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ABSTRACT

Detection and identification of shielded and masked nuclear materials is crucial to national security, but vast
borders and high volumes of traffic impose stringent requirements for practical detection systems. Such tools
must be be mobile, and hence low power, provide a low false alarm rate, and be sufficiently robust to be
operable by non-technical personnel. Currently fielded systems have not achieved all of these requirements
simultaneously. Transport modeling such as that done in GADRAS is able to predict observed spectra to
a high degree of fidelity; our research is focusing on a radionuclide identification algorithm that inverts this
modeling within the constraints imposed by a handheld device. Key components of this work include incorpo-
ration of uncertainty as a function of both the background radiation estimate and the hypothesized sources,
dimensionality reduction, and nonnegative matrix factorization. We have partially evaluated performance
of our algorithm on a third-party data collection made with two different sodium iodide detection devices.
Initial results indicate, with caveats, that our algorithm performs as good as or better than the on-board
identification algorithms. The system developed was based on a probabilistic approach with an improved
approach to variance modeling relative to past work. This system was chosen based on technical innovation
and system performance over algorithms developed at two competing research institutions. One key outcome
of this probabilistic approach was the development of an intuitive measure of confidence which was indeed
useful enough that a classification algorithm was developed based around alarming on high confidence tar-
gets. This paper will present and discuss results of this novel approach to accurately identifying shielded or
masked radioisotopes with radiation detection systems.

BACKGROUND

Radioisotope identification algorithms based on gamma-ray spectra take an unknown gamma-ray spectrum
recorded by a detector as input and attempt to determine which isotopes emitted the observed gamma
photons. Approaches can generally be divided into two broad areas. The first focuses on specific regions
of interest in the unknown spectrum where gamma photons from certain isotopes would be expected to be
seen. This approach is exemplified by peak picking, in which the locations of peaks in the spectrum are used
to identify the gamma-ray sources (see, for example Routti and Prussin [9]). In a noisy spectrum, it can
be difficult to determine the exact location of the peaks, and many approaches to this problem have been
explored [11]. Furthermore, when shielding is present, the photons emitted at the expected peak energy may
be shifted down to lower energies, to the point where a peak is not identifiable.

In the second approach, the algorithm attempts to match the full spectrum with templates of spectra
from known isotopes. To accomplish this, some measure of similarity must be chosen; the most common



choices are correlation coefficients and error measures. For correlation measures, the correlation coefficient
is computed between an unknown spectrum and a library of reference spectra [17].

Many authors have proposed least square error approaches. Salmon [1] and McWilliams, et al. [2] used
non-weighted least squares procedures to solve for the target strengths of isotopes in an unknown spectrum.
The former author mentions that a weighted approach would be more robust but does not pursue the idea.
Other researchers have pursued weighted least squares approaches [3, 4, 5, 6, 7, 8, 10]. In particular, Eckhoff
[10] describes a nonnegative weighted least squares algorithm, where the weights are determined by variance
estimates from the observed spectrum, the template spectrum, and the estimator. If the template set of
known spectra is constructed without shielding, however, the usefulness of these approaches is reduced when
shielding materials are present. These approaches either assumed simple background subtraction or that the
background could be described as a combination of the template sets; no separate background contribution
to the weighting was incorporated.

Gamma photons interact with matter via several different processes: Compton scattering, the photoelec-
tric effect, and pair production. We will not give a detailed description of these effects here because they are
well documented in the literature (e.g., Knoll [13] or Gilmore and Hemingway [12]). However, in general, the
interaction of gamma photons with matter between the source and detector causes the photon to be detected
at a different energy than that at which it was emitted. This effect complicates the process of radioisotope
identification because the measured spectrum from a given isotope may be significantly different from that
which was expected. Therefore it is highly desirable to develop radiation isotope identifier (RIID) algorithms
which are robust to the effects of shielding.

The Multiple Isotope Material Basis Set (MIMBS) method for RIID works on the principle that the effects
of any shielding material can be approximately modeled using the effective atomic number. MIMBS uses a
small number of basis shielding materials and unshielded reference spectra and attempts to solve, using a
least squares approach, simultaneously for the composition of the shielding and the source emitters [16].

