
Contract No:

This document was prepared in conjunction with work accomplished under
Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE)
Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S.
Government. Neither the U. S. Government or its employees, nor any of its
contractors, subcontractors or their employees, makes any express or implied:

1) warranty or assumes any legal liability for the accuracy, completeness, or
for the use or results of such use of any information, product, or process
disclosed; or

2) representation that such use or results of such use would not infringe
privately owned rights; or

3) endorsement or recommendation of any specifically identified commercial
product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily
state or reflect those of the United States Government, or its contractors, or
subcontractors.

A Triangulation Method for Identifying
Hydrostratigraphic Locations of Well Screens

T. S. Whiteside

January 2015
SRNL-STI-2015-00020, Revision 0

SRNL-STI-2015-00020
Revision 0

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the
U.S. Government or its employees, nor any of its contractors, subcontractors or their employees,
makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or
results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned
rights; or

3. endorsement or recommendation of any specifically identified commercial product,
process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of
the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for

U.S. Department of Energy

ii

SRNL-STI-2015-00020
Revision 0

Keywords: Hydrostratigraphic,
triangulation

Retention: Permanent

A Triangulation Method for Identifying Hydrostratigraphic
Locations of Well Screens

T. S. Whiteside

January 2015

Prepared for the U.S. Department of Energy under
contract number DE-AC09-08SR22470.

iii

SRNL-STI-2015-00020
Revision 0

REVIEWS AND APPROVALS

AUTHORS:

__
T. S. Whiteside, Radiological Performance Assessment Date

TECHNICAL REVIEW:

__
G. A. Taylor, Radiological Performance Assessment Date

APPROVAL:

__
M. A. Phifer Date
Radiological Performance Assessment

__
D. A. Crowley, Manager Date
Radiological Performance Assessment

__
K. M. Kostelnik, Manager Date
Environmental Restoration Technologies

iv

SRNL-STI-2015-00020
Revision 0

EXECUTIVE SUMMARY

A method to identify the hydrostratigraphic location of well screens was developed using
triangulation with known locations. This method was applied to all of the monitor wells being
used to develop the new GSA groundwater model. Results from this method are closely aligned
with those from an alternate method which uses a mesh surface.

v

SRNL-STI-2015-00020
Revision 0

TABLE OF CONTENTS
LIST OF TABLES .. vii

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. viii

1.0 Introduction ... 1

2.0 Experimental Procedure .. 1

3.0 Results and Discussion ... 2

4.0 Conclusions ... 3

5.0 Reference .. 3

Appendix A A-1
Appendix A. Program Listing ... A-2

vi

SRNL-STI-2015-00020
Revision 0

LIST OF TABLES
Table 6-1. Table 1. Table of Hydrostratigraphic Layers used in the model .. 5

Table 6-2. First thirty rows of output of Analysis Program ... 7

LIST OF FIGURES
Figure 6-1. Regional Stratigraphic Nomenclature (ref), including Hydrostratigraphic Layers used in this

work. .. 4

Figure 6-2. Teal rectangle bounds the stratigraphic data used in WSRC-TR-96-0399. Purple points
delineate the monitor wells dataset. ... 5

Figure 6-3. UTM easting vs. elevation of hydrostratigraphic layers at SRS ... 6

Figure 6-4. UTM easting vs. elevation of the LAZ, showing the median elevation 7

vii

SRNL-STI-2015-00020
Revision 0

LIST OF ABBREVIATIONS

GAU Gordon Aquifer Unit
GCU Gordon Confining Unit

GSA General Separations Area
LAZ Lower Aquifer Zone (of Upper Three Runs Aquifer)
MBCS Meyers Branch Confining System

SRNL Savannah River National Laboratory
TCCZ Tan Clay Confining Zone
TZ Transmissive Zone

UAZ Upper Aquifer Zone
UTM Universal Transverse Mercator

viii

SRNL-STI-2015-00020
Revision 0

1.0 Introduction
In support of a new General Separations Area (GSA) groundwater model, this work was performed to
methodically identify the hydrostratigraphic layers in which monitor wells (used in the new model) are
screened.

SRS stratigraphic layers and associated nomenclature are described in a previous model (WSRC-TR-96-
0399), which incorporates data from geologic cores, cone penetrometer tests, monitor wells, and other
information (Figure 6-1) to define a hydrogeological framework for the GSA. The hydrostratigraphic
layers used in this work are abbreviated as shown in Table 6-1. Locations for the dataset are shown in
Figure 6-2 (teal colored points within the teal rectangle).

The monitor wells assessed are located within the region delineated by the purple rectangle of Figure 6-2.
Each well has three points of interest: 1) the well screen top, 2) the well screen bottom, and 3) the bottom
of the well (defined as 5 feet below the well screen bottom). This work describes a method to locate these
points with respect to the defined hydrostratigraphic layers.

2.0 Experimental Procedure

The hydrostratigraphic layer for each screen top, screen bottom, and well bottom was determined using
the following method. For each hydrostratigraphic layer (working from the Upper Aquifer Zone down to
the Meyers Branch Confining System), the three nearest points of that layer that triangulate the well point,
in the x-y plane, were found. These three points define a plane and the z-coordinate of the well point,
relative to this plane, determines if the point is located either above, below, or in the plane. If above the
plane, the well point is in the overlying hydrostratigraphic layer. If in the plane, the well point is in the
hydrostratigraphic layer. If below the plane, the well point is either in the hydrostratigraphic layer being
examined, or in an underlying hydrostratigraphic layer.

