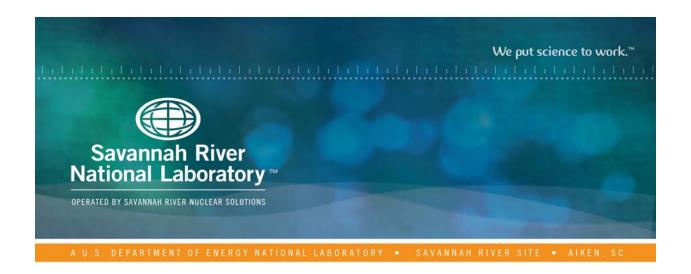
Contract No:


This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Solvent Hold Tank Sample Results for MCU-16-934-935-936: June 2016 Monthly Sample

F. F. Fondeur

D. H. Jones

August 2016

SRNL-STI-2016-00441, Revision 0

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: MCU, ARP, ISDP NGS

Retention: Permanent

Solvent Hold Tank Sample Results for MCU-16-934-935-936: June 2016 Monthly Sample

F. F. Fondeur D. H. Jones

August 2016

REVIEWS AND APPROVALS

AUTHORS:	
F. F. Fondeur, Advanced Characterization and Processing	Date
D. H. Jones, Research Support	Date
TECHNICAL REVIEW:	
T. B. Peters, Advanced Characterization and Processing Reviewed per Manual E7 Procedure 2.60	Date
APPROVAL:	
B. J. Wiedenman, Manager Advanced Characterization and Processing	Date
D. E. Dooley, Director E&CPT Research Programs	Date
E. A. Brass, Manager MCU & Salt/Sludge Processing	Date

EXECUTIVE SUMMARY

Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-934-935-936), pulled on 07/01/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-934-935-936 indicated the IsoparTML concentration is above its nominal level (101%). The modifier (CS-7SB) and the TiDG concentrations are 8% and 29 % below their nominal concentrations. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier. Based on the current monthly sample, the levels of TiDG, IsoparTML, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.

No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, up to 21.1 ± 4 micrograms of mercury per gram of solvent (or $17.5 \,\mu\text{g/mL}$) was detected in this sample (as determined by the XRF method of undigested sample). The higher mercury concentration in the solvent (as determined in the last four monthly samples) is possibly due to the higher mercury concentration in Salt Batch 8 (Tank 49H).

The current gamma level (1.41E5 dpm/mL) confirmed that the gamma concentration has returned to previous levels (as observed in the late 2015 samples) where the process operated normally and as expected.

The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
1.0 Introduction	1
2.0 Experimental Procedure	1
2.1 Experimental Procedure	1
2.2 Quality Assurance	2
3.0 Results and Discussion	2
4.0 Conclusions	10
5.0 References	11

LIST OF TABLES

Table 2-1 Log of recent trims to the MCU solvent and sample arrivals to SRNL
Table 2-2 Nominal concentrations of the relevant components in NGS Blend at 25 °C ²
Table 3-1 Sample Results for MCU-16-934-935-936
LIST OF FIGURES
Figure 1. Typical appearance of the three MCU-16-934, MCU-16-935, and MCU-16-936
Figure 2. Modifier level in the solvent as measured by HPLC (one sigma is 10%).
Figure 3. Suppressor concentration as measured by titration in SHT samples since NGS implementation. The minimum recommended level is 479 mg/L for TiDG.
Figure 4. MaxCalix concentration as measured by HPLC and FT-HNMR of recent samples since NGS implementation (44,400 mg/L is the nominal concentration)
Figure 5. The gamma count of selected SHT samples. One sigma is 5%
Figure 6. Total mercury in recent SHT samples. One standard deviation is 20%. CVAA = Cold Vapo Atomic Absorption Spectrometry. XRF =X-ray Fluorescence (20% one sigma)

LIST OF ABBREVIATIONS

BOBCalixC6 Calix[4]arene-bis(*tert*-octylbenzo-crown-6)

CSSX Caustic-Side Solvent Extraction

CVAA Cold Vapor Atomic Absorption Spectrometry

FT-HNMR Fourier Transform Hydrogen Nuclear Magnetic Resonance

FTIR Fourier transform infra-red spectroscopy
HNMR Hydrogen Nuclear Magnetic Resonance
HPLC High Performance Liquid Chromatography

