Contract No.:

This manuscript has been authored by Savannah River Nuclear Solutions (SRNS), LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

2 Multifunctional Hybrid Fe₂O₃-Au Nanoparticles for Efficient Plasmonic Heating 3 4 **AUTHORS:** 5 Larsen, George K. 6 National Security Directorate 7 Savannah River National Laboratory 8 Aiken, SC USA 9 George.Larsen@srnl.doe.gov 10 11 Murph, Simona E. Hunyadi 12 **National Security Directorate** 13 Savannah River National Laboratory 14 Aiken, SC USA 15 Simona.Murph@srnl.doe.gov 16 17 Lascola, Robert 18 Analytical Development Directorate 19 Savannah River National Laboratory 20 Aiken, SC USA 21 Robert.Lascola@srnl.doe.gov 22 23 **CORRESPONDING AUTHOR:** 24 Simona E. Hunyadi Murph 25 26 **KEYWORDS:** 27 Gold, Iron oxide, Multifunctional, Plasmonics, Magnetic material, Photothermal 28 29 **SHORT ABSTRACT:** 30 We describe the synthesis and properties of multifunctional Fe₂O₃-Au nanoparticles produced 31 by a wet chemical approach and investigate their photothermal properties using laser 32 irradiation. The composite Fe₂O₃-Au nanoparticles retain the properties of both materials, 33 creating a multifunctional structure with excellent magnetic and plasmonic properties. 34 35 LONG ABSTRACT: 36 One of the most widely used methods for manufacturing colloidal gold nanospherical particles 37 involves the reduction of chloroauric acid (HAuCl₄) to neutral gold Au(0) by reducing agents, 38 such as sodium citrate or sodium borohydride. The extension of this method to decorate iron 39 oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe₂O₃-Au 40 nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle 41 dimensions and loading onto Fe₂O₃. Additionally, the Au metal size, shape, and loading can 42 easily be tuned by changing experimental parameters (e.q., reactant concentrations, reducing

agents, surfactants, etc). An advantage of this procedure is that the reaction can be done in air

or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe₂O₃-Au

1

43

44

TITLE:

nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe_2O_3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe_2O_3 -Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe_2O_3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher.

INTRODUCTION:

 Beginning with their use in ancient dichroic glass, ¹ gold nanoparticles (AuNPs) have often contributed to the development of new technologies.^{2,3} More modern examples of these technologies include cloaking devices and particles that can both detect and treat cancer.^{4,5} AuNPs have many remarkable properties, but the most notable among these is the presence of localized surface plasmon resonances (LSPRs), which occur when incident electromagnetic radiation resonantly drives free electrons into collective oscillations, creating intense and highly confined electromagnetic fields. An intriguing aspect of LSPRs is that they are tunable. That is, the resonance energy can be adjusted by modifying the shape and size of the AuNPs or by changing the refractive index of the ambient environment. Another property of AuNPs, and gold in general, is that they are relatively expensive. While this might make gold more attractive from a luxury standpoint, for technological applications, this is a drawback and could be an obstacle to general use. Two potential solutions for this problem are searching for lessexpensive alternative materials that exhibit similar properties as gold, or finding a way to combine gold with another material to create a composite material with similar properties but smaller amounts of the precious metal. The latter solution is perhaps more interesting as it allows for the possibility of creating a multifunctional hybrid nanostructure with the physicochemical properties of two or more materials.⁷