As shown in Figure 6-2, the monitor wells (located within the purple rectangle) are surrounded by the
surface penetrations (teal colored points within the teal rectangle) used to define the hydrostratigraphic
layers. A visualization of the points that define the hydrostratigraphic layers, as identified in the WSRC-
TR-96-0399, is shown in Figure 6-3. The Upper Aquifer Zone (UAZ) is not depicted because the UAZ
extends from the ground surface to the top of the TCCZ. The figure shows how close the TCCZ and LAZ
layers are to each other in some places, as well as the closeness of the GCU and GAU layers.

For this exercise, each monitor well has three well points of interest -- well screen top, well screen bottom,
and bottom of well -- and each of these points is spatially defined by UTM coordinates and by the
elevation above sea level. To determine the hydrostratigraphic layer, each well point was checked to see if
it could be surrounded (by latitude and longitude) by three layer points. This bounding was accomplished
by finding the distance between the well point and each layer point. These distances were sorted from
closest to furthest and sets of three points were analyzed, starting with the closest three, to see if they
bounded the well point. First, the vectors from the well point (P) to layer points A, B, and C (PA, PB, PC)
were defined. The vector describes the distance and direction from P to the point. Next, the vectors from
P to the negative of point A and point B (PA′, PB′) were defined, where if the vector from P to A is (2, 2),
the vector from P to A′ is (-2,-2). Then the signs of the cross product of PA′ and PB′, PA′ and PC, and PC
and PB′ were determined (note the order of operations). If all three signs are equal, then the point C lies
between points A’ and B’, which means points A, B, and C triangulate (bound) point P. If the signs are
not all equal, points A, B, and C do not triangulate (bound) point P.

The hydrostratigraphic layer elevation is not constant; therefore, the smallest triangle that surrounds point
P will provide the most accurate information about the well point. If the closest three points triangulate P,

1

SRNL-STI-2015-00020
Revision 0

those are the points used to create the plane. If the closest three do not triangulate P, each combination of
three points within larger and larger sets have to be examined: ABCD, ABCDE, ABCDEF, …, until a
triangulation is found.

Once a triangle is found within a combination, the “size” of this triangle is calculated by summing the
magnitude of the vectors from P to the points in the triangle. The smallest triangle defines the best set of
points surrounding a monitor well. To find the smallest triangle, all of the combinations of layer points
which have a distance from point P less than or equal to the “size” of the first triangle found are analyzed
to find those that triangulate P. Then these sets of points are sorted by triangle “size” and the set of points
that create the smallest of these are used to define the plane. This algorithm implements finding the
geometric median or “minimum sum of distances to a point” as described by Gareth Rees at the webpage
listed in the Reference section.

If the well point could be triangulated by the layer points, the normal vector from the plane formed by the
three points that triangulate P (ABC) and P was found. The point on the plane where this normal vector
originates was found. If the well point elevation was less than or equal to the plane point’s elevation, then
the well point is below or in the layer. If it is greater, then it is in the overlying layer.

If the well point could not be triangulated by points in the layer, the mean elevation of the layer was
compared to the well point elevation. The mean and median elevations for each layer were examined and
found to be similar, so we chose to use the mean elevation and treat the layer as having no slope, as the
layers are mostly level, see Figure 6-3, and this is simpler to compute. If the well point elevation was
below or equal to the mean elevation, the well point is below or in the hydrostratigraphic layer. If the well
point’s elevation was above the mean elevation, the well point is in the overlying layer.

3.0 Results and Discussion
The dataset for this work is from 1052 groundwater monitor wells and includes UTM coordinate data and
the elevations of the well screen top, well screen bottom, and the bottom of the well (the well screen
bottom elevation minus 5 ft). Each monitor well has three well points of interest -- well screen top, well
screen bottom, and bottom of well -- and each of these points is spatially defined by UTM coordinates
and by the elevation above sea level. A Python program was written to determine the hydrostratigraphic
layer of each well point, implementing the above method. This program’s output identified the
hydrostratigraphic unit of each well point and if the components of the well screen crossed
hydrostratigraphic layers.

In this program each well point was examined to see if it could be triangulated by the layer above and the
layer below. If the well point could be triangulated by both surfaces, the abbreviation of the
hydrostratigraphic unit was output. If the well point could not be triangulated by the previous layer a “???”
was placed in front of the output; if it could not be triangulated by the current layer a “???” was placed
behind the output. See Table 6-2 for a sample of the program output. If the hydrostratigraphic units for all
three well points are not all the same, then the well screen crosses hydrostratigraphic layers and the
STATION_NAME field is proceeded by a “***”.

The hydrostratigraphic units are not as cleanly defined as depicted in Figure 6-3. Figure 6-4 plots the
elevations vs UTM Eastings of the Lower Aquifer Zone for the area of interest. This plot shows the
variability in the hydrostratigraphic surface and the median elevation (180 ft). This surface variability is
likely the cause of some of the cross-unit identifications in the triangulation method.

Overall, the method described here is a good method to quickly identify a majority of hydrostratigraphic
units for a selection of points. However, because the triangle selection algorithm scales as O(n3), if a

2

SRNL-STI-2015-00020
Revision 0

triangle is not found within the first few points it takes much longer to solve. In the collection of wells
provided, twelve wells (36 points) required nearly three days of computation time to complete. All of the
remaining 3120 points were located in less than 30 minutes.

To validate this method, the results were compared to those determined by locating the parts of the well
using a mesh constructed from the original GSA model coordinates. For the well series BG26-BG67,
only one well point assigned to a different adjacent layer (out of 105). For the well series BGO1D-
BGO53D, there were 20 points assigned to different adjacent layers (out of 414 well points). These
differences in assignment are most likely due to how the triangles were constructed.

