
Contract No: 

This document was prepared in conjunction with work accomplished under 
Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) 
Office of Environmental Management (EM). 

 

Disclaimer: 

This work was prepared under an agreement with and funded by the U.S. 
Government. Neither the U. S. Government or its employees, nor any of its 
contractors, subcontractors or their employees, makes any express or implied: 

1 )  warranty or assumes any legal liability for the accuracy, completeness, or 
for the use or results of such use of any information, product, or process 
disclosed; or  

2 )  representation that such use or results of such use would not infringe 
privately owned rights; or  

3) endorsement or recommendation of any specifically identified commercial 
product, process, or service.   

Any views and opinions of authors expressed in this work do not necessarily 
state or reflect those of the United States Government, or its contractors, or 
subcontractors. 



1

Climate Change Resilience Planning at

the Savannah River Site, Part 2

David Werth, 

July, 2018

SRNL-STI-2016-00601



2

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government.  Neither the 
U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, 
makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the 
use or results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately 
owned rights; or

3. endorsement or recommendation of any specifically identified commercial 
product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of 
the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for
U.S. Department of Energy



3

Keywords: climate, modeling, 
downscaling

Retention: Permanent

Climate Change Resilience Planning at the Savannah River 
Site, Part 2

D. W. Werth

July, 2018

Prepared for the U.S. Department of Energy under
contract number DE-AC09-08SR22470.



4

                                      REVIEWS AND APPROVALS

AUTHORS:

D. W. WERTH, Atmospheric Technologies Group                                                      Date               
Savannah River National Laboratory                                                

TECHNICAL REVIEW:

ANDY HORCHER, United States Forest Service-Savannah River                              Date

SCOTT GOODRICK, United States Forest Service-Savannah River                           Date

RICHARD SWYGERT, Facilities and Systems Engineering                                      Date
Savannah River Nuclear Solutions

AVERY HAMMETT, Department of Energy                                                               Date

APPROVAL:

________________________________________________________________________
C. H. HUNTER, Manager, Atmospheric Technologies Group                                     Date               
Savannah River National Laboratory                                                

G. F. KESSINGER, Manager, Nonproliferation Technologies                                      Date                              
Savannah River National Laboratory                                      

_________________________________________________________________________                                                                                                                              
EARL JOYNER, Manager                                                                                             Date
SRS Sustainability & Energy Management Program                                                                                          
Savannah River Nuclear Solutions



5

1. Introduction

In June of 2016, the Savannah River National Laboratory (SRNL) submitted a climate 

vulnerability screening and assessment (V S/A) (Johnson and Werth, 2016, henceforth JW2016) for the 

Savannah River Site (SRS) in response to a request from the Department of Energy’s (DOE) Office of 

Environmental Management (EM).  That report comprised an analysis of the effect of future climate 

change on energy use for heating and cooling site facilities and the health and safety of outdoor workers

exposed to hot weather.  In this report, we extend that work to estimate the effect of climate change on 

three other site assets – the SRS forest, former cooling ponds, and site steam and power production.  

DOE, in partnership with the US Forest Service-Savannah River Station (USFS-SR), is responsible for 

maintaining the SRS forest, including performing controlled burns, practicing silviculture and studying its 

impact, and fighting any wildfires that occur.  SRS is also home to two large ponds (L-Lake and Par 

Pond) formerly used to cool the excess heat from reactor operations. These ponds now contain 

radioactive elements (primarily cesium) in the bottom sediment, and the water is employed as a natural 

barrier for their sequestration.  Water levels are therefore required to remain above a set threshold, which 

could become harder to maintain as climate changes.  Also on site, the Ameresco Biomass Cogeneration 

Facility (BCF) burns wood (mostly debris from logging and forest thinning) to boil water to produce 

steam and electricity, and the plant’s operations could be compromised by rising water or air 

temperatures. 

To characterize the climate-induced threats to the management of these assets, we select climate-

related indices currently used to quantify the potential vulnerabilities, and apply projections from global 

climate models (GCMs) to determine how these indices will change.  The analysis will in most respects 

be identical to that of JW2016 in that we will again apply the Dept. of Transportation’s vulnerability 

assessment scoring tool (VAST) software to gauge the climate-induced risk (DOT, 2018).  This involves 

selecting and quantifying ‘exposure’ indicators and estimating the asset’s ‘sensitivity’ and ‘adaptive 

capacity’.  (A complete description of the software can be found in JW2016.)  Future climate variables
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are taken from a set of existing GCM projections of the years 2040-2049, ‘downscaled’ to be consistent 

with variability at SRS (as described in Werth, 2018), and converted into relevant indices.  With multiple 

GCM simulations of the period 2040-2049 and two climate forcing scenarios (RCP4.5 and RCP8.5, see 

JW2016 for a description), we will have a range of climate forecasts, allowing us to look for variabilities 

in the impacts of future climate.       

