Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy.

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U. S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied: 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or 2. representation that such use or results of such use would not infringe privately owned rights; or 3. endorsement or recommendation of any specifically identified commercial product, process, or service. Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.
RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING (FBSR) WITH HANFORD LOW ACTIVITY WASTES

C.M. Jantzen, C.L. Crawford, P.R. Burket, C.J. Bannochie, W.G. Daniel, C.A. Nash, A.D. Cozzi and C.C. Herman
Savannah River National Laboratory
Aiken, South Carolina 29808

ABSTRACT

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750°C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

INTRODUCTION

The Hanford Site in Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks. The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing a Waste Treatment Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. The pretreated High Level Waste (HLW) mixture will be sent to the HLW Vitrification Facility, and the pretreated Low Activity Waste (LAW) stream will be sent to the LAW Vitrification Facility. The two WTP vitrification facilities will convert these process streams into borosilicate glass, which is poured directly into stainless steel canisters. The immobilized HLW canisters will ultimately be disposed of at an offsite federal repository. The immobilized LAW canisters will be disposed of on the Hanford site in the Integrated Disposal Facility (IDF).

The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the River Protection Program (RPP) mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Without additional LAW treatment capacity, the mission would extend an additional 40 years beyond December 31, 2047, the TPA milestone date for completing all tank waste treatment. The life-cycle cost of tank waste cleanup is strongly influenced by the duration of the WTP operations. A significant life-cycle cost savings incentive exists to complete tank waste treatment processing at the earliest practical date.

Supplemental Treatment is, therefore, required both to meet the TPA treatment requirements as well as to cost effectively complete the tank waste treatment mission. The Supplemental Treatment Project will design, construct and operate the processes and facilities required to treat
MINERALIZATION OF LAW

Principal contaminants of concern (COC) contained in the LAW stream that are expected to impact disposal are Tc-99, I-129, U, Cr, and nitrate/nitrite. During the FBSR process the nitrate and nitrites will be converted to N₂ which will exit the process as a gas. Any organics will be pyrolyzed into CO₂ and steam. The mineral waste form will sequester any halides, sulfates, sulfides, and radionuclides while an iron oxide (Fe₂O₃-FeO-Fe₃O₄) denitration catalyst used in the process will sequester the Cr as FeCr₂O₄ spinels. The spinel can also accommodate Ni, Pb, Mn and other transition metal species.

The Na-Al-Si (NAS) based minerals are primarily composed of nepheline (ideally Na₂AlSO₄) and the sodalite family of minerals (ideally Na₈[AlSiO₄]₆(Cl)₂) and nosean (ideally Na₈[AlSiO₄]₆SO₄) which will sequester the halides (including I-129), the sulfates/sulfides, and oxyanions such as ReO₄⁻, TcO₄⁻ (ideally Na₈Al₈Si₆O₂₄(ReO₄)₂). The rhenium sodalite has been made phase pure (Table II) and the phase pure pertechnetate sodalite has been made in the Shielded Cells at the SRNL. The sodalite and nosean minerals have unique aluminosilicate cages that bond the halides and oxyanions atomically into the cage structure.

The sodalites are classified as “clathrasils” which are structures with large polyhedral cavities that the “windows” in the cavity are too small atomically to allow the encaged polyatomic ions and/or molecules pass once the structure is formed. They differ from zeolites in...
Table I. References for FBSR Granular/Monolith Product Durability Testing

