MSD - Matrix Spike Duplicate<br>Q - Qualifier<br>RPD - Relative Percent Difference |                                         |  |  |

Form VA-IN

W-17031-00001D

Duplicates

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: 616432D Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA Case: 17031 Project: 17995.24.001

| Analyte       | Parent<br>Sample<br>Result | Qual | Duplicate<br>Result | Qual | RPD   | RPD<br>Limit | Control<br>Limit | М   | Note |
|---------------|----------------------------|------|---------------------|------|-------|--------------|------------------|-----|------|
| Total Cyanide | 13.1                       | D    | 14.2                | D    | 8.06% | 20%          | -                | KNO |      |

| Data Reporting Qualifiers (Qual)                                    | Columns | Instruments/Method (M)                  |  |  |
|---------------------------------------------------------------------|---------|-----------------------------------------|--|--|
|                                                                     |         | KNO - Konelab/NA<br>NA - Not Applicable |  |  |
| U - Result is less than the SwRI Reporting Limit (RL)               |         |                                         |  |  |
| J - Matrix spike and/or matrix spike duplicate criteria was not met |         |                                         |  |  |
| X - Analytical spike criteria was not met                           |         |                                         |  |  |
| E - Result is estimated due to interferences                        |         |                                         |  |  |
| D - Result is reported from a dilution                              |         |                                         |  |  |
| J - Duplicate criteria was not met                                  |         |                                         |  |  |

Form VI-IN

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: LCS17F21SW2 Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Aqueous % Solids: NA

Case: 17031 Project: 17995.24.001

| Analyte       | Parent<br>Sample<br>Result | Qual | Duplicate<br>Result | Qual | RPD   | RPD<br>Limit | Control<br>Limit | М   | Note |
|---------------|----------------------------|------|---------------------|------|-------|--------------|------------------|-----|------|
| Total Cyanide | 0.710                      |      | 0.721               | D    | 1.54% | 20%          | -                | KNO |      |

| Data Reporting Qualifiers (Qual)                                                                                                                                                                                                                                                                                                                            | Columns | Instruments/Method (M)                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------|
| B - Result is greater than or equal to the SwRI Reporting Limit (RL) and less than the Contract Required Detection Limit (CRDL)                                                                                                                                                                                                                             |         | KNO - Konelab/NA<br>NA - Not Applicable |
| <ul> <li>U - Result is less than the SwRI Reporting Limit (RL)</li> <li>J - Matrix spike and/or matrix spike duplicate criteria was not met</li> <li>X - Analytical spike criteria was not met</li> <li>E - Result is estimated due to interferences</li> <li>D - Result is reported from a dilution</li> <li>J - Duplicate criteria was not met</li> </ul> |         |                                         |

Form VI-IN

Laboratory Control Sample

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: LCS17F21JH2 Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Aqueous Associated Prep Batches: 20170621-P002

Case: 17031 Project: 17995.24.001 LCS Source: ERA

010027

| Analyte       | True  | Found | Qual | %Rec.  | Limit    | М   | Analysis Date/Time |
|---------------|-------|-------|------|--------|----------|-----|--------------------|
| Total Cyanide | 0.680 | 0.710 | D    | 104.4% | 85%-115% | KNO | 06/21/2017 16:48   |

Instruments/Methods (M) KNO - Konelab/NA

NA - Not Applicable

Form VII-IN

LCS17F21JH2[2]

Laboratory Control Sample

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: LCS17F21SW2 Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Aqueous Associated Prep Batches: 20170621-P002

Case: 17031 Project: 17995.24.001 LCS Source: ERA

010028

| Analyte       | True  | Found | Qual | %Rec.  | Limit    | М   | Analysis Date/Time |
|---------------|-------|-------|------|--------|----------|-----|--------------------|
| Total Cyanide | 0.680 | 0.721 | D    | 106.0% | 85%-115% | KNO | 06/21/2017 16:48   |

Instruments/Methods (M) KNO - Konelab/NA

NA - Not Applicable

Form VII-IN

LCS17F21SW2[2]

Laboratory Control Sample

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: LCS17F21JH3 Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Aqueous Associated Prep Batches: 20170621-P002

Case: 17031 Project: 17995.24.001 LCS Source:

010029

| Analyte       | True  | Found | Qual | %Rec. | Limit    | М   | Analysis Date/Time |
|---------------|-------|-------|------|-------|----------|-----|--------------------|
| Total Cyanide | 0.500 | 0.472 |      | 94.4% | 90%-110% | KNO | 06/21/2017 16:48   |

Instruments/Methods (M) KNO - Konelab/NA

NA - Not Applicable

Form VII-IN

LCS17F21JH3[2]

Laboratory Control Sample

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Lab ID: LCS17F21JH4 Result Units: mg/L SDG: 616432 SRR: 59851 Matrix: Aqueous Associated Prep Batches: 20170621-P002

Case: 17031 Project: 17995.24.001 LCS Source:

010030

| Analyte       | True   | Found  | Qual | %Rec. | Limit    | м   | Analysis Date/Time |
|---------------|--------|--------|------|-------|----------|-----|--------------------|
| Total Cvanide | 0.0500 | 0.0476 |      | 95.2% | 90%-110% | KNO | 06/21/2017 16:48   |

Instruments/Methods (M) KNO - Konelab/NA

NA - Not Applicable

Form VII-IN

LCS17F21JH4[2]

010031

Detection Limits

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Result Units: mg/L SDG: 616432 SRR: 59851 Instrument: Konelab Case: 17031 Project: 17995.24.001 Date: 01/09/2014

| Analyte       | Wavelength | RL      | CRDL   |
|---------------|------------|---------|--------|
| Total Cyanide | 575 nm     | 0.00500 | 0.0100 |

Columns

RL - SwRI Reporting Limit CRDL - Contract Req. Det. Limit

Form IX-IN

Analysis Run Log

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 Analytical Batch: 20170705-A003 Analysis Method:

SDG: 616432 SRR: 59851 Instrument: Konelab Case: 17031 Project: 17995.24.001 Start Date: 06/21/2017 End Date: 06/21/2017