4.0 Conclusions
A collection of hydrostratigraphic unit data was used to identify the unit(s) in which various groundwater
modeling wells are located. While straightforward to describe and implement, the algorithm does not
account for sparse data (large triangles) or locations where there is wide variability between elevations of
the nearest points. If this tool is used in future work, these issues should be addressed as well as further
optimizations of the algorithm.

5.0 Reference

Smits, A. D.; Harris, M. K.; Hawkings, K. L.; Flach, G. P. Integrated Hydrogeological Modeling of the
General Separations Area Volume 1: Hydrogeologic Framework. Aug, 1997. WSRC-TR-96-0399 Rev. 0.

Sum of distances algorithm website: http://stackoverflow.com/questions/4229454/algorithm-to-find-the-
closest-3-points-that-when-triangulated-cover-another-poin

3

http://stackoverflow.com/questions/4229454/algorithm-to-find-the-closest-3-points-that-when-triangulated-cover-another-poin
http://stackoverflow.com/questions/4229454/algorithm-to-find-the-closest-3-points-that-when-triangulated-cover-another-poin

SRNL-STI-2015-00020
Revision 0

Figure 5-1. Regional Stratigraphic Nomenclature (ref), including Hydrostratigraphic Layers used
in this work.

4

SRNL-STI-2015-00020
Revision 0

Table 5-1. Table 1. Table of Hydrostratigraphic Layers used in the model

Hydrostratigraphic layer Abbreviation
Upper Aquifer Zone UAZ
Tan Clay Confining Zone TCCZ
Lower Aquifer Zone (of Upper Three Runs Aquifer) LAZ
Gordon Confining Unit GCU
Gordon Aquifer Unit GAU
Meyers Branch Confining System MBCS

Figure 5-2. Teal rectangle bounds the stratigraphic data used in WSRC-TR-96-0399. Purple points
delineate the monitor wells dataset.

5

SRNL-STI-2015-00020
Revision 0

Figure 5-3. Elevation of hydrostratigraphic layers at SRS

6

SRNL-STI-2015-00020
Revision 0

Table 5-2. First thirty rows of output of Analysis Program

STATION_NAME UTM_EAST UTM_NORTH SZ Top El. HUNIT SZ Bot El. HUNIT Bot-5ft HUNIT
BG 26 438952.14 3682915.89 230.7 #UAZ 210.7 #UAZ 205.7 #UAZ
BG 27 438880.79 3683014.07 254.4 #UAZ 234.4 #UAZ 229.4 #UAZ
BG 28 438809.95 3683111.49 259.7 #UAZ 239.7 #UAZ 234.7 #UAZ
BG 29 438738.21 3683209.88 251.6 #UAZ 231.6 #UAZ 226.6 #UAZ
BG 30 438666.55 3683307.9 251.7 #UAZ 231.7 #UAZ 226.7 #UAZ
BG 31 438593.53 3683405.43 243.3 #UAZ 223.3 #UAZ 218.3 #UAZ
BG 32 438521.74 3683503.93 246.9 #UAZ 226.9 #UAZ 221.9 #UAZ
BG 33 438430.07 3683486.19 241.2 #UAZ 221.2 #UAZ 216.2 #UAZ
***BG 34 438324.49 3683414.5 237.4 #UAZ 217.4 #UAZ 212.4 #TCCZ???
BG 35 438230.32 3683346.59 248.0 #UAZ 228.0 #UAZ 223.0 #UAZ
***BG 36 438158.94 3683389.72 243.3 #UAZ 223.3 #UAZ 218.3 #TCCZ???
BG 37 438057.69 3683337.61 247.8 #UAZ 227.8 #UAZ 222.8 #UAZ
BG 38 437959.16 3683265.92 245.9 #UAZ 225.9 #UAZ 220.9 #UAZ
BG 39 437860.68 3683194.2 246.0 #UAZ 226.0 #UAZ 221.0 #UAZ
BG 40 437762.03 3683122.46 241.9 #UAZ 221.9 #UAZ 216.9 #UAZ
BG 41 437758.18 3683033.43 241.0 #UAZ 221.0 #UAZ 216.0 #UAZ
***BG 42 437829.63 3682935.63 237.1 #UAZ 217.1 #UAZ 212.1 #TCCZ???
BG 43 437930.0 3682885.71 242.9 #UAZ 222.9 #UAZ 217.9 #UAZ
BG 51 438917.18 3682854.98 241.2 #UAZ 221.2 #UAZ 216.2 #UAZ
BG 52 437792.72 3682807.6 243.8 #UAZ 223.8 #UAZ 218.8 #UAZ
***BG 53 437637.49 3682787.65 234.7 #UAZ 214.7 #TCCZ??? 209.7 #TCCZ???
BG 54 437634.76 3682665.29 235.2 #UAZ 215.2 #UAZ 210.2 #UAZ
BG 55 437631.74 3682545.27 234.9 #UAZ 214.9 #UAZ 209.9 #UAZ
BG 56 437662.16 3682447.26 230.9 #UAZ 210.9 #UAZ 205.9 #UAZ
BG 57 437782.41 3682457.12 234.6 #UAZ 214.6 #UAZ 209.6 #UAZ
BG 58 437904.31 3682466.89 238.2 #UAZ 218.2 #UAZ 213.2 #UAZ
BG 59 438024.96 3682480.29 237.7 #UAZ 217.7 #UAZ 212.7 #UAZ
BG 60 438146.35 3682490.6 235.5 #UAZ 215.5 #UAZ 210.5 #UAZ
BG 61 438327.87 3682505.56 245.0 #UAZ 225.0 #UAZ 220.0 #UAZ
BG 62 438388.39 3682510.49 242.5 #UAZ 222.5 #UAZ 217.5 #UAZ

7

SRNL-STI-2015-00020
Revision 0

Figure 5-4. UTM easting vs. elevation of the LAZ, showing the median elevation

7

SRNL-STI-2015-00020
Revision 0

Appendix A.