<table>
<thead>
<tr>
<th>Pilot Scale Facility</th>
<th>Date</th>
<th>FBSR Diam.</th>
<th>Acidic and Basic Wastes</th>
<th>Granular PCT Testing</th>
<th>TCLP Granular Form</th>
<th>Granular SPFT Testing</th>
<th>Preliminary Performance Assessment</th>
<th>Product Tested</th>
<th>Coal</th>
<th>Particle Size Distrib.</th>
<th>Monolith & Monolith Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Radioactive Testing</td>
<td></td>
</tr>
<tr>
<td>HRI/TTT</td>
<td>12/01 Ref. 12</td>
<td>6”</td>
<td>LAW Env. C</td>
<td>Ref. 11, 12</td>
<td>Ref. 13, 14 (and PUF testing)</td>
<td>Ref. 15</td>
<td>“Tie-back” Strategy</td>
<td>Bed</td>
<td>Removed By Hand</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6”</td>
<td>LAW Env. C</td>
<td>Ref. 16, 17, 18</td>
<td></td>
<td></td>
<td>Fines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAIC/STAR</td>
<td>7/03 Ref. 19, 20</td>
<td>6”</td>
<td>SBW</td>
<td>Ref. 16, 17, 18</td>
<td></td>
<td></td>
<td>Data from Ref. 18, 24, 25 “Tie-back” Strategy</td>
<td>Bed and Fines Separate</td>
<td>Removed by 525 °C Roasting</td>
<td>Yes (20% LAW, 32% SBW and 45% Startup Bed)</td>
<td></td>
</tr>
<tr>
<td>SAIC/STAR</td>
<td>8/04 Ref. 23</td>
<td>6”</td>
<td>LAW (68 Tank Blend)</td>
<td>Ref. 16, 17, 18</td>
<td></td>
<td></td>
<td>Bed and Fines Separate</td>
<td>Bed</td>
<td>Gaussian</td>
<td>Yes</td>
<td>"Tie-back” Strategy Bed and Fines Separate</td>
</tr>
<tr>
<td>SAIC/STAR</td>
<td>7/04 9/04 Ref. 26</td>
<td>6”</td>
<td>SBW</td>
<td>Ref. 16, 17, 18</td>
<td></td>
<td></td>
<td>Bed and Fines Separate</td>
<td>Bed</td>
<td>Gaussian</td>
<td>Yes</td>
<td>"Tie-back” Strategy Bed and Fines Separate</td>
</tr>
<tr>
<td>HRI/TTT</td>
<td>12/06 27 Ref. 28</td>
<td>15”</td>
<td>SBW</td>
<td>Ref. 28</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>HRI/TTT</td>
<td>2008 Ref. 29</td>
<td>15”</td>
<td>SBW</td>
<td>Ref. 30 and 31</td>
<td>Ref. 31</td>
<td>Ref. 4</td>
<td>“Tie-back” Strategy</td>
<td>Bed and Fines Together</td>
<td>Not removed</td>
<td>Bi-Modal</td>
<td>Yes</td>
</tr>
<tr>
<td>Radioactive Testing (This manuscript and additional references that contain more detail)</td>
<td></td>
</tr>
<tr>
<td>SRNL/BSR</td>
<td>2010 2011 2.75”</td>
<td>WTP-SW (recycle)</td>
<td>Ref. 2, 3, 5, 6</td>
<td>None</td>
<td>None</td>
<td>Bed and Fines Together</td>
<td>Not removed</td>
<td>Gaussian</td>
<td>Ref. 2, 3, 5, 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRNL/BSR</td>
<td>2010 2011 2.75”</td>
<td>WTP-SW (recycle)</td>
<td>Ref. 2, 3, 5, 6</td>
<td>None</td>
<td>None</td>
<td>Bed and Fines Together</td>
<td>Not removed</td>
<td>Gaussian</td>
<td>Ref. 2, 3, 5, 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCT – Product Consistency Test method (ASTM C1285-08); TCLP – Toxicity Characteristic Leaching Procedure; SPFT – Single Pass Flow-Through test (ASTM C1662); ANSI16.1/ASTM C1308/EPA 1315 – monolith emersion tests all similar with different leachate replenishment intervals; HRI/TTT – Hazen Research Inc/THOR Treatment Technologies; SAIC/STAR – Science Applications International Corporation/Science and Technology Applications Research; LAW Env. – Hanford low activity waste envelope A, B, and C; SBW – Idaho Sodium Bearing Waste; FY1 1 – Joint program between SRNL, PNNL, ORNL; N/A – not applicable
that the zeolites have tunnels or larger polyhedral cavities interconnected by windows large enough to allow ready diffusion of the guest species through the crystal. With regard to the substitution of all Si tetrahedra to form the cavities or all Al tetrahedra to form the cavities or a mixture of Si and Al tetrahedra to form the cavities they are all treated as solid solutions with the same cavity structures.

The sodalite minerals are known to accommodate Be in place of Al and S₂ in the cage structure along with Fe, Mn, and Zn (Table II). These cage-structured sodalites were minor phases in HLW supercalcine waste forms (1973-1985) and were found to retain Cs, Sr, and Mo into the cage-like structure. In addition, sodalite structures are known to retain B and Ge in the cage-like structures (Table II).