ISDP Integrated Salt Disposition Project

MCU Modular Caustic-Side Solvent Extraction Unit

MaxCalix 1,3-alt-25,27-Bis(3,7-dimethyloctyloxy)calix[4]arene-benzocrown-6

NGS Next Generation Solvent

RSD Relative Standard Deviation or the absolute value of the Coefficient of

Variation

SHT Solvent Hold Tank

SRNL Savannah River National Laboratory SVOA Semi-Volatile Organic Analysis

TiDG N,N',N''-tris(3,7-dimethyloctyl)guanidine

TOA Trioctylamine

XRF X-Ray Fluorescence

1.0 Introduction

In late FY13, the Modular Caustic-Side Solvent Extraction Unit (MCU) switched to the Next Generation Solvent (NGS) flow sheet. Facility personnel implemented the switch by adding a non-radioactive, NGS "cocktail" containing the new extractant (MaxCalix) and a new suppressor (TiDG) to the SHT heel. The resulting "blend" solvent ("NGS Blend solvent") is essentially NGS with residual amounts of BOBCalixC6 and trioctylamine (TOA). SHT samples are sent to SRNL to examine solvent composition changes over time. On July 1 2016, Operations personnel pulled and delivered three samples from the SHT (MCU-16-934, MCU-16-935, and MCU-16-936) for analysis. These samples are intended to verify that the solvent is within the specified composition range. A baseline "scratch" solvent (a scratch solvent is a preparation of all 6 solvent components at the same time to generate a solution of the appropriate composition that approximates the blend of cocktail and heel solvent) was prepared in the lab (September 2015) and used for comparison and evaluation. The results from the analyses are presented in this document.

2.0 Experimental Procedure

2.1 Experimental Procedure

A summary of relevant and recent trims to the MCU solvent as well as the arrival date of the samples currently being studied are shown in Table 2-1. On June 15, 2016, a trim addition was made to MCU that was 40.4 lbs of modifier and 0.23 lbs of TiDG in 100.54 lbs of IsoparTML. ³

Table 2-1 Log of recent trims to the MCU solvent and sample arrivals to SRNL

	-
Event	Date
February solvent trim added to MCU	February 22, 2015
SHT sample MCU-15-389-390	February 25, 2015
SHT sample MCU-15-439-440-441	February 28, 2015
10 gallons of Isopar™L added to MCU	March 6, 2015
9 gallons of Isopar™L added to MCU	March 13, 2015
SHT sample MCU-15-556-557-558	March 16, 2015
SHT sample MCU-15-661-662-663	April 2, 2015
10 gallons of Isopar™L added to MCU	May 6, 2015
SHT sample MCU-15-710-711-712	June 15, 2015
SHT sample MCU-15-750-751-752	June 22, 2015
SHT sample MCU-15-802-803-804-805-806-807	August 31, 2015
November solvent trim added to MCU	November 28, 2015
SHT sample MCU-15-815-816-817-818-819-820	November 29, 2015
14 gallons of Isopar™L added to MCU	December 21, 2015
SHT sample MCU-15-914-915-916	December 22, 2015
SHT sample MCU-16-53-54-55	January 25, 2016
SHT sample MCU-16-270-271-272	February 21, 2016
12 gallons of Isopar™L added to MCU	March 6, 2016
SHT sample MCU-16-348-349-350	March 30, 2016
10 gallons of Isopar™L added to MCU	March 31, 2016
April Solvent Trim added to MCU	April 29, 2016
SHT sample MCU-16-596-597-598	April 30, 2016
SHT sample MCU-16-701-702-703	May 23, 2016
SHT sample MCU-16-710-711-712 (washed with 300 mM caustic)	May 28, 2016
20 gallons solvent trim added to MCU	June 15, 2016
SHT sample MCU-16-934-935-936	June 30, 2016
1	,

Samples shown in Table 2-1 were received in p-nut vials containing ~10 mL each (see Fig 1). Once taken into a radioactive hood, the samples were visually inspected and analyzed for pH. MCU-16-934, MCU-16-935, and MCU-16-936 were composited before use. Aliquots of the composited sample were removed to perform the following analysis: Density, SVOA, high performance liquid chromatography (HPLC), titration, gamma counting, CVAA, X-ray fluorescence (XRF), and Fourier-Transformed HNMR (FT-HNMR). Results from analytical measurements were compared with the theoretical values shown in Table 2-2.