   

2. Fire Management    

        The USFS-SR is responsible for fighting wildfires on site and, more importantly, maintaining 

the site forest in such a condition as to make wildfires less likely to start or grow rapidly.  This is 

accomplished by the controlled burning of quick-igniting surface fuel and the selective harvesting of trees 

to reduce fuel continuity and loading.  The potential of climate change to produce conditions favorable for 

an increased threat of wildfire is an ongoing concern in various parts of the world (Krawchuk and Moritz, 

2012; Heilman et al., 2015; Brown et al., 2012; Luo et al., 2013; Yang et al., 2015), and we must evaluate 

the threat at SRS.

     To apply the VAST program, we must first select ‘exposure’ indicators to characterize the 

threat, and several are available.  The USFS uses several indices to quantify the potential of a wildfire 

starting or spreading, and for our purposes we select the variable known as the ‘energy release 

component’ (ERC).  This variable is computed using temperature, humidity, and the cumulative rainfall

over a period of several weeks (non-climate variables such as a site’s fuel ‘model’, which characterizes 

the overall fuel load1, are included as well).  The value is recalculated each day, and indicates the ease 

with which an ignition can trigger a wildfire.  Typical values at SRS range from about 10-25 in January 

and 20-40 in July (Fig. 1).  The annual fuel loading is another measure of fire danger that is strongly 

affected by climate, and this is selected as another exposure indicator.  The exposure ‘score’ as input to 

                                                          
1 The ‘models’ are defined as part of the National Fire Danger Rating System (NFDRS).



7

VAST will be determined by comparing the current ERC and fuel-related values to those projected for the 

future. 

Figure 1 Annual cycle of ERC at SRS, averaged over the years 1998-2014, along with the 

range of variability defined by the standard deviation (σ) for each month.  Data is from reports 

supplied by the USFS-SR2. The vertical lines separate the warm and cool periods.

   The winter fire danger, while reduced, is nevertheless a concern to site managers because 

extreme wind events are more likely during this time, and can increase the potential for a fire to spread 

rapidly.  Therefore, we select two exposure ‘indicators’ – the warm season ERC (wERC, equal to the 

April-September mean), and the cool season ERC (cERC, equal to the mean calculated over the 

remaining months).  As described in Werth (2018), we have downscaled GCM data for SRS, including 

the variables precipitation, temperature, humidity and wind speed.  Given that ERC is a derived variable, 

it was impractical to recalculate ERC exactly using this data.  Instead, we establish an observed 

relationship between the recorded ERC values and weather variables measured at SRS.  This same 

relationship can be applied using the future climate variables as predictors. (See Appendix A for details.)    

When we use the downscaled climate data for the 2040s to project ERC values, the result is a shift in the 

projected distribution in wERC towards lower values – higher values are less likely, and lower values are 

                                                          
2 These ERC values were calculated assuming that SRS fits the commonly-used NFDRS ‘G’ fuel model (‘Short 
needle (heavy dead)’), using the 1988 version of the model.  It has been suggested that the P model (‘Southern pine 
plantation’) is actually a better fit.  The climate-change analysis was done assuming both fuel models, and produced 
similar results.  We present here the results from the G model.   
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more likely (Fig. A3) (i.e., an ignition producing a wildfire is less likely to occur).  A similar effect is 

seen in the projected cERC distribution (Fig. A4).     

              The VAST tool requires that exposures be assigned a score of 1-4, and we have 

developed a way to convert a shift in the distribution for a given variable into such a rating by comparing 

the projected values to the mean and standard deviations of the current, observed values (JW2016).  This 

involves assigning a rating of 1 to future risk if the future values tend to be below the current observed 

mean (Table 1).  (See Appendix A for more information on this process.) In keeping with this, we assign

an exposure score of 1 to each scenario (Table 1, Table B1), indicating a small risk of increased fire 

danger.