Iron(III) oxide, Fe_2O_3 , is an excellent candidate for one component of such a mixture because it is widely available, inexpensive, and non-toxic. Furthermore, the maghemite phase, γ - Fe_2O_3 , is ferrimagnetic, and the hematite phase, α - Fe_2O_3 , is weakly ferromagnetic. Thus, the combination of gold with Fe_2O_3 could potentially yield nanoparticles that exhibit plasmonic properties and also interact with external magnetic fields, yet are significantly less expensive than pure gold. Such a hybrid nanostructure could find interesting real world applications. For example, Fe_2O_3 -Au nanoparticles have proven useful for both cancer diagnosis and treatment through magnetic resonance imaging and photothermal therapy. In this case, Fe_2O_3 functions as an MRI contrast agent, while the Au portion locally converts incident light to heat through dissipation of electromagnetic energy absorbed during LSPR. Additionally, Fe_2O_3 -Au nanoparticles have demonstrated plasmonic enhancement of the catalytic conversion of CO

into CO₂ under visible light illumination, and such structures could also be used for photothermal solar energy conversion. ^{9,10}

91 92

93

94

95

96 97

98

99

100

This report describes the synthesis of Fe_2O_3 -Au nanoparticles using a simple wet chemical method. The hybrid structure consists of a Fe_2O_3 core that is decorated with smaller AuNPs. Importantly, the obtained Fe_2O_3 -Au nanoparticles retain both magnetic and plasmonic properties of the constituent materials, which creates a multifunctional particle that could be useful for a variety of applications. In order to illustrate the plasmonic applications of these hybrid nanoparticles, photothermal characterization of the nanoparticles using a laser heating system is also described. The photothermal measurements demonstrate that the hybrid Fe_2O_3 -Au nanoparticles are able to heat aqueous solutions as efficiently as pure AuNPs, even with a significantly smaller concentration of the noble metal. These results validate the method of using composite or hybrid materials to reduce costs and achieve greater functionality.

101102

PROTOCOL:

103104

1. Nanomaterials Synthesis Protocol:

105106

- 107 1.1) Prepare a stock solution of Fe_2O_3 of 25 mM.
- Note: All stock solutions are prepared using deionized water unless stated otherwise

109

110 1.2) Take a 25 mL conical flask.

111

112 1.3) Add 10 mL deionized (DI) water and a stir bar, and place it on a heating block.

113

114 1.4) Add 100 μ L of Fe₂O₃ stock solution (25 mM) to this flask.

115

116 1.5) Heat the solution while stirring for approximately 5 minutes.

117

118 1.6) Prepare 10 mL 1% sodium citrate by dissolving 0.1 g of sodium citrate to 10 mL of water.

119

120 1.7) Add 1 mL of the 1% sodium citrate solution to the 25 mL flask containing the Fe_2O_3 121 aqueous solution.

122

123 1.8) Bring the solution to a boil (100 °C).

124

125 1.9) Add 250 μL of 0.01 M chloroauric acid.

126

1.10) Continue heating the solution at 100 °C for 10 minutes. After several minutes (2-3 minutes), the solution turns red/brownish indicating that Au nanoparticles are being produced.

129

130 1.11) Remove the solution from the heating block and allow it to cool off at room temperature (approximately 20 °C) (1-2 hours).

133 1.12) Purify the samples by centrifugation for 7 minutes at $4700 \times g$. 134 135 1.13) Remove the supernatant from the centrifuged samples. 136 137 1.14) Re-disperse the centrifuged nanoparticles in DI water, up to 10 mL. 138 139 2. **Nanoparticles Characterization:** 140 141 2.1) SEM/EDX characterization: 142 143 2.1.1) Place 1-2 µL of centrifuged nanoparticles on a copper grid and allow it to dry for one 144 hour. 145 2.1.2) Place sample in a clean container and take it to the SEM/EDX for characterization. 11,12 146 147 148 2.2) UV-Vis characterization: 149 150 2.2.1) Turn on the UV-Vis and allow it to warm up for 10-15 minutes. 151 152 2.2.2) Record a reference DI water spectrum. 153 154 2.2.3) Place 1 mL of the nanoparticle's aqueous solution in a methacrylate cuvette and record 155 the UV-Vis spectra over wavelengths $\lambda = 300 - 1000 \text{ nm}$ 156 157 2.2.4) Avoid saturation of the signal by keeping the maximum absorbance lesser than ~1.2. If 158 the observed maximum absorbance is larger, reduce the peak height by diluting the sample or 159 using a shorter path length cuvette. 160 161 Note: Surface plasmon band of Au ($\lambda \approx 525$ nm) should be easily observed. 162 163 2.3) Magnetic manipulation 164 165 2.3.1) Place 3 mL of the red/brownish aqueous samples of magnetic/plasmonic nanostructures 166 in methacrylate cuvettes. 167 168 2.3.2) Place a commercially purchased magnet (~100 Gauss) in the close proximity of the 169 cuvette. 170 171 Note: Within minutes, all magnetic/plasmonic nanoparticles are "attached" to the methacrylate 172 cuvette side where the magnet was placed. Solution turned from brown to colorless indicating 173 that the nanoparticles retained their magnetic properties even after Au was deposited on Fe₂O₃ surface. 174 175

