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EXECUTIVE SUMMARY 
 

Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) 
coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are 
referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a 
coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are 
routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance 
Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping 
roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that 
conform to undulating stratigraphic surfaces in a 3D groundwater flow model.  

Particle tracking is routinely performed after a porous-medium numerical flow simulation to better 
understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing 
of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to 
cell starting from designated seed (starting) positions. An accurate velocity field is required to attain 
accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate 
(e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the 
normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the 
pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the 
flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with 
respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity 
components, either naively or with accepted approximation.  

To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a 
non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes 
to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation 
code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if 
so, the derived velocity fields are consistent with these mass balances. Derivations are provided for 
general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly 
encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D. 
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1.0 Introduction 
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) 
coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are 
referred to herein as non-orthogonal grids. Figure 1-1 illustrates two examples. The first example from 
Aleman (2007, Figure 4.4.3) is a two-dimensional grid composed of vertical grid lines parallel to the y-
axis, but only nominally horizontal lines that are uniformly distributed to conform to a flat base and 
sloping ground surface. As a result all but the bottom grid line do not align with the x-axis. The second 
example from Flach (2004, Figure 2-1b) is a two-dimensional slice through the GSA/PORFLOW 
groundwater flow model. Here the nominally horizontal layers of the grid are not flat but conform to 
undulating stratigraphic surfaces. Again many cell faces do not align with the coordinate system (i.e. lie 
in constant z planes). In both grids depicted in Figure 1-1 the interior angles of a typical grid cell are not 
90°. That attribute implies a non-orthogonal grid. However, a grid with all 90° angles between cell faces 
but rotated with respect to the coordinate system is also considered a non-orthogonal grid in this study, 
even though grid lines are orthogonal to one another. To be clear, an orthogonal grid contains only grid 
faces that are aligned to an orthogonal coordinate system (which implies 90° interior angles); if not, the 
grid is considered non-orthogonal (irrespective of the interior angles between cell faces, which could be 
90°). 

Particle tracking is routinely performed after a porous-medium numerical flow simulation to better 
understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing 
of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to 
cell starting from designated seed (starting) positions. Obviously an accurate velocity field is required to 
attain accurate particle tracks. Many numerical simulation codes report only the volumetric flowrate 
and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell 
face is a component of the Darcy velocity vector for the grid coordinate system, and the pore velocity is 
attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies 
outside a coordinate plane (e.g. constant x, y, or z plane in a Cartesian system) is not a true component of 
the velocity vector. Nonetheless, normal fluxes are often used as Darcy velocity components, either 
naively or with accepted approximation.  

The purpose of this study is to derive the true Darcy velocity components from normal fluxes to cell faces 
on a non-orthogonal grid to enable accurate particle tracking. The normal fluxes are presumed to satisfy 
mass balances for every computational cell. Derivations are provided for general two-dimensional 
quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases 
of perfectly vertical side faces in 2D and 3D. The derived velocity fields are consistent with the normal 
fluxes and thus preserve mass. 
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(a) 

 
 

 
(b) 

Figure 1-1.  Example non-orthogonal numerical grids: a) PORFLOW QA test problem 4.4 (WSRC-
STI-2007-00150 Figure 4.4.3) and b) grid cross-section from GSA/PORFLOW groundwater flow 

model (WSRC-TR-2004-00106 Figure 2-1). 
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2.0 Two-Dimensional Grid 
Figure 2-1 depicts a representative non-orthogonal quadrilateral grid cell. In this two-dimensional 
example all four cell faces lie at an angle to the orthogonal coordinate system defined by the unit vectors 𝚤, 
𝚥 and 𝑘�⃗  (where 𝑘�⃗  points out of the page). The four vertices are denoted by mm, mp, pm and pp (m = minus, 
p = plus position relative to cell center). The velocity vector at the center of the cell is denoted by �⃗�. A 
local grid coordinate system, generally non-orthogonal, is indicated by the vectors �⃗� and 𝑌�⃗ . By definition 
�⃗� bisects the mm-mp and pm-pp faces. Similarly 𝑌�⃗  bisects the mm-pm and mp-pp faces. 