Parameter Current
Average

RCP4.5 Exposure 
Score

RCP8.5 Exposure 
Score

wERC 28 < 28, 63% 1 < 28, 71% 1
cERC 21 < 21, 85% 1 < 21, 81% 1
Average Spring 
Temperature

65⁰F 67⁰F -69⁰F, 42%
3

67⁰F -69⁰F, 43%
3

Total Spring 
Precipitation

23” <23”, 35%
1

23”-29”, 39%
2

P-E Par Pond 4.2 cm -6.3 cm to 4.2 cm, 45%
1 -6.3 cm to 4.2 cm, 

41%
1

Evaporation L-Lake 3710 gpm <3710 gpm, 41% 1 <3710 gpm, 52% 1
Hot/humid days/year 16 >42, 88% 4 >42, 96% 4

Table 1 Observed climate data, along with the most likely projected values for each climate-forcing 
scenario, the percentage of models projecting those values, and their associated exposure scores. 

VAST also requires a ‘sensitivity’ rating – an indicator of how sharply the actual danger (the risk 

of fire) will rise as the exposure indicator (ERC) rises.  Records exist of the ERC value for each day at 

SRS, as well as whether or not a fire occurred.  This can be used to calculate the rate at which the 

probability of fire increases as ERC rises.  As wERC rises from 0 to 45, the probability of fire on any day 

with such an ERC value rises as well (from about 1% to 15%), and the two variables are strongly 

correlated, indicating a strong relationship.  (The probability that such a fire will be large rises as well.) 

The relative increase is much smaller for the cool season than for the warm season, and the correlation is 
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smaller, implying a smaller overall sensitivity to cERC.  We therefore elect to assign a sensitivity rating 

of 4 to the warm season fire danger, and a value of 2 to that of the cool season (Table B2).      

The fire risk is also related to the amount of fuel produced during the months preceding the peak 

fire season.  Cool and dry conditions during this time will result in reduced growth and a lessening of the 

danger.  If future spring and winter temperatures and precipitation increase, however, the additional fuel 

growth can make summertime fire management more difficult (Pacific Northwest National Laboratory, 

2015).  This could result in a shift in the site’s appropriate fuel model being shifted from P to O (High 

pocosin, characterized by intense wildfires), with consequent increases in ERC.  We use these two 

variables to develop an additional exposure indicator (fuel) for the fire danger.  The downscaled climate 

data for the 2040s indicates increases in both winter/spring precipitation (Fig. A5) and (more 

significantly) in springtime temperatures (Fig. A6), resulting in greater fuel production.  The 

corresponding scores are 1 or 2 for precipitation (depending on the emissions scenario), and 3 for 

temperature (Table 1).  The overall exposure for fuel is therefore assigned a score of ‘3’.  The three 

exposure scores (wERC, cERC, and fuel) must be combined into a composite score, and all three are 

weighted equally for a composite score of 1.7 (Table 2).  Because fire danger is strongly related to fuel 

growth, the sensitivity rating for the fuel indicator is subjectively assigned a value of 3 (Table B2).  The 

composite sensitivity is subjectively weighted in favor of wERC (60%), given its greater overall 

importance.  The fuel load is weighed at 30%, with cERC weighted at 10%, resulting in a composite 

sensitivity of 3.5 (Table 2).

To complete the analysis, VAST will calculate an indicator of ‘adaptive capacity’ (AC), gauging 

our ability to mitigate the consequences of any increased danger.  (Lower values indicate a better ability 

to adapt.)  This requires the identification of a set of adaptive options and an estimate of how effective 

and practical each one is (assigning lower values to more favorable options).  We evaluate three: 

maintaining the current practice of controlled burns and tree harvesting, increasing the rate of controlled 

burns, and increasing tree harvesting. 
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      Maintaining current practices (performing controlled burns and harvesting at current rates) is 

the simplest option to implement, and a rating of 1 is assigned.  Increases in harvesting are simple enough 

to implement (albeit at an increased cost), and that option is assigned a rating of 2.  Controlled burns, 

however, are currently at their maximum practical level (John Blake, personal communication), and 

therefore this option is assigned a rating of 4 as an indication of its relative impracticality (Table B3).  

The AC rating is calculated as a weighted composite of the 3 options, depending on the estimated 

likelihood that they will be necessary.  Given that we expect no strong increase in exposure, we can 

assume that it is most likely we will be able to rely on current practices, with increased harvesting and 

controlled burns less likely to be required.  Therefore, weights of 60%, 30% and 10% are assigned to the 

current practice, harvesting, and burning options, respectively, for a composite of 1.6 (Table 2).  