| Lab Sample ID      | Client Sample ID | Time  | DF    | T<br>C      |
|--------------------|------------------|-------|-------|-------------|
|                    |                  | 44.00 | 4     | N           |
| CN-0               | CN-0             | 14:08 | 1     | Х           |
| CN-0.005           | CN-0.005         | 14:08 | 1     | X<br>X<br>X |
| CN-0.01            | CN-0.01          | 14:08 | 1     | Ň           |
| CN-0.05            | CN-0.05          | 14:08 | -     | X           |
| CN-0.1             | CN-0.1           | 14:08 | 1     | X           |
| CN-0.25            | CN-0.25          | 14:08 | 1     | Х           |
| CN-0.5             | CN-0.5           | 14:08 | 1     | Х           |
| CN-ICV             | CN-ICV           | 16:48 | 2     | Х           |
| CN-ICB             | CN-ICB           | 16:48 | 1     | Х           |
| CN-LLC             | NA               | 16:48 | 1     | X<br>X      |
| LCS17F21JH2        | NA               | 16:48 | 2     | Х           |
| LCS17F21SW2        | NAD              | 16:48 | 2     | Х           |
| LCS17F21JH3        | NA               | 16:48 | 1     | Х           |
| LCS17F21JH4        | NA               | 16:48 | 1     | Х           |
| CN-CCV             | CN-CCV           | 17:46 | 2     | Х           |
| CN-CCB             | CN-CCB           | 17:46 | 1     | X<br>X      |
| CN-CCV2            | CN-CCV2          | 19:03 | 2     | X           |
| CN-CCB2            | CN-CCB2          | 19:03 | 1     | X           |
| 616432             | W-17031-00001    | 19:03 | 10    | X           |
| 616432D            | W-17031-00001D   | 19:03 | 10    | X           |
| 616432S            | W-17031-00001MS  | 19:03 | 10    | X<br>X      |
| 616432SD           | W-17031-00001MSD | 19:03 | 10    | Н           |
| 616433             | W-17031-00002    | 19:03 | 50    | Х           |
| PB17F21PB1         | NA               | 19:03 | 1     | Х           |
| CN-CCV3            | CN-CCV3          | 19:30 | 2     | X           |
| CN-CCB3            | CN-CCB3          | 19:30 | 1     | X           |
| 616434             | W-17031-00003    | 19:30 | 10    |             |
| 616435             | W-17031-00004    | 19:30 | 10    | +           |
| 616436             | W-17031-00005    | 19:30 | 10    | +           |
| 616434             | W-17031-00003    | 20:14 | 100   | +           |
| 616435             | W-17031-00004    | 20:14 | 1     | H           |
| 616436             | W-17031-00005    | 20:14 | 1     | +           |
| 616432SD           | W-17031-00001MSD | 20:14 | 10    | +           |
| CN-CCV4            | CN-CCV4          | 20:14 | 2     | X           |
| CN-CCB4            | CN-CCB4          | 20:14 | 1     | X           |
| 616434             | W-17031-00003    | 20:13 | 250   | x           |
| 616435-R           | W-17031-00003    | 20:39 | 230   | x           |
| 616436-R           | W-17031-00004    | 20:39 | 1     | Â           |
| CN-CCV5            | CN-CCV5          | 20:39 | 2     | Â           |
| CN-CCV5<br>CN-CCB5 | CN-CCB5          | 20:39 | <br>1 | ₩           |
|                    |                  | 20:39 | 1     | ^           |

#### SOUTHWEST RESEARCH INSTITUTE WetChem Report - Form XVIII Preparation/Digestion Summary

010033

Client: Savannah River Nuclear Solutions, LLC Task Order: 170609-5 SDG: 616432 SRR: 59851

Case: 17031 Project: 17995.24.001

| Prep Batch    | Method  | Preparation Date |
|---------------|---------|------------------|
| 20170621-P002 | CN prep | 06/21/2017       |
|               |         |                  |

# **Digestion Log**

010034

#### Southwest Research Institute

San Antonio, Texas 78228

Batch: 20170621-P002 (Ver. 2) Status: WORKING

| Client(a), Souganah Diver Nuclear Solutiona, LLC              |                                                                                |
|---------------------------------------------------------------|--------------------------------------------------------------------------------|
| Client(s): <u>Savannah River Nuclear Solutions, LLC</u>       |                                                                                |
| Task Order(s): <u>170620-3, 170609-5</u>                      |                                                                                |
| SDG(s): <u>616635, 616432</u>                                 |                                                                                |
| Project(s): <u>17995.23.001</u> , <u>17995.24.001</u>         |                                                                                |
| Method(s): <u>CN prep (TAP: 01-0406-134)</u>                  |                                                                                |
| Matrix(s): Solid, Aqueous                                     |                                                                                |
| Reagent(s): (CN) 2.5M MgCl2 #135-02-WCS13, (CN) H2            | 2SO4 #76373, (CN) 0.25N NaOH #185-01-WCS13, 0.35M Calcium Hypochlorite #48-02- |
| WCS13, 0.1N Sodium Arsenite #140-02-WCS                       | S13, KI #85038                                                                 |
| Balance(s): #135                                              |                                                                                |
| Pipette(s): <u>5000-M, 1000-1, 200-2</u>                      |                                                                                |
| Heating Device: <u>MIDI-STIL</u> Temperature (C): <u>125C</u> |                                                                                |
| Time In: <u>06/21/2017 09:16:52</u> Time Out: <u>NA</u>       |                                                                                |
|                                                               |                                                                                |
|                                                               | Final                                                                          |
| Initial                                                       | Volume                                                                         |
| Sample Identification Client Identification Weight (          | a) (mL)                                                                        |

| Sample Identification | Client Identification | Weight (g) | (IIIL) |
|-----------------------|-----------------------|------------|--------|
| PB17F21JH1 @          | NA                    | 1.0771     | 50     |
| LCS17F21JH1 OO        | NA                    | 1.1281     | 50     |
| 616635                | W-17030-00001         | 1.0291     | 50     |
| 616635D               | W-17030-00001         | 1.0206     | 50     |
| 616635MS @            | W-17030-00001         | 1.0416     | 50     |
| 616635MSD @           | W-17030-00001         | 1.0479     | 50     |
| 616636                | W-17030-00002         | 1.1034     | 50     |
| 616637                | W-17030-00003         | 1.0422     | 50     |
| LCS17F21JH2 3         | NA                    | 50 (mL)    | 50     |
| LCS17F21JH3 ©©        | NA                    | 50 (mL)    | 50     |
| LCS17F21JH4 🕘         | NA                    | 50 (mL)    | 50     |
| 616635-CL             | W-17030-00001         | 1.0902     | 50     |
| 616635D-CL            | W-17030-00001         | 1.0276     | 50     |
| 616635S-CL ②          | W-17030-00001         | 1.0242     | 50     |
| 616635SD-CL @         | W-17030-00001         | 1.0947     | 50     |
| 616636-CL             | W-17030-00002         | 1.0287     | 50     |
| 616637-CL             | W-17030-00003         | 1.0641     | 50     |
| PB17F21JH2            | NA                    | 1.0502     | 50     |
| LCS17F21SW2 30        | NA                    | 50 (mL)    | 50     |
| PB17F21PB1 ®          | NA                    | 50 (mL)    | 50     |
| 616432                | W-17031-00001         | 10 (mL)    | 50     |
| 616432D               | W-17031-00001         | 10 (mL)    | 50     |
| 616432S @             | W-17031-00001         | 10 (mL)    | 50     |
| 616432SD @            | W-17031-00001         | 10 (mL)    | 50     |
| 616433                | W-17031-00002         | 50 (mL)    | 50     |
| 616434                | W-17031-00003         | 50 (mL)    | 50     |
| 616435                | W-17031-00004         | 50 (mL)    | 50     |
| 616436                | W-17031-00005         | 50 (mL)    | 50     |

Prepared by: <u>HERRERA, JUDY</u>

Reviewed by: MOKEN, JAMES

Date: <u>06/21/2017</u>

Date: \_ 06/30/2017\_

Disposal Int/Date/Loc: \_\_\_\_\_

Page 1 of 2 Program version(8/11/2011)