 

 

Figure 2-1.  Coordinate systems, velocity field, and normal flux components for a non-orthogonal 
computational grid cell. 

 
 
The local grid coordinate vectors are thus computed as 

 �⃗� = �
𝑥𝑝𝑝 + 𝑥𝑝𝑝

2
−
𝑥𝑝𝑝 + 𝑥𝑝𝑝

2
� 𝚤 + �

𝑦𝑝𝑝 + 𝑦𝑝𝑝
2

−
𝑦𝑝𝑝 + 𝑦𝑝𝑝

2
� 𝚥 (1) 

 
and 

 𝑌�⃗ = �
𝑥𝑝𝑝 + 𝑥𝑝𝑝

2
−
𝑥𝑝𝑝 + 𝑥𝑝𝑝

2
� 𝚤 + �

𝑦𝑝𝑝 + 𝑦𝑝𝑝
2

−
𝑦𝑝𝑝 + 𝑦𝑝𝑝

2
� 𝚥 (2) 

 
The unit vectors for the local grid coordinate system are 

 �⃗� =
�⃗�
��⃗��

 (3) 
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and 

 �⃗� =
𝑌�⃗

�𝑌�⃗ �
 (4) 

 
Also shown in Figure 2-1 are the components of velocity �⃗� normal to �⃗� (and �⃗�) and 𝑌�⃗  (and �⃗�) denoted as 
𝑉�⃗  and 𝑈��⃗  respectively. Note that although 𝑈��⃗  is nominally in the direction of �⃗�, the two vectors are not 
generally parallel, and similarly for 𝑉�⃗  and 𝑌�⃗ . Rather 𝑈��⃗  is perpendicular to 𝑌�⃗  and 𝑉�⃗  is perpendicular to �⃗�.  

The magnitude of 𝑈��⃗  is assumed to be available from the computational code output and abbreviated as 𝑈. 
The flux 𝑈 may be directly provided in simulation code output, or more likely, defined as the average of 
the normal fluxes provided at the mm-mp and pm-pp faces. 

 �𝑈��⃗ � ≡ 𝑈 =
𝑈𝑝𝑝−𝑝𝑝 + 𝑈𝑝𝑝−𝑝𝑝

2
 (5) 

 
The PORFLOW code for example provides flow rates crossing cell faces, and flux can be attained by 
dividing by face length (or area in 3D). Similarly, 𝑉�⃗  is considered a known quantity defined by 

 �𝑉�⃗ � ≡ 𝑉 =
𝑉𝑝𝑝−𝑝𝑝 + 𝑉𝑝𝑝−𝑝𝑝

2
 (6) 

 
The normal fluxes can be related to the velocity field using vector operations. A vector normal to �⃗� is the 
cross product �⃗� × 𝑘�⃗  (see Swokowski (1979) Figure 14.30 or http://en.wikipedia.org/wiki/Cross_product):  

 �⃗� × 𝑘�⃗ = �
𝚤 𝚥 𝑘�⃗
𝑦1 𝑦2 0
0 0 1

� = 𝑦2𝚤 − 𝑦1𝚥 (7) 

 
The vector �⃗� × 𝑘�⃗  has unit length: 

 ��⃗� × 𝑘�⃗ � = �𝑦22 + 𝑦12 = |�⃗�| = 1 (8) 

 
The component of �⃗� parallel to �⃗� × 𝑘�⃗  and thus normal to �⃗� is obtained by forming the vector dot product 
(see Swokowski (1979), Equation (14.24) or http://en.wikipedia.org/wiki/Dot_product) 

 𝑈 = �⃗� ∙
�⃗� × 𝑘�⃗

��⃗� × 𝑘�⃗ �
= (𝑣1𝚤 + 𝑣2𝚥) ∙ (𝑦2𝚤 − 𝑦1𝚥) = 𝑣1𝑦2 − 𝑣2𝑦1 (9) 

 
In a similar manner, 𝑘�⃗ × �⃗� (recalling the right-hand rule for vector products) is a unit normal vector to �⃗� 