VAST combines these inputs as described in JW2016, and the result is seen in Table 2 – relatively 

low ‘damage’ (a composite of exposure and sensitivity) and adaptive capacity scores, with the asset 

vulnerability (a combination of the two) indicating a low risk due to climate change.  Fig. 2 compares 

damage to adaptive capacity to gauge the overall vulnerability (indicated by the shading), and the site 

forest is depicted as being well away from the area of greatest danger - the high sensitivity and increased 

fuel load are mitigated by projections of reduced ERC values and the fact that increased harvesting can be 

implemented to reduce the impact of climate effects and maintain forest stability.          

3. Cooling Pond Maintenance

    Two bodies of water on site (L-Lake and Par Pond) are used as natural waste repositories – the 

sediment beneath them contains radioactive cesium, which is sequestered by the overlying water

(Savannah River Nuclear Solutions, 2011).  If water levels were to fall, the sediment could dry out and 

blow away, spreading radioactivity.  SRS therefore has an interest in maintaining water levels, which 

could be compromised by changes in climate.  
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      Climate controls water levels through changes in evaporation (E) and precipitation (P).  

Precipitation at SRS is not expected to strongly decrease (Werth, 2018), but projected temperature 

increases (Werth, 2018) could increase evaporation.  To determine the risk due to climate change, we 

apply downscaled GCM data and the VAST software, with the difference between precipitation and 

evaporation (P-E) as the exposure indicator.

Daily precipitation values for the future were calculated as part of the GCM downscaling (Werth, 

2018), but, as with ERC, evaporation is a derived variable.  Along with standard meteorological data, we 

have evaporation data from two sources on site 1) a pan evaporation gauge, and 2) a water budget 

calculation.  Once again, multiple linear regression is used to relate a predictand (evaporation) to a set of 

observed predictors that we can also get from the downscaled GCM data (Appendix A).    

Figure 2 Vulnerability of SRS assets to climate change for the RCP4.5 and RCP8.5 scenarios.  

Darker shades of red indicate a greater ‘vulnerability’ score.

Asset Name Exposure Sensitivity Adaptive Capacity "Damage" Vulnerability

Site Forest 1.7 3.5 1.6 2.6 2.3

Par Pond 1.0 4.0 1.5 2.5 2.2

L Lake 1.0 4.0 1.5 2.5 2.2

Cooling Tower 4.0 4.0 1.5 4.0 3.2

                 Table 2: Composite scores for site assets for the RCP8.5 scenario.
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  The dominant predictor of daily pan evaporation is the difference between the daily maximum 

temperature and the daily-averaged dewpoint, and the years 2040-2049 are characterized by increases in 

both variables, such that the average in the difference is only slightly larger in the 2040s than in the 

current observations.  The overall effect is to either increase P-E by an amount that fails to be significant 

at the 95% level (using pan evaporation, Fig. A9), or produce a future evaporation distribution similar to 

that of the present (using the calculated-budget evaporation, Fig.  A10). Therefore, we assign a value of 1

to this indicator for both Par Pond and L-Lake (Table 1, Table 2, Table B1).

As an independent check, we also downloaded the evapotranspiration data of Reclamation (2014).  

This comprised both analysis of historic values and downscaled projections of evapotranspiration from 

global climate models and a surface hydrology model.  Comparing the historic values to the 2040-2049 

values for both RCP4.5 and RCP8.5 scenarios, we again see little change, affirming the use of a low 

exposure score.   

The sensitivity indicator for the water levels is based on the way that measured levels of Par Pond

and L-Lake respond to changes in P-E on a monthly timescale (Fig. A11), and the strong correlation 

between the two variables (0.70 for Par Pond, 0.65 for L-Lake) causes us to assign a value of 4 (the 

maximum) to this indicator (Appendix A, Table 2, Table B2).  The adaptive capacity (Table B3) is based 

on three options (SRNS, 2011) – 1) supplementing water levels with water from the Savannah River (the 

current practice), 2) designating the exposed area as off limits, or 3) capping exposed sediments.  Given 

that water availability at SRS is not expected to seriously decrease below current levels3, resupplying 

water to Par Pond and L-Lake can be considered a practical option (adaptive capacity = 1).  Keeping 

people away from exposed sediment is simple enough, but is not a long-term solution, as the exposed 

radioactive sediment will eventually be carried over a larger area (possibly off site, with serious 

consequences for site management) so we assign an AC value of 2.  Capping exposed sediment (or 

                                                          
3 Fig. 17.11 of Carter et al., (2014), shows SC to be well outside the area of significant decrease of water 
availability.  Additionally, the online Water Supply Stress Index Model 
(http://www.wassiweb.sgcp.ncsu.edu/s) does not show significant increases in water stress index 
(demand/supply) in the 2040s.   
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otherwise sequestering it) is an expensive operation, so we assign an AC value of 4.  Given the fact that

water levels are not expected to strongly decrease, we weight the adaptive score more heavily toward the 

less severe options.  The option to use river water carries 70% of the total adaptive capacity score, while 

the use of an exclusion zone comprises 20% of the total adaptive capacity score.  The impractical but 

unlikely requirement that we cap exposed sediment is weighted at 10%, for an overall composite score of 

1.5 (Table 2).