A-1

SRNL-STI-2015-00020
Revision 0

Appendix A. Program Listing
 #!/hpc/apps/python-2.7-srnl/bin/python

import itertools
import math
import numpy
import collections
import sys
import multiprocessing
from scipy.spatial.distance import pdist, euclidean

def get_vector(A, B):
 U = numpy.subtract(B, A)

U = B - A
U = U.sub(A,B)
Ux = B.x - A.x
Uy = B.y - A.y
Uz = B.z - A.z

U = Point(Ux, Uy, Uz)
 return U
#enddef

def normal_point_plane_intersection(P, A, B, C):
 #find equation of plane [A, B, C]
 #ax + by + cz + d = 0

 #two vectors to define the plane
 U = get_vector(A, B)
 V = get_vector(A, C)

 #cross product of UxV
 UxV = numpy.cross(U, V)
 a = UxV[0]
 b = UxV[1]
 c = UxV[2]

a = U.y*V.z - U.z*V.y
b = -1.0 * (U.x*V.z - U.z*V.x)
c = U.x*V.y - U.y*V.x
d = -1.0*(a*A.x + b*A.y + c*A.z)

 d = -1.0*(a*A[0] + b*A[1] + c*A[2])

 #normal vector from plane
 #N = Point(a, b, c)
 N = numpy.array([a, b, c])

 #find the point on the plane that the normal vector from P passes through
 #R = (P.x,P.y,P.z) + tau(-N.x, -N.y, -N.z)
 #x = P.x + tau*-N.x, y = P.y + tau*-N.y, z = P.z + tau*-N.z
 #sub x,y,z into ax + by + cz + d = 0
 #solve for tau, which is:

tau = (d + a*P.x + b*P.y + c*P.z)/(a*N.x + b*N.y + c*N.z)
 tau = (d + a*P[0] + b*P[1] + c*P[2])/(a*N[0] + b*N[1] + c*N[2])

 ix = (P[0] + tau * -1.0 * N[0])
 iy = (P[1] + tau * -1.0 * N[1])
 iz = (P[2] + tau * -1.0 * N[2])

I = Point(ix, iy, iz)
 I = numpy.array([ix, iy, iz])

print a, b, c, d
equation of plane: z = d + mx + ny

A-2

SRNL-STI-2015-00020
Revision 0

print str(-d/c) + "+" + str(-a/c) + "x+" + str(-b/c)+ "y"
 """
 dat = ""
 if c <> 0.0:
 dat = dat + "#" + str(-d/c) + "+" + str(-a/c) + "x+" + str(-b/c)+ "y" + "\n"
 else:
 print "come review well at :" + str(P.x) + " " + str(P.y) + " " + str(P.z)
 #endif
 dat = dat + str(A.x)+ " " + str(A.y) + " " + str(A.z) + "\n"
 dat = dat + str(B.x) + " " + str(B.y) + " " + str(B.z) + "\n"
 dat = dat + str(C.x) + " " + str(C.y) + " " + str(C.z) + "\n"
 dat = dat + "\n"
 dat = dat + "\n"
 dat = dat + str(P.x) + " " + str(P.y) + " " + str(P.z) + "\n"
 dat = dat + "\n"
 dat = dat + "\n"
 dat = dat + str(A.x) + " " + str(A.y) + " " + str(A.z) + " " + str(N.x/N.x) + " " + str(
N.y/N.x) + " " + str(N.z/N.x) + "\n"
 dat = dat + str(B.x) + " " + str(B.y) + " " + str(B.z) + " " + str(N.x/N.x) + " " + str(
N.y/N.x) + " " + str(N.z/N.x) + "\n"
 dat = dat + str(C.x) + " " + str(C.y) + " " + str(C.z) + " " + str(N.x/N.x) + " " + str(
N.y/N.x) + " " + str(N.z/N.x) + "\n"
 dat = dat + "\n"
 dat = dat + "\n"
 dat = dat + str(P.x) + " " + str(P.y) + " " + str(P.z) + " " + str(-N.x/N.x) + " " + str(
-N.y/N.x) + " " + str(-N.z/N.x) + "\n"
 dat = dat + "\n"
 dat = dat + "\n"
 dat = dat + str(P.x) + " " + str(P.y) + " " + str(P.z) + "\n"
 dat = dat + str(I.x) + " " + str(I.y) + " " + str(I.z) + "\n"
 dat = dat + str(P.x +(2*tau*-N.x)) + " " + str(P.y +(2*tau*-N.y)) + " " + str(P.z +(
2*tau*-N.z)) + "\n"
 """
f = open("pp.txt", "w")
f.write(dat)
f.close()

 return I
#enddef

def point_point_distance(p, q):
 distance = numpy.linalg.norm(p - q)
 return distance
#enddef

def get_max_min_point(max_min, array, index):
 #get the index value of the array slice (column of array) with max/min value
 if max_min == 'max':
 i_val = array[:,index].argmax()
 else:
 i_val = array[:,index].argmin()
 #endif
 #get the point using the i_val (and then cut off the distance part)
 point = array[i_val]
 point = point[:3]
 return point
#enddef

def get_lnn2_aux(input_list):
 P = input_list[0]
 apicks = input_list[1]
 lnn = []
 hdistances = {}
 for pick in apicks:
 distance = numpy.sqrt(numpy.sum((P-pick)**2))
distance = numpy.linalg.norm(P-pick)
distance = euclidean(P, pick)
 lnn.extend([numpy.append(pick,distance)])
 hdistances[str(pick[0])+str(pick[1])+str(pick[2])] = distance
 #endfor
 return lnn, hdistances