 𝑘�⃗ × �⃗� = �
𝚤 𝚥 𝑘�⃗
0 0 1
𝑥1 𝑥2 0

� = −𝑥2𝚤+ 𝑥1𝚥 (10) 
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and the component of �⃗� normal to �⃗� is 

 𝑉 = �⃗� ∙
𝑘�⃗ × �⃗�
�𝑘�⃗ × �⃗��

= (𝑣1𝚤 + 𝑣2𝚥) ∙ (−𝑥2𝚤 + 𝑥1𝚥) = −𝑣1𝑥2 + 𝑣2𝑥1 (11) 

 
Equations (9) and (11) can be solved simultaneously for 𝑣1  and 𝑣2  using Cramer’s rule 
(http://en.wikipedia.org/wiki/Cramer%27s_rule). The results are 

 𝑣1 =
�𝑈 −𝑦1
𝑉 𝑥1

�

�
𝑦2 −𝑦1
−𝑥2 𝑥1 �

=
𝑈𝑥1 − (−𝑦1)𝑉

𝑦2𝑥1 − (−𝑦1)(−𝑥2) =
𝑥1𝑈 + 𝑦1𝑉
𝑥1𝑦2 − 𝑥2𝑦1

 (12) 

 
and 

 𝑣2 =
� 𝑦2 𝑈
−𝑥2 𝑉�

�
𝑦2 −𝑦1
−𝑥2 𝑥1 �

=
𝑦2𝑉 − 𝑈(−𝑥2)

𝑦2𝑥1 − (−𝑦1)(−𝑥2) =
𝑥2𝑈 + 𝑦2𝑉
𝑥1𝑦2 − 𝑥2𝑦1

 (13) 

 
Equations (12) and (13) define velocity �⃗� in terms of the known geometry of the grid cell (�⃗�, �⃗�) and 
known normal flux components (𝑈, 𝑉) for a general two-dimensional system.  

A special case of interest is a grid with perfectly vertical sides, such as the example shown in Figure 1-1a. 
For this case 

 �⃗� = 𝚥 = 0 ∙ 𝚤 + 1 ∙ 𝚥 (14) 
 
and thus 𝑦1 = 0 and 𝑦2 = 1. Equations (12) and (13) simplify to 

 𝑣1 = 𝑈 (15) 
 
and 

 𝑣2 =
1
𝑥1
𝑉 +

𝑥2
𝑥1
𝑈 (16) 

 
Equations (12), (13), (15) and (16) account for a distorted and/or rotated mesh through the geometric 
factors 𝑥1, 𝑥2, 𝑦1 and 𝑦2 and make appropriate perturbations to the nominal velocity components 𝑈 and 𝑉.  

Figure 2-2 compares particle tracking results based Darcy velocity approximated by 𝑈𝚤 + 𝑉𝚥  and 
rigorously defined by 𝑣1𝚤 + 𝑣2𝚥. The problem specification is the same as PORFLOW QA test problem 
4.4 (Aleman 2007), except that the recharge is set to zero (no infiltration). Using �⃗� ≡ 𝑈𝚤 + 𝑉𝚥 particle 
tracks are observed to angle upward and cross the water table because grid distortion has not been 
considered. However, when Darcy velocity is defined by �⃗� ≡ 𝑣1𝚤 + 𝑣2𝚥 the streamtraces conform to the 
water table as expected. 
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(a) 

 

 
(b) 

Figure 2-2.  Particle tracking based on Darcy velocity (a) approximated by 𝑼𝒊 + 𝑽𝒋 and (b) 
rigorously defined as 𝒗𝒗𝒊 + 𝒗𝒗𝒋 – Cartesian coordinates. 