# **Digestion Log**

010035

#### Southwest Research Institute

San Antonio, Texas 78228

Batch: 20170621-P002 (Ver. 2) Status: WORKING

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Client(s): Savannah River Nuclear Solutions, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |
| Task Order(s): <u>170620-3, 170609-5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |
| SDG(s): <u>616635, 616432</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |
| Project(s): <u>17995.23.001, 17995.24.001</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |
| Method(s): <u>CN prep (TAP: 01-0406-134)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| Matrix(s): Solid, Aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |
| Reagent(s): (CN) 2.5M MgCl2 #135-02-WCS13, (CN) H2SO4 #76373, (CN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.25N NaOH #185-01-WCS13, 0.35M Calcium Hypochlorite #48-02-        |
| WCS13, 0.1N Sodium Arsenite #140-02-WCS13, KI #85038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| Balance(s): <u>#135</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
| Pipette(s): <u>5000-M, 1000-1, 200-2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |
| Heating Device: <u>MIDI-STIL</u> Temperature (C): <u>125C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |
| Time In: <u>06/21/2017 09:16:52</u> Time Out: <u>NA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| Final<br>Initial Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                   |
| O spiked 1.1281 g of CI# 67469 Cyanide in Soil (Lot# D088-541, Source: EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |
| ② spiked 0.250 mL of 113-02-WCS13 (Lot# 83333, Source: ERA, Exp: 02/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
| ③ spiked 50 mL of CI# 83495 Total Cyanide (Lot# P261-502, Source: ERA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
| ④ spiked 0.025 mL of 113-02-WCS13 (Lot# 83333, Source: ERA, Exp: 02/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /2018)                                                              |
| Solid     Solid |                                                                     |
| Solid     Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| © Water<br>© High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |
| © High<br>© Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| <sup>©</sup> Water Dup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
| - maio Bup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| Commonto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |
| Comments:<br>PB #76031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
| PD #/0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| 1-Distillation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |
| Start: 10:30 a.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |
| Stop: 12:30 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |
| 2-Distillation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |
| Start: 3:30 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |
| Stop: 5:30 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| 3-Distillation<br>Start: 6:00 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |
| Start: 6:00 p.m.<br>Stop: 8:00 p.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| LCS17F21JH1 and LCS17F21SW2 prepared by taking 0.25mL of concentrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ERA std (#83495) to FV 50mL with DI H2O and 1mL 0.25N NaOH (185-01- |
| WCS13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
| TV = 0.680  mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |
| Prepared by: HERRERA, JUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date: <u>06/21/2017</u>                                             |
| 1 IOPAIOU Dy. <u>IILINILINA, JODI</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date00/21/2017                                                      |
| Reviewed by: MOKEN, JAMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:06/30/2017                                                     |
| Netioned by. Interest, on the other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date                                                                |

Disposal Int/Date/Loc:

Page 2 of 2 Program version(8/11/2011)

SOUTHWEST RESEARCH INSTITUTE CLIENT: Savannah River Nuclear SwRI PROJECT#: 17995.24.001 SwRI TASK ORDER: 170609-5 SwRI SRR: 59851 SDG: 616432 CONTRACT: 78769 ORDER: SWR-17-W-17031 RECEIVED: 06/09/2017

# Sample Calculations

Client: Savannah River Nuclear Solutions, LLC SDG: 616432 SwRI Project Number 17995.24.001 SwRI Task Order Number(s): 170609-5

# Sample Calculation Sheet

#### CN 9012B

A = Analyte Result (mg/L) B = Final Volume (mL) C = Initial Volume (mL) Final Results (mg/L) = A X (B/C)

 $\frac{\#1016432}{2.62 \text{ mg}} \times \frac{50\text{mL}}{10\text{mL}} = 13.1 \text{ mg}}{\text{L}}$ 

SOUTHWEST RESEARCH INSTITUTE CLIENT: Savannah River Nuclear SwRI PROJECT#: 17995.24.001 SwRI TASK ORDER: 170609-5 SwRI SRR: 59851 SDG: 616432 CONTRACT: 78769 ORDER: SWR-17-W-17031 RECEIVED: 06/09/2017

# SW-846 Method 9012 Raw Data

# CN SW846 9012

Southwest Research Institute

San Antonio, Texas 78228

Batch: 20170705-A003 (Ver. 3) Status: CONSUMED

| San Antonio, Texa            | s 78228                  |           |                         |                        |                  |                           | Status         | CONS |
|------------------------------|--------------------------|-----------|-------------------------|------------------------|------------------|---------------------------|----------------|------|
| Analyte Test: <u>CN SW</u>   | 846 9012                 |           |                         |                        |                  |                           |                |      |
| Instrument: Konelab          |                          |           |                         |                        |                  |                           |                |      |
| Data File Name: WAT          | ERS SAV.xls              |           |                         |                        |                  |                           |                |      |
| Start Time: 06/21/201        | 7 14:08:00               |           |                         |                        |                  |                           |                |      |
| Stop Time: 06/21/201         | 7 20:39:00               |           |                         |                        |                  |                           |                |      |
| Customer: Savannah           | River Nuclear Solutions, | LLC       |                         |                        |                  |                           |                |      |
| Qualifier Set: SavRive       | <u>er _</u>              |           |                         |                        |                  |                           |                |      |
| Task Order: 170609-5         | <u>5</u>                 |           |                         |                        |                  |                           |                |      |
| SDG: <u>616432</u>           |                          |           |                         |                        |                  |                           |                |      |
| Project: <u>17995.24.001</u> | _                        |           |                         |                        |                  |                           |                |      |
| Limit: Savannah CN w         | vater                    |           |                         |                        |                  |                           |                |      |
|                              | Buffer #106-03-WCS13,    | Pyridine  | #135-03-WCS13           | 3, Chloramine-T #      | 185-02-WCS13,    |                           |                |      |
| 0.25N NaOH                   | + #185-01-WCS13          |           |                         |                        |                  |                           |                |      |
| Pipette: 5000-M, 1000        | -1, 200-2                |           |                         |                        |                  |                           |                |      |
|                              |                          |           |                         | Г                      | otal Cyanide     |                           |                |      |
|                              |                          |           | Cyanide<br>result water |                        |                  |                           |                |      |
| 2   -   -  +  <i>6</i>  +!   |                          | DE        | (mg/L)                  | Final Result<br>(mg/L) |                  | $D = - \langle 0 \rangle$ |                |      |
| Sample Identification        | Client Identification    | <u>DF</u> | <u> </u>                |                        | <u>RL (mg/L)</u> | Rec (%)                   | <u>RPD (%)</u> |      |
| CN-0                         | NA                       |           | 0.000610 U              | 0.00500 U              | 0.00500          |                           |                |      |
| N-0.005                      | NA                       |           | 0.00505                 | 0.00505                | 0.00500          |                           |                |      |
| CN-0.01                      | NA                       |           | 0.00993                 | 0.00993                | 0.00500          |                           |                |      |
| CN-0.05                      | NA                       |           | 0.0490                  | 0.0490                 | 0.00500          |                           |                |      |
| CN-0.1                       | NA                       |           | 0.100                   | 0.100                  | 0.00500          |                           |                |      |
| CN-0.25                      | NA                       |           | 0.250                   | 0.250                  | 0.00500          |                           |                |      |
| CN-0.5                       | NA                       | 0         | 0.500                   | 0.500                  | 0.00500          | 400 D                     |                |      |
|                              | NA                       | 2         | 0.702 D                 | 0.702 D                | 0.0100 D         | 103 D                     |                |      |
| CN-ICB                       | NA                       |           | 0.000870 U              | 0.00500 U              | 0.00500          | 400                       |                |      |
| N-LLC                        | NA                       | <u>_</u>  | 0.00394 U               | 0.00500 U              | 0.00500          | 100                       |                |      |
| CS17F21JH2                   | NA                       | 2         | 0.710 D                 | 0.710 D                | 0.0100 D         | 104 D                     |                |      |
| CS17F21SW2                   | NA                       | 2         | 0.721 D                 | 0.721 D                | 0.0100 D         | 106 D                     |                |      |
| CS17F21JH3 ①                 | NA                       |           | 0.472                   | 0.472                  | 0.00500          | 94.4                      |                |      |
| CS17F21JH4 0                 | NA                       | <u>_</u>  | 0.0476                  | 0.0476                 | 0.00500          | 95.2                      |                |      |
| CN-CCV ①                     | NA                       | 2         | 0.686 D                 | 0.686 D                | 0.0100 D         | 101 D                     |                |      |
| CN-CCB                       | NA                       |           | 0.0017611               | 0.00500.11             | 0.00500          |                           |                |      |