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis.¹³

176

2.4)

177 178 2.4.1) Use aqueous samples of nanoparticle solutions in this analysis. 179 180 2.4.2) Digest purified nanoparticle samples in nitric acid to transform them to an ionic form 181 prior to mass analysis experiments by transferring all samples in tubes with a final volume of 10 182 mL of 2% nitric acid. Allow 30 minutes for digestion to take place. 183 184 2.4.3) Create a calibration curve with known concentrations of analytes of interest (e.g. Au, 185 Fe). 186 187 2.4.4) Spike samples with an internal standard solution containing 10 ppb Rh and In and 188 analyze in the semi-quantitative mode of the ICP-MS according to manufacturer's instructions. 189 This technique entails the analysis of a NIST traceable multi-element standard (10 ppb In and 190 100 ppb Li, Mn, Fe, Co, Sr, Cd, Bi, and U). 191 192 2.4.5) Compare the determined intensities for the standard with the intensities for the other 193 samples to yield approximate concentrations for selected elements. To account for plasma and 194 instrument drifts, all samples should have a minimum of 10 ppb concentration for In that was 195 added to all samples. 196 197 2.4.6) Determine elemental concentration of the analytes of interests for the prepared 198 solutions by following these steps: 199 200 2.4.6.1) Perform an initial calibration validation sample of the multi-element standard (10 ppb 201 In and 75 ppb Li, Mg, Fe, Co, Sr, Cd, Bi, and U). 202 203 2.4.6.2) Perform initial calibration blank of deionized water. 204 205 2.4.6.3) Perform ICP-MS analysis on two sample of interest. 206 207 2.4.6.4) Continue performing calibration validation sample (10 ppb In and 75 ppb Li, Mg, Fe, Co, 208 Sr, Cd, Bi, and U) of the multi-element standard, and 209 210 2.4.6.5) Continue calibration blank of deionized water. 211 212 Note: According to the vendor specifications, the ICP-MS measurements have an uncertainty of 213 20%. Nanomaterial laboratory work was performed under a fume hood. PPE (labcoat, apron, 214 thin mil nitrile gloves for incidental contact, and goggles) and a face shield should be used if 215 hood sash is above chin level. Minimum PPE required when working with nanoscale materials; 216 disposable labcoat, thin mil nitrile gloves for incidental contact and safety glasses with side

shields will be worn in the lab when handling nanomaterials. Nanomaterial bearing waste shall

3. Laser Heating Experiment

not be put in regular trash or down the drain.

217

218

221

3.1) Turn on the laser power supply and balance.

223224

225

226

Note: The laser wavelength used in this experiment (λ = 532 nm) is chosen to match the LSPR absorbance peak as closely as possible. However, photothermal effects can be induced using any wavelength that overlaps with the absorbance of the nanoparticles. The heating efficiency is just greater when illuminated on resonance.

227228

3.2) Position the balance windows so they do not obstruct the laser path or block the infrared
 (IR) thermocouples. The IR thermocouples are non-contact temperature probes and must have
 a clear line of sight to the measurement surface. Figure 1 shows a schematic of the
 experimental setup.