ALGORITHM REVIEW

In previous work [25], the authors developed an algorithm for shielded radioisotope identification based on
modeling the detected spectrum as a random variable

Ky =~ Le + Ay + g(Le + Ap) (1)

where ¢ = [¢(1), ¢(2), ..., ¢(m), ...,¢(N)]" are the unknown isotope strengths, and L is our library of expected
spectra for different isotopes in different shielding conditions (L(n,m) = A;(n) is the expected count for spec-
trum m in channel n for ¢(m) = 1). g(u) indicates a normally-distributed random variable with mean p and
variance o2 and let n(0?) = n(0, 0?), and vector arguments to the normal function are interpreted as the diago-
nal values of a covariance matrix with no non-zero off-diagonal values. Ay = [Ay(1), Ap(2), .., Ap(i), .., Ap(N)] T
is the background spectrum estimate. We project into a scaled space &(n) = [ky(n) + kyr (n)]_1/2 Given this
model, we can estimate the pdf of observed channel counts

1

p(ku|kT7leé) = . G:L‘p(f(ku,kr),é) (2)
(2m)N2 T, s(0)
where the primes indicate the scaled variables and
1
f(ku, kr, €) = _§(L/C L klr])T(L/C — Ky —¥,]) (3)

which we note is a simple function of the distance between the expected target spectrum Lé& for isotope
strength vector ¢ and the estimated target spectrum k, — k, in the scaled space. As such, we can use this



distance as a measure of fit of the model to the data. More particularly, we have a simple measure of how
likely a particular model component is to be present in the data, since we can calculate how much the pdf
increases when we add that component to the model:

p(kulkr, L', €) — p(kylky, L', Cim) (4)

where L'; and ci, are, respectively, the expected library and estimated target strengths with the isotope in
question removed.

CROSS-DETECTOR TESTING

In previous work, we reported the above-described algorithm’s successful performance in an independent test
performed after the algorithm was trained on simulated Identifinder spectra and tested against both collected
and simulated Identifinder spectra. In the new tests reported below, we were interested in evaluating cross-
detector performance. The original Identifinder-trained algorithm was applied to real data collected by
Applied Research Associates on a variety of sources shielded by a variety of different materials, but using
a different manufacturer’s handheld detector. The data was organized into three data sets, and the sources
and shielding materials for each data set are listed in Table 1.

Set Isotopes Shields
A | Co57, Co60, Ga67, Tc99m, Inlll, Unshielded , 1-6 cm steel,
1131, Bal33, Xel33, Cs137, 0.5” steel box, 0.5”-1.0” aluminum box,
T1201, U238, Am241, AmBe 0.257-0.5” Pb Box, 5.0” Water, Poly., Pig
B Cs137, Eulb2, U235, U238, 27-4” Pb bricks + clamshell,
Pu239, Pu240 2-5 c¢m Steel Cylinder, 0.5”-1.0” Pb Box,
2”7 Pb Bricks, 0.257-1.0” DU, Foil
C Gab7, Tc99m, 1131, Cs137, 1.0” Al Box, 2-5 cm Steel,
Eul52, T1201, U233, 2” Pb Pig, 0.25" DU, 0.5” DU,
U235, U238, Pu239 0.57-1.0” Pb Box, 2.0” Pb Bricks

Table 1: Isotopes and shielding materials used in the three data sets.

The on-board identification algorithm was used at the time of collection, and we compare the performance
of our algorithm (labeled APL) to that of the on-board algorithm (labeled DetectorB). The classification
results are given in Table 2.

Algorithm /Data set | Correct | Miss | False Alarms
APL / A 71 41 51
DetectorB / A 56 56 65
APL /B 7 42 29
DetectorB / B 18 31 26
APL/ C 24 62 23
DetectorB / C 8 78 24

Table 2: Identification performance.



As can be seen in the results, these were challenging data sets for both algorithms. Our algorithm
performed better on sets A and C, with more correct classifications and fewer misses and false alarms than
the DetectorB. On data set B, however, the DetectorB had better performance. On this data set, many of the
errors made by our algorithm involved identifying the wrong Uranium or Plutonium isotope. Additionally,
the training data used for our algorithm was based on a simulated version of a detector from a different
manufacturer; we believe that this mismatch between the training and testing data could be responsible for
some errors.

PROPORTIONAL-WIDTH SMOOTHING

Data reduction is important as it enables more efficient processing suitable for handheld devices. More
critically, it can also improve classification performance through the decrease in the number of parameters
that need to be estimated. Handheld detectors have energy resolution that differs as a function of energy,
and thus the maximal preservation of information for a given dimensionality must reflect this resolution.
A common method of reducing data is smoothing and subsampling. Proportional width smoothing, where
the smoothing width is proportional to the center energy, has been used with success in many applications,
including automatic classification of speech signals (motivated by the human ears differing sensitivity to
frequency change as a function of frequency). We performed proportional width smoothing of the isotope
database using triangular filters; the filter bank is illustrated in Figure 1 below. An example of this smoothing
applied to gamma ray spectral data is shown in Figure 2. The plot at right shows the original spectrum of
Ra226 shielded by 0.953 cm of lead. The plot at left shows the smoothed spectrum. The number of spectral
coefficients has been reduced by more than an order of magnitude, from 694 to 44. Nonetheless, all of the
major spectral peaks, and most of the minor ones, are preserved in the smoothed spectrum.
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Figure 1: Proportional-width filter bank using overlapping triangular filters for data reduction.