| CN-CCV U     | NA            | 2   | 0.686 D   | 0.686 D   | 0.0100 D | 101 D |                                             |
|--------------|---------------|-----|-----------|-----------|----------|-------|---------------------------------------------|
| CN-CCB       | NA            |     | 0.00176 U | 0.00500 U | 0.00500  |       |                                             |
| CN-CCV2 ①    | NA            | 2   | 0.681 D   | 0.681 D   | 0.0100 D | 100 D |                                             |
| CN-CCB2      | NA            |     | 0.00131 U | 0.00500 U | 0.00500  |       |                                             |
| 616432 ①     | W-17031-00001 | 10  | 2.62 D    | 13.1 D    | 0.250 D  |       |                                             |
| 616432D ①    | W-17031-00001 | 10  | 2.83 D    | 14.2 D    | 0.250 D  |       | 7.71 D                                      |
| 6164325 ①    | W-17031-00001 | 10  | 3.18 D    | 15.9 D    | 0.250 D  | 112 D |                                             |
| 616432SD ①   | W-17031-00001 | 10  | 2.00 D    | 10.0 D    | 0.250 D  | 124 D |                                             |
| 616433 ①     | W-17031-00002 | 50  | 15.4 D    | 15.4 D    | 0.250 D  |       |                                             |
| PB17F21PB1 ① | NA            |     | 0.00169 U | 0.00500 U | 0.00500  |       |                                             |
| CN-CCV3 ①    | NA            | 2   | 0.688 D   | 0.688 D   | 0.0100 D | 101 D |                                             |
| CN-CCB3      | NA            |     | 0.00335 U | 0.00500 U | 0.00500  |       |                                             |
| 616434 ①     | W-17031-00003 | 10  | 78.5 DH   | 78.5 DH   | 0.0500 D |       |                                             |
| 616435 ①     | W-17031-00004 | 10  | 0.280 D   | 0.280 D   | 0.0500 D |       |                                             |
| 616436 ①     | W-17031-00005 | 10  | 0.242 D   | 0.242 D   | 0.0500 D |       |                                             |
| 616434 ①     | W-17031-00003 | 100 | 51.6 D    | 51.6 D    | 0.500 D  |       |                                             |
| 616435 ①     | W-17031-00004 |     | 2.56 H    | 2.56 H    | 0.00500  |       |                                             |
| 616436 ①     | W-17031-00005 |     | 0.227     | 0.227     | 0.00500  |       |                                             |
| 616432SD ①   | W-17031-00001 | 10  | 2.03 D    | 10.2 D    | 0.250 D  | 116 D |                                             |
| CN-CCV4 ①    | NA            | 2   | 0.709 D   | 0.709 D   | 0.0100 D | 104 D |                                             |
| CN-CCB4      | NA            |     | 0.00108 U | 0.00500 U | 0.00500  |       |                                             |
| 616434 0     | W-17031-00003 | 250 | 56.4 D    | 56.4 D    | 1.25 D   |       |                                             |
| 616435-R ①   | W-17031-00004 |     | 0.222     | 0.222     | 0.00500  |       | nn san an ann an ann an an ann an an ann an |

U - Result is less than the SwRI Reporting Limit (RL)

Prepared by: <u>HERRERA, JUDY</u>

Reviewed by: MOKEN, JAMES

Date: 06/21/2017

Date: \_07/05/2017

# CN SW846 9012

Southwest Research Institute

San Antonio, Texas 78228

| Analyte Test: CN SW846 9012                                                                  |
|----------------------------------------------------------------------------------------------|
| Instrument: Konelab                                                                          |
| Data File Name: WATERS SAV.xls                                                               |
| Start Time: 06/21/2017 14:08:00                                                              |
| Stop Time: 06/21/2017 20:39:00                                                               |
| Customer: Savannah River Nuclear Solutions, LLC                                              |
| Qualifier Set: <u>SavRiver</u>                                                               |
| Task Order: <u>170609-5</u>                                                                  |
| SDG: <u>616432</u>                                                                           |
| Project: <u>17995.24.001</u>                                                                 |
| Limit: <u>Savannah CN water</u>                                                              |
| Reagent: Phosphate Buffer #106-03-WCS13, Pyridine #135-03-WCS13, Chloramine-T #185-02-WCS13, |
| 0.25N NaOH #185-01-WCS13                                                                     |
| Pipette: <u>5000-M, 1000-1, 200-2</u>                                                        |
| Total Cyanide                                                                                |
| Cvanide                                                                                      |

| Sample Identification | Client Identification | DF | result water<br>(mg/L) | Final Result<br>(mg/L) | RL (mg/L) | Rec (%) | <u>RPD (%)</u> |
|-----------------------|-----------------------|----|------------------------|------------------------|-----------|---------|----------------|
| 616436-R O            | W-17031-00005         |    | 0.235                  | 0.235                  | 0.00500   |         |                |
| CN-CCV5 ①             | NA                    | 2  | 0.719 D                | 0.719 D                | 0.0100 D  | 106 D   |                |
| CN-CCB5               | NA                    |    | 0.00147 U              | 0.00500 U              | 0.00500   |         |                |

+ all samples prepared in batch 20170621-P002

Comments:

Calibration Curve:

1 ppm CN std was prepared from 100 ppm CN std, 200uL of #113-02-WCS13 to final volume 20 mL with 0.25N NaOH (136-02-WCS13).

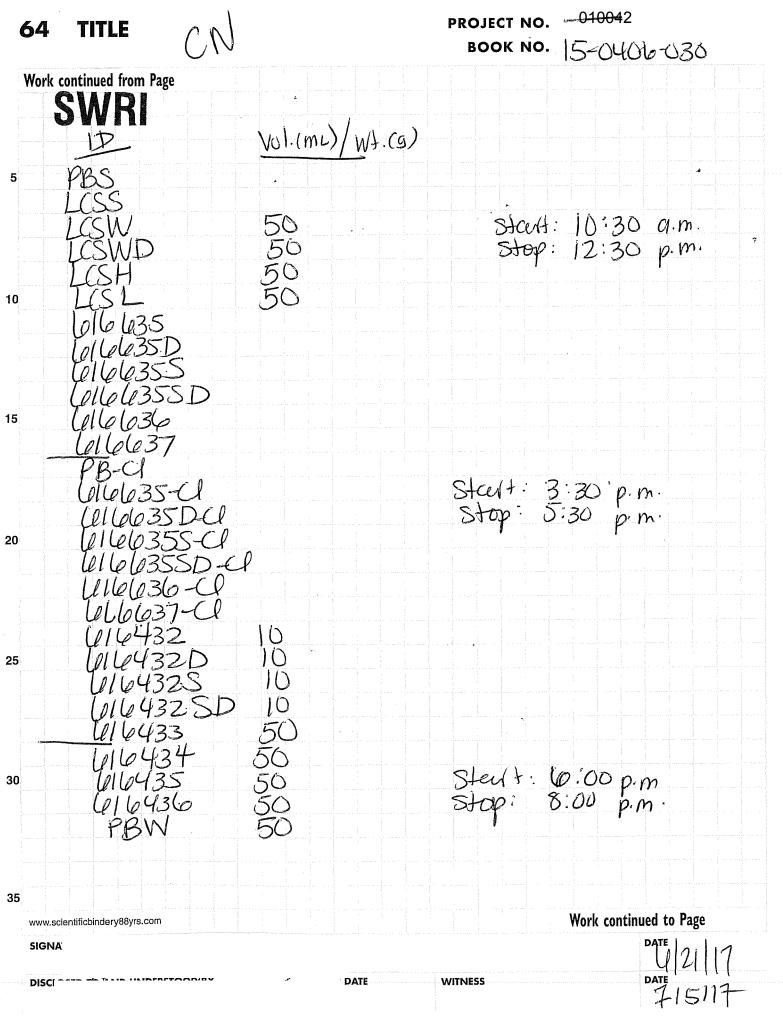
| point (mg/L) | 1 ppm (mL) | 0.25N NaOH (mL) |
|--------------|------------|-----------------|
| 0.5          | 5.0        | 5.0             |
| 0.25         | 2.5        | 7.5             |
| 0.1          | 1.0        | 9.0             |
| 0.05         | 0.5        | 9.5             |
| 0.01         | 0.1        | 9.9             |
| 0.005        | 0.05       | 9.95            |