A-3

SRNL-STI-2015-00020
Revision 0

#enddef

def get_lnn2(P, apicks):
 eastings = []
 northings = []
 elevations = []

 """
 a = numpy.arange(12).reshape(3,4)
 print a
 b = pdist(a, 'euclidean')
 print b

 b = euclidean(P,apicks[0])
 c = numpy.linalg.norm(P-apicks[0])
 d = numpy.sqrt(numpy.sum((P-apicks[0])**2))
 print b, c, d

 exit()
 """

lnn, hdistances = get_lnn2_aux(P, apicks)
pool = multiprocessing.Pool()
lnn, hdistances = pool.map(get_lnn2_aux, [P, apicks])
pool.close
pool.join

 lnn, hdistances = get_lnn2_aux([P, apicks])

 lnn_array = numpy.array(lnn)
 max_easting_point = get_max_min_point('max', lnn_array, 0)
 min_easting_point = get_max_min_point('min', lnn_array, 0)
 max_northing_point = get_max_min_point('max', lnn_array, 1)
 min_northing_point = get_max_min_point('min', lnn_array, 1)
 max_elevation_point = get_max_min_point('max', lnn_array, 2)
 min_elevation_point = get_max_min_point('min', lnn_array, 2)

mean_elevation = numpy.average(lnn_array[:,2])
mean_elevation = numpy.mean(lnn_array[:,2])
 mean_elevation = numpy.median(lnn_array[:,2])

 lnn_array = lnn_array[lnn_array[:,3].argsort()]
 lnn = numpy.delete(lnn_array,[3],axis=1) #.tolist()

 return lnn, hdistances, max_easting_point, min_easting_point, max_northing_point,
min_northing_point, max_elevation_point, min_elevation_point, mean_elevation
#enddef

def get_hdistances(lnn):
 hdistances = {}
 for p in lnn:
 hdistances[str(p[0])+str(p[1])+str(p[2])] = p[3]
 #endfor

 return hdistances
#enddef

def xy_angle(U, V):
 #U.V = |U|*|V| * cos(theta)
 #UxV = |U|*|V| * sin(theta) * n

 UdotV = U.x * V.x + U.y * V.y
 magU = math.sqrt(U.x**2 + U.y**2)
 magV = math.sqrt(V.x**2 + V.y**2)

 UxV = U.x*V.y - U.y*V.x

 theta = math.acos(UdotV/(magU *magV))

A-4

SRNL-STI-2015-00020
Revision 0

 n = UxV/(magU * magV * math.sin(theta))
 if n < 0:
 theta = theta + math.pi
 #endif

 theta = theta * 180/math.pi

 return theta
#enddef

def plot_2d(P, A, B, C):
 print P.x, P.y
 print ""
 print ""
 print P.x, P.y, A.x-P.x, A.y-P.y
 print P.x, P.y, B.x-P.x, B.y-P.y
 print P.x, P.y, C.x-P.x, C.y-P.y
 print ""
 print ""
 print "A", A.x, A.y
 print "B", B.x, B.y
 print "C", C.x, C.y

#enddef

def sign_cross_product(U, V):
 UxV = numpy.cross(U, V)

UxV = U.x*V.y - U.y*V.x
print UxV
 sign = 0
 if UxV[2] > 0:
 sign = 1
 elif UxV[2] < 0:
 sign = -1
 else:
 sign = 0
 #endif
 return sign
#enddef

#find if P can be triangulated by lnn by:
look at first 3 points
if not found, look at combinations of first 4, then 5, then 6, etc
once a triangle is found, you are limited to the lnn that the distance from P is equal to
the sum of distances of the first triangle found.
get all of these points (lnn[0,...,distance <= sum_distance_first_triangle])
check all these combinations, the best triangle is the one with the minimal sum of distances

def find_abc(lnn, hdistances, P):

 for i in range(2,len(lnn)): #the first two are used as A, B, keep extending the possible C
 num = 0
 c_ok = False
 possible_points = lnn[:i+1]

 for combo in itertools.combinations(possible_points, 3):
 A = combo[0]
 B = combo[1]
 C = combo[2]

 #print "======="
 #print A
 #print B
 #print C

 sAoC, sCBo, sAoBo = find_abc_aux2(A, B, C, P)

 #print sAoC, sCBo, sAoBo

A-5

SRNL-STI-2015-00020
Revision 0

 if sAoC == sCBo and sCBo == sAoBo : #C is good
 lpp = len(possible_points)
 if lpp == 3:
 #the first 3 points cover the Point, so get out
 #print "C is good"
 c_ok = True
 num = 3
 break
 else:
 #found a point that works - now need to find the best point

 hindexA = get_hdistance_index(A)
 hindexB = get_hdistance_index(B)
 hindexC = get_hdistance_index(C)

 sum_dist = hdistances[hindexA] + hdistances[hindexB] + hdistances[hindexC]

 print "Sum:" + str(sum_dist)

 j = 0
 k = 0
 for q in lnn:
 hindexQ = get_hdistance_index(q)
 dist = hdistances[hindexQ]
 if dist <= sum_dist:
 #print j, dist
 k = j
 #endif
 j= j+1
 #endfor