The VAST scoring indicates that damage and vulnerability will both be relatively low (Table 2, Fig. 

2).  As with the forest fire potential, the analysis of water levels indicates that existing procedures to 

mitigate the effects of climate should be considered adequate for the future.  

     4. Site Energy Production

   In June of 2012, the coal-burning power plant in D-area was shut down, leaving Ameresco’s 

Biomass Cogeneration Facility (operational since January of 2012) as the sole onsite facility for 

producing electricity (meeting ~30% of the site’s electricity needs4).  Steam produced in the plant’s 

boilers is allocated to three uses – powering a turbine for generating electricity, use by the site’s operating 

facilities, and the pre-treatment of water before entering the boiler.  The plant operates at a constant 

production level, but changing external conditions require that the amount assigned to each end user be 

changed. (For example, colder temperatures mandate that more steam be sent to site buildings, with less 

used to produce power).  Water for the boiler comes from two sources – the Savannah River, and 

recirculated water that has already been heated to steam, forced a turbine blade, and been condensed in a 

cooling tower before being returned to the boiler.    

Site personnel at the facility were questioned as to how climate change could adversely affect its 

operation.  Warmer river temperatures and reduced flows are a concern for power plants that draw 

cooling water from them (Madden et al., 2013; HDR, 2014; DOE, 2013; DOE, 2015), but the BCF 

                                                          
4 http://www.2017energyexchange.com/wp-content/tracks/track13/T13S2_Ladd.pdf
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withdraws water from the river only to compensate for losses in the recirculation process, and any such 

withdrawal is intended to be heated in the boiler, not used for cooling.  (Again, river flows are expected to 

remain similar to those of today (Carter et al., 2014)).   Therefore, we can conclude that the risk to 

operations due to increasing river temperatures to be low. 

The plant uses an evaporative cooling tower to cool water before being returned to the boiler.  By 

this process, water is sprayed near the top of the tower as droplets, while air is introduced at the bottom 

and moved upwards by a fan.  As the droplets fall, they cool through two processes: conduction of heat 

into the surrounding air, and, more importantly, evaporation, with the excess heat being removed by the 

vapor.  The cooled water is then returned to the boiler.  

If only the first process operated, the droplets would at a minimum cool to the temperature of the 

introduced air, which is drawn from the external environment.  With evaporation, however, they can cool 

to the air’s wet bulb temperature, which is often substantially lower and making evaporation the dominant 

cooling process.  The efficiency of cooling is therefore related to the wet bulb temperature – as it 

increases, the cooling process becomes less efficient.

    An evaporative cooling tower can still operate if the air is very hot or very humid, but not if 

both are true.  The future climate at SRS is characterized by rising temperatures and rising humidities –

both of which would raise wet bulb temperatures and threaten cooling tower operation (Werth, 2018).  To 

characterize the risk, we make several assumptions.  

1) The cooled water should not be above 83⁰F (~28⁰C).    

2) If this is to happen, either the dry bulb or wet bulb temperatures must be below 77⁰F (25⁰C), 

assuming that the cooling process is not 100% efficient and that the final temperature of the cooled water

will always be several degrees (we assume 3⁰C) above the wet bulb temperature5. Only if neither 

condition is met will the droplets be unable to cool to the desired temperature.  The exposure indicator is 

therefore estimated as the number of days per year in which the two conditions are both not met – the 

                                                          
5 http://www.kgogroup.com/wp-content/uploads/Cooling-Tower-Basics-and-Common-Misconceptions1.pdf
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daily maximum temperature is greater the 25⁰C, and the daily mean wet bulb temperature is also greater 

than 25⁰C.          

Using an approximation to relate wet bulb temperature to the dry bulb and dewpoint temperatures 

(Appendix A), we calculate the observed and projected number of days per year that the ‘stress’ condition 

is met.  As indicated by Fig. A12, warm and humid days are estimated to be much more common in the 

2040s, and we therefore assign a rating of ‘4’ to the corresponding exposure indicator (Table 1, Table 2).  