233

3.3) Remove the protective covers from the IR thermocouples.

234235

3.4) Open the data collection software program and run, naming the measurement, "warmup."
 The custom software program collects the balance and thermocouple resistance values as a
 function of time, and when the program is running it logs these values into a data file.

239

3.5) Run the measurement for at least 20 minutes to allow the system to warmup.

241242

243

3.6) While the system is warming up, prepare the sample by pipetting the appropriate amount (3 mL) of the desired solution into a methacrylate cuvette. The amounts used here are 3 mL of solution for standard cuvettes, and 1 mL for semi-micro cuvettes.

244245

3.7) Adjust the laser power to the lowest setting that produces a barely visible beam, which is
1.5 A for the laser system used here. Check to make sure that the laser beam spot is
unobstructed and remains at the focal point of the IR thermocouple.

249

3.8) Place the sample on the balance arm such that the side of the cuvette is perpendicular to
 the IR measurement beam of the thermocouple and the laser beam spot strikes the center of
 the solution.

253

3.9) Reduce the laser power until the beam is no longer visible, but do not turn off the powersupply.

256

3.10) After 20 minutes the warmup is complete. Stop the measurement program and exit out ofthe software.

259260

261

262

3.11) Re-zero the balance. Open the data collection software program, click run, and then create a name for the data file. The experiment will run after naming the file and clicking "Save." The exact experimental routine will depend on the information desired, but a model routine is provided here.

3.11.1) Start the data collection. After 120 seconds, turn up the laser power to desired setting (1.2 W for these experiments, which when focused into a $^{\sim}20~\mu m$ spot corresponds with $^{\sim}3.8~\times$ 10⁵ W/cm²). Collect data for another 1000 seconds, then adjust laser power to the minimum setting and turn off laser power supply. Continue to collect data for another 1000 seconds before halting the measurement.

269 270 271

272

273

276

277

278

279

280

281

265

266

267

268

3.12) After the experimental routine is complete, exit out of the program, turn everything off, and re-cover all equipment. Save the experimental data in an ASCII format and further process and analyze using additional software.

274 275

REPRESENTATIVE RESULTS:

Material composition is an important consideration for hybrid materials. Energy dispersive Xray analysis (EDX) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) can provide this information. EDX analysis provides semi-quantitative data (Figure 2) while ICP-MS provides accurate, quantitative information regarding the elements of interest. It is found that the hybrid Fe_2O_3 -Au nanoparticles have Fe and Au concentrations of pFe = 150 ppb and pAu = 49 ppb. In comparison, pure Au nanoparticles, which are used as a control for photothermal heating, have much higher Au concentrations of ρ Au = 1100 ppb.

282 283 284

285

286

287

288 289

290

291

292

293

294

SEM analysis reveals the morphology of the Fe₂O₃-Au nanoparticles (Figure 3), showing aggregates of rounded, irregular particles that appear functionalized with smaller, bright, and rounded nanoparticles. The larger nanoparticles are identified as Fe₂O₃, while the smaller, brighter nanoparticles are identified as Au. This type of morphology is often referred to as "decorated" nanoparticles. 14 In this case, the surface of the supporting particle, Fe₂O₃, is adorned with smaller, isolated Au nanoparticles. Statistical analysis of the nanoparticles reveals that Fe_2O_3 nanoparticles have an average diameter of d = 40 ± 10 nm. The functionalizing Au nanoparticles have a wider range of sizes, with d = 20 ± 20 nm. Dynamic Light Scattering (DLS) measurements can quantify the aggregation behavior, and it is found that the hybrid Fe₂O₃-Au nanoparticles have an average hydrodynamic radius of dh = 243 nm with population bins at dh = 61 nm (13%) and dh = 310 nm (87%). Additionally, the zeta potential is found to ζ = -16 mV, which might help to limit the aggregation behavior.

