Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U. S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
2) representation that such use or results of such use would not infringe privately owned rights; or
3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.
Evaluation of KorZincAlloy Prepared by Hohman Plating

P.S. Korinko
A.N. Hollingshad
June 2017
SRNL-STI-2017-00093, Revision 0
DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
2. representation that such use or results of such use would not infringe privately owned rights; or
3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for
U.S. Department of Energy
Evaluation of KorZincAlloy Prepared by Hohman Plating

P.S. Korinko
A.N. Hollingshad

June 2017

Keywords: TEF, Zinc Contamination Control, Materials Development
Retention: Permanent
REVIEWS AND APPROVALS

AUTHORS:

F. S. Korinko, Energy Materials Science and Technology

A. N. Hollingshad, Materials Test Facility

TECHNICAL REVIEW:

R. B. Wyrwas Jr. Corrosion and Materials Performance, Reviewed per E7 2.60

APPROVAL:

B. L. Garcia Diaz, Manager
Energy Materials, Materials Science and Technology

J. Kvanek, Extraction Engineer, Manager
SRTE Process and Shift Engineering
The authors would like to acknowledge Eric Janczak at Hohman Plating for successfully completing the contracted work and for the excellent report, Bob Snyder for funding this task through the Tritium Sustainment Program, and Brent Peters and Whitney Riley for assisting with the chemical analysis of the bronze. This work was conducted by the Savannah River National Laboratory, which is managed and operated by Savannah River Nuclear Solutions for the U.S. Department of Energy under contract number DE-AC09-08SR22470.
EXECUTIVE SUMMARY

A commercial vendor, Hohman Plating performed contract engineering work to determine the feasibility of producing pin hole free KorZincAlloy bronze material used for zinc gettering. Samples were tested for Sn plating thickness, heat treatability, and chemistry prior to being subjected to a standardized zinc exposure. The samples absorbed zinc and were examined using visual and scanning electron microscopy. Hohman Plating successfully produced KZA that met the target composition, was pin hole free, and was an effective zinc getter.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>1.0</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>Experimental Procedure</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>Results and Discussion</td>
<td>1</td>
</tr>
<tr>
<td>4.0</td>
<td>Summary and Conclusions</td>
<td>6</td>
</tr>
<tr>
<td>5.0</td>
<td>Recommendations</td>
<td>6</td>
</tr>
<tr>
<td>6.0</td>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Statement of Work for Tin Plating</td>
<td>A-1</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 Sn Plated Thickness (mils, 0.001 inch) .. 2
Table 2 Chloride content of coils measured via ICP-ES .. 4
Table 3 As fabricated composition of Hohman Bronze as determined via SEM EDS 4
Table 4 Composition of zinc getter material after exposure ... 4

LIST OF FIGURES

Figure 1. 6” x 6” Sn Plated Copper Sheet as Marked for Thickness Measurement 1
Figure 2 Post heat treated bronze sheet exhibiting a shiny golden coloration consistent with bronze. 2
Figure 3 Coiled bronze after cutting and coiling. This color / tint is more realistic than what is shown in Fig. 2 ... 2
Figure 4 As received condition of the Hohman Plated and diffused bronze; (a and b) are on the smooth side, low and high magnification, respectively and (c and d) are on the rough side, low and high magnification .. 3
Figure 5 Appearance of bronze coil in the as-received and zinc exposed condition. A PM Bronze standard sample is also shown. ... 4
Figure 6 EDS spectra from the (a) As fabricated bronze and (b) Zinc exposed bronze 5
Figure 7 Zinc exposed Hohman bronze after 350 °C zinc exposure; (a and b) are on the smooth side – outside B, low and high magnification, respectively and (c and d) are on the rough side inside B, low and high magnification, respectively ... 5
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRNL</td>
<td>Savannah River National Laboratory</td>
</tr>
<tr>
<td>KZA</td>
<td>KorZincAlloy</td>
</tr>
<tr>
<td>Sn</td>
<td>Tin</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>ICP-ES</td>
<td>Inductively Coupled Plasma Emission Spectroscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>EDS</td>
<td>X-ray Energy Dispersion Spectroscopy</td>
</tr>
<tr>
<td>TEF</td>
<td>Tritium Extraction Facility</td>
</tr>
<tr>
<td>SRTE</td>
<td>Savannah River Tritium Enterprise</td>
</tr>
</tbody>
</table>
This Page intentionally left blank.
1.0 Introduction

As a precursor step to deploying KorZincAlloy in the TEF process as a zinc-65 (\(^{65}\text{Zn}\)) getter to be contained in all future process lids, it was determined that a commercial source for the high purity KZA be developed. As background, the initial material that was built into the TEF Process Lid was a combination of SRNL and Holman Plating collaboration. While Holman Plating provided the tin plating and outsourced the heat treatment, the process had not been optimized for Sn content and during heat treatment numerous pores had formed. While the pores did not affect performance in lab testing they are aesthetically unappealing and may act as virtual leaks. The optimization study described here was initiated with Holman Plating in accordance with Appendix A, Statement of Work for Tin Plating and discussed in SRNL-STI-2017-00093.