pH > 12, KI = negative, Lead Acetate = negative for the following samples: 616432 616433 616434 616435 616436

pH Lot#208515 #62596 KI #85038 Lead Acetate #85205

U - Result is less than the SwRI Reporting Limit (RL)

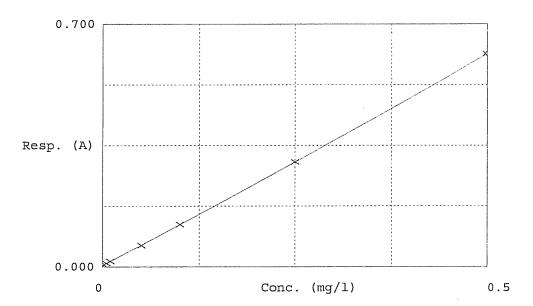
Prepared by: <u>HERRERA, JUDY</u>


Reviewed by: MOKEN, JAMES

Date: 06/21/2017

Date: 07/05/2017

-


| 010041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Southwest Research Institute <sup>®</sup><br>Logbook: Konelab Aqua20<br>Serial #: S4119353<br>(CE032101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Book I.D. #17-0406-009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Analysis/Method: ON SW8469612 Project # 17995. 33.001/17995.<br>Client: Savannah River Mulleck TO# 170620-3; 170609-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/00 |
| Standard Source:       113-02-WS13       Stock TV:       100.ppm         ICV:       #83495       ICV TV:       0.680.ppm         CCV:       #83495       CCV TV:       0.680.ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Solutions Prepared for Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 1. <u>Phosphato Buller # 106-03 WOS13</u><br>2. <u>Pyridire # 135-03-WOS13</u><br>3. <u>Chleramire - T # 185-02 WOS13</u><br>4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Wash Solution: 0.25N NaCH # 185-01-WCS13<br>Cuvettes Refilled?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Additional Comments: $\frac{Q}{100} = 5000 - M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 200-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Solids non-rad (3)<br>Waters w/Cr(0(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Analyst Signatur Date: |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Logbook#/ Page#160017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| FRM-329 (Rev 2/Dec 09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |



010043 PROJECT NO. 65 TITLE 15-0406-038 BOOK NO. Work continued from Page SWR 0.35M Calcium Hypohlrite # 48-02-WCS 13 0.1 N Sodiem Avsenile #140-02-WOS/3 KI # 85038 H2SO4 # 76373 100ppm # 113-02-WCS13 L(SW # 83495 MgC12 # 135- 02-WOB13 # 62596 1(85 # 67469 pH 167# 208515 Ep: 5000-M 1000-1 Lead Acetate # 85205 200-2 0.25N #- 185-01-WS13 pH > 12, KI = neg., Sulfides = Neg. 616432 1016434 + 1016435 616436 Work continued to Page www.scientificbindery88yrs.com U2117 SI DATE WITNESS n DATE 71211

|                                          |                                             | 01    | 0044 |
|------------------------------------------|---------------------------------------------|-------|------|
| Calibration results                      | AquaKem 6.5                                 | Page: | 1    |
|                                          | Laboratory<br>Konelab User                  |       |      |
| 21.06.2017 15:0                          | 8                                           |       |      |
| Test Cyanide                             |                                             |       |      |
| Accepted                                 | 21.06.2017 15:08                            |       |      |
| Resp. = A * Conc. ^<br>A =<br>B =<br>C = | 2 + B * Conc. + C<br>0.121<br>1.16<br>0.005 |       |      |
| Coeff. of det.                           | 0.999993                                    |       |      |

Errors



|                       | Calibrator                                                            | Response                         | Calc. con.         | Conc.                                                                     | Errors         |
|-----------------------|-----------------------------------------------------------------------|----------------------------------|--------------------|---------------------------------------------------------------------------|----------------|
| 2<br>3<br>4<br>5<br>6 | CN-0<br>CN-0.005<br>CN-0.01<br>CN-0.05<br>CN-0.1<br>CN-0.25<br>CN-0.5 | 0.016<br>0.062<br>0.122<br>0.302 | 0.04895<br>0.10034 | 0.00000<br>0.00500<br>0.01000<br>0.05000<br>0.10000<br>0.25000<br>0.50000 | #20170705-A003 |

