Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Tris(isodecyl)guanidine Degradation in the MCU System

T. B. Peters

February 2020

SRNL-STI-2015-00372 Revision 1

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: MCU, NGS, TiDG, ISDP

Retention: *Permanent*

Tris(isodecyl)guanidine Degradation in the MCU System

T. B. Peters

February 2020

Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

REVIEWS AND APPROVALS

AUTHOR:

T. B. Peters, Separation Sciences and Engineering	Date		
TECHNICAL REVIEW: (Reviewed per E7 2.60)			
C. A. Nash, Technical Reviewer, Separation Sciences and Engineering Design Check per E7 2.60	Date		
APPROVAL:			
B. J. Wiedenman, Manager, Separation Sciences and Engineering	Date		
S. D. Fink, Director Chemical Processing Sciences	Date		
E. A. Brass, Manager	Date		

E. A. Brass, Manager MCU & Salt/Sludge Engineering

EXECUTIVE SUMMARY

The current solvent blend consists of four components; an extractant, the modifier, a suppressor, and the diluent. Of the four components, only the suppressor – tris(isodecyl)guanidine (TiDG) has exhibited an appreciable depletion rate during facility operations.^{∇}

Using data derived from Modular Caustic-Side Solvent Extraction Unit (MCU) process samples, Savannah River National Lab (SRNL) derived a method to predict the TiDG depletion based upon time and volume of feed processed. With the current data set, the following formula can estimate the TiDG concentrations after processing:

 $A_t = [A_0 \times exp(-0.0009 \times t)] - [5.95E-06 \times volume]$

where A_t is the TiDG concentration (mM) at time t (days), A_0 is the TiDG concentration (mM) at time = 0, and volume is the amount of salt solution processed in gallons from time 0 to time t. The ability to use this formula as a predictive tool is limited due to the number of data points obtained for this scope of work. As such, this formula should not be used to precisely predict future TiDG concentrations.

This revision updates the method with additional data points through September 2018. It is anticipated that once all solvent samples from the MCU are analyzed, this report will be revised again.

 $^{^{\}nabla}$ The International Union of Pure and Applied Chemistry (IUPAC) name for this compound is *N*,*N*',*N*''-tris(3,7-dimethyloctyl)guanidine, and is typically called "TiDG".

LIST OF ABBREVIATIONS

IUPAC	International Union of Pure and Applied Chemistry
MCU	Modular Caustic-Side Solvent Extraction Unit
NGS	Next Generation Solvent
NMR	Nuclear Magnetic Resonance
ORNL	Oak Ridge National Laboratory
RSD	relative standard deviation
SHT	Solvent Hold Tank
SRNL	Savannah River National Laboratory
SRR	Savannah River Remediation
TiDG	N,N',N"-tris (3,7-dimethyloctyl) guanidine, tris(isodecyl)guanidine
TOA	trioctylamine

Table of Contents

)
)
)
ŀ
,
1
,
)
F

List of Tables

Table 1.	Results from Titrations of Standards	4
Table 2.	Results from Re-Titrations of TiDG Standards	5
Table 3.	Example of Methodology	9

LIST OF FIGURES

Figure 1.	Plot of Data for First Order Decay	6
Figure 2.	Plot of Data for Second Order Decay	6
Figure 3.	Volume Normalized TiDG Concentrations	8

1.0 Introduction

In late 2013, the MCU switched to the Next Generation Solvent (NGS) flow sheet. Facility personnel implemented the switch by adding a non-radioactive, NGS "cocktail" containing the new extractant (MaxCalix), modifier (Cs-7SB), Isopar-LTM, and a new suppressor (TiDG) to the Solvent Hold Tank (SHT) heel. SHT samples are regularly sent to SRNL to examine solvent composition changes over time.¹ Analysis of these samples shows that, of the six chemicals in the resulting blend solvent, only three of them are known to deplete at a rate faster than for the whole solvent. Isopar-LTM is known to suffer evaporative losses due to its relatively high volatility. Trioctylamine (TOA) is known to more rapidly deplete and has been previously studied.² TiDG is also more rapidly depleting than the bulk solvent as evidenced by recent solvent sample results.

Isopar-L TM losses are routinely replaced by routine additions. Losses of TOA are not important as it plays no role in the function of the blend solvent, nor are there any downstream impacts.² The TiDG losses must be carefully monitored as the material is made by a single provider and has an appreciable lead time for procurement.