 
 
Figure 2-3 illustrates particle tracking results for a cylindrical coordinate system simulation similar to 
PORFLOW QA test problem 4.4 (Aleman 2007). As with prior Cartesian simulation, the recharge rate is 
set to zero. In addition the 𝚤 coordinates are reinterpreted as radial distance and the inner and outer radii 
are set to 100 ft and 1100 ft respectively. The hollow cylinder geometry produces a concave upward water 

Velocity components from FC

FC-based velocity corrected for mesh distortion
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table. Particle tracks behave similar to those shown in Figure 2-2. When Darcy velocity is defined by 
�⃗� ≡ 𝑣1𝚤 + 𝑣2𝚥 the streamtraces conform to the water table as expected. 

 
 

 
(a) 

 

 
(b) 

Figure 2-3.  Particle tracking based on Darcy velocity (a) approximated by 𝑼𝒊 + 𝑽𝒋 and (b) 
rigorously defined as 𝒗𝒗𝒊 + 𝒗𝒗𝒋 – cylindrical coordinates. 

Normal flux components from FC

FC-based velocity corrected for mesh distortion
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3.0 Three-Dimensional Grid 
Figure 3-1 illustrates a three-dimensional hexagonal grid cell that generally has faces not aligned with an 
𝚤 × 𝚥, 𝚥 × 𝑘�⃗  or 𝑘�⃗ × 𝚤 coordinate plane. The eight vertices are identified using m and p indices analogous to 
the 2D grid cell shown in Figure 2-1. For example, mpm identifies the corner located minus, plus, minus 
relative to the center node in the 𝚤, 𝚥 and 𝑘�⃗  coordinate directions, respectively. A local grid coordinate 
system is indicated by the vectors �⃗� , 𝑌�⃗  and 𝑍, which are generally not orthogonal. These vectors pass 
through the centroids of opposing cell faces and are defined by the equations 

 �⃗� = �
𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝

4
−
𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝

4
� 𝚤 + ⋯ (17) 

 

 𝑌�⃗ = �
𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝

4
−
𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝

4
� 𝚤 + ⋯ (18) 

 
and 

 𝑍 = �
𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝

4
−
𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝 + 𝑥𝑝𝑝𝑝

4
� 𝚤 + ⋯ (19) 

 
Defined in this way the vectors intersect one another at the centroid of the volume. The corresponding 
unit vectors are denoted by �⃗�, �⃗� and 𝑧. Volumetric flux normal to each cell face is assumed to available 
from simulation code output.  

 
 

 

Figure 3-1.  Coordinate systems and velocity vector for a non-orthogonal three-dimensional grid 
cell. 



SRNL-STI-2015-00115 
Revision 0 

 
  

9 

The flux in the nominal direction of �⃗� at the cell centroid is defined as the average of the fluxes at the �⃗�− 
and �⃗�+ faces 

 �𝑈��⃗ � ≡ 𝑈 =
𝑈𝑝𝑝𝑝−𝑝𝑝𝑝−𝑝𝑝𝑝−𝑝𝑝𝑝 + 𝑈𝑝𝑝𝑝−𝑝𝑝𝑝−𝑝𝑝𝑝−𝑝𝑝𝑝

2
 (20) 

 
𝑉 and 𝑊 fluxes are defined for the other coordinates in a similar manner. 

The flux 𝑈 is normal to the plane 

 �⃗� × 𝑧 = �
𝚤 𝚥 𝑘�⃗
𝑦1 𝑦2 𝑦3
𝑧1 𝑧2 𝑧3

� = (𝑦2𝑧3 − 𝑦3𝑧2)𝚤 − (𝑦1𝑧3 − 𝑦3𝑧1)𝚥 + (𝑦1𝑧2 − 𝑦2𝑧1)𝑘�⃗  (21) 

 
and defined in terms of �⃗� by  

 