# 20170621-PO021 20170629-A001 20170629-A002

|                              |                  |            |                |                       | 010045                                 | 5     |
|------------------------------|------------------|------------|----------------|-----------------------|----------------------------------------|-------|
| Test results                 |                  | аquaKem б. | . 5            | :===============<br>] | ====================================== | =     |
|                              |                  | Laboratory | <i>r</i>       |                       |                                        |       |
| 0 1                          |                  | Konelab Us |                |                       |                                        |       |
| Printed:                     |                  |            |                |                       |                                        |       |
| 22.06.2017                   | 07:11            |            |                | analyzed              | on: Uli                                | 21 17 |
|                              |                  |            |                | 10                    |                                        | -     |
| Test: Cyanide                | e                |            |                |                       |                                        |       |
| Sample Id                    | Result           | Dil. 1 +   | - Response     | Errors                |                                        |       |
| CN-ICV DF2                   | 0.7021           | 0.0        | 0.427          |                       |                                        |       |
| CN-ICB                       | 0.0009           | 0.0        | 0.006          |                       |                                        |       |
| CN-LLC                       | 0.0039           | 0.0        | 0.009          |                       |                                        |       |
| PBS                          | 0.0012           | 0.0        | 0.006          |                       |                                        |       |
| LCSS DF10                    | 1.7558           | 0.0        | 0.212          |                       |                                        |       |
| LCSW DF2                     | 0.7096           | 0.0        | 0.431          |                       |                                        |       |
| LCSWD DF2                    | 0.7214           | 0.0        | 0.439          |                       |                                        |       |
| LCSH                         | 0.4723           | 0.0        | 0.579          |                       |                                        |       |
| LCSL                         | 0.0476           | 0.0        | 0.060          |                       |                                        |       |
| 616635                       | 0.4572           | 0.0        | 0.560          |                       |                                        |       |
| 616635D                      | 0.4329           | 0.0        | 0.529          |                       |                                        |       |
| 616635S DF2                  | 0.8656           | 0.0        | 0.529          |                       |                                        |       |
| CN-CCV DF2                   | 0.6861           | 0.0        | 0.417          |                       |                                        |       |
| CN-CCB                       | 0.0018           | 0.0        | 0.007          |                       |                                        |       |
| 616635SD DF2                 | 1.0063           | 0.0        | 0.619          |                       |                                        |       |
| 616636                       | 0.8439           | 0.0        | 1.055          |                       |                                        |       |
| 616637                       | 0.8393           | 0.0        | 1.049          |                       |                                        |       |
| PB-CL                        | 0.0019           | 0.0        | 0.007          |                       |                                        |       |
| 616635-CL                    | 0.2751           | 0.0        | 0.333          |                       |                                        |       |
| 616635D-CL                   | 0.2542           | 0.0        | 0.307          |                       |                                        |       |
| 616635S-CL                   | 0.2334           | 0.0        | 0.282          |                       |                                        |       |
| 616635SD-CL                  | 0.2816           | 0.0        | 0.341          |                       |                                        |       |
| 616636-CL                    | 0.4448           | 0.0        | 0.544          |                       |                                        |       |
| 616637-CL                    | 0.5735           | 0.0        | 0.709          |                       |                                        |       |
| CN-CCV2 DF2                  | 0.6806           | 0.0        | 0.413          |                       |                                        |       |
| CN-CCB2                      | 0.0013           | 0.0        | 0.006          |                       |                                        |       |
| 616432 AFID                  | 2.6203           | 0.0        | 0.317          |                       |                                        |       |
| 616432D df 10                |                  |            | 0.342          |                       |                                        |       |
| 6164325 df10                 | 2.8301           | 0.0        |                |                       |                                        |       |
| 6164325Ddf10                 | 3.1814<br>1.9976 | 0.0        | 0.386          |                       |                                        |       |
| 6164325Dario<br>616433 df 60 |                  | 0.0        | 0.241<br>0.373 |                       |                                        |       |
|                              | 15.3875          | 0.0        |                |                       |                                        |       |
| 616635SD DF5                 | 1.0158           | 0.0        | 0.245          |                       |                                        |       |
| 616636 DF5                   | 0.8615           | 0.0        | 0.208          |                       |                                        |       |
| 616637 DF5                   | 0.8897           | 0.0        | 0.215          |                       |                                        |       |
| 616637-CL DF2                | 0.5751           | 0.0        | 0.348          |                       |                                        |       |
| PBW                          | 0.0017           | 0.0        | 0.006          |                       |                                        |       |
| CN-CCV3 DF2                  | 0.6875           | 0.0        | 0.417          |                       |                                        |       |
| CN-CCB3                      | 0.0033           | 0.0        | 0.008          |                       |                                        |       |
| 616434 df10                  | 78.5066          | 0.0        | 10.027         | Abs. high             |                                        |       |

0.037

0.033

0.635

0.310 0.274

0.245

0.431

0.006

0.273

0.268 0.284

0.437

0.006

616435 df 10

61643 X 6 0 F 10

616434 DF100

616432SD DF10

CN-CCV4 DF2

616434 DF250

CN-CCV5 DF2

616435

616436

CN-CCB4

616435-R

616436-R

CN-CCB5

0.2796

0.2421

51.5550

2.5618

0.2268

2.0294

0.7086

0.0011

56.4430

0.2218

0.2354

0.7191

0.0015

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Abs. high

|                        |                                   |                            |   | 010   | 0046 |
|------------------------|-----------------------------------|----------------------------|---|-------|------|
| Test results           |                                   | AquaKem 6.5                | F | Page: | 2    |
|                        |                                   | Laboratory<br>Konelab User |   |       |      |
| 22.06.2017             | 07:11                             |                            |   |       |      |
| Test: Cyanide          |                                   |                            |   |       |      |
| Sample Id              | Result                            | Dil. 1 + Response          |   |       |      |
|                        |                                   |                            |   |       |      |
| N<br>Mean<br>SD<br>CV왕 | 52<br>4.5400<br>14.8367<br>326.80 | 0                          |   |       |      |

SOUTHWEST RESEARCH INSTITUTE CLIENT: Savannah River Nuclear SwRI PROJECT#: 17995.24.001 SwRI TASK ORDER: 170609-5 SwRI SRR: 59851 SDG: 616432 CONTRACT: 78769 ORDER: SWR-17-W-17031 RECEIVED: 06/09/2017

# **SW-846 Method 9012**

Standard Logs & Certificates

#83495

## **Total Cyanide**

|   | Grade:               | Analytical     |  |
|---|----------------------|----------------|--|
| Γ | Туре:                | Neat           |  |
| [ | CAS:                 | 143-33-9       |  |
| [ | Lot:                 | P261-502       |  |
|   | Received:            | 10/01/2016     |  |
|   | Expiration:          | 07/31/2019     |  |
|   | Location:            | - No Data -    |  |
| [ | Current Lab:         | Lab 42 Bldg 70 |  |
|   | Original Amount:     | 15 mL          |  |
|   | Amount Remaining:    | 15             |  |
|   | Supplier:            | ERA            |  |
|   | Concentration:       |                |  |
|   | Project:             | - No Data -    |  |
|   | PO Number:           | PE sample      |  |
|   | Internal Lab ID:     | - No Data -    |  |
|   | Density:             | - No Data -    |  |
|   | Storage Requirement: | - No Data -    |  |
|   | Measuring Device ID: | - No Data -    |  |
|   | Date Disposed:       | - No Data -    |  |
|   | Notes:               |                |  |

## **Component Table**

| Compound | Conc/Activity               | CAS      |  |
|----------|-----------------------------|----------|--|
| cyanide  | Conc/Activity<br>0.680 mg/L | 143-33-9 |  |
| Cytinite | 0.000                       |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |
|          |                             |          |  |

#### **Reference Materials**

SwRI Chem ID: 83495

# Certificate of Analysis

| Product:                | WatR™ Pollution Total Cyanide |
|-------------------------|-------------------------------|
| Catalog Number:         | 502                           |
| Lot No.                 | P261-502                      |
| Certificate Issue Date: | February 24, 2017             |
| Expiration Date:        | July 31, 2019                 |
| <b>Revision Number:</b> | 1.0                           |
| <b>Revision Date:</b>   | February 24, 2017             |
|                         |                               |

#### CERTIFICATION

| Parameter        | Certified<br>Value <sup>1</sup> | Uncertainty <sup>2</sup> | QC Performance<br>Acceptance Limits <sup>3</sup> | PT Performance<br>Acceptance Limits⁴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|---------------------------------|--------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | mg/L                            | %                        | mg/L                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Phenol           | 0.958                           | 0.404                    | 0.718 - 1.20                                     | ni in 1999 in 199 |
| Cyanide, total   | 0.680                           | 5.30                     | 0.515 - 0.836                                    | 0.442 - 0.918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amenable Cyanide | 0.214                           | 10.1                     | 0.162 - 0.263                                    | 0.139 - 0.289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## ANALYTICAL VERIFICATION

| Parameter                                                              | Certified<br>Value <sup>1</sup>                                                                                |       | oficiency Testing Study |    | NIST Traceability |          |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|-------------------------|----|-------------------|----------|
| n en en segne provinsion and an en | n pais en sur man a gran a gran de la secono en una en ancenario de la dela de manete de la dela del del del d | Mean  | <b>Recovery</b> ⁵       | n  | SRM Number        | Recovery |
|                                                                        | mg/L                                                                                                           | mg/L  | %                       |    |                   | %        |
| Phenol                                                                 | 0.958                                                                                                          |       | -                       | -  | -                 |          |
| Cyanide, total                                                         | 0.680                                                                                                          | 0.732 | 108                     | 83 | -                 |          |
| Amenable Cyanide                                                       | 0.214                                                                                                          | 0.263 | 123                     | 29 |                   | -        |

16341 Table Mountain Pkwy • Golden, CO 80403 • T: 800.372.0122 • 303.431.8454 • www.eraqc.com

#### **Reference Materials**

Certificate of Analysis

1. The Certified Values are the actual "made-to" concentrations confirmed by ERA analytical verification. The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

2. The Uncertainty is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal analytical verification of the product by ERA, multiplied by a coverage factor. The uncertainty applies to the product as supplied and does not take into account any required or optional dilution and/or preparations the laboratory may perform while using this product.