2.0 Experimental Procedure

Plating was conducted at Holman Plating using an alkaline tin plating bath. No additional details are available. Samples were vacuum heat treated, cut, and coiled at Holman plating.

Samples were characterized visually to look for pin holes and other defects. The sample surfaces were characterized using a Hitachi Scanning Electron Microscope (SEM) with an Oxford X-ray Energy Dispersion Spectrometer (EDS). The EDS was used to provide the composition using a semi-quantitative method. The samples were exposed to zinc vapor in a high vacuum system that was purpose built for the zinc gettering project (1).

3.1 Results and Discussion

Holman Plating plated a 6 inch square sheet of 0.005 inch thick copper from Metals-on-Line using their alkaline tin plating solution. The sheet was plated to a nominal thickness of 0.0001 inch of tin. The sheet was laid out in a grid, as shown in Figure 1, and the thickness was measured at each intersection using X-ray Fluorescence. The data are listed in Table 1, and the thickness results are fairly consistent with some elevated values at the corners. However, all data are within the specified range of 0.00004 to 0.0002.

The copper sheet was heat treated using the SRNL developed thermal cycle for bronze formation (2). The cycle is:

- Purge with Ar for 2 hours
- Heat to 200 °C to 220 °C at 5 °C/min
- Hold 8 hours in with Ar purge
- Heat to 800 °C at 5 °C/min
- Hold for 1 hour
- Heat to 850 °C at 5 °C/min
- Hold for 1 hour
- Furnace cool under Ar to less than 100 °C

Figure 1. 6” x 6” Sn Plated Copper Sheet as Marked for Thickness Measurement.
The heat treatment resulted in the Sn being diffused into the copper and the return of an orange coloration consistent with bronze alloys, Figure 2. There were no indications of melting or pin holes, like those observed previously (3).

The bronze sheet was cut into strips with widths that were between 0.25 and 0.5 inch. These strips were coiled around a 0.5 inch mandrel to form “spring” shapes, as shown in Figure 3. The light orange coloration is consistent with what is expected for bronze. The coils were slightly looser than those that were prepared for the TEF Process Lid that will be tested in the FY16-FY17 extraction.

The sample coils were further examined at SRNL using scanning electron microscopy (SEM) coupled with X-ray Energy Dispersion Spectroscopy (EDS). These two techniques were used to provide details of the surface topography as well as the chemical makeup, respectively. The copper sheet that was provided has two distinct surface appearances, with one being shiny and smooth and the other being matte and somewhat rough. SEM images from the two sides at low and high magnifications are shown in Figure 4. These images are consistent with previous efforts conducted at SRNL to fabricate the zinc getter material using this starting stock and an SRNL acidic plating bath.

The as fabricated chemistry was determined using SEM – EDS with the results show in Table 3. The composition is very consistent from the analysis of a single coil. These results are not surprising since the plated thickness was consistent. The tin content is lower than expected at nominally 3% but well within the 2 to 10% Sn that has been evaluated over the course of this project (4). The sample composition was

<table>
<thead>
<tr>
<th>Y Coordinate</th>
<th>Front of Panel</th>
<th>X Coordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.10</td>
<td>0.1</td>
<td>0.1</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>0.09</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Sn Plated Thickness (mils, 0.001 inch)

<table>
<thead>
<tr>
<th>Y Coordinate</th>
<th>Back of panel</th>
<th>X Coordinate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.14</td>
<td>0.11</td>
<td>0.1</td>
<td>0.11</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.12</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>0.11</td>
<td>0.1</td>
<td>0.11</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
<td>0.11</td>
<td>0.1</td>
<td>0.1</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Post heat treated bronze sheet exhibiting a shiny golden coloration consistent with bronze.

Figure 3 Coiled bronze after cutting and coiling. This color / tint is more realistic than what is shown in Fig. 2.
Figure 4 As received condition of the Hohman Plated and diffused bronze; (a and b) are on the smooth side, low and high magnification, respectively and (c and d) are on the rough side, low and high magnification.

also measured using Ion-coupled Plasma Emission Spectroscopy (ICP-ES). A number of sections were cut from two coils to determine the average tin content with variable results, such that they are not reported here. SRTE also has strict chloride content requirements and the chloride content was measured for both surface soluble halides by rinsing the coils and analyzing the effluent and also by dissolution. The halide content was less than 100 ppm which is the detection limit of the method.