𝑈 = �⃗� ∙
�⃗� × 𝑧

|�⃗� × 𝑧|

=
�𝑣1𝚤 + 𝑣2𝚥 + 𝑣3𝑘�⃗ � ∙ �(𝑦2𝑧3 − 𝑦3𝑧2)𝚤 − (𝑦1𝑧3 − 𝑦3𝑧1)𝚥 + (𝑦1𝑧2 − 𝑦2𝑧1)𝑘�⃗ �

|�⃗� × 𝑧|

=
𝑣1(𝑦2𝑧3 − 𝑦3𝑧2) − 𝑣2(𝑦1𝑧3 − 𝑦3𝑧1) + 𝑣3(𝑦1𝑧2 − 𝑦2𝑧1)

|�⃗� × 𝑧|

=
𝑣1(𝑦2𝑧3 − 𝑦3𝑧2) + 𝑣2(𝑦3𝑧1 − 𝑦1𝑧3) + 𝑣3(𝑦1𝑧2 − 𝑦2𝑧1)

|�⃗� × 𝑧|
=
𝑦2𝑧3 − 𝑦3𝑧2

|�⃗� × 𝑧| 𝑣1 +
𝑦3𝑧1 − 𝑦1𝑧3

|�⃗� × 𝑧| 𝑣2 +
𝑦1𝑧2 − 𝑦2𝑧1

|�⃗� × 𝑧| 𝑣3 ≡ 𝑎𝑦𝑦𝑣1 + 𝑏𝑦𝑦𝑣2 + 𝑐𝑦𝑦𝑣3 

(22) 

 
The flux 𝑉 is normal to the plane 

 𝑧 × �⃗� = �
𝚤 𝚥 𝑘�⃗
𝑧1 𝑧2 𝑧3
𝑥1 𝑥2 𝑥3

� = (𝑥3𝑧2 − 𝑥2𝑧3)𝚤 − (𝑥3𝑧1 − 𝑥1𝑧3)𝚥 + (𝑥2𝑧1 − 𝑥1𝑧2)𝑘�⃗  (23) 

 
and defined in terms of �⃗� by  

 

𝑉 = �⃗� ∙
𝑧 × �⃗�

|𝑧 × �⃗�|

=
�𝑣1𝚤 + 𝑣2𝚥 + 𝑣3𝑘�⃗ � ∙ �(𝑥3𝑧2 − 𝑥2𝑧3)𝚤 − (𝑥3𝑧1 − 𝑥1𝑧3)𝚥 + (𝑥2𝑧1 − 𝑥1𝑧2)𝑘�⃗ �

|𝑧 × �⃗�|

=
𝑣1(𝑥3𝑧2 − 𝑥2𝑧3) − 𝑣2(𝑥3𝑧1 − 𝑥1𝑧3) + 𝑣3(𝑥2𝑧1 − 𝑥1𝑧2)

|𝑧 × �⃗�|

=
𝑣1(𝑥3𝑧2 − 𝑥2𝑧3) + 𝑣2(𝑥1𝑧3 − 𝑥3𝑧1) + 𝑣3(𝑥2𝑧1 − 𝑥1𝑧2)

|𝑧 × �⃗�|
=
𝑥3𝑧2 − 𝑥2𝑧3

|𝑧 × �⃗�| 𝑣1 +
𝑥1𝑧3 − 𝑥3𝑧1

|𝑧 × �⃗�| 𝑣2 +
𝑥2𝑧1 − 𝑥1𝑧2

|𝑧 × �⃗�| 𝑣3 ≡ 𝑎𝑥𝑦𝑣1 + 𝑏𝑥𝑦𝑣2 + 𝑐𝑥𝑦𝑣3 

(24) 
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The flux 𝑊 is normal to the plane 

 �⃗� × �⃗� = �
𝚤 𝚥 𝑘�⃗
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

� = (𝑥2𝑦3 − 𝑥3𝑦2)𝚤 − (𝑥1𝑦3 − 𝑥3𝑦1)𝚥 + (𝑥1𝑦2 − 𝑥2𝑦1)𝑘�⃗  (25) 

 
and defined in terms of �⃗� by  

 