3. The QC Performance Acceptance Limits (QC PALs™) are based on actual historical data collected in ERA's Proficiency Testing program. The QC PALs<sup>TM</sup> reflect any inherent biases in the methods used to establish the limits and closely approximate a 95% confidence interval of the performance that experienced laboratories should achieve using accepted environmental methods. Use the QC PALs™ to realistically evaluate your performance against your peers

4. The PT Performance Acceptance Limits (PT PALs<sup>TM</sup>) are calculated using the regression equations and fixed acceptance criteria specified in the NELAC proficiency testing requirements. Use the PT PALs™ when analyzing this QC standard alongside USEPA and NELAC compliant PT standards. Please note that many PT study acceptance limits are concentration dependent (some non-linearly) and, therefore, the acceptance limits of this QC standard and any PT standard may differ relative to their difference in concentrations.

5. The PT Data/Traceability data include the mean value, percent recovery and number of data points reported by the laboratories in our Proficiency Testing study compared to the Certified Values. In addition, where NIST Standard Reference Materials (SRMs) are available, each analyte has been analytically traced to the NIST SRM listed. This product is traceable to the lot numbers of its starting materials. All gravimetric and volumetric measurements related to its manufacture are traceable to NIST through an unbroken chain of comparisons. Traceability Recovery (%) = [(% recovery certified standard)/(% recovery NIST SRM)]\*100

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs.

6. For additional information on this product such as intended use, instructions for use, level of homogeneity, and safety information, please refer to the provided Instruction Sheet

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or send an email to info@eragc.com.

**Certifying Officer** 

**Brian Miller** 

**Quality Officer** Patrick Larson

D: 83495

Page 2 of 2 Lot: P261-5

SwRI Chem 16341 Table Mountain Pkwy • Golden, CO 80403 • T: 800.372.0122 • 303.431.8454 • www.eraqc.com



SwRI Chem ID: 83495

#67469

## **Chemical Information Sheet**

## Cyanide in Soil

|   | _                    |                  |  |
|---|----------------------|------------------|--|
|   | Grade:               | Analytical       |  |
|   | Type:                | Commercial Stock |  |
|   | CAS:                 | - No Data -      |  |
|   | Lot:                 | D088-541         |  |
| Γ | Received:            | 10/01/2014       |  |
| ١ | Expiration:          | 07/31/2018       |  |
| Γ | Location:            | Bldg 70 Lab 42   |  |
| Γ | Current Lab:         | Lab 42 Bldg 70   |  |
| Γ | Original Amount:     | 50 g             |  |
| Γ | Amount Remaining:    | 50               |  |
|   | Supplier:            | ERA              |  |
|   | Concentration:       |                  |  |
|   | Project:             | - No Data -      |  |
|   | PO Number:           | PE sample        |  |
| Γ | Internal Lab ID:     | - No Data -      |  |
| Γ | Density:             | - No Data -      |  |
|   | Storage Requirement: | Ambient          |  |
| Γ | Measuring Device ID: | - No Data -      |  |
|   | Date Disposed:       | - No Data -      |  |
|   | Notes:               |                  |  |

## **Component Table**

|   | Compound      |   | Conc/Activity               | CAS |
|---|---------------|---|-----------------------------|-----|
| Γ | Total Cyanide |   | Conc/Activity<br>53.9 mg/kg |     |
|   |               |   |                             |     |
| Γ |               |   |                             |     |
| Γ |               |   |                             |     |
|   |               |   |                             |     |
| - |               |   |                             |     |
| F |               |   |                             |     |
| F |               |   |                             |     |
| F |               |   |                             | 1   |
| F |               |   |                             |     |
| - |               |   |                             |     |
| - |               |   |                             |     |
| F |               |   |                             |     |
| ŀ |               |   |                             | 1   |
| - |               |   |                             | 1   |
| F |               |   |                             |     |
| F |               |   |                             | 1   |
| H |               |   |                             | 1   |
| ┝ |               |   |                             |     |
| ┝ |               |   |                             |     |
| ŀ |               |   |                             |     |
| ┝ |               |   |                             | -   |
| ⊦ |               |   |                             |     |
| ŀ |               |   |                             |     |
| ŀ |               |   |                             |     |
| - |               |   |                             |     |
| ╞ |               |   |                             |     |
| ┝ |               |   |                             |     |
| Ļ |               |   |                             |     |
| Ļ |               |   |                             |     |
| Ļ |               |   |                             |     |
| Ļ |               |   |                             |     |
| Ļ |               |   |                             |     |
|   |               |   |                             |     |
| l |               |   |                             |     |
|   |               |   |                             |     |
| Γ |               |   |                             |     |
| Γ |               | - |                             |     |
|   |               |   |                             |     |

#### **Reference Material**

# SWRI Chern ID: 67469

69

# Certificate of Analysis

| Product:                | Cyanide in Soil  |
|-------------------------|------------------|
| Catalog Number:         | . 541            |
| Lot No.                 | D088-541         |
| Certificate Issue Date: | January 13, 2015 |
| Expiration Date:        | July 31, 2018    |
| <b>Revision Number:</b> | Original         |

#### CERTIFICATION

| Parameter        | Total<br>Concentration | Certified<br>Value <sup>1</sup> | Uncertainty <sup>2</sup> | QC Performance<br>Acceptance Limits <sup>3</sup> | PT Performance<br>Acceptance Limits <sup>4</sup> |  |
|------------------|------------------------|---------------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|--|
|                  | mgKg                   | mgKg                            | %                        | mg/Kg                                            | mg/Kg                                            |  |
| Cyanide, Total   | 105                    | 59.9                            | 10.4                     | D.L - 122                                        | 23.1 - 116                                       |  |
| Amenable Cyanide | < 25.0                 | < 25.0                          | 10.4                     | •                                                | 0.00 - 25.0                                      |  |

#### PT DATA/TRACEABILITY

| Parameter        | Certified Value <sup>1</sup> | Proficiency Testing Study <sup>⁵</sup> |               |    | NIST Traceability |          |  |
|------------------|------------------------------|----------------------------------------|---------------|----|-------------------|----------|--|
|                  |                              | Mean                                   | Mean Recovery |    | SRM Number        | Recovery |  |
|                  | mg/Kg                        | mg/Kg                                  | %             |    |                   | %        |  |
| Cyanide, Total   | 59.9                         | 59.9                                   | 57.1          | 63 | -                 |          |  |
| Amenable Cvanide | < 25.0                       | -                                      |               | 5  | -                 | - 6      |  |







16341 Table Mountain Pkwy • Golden, CO 80403 • T: 800.372.0122 • 303.431.8454 • www.eraqc.com

1 of 2

#### **Reference Material**

## Certificate of Analysis

SwRI Chern ID: 67469

1. The **Certified Values** are equal to the mean recoveries for the parameters as determined in an interlaboratory round robin study. The Certified Values are based on an "as received" basis, assuming 100% solids content. The certified values are monitored and the purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

2. The stated **Uncertainty** is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal analytical verification of the product by ERA, multiplied by a coverage factor. The uncertainty applies to the product as supplied and does not take into account any required or optional dilution and/or preparations the laboratory may perform while using this product.