 #need to optimize
 possible_points = lnn[:k+1]

print len(possible_points)
print possible_points

if sum_dist > 1000:
print "Too many possiblilties, quitting for now"
c_ok = False
break
#endif

 A, B, C = find_abc_aux3(possible_points, hdistances, P)
 num = 3
 c_ok = True
 break
 #endif
 #endif
 #endfor
 if num == 3:
 break
 #endif
 #endfor

 lABC = [c_ok, A, B, C]
 return lABC
#enddef

def get_hdistance_index(A):

 index = str(A[0]) + str(A[1]) + str(A[2])

 return index
#enddef

def find_abc_aux(lnn, hdistances, P):
 lcombos = []

A-6

SRNL-STI-2015-00020
Revision 0

 #combos = 0
 for combo in itertools.combinations(lnn, 3):
 A = combo[0]
 B = combo[1]
 C = combo[2]

 sAoC, sCBo, sAoBo = find_abc_aux2(A, B, C, P)

 if sAoC == sCBo and sCBo == sAoBo : #C is good
 #calculate sum of distances of these points
 hindexA = get_hdistance_index(A)
 hindexB = get_hdistance_index(B)
 hindexC = get_hdistance_index(C)

 sum_dist = hdistances[hindexA] + hdistances[hindexB] + hdistances[hindexC]

 lcombos.append([sum_dist,[A,B,C]])
 #endif
 #combos = combos + 1
 #endfor

 #print combos

 #sort the combo list by sum_distances, return the shortest
 lshort = sorted(lcombos, key=lambda combo: combo[0])

 #print lshort[0]
 #print lshort[0][0]
 #print lshort[0][1][0].x
 #print lshort[0][1][1].x
 #print lshort[0][1][2].x

 A = lshort[0][1][0]
 B = lshort[0][1][1]
 C = lshort[0][1][2]

 return A, B, C
#enddef

def find_abc_aux3(lnn, hdistances, P):
 lcombos = []
 for combo in itertools.combinations(lnn, 3):
 A = combo[0]
 B = combo[1]
 C = combo[2]

 #calculate sum of distances of these points
 hindexA = get_hdistance_index(A)
 hindexB = get_hdistance_index(B)
 hindexC = get_hdistance_index(C)

 sum_dist = hdistances[hindexA] + hdistances[hindexB] + hdistances[hindexC]

 lcombos.append([sum_dist,[A,B,C]])
 #endfor

 #sort the combo list by sum_distances, return the shortest
 lshort = sorted(lcombos, key=lambda combo: combo[0])

 lshort_good = []
 for combo in lshort:
 A = combo[1][0]
 B = combo[1][1]
 C = combo[1][2]

 sAoC, sCBo, sAoBo = find_abc_aux2(A, B, C, P)

 if sAoC == sCBo and sCBo == sAoBo : #C is good
 lshort_good.extend([A,B,C])
 #endif
 if len(lshort_good) == 3:

A-7

SRNL-STI-2015-00020
Revision 0

 break
 #endif
 #endfor

 A = lshort_good[0]
 B = lshort_good[1]
 C = lshort_good[2]

 return A, B, C
#enddef

#get the sign of the cross product of vectors
def find_abc_aux2(A, B, C, P):
 PA = get_vector(P, A)
 PB = get_vector(P, B)
 PAo = -1 * PA
 PBo = -1 * PB

 #work backwards to get the opposite point
 Ao = get_vector(PA, P)
 Bo = get_vector(PB, P)

 PC = get_vector(P, C)

 sAoC = sign_cross_product(PAo, PC)
 sCBo = sign_cross_product(PC, PBo)
 sAoBo = sign_cross_product(PAo, PBo)

 return sAoC, sCBo, sAoBo
#enddef

#get the hydrozone (and some other info) for a point
def find_hydrozone_simpler(P, hydrodata):

 elevations = collections.OrderedDict()
 #loop over each hydrozone, see if Point is above, within, or below the layer
 #start with the '#UAZ'
 print "P can be triangulated by the #UAZ boundaries" #default

 hydrozone = '#UAZ'
 elevations[hydrozone] = "ground surface"
 triangle_current = True

 previous_hydrozone = '#UAZ'
 triangle_previous = True

 for hydrozone in hydrodata.keys():
 if hydrozone in ('#AA', '#TZ'): #skip these for the GSA model
 hydrozone = previous_hydrozone
 elif hydrozone in ('#CBAU'): #skip this one for the GSA model
 hydrozone = previous_hydrozone
 else:
 # checking to see if P can be triangulated by the " + hydrozone + " boundaries...."

 apicks = hydrodata[hydrozone]

 #get the list of nearest neighboring points (closest to furthest) in this layer
 # and the points of the layer limits
 lnn, hdistances, max_easting, min_easting, max_northing, min_northing, max_elevation,
min_elevation, mean_elevation = get_lnn2(P, apicks)

print lnn

 close_val = 5.0
 diff = math.sqrt(((P[0] - lnn[0][0])**2 + (P[1] - lnn[0][1])**2)/2)