𝑊 = �⃗� ∙
�⃗� × �⃗�

|�⃗� × �⃗�|

=
�𝑣1𝚤 + 𝑣2𝚥 + 𝑣3𝑘�⃗ � ∙ �(𝑥2𝑦3 − 𝑥3𝑦2)𝚤 − (𝑥1𝑦3 − 𝑥3𝑦1)𝚥 + (𝑥1𝑦2 − 𝑥2𝑦1)𝑘�⃗ �

|�⃗� × �⃗�|

=
𝑣1(𝑥2𝑦3 − 𝑥3𝑦2)− 𝑣2(𝑥1𝑦3 − 𝑥3𝑦1) + 𝑣3(𝑥1𝑦2 − 𝑥2𝑦1)

|�⃗� × �⃗�|

=
𝑣1(𝑥2𝑦3 − 𝑥3𝑦2) + 𝑣2(𝑥3𝑦1 − 𝑥1𝑦3) + 𝑣3(𝑥1𝑦2 − 𝑥2𝑦1)

|�⃗� × �⃗�|
=
𝑥2𝑦3 − 𝑥3𝑦2

|�⃗� × �⃗�| 𝑣1 +
𝑥3𝑦1 − 𝑥1𝑦3

|�⃗� × �⃗�| 𝑣2 +
𝑥1𝑦2 − 𝑥2𝑦1

|�⃗� × �⃗�| 𝑣3
≡ 𝑎𝑥𝑦𝑣1 + 𝑏𝑥𝑦𝑣2 + 𝑐𝑥𝑦𝑣3 

(26) 

 
Equations (22), (24) and (26) represent a system of three equations for three unknowns, 𝑣1, 𝑣2 and 𝑣3, 
summarized by 

 �
𝑎𝑦𝑦𝑣1 + 𝑏𝑦𝑦𝑣2 + 𝑐𝑦𝑦𝑣3 = 𝑈
𝑎𝑥𝑦𝑣1 + 𝑏𝑥𝑦𝑣2 + 𝑐𝑥𝑦𝑣3 = 𝑉
𝑎𝑥𝑦𝑣1 + 𝑏𝑥𝑦𝑣2 + 𝑐𝑥𝑦𝑣3 = 𝑊

 (27) 

 
The system can be solved using Cramer’s rule (http://en.wikipedia.org/wiki/Cramer%27s_rule). The 
results are 

 

𝑣1 = �
𝑈 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑉 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑊 𝑏𝑥𝑦 𝑐𝑥𝑦

� �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

��

=
𝑈�𝑏𝑥𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑥𝑦� − 𝑉�𝑏𝑦𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑦𝑦� + 𝑊�𝑏𝑦𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑦𝑦�

�
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

�

 
(28) 

 

 

𝑣2 = �
𝑎𝑦𝑦 𝑈 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑉 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑊 𝑐𝑥𝑦

� �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

��

=
−𝑈�𝑎𝑥𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑐𝑥𝑦� + 𝑉�𝑎𝑦𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑐𝑦𝑦� −𝑊�𝑎𝑦𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑐𝑦𝑦�

�
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

�

 
(29) 
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and 

 

𝑣3 = �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑈
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑉
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑊

� �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

��

=
𝑈�𝑎𝑥𝑦𝑏𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑥𝑦� − 𝑉�𝑎𝑦𝑦𝑏𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑦𝑦� + 𝑊�𝑎𝑦𝑦𝑏𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑦𝑦�

�
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

�

 
(30) 

 
where  

 

�
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

�

= 𝑎𝑦𝑦�𝑏𝑥𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑥𝑦� + 𝑎𝑥𝑦�𝑏𝑥𝑦𝑐𝑦𝑦 − 𝑏𝑦𝑦𝑐𝑥𝑦�
+ 𝑎𝑥𝑦�𝑏𝑦𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑦𝑦�
= 𝑎𝑦𝑦𝑏𝑥𝑦𝑐𝑥𝑦 − 𝑎𝑦𝑦𝑏𝑥𝑦𝑐𝑥𝑦 + 𝑎𝑥𝑦𝑏𝑥𝑦𝑐𝑦𝑦 − 𝑎𝑥𝑦𝑏𝑦𝑦𝑐𝑥𝑦
+ 𝑎𝑥𝑦𝑏𝑦𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑥𝑦𝑐𝑦𝑦 

(31) 

 
A common special case is a 3D grid with vertical sides and rectangular footprint. The GSA/PORFLOW 
groundwater flow model (Flach 2004) is an example of such a “cookie cutter” grid. For this special case 
the following simplifications occur 