The mineral waste form is produced by co-processing waste with kaolin clay. The cations in the LAW waste; Na, Cs-137, Tc-99, etc, and other species such as Cl, F, I-129, and SO₄ are immediately available to react with the added clay as the clay dehydrates at the FBSR temperatures and the aluminum atoms in the clay become charge imbalanced and hence the clay becomes amorphous (loses its crystalline structure) and very reactive at the FBSR temperatures. Stable crystalline clays are known to become reactive amorphous clays when they lose their hydroxyl groups above 550°C. The cations and other species in the waste react with the amorphous meta-kaolin to form new stable crystalline mineral structures allowing formation and structural templating at the nano-scale at moderate temperatures by the following reactions:

\[
6\text{NaOH} + \text{Na}_2\text{SO}_4 + 3(\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2) \rightarrow \text{Na}_6\text{Al}_6\text{Si}_6\text{O}_{24}(\text{Na}_2\text{SO}_4) + 3\text{H}_2\text{O} \uparrow \quad (1)
\]

\[
6\text{NaOH} + 2\text{NaCl} + 3(\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2) \rightarrow \text{Na}_6\text{Al}_6\text{Si}_6\text{O}_{24}(2\text{NaCl}) + 3\text{H}_2\text{O} \uparrow \quad (2)
\]

\[
6\text{NaOH} + 2\text{Na}(\text{Re,Tc})\text{O}_4^- + 3(\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2) \rightarrow \text{Na}_6\text{Al}_6\text{Si}_6\text{O}_{24}(2\text{Na(Re,Tc)O}_4^-) + 3\text{H}_2\text{O} \uparrow \quad (3)
\]

RADIOACTIVE TESTING AND “TIE-BACK” TO NON-RADIOACTIVE TESTING

Bench-scale, pilot-scale, and engineering-scale tests using kaolin clay have all formed the mineral assemblages discussed above with a variety of legacy US DOE waste simulants. A summary of these tests is given in Table I along with a synopsis of the types of durability tests performed and whether or not monolithic waste forms were fabricated and also tested.

A Bench-scale Steam Reformer (BSR) was available at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot-scale tests performed in 2001, 2004, and the engineering-scale tests performed in 2008 (see references given in Table I). Using this “tie-back” strategy, i.e. demonstrating the similarity of the radioactive mineral products and their durability to the non-radioactive tests allows one to determine the suitability of the waste form for disposal at Hanford based on a 2003 Risk Assessment (RA) of Supplemental Treatment Waste Forms. Detailed discussions of the preliminary RA results are included in Mann et.al. Radioactive testing at SRNL commenced in 2010 with five planned radioactive demonstrations which were designated as Modules A through E. Module A commenced in early 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) secondary waste from the HLW Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125, I-129, and Tc-99 to chemically resemble the anticipated WTP-SW. Re was also added to determine whether Re was indeed a good non-radioactive simulant for Tc-99. Test results are given elsewhere.
Table II. Substitution of Cations and Oxy-anions in Feldspathoid Mineral Structures

<table>
<thead>
<tr>
<th>Nepheline – Kalsilite Structures[^{33,41}]</th>
<th>Sodalite Structures[^{34,35,36,37,38,39,41}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Na_xAl_ySi_zO_4$ where $x=1-1.33$, y and $z = 0.55-1.1$</td>
<td>$Na_6Al_6Si_6O_24_2$</td>
</tr>
<tr>
<td>Hosts Na, K, Cs, Rb, Ca, Sr, Ba and Y, La, Nd [40]; Iron, Ti[^{3+}], Mn, Mg, Ba, Li, Rb, Sr, Zr, Ga, Cu, V, and Yb all substitute in trace amounts[^{41}]</td>
<td>Hosts C., F, Cl, I, Br, Re, Mn, B, Be, Mo, SO(_4), and S</td>
</tr>
<tr>
<td>Higher valent anionic groups such as AsO(_4)[^{3-}] and CrO(_4)[^{2-}] form Na(_2)XO(_4) groups in the cage structure where X = Cr, Se, W, P, V, and As</td>
<td></td>
</tr>
</tbody>
</table>