Therefore, it is desirable to be able to predict the rate of loss of the TiDG to forecast demand and minimize the chances of an interruption in supply of the material. Oak Ridge National Laboratory (ORNL) examined partitioning ratios of TiDG as well as the effects of temperature on the degradation of TiDG,^{3,4} while this document employs a more holistic review of operational data.

2.0 Experimental Procedure

2.1 Routine SHT Samples

SHT samples are received from MCU on a nominal monthly basis, since late 2013, when the use of the blend solvent started. These samples are subject to an extensive battery of analyses. To analyze for the TiDG content, both a titration method and a nuclear magnetic resonance (NMR) method are used. These methods use an internal standard of laboratory prepared blend solvent as a point of comparison.

2.2 Assumptions

The chemical makeup of the aqueous feed has been approximately the same over the duration of use of the blended solvent; the variations in the chemical makeup for the various salt batches are considered to be not important. The target composition of the solvent remained constant over the time period of samples for all components except TOA and BOBCalixC6 (calix[4] arene-bis-(tert-octylbenzo)-crown-6), each of which are allowed to slowly deplete. The relative minor variations in concentration of other solvent components are assumed to not influence the depletion or degradation rates of TiDG.⁵

The blended solvent has been used for processing of MCU Salt Batches 7A and forward. This estimate assumes that the change in the cesium activity in the different salt batches does not alter the degradation rates to a noticeable degree at the radiation rates experienced at MCU.

Previous work from ORNL has studied the effects of radiation exposure on solvent performance.⁶ This work shows that serious degradation in solvent performance (implied to be due to loss of the guanidine) does not occur until doses are received that are orders of magnitude greater than the received dose at MCU.⊕

At this time, no attempt has been made to include the temperature dependence of the guanidine degradation. Prior studies examined the thermal degradation of TiDG and could be used to incorporate a temperature dependency functionality for degradation.^{3,6} However, the facility operating temperature remained within tight control bands during the period of collection for these samples. The solvent spends most of its time at ambient conditions, and cooling coils in the tank maintain moderate temperatures (~25 °C) when ambient temperatures are higher. While the solvent is exposed to higher temperatures $(33\pm3 \,^{\circ}C)$ in the strip contactors, the majority of its lifetime is spent either at 23±3 °C (extraction and scrub contactors) or at controlled ambient temperature in the SHT. For simplicity, this effort assumes thermal degradation rates for TiDG remained relatively constant during the operations.

The ratio of aqueous to organic phases within the operating banks of the contactors remained relatively constant at set points of 4 aqueous (A) to 1 organic (O) (by volume) in the extraction contactors, and 1A to 3.75O in the scrub and strip contactors.

Prior testing³ shows a partitioning ratio (>1000) for TiDG from the solvent to the boric acid in the strip solution.^{Σ} This work indicates that TiDG has superior partitioning behavior compared to the other guanidines tested at ORNL. Partitioning to the strip acid is presumably much larger than to the other aqueous streams. For simplicity, this effort does not include a term for the aqueous to organic phase ratio during operations.

Information such as volume of processed feed, or volume in the SHT was provided by the Savannah River Remediation, LLC (SRR) customer.

Therefore, this document proposes the depletion rate of the TiDG is a function of time and the amount of processed feed.

2.3 Quality Assurance

Requirements for performing reviews of technical reports and the extent of review are established in Manual E7, 2.60 (Design Check).⁷ This work is Scoping/Non-Baseline class. For SRNL documents, the extent and type of review using the SRNL Technical Report Design Checklist is outlined in WSRC-IM-2002-00011, Rev. 2.8 Records for this work are contained in an electronic notebook.9

^(a) While the guanidine used in this study was not TiDG (it was N.N'-dicyclohexyl-N"-isotridecylguanidine), it was structurally similar and expected to have the same degree of radiation sensitivity as TiDG. Furthermore, while the study did not examine the specific radiation decay of TiDG alone, the study implies that radiation exposure leads to lipophilic anion generation and loss of guanidine, which in turn leads to solvent performance degradation. Σ The partitioning ratio is defined as the guanidine concentration in the organic phase divided by the guanidine concentration in

the aqueous phase.