Table 2-2 Nominal concentrations of the relevant components in NGS Blend at 25 °C²

Component	mg/L	Molar	
MaxCalix	~ 44,400	~ 0.0465	
BOBCalixC6*	< 4,030	< 0.0035	
TOA*	< 530	< 0.0015	
Modifier	~ 169,000	~ 0.50	
TiDG	~1440	~ 0.003	
Isopar™L	~ 623,000	~ 74 wt%	

^{*}Values represent starting values when NGS blend was implemented. These components are no longer added to or refurbished in MCU.

2.2 Quality Assurance

Requirements for performing reviews of technical reports and the extent of review are established in Manual E7 2.60. SRNL documents the extent and type of review using the SRNL Technical Report Design Checklist contained in WSRC-IM-2002-00011, Rev. 2.

3.0 Results and Discussion

Each sample (MCU-16-934, MCU-16-935, and MCU-16-936) was visually examined. No immiscible phases or debris or foam were observed. All samples had a pH value of 5.5. No unusual reactions, solids, foaming, or immiscible layers were observed after combining the samples into one (MCU-16-934-935-936). Table 3-1 contains the results for the MCU-16-934-935-936 composite sample.

IsoparTM L and Modifier Levels

Triplicate density measurements of the sample gave an arithmetic average result of 0.8318 g/mL (0.03% RSD) (or 0.8289 g/mL at 25 °C when corrected for temperature using the CSSX temperature correction formula)⁴ for MCU-16-934-935-936 at 21.5 °C. The calculated density (0.829 g/mL) for MCU-16-934-935-936 is about 1% below the calculated density for the standard sample (0.835 g/mL at 25 °C for the scratch blend made in the laboratory).² Using the density as a starting point, we know that the concentration level of the IsoparTML component in the sample should be slightly above its nominal value (within analytical uncertainties) and the modifier concentration should be slightly below its nominal value.

Figure 1. Typical appearance of the three MCU-16-934, MCU-16-935, and MCU-16-936

An examination of Table 3-1 shows that the IsoparTM L concentration is above its nominal value (~ 1%) while the modifier concentration is correspondingly slightly lower (8% lower) than its nominal value. Of all the methods listed, density has the lowest uncertainty. Thus, the final reported values are closer to the density measurement. The last solvent trim addition to MCU was on June 15, 2016.

All measurements indicate the IsoparTM L level is slightly above its nominal value while the modifier concentration level is below its nominal value (see Fig. 2 for recent modifier concentrations from HPLC measurements). Looking at Fig.2, the modifier level appears to trend up as a result of the trim addition made on June 15, 2016. The rise in modifier concentration was slower than that observed after the February and December 2015 solvent trim additions. The June 2016 trim addition added five times more modifier to the solvent that the April 2016 trim addition. Thereby, the modifier level rise in the June monthly sample is more noticeable. The rising rate of the modifier level in the solvent depends if the MCU operations are continuous or intermittent. The randomness in the modifier concentration between solvent trim additions is possibly due to the process of mixing, sampling and analyzing it. The relatively lower modifier concentration explains why the measured density is slightly below the standard sample density. The accuracies of the different measurements were within expectation as reflected in the total mass sum of the "average" results listed in Table 3-1. They added up to 0.827 ± 0.019 g/mL. Their sum is consistent with the measured and temperature corrected (to 25 °C) value of 0.829 g/mL, and also with the measured and corrected to 25 °C mass concentration (density) of the standard (0.835 g/mL). With a lower modifier concentration, the solvent chemical properties are similar to that of IsoparTML; thus, expect normal emulsification, phase separation, rheology, and phase carry-over (but increased evaporation). The current modifier concentration is well above the minimum modifier concentration below which the extractant concentration may drop due to solubility limits.