A-8

SRNL-STI-2015-00020
Revision 0

 if diff < close_val :
if abs(P[0] - lnn[0][0]) < close_val and abs(P[1] - lnn[0][1]) < close_val :
 print "P's (N,E) are within " + str(close_val) + "(m) of the (N,E) of a point in
the " + hydrozone
 #P is either in this hydrozone or the next one down
 elevations[hydrozone] = lnn[0][2]
 if P[2] <= lnn[0][2]:
 print "\tP is below or in layer " + hydrozone
 hydrozone = hydrozone
 else:
 print "\tP is above layer " + hydrozone
 hydrozone = previous_hydrozone
 break
 #endif
 else:
 #see if point can be triangulated by this layer, if yes - get the smallest
triangle that surrounds the point

 #print max_easting
 #print min_easting
 #print max_northing
 #print min_northing
 #print P

 lcABC = find_abc([max_easting, min_easting, max_northing, min_northing],
hdistances, P)

 if lcABC[0] == False:
 print "P cannot be triangulated by " + hydrozone + " boundaries."
 triangle_current = False

 #set hydrozone to current_hydrozone and flag it - fix on quit if not found in
bottom layers
 elevations[hydrozone] = str(mean_elevation) + "(mean_elevation)"
 line = "\tUsing the mean_elevation (" + str(mean_elevation) + "), P may be "
 if P[2] <= mean_elevation :
 print line + "below or in layer " + hydrozone
 hydrozone = hydrozone
 else :
 print line + "above layer " + hydrozone
 hydrozone = previous_hydrozone
 break
 #endif
 else:
 print "P can be triangulated by " + hydrozone + " boundaries."
 triangle_current = True

 #zoom in to get a better answer

 elevations[hydrozone] = max_elevation[2]
 if max_elevation[2] < P[2]:
 #P is definately in the previous layer, no need to check further down
layers
 print "\tP in " + previous_hydrozone
 hydrozone = previous_hydrozone
 break
 else:
 print "\tP is either above or below " + hydrozone + " and can be
triangulated by this hydrozone"
 print "\tfinding closest points that when triangulated, cover P..."

 lcABC = find_abc(lnn, hdistances, P)

 if lcABC[0] == False:
 print "XXXXXXXXXXXX this shouldn't happen XXXXXXXXXX"
 exit()
 else:
 A = lcABC[1]
 B = lcABC[2]
 C = lcABC[3]

A-9

SRNL-STI-2015-00020
Revision 0

 I = normal_point_plane_intersection(P,A,B,C)

 #print A, B, C
 elevations[hydrozone] = I[2]
 if P[2] <= I[2] : #P is below or in the layer
 print "\tP is below or in layer " + hydrozone
 hydrozone = hydrozone
 else : #above the plane, use the previous hydrozone and quit
 print "\tP is above layer " + hydrozone
 hydrozone = previous_hydrozone
 break
 #endif #If normal
 #endif #If lcABC
 #endif #If max_elevation
 #endif #if lcabc
 #endif #If close
 #endif
 previous_hydrozone = hydrozone
 triangle_previous = triangle_current
 #endfor

 #in the last layer...

 if hydrozone == hydrodata.keys()[-1] :
 #in the bottom layer, so there is no "current" (bottom layer)
 #make the previous layer = current layer
 triangle_previous = triangle_current

 #this was to show that the bottom could be something else (confusing to regular people)
 #if triangle_current == False:
 # hydrozone = hydrodata.keys()[-1] + "/unknown"
 #endif

 triangle_current = True
 #endif

 flag_current = False
 if triangle_previous == triangle_current and triangle_current == True:
 flag_current = False
 else:
 flag_current = True
 #endif

 """
 if triangle_previous == False:
 print "???",
 #endif
 print hydrozone,
 if triangle_current == False:
 print "???"
 #endif
 """

 return hydrozone, flag_current, triangle_previous, triangle_current, elevations
#enddef

def get_hydrodata():
 #read the hydro file
 filename = 'hydro.txt'
 f = open(filename, "r")

 #read all the lines into an array (list)
 hydrodata = f.read().splitlines()

 f.close()

 return hydrodata
#enddef

A-10

SRNL-STI-2015-00020
Revision 0

def format_zone(flag, t_prev, t_curr, hydrozone):
 line = ""

 if flag == True:
 if t_prev == False:
 line = line + "???"
 #endif

 line = line + hydrozone

 if t_curr == False:
 line = line + "???"
 #endif
 else:
 line = hydrozone
 #endif

 line = line + "\t"

 return line
#enddef

def get_hydro_datastruct(hydrodata):
 #get a list of all the 8 layers in the hydrodata (these are: AA; TZ; TCCZ; LAZ; GCCZ/GCU;
LLAZ/GAU; MBCS/CBCU; CBAU)
 #add the UAZ layer, as the default (we will skip AA and TZ when looping)

 hydrodata_struct = collections.OrderedDict()

 alayers = [list(group) for k, group in itertools.groupby(hydrodata, lambda x: x== "") if not
k]

 for layer in alayers:
 layer_id = layer[0]
 #layer_coord = layer[1] #UTM_E UTM_N elevation - not used
 layer_picks = layer[2:]

 hydrodata_struct[layer[0]] = [numpy.array([float(x) for x in pick.split('\t')]) for pick
in layer_picks]
 #endfor

 return hydrodata_struct
#enddef

def main():

 #get the hydro stratigraphic data
 hydrodata = get_hydrodata()

 #get hydrodata into a datastructure
 hydrodata_struct = get_hydro_datastruct(hydrodata)