3.0 Results and Discussion

3.1 <u>Time-Based Degradation of TiDG•HCl Stored Standards</u>

As-received from the vendor, the TiDG exists as the hydrochloride salt, TiDG•HCl. Solvent prepared in lab or prepared for MCU operations uses this material. Once the TiDG•HCl contacts a strong base (such as the caustic feed), the TiDG•HCl converts into the "freebase" form.

Previous ORNL work indicates that while the protonated (i.e., the TiDG•HCl material as it is initially added to the system) guanidinium is relatively stable; contact with caustic media accelerates degradation.⁴ This is initially due to the deprotonation to the neutral freebase form, which in turn is more likely to undergo chemical reactions. To confirm this behavior SRNL examined previously prepared standards to the TiDG•HCl material that had been in storage for some time.

It is important to note that the analytical method does not analyze TiDG•HCl itself. The analysis detects, or titrates, the freebase form. The measurement protocol requires the MCU sample be converted into the freebase form first.¹⁰ As part of the titrimetric determination of the MCU samples, standards are prepared and analyzed in parallel. These standards are prepared in the TiDG•HCl form of the guanidine, and small portions are analyzed during titrations. The same standards are used over varying periods of time, and so the time-base degradation of the TiDG•HCl can be determined by examining the titration results of the standards.

Over time, SRNL used multiple standards. Records from three of these standards were reviewed. The first standard was used from October 2013 to April 2014, the second from June 2014 to November 2014, and the third from December 2015 to February 2015. The standards were not washed or contacted with caustic which would convert the guanidine into the freebase form. The time from the date of preparation was noted as well as the resulting titration result. See Table 1. The "Time" is the number of days elapsed since preparation of the standard, while the "Measurement" is in mM. The analytical uncertainty for single measurements is 10% (1-sigma). While there was no active temperature control of the samples, the temperature in the lab units where the samples were stored is typically 23 ± 3 °C, and the samples were kept in sealed glass vials.

For each standard, the values for the time = 0 standard (as prepared gravimetrically) can be compared for the values at later times. In this way, it is determined that the average of the samples is 98.7% of the values as-prepared (well within the 10% analytical uncertainty). Therefore, we can say that over periods of 200+ days, SRNL cannot discern any evidence of degradation of the standards.

Standard	Time (days)	Measurement (mM)	% of Prepared
А	0	3.02	-
А	4	3.17	105%
А	75	3.26	108%
А	102	3.17	105%
А	126	2.91	96.2%
А	146	2.91	96.2%
А	193	3.01	99.8%
А	215	3.07	102%
В	0	3.01	-
В	23	3.05	102%
В	84	2.95	97.9%
В	119	2.81	93.4%
В	141	2.83	93.9%
В	159	2.97	98.7%
В	194	2.74	91.0%
С	0	2.97	-
С	1	2.95	99.3%
С	30	2.80	94.4%
С	51	2.87	96.7%
	Average of % As-Prep	pared	98.7%

Table 1. Results from Titrations of Standards

The analytical uncertainty for the TiDG titrations is 10%.

3.2 <u>Time-Based Degradation of the Archived (i.e., Aged after Analysis) TiDG Standards</u>

After analysis (conversion of the guanidinium form to the neutral guanidine form), the samples of standards used for quality control are archived and retained for a period while personnel develop the reports and close with customers on the findings. This study, at later dates, repeated the analysis of the "used" standards via the titration method to determine the remaining concentration of the TiDG. This data is compiled in Table 2. The set of archived "used" standards each give a single data point at varying duration of storage. As each of these standards was prepared in an identical fashion, stored in the same conditions and analyzed by the same instrument, this analysis treats the series of standards as if it were from a single source, generating a single decay curve.

Once the points on the decay curve are known, it is necessary to assume a single rate law decay order. The most likely candidates are zero, first, and second order decay. As zero order decay is chemically unlikely^{∇}, the choice is between first and second order decay. Previous ORNL work assumes that the TiDG decay is first order.⁴ To determine which rate law was most appropriate, SRNL fitted the titration data to both first and second order graphs. ln[A] (first order) and 1/[A] (second order) were calculated (Table 2).

 A_0 is the TiDG concentration (in mM) of the freshly prepared solvent standard. "A" is defined as the concentration (in mM) of TiDG at the time of analysis.