Radioactive Module B testing, the first LAW study, used SRS LAW from Tank 50 chemically trimmed to resemble Hanford’s blended 68 tank average LAW known as the Rassat simulant.\[^{42}\] The Rassat simulant represents about 85% of the LAW chemistry in the single shell tanks. This provides a tie-back to the 2008 engineering-scale FBSR tests at HRI by TTT which used the same simulant\[^{29}\] and the 2004 pilot-scale FBSR tests at SAIC-STAR.\[^{23}\]

Thus, the availability of data from the SRS LAW test, and comparisons to the 2004 SAIC/STAR facility pilot-scale and the 2008 HRI engineering-scale facility test results outlined in Table I will provide an important correlation using actual radionuclides to these previous tests that used surrogates. Building correlations between work with radioactive samples and simulants is critical to being able to conduct future relevant simulant tests, which are more cost effective and environmentally sensitive than tests with radioactive wastes. Specifically the following “tie-back” correlations can be derived since all the BSR, pilot-scale, and engineering-scale tests ran the Rassat simulant and the radioactive SRS LAW was shimmed to be chemically like the Rassat simulant.

Approximately six hundred forty (640) grams of radioactive product were made for extensive testing and comparative “tie-backs” to the data collected from non-radioactive pilot-scale tests performed in 2004 and 2008 with the Rassat simulant at HRI by TTT and at the SAIC-STAR facility in Idaho Falls by a team of Idaho National Laboratory, TTT and SRNL. The BSR Module B testing was shimmed with excess Resource Conservation and Recovery Act (RCRA) elements as was the HRI/TTT testing. The BSR was additionally shimmed with Tc-99, Re, I-125, and I-129. The Tank 50 waste had enough Cs that an additional shim was not necessary. In addition, 300 mg Tc-99 per kg of product was shimmed into the last 100 mL of feed processed in the BSR to facilitate the X-ray Absorption Spectroscopy (XAS) studies being performed at the National Synchrotron Light Source (NSLS) located at Brookhaven National Laboratory. The samples were simultaneously shimmed with Re to determine how good a surrogate Re is for Tc in the sodalite mineral structures. Discussion of the XAS and TCLP studies is documented elsewhere.\[^{5}\]

Module C testing was performed on actual waste from Hanford Tank SX-105 which contained moderate concentrations of anions such as Cl and SO\(_4\). No shims of excess RCRA components or radionuclides were added. Three hundred seventeen (317) grams of radioactive product were made for testing. In addition, 200 mg Tc-99 per kg of product was shimmed into the last 100 mL of feed processed in the BSR to facilitate the XAS studies being performed at the Stanford Synchrotron Radiation Lightsource (SSRL) located at Stanford Linear Accelerator Center National Accelerator Laboratory. The samples were simultaneously shimmed with Re to determine the effectiveness of Re as a surrogate for Tc in the sodalite mineral structures. For Module C, samples were studied that were in the acceptable REDOX range for Re to be in the...
VII state in a sodalite structure and samples were studied that were known to be outside the REDOX range for Re to be in the VII state, i.e. it would likely be in the +4 state. Discussion of the XAS studies is documented elsewhere.5

Module D testing was performed on actual waste from Hanford Tank AN-103 which is a low anion, high sodium tank waste. Two hundred twenty four (224) grams of radioactive product were made for subsequent testing. For all radioactive tests a simulant was prepared and initial testing was performed on the simulants to determine the operational parameters for the BSR. Module E testing, a high Cr and high anion-containing waste which is a mixture of Hanford Tanks AZ-101 and AZ-102, is currently on programmatic hold.

RESULTS AND DISCUSSION
Mass balance

Determining the disposition of key contaminants within a treatment process is a critical consideration for any technology selection process. Previous FBSR engineering-scale tests with LAW simulants indicated that >99.99% of the nonradioactive surrogates for Tc-99 and Cs-137 and >94% of the I-129 surrogate were captured in the mineral product and not released to the off-gas treatment system. For the radioactive BSR tests, mass balance data have been obtained for Tc-99, I-129, I-125, Cs-137 and rhenium. This includes analyzing the granular product, liquid condensate, off-gas filters, and rinse solutions from the post-test cleanout of the BSR apparatus.