Table 3-1 Sample Results for MCU-16-934-935-936

Analysis	Method	LW-AD-Proj- 160412-4	Result (mg/L) [#]	Nominal* Result (mg/L)	% of (Result ÷ Nominal Result)
Isopar® L	FT-HNMR	NA	6.30E+05		101
Isopar® L	FT-IR	NA	6.30E+05	6.23E+05	101
Isopar® L	Density	NA	6.26E+05	0.232 - 03	100
Average ^{\$}	All	NA	6.26E+05	6.23E+05	101
Tiverage	7111	1111	0.202 - 03	0.232 - 03	101
Modifier	HPLC	LW2079	1.54E+05		91
Modifier	FT-HNMR	NA	1.55E+05	-	92
Modifier	FT-IR	NA	1.54E+05	1.69E+05	91
Modifier	Density	NA	1.55E+05	-	92
Average ^{\$}	All	NA	1.55E+05	1.69E+05	92
TiDG	SVOA-Titration*	NA	1.02E+03	1.44E+03	71
TiDG⁴	Titration	NA	1.01E+03	1.44E+03	70
Average ^{\$}	All	NA	1.02E+03	1.44E+03	71
trioctylamine	SVOA	LW2078	1.60E+03	5.30E+02	30
trioctylamine	Titration	NA	1.63E+02	5.30E+02	31
Average ^{\$}	All	NA	1.62E+02	5.30E+02	31
	T	T	1	1	T
MaxCalix	HPLC	LW2079	4.21E+04	4.44E+04	95
MaxCalix	FT-HNMR	NA	4.29E+04	.,	97
Average ^{\$}	All	NA	4.24E+04	4.44E+04	95
BOBCalixC6	HPLC	LW2079	1.40E+03	4.03E+03	35
Average ^{\$}	All	NA	1.40E+03	4.03E+03	35
Trongo	7 111	1111	1.102.05	1.032.03	
Density (g/mL)	Direct Measurement	NA	0.8289	0.835	99

[#] Analytical uncertainty is 10% for HPLC. Titration method uncertainty is 10% for TiDG and 16% for TOA. Density results from the average of replicate volumetric trials typically have a percentage standard deviation of <3% between each value and the average. NMR analytical uncertainty is 10% for the modifier and 13% for MaxCalix, and 14% for Isopar™ L. N/A = Not Applicable. Density estimations assume the combined weight percent of TiDG, MaxCalix, BOBCalixC6, and TOA to be approximately 6%. All uncertainties are 1 sigma.

^{*}Nominal value is the expected value for freshly prepared blended solvent with a target density of 0.8352 g/mL at 25 °C.

s Reported value for a MCU component is the weighted average of the values reported by the techniques that measured that component.

s $x = \frac{\sum_{i=1}^{l} (x_i / \delta_i^2)}{\sum_{i=1}^{l} (1 / \delta_i^2)}$; x_i stands for the concentration obtained at a given method and δ_i is the corresponding uncertainty.

No TiDG value was estimated by FT-HNMR due to an aged (questionable) standard.

^{*}Trioctyamine obtained from the SVOA method was subtracted from the measured total base in the titration method to obtain a calculated TiDG concentration.

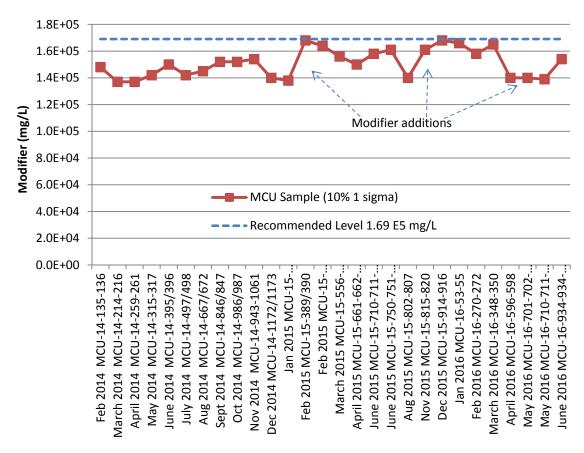


Figure 2. Modifier level in the solvent as measured by HPLC (one sigma is 10%).