And given the strong correspondence between the two temperatures and cooling efficiency, the sensitivity 

is also assigned a rating of ‘4’ (Table 2, Table B2).  

To test for variability in the assumption of the desired outlet water temperature, the analysis was 

repeated using wet bulb temperatures of 27⁰C and 30⁰C as the threshold, and in each case the result is the 

same – future values occurred with far greater frequency than in the observation, so our use of an 

exposure score of 4 is not sensitive to the threshold value selected.

In a discussion with an operator at the Biomass Cogeneration Facility (BCF), two adaptive actions 

were mentioned: adding towers, or increasing the capacity of the fans to move air.  The first would 

compensate for reduced thermal efficiency by increasing the total rate at which water is moved through 

the cooling process, and the better mixing provided by the fans would increase the efficiency at which 

heat is transferred to the warmer, moister air.  These were both considered to be practical, with the fans 

being less costly.  We assigned AC values of 2 and 1 (weighted equally) to the options of more towers 

and improved fans, respectively (Table B3), for a composite score of 1.5 (Table 2).

After accepting this input, the VAST software outputs a risk assessment, and the vulnerability rating 

is shown to be the highest among the assets evaluated in this report (Fig. 2, Table 2).  Projections indicate 

that cooling tower operations could be severely compromised in the future (high damage).  The BCF can

conceivably be upgraded or replaced by another facility with an enhanced cooling capacity as wet bulb 

temperatures rise throughout the 21st century.  Given that actions to mitigate these effects are considered 

a normal part of operating such a facility, the overall vulnerability can still be considered moderate.     
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5. Conclusions

The first V S/A (JW2016) rated many site assets, such as critical buildings and outdoor workers, as 

being very vulnerable to climate change, with vulnerability ratings well above 2.5 (on the 1-4 scale).  The 

current assessment, however, has vulnerability scores at or below 2.5 except for the cooling tower.  

The first two evaluated site activities (forest fire management and pond operation) were seen to not 

be especially vulnerable to future climate change, the main reason being that the relevant climate indices 

(ERC and P-E, respectively) are not expected to change substantially.  As temperatures and humidities 

rise, however, upgrades to the BCF cooling tower may be required to ensure that the plant can continue to 

operate.  Currently, however, there is no capital investment projects scheduled to upgrade cooling tower 

operations.  Ameresco will operate and maintain the BCF out to the year 2032, following which SRS will 

be responsible, so the necessity of these projected expenses should be considered in future budgeting.  
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Appendix A

1. Calculation of Exposure Score

With multiple GCM simulations of several years each, we have a large number of values for the 

future for any climate variable in which we are interested, with some being similar to the values of today 

and other being much less or greater.  As in JW2016, we compare the climate variable distributions of the 

future with those of the present in assigning the ‘exposure’ score.  This is done by calculating the fraction 

of future values that fall within each of 4 bins – at or below the current mean, between the current mean 

and one standard deviation beyond the current mean (usually above, but possibly below if it is a variable 

we fear will be reduced), between one and two standard deviations beyond the current mean, and more 

than two standard deviations beyond the current mean.  Each bin is assigned an exposure score of 1, 2, 3, 

and 4, respectively, and the exposure score is determined by the bin that contains the greatest fraction of 

the future values.  If, for example, most future simulated values are greater than 2 standard deviations 

above the current mean, the exposure score is assigned a value of 4 (indicating the greatest threat).  If the 

distribution shifts to lowers values, however, an exposure score of 1 is assigned.

In the following subsections, we describe in detail how the exposure indicators were calculated 

from the GCM data, and the calculations used to get the exposure scores of each of the exposure 

indicators for the three threatened site assets.          

  

2. Forest Fire Management

i) ERC

Three predictor variables – daily maximum temperature, daily average dewpoint, and daily total 

rainfall, have a strong effect on both the subsequent and concurrent values of ERC.  Warmer 

temperatures, lower humidities and reduced rainfall in the spring will increase the amount of dried out 

fuel for the summer, while those same conditions in summer will maintain fuel desiccation and allow 

nascent fires to grow and spread rapidly.  For the wERC, multiple predictors were tested, and a set of 
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three was ultimately selected – the April through August monthly mean high temperature (the most 

significant predictor) (Fig. A1, left), the March through August monthly mean dewpoint temperature (Fig. 

A1, right), and the April through July precipitation (the least significant, not shown).      