Although mass balance does not relate directly to waste form performance, confirming the fate of Tc, Re and I from the actual waste tests is important to confirm prior data from tests with simulants. Reproducible mass balance results add confidence that the key contaminants of concern can be accurately accounted for within the limits of measurement accuracy and detection limits. Mass balance targets for previous demonstrations were to close within +/-10% for major constituents and +/- 30% for minor constituents.29 In the BSR testing, Tc, Re, I were all present at levels considered minor constituents. The mass balances for Modules A, B, C, and D consisted of identifying key input and output streams and then analyzing these streams for key species.

Mass balance results from Modules A, B, C and D are given in Table III and will be used to inform the down select process. Module A findings are summarized below and given in reference 6. The data is summarized in Table III for reference to the other modules since Cs-137 was very high in this feed and the feed had been shimmed with Re, Tc-99, I-129, I-127, and I-125. The significant findings to date of the mass balance from the SRS LAW (Module B) Rassat 68 tank blend, the Hanford (Module C), and the Hanford LAW #2 sample (Module D) are given below: Good mass balance closure on Tc-99, Re, Cs-137, and I-129,-125,-127 in all BSR tests (radioactive and non-Radioactive)

\begin{itemize}
 \item Module A Radioactive - SRS DWPF Secondary Waste shimmed to match WTP-SW
 \begin{itemize}
 \item 102\% total recovery of Re in the product streams
 \item 109\% total recovery of Tc-99 in the product streams
 \item 98\% recovery of I-129, ~93\% recovery of I-125 (more reliable than analysis of I-127)
 \end{itemize}
 \item Module B Radioactive - SRS Low Activity Waste shimmed to match Hanford LAW
 \begin{itemize}
 \item 98\% total recovery of Re in the product streams
 \item 87\% total recovery of Tc-99 in the product streams
 \item 69\% total recovery of I-129 in the product streams and 84\% recovery of I-125
 \end{itemize}
 \item Module C - Hanford LAW #1 - medium anion waste (SX-105)
\end{itemize}
- 71% total recovery of Re in the product streams
- 80-83% total recovery of Tc-99 in the product streams
- 75-89% recovery of I-129; this is the difference of two very small concentrations (input and output) as no excess I-129, I-125 or I-127 was shimmed in this waste
- Module D - Hanford LAW #2 - low anion waste (AN-103)
 - 88% total recovery of Re in the product streams
 - 83-86% total recovery of Tc-99 in the product streams
 - 100% recovery of I-129; this is the difference of two very small concentrations (input and output) as no excess I-129, I-125 or I-127 was shimmed in this waste
 - 83-86% total recovery of Tc-99 in the product streams
 - 100% recovery of I-129; this is the difference of two very small concentrations (input and output) as no excess I-129, I-125 or I-127 was shimmed in this waste

Mineralogy

The mineralogy observed for the BSR non-radioactive and radioactive samples for Module B (Rassat simulant) are the same as those of the 2008 ESTD bed products made with the Rassat simulant. The phases were primarily, nepheline, sodalite and nosean. The phases observed agree with the predicted mineralogy from the process control model (MINCALC™) used to target the ESTD and BSR campaigns.

For Module C, the mineralogy of the non-radioactive product from the BSR matched the mineralogy of the radioactive product from the BSR. The phases observed agree with the predicted mineralogy from MINCALC™ of ~ 80-90 wt% nepheline with ~20-10 wt% sodalite and nosean. In this case, the nosean is present in smaller concentrations than sodalite as there is more SO₄ in the feed than halides. For Module D, the mineralogy of the non-radioactive product from the BSR matched the mineralogy of the radioactive product from the BSR.

Waste form durability (Product Consistency Test; ASTM C1285)

In mineral waste forms, as in glass, the molecular structure controls dissolution (contaminant release) by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. For example, in 1998 experiments were performed at Lawrence Livermore National Laboratory (LLNL) by Bourcier on the mineral albite (NaAlSi₃O₈) and on albite glass. During SPFT testing the albite mineral dissolution was determined to be two orders of magnitude less than the albite glass dissolution. The author states, “the same mechanisms are operating with both glasses and minerals but at different rates.” Thus the long term performance of both glass and mineral waste forms are controlled by a rate drop that is affinity controlled. Therefore, the discussion regarding monolith durability is considered supplementary and not discussed in this paper since monolith selection is based on the scenario that the monolith will not compromise the mineral product durability.