 𝑧 = 𝑘�⃗    →    𝑧1 = 𝑧2 = 0; 𝑧3 = 1 (32) 
 

 𝑥2 = 𝑦1 = 0 (33) 
 
The 𝑎, 𝑏 and 𝑐 coefficients evaluate to 

 

𝑎𝑦𝑦 = 1 𝑏𝑦𝑦 = 0 𝑐𝑦𝑦 = 0
𝑎𝑥𝑦 = 0 𝑏𝑥𝑦 = 1 𝑐𝑥𝑦 = 0

𝑎𝑥𝑦 =
−𝑥3𝑦2
|�⃗� × �⃗�| 𝑏𝑥𝑦 =

−𝑥1𝑦3
|�⃗� × �⃗�| 𝑐𝑥𝑦 =

𝑥1𝑦2
|�⃗� × �⃗�|

 (34) 

 
where 

 |�⃗� × �⃗�| = �(𝑥3𝑦2)2 + (𝑥1𝑦3)2 + (𝑥1𝑦2)2 (35) 
 
The determinant given by Equation (31) becomes 

 �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

� = 𝑐𝑥𝑦 =
(𝑥1𝑦2)2

|�⃗� × �⃗�|  (36) 
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Using Equations (28) and (29) , the horizontal velocity components simplify to 

 𝑣1 =
𝑈�𝑐𝑥𝑦�
𝑐𝑥𝑦

= 𝑈 (37) 

 
and 

 𝑣2 =
𝑉�𝑐𝑥𝑦�
𝑐𝑥𝑦

= 𝑉 (38) 

 
The vertical component from Equation (30) is 

 

𝑣3 =
𝑈�−𝑎𝑥𝑦� − 𝑉�𝑏𝑥𝑦�+ 𝑊(1)

𝑐𝑥𝑦
=
𝑈� 𝑥3𝑦2

|�⃗� × �⃗�|� + 𝑉 � 𝑥1𝑦3
|�⃗� × �⃗�|� + 𝑊(1)

𝑥1𝑦2
|�⃗� × �⃗�|

=
𝑈𝑥3𝑦2 + 𝑉𝑥1𝑦3 + 𝑊|�⃗� × �⃗�|

𝑥1𝑦2
=
𝑥3
𝑥1
𝑈 +

𝑦3
𝑦2
𝑉 +

|�⃗� × �⃗�|
𝑥1𝑦2

𝑊

=
𝑥3
𝑥1
𝑈 +

𝑦3
𝑦2
𝑉 +

�(𝑥3𝑦2)2 + (𝑥1𝑦3)2 + (𝑥1𝑦2)2

𝑥1𝑦2
𝑊

= �1 + �
𝑥3
𝑥1
�
2

+ �
𝑦3
𝑦2
�
2
𝑊 +

𝑥3
𝑥1
𝑈 +

𝑦3
𝑦2
𝑉 

(39) 

 
These results for the three-dimensional special case are similar to those for the two-dimensional special 
case given by Equations (15) and (16). Namely, each horizontal velocity component is equal to its 
corresponding horizontal normal flux, while the vertical velocity component is a function of all of the 
normal fluxes.  

 

4.0 Conclusions 
The derivations presented herein provide a means to perform accurate particle-tracking on non-orthogonal 
grids, or otherwise present an accurate depiction of the velocity field, based on normal fluxes to cell faces 
provided by or readily computed from porous-medium simulation code output. The velocity vector 
components for a general grid are given by Equations (12) and (13) for 2D systems and Equations (28) 
through (31) for 3D systems. Simplified results are presented for 2D and 3D grids that have strictly 
vertical side faces and a rectangular footprint if 3D, conditions routinely encountered in Savannah River 
Performance Assessment applications and groundwater flow modeling. These are Equations (15) and (16) 
in 2D and (37), (38) and (39) in 3D. These key results are summarized in Table 4-1. 
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Table 4-1.  Summary of velocity vector components in terms of normal fluxes. 

