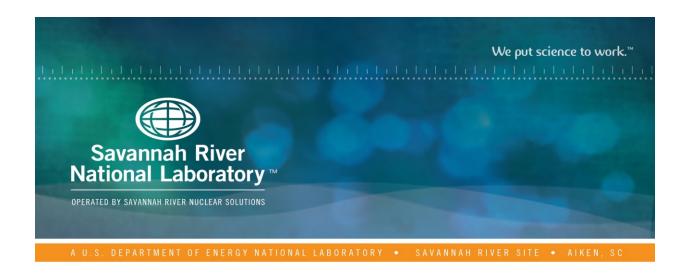
Contract No:


This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Characterization Results for the January 2017 H-Tank Farm 2H Evaporator Overhead Sample

- T. T. Truong
- J. C. Nicholson

April 10, 2017

SRNL-STI-2017-00166, Revision 0

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: Evaporator Overhead, WAC

Retention: *Permanent*

Characterization Results for the January 2017 H-Tank Farm 2H Evaporator Overhead Sample

T. T. Truong

J. C. Nicholson

April 10, 2017

REVIEWS AND APPROVALS

AUTHORS:		
T. T. Truong, Advanced Characterization and Processing	Date	_
J. C. Nicholson, Nonproliferation Enabling Technologies	Date	_
TECHNICAL REVIEW:		
J. H. Christian, Advanced Characterization and Processing, Reviewed per E7 2.60	Date	_
APPROVAL:		
B. J. Wiedenman, Manager Advanced Characterization & Processing	Date	_
D. E. Dooley, Director, Environmental & Chemical Process Technology Research Pro	ograms	– Date
P. W. Norris, Manager Evaporator & ETP Engineering	Date	_

EXECUTIVE SUMMARY

This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on January 19, 2017. Specifically, concentrations of ¹³⁷Cs, ⁹⁰Sr, and ¹²⁹I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

TABLE OF CONTENTS

LIST OF TABLES	Vii
LIST OF ABBREVIATIONS	viii
1.0 Introduction	1
2.0 Experimental Procedure	1
3.0 Results and Discussion	1
3.1 Quality Assurance	2
4.0 Conclusions	2
5.0 References	3

LIST OF TABLES

Table 3-1.	Results of Radiochemical Analysis	. 1
Table 3-2.	Radiochemical Analysis on Previous 2H Evaporator Overhead Samples	. 2

LIST OF ABBREVIATIONS

AD Analytical Development

ELN Electronic Laboratory Notebook

ETP Effluent Treatment Project

SRNL Savannah River National Laboratory

WAC Waste Acceptance Criteria
WWCT Waste Water Collection Tank

1.0 Introduction

The Tank Farm submitted the annual sample from the 2H evaporator overhead stream to SRNL on January 19, 2017. SRNL analyzed the sample for ¹³⁷Cs, ⁹⁰Sr, and ¹²⁹I to verify compliance with the ETP WWCT WAC (rev. 6). ¹

2.0 Experimental Procedure

The 2H overheads sample was submitted to SRNL in a 250 mL poly bottle. The volume of the sample was approximately 175 mL. For this report, the entire sample was taken from the poly bottle and transferred to a 200 mL sample bottle more suitable for transmittal to the Analytical Development (AD) laboratories. Since this sample was relatively low in activity, no dilution was required prior to submittal for analysis. 175 mL of deionized water was additionally submitted as a blank for routine quality assurance purposes (to monitor potential cross contamination).

Three different analytical methods were used by AD to determine the concentrations of ¹³⁷Cs, ⁹⁰Sr, and ¹²⁹I in the sample. Gamma spectrometry was used to determine the ¹³⁷Cs concentration. Radiochemical separation followed by liquid scintillation counting was utilized to determine the ⁹⁰Sr concentration. Radiochemical separation followed by low energy gamma photon spectroscopy was utilized to determine the ¹²⁹I concentration. These sample preparation and characterization techniques are in accordance with the "Task Technical and Quality Assurance Plan for 2014 Evaporator Overhead Sample Analysis".²

3.0 Results and Discussion

Results of the analyses are provided in Table 3-1, along with the applicable ETP WAC limits. These results are based on single measurements performed by AD. A blank sample of deionized water was run for quality assurance and all concentrations were found to be less than the minimum detectable concentrations and are therefore reported as values preceded by "<" symbols. Where applicable, one-sigma uncertainties are reported in brackets beside discrete results.

As shown in Table 3-1, all three radionuclide concentrations in the sample were found to be less than the corresponding ETP WAC limits.