Time (days)	A ₀ (mM)	A (mM)	ln[A]	1/[A]
0	2.837	2.837	1.0429	0.3524
73	2.735	2.574	0.9454	0.3885
82	3.00	2.726	1.0028	0.3669
108	2.967	2.405	0.8776	0.4158
299	3.011	2.219	0.7970	0.4507
350	2.901	2.095	0.7393	0.4774
367	2.905	2.022	0.7041	0.4946
394	3.092	1.670	0.5129	0.5987
418	3.256	2.068	0.7267	0.4835

Table 2. Results from Re-Titrations of TiDG Standards

The data in Table 2 can be graphed in both first and second order decay formats (Figures 1 and 2). The better fit of the data is provided by the first order plot, although only marginally so. Therefore, this report assumes that the time based decay is first order.

In summary, a solution of blend solvent containing TiDG in the freebase form, at \sim room temperature, will decay in a first order fashion. The slope of the line (-0.000900) is the rate order constant in mM/day.

$$A_t = A_0 \times exp(-0.0009 \times t)$$

The time=394 days data point was tested to determine whether or not it could be removed from the data set as a statistical flier using Student's T Test. However, the data point in question was just within the 95% confidence region, so we could not dismiss it.

 $^{^{\}nabla}$ For zero-order reactions, the reaction rate is independent of the concentration of a reactant, so that changing its concentration has no effect on the speed of the reaction.

Figure 1. Plot of Data for First Order Decay

Figure 2. Plot of Data for Second Order Decay

3.3 Consideration of Oak Ridge National Laboratory (ORNL) Data

Since the issuance of the original revision of this document (June 2016), ORNL issued a paper that contained some data on the TiDG degradation.¹¹ In this report, ORNL measured the TiDG content in a set of solvent samples. The set contained a NGS solvent sample with the guanidinium and a solvent sample with the guanidine. This set was maintained at 25 °C. These samples were analyzed for TiDG content at time 0 and 19 months (~587 days) later. It was found that the TiDG in the guanidinium form samples showed no degradation, which agrees with our conclusion. For the solvent samples with the TiDG in the guanidine form, ~86% of the TiDG had degraded. This corresponds to a mMol/day loss rate of 0.0045. This compares to a SRNL derived average mMol/day loss rate of 0.0031. Given the differences in the solvent formulations (the SRNL solvent contains extra components not in the ORNL solvent) and the analytical method differences, the loss rate differences are not surprising.

3.4 Consideration of Data from MCU Samples

It is known that the depletion of the TiDG from the solvent is not just a process of chemical or radiological degradation over time. Partitioning losses to the aqueous phases, and especially to the strip effluent, also play a function. Partitioning losses should be proportional to the amount of feed processed.

If the loss rates from time alone are known, then it is possible to estimate losses due to processing. By tabulating the MCU sample data, the total losses can be determined. If the total losses are due to time and processing volume, then by subtracting the time based losses (estimated from work in previous sections), then it is possible to derive a loss rate associated only with processing volumes.

SRNL tabulated all the results from the SHT samples over the time period that the blend solvent was in use (12/2/2013 to 9/18/2018). See Appendix A for a tabulation of the sample results used. In addition, further information was collected, such as the date of the sample, the solvent volume in the SHT, the time since the solvent was trimmed, and the volume of processed feed. With all this data, SRNL can estimate the losses due to processing feed.

Although a large number of data points have been collected, the data set as a whole is split up into sub-sets (delineated by red lines in Figure 3). This is due to additions of TiDG to replenish the solvent to the nominal operating range. While it is possible to account for the Isopar-LTM additions by normalizing the volume in the SHT, the TiDG that is occasionally added requires the data to be analyzed in separate sets. For each set we assign the time=0 data points as the very next data point after an addition of TiDG. For example, a TiDG measurement for a sample from 1/26/2015 is available. On 2/22/2015, a TiDG•HCl trim, or addition, of 838 grams occurred. The next analysis was from a sample on 2/25/2015. We treat the 2/25/2015 sample as the new time=0 data point. See Figure 3.