Suppressors Levels

The average TiDG concentration level $(1.02 \pm 1.54 \text{ E3 mg/L})$ is at 71 % of its nominal value of 1440 mg/L confirming the continued depletion of the trim addition to the solvent done in April 29, 2016 (a noticeable spike in the TiDG concentration level was observed in Fig. 3 in the April 2016 SHT monthly sample). Fig.3 also confirmed the lesser amount of TiDG that was added to the solvent in the June 2016 trim relative to the April solvent trim. The much lower TiDG level in the June monthly sample (compared to the May monthly sample) is due to the higher processing rate of salt solution in June at MCU. The suppressor concentration is above the minimum recommended operating level (479 mg/L) and thus, the solvent did not require a TiDG addition at the time sample MCU-16-934-935-936 was collected. Inferring from past TiDG concentration level trends (see Fig. 3) and in the absence of new additions or new removal mechanisms (and assuming continuous steady operation), the TiDG concentration is expected to drop and reach the minimum recommended level sometime in August 2016. This drop is due to the combined effect of a chemical decomposition (reaction with caustic water) and phase transfer to the aqueous phases (salt solution and boric acid). The TOA concentration appears to trend downwards and it is currently at 163 ± 33 mg/L (in the previous sample the TOA level was at 210 mg/L). Since MCU no longer adds TOA, a drop in TOA concentration is expected with time. However, a detectable and steady TOA concentration persists with time, perhaps due to TiDG degradation into primary amines, which have previously been identified as degradation products of the suppressor when heated (3 °C, 25 °C and 36 °C). The primary amine degradation products would likely have a similar pKa to the TOA (tertiary amine) making the equivalent points coincide.⁶

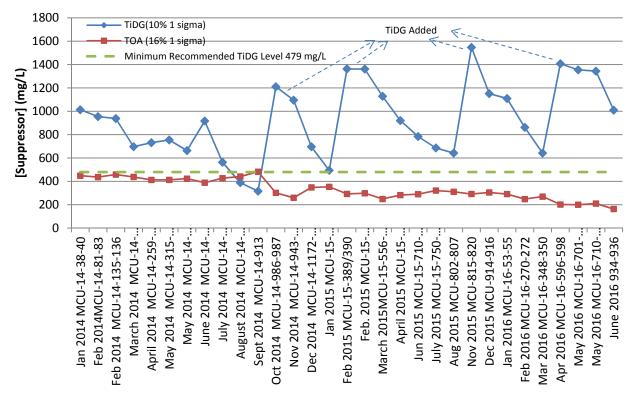


Figure 3. Suppressor concentration as measured by titration in SHT samples since NGS implementation. The minimum recommended level is 479 mg/L for TiDG.

Extractant Levels

The average calculated MaxCalix level is 4.24E4 mg/L (±10%) and it is at its nominal value. The sudden drop in the MaxCalix concentration t is probably due to analytical variance and not that the solubility limit was reached (see Figure 4). However, if another "sudden" drop in the MaxCalix level is observed after a solvent trim addition, further inquiry may be required (for example, if the MaxCalix loss rate correlates with a differences in salt batch or processing higher flow rate of salt batch). The current MaxCalix concentration level is consistent with its historical trend (Fig. 4). The residual concentration of BOBCalixC6 level is currently at 35% of the level measured when the NGS was implemented in late FY13 (the concentration variability is due to analytical fluctuations). Since no BOBCalixC6 is added to the SHT, the BOBCalixC6 level is expected to decrease with time.

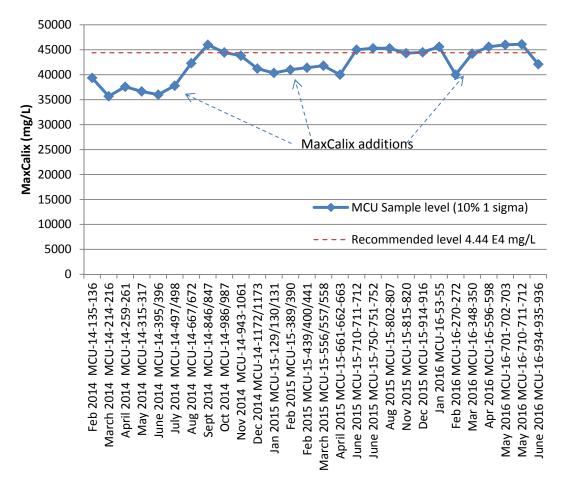


Figure 4. MaxCalix concentration as measured by HPLC and FT-HNMR of recent samples since NGS implementation (44,400 mg/L is the nominal concentration).