295 296 297

298

299

300 301

302

303

304

305

306

307

The UV-vis-NIR spectrum of the hybrid Fe₂O₃-Au nanoparticles is shown in Figure 4a. A distinct absorbance peak is observed at wavelength $\lambda \approx 520$ nm, and is attributed to the LSPR mode of the Au nanoparticles functionalizing the Fe₂O₃. The wavelength of the LSPR is consistent with literature values for AuNPs with similar morphologies. 11,12 The plasmonic behavior of the hybrid structures is due to AuNP formation on the Fe₂O₃ supports. This can be directly observed by insitu UV-vis spectroscopy. Figure 4b shows the UV-vis absorbance spectra of the reactant solution at various times during the reaction. Initially, there is some slight visible light absorbance attributed to the Fe₂O₃ nanoparticles dispersed in the solution. As the reaction proceeds, the absorbance increases, and at 1.5 min, a peak begins to form, which becomes better defined as the reaction goes on. This peak results from LSPR absorbance and corresponds with the formation of AuNPs and their deposition on the Fe₂O₃ support surface.

308 The magnetic behavior of the Fe₂O₃-Au nanoparticles is readily observed through manipulation with an external magnetic field. Initially, the Fe_2O_3 -Au solution has a brownish color (Figure 5b). However, after placing the solution in an external magnetic field, the solution gradually turns clear over several minutes as the entirety of the magnetic hybrid nanoparticles is collected by the field (Figure 5c). The magnetic collection is reversible, and the multifunctional nanoparticles can be re-dispersed by agitating the solution, as shown in Figures 5d and 5e.

Photothermal heating measurements are shown in Figure 6a, which plots the bulk temperature change in irradiated solution, ΔT , as a function of time for the hybrid Fe₂O₃-Au nanoparticles, AuNPs, and pure deionized water (DI H₂O). The Fe₂O₃-Au and Au nanoparticles exhibit an almost identical temperature profile, with temperatures increasing by more than 40 °C. Clearly, the plasmonic absorbances of both nanoparticles types are able to transduce light into heat very efficiently, but the Fe₂O₃-Au do so with a considerably lower concentration of Au, as discussed above. On the other hand, the DI H₂O experiment shows no change in temperature, which demonstrates that the temperature rise in the nanoparticle solutions is solely due to the dissipation of absorbed electromagnetic energy in the nanoparticles. ΔT in Figure 6a describes the bulk change temperature, and temperatures in the irradiated region and near the nanoparticle surfaces can be much higher. ¹³ The change in the mass of the solution, Δm , that arises from steam generation is one indicator of these higher temperatures. Figure 6b plots Δm versus time for the hybrid Fe₂O₃-Au nanoparticles and for DI H₂O. Δm for the nanoparticle solution is much greater than the background evaporation rate, indicating sufficiently high surface temperatures to generate steam at a significant rate.

FIGURE LEGENDS:

Figure 1: Schematic of the laser heating setup. A cuvette is placed on a microgram scale and illuminated by a laser beam from above. Two IR thermocouples measure the temperature of the cuvette and ambient, respectively. All measurements are synchronized and logged in a data collection program

Figure 2: Representative EDX spectrum of the hybrid Fe_2O_3 -Au nanoparticles. The abscissa axis corresponds with the energy and the ordinate axis corresponds with the number of counts. Peaks have been labeled with the corresponding element.

Figure 3: SEM image of the hybrid Fe_2O_3 -Au nanoparticles. The larger, darker regions are Fe_2O_3 -particles, which are decorated with smaller brighter Au nanoparticles.

Figure 4: Optical properties. (a) UV-vis absorbance spectra of the hybrid Fe_2O_3 -Au nanoparticles, showing the broad visible light absorbance of Fe_2O_3 and the plasmonic peak attributed to the Au nanoparticles near 530 nm. (b) The UV-vis absorbance spectra of the reactant solution at various times during the reaction, showing the LSPR absorbance arising from AuNP formation in the solution and on the Fe_2O_3 nanoparticles.