Figure 3. Volume Normalized TiDG Concentrations

3.5 Example of Methodology

To help illustrate the methodology, an example is given of a sample of the entire data set. See Table 3. At MCU, a TiDG trim was added on 2/22/2015. This means the very next sample data point (sample MCU-15-389/390) is treated as the new time=0 data point. The TiDG measurement for that sample was 2.844 mM, with the reported SHT volume being 212 gallons. All further TiDG results in this series were volume normalized to this time=0 volume.

	Result	Result, Norm.	Sample	Cumul.	Predicted	Cum. Proc.	Loss due to	Loss/Vol.
Sample	(mM)	(mM)	Date	Time (d)	Conc. (mM)	Vol. (gal)	Proc. (mM)	(mM/gal)
Feb-389/390	2.844	2.84	2/25/2015	0	2.844			
Feb-439/440/441	2.842	2.79	2/28/2015	3	2.836	28617	0.048	1.68E-06
March -556/557/558	2.356	2.50	3/16/2015	19	2.796	126812	0.295	2.33E-06
April-661/662/663	1.921	2.12	4/2/2015	36	2.753	206758	0.633	3.06E-06
June-710/711/712	1.64	1.81	6/15/2015	110	2.58	216535	0.766	3.54E-06
June-750/751/752	1.43	1.54	6/22/2015	117	2.56	239075	1.022	4.27E-06
August-802/3/4/5/6/7	1.34	1.36	8/31/2015	187	2.4	274443	1.045	3.81E-06

 Table 3. Example of Methodology

Later samples have a cumulative time (in days as of when the sample was pulled) set against the time=0 data point. From the cumulative time and calculated first order rate constant, the predicted concentration is calculated. This calculated value is based solely on time-based degradation. Note that in all cases, the predicted concentration is greater than what was actually measured, implying that there are factors other than time that influence the TiDG degradation. Once the difference between the measured and predicted TiDG concentration is known, this value is assigned to partitioning losses due to processing. Processing losses should be a function of the volume of salt solution processed and this relationship is expected to be linear. The losses that are assigned to processing ("Loss due to Proc" in Table 3) are divided by the cumulative amount of salt solution processed ("Cum Proc Vol" in Table 3) to generate a mM loss per gallon processed ("Loss/vol" in Table 3).

The loss per gallon processed is derived for each sample data point, except for the time=0 points, where the volume processed is zero. After the entire data set was completed, all of the "loss per gallon processed" terms were averaged into a single value; 5.95E-06 mM/gallon. This value is consistent with the ORNL partitioning coefficients into strip of >1000. This average value had a 55% relative standard deviation (RSD). The relatively small number of data points, and the fact that the entire data set has to be separated into smaller sets leads to a high standard deviation in the loss-per-gallon predictive formula. As further data points are received, this predictive tool will continue to be refined.

A number of values were not included in this average. A review of the results shows that for operating MCU with very small batch volumes (< 9000 gallons) in a non-continuous mode, the loss per gallon processed was typically much higher ($\sim 10 \times$) than during times typical of continuous

operations. As this non-continuous mode of operations was atypical, data points corresponding to MCU operating in a non-continuous mode (at very low overall amounts of <10000 gallons) are not included in the loss/gallon calculation.

If, in the future, MCU changes the O:A volume ratios in the contactors, this would lead to changes in the partitioning behavior. In such case, the loss-per-gallon prediction would likely change.

Now that both the time and processing volume terms are known, a predictive formula can be assembled:

$$A_t = [A_0 \times EXP(-0.0009 \times t)] - [5.95E - 06 \times volume]$$

where A_t is the TiDG concentration (mM) at time t (days), A_0 is the TiDG concentration (mM) at time = 0, and volume is the amount of salt solution processed in gallons. This equation can be used as a predictive tool to forecast TiDG demand. For example, if MCU plans on operating for 90 days while processing 250,000 gallons of feed and assuming a starting TiDG concentration of 3 mM, then we would predict a final TiDG concentration of 1.28 mM.

An examination of the two components of the predictive formula shows that the losses are predominantly due to partitioning.

4.0 Conclusions and Path Forward

The current solvent blend consists of four components; an extractant, the modifier, a suppressor, and the diluent. Of the four components, only the suppressor – tris(isodecyl)guanidine (TiDG) is known to have an appreciable degradation rate.