A zinc exposure experiment that used similar conditions to the prior zinc getter development testing was conducted (1). These tests use a zinc source temperature and filter temperature of 350 °C, after evacuating the system for twelve hours to achieve a base pressure of 1 x 10⁻⁶ torr or higher. The filter was heated to temperature four hours before the zinc source to ensure uniform temperature conditions for the getter material. These conditions were selected since there is a large body of data for them and the mass gain due to zinc vaporization is well characterized with the samples turning into a golden color as shown in Figure 5 for the Hohman bronze coils. An as-received coil is shown on the left side of the image to compare the initial and final conditions as well as show the orange to gold transformation. The total mass gain for the coupons is listed in Table 3, as is the nominal specific mass gain, i.e., the mass/surface area. These mass gains are consistent with the amount of zinc vaporized and prior experiments (1).

The zinc exposed coils were subsequently examined via SEM and EDS. Figure 6 shows typical EDS spectra for an as-received and zinc exposed bronze sample and the only elements present above the
Table 3 As fabricated composition of Hohman Bronze as determined via SEM EDS.

<table>
<thead>
<tr>
<th>Cu-Sn Hohman As Fab</th>
<th>Cu</th>
<th>Sn</th>
<th>O</th>
<th>Si</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside 100X A</td>
<td>95.8</td>
<td>2.9</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside 100X B</td>
<td>97.1</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside 500X A</td>
<td>97</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside 500X B</td>
<td>96.1</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>96.7</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside 100X A*</td>
<td>65.7</td>
<td>1.9</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside 100X B</td>
<td>96.9</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside 100X C</td>
<td>96.8</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside 500X A</td>
<td>96.9</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>96.9</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High carbon is likely due to sampling error encompassing some carbon tape residue, ignoring the C indicates a 2.8% Sn bronze.

Table 4 Composition of zinc getter material after exposure.

<table>
<thead>
<tr>
<th>Cu-Sn exposed to 4 g zinc vapor</th>
<th>Cu</th>
<th>Sn</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside 100X A</td>
<td>54</td>
<td>1.1</td>
<td>44.9</td>
</tr>
<tr>
<td>Inside 100X B</td>
<td>54.1</td>
<td>1.0</td>
<td>44.9</td>
</tr>
<tr>
<td>Inside 500X A</td>
<td>54.1</td>
<td>1.0</td>
<td>44.8</td>
</tr>
<tr>
<td>Inside 500X B</td>
<td>54.1</td>
<td>0.9</td>
<td>44.9</td>
</tr>
<tr>
<td>Average</td>
<td>54.1</td>
<td>1.0</td>
<td>44.9</td>
</tr>
<tr>
<td>Outside 100X A</td>
<td>54.8</td>
<td>1.0</td>
<td>44.2</td>
</tr>
<tr>
<td>Outside 100X B</td>
<td>54.4</td>
<td>1.0</td>
<td>44.5</td>
</tr>
<tr>
<td>Outside 500X A</td>
<td>54.8</td>
<td>1.0</td>
<td>44.2</td>
</tr>
<tr>
<td>Outside 500X B</td>
<td>54.7</td>
<td>0.9</td>
<td>44.4</td>
</tr>
<tr>
<td>Average</td>
<td>54.7</td>
<td>1.0</td>
<td>44.3</td>
</tr>
</tbody>
</table>

detection limit for EDS are Cu, Sn and Zn. The rough and notionally smooth surfaces in the as received conditions were maintained after the zinc exposure. Low and high magnification images are shown in Figure 7 for both sides of the zinc exposed bronze. The surfaces are uniform with no signs of excessive zinc deposit, which forms geometric shapes with higher purity-more zinc rich deposits. The composition of the bronze getters is shown in Table 4 and it indicates that the zinc getter contains nominally 44% zinc and a consistent composition across the various areas that were examined. The SEM images in Fig. 7 are correlated with the locations indicated in Table 3.

Table 2 Chloride content of coils measured via ICP-ES

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Cl</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved</td>
<td><100</td>
<td><100</td>
</tr>
<tr>
<td>Rinsed</td>
<td><100</td>
<td><100</td>
</tr>
</tbody>
</table>

Figure 5 Appearance of bronze coil in the as-received and zinc exposed condition. A PM bronze standard sample is also shown.
Figure 6 EDS spectra from the (a) As fabricated Hohman bronze and (b) Zinc exposed Hohman bronze.