Figure 5: Magnetic Properties. Photographs of Au-Fe₂O₃ nanoparticles; (a) dispersed in aqueous solution; (b) magnetic manipulation (time = 0 sec); (c) magnetic manipulation (time = 2 min); (d)

magnet removed; (e) Au-Fe2O3 nanoparticles following magnetic manipulation, showing that they can be easily re-dispersed in the aqueous solution.

Figure 6: Photothermal experiments. Plots showing the (a) change in solution temperature, ΔT , and (b) mass loss, Δm , as functions of time. Under laser illumination, the nanoparticles (black and red curves) generate sizeable ΔT and Δm values that are significantly larger than those occurring for pure DI H2O under identical conditions (blue curve).

DISCUSSION:

The use of optically tunable gold nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. The plasmonic heating studies described here were examined by using laboratory prepared and commercially available iron oxide-gold hybrid nanomaterials. One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl₄) to neutral gold Au(0) by reducing agents, such as sodium citrate, sodium borohydride, etc. 15,16 The synthesis of the gold nanoparticles on iron oxide nanoparticles is straightforward. One could easily control the Au metal size, shape, and loading by changing experimental parameters, e.q. reactants concentrations, reducing agents, surfactants, etc. ¹⁷ This approach yields good control over Au nanoparticle dimensions and uniform nanoparticle loading onto Fe₂O₃. Other noble metals can also be prepared by this procedure, including Ag, Pt, and Pd. 18 A distinct advantage of this procedure is that the reaction procedure can be done in air or water, and, in principle, is amenable to scaling up. Using commercial nanomaterials and/or scalable-wet chemical procedures is ideal for large-scale treatment applications or biological applications because these materials are readily available and more economical than custom synthesized materials and procedures. Surface modifications of these metallic nanostructures are also of interest in the scientific community. A number of organic (surfactants, bifunctional thiols, polymers, amino acids, proteins, DNA) and inorganic materials (silica, other metals, metal oxides, etc.)¹⁹ can be further loaded or functionalized onto these surfaces to create nanocomposite materials with various designs, geometries, compositions and multifunctional capabilities, for biological targeting, drug delivery, sensing, imaging, environmental applications, etc.

Additionally, the photothermal technique described here is well-suited to characterize the plasmonic properties of different materials, as bulk temperature and mass measurements are relatively easy to perform using readily available equipment. The ease of sample preparation and measurement is a distinct advantage over other plasmonic techniques/applications. For example, techniques such as surface-enhanced Raman spectroscopy and LSPR sensing are highly sensitive to the preparation of both the substrate and the target, which makes repeatability and comparison across samples more challenging. One possible drawback to the photothermal measurements described above is that temperature is measured on the bulk scale and not on the surface of the nanoparticle where the heat is transduced. There are thermometry techniques that can provide this local temperature information, 22-24 but these require more complicated sample preparation, making them more challenging to implement. Finally, the measurements described here could easily be combined with other techniques (e. q.,

397 photocatalytic degradation)⁹ to assess photothermal effects on different processes.

398 399

400

401

402 403

404

In summary, we have described the synthesis of hybrid Fe_2O_3 -Au nanoparticles solutions and their photothermal characterization. Even with a $20\times$ smaller concentration of Au, these Fe_2O_3 -Au nanoparticles are able to photothermally heat aqueous solutions as efficiently as AuNPs, demonstrating the advantages of hybrid materials. Furthermore, the hybrid structures retain the properties of both materials, creating a multifunctional structure with magnetic and plasmonic properties. Such structures are interesting for biomedical applications, but many additional uses can be envisioned.

405 406 407

408

409

410

ACKNOWLEDGMENTS:

The financial support of this work was provided by Department of Energy DOE- Laboratory Directed Research & Development (LDRD) Strategic Initiative Program. We thank Mr. Henry Sessions, and Mr. Charles Shick for providing their time and expertise to assist us with our experiments.