General 2D grid 

𝑣1 =
𝑥1𝑈 + 𝑦1𝑉
𝑥1𝑦2 − 𝑥2𝑦1

 𝑣2 =
𝑥2𝑈 + 𝑦2𝑉
𝑥1𝑦2 − 𝑥2𝑦1

 

2D grid with vertical side faces 

𝑣1 = 𝑈 𝑣2 =
1
𝑥1
𝑉 +

𝑥2
𝑥1
𝑈 

General 3D grid 

𝑣1 = �𝑈�𝑏𝑥𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑥𝑦� − 𝑉�𝑏𝑦𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑦𝑦� + 𝑊�𝑏𝑦𝑦𝑐𝑥𝑦 − 𝑏𝑥𝑦𝑐𝑦𝑦�� �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

��  

𝑣2 = �−𝑈�𝑎𝑥𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑐𝑥𝑦� + 𝑉�𝑎𝑦𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑐𝑦𝑦� −𝑊�𝑎𝑦𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑐𝑦𝑦�� �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

��  

𝑣3 = �𝑈�𝑎𝑥𝑦𝑏𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑥𝑦� − 𝑉�𝑎𝑦𝑦𝑏𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑦𝑦� +𝑊�𝑎𝑦𝑦𝑏𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑦𝑦�� �
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

��  

�
𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦
𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦

� = 𝑎𝑦𝑦𝑏𝑥𝑦𝑐𝑥𝑦 − 𝑎𝑦𝑦𝑏𝑥𝑦𝑐𝑥𝑦 + 𝑎𝑥𝑦𝑏𝑥𝑦𝑐𝑦𝑦 − 𝑎𝑥𝑦𝑏𝑦𝑦𝑐𝑥𝑦 + 𝑎𝑥𝑦𝑏𝑦𝑦𝑐𝑥𝑦 − 𝑎𝑥𝑦𝑏𝑥𝑦𝑐𝑦𝑦 

𝑎𝑦𝑦 =
𝑦2𝑧3 − 𝑦3𝑧2

|�⃗� × 𝑧| 𝑏𝑦𝑦 =
𝑦3𝑧1 − 𝑦1𝑧3

|�⃗� × 𝑧| 𝑐𝑦𝑦 =
𝑦1𝑧2 − 𝑦2𝑧1

|�⃗� × 𝑧|

𝑎𝑥𝑦 =
𝑥3𝑧2 − 𝑥2𝑧3

|𝑧 × �⃗�| 𝑏𝑥𝑦 =
𝑥1𝑧3 − 𝑥3𝑧1

|𝑧 × �⃗�| 𝑐𝑥𝑦 =
𝑥2𝑧1 − 𝑥1𝑧2

|𝑧 × �⃗�|

𝑎𝑥𝑦 =
𝑥2𝑦3 − 𝑥3𝑦2

|�⃗� × �⃗�| 𝑏𝑥𝑦 =
𝑥3𝑦1 − 𝑥1𝑦3

|�⃗� × �⃗�| 𝑐𝑥𝑦 =
𝑥1𝑦2 − 𝑥2𝑦1

|�⃗� × �⃗�|

 

|�⃗� × 𝑧| = �(𝑦2𝑧3 − 𝑦3𝑧2)2 + (𝑦1𝑧3 − 𝑦3𝑧1)2 + (𝑦1𝑧2 − 𝑦2𝑧1)2 

|𝑧 × �⃗�| = �(𝑥3𝑧2 − 𝑥2𝑧3)2 + (𝑥3𝑧1 − 𝑥1𝑧3)2 + (𝑥2𝑧1 − 𝑥1𝑧2)2 

|�⃗� × �⃗�| = �(𝑥2𝑦3 − 𝑥3𝑦2)2 + (𝑥1𝑦3 − 𝑥3𝑦1)2 + (𝑥1𝑦2 − 𝑥2𝑦1)2 

3D grid with vertical side faces and rectangular footprint 

𝑣1 = 𝑈 𝑣2 = 𝑉 

𝑣3 = �1 + �
𝑥3
𝑥1
�
2

+ �
𝑦3
𝑦2
�
2
𝑊 +

𝑥3
𝑥1
𝑈 +

𝑦3
𝑦2
𝑉 
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