Short term PCT tests were performed by SRNL and Pacific Northwest National Laboratory (PNNL) to compare the relative stability of the LAW BSR products (radioactive and non-radioactive) to the durability of the 2001 and 2004 LAW pilot scale tests on simulants and 2008 LAW engineering scale tests on simulants. Long term PCT tests were performed (e.g. 1,3,6,12 month) to confirm that the performance of the mineral (ceramic) waste form is affinity controlled like vitreous waste forms, i.e. the long term dissolution rate drop is affinity controlled. The short-term PCT data is in agreement with the data generated in 2001 on AN-107, the 2004 SAIC-STAR facility samples with the Rassat simulant. The correlations shown in Figure 1 were
generated with the 7 available PCT responses from the 2001 and 2004 testing of both the bed and the fines. The HRI/TTT 2008 engineering-scale studies are overlain for comparison for the Table III. Mass Balance Closure for Radioactive Testing of Modules A, B, C and D

<table>
<thead>
<tr>
<th>Method</th>
<th>Specie</th>
<th>RAD A (DWPF Melter Recycle WTP Formulation)</th>
<th>RAD B (Tank 50 Rassat Formulation)</th>
<th>RAD C (SX-105)</th>
<th>RAD D (AN-103)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total Recovery (%)</td>
<td>% in Solids</td>
<td>Total Recovery (%)</td>
<td>% in Solids</td>
</tr>
</tbody>
</table>
| Radio-
metric | Cs-137 | 94 | 99.32 | 124 | 99.0 | Indeterminate | Indeterminate |
| I-125 | 93 | 98.23 | 84 | 95.12 | Not Shimmered | Not Shimmered | | |
| I-129 | 98 | 98.04 | 69-87 | 94.50 | 74.6-88.7 | 98.33-98.59 | 100.26 | 100 |
| Tc-99 | 109 | 100 | 87 | 87.90 | 80.24 | 99.74 | 86.15 | 99.70 |
| ICP-MS | Tc-99 | Not Measured | Below Detection | 82.51 | 99.70 | 82.85 | 100 |
| I-127 | 102 | 99.49 | 98 | 97.90 | 70.73 | 99.53 | 87.69 | 99.59 |
| I-127 | 151 | 94.0 | 94 | 94.94 | Not Shimmered | Not Shimmered |
| ICP-
AES | Al | 100 | 99.94 | 110 | 100 | 105.35 | 99.99 | 98.35 | 100 |
| Cl | 129 | 100 | 83 | 94.10 | 77.73 | 98.62 | Indeterminate | |
| Cr | 181 | 99.94 | 120 | 99.90 | 107.75 | 100 | Indeterminate |
| Na | 151 | 99.72 | 104 | 99.50 | 103.82 | 99.95 | 101.70 | 99.97 |
| Si | 110 | 99.91 | 110 | 100 | 108.52 | 99.98 | 105.00 | 99.98 |
| IC | SO4 | Indeterminate | 113 | 95.80 | 100.33 | 99.02 | Indeterminate |

a. solids include bed and fines; fines in condensate and crossbar ranged from zero to 0.04% of the solids
b. solids include bed and fines; fines in condensate and crossbar ranged from zero to 0.5% of the solids
c. solids include bed and fines; fines in condensate were zero as a quartz wool plug had been added; crossbar solids ranged from 0-2.79% except for I-129 which was 12.2% and Cl which was 4.98%
d. solids include bed and fines; fines in condensate were zero as a quartz wool plug had been added; crossbar solids ranged from 0-2.83% except for I-129 which was 30.54%

LAW samples (P1B Product Receipt, PR, and High Temperature Filter, HTF, fines) which appear as “x” marks on the graphs. The HRI/TTT 2008 engineering-scale studies for the WTP-SW are overlain (PR and HTF) as open diamonds. The BSR data for non-radioactive and radioactive Modules B and C are overlain with “doughnut” shaped circles around them.

As with the 2001 and 2004 data, the pH increases (becomes more caustic) as the surface area of the material is decreased (see Figure 1a). For glass waste forms, pH usually increases with increasing surface area. This is indicative that a buffering mechanism is occurring. Based on the trend of alkali (Na) release being co-linear with Al release (Figure 1b) it was hypothesized that this was an aluminosilicate buffering mechanism.17,18

The Na release is co-linear with the Al release in the BSR and 2008 engineering scale data as well as in the historical 2001 and 2004 data as seen in Figure 1b. All the other cations appear to be released as a function of the solution pH (Figure 1c, d and e) and this includes Si, S, and Re. This is also in agreement with the historical data.