Figure A1 Scatter plots comparing seasonal mean left) daily maximum temperature and 

right) daily mean dewpoint to seasonal mean wERC.

For cERC, the October through March means of those same three variables were selected as the 

predictors.  For each, a linear regression was performed, and the reconstructed values of wERC and cERC 

compare well to the actual values (Fig. A2).  We apply the same linear regression to downscaled daily 

climate data (described in Werth, 2018) for the years 2040-2049 for both the RCP4.5 and RCP8.5 

scenarios to characterize the future fire danger at SRS.  

          For the future years, the temperature variable is expected to rise for both the RCP4.5 

(ΔT=2.0⁰ F) and RCP8.5 (ΔT=2.36⁰ F) scenarios, which by itself would force wERC values higher (from 

an observed average of 28.42 to predicted values of 32.41 (RCP4.5) or 33.157 (RCP8.5)).  Dewpoint 

temperatures, however, are projected to rise more sharply (about 5⁰-7⁰ F), forcing ERC values downward.  

The overall result is a shift in the projected distribution in wERC values towards lower values –

higher values are less likely, and lower values are more likely (Fig. A3).  A similar effect is seen in the 

projected cERC distribution (Fig. A4).  
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Figure A2 Observed value of wERC (left) and cERC (right), compared with the values 
reconstructed from the regressions.

Figure A3 left) Observed (1998-2014) warm season ERC (wERC) values at SRS. Right) Fraction of 
future (2040-2049) simulated values of wERC below the observed mean, between the observed 
mean and 1 standard deviation, between 1 and 2 standard deviations above the observed mean, and 
beyond 2 standard deviations above the observed mean.

Figure A4 As in Fig. A3, but for the cool season ERC (cERC).
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ii) Fuel

Projections of future temperature and precipitation are taken from the dataset of Reclamation 

(2014) as described in Werth (2018).  The observed winter/spring (Dec-May) precipitation totals (Fig. 

A5) and average spring temperatures (Mar-May) (Fig. A6) are compared to the RCP4.5 and RCP8.5 

projected values, and the departure from the current mean is again used to assign exposure scores.

          

Figure A5 As in Fig. A3, but for the winter/spring precipitation total.

          

Figure A6 As in Fig. A3, but for the averaged springtime temperature.

As an exposure indicator, the winter/spring precipitation is showing a modest shift towards higher values 

(Fig. A5, right), but the springtime temperatures are much greater, with most simulations having values 
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between 1 and 2 standard deviations above the current mean (Fig. A6 right), so we assign an overall value 

of 3 to indicate the increase in fuel.   

As an additional data source, we employ the Pine Integrated Network: Education, Mitigation, and 

Adaptation project (PINEMAP) and its online Decision Support System6, which allows users to map 

values of ‘dryness index’ (a ratio of vegetation water demand versus rainfall) for the years 2040-2059 

under the high emissions scenario.  When calculated at SRS, the current average value of 5.7 is projected 

to rise to 6.5+/- 2.3 (the 2σ value of the multiple model forecasts).  The increase of 0.8 in the mean, 

however, represents a shift of 0.7σ.  When we add this as an exposure indicator with a value of 2 to the 

analysis, the final vulnerability score changes little, so we elect not to apply this indicator in the final 

analysis.    

3. Pond Evaporation

To project future evaporation from the available future climate data, we need current values of 

evaporation.  We have two independent data sets: 

i) Water levels of an evaporation pan are recorded each day, and day to day differences are used as 

an indicator of how much water evaporates.  We create an evaporation dataset for each day in June 

through August for the years 2009-2013.  The pan is refilled upon nearing depletion, however, and 

rainfall will similarly produce increases in the water level.  Therefore, we exclude such days from the 

analysis.

ii) Controlled water inflow and outflows to L-Lake are monitored and recorded, as well as 

precipitation and total water amount, and this allows for the calculation of evaporation as a residual.  This 

daily data was made available and calculated as a set of 5-day averages for June-August for the years 

2009-2013, and served as a second predictand.     

                                                          
6 http://climate.ncsu.edu/pinemap/index.php
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For predictors, we select two – the daily average wind speed, and the difference between the daily 

maximum temperature and the daily-averaged dewpoint temperature (the latter is an indicator of 

evaporative demand).  The regression reveals good linear relationships between evaporation and the two 

predictors (Fig. A7), although the reconstruction shows that extreme values are often missed (Fig. A8).  