 #open the input and output files

 #for "parallel" use
 filename = sys.argv[1]
filename = 'wells.txt'

 f = open(filename, "r")

 trim_filename = filename.replace(".txt","")
 trim_filename = trim_filename.replace("s","")

 outfilename = trim_filename + '_hydrozones.txt'

 of = open(outfilename, "w")
 #of.write("STATION_NAME\tSTATION_TYPE\tUTM_EAST\tUTM_NORTH\tSZ Top El.\tHUNIT\tSZ Bot
El.\tHUNIT\t\tBot-5ft\tHUNIT\tUnits\n")

A-11

SRNL-STI-2015-00020
Revision 0

 of.write("STATION_NAME\tUTM_EAST\tUTM_NORTH\tSZ Top El.\tHUNIT\tSZ Bot El.\tHUNIT\tBot-
5ft\tHUNIT\t#UAZ\t#TCCZ\t#LAZ\t#GCU\t#GAU\t#MBCS\n")

 #read all the well data lines
 lines = f.readlines()

 i = 0
 j = 0
 k = 3e22
 for line in lines:
 if i == k: #get out after k lines (delete this when done testing - or make k really big)
 i = i - 1
 break
 #endif
 if i == 0: #the first line - skip it
 i = i
 else:
 line = line.strip()
 afields = line.split('\t')
 station_name = afields[0]
 #station_type = afields[1]
 #units = afields[7] #hardcoding below

 print station_name

 #see if the field is bad, if so skip it
 check = False
 for field in afields:
 if len(field) < 1: #this field is bad, skip this well
 check = False
 break
 else:
 check = True
 #endif
 #endfor

 if check == True:
 #well_easting = float(afields[2])
 #well_northing = float(afields[3])
 #well_top = float(afields[4])
 #well_bot = float(afields[5])
 #well_bm5 = float(afields[6])

 well_easting = float(afields[1])
 well_northing = float(afields[2])
 well_top = float(afields[3])
 well_bot = float(afields[4])
 well_bm5 = float(afields[5])

 #define the coordinates for top, bot, bm5 of the screen
 top = numpy.array([well_easting, well_northing, well_top])
 bot = numpy.array([well_easting, well_northing, well_bot])
 bm5 = numpy.array([well_easting, well_northing, well_bm5])

 #print the triangulated elevations of each hydrolayer along side each well

 #get the hydrozone,
 hydrozone_top, top_flag, top_prev, top_curr, elevationst =
find_hydrozone_simpler(top, hydrodata_struct)
 print "The hydrozone for top of well is: " + hydrozone_top + "\n"
 hydrozone_bot, bot_flag, bot_prev, bot_curr, elevationsb =
find_hydrozone_simpler(bot, hydrodata_struct)
 print "The hydrozone for bot of well is: " + hydrozone_bot + "\n"
 hydrozone_bm5, bm5_flag, bm5_prev, bm5_curr, elevationsb5 =
find_hydrozone_simpler(bm5, hydrodata_struct)
 print "The hydrozone for bm5 of well is: " + hydrozone_bm5 + "\n"

 #Some logic that formats the output of wells with "cross-zone" screens...
 str_pre = ""

A-12

SRNL-STI-2015-00020
Revision 0

 if hydrozone_top == hydrozone_bot == hydrozone_bm5:
 str_pre = ""
 else:
 str_pre = "***"
 j = j + 1
 #endif

 #write file with top, bot, bm5 and hydrozone labels
 line = str_pre + station_name + "\t" + \
 str(well_easting) + "\t" + \
 str(well_northing) + "\t"

 #station_type + "\t" + \ - goes between station_name and well_easting

 line = line + str(well_top) + "\t"
 line_zone_top = format_zone(top_flag, top_prev, top_curr, hydrozone_top)
 line = line + line_zone_top

 line = line + str(well_bot) + "\t"
 line_zone_bot = format_zone(bot_flag, bot_prev, bot_curr, hydrozone_bot)
 line = line + line_zone_bot

 line = line + str(well_bm5) + "\t"
 line_zone_bm5 = format_zone(bm5_flag, bm5_prev, bm5_curr, hydrozone_bm5)
 line = line + line_zone_bm5

 for key in elevationsb5:
 line = line + str(elevationsb5[key]) + "\t"
 #endfor

 #line = line + "ft"

 else:
 line = station_name + ": Bad data for well<=========================="
 #endif
print line

 of.write(line + "\n")
 of.flush()
 #endif
 i = i+1
 #endfor
 last_line = "There are " + str(j) + " cross zone wells, out of " + str(i) + " wells\n"
 print last_line
 of.write(last_line)

 #close the files
 of.close() #outfile (well_hydrozones.txt)
 f.close() #infile (wells.txt)
#enddef

if __name__ == "__main__":
 main()
#endif

A-13

SRNL-STI-2015-00020
Revision 0

Distribution:
S. L. Marra, 773-A
T. B. Brown, 773-A
D. H. McGuire, 999-W
S. D. Fink, 773-A
C. C. Herman, 773-A
E. N. Hoffman, 999-W
F. M. Pennebaker, 773-42A
W. R. Wilmarth, 773-A
Records Administration (EDWS)

B. T. Butcher, 773-43A
D. A. Crowley, 773-43A
G. P. Flach, 773-42A
L. L. Hamm, 703-41A
R. A. Hiergesell, 773-43A
K. M. Kostelnik, 730-4B
M. A. Phifer, 773-42A
R. R. Sietz, 773-43A
F. G. Smith, 703-41A
G. A. Taylor, 773-43A

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1.0 Introduction
	2.0 Experimental Procedure
	3.0 Results and Discussion
	4.0 Conclusions
	5.0 Reference
	Appendix A .

	Appendix A. Program Listing