Figure 7 Zinc exposed Hohman bronze after 350 °C zinc exposure; (a and b) are on the smooth side – outside B, low and high magnification, respectively and (c and d) are on the rough side inside B, low and high magnification, respectively.
4.0 Summary and Conclusions
Hohman Plating successfully developed a process to prepare KorZincAlloy by an alkaline electroplating deposition and diffusion process. The plating thickness was uniform over most of the surface with the edges having slightly higher amounts. The diffusion cycle that was used in conjunction with the plated thickness did not produce any pinholes due to melting. The composition of the bronze met the specified range. The zinc gettering performance was consistent with that of the SRNL produced and the initial Hohman Plating bronze that is installed in the process lid that will be used for and extracted in FY17.

5.0 Recommendations
Hohman plating is a reliable vendor and should be considered as the vendor of choice for future KZA procurements provided KZA acts as it intended to do so and actively getters the 65Zn that evolves during extraction.

6.0 References
2. Email dated 11/08/2016 to Eric Janczak, RE status
Appendix A. Statement of Work for Tin Plating

Statement of Work for Tin Plating

1.0 SCOPE:

1.1 Description of Work (Services/Repairs to be performed):
Subcontractor shall prepare a methodology for plating copper sheets and obtaining heat treatment of the sheets to produce bronze. The task is a phased activity with initial trial(s) for plating, an optional optimization step, followed by a heat treating phase, with the final phase being a process that will result in electroplating and heat treating of a total of 280 – 300 square inches of copper sheet.

2.0 REFERENCE DOCUMENTS:

None

3.0 WORK REQUIREMENTS:

3.1 Technical Requirement:
All electroplating work shall be performed by the subcontractor at their factory or their sub-tier suppliers. Heat treatment development / validation / optimization will be conducted by SRNL to ensure safe work practices. Phase 4 will be conducted at the supplier or their sub-tier suppliers.

Phase 1. Scoping Study
The work shall include the following:
- Cutting supplied copper to appropriate dimensions
- Cleaning surfaces of copper suitable for plating in both acid and alkaline tin baths
- Electroplating surface with a target thickness of 0.0001 to 0.0004 inch (1.5 to 6 micrometers)
- Examining thickness and providing a report
- Providing samples for heat treatment optimization

Phase 2. Optimization (option) in the event that the scoping study did not produce acceptable plating thickness.

This optional phase repeats phase 1 with different, evolutionary process parameters.

Phase 3. Heat treatment development to be conducted by SRNL.
- Expose electroplated copper sheet to a thermal profile that will diffuse the tin into the copper sheet to produce bronze with a composition that ranges between 2 to 18% Sn.

Phase 4. Prototype scale up
- Vendor shall cost approximately 280 in² of bronze with a composition of 2-18% Sn.
- Vendor shall provide material in heat treated condition.

3.2 FURNISHED MATERIAL/SERVICES:
SRNL shall provide copper sheet suitable for plating for all the tasks. 5 pieces 12 inches x 12 inches shall be provided for the initial trial, potential optimization, and final phase. Sheets may be cut by the vendor into smaller sizes to facilitate handling, plating, etc. Minimum size piece may be 0.5 x 3 inches.

3.3 Site Conditions:
N/A

3.4 Period of Performance/Schedule Requirement:
Period of Performance shall begin upon receipt of PO and extend for eight weeks.

3.5 Personnel Qualifications/Certification:
N/A
Statement of Work for Tin Plating

3.6 Deliverables:
 Phase 1. Scoping Study
 Vendor shall supply a report that summarizes the bath type used and the plating thickness.
 Phase 2. Optimization (option) in the event that the scoping study did not produce acceptable plating thickness.
 Vendor shall supply a report that summarizes the bath type used and the plating thickness.
 Phase 3. Heat treatment development by SRNL
 SRNL shall provide vendor a report containing the thermal profile and chemistry of Sheet.
 Phase 4. Prototype scale up
 Vendor shall supply a report containing the as plated coating thickness, the thermal profile used, chloride content of the sample, and chemistry of sheet, and approximately 280 in² of bronze with a composition of 2-18% Sn.

4.0 ACCEPTANCE OF SERVICES:
Subcontractor will provide reports for each phase accomplished, a return to SRS of approximately 280 in³ of bronze sheets, and all materials not consumed during testing.

5.0 ATTACHMENT:
None
Distribution:

Records Administration (EDWS)
S. Murphy
B. Garcia Diaz
S. Murph
K. Zeigler
B. Snyder
J. Kvartek
A. Hollingshad