These relationships are subsequently applied to the downscaled GCM data to estimate the daily future 

evaporation.  We use the pan evaporation to get the monthly total precipitation-evaporation (P-E) for the 

summer months (June, July, August) as the exposure indicator, and calculate the distribution of future 

values (Fig. A9).  The calculated-budget evaporation is projected in gallons per minute (and also averaged 

monthly for June, July, and August), and used to get a future distribution of monthly averages (Fig. A10).  

Figure A7 Scatter plots comparing the difference between the daily maximum temperature 

and daily mean dewpoint to daily changes in left) pan water level and right) L-Lake evaporation for 

June through August.

The sensitivity indicator is a measure of how Par Pond and L-Lake water levels are affected by 

changes in the exposure indicator (P-E).  Correlations show that P-E strongly influences water levels (Fig. 

A11), and we assign a sensitivity rating of 4 (Table B2).
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Figure A8 Observed summer (JJA) daily value of pan evaporation (left) and 5-day average 

evaporation from L lake (right), compared with the values reconstructed from the respective 

regressions.

  

Figure A9 As in Fig. A3, but for the SRS summer (JJA) monthly-accumulated P-E 

(precipitation - pan evaporation), and the distribution is now for values below the current mean.

Figure A10 As in Fig. A3, but for the monthly-averaged L-Lake evaporation.
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Figure A11 Comparison of changes in (left) Par Pond and (right) L-Lake levels with changes 

in monthly total P-E for June, July, and August.  (Evaporation is from the pan data.)

4. Cooling Tower Operation

Wet bulb temperature is not a downscaled variable from a GCM, and is difficult to calculate from 

dry bulb and dewpoint temperatures alone.  As dry bulb temperatures exceed 25⁰C, however, we can 

determine what value of dewpoint corresponds to a wet bulb temperature of 25⁰C (Table A1), and use 

that dewpoint temperature (along with the 25⁰C dry bulb temperature) as the threshold for a day to qualify 

as hot and humid.  We apply this approximation in our estimation of current and future occurrence of 

excessively hot and humid days (Fig. A12).    

Dry Bulb 
Temperature (⁰C)

Wet Bulb
Temperature (⁰C)

Dewpoint              
Temperature (⁰C)

45 25 16

40 25 19

35 25 21

30 25 23

25 25 25

Table A1 Table of dry bulb and dewpoint temperatures, along with the associated wet bulb 
temperatures.
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Figure A12 As in Fig. A3, but for the number of hot and humid days (dry and wet bulb 
temperatures both exceed 25°C).
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Appendix B   Supplementary Tables

Range Exposure Score

Fire Risk

wERC 0 28 1

28 33 2

33 38 3

38 50 4

cERC 0 21 1

21 25 2

25 29 3

29 50 4

Fuel: Average Spring Temperature 
(degrees F)

0 65 1

65 67 2

67 69 3

69 80 4

Fuel: Total Spring Precipitation 
(inches)

0 23 1

23 29 2

29 35 3

35 40 4

SRS Cooling Ponds

Monthly total P-E (cm) (JJA only) 4.2 10 1

-6.3 4.2 2

-17 -6.3 3

-30 -17 4

Monthly averaged Evaporation (L 
Lake) gpm (JJA only)

0 3710 1

3710 5568 2

5568 7426 3

7426 8000 4

Cooling Tower

Annual number of hot, humid days 0 16 1

16 29 2

29 42 3

42 70 4

Table B1 Value ranges and associated exposure scores for the seven climate variables.
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Sensitivity Indicator Sensitivity Score

Warm Season Fire Sensitivity 4

Cool Season Fire Sensitivity 2

Fuel amount 3

Par Pond Water Level Sensitivity 4

L Lake Water Level Sensitivity 4

Cooling Tower Sensitivity 4

Correlation Range Sensitivity 
Score:

-1 0 = 1

0 .3 = 2

.3 .6 = 3

.6 1.0 = 4

Table B2: (top) sensitivity scores for the SRS assets. (Bottom) Correlation ranges and 
associated sensitivity scores for the water level values.
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Maintain Current 
Practices Increase Harvesting Increase Controlled Burns

AC Score AC Score AC Score

1 2 4

River Water Exclusion Zone Cap Sediment

AC Score AC Score AC Score
1 2 4

Additional Towers Improved Fan Capacity

AC Score AC Score

2 1

Table B3: Adaptive options to mitigate (top) increased fire danger, (middle) low water levels, 
and (bottom) reduction in cooling tower efficiency, along with the associated adaptive capacity 
(AC) scores. 
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