January 2017 2H **ETP WAC Acceptance** Blank Sample **Evaporator Overhead** Analyte Concentration Limits **Sample Concentration** (dpm/mL) $(dpm/mL)^{1}$ (dpm/mL) <9.66E00 3.28E+02 ¹³⁷Cs 6.97E+01 [7.25%] ⁹⁰Sr <5.35E+01 <6.27E+01 1.76E+02 ^{129}I <6.66E-01 <7.58E-01 1.00E+00

Table 3-1. Results of Radiochemical Analysis

The analytical results listed in Table 3-1 are in good agreement with previous results for 2H samples collected in 2009, 2011, 2014, and 2016 shown in Table 3-2. The ¹³⁷Cs concentration falls within the reported concentration range of previous samples and well below the ETP WAC limit. Similar to previous years, the ⁹⁰Sr and ¹²⁹I concentrations of the 2H evaporator overhead sample were below the detection limits and the ETP WAC acceptance limits.

Table 3-2. Radiochemical Analysis on Previous 2H Evaporator Overhead Samples

Analyte	2009 (dpm/mL) ³	2011 (dpm/mL) ⁴	2014 (dpm/mL) ⁵	2016 (dpm/mL) ⁶	ETP WAC Acceptance Limits (dpm/mL) ¹
¹³⁷ Cs	3.51E+01	1.76E+01	5.80E+01	7.04E+01	3.28E+02
⁹⁰ Sr	<2.98E+01	<1.63E+01	<8.17E+00	<1.00E+01	1.76E+02
¹²⁹ I	<6.73E-01	<5.77E-01	<8.02E-02	5.83E-02	1.00E+00

Quality Assurance

This report was developed in accordance with the protocols identified in Task Technical and Quality Assurance Plan SRNL-RP-2014-00797.² Requirements for performing reviews of technical reports and the extent of review are established in manual E7 2.60. SRNL documents the extent and type of review using the SRNL Technical Report Design Checklist contained in WSRC-IM-2002-00011, Rev. 2. The data from this experiment are contained in an electronic laboratory notebook (ELN L6004-00260-02).⁷

4.0 Conclusions

The January 2017 2H Evaporator Overhead sample was found to be in compliance with the ETP WAC, based on the required radiochemical analysis performed for ¹³⁷Cs, ⁹⁰Sr, and ¹²⁹I. Additionally, the concentrations of the aforementioned radionuclides are reasonably consistent with the concentrations previously reported for the 2009, 2011, 2014, and 2016 2H evaporator overhead samples.

5.0 References

1

¹ "F/H Effluent Treatment Facility Waste Acceptance Criteria," X-SD-H-00009, Revision 6, June 2012.

² Washington, A.L., "Task Technical and Quality Assurance Plan for 2014 Evaporator Overhead Sample Analysis," SRNL-RP-2014-00797, Rev. 0, September 2014.

³ Washington, A. L., "Report on the Analysis of WAC Samples from Evaporator Overheads for 2009-revised," SRNL-STI-2010-00134-1, December 2010.

⁴ Washington, A.L., "Report on the Analysis of WAC Samples from Evaporator Overheads for 2011," SRNL-STI-2011-00660, March 2012.

⁵ Washington, A.L., "Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples," SRNL-STI-2015-00198, May 2015.

⁶ Nicholson, J. C., "Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples," SRNL-STI-2016-00253, Rev. 1, September 2016.

⁷ Electronic Laboratory Notebook "2017 2H Evaporator Overhead Samples," L6004-00260-02

Distribution:

- T. B. Brown, 773-A
- M. E. Cercy, 773-42A
- D. A. Crowley, 773-43A
- D. E. Dooley 773-A
- A. P. Fellinger, 773-42A
- S. D. Fink, 773-A
- C. C. Herman, 773-A
- D. T. Hobbs, 773-A
- E. N. Hoffman, 999-W
- J. E. Hyatt, 773-42A
- K. M. Kostelnik, 773-42A
- B. B. Looney, 773-42A
- D. A. McGuire, 773-42A
- T. O. Oliver, 773-42A
- F. M. Pennebaker, 999-W
- G. N. Smoland, 773-42A
- A. L. Washington, 773-42A
- B. J. Wiedenman, 773-42A
- W. R. Wilmarth, 773-A

Records Administration (EDWS)

- P. R. Jackson, DOE-SR, 703-46A
- E. W. Harrison, 241-168H
- J. R. Jacobs, 241-152H
- P. W. Norris, 241-152H
- J. A. Pateracki, 241-168H
- M. A. Rios-Armstrong, 766-H
- A. W. Wiggins, 241-168H
- T. T. Yamamoto, 241-152H