Gamma Level

The gamma measurement of MCU-16-934-935-936 is 1.41E5 dpm/mL ($\pm 5\%$). This level of activity is consistent with the previous gamma levels when the process was operating normally in late 2015 and in early 2016 (the low Gamma counts from the February 2016 sample is unclear at this point). It confirms the steady state trend level observed since June 2015 (see Fig. 5).

Figure 5. The gamma count of selected SHT samples. One sigma is 5%.

Impurities

No impurities were seen at the 1000 ppm level or higher as indicated by the SVOA method (\pm 20% uncertainty). No impurities were observed in the HNMR spectrum.

A few mL of MCU-16-934-935-936 was digested and analyzed for total mercury by the CVAA method The CV-AA method detected 21.1 \pm 4.2 ug/g_{solvent} of mercury. The XRF method also detected a concentration of 21.1 \pm 4.2 ug/g_{solvent} of mercury (or 17.5 ug/mL_{solvent} at 25°C) of the undigested MCU-16-934-935-936 sample.

The differences between the CVAA and XRF results are within their analytical uncertainties. Regardless of which result is true, this level of mercury is significantly higher than the solubility of metallic Hg in dodecane (\sim 3 ppm)⁷ implying that other solubility-enhancing mechanisms are at play (for example extraction by an extractant or sorption on trapped solids) or a more soluble form of mercury is present (organo-mercury like ethyl or dimethyl mercury). Organo-mercury compounds were recently detected in Tank 22H.⁸ For 200 gallons of solvent (757.1 L) and assuming a density of 0.8289 g/mL, the solvent could contain a total of 14 ± 2 g of mercury. A comparison of this measurement with previous month confirms a positive trend in the mercury concentration in the solvent (data is shown in Fig. 6). Please note all the XRF data since November were renormalized and compensated for solvent density variation

in this report. Thus, these values differ (slightly lower values) from previous reports. The positive trend in Fig. 6 might be due to a higher mercury concentration in Salt Batch 8 (Tank 49H).

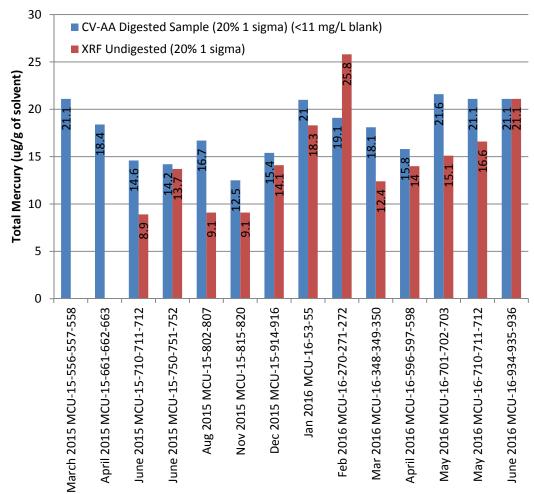


Figure 6. Total mercury in recent SHT samples. One standard deviation is 20%. CVAA = Cold Vapor Atomic Absorption Spectrometry. XRF =X-ray Fluorescence (20% one sigma).

Recommendations

The current analysis indicates the solvent has lower modifier (92% of its nominal concentration) and TiDG (71%) levels, but it has slightly higher levels of IsoparTML (101%) relative to the standard. The lower MaxCalix concentration is 95% of its nominal level. The TiDG, MaxCalix, modifier, and IsoparTML levels are expected to trend downward with time. It is advisable to conduct tests that measure the rate of modifier dispersion from a trim addition to spent NGS solvent in the laboratory that may shed light into the observed modifier behavior in the solvent. In order to remain two-sigma above the minimum recommended level, it is recommended to continue the periodic surveillance of and trimming additions to the solvent. Based on the June sample results, there is no need to add MaxCalix to the solvent at this time. In the case of gross bacteria particulates in the solvent that most likely come from the strip acid solution, filtration of the strip acid is recommended before it contacts the solvent.

The temperature dependence of the current gravimetric density equation for solvent composition (originally obtained from CSSX solvent) needs reverification with the current NGS-CSSX solvent to improve the formula accuracy in extracting the components concentration in the solvent.

4.0 Conclusions

SRNL received one set of SHT samples (MCU-16-934-935-936), pulled on 07/01/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-934-935-936 indicated the IsoparTML concentration is above its nominal level (101%). The modifier (CS-7SB) and the TiDG concentrations are 8% and 29 % below their nominal concentrations. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier. Based on the current monthly sample, the levels of TiDG, IsoparTML, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.