411 412 413

DISCLOSURES:

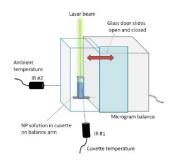
The authors have nothing to disclose.

414 415 416

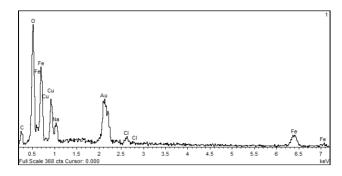
417

418

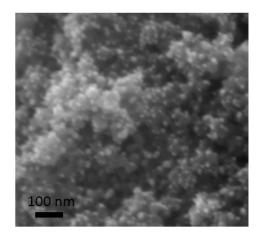
419

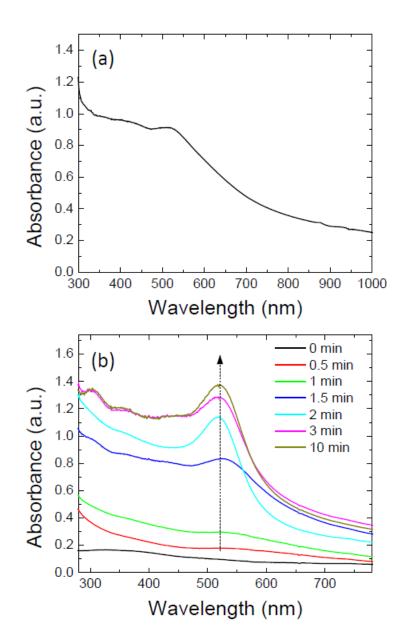

REFERENCES

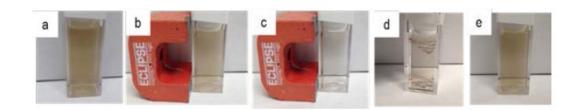
- Barber, D. & Freestone, I. An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. *Archaeometry* **32** (1), 33-45, doi:10.1111/j.1475-4754.1990.tb01079.x (1990).
- Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science **311** (5758), 189-193, doi:10.1126/science.1114849 (2006).
- 422 3 Murphy, C. J. *et al.* Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. *J. Phys. Chem. B* **109** (29), 13857-13870, doi:10.1021/jp0516846 (2005).
- 424 4 Luo, Y.-L., Shiao, Y.-S. & Huang, Y.-F. Release of photoactivatable drugs from plasmonic 425 nanoparticles for targeted cancer therapy. *ACS Nano* **5** (10), 7796-7804, 426 doi:10.1021/nn201592s (2011).
- Murph, S. E. H. *et al.* Manganese–gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling. *J. Nanopart. Res.* **14** (4), 1-13, doi:10.1007/s11051-011-0658-7 (2012).
- 430 6 Maier, S. A. *Plasmonics: fundamentals and applications: fundamentals and applications*.
 431 (Springer Science & Business Media, 2007).
- 432 7 Bigall, N. C., Parak, W. J. & Dorfs, D. Fluorescent, magnetic and plasmonic—Hybrid 433 multifunctional colloidal nano objects. *Nano Today* **7** (4), 282-296, 434 doi:10.1016/j.nantod.2012.06.007 (2012).
- 435 8 Larson, T. A., Bankson, J., Aaron, J. & Sokolov, K. Hybrid plasmonic magnetic 436 nanoparticles as molecular specific agents for MRI/optical imaging and photothermal 437 therapy of cancer cells. *Nanotechnology* **18** (32), 325101, doi:10.1088/0957-438 4484/18/32/325101 (2007).
- Hung, W. H., Aykol, M., Valley, D., Hou, W. & Cronin, S. B. Plasmon resonant enhancement of carbon monoxide catalysis. *Nano Lett.* **10** (4), 1314-1318,