Using data derived from process samples, this analysis derived a method to predict the TiDG losses based upon time and volume of feed processed. This work assumes that the degradation is due to two independent reasons: time (chemical degradation) and partitioning into aqueous phases (processing salt solution).

While other factors such as temperature or feed radiation dose could influence the degradation rates, this work does not examine these factors.

SRNL recommends that as further solvent sample data is received, the predictive tool is continuously updated. In addition, it is recommended that a detailed study into the decomposition pathways of the TiDG is explicitly studied and decomposition products are identified. Once probable decomposition products are identified, a detailed analysis of a SHT sample and a wash sample should be performed to confirm the presence of these materials.

If future solvent extraction operations at SRS use a different guanidine suppressor, SRNL recommends that the time based degradation of the new suppressor is studied, as well as the partitioning behavior.

Finally, SRNL recommends investigating strategies that could lead to the TiDG being converted back to the quaternized guanidinium form for part of the solvent extraction cycle. This would slow the decomposition reaction.

Batch	TiDG (mM)	Date
prelim	3.27	12/2/2013
1	2.995	12/7/2013
2a	2.49	12/12/2013
2	2.71	12/19/2013
3	2.442	12/27/2013
4	2.466	12/31/2013
5	2.45	1/6/2014
ба	2.166	1/18/2014
6b	2.111	1/25/2014
бс	1.989	2/1/2014
Feb-135/136	1.954	2/20/2014
March-214/215/216	1.452	3/31/2014
April-259/260/261	1.524	4/21/2014
May-315/316/317	1.571	5/16/2014
June-395/396	1.385	6/27/2014
July-497/498	1.913	7/22/2014
Aug 667/668/669/670/671/672	1.174	8/26/2014
Sept-846/847	0.809	9/22/2014
Oct-913	0.66	10/7/2014
Oct#2 986/987	2.526	10/27/2014
Nov-943/1061	2.287	12/2/2014
Dec-1172/1173	1.453	12/30/2014
Jan 2015-129/130/131	1.031	1/26/2015
Feb-389/390	2.844	2/25/2015
Feb-439/440/441	2.842	2/28/2015
March -556/557/558	2.356	3/16/2015
April-661/662/663	1.921	4/2/2015
June-710/711/712	1.64	6/15/2015
June-750/751/752	1.43	6/22/2015
August-802/3/4/5/6/7	1.34	8/31/2015

APPENDIX A. List of Data Points Used for this Work

Batch	TiDG (mM)	Date
November-815/6/7/8/9/20	3.23	11/29/2015
December-914/915/916	2.403	12/22/2015
January MCU-53/54/55	2.316	1/25/2016
February MCU-16-270/271/272	1.799	2/21/2016
March MCU-16-348/349/350	1.34	3/30/2016
April MCU-16-596/597/598	2.94	4/30/2016
May MCU-16-710/711/712	2.81	5/28/2016
June MCU-16-934/935/936	2.13	7/1/2016
July MCU-16-991/992/993	1.91	7/23/2016
July MCU-16-1033/1034/1035	1.65	7/28/2016
August MCU-16-1247/1248	1.08	8/22/2016
Sept MCU-16-1317/1318/1319	0.704	9/12/2016
Nov MCU-16-1363/1364/1365	2.8	11/15/2016
Dec MCU-16-1488-1493	2.11	12/4/2016
Jan MCU-17-86/87/88	1.59	1/9/2017
Feb MCU-17-119/120/121	1.41	2/21/2017
April MCU-17-130/131/132	1.39	4/18/2017
May MCU-17-133/134/135	1.39	5/2/2017
June MCU-17-141-147	1.47	6/4/2017
July MCU-17-150/151/152	1.43	7/10/2017
August MCU-17-153/154/155	1.49	8/2/2017
Feb 2018 MCU-18-18/19/20	3.17	2/22/2018
March MCU-18-108/109/110	3.13	3/19/2018
April MCU-18-123/124/125	2.58	4/24/2018
May MCU-18-135/136/137	2.5	5/21/2018
June MCU-18-192-197	2.33	6/18/2018
July MCU-18-301/302/303	1.89	7/14/2018
August MCU-18-357/358/359	0.537	8/20/2018
Sept MCU-18-402-410	0.503	9/18/2018

Appendix A, Continued

5.0 References

¹ W. M. Matthews, HLW-CRF-10006, Rev. 0, May 18, 2010.