No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, up to 21.1 ± 4 micrograms of mercury per gram of solvent (or $17.5 \,\mu\text{g/mL}$) was detected in this sample (as determined by the XRF method of undigested sample). The higher mercury concentration in the solvent (as determined in the last four monthly samples) is possibly due to the higher mercury concentration in Salt Batch 8 (Tank 49H).

The current gamma level (1.41E5 dpm/mL) confirmed that the gamma concentration has returned to previous levels (as observed in the late 2015 samples) where the process operated normally and as expected.

The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

5.0 References

1 1

¹ W. M. Matthews, HLW-CRF-10006, Rev. 0, May 18, 2010.

² T. B. Peters and M. R. Williams, "Results of Analysis of NGS Concentrate Drum Samples" SRNL-STI-2013-00521, September 2013.

³ K. Marra, "Engineering Evaluation of MCU Solvent and Recommended Trim and Isopar™L Addition to Maintain Specifications", X-ESR-H-00838, Rev. 1, June 2016.

⁴ L. H. Delmau, J. F. Birdwell, Jr., P. V. Bonnesen, L. J. Foote, T. J. Haverlock, L. N. Klatt, D. D. Lee, R. A. Leonard, T. G. Levitskaia, M. P. Maskarinec, B. A. Moyer, F. V. Sloop, Jr., B. A. Tomkins, "Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent", ORNL/TM-2002/190, October 2002.

⁵ B. A Moyer, L. H. Delmau, B. D. Roach, and N. J. Williams, "Thermal Degradation of Next Generation Solvent using Triisodecylguanidine Suppressor: Impacts on Solvent Performance and Organic Content of Aqueous Effluents" ORNL-LTR-NGCSSX-020, Rev. 1, July 2013.

⁶ K. M. L. Taylor-Pashow, F. F. Fondeur, T. L. White, D. P. Diprete, and C. E. Milliken, "Development of Analytical Methods for Determining Suppressor Concentration in the MCU Next Generation Solvent (NGS)" SRNL-STI-2013-00435, Rev. 0, July 2013.

⁷ H. L. Clever and M. Iwamoto, "Solubility of Mercury in Normal Alkanes", *Ind. Eng. Chem. Res.* (1987), 26, 336-337.

⁸ C. J. Bannochie, "Result of Preliminary Hg Speciation Testing on Tank 22 and Waste Concentrate Hold Tank (WCHT) Material", SRNL-L3100-2015-00079, Rev. 1, May 4, 2015.

Distribution:

- A. P. Fellinger, 773-43A
- T. B. Brown, 773-A
- M. E. Cercy, 773-42A
- D. A. Crowley, 773-43A
- D. E. Dooley, 773-A
- S. D. Fink, 773-A
- C. C. Herman, 773-A
- D. T. Hobbs, 773-A
- E. N. Hoffman, 999-W
- J. E. Hyatt, 773-A
- K. M. Kostelnik, 773-42A
- B. B. Looney, 773-42A
- D. A. McGuire, 773-42A
- T. O. Oliver, 773-42A
- F. M. Pennebaker, 773-42A
- G. N. Smoland, 773-42A
- M. E. Stone, 999-W
- A. L. Washington, 773-42A
- W. R. Wilmarth, 773-A
- B. J. Wiedenman, 773-42A

Records Administration (EDWS)

- E. A. Brass, 241-121H
- C. K. Chiu, 704-27S
- J. S. Contardi, 704-56H
- A. G. Garrison, 241-121H
- V. X. Jain, 766-H
- C. M. Santos, 241-152H
- P. E. Fogelman, 241-121H
- C. J. Scherman, 241-152H
- K. M. Marra, 241-120H
- B. A. Gifford, 704-56H
- R. T. McNew, 766-H
- V. Jain, 766-H
- P. R. Jackson, DOE-SR, 703-46A
- J. A. Crenshaw, 703-46A
- T. B. Peters, 773-42A
- C. A. Nash, 773-42A
- F. F. Fondeur, 773-A
- K. M. L. Taylor-Pashow, 773-A
- D. H. Jones, 999-W