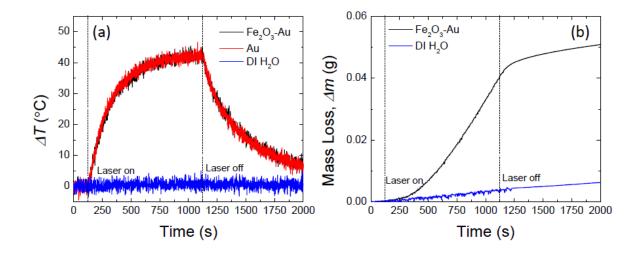

441 doi:10.1021/nl9041214 (2010).

- 442 10 Neumann, O. *et al.* Solar vapor generation enabled by nanoparticles. *Acs Nano* **7** (1), 42-443 49, doi:10.1021/nn304948h (2012).
- 444 11 Szirmae, A. & Fisher, R. Techniques of Electron Microscopy, Diffraction, and Microprobe 445 Analysis. *ASTM Spec. Tech. Publ* **372**, 3, doi:10.1520/STP372-EB (1963).
- Goldstein, J. et al. Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. (Springer Science & Business Media, 2012).
- 449 13 Kennedy, J. F. & Xu, L. Practical guide to ICP-MS, Robert Thomas. Marcel Dekker, INC, 450 New York, USA (2004). *Carbohydr. Polym.* **62** (4), 393, doi:10.1016/j.carbpol.2005.06.021 (2005).
- 452 14 Georgakilas, V. *et al.* Decorating carbon nanotubes with metal or semiconductor nanoparticles. *J. Mater. Chem.* **17** (26), 2679-2694, doi:10.1039/B700857K (2007).
- 454 15 Murph, S. E. H. *et al.* Tuning of size and shape of Au–Pt nanocatalysts for direct methanol fuel cells. *J. Nanopart. Res.* **13** (12), 6347-6364, doi:10.1007/s11051-011-0449-1 (2011).
- Unrine, J. M. *et al.* Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). *Environmental Science & Technology* 44 (21), 8308-8313, doi:10.1021/es101885w (2010).
- 460 17 Hunyadi Murph, S. E. et al. in ACS Symp. Ser. 127-163 (Oxford University Press).
- 461 18 Murph, S., Murphy, C. J., Leach, A. & Gall, K. A Possible Oriented Attachment Growth 462 Mechanism for Silver Nanowire Formation. *Crystal Growth & Design*, 463 doi:10.1021/acs.cgd.5b00123 (2015).
- Hunyadi Murph, S. E., Heroux, K., Turick, C. & Thomas, D. in *Applications of Nanomaterials* Vol. 4 *Nanomaterials and Nanostructures* (Studium Press LLC, 2012).
- 466 20 Murphy, C. J. *et al.* Chemical sensing and imaging with metallic nanorods. *Chem.* 467 *Comm.*(5), 544-557, doi:10.1039/B711069C (2008).
- Shanmukh, S. *et al.* Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. *Nano Lett.* **6** (11), 2630-2636, doi:10.1021/nl061666f (2006).
- 471 22 Jaque, D. & Vetrone, F. Luminescence nanothermometry. *Nanoscale* **4** (15), 4301-4326, 472 doi:10.1039/C2NR30764B (2012).
- Ebrahimi, S., Akhlaghi, Y., Kompany-Zareh, M. & Rinnan, Å. Nucleic acid based fluorescent nanothermometers. *ACS Nano* **8** (10), 10372-10382, doi:10.1021/nn5036944 (2014).
- 476 24 Dias, J. T. *et al.* DNA as a molecular local thermal probe for the analysis of magnetic hyperthermia. *Angew. Chem.* **125** (44), 11740-11743, doi:10.1002/ange.201305835 (2013).


486 Figure 1.


490 Figure 2.


494 Figure 3.


499 Figure 4.500

503504 Figure 5.

507508 Figure 6.509