² T. B. Peters, A. H. Couture, "Investigation into the Rate of Trioctylamine Partitioning into the MCU Aqueous Phases", SRNL-STI-2013-00195, July 2013.

³ B. A. Moyer, Laetitia H. Delmau, N. C. Duncan, D. D. Ensor, T. G. Hill, D. L. Lee, B. D. Roach, F. V. Sloop, N. J. Williams, "Recommended Guanidine Suppressor for the Next-Generation Caustic-Side Solvent Extraction Process", ORNL/TM-2012/625, Rev. 0, January 2013.

⁴ B. A. Moyer, Laetitia H. Delmau, B. D. Roach, N. J. Williams, "Thermal Degradation of Next Generation Solvent using Triisodecylguanidine Suppressor: Impacts on Solvent Performance and Organic Content of Aqueous Effluents", ORNL-LTR-NGCSSX-020, Rev. 1, July 2013.

⁵ F. F. Fondeur, D. H. Jones, "Solvent Hold Tank Sample Results for MCU-16-53-54-55: January 2016 Monthly Sample", SRNL-STI-2016-00151, March 2016.

⁶ B. A. Moyer, J. F. Birdwell, Jr., P. V. Bonnesen, S. H. Bruffey, L. H. Delmau, N. C. Duncan, D. D. Ensor, T. G. Hill, D. L. Lee, A. Rajbanshi, B. D. Roach, P. L. Szczygiel, F. V. Sloop, Jr., E. L. Stoner, and N. J. Williams, "Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium," ORNL/TM-2014/22, March 2014.

⁷ Manual E7, 2.60, Rev.18, "Technical Reviews", December 2019.

⁸ Savannah River National Laboratory, "Technical Report Design Check Guidelines", WSRC-IM-2002-00011, Rev. 2, August 2004.

⁹ T. B. Peters, "TiDG Degradation Studies", ELN-A4571-00084-45.

¹⁰ ITS-0199, "Non-Aqueous Titrations using Mettler-Toledo T50 Auto-Titrator", July 2013.

¹¹ F. V. Sloop, Jr., "A GC-FID-Based Method for Quantifying the Breakdown of TiDG in NGS Solvent", ORNL/TM-2018/930, September 2018.

Distribution List

cjbannochie@srnl.doe.gov alex.cozzi@srnl.doe.gov david.crowley@srnl.doe.gov a.fellinger@srnl.doe.gov samuel.fink@srnl.doe.gov connie.herman@srnl.doe.gov dennis.jackson@srnl.doe.gov Joseph.Manna@srnl.doe.gov john.mayer@srnl.doe.gov daniel.mccabe@srnl.doe.gov Gregg.Morgan@srnl.doe.gov frank.pennebaker@srnl.doe.gov Amy.Ramsey@srnl.doe.gov William.Ramsey@SRNL.DOE.gov michael.stone@srnl.doe.gov Boyd.Wiedenman@srnl.doe.gov bill.clark@srs.gov jeffrey.crenshaw@srs.gov james.folk@srs.gov Curtis.Gardner@srs.gov Pauline.hang@srs.gov Anna.Murphy@srs.gov tony.polk@srs.gov Anthony.Robinson@srs.gov mark-a.smith@srs.gov patricia.suggs@srs.gov thomas.temple@srs.gov Kevin.Brotherton@srs.gov Kenneth.Fernadez@srs.gov Phoebe.Fogelman@srs.gov brent.gifford@srs.gov Thomas.Huff@srs.gov Vijay.Jain@srs.gov Drew.Fairchild@srs.gov Bill.Brasel@parsons.com cliff.conner@parsons.com Ryan.Lentsch@gat.com Tom.Burns@parsons.com Skip.Singer@parsons.com Brad.Swanson@parsons.com celia.aponte@srs.gov timothy.baughman@srs.gov earl.brass@srs.gov Richard.Edwards@srs.gov Azikiwe.hooker@srs.gov Thomas.Huff@srs.gov Ryan.McNew@srs.gov phillip.norris@srs.gov Christine.Ridgeway@srs.gov Azadeh.Samadi-Dezfouli@srs.gov

<u>Vijay.Jain@srs.gov</u> <u>arthur.wiggins@srs.gov</u> Records Administration (EDWS)