3. The QC Performance Acceptance Limits (QC PALs<sup>™</sup>) are based on actual historical data collected in ERA's Proficiency Testing program. The QC PALs<sup>™</sup> reflect any inherent biases in the methods used to establish the limits and closely approximate a 95% confidence interval of the performance that experienced laboratories should achieve using accepted environmental methods. Use the QC PALs<sup>™</sup> to realistically evaluate your performance against your peers.

4. The PT Performance Acceptance Limits (PT PALs<sup>™</sup>) are calculated using the regression equations and fixed acceptance criteria specified in the NELAC proficiency testing requirements. Use the PT PALs<sup>™</sup> when analyzing this QC standard alongside USEPA and NELAC compliant PT standards. Please note that many PT study acceptance limits are concentration dependent (some non-linearly) and, therefore, the acceptance limits of this QC standard and any PT standard may differ relative to their difference in concentrations.

5. The PT Data/Traceability data include the mean value, percent recovery and number of data points reported by the laboratories in our Proficiency Testing study compared to the Certified Values. In addition, where NIST Standard Reference Materials (SRMs) are available, each analyte has been analytically traced to the NIST SRM listed.

Traceability Recovery (%) = [(% recovery certified standard)/(% recovery NIST SRM)]\*100

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs.

6. The Total Concentrations are equal to the background concentrations in the blank soil matrix (measured using EPA Method 9010, followed by colorimetric analysis), plus the amount of each analyte spiked onto the soil.

7. For additional information on this product such as intended use, instructions for use, level of homogeneity, and safety information, please refer to the provided Instruction Sheet.

#### If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or send an email to info@eraqc.com.

**Certifying Officer** 

Tom Widera

## Quality Officer Kristina Sanchez

80/6C (RE): 11:3209





UNC LOSIS/2005



#83333

#### **Chemical Information Sheet**

## Free Cyanide

|         | Grade:               | Analytical                       |  |
|---------|----------------------|----------------------------------|--|
| [       | Туре:                | Commercial Stock                 |  |
|         | CAS:                 | - No Data -                      |  |
|         | Lot:                 | 140217                           |  |
| [       | Received:            | 03/13/2017                       |  |
| · · · [ | Expiration:          | 02/01/2018                       |  |
|         | Location:            | Fridge                           |  |
|         | Current Lab:         | Lab 47 Bldg 70                   |  |
| Γ       | Original Amount:     | 125 mL                           |  |
| [       | Amount Remaining:    | 125                              |  |
| [       | Supplier:            | Environmental Resource Associate |  |
| [       | Concentration:       | 1000 mg/L                        |  |
| Γ       | Project:             | - No Data -                      |  |
| Γ       | PO Number:           | K47829MM                         |  |
|         | Internal Lab ID:     | - No Data -                      |  |
| [       | Density:             | - No Data -                      |  |
| [       | Storage Requirement: | Ambient                          |  |
| [       | Measuring Device ID: | - No Data -                      |  |
| Γ       | Date Disposed:       | - No Data -                      |  |
| Γ       | Notes:               | Cat Log 048                      |  |

## **Component Table**

| P        |               |       |   |
|----------|---------------|-------|---|
| Compound | Conc/Activity | CAS   |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       | : |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       |   |
|          |               |       | 1 |
|          |               | ····· |   |
|          |               | I     | L |



A Waters Company

# Certificate of Analysis

PRODUCT: CATALOG NUMBER: LOT NUMBER: ISSUE DATE: REVISION DATE:

STARTING MATERIAL: CERTIFIED CONCENTRATION<sup>1</sup>: UNCERTAINTY<sup>2</sup>: MATRIX: DENSITY:

TRACEABILITY<sup>3</sup>: NIST/SRM: VERIFICATION METHOD: STORAGE: 1000 mg/L Free Cyanide 048 – 125 mL; 997 – 500 mL 140217 February 13, 2017 Original

Potassium Cyanide (KCN) 1000 mg/L 0.6% 18 megohm deionized water and 0.5% (v/v) NaOH 1.0075 ± 0.0008 g/mL at 21.5°C and 756 mm Hg

See Footnote 3

Spectrophotometry Store at 20-25°C

1. The Certified Concentration is the actual made-to concentration confirmed by ERA analytical verification.

2. The stated **Uncertainty** is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation of the product and includes uncertainty related to the starting material used and the volumetric and gravimetric measurements made. The method of calculating uncertainty is taken from the ISO Guide to the Expression of Uncertainty in Measurement (current version). The uncertainty applies to the product as supplied and does not take into account any required or optional dilutions and/or preparations the laboratory may perform while using this product.

3. Traceability ((% Recovery Certified Standard)/(% Recovery NIST SRM))\* 100.

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs. Where a NIST SRM is not available, the product is metrologically traceable through an unbroken chain of calibrations to NIST weights, each having stated uncertainties and utilizing measurement standards that are appropriate for the physical and/or chemical property being measured.

This standard **expires 2/2018**. The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

This product is intended to be used as either a calibration standard or a quality control check of the entire analytical process for the analytes/matrix included in the standard.

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or email to info@eraqc.com

800-372-0122

Page 1 of 1

Certifying Officer: Brian Miller - Product Line Manager

ISO/IEC GUIDE 34:2009





16341 Table Mtn Pkwy, Golden, CO 80403

fax: 303-421-0159

SwRI Chem ID: 83333

#### **Distribution:**

D.E. Dooley. 773-A T. B. Brown, 773-A S. D. Fink, 773-A C. C. Herman, 773-A E. N. Hoffman, 773-42A F. M. Pennebaker, 773-42A B. J. Wiedenman, 773-42A W. R. Wilmarth, 773-A A.D. Cozzi, 999-W H. H. Burns, 773-41A M. R. Poirier, 773-42A Records Administration (EDWS)

R.B Mabrouki, WRPS D.J. Swanberg, WRPS K.D. Boomer, WRPS J.R. Vitali, WRPS E.E. Brown, WRPS G. Cooke, WRPS T.A. Wooley, WRPS J. Mahoney, WRPS R. H. Davis, WRPS S. T. Arm, WRPS

E. N. Diaz. DOE-ORP N.M. Jaske, DOE-ORP B. M. Mauss, DOE-ORP R. A. Gilbert, DOE-ORP K. W. Burnett, DOE-ORP L.T. Nirider, DOE-ORP G.L. Pyles, DOE-ORP W. R. Wrzesinski, DOE-OR

A.P. Fellinger, 773-42A G.A. Morgan, 999-W K.M. Fox, 999-W G.R. Golcar, SRNL Tri-Cities Office E.K. Hansen, 999-W D.T. Herman, 735-11A K.A. Hill, 999-W A.M. Howe, 999-W C.A. Langton, 773-42A M.H. Lee, SRNL Tri-Cities Office D.L. McClane, 999-W F.R. Miera, SRNL Tri-Cities Office M.M. Reigel, 773-42A W.G. Ramsey, 999-W A.A. Ramsey, 999-W M.E. Stone, 999-W