The Re release plot for the BSR (radioactive and simulant Modules B and C), the 2008 engineering scale, and the historic data appear in Figure 1e. Due to the low concentrations of rhenium, it is a difficult element to measure. It is noteworthy that the Re release from the Module B simulant PCT tracks closely to the Re measured at SRNL for the Module B radioactive Re. These Re concentrations as measured by SRNL are biased low compared to the Re release measured by PNNL for simulant Module B PCT’s which were performed independently. However, the simulant Module B Re release, as measured by PNNL, tracks with the radioactive...
Tc-99 measured by SRNL. Likewise, for Module C, the SRNL analyses for Re in the simulated and radioactive campaigns track each other and track the Tc-99 measured by SRNL. This demonstrates that Re is a good surrogate for Tc-99 during leaching experimentation and that the current radioactive and simulant BSR campaign products match the historic and engineering scale data: the “tie-back” strategy is proven.

The Re releases in the circle on Figure 1e are older data which is also biased low for Re. This is because SRNL changed the dissolution method to measure the Re in the PCT solids being tested during the 2008-2009 timeframe. The older data were measured with a high temperature fusion preparation which may have volatilized some of the Re. Since that time, SRNL has performed a low temperature dissolution method on the solids which has improved the retention of Re. It should be noted that all the release rates in Figure 1 are below 2 g/m².

Long term PCT tests are performed in the same manner as the short term tests but PCT Method B allows for longer time intervals, in this case, 1 month, 3 month, 6 month, and 1 year tests. PCT-B tests are useful for generating concentrated solutions to study chemical affinity effects on the dissolution rate. Method B tests at high temperatures and high glass/solution mass ratios can be used to promote the formation of alteration phases to (1) identify the kinetically favored alteration phases (2) determine their propensity to sequester radionuclides, and (3) evaluate the effect of their formation on the continued waste form dissolution rate. These tests are in progress and the results will be reported elsewhere.5

CONCLUSIONS

The FBSR process is a good technology for Hanford Supplementary Treatment. The mass balance data indicates that Tc-99, Re, Cs, and I (all isotopes) report to the mineral product and not to the off-gas. The Tc-99 and Re show similar behavior in partitioning between product and off-gas so for mass balance Re is an acceptable simulant for Tc-99. The Tc-99, Re, SO₄ and Cr behavior have been found to correlate to the oxygen fugacity in the FBSR/BSR process, i.e. the REDuction/OXidation (REDOX) equilibrium.

The mineralogy testing indicates that the phases observed agree with the predicted mineralogy from MINCALC™ of ~ 90 wt% nepheline with ~10 wt% sodalite and nosean. The mineralogy of all the radioactive campaigns and simulants products from the BSR and ESTD presented here and the simulants tested in 2001 and 2004 pilot scale studies with Hanford simulants all have the same mineral assemblages.

The conclusions from the short-term durability testing using ASTM C1285 are as follows: (1) short term ASTM C1285 testing is below 2 g/m² for the constituents of concern (COC), (2) Use of BET surface area to account for the surface roughness of the mineral granules demonstrates that the FBSR product is 2 orders of magnitude lower than the 2 g/m² benchmark, (3) Use of the geometric surface area, which ignores the surface roughness of the mineral granules compared to glass, gives an equivalent leach rate to vitreous waste forms; (4) PNNL and SRNL data from ASTM 1285 and TCLP testing agree. The TCLP data are acceptable when RCRA metals are not shimmed in excess and REDOX is controlled.

ACKNOWLEDGEMENTS

The work performed at SRNL was supported under Contract No. DE-AC09-08SR22470 with the U.S. DOE. The Module B through D campaigns were funded by EM-31 through Washington River Protection Solutions (WRPS). The Module A campaigns were funded by a DOE Advanced Remediation Technologies (ART) Phase 2 Project through THOR Treatment Technologies (TTT). Work was performed in collaboration with PNNL, ORNL, and WRPS.
Figure 1. Comparison of the PCT response from the BSR products (radioactive and non-radioactive) to previous pilot and engineering-scale products tested.
REFERENCES