Isotope Identification in reduced data space

The advantage of data reduction becomes apparent in automatic classification, as the results given in Table 3
indicate. Isotope classification performance using the non-negative least squares algorithm (Isqnn in Mat-
lab) increased slightly (from score of 67.31% to max of 67.96%) over our baseline results [25] over a range of
reduced data cardinalities, up to a nearly order-of-magnitude reduction (from 694 to 88 coefficients). Further
reduction to only 44 coefficients saw a small reduction of performance (65.55%). While these performance
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Figure 2: left: gamma ray spectrum of Ra226 shielded by .953 cm of lead; right: same isotope
spectrum after data reduction using filter bank of Figure 1.

gains are small, they are significant because of the reduction in overall computation that results from being
able to operate in this greatly reduced data space. Handheld detectors may not be able to process the full
band data using advanced algorithms, but may be able to do so on lower cardinality data. Furthermore, clas-
sifier training and performance is more robust when fewer parameters, corresponding to few input variables,
need to be estimated.

LSQNONNEG | 44 bands | 88 bands | 130 bands | 172 bands | 214 bands | 694 bands

(all)
Score 65.55% 67.73% 67.89% 67.96% 67.55% 67.31%

(% of possible)

Table 3: LSQNONNEG results

We have also explored an alternative to our current approach of using nonnegative least squares to
estimate isotope strengths. Specifically, we have run initial experiments using regression under a Poisson
data model; the results are shown in Table 4. A slight increase in performance on the reduced data was
obtained using iterations derived under a Poisson assumption. Interestingly, performance dropped on the full
data set when Poisson regression was used. One possible reason for this effect is that the scoring algorithm
we use assumes Gaussian-distributed data. For large counts, the Poisson distribution approaches a Gaussian.
The smoothing we use in data reduction has the added effect of producing a large-count Poisson random
variable for energy bins with significant counts, so the Gaussian assumption is reasonable. The same does
not hold true for the unsmoothed data, however. If this hypothesis is valid, then the solution is to modify
the scoring algorithm to likewise employ Poisson statistics.

MATRIX TRANSPORT MODELING

We can define a partitioning of a portion of the gamma-ray energy spectrum into Ny regions by choosing
a set of boundaries sy(i),7 = 0,1,...N; and s;(i) < s;(i + 1). Using this notation, we can represent the
spectrum of a radioactive source as a length-Ny vector x, where z(i) is the probability that the source will
emit a photon with energy between s;(i) and sy(i + 1) over some reference time period. Given a second



POISSON 88 bands | 172 bands | 694 bands | LSQNONNEG
(all)

Score 68.42% 68.25% 65.72% 67.31%
(% of possible)

Table 4: POISSON results

partioning of a region of the energy spectrum defined by sps(j),j = 0, 1,...Nas (which is not necessarily the
same as that defined by sy), we can represent the expected spectrum of gamma rays which pass through a
material with label n as y = A,;x, where A, (j,7) is the probability that a photon emitted from the source
with energy in partition ¢ will pass through material n with energy in partion j. Such a matrix is referred
to as a transition matrix or response matrix. Similarly, we can represent the response of a real detector
(with energy partioning defined by sp(k),k = 0,1,...Np) to an entering gamma-ray spectrum y as z = By
where B(k,j) is the probability that a photon entering the detector with energy in partition j will result
in a detection 1 with energy in partion k. (We note that, for a real detector with real time-gating, this
formulation neglects cases where multiple photons enter the detector close enough in time that they fail to
be resolved as separate events.) The entirety of the mapping from emitted to detected spectrum can then be
modeled as z = BAx.

Estimation of these matrices for specific detectors and shielding conditions was done using software
developed at Sandia National Laboratories for this research. The software, which uses the transport modeling
engine underlying GADRAS, enables the user to specify arbitrary partitions sy, spm and so and to select
detector and shielding conditions with the same flexibility as in GADRAS. An example transfer matrix, for
Identifinder-NG, is shown graphically in Figure 3.

It has been noted that, for many tasks including source isotope identification, deconvolution of the
transition matrix would be of great value in simplifying the search algorithm. This has been studied in
situations where there is no intervening material 7 (i.e. where A is the identity matrix), in which case the
goal has been stated as restoring counts in the Compton continuum onto their corresponding photo-peaks.
However, for detectors of practical use the matrix is ill-conditioned and direct inversion is unstable [24]. The
well-known Shepp and Vardi ML-EM algorithm provides an iterative method for estimating y which uses
only the forward transfer equation and then updates based on the error in the match of the predicted to
the observed data. However, the instability in the direct inversion is related to the desired resolution of the
estimate of the emitted spectrum x; as we presented in the previous section, a proportional-width smoothed
filtering can allow a reduced-dimensionality estimate of the input and thus of the transfer matrix. As a result,
we can use pseudoinverse methods to use the high-dimensional detector output to create a low-dimensional
detector input estimate which can then be searched over shielding space using much simpler methods. An
example is shown in Figure 4.

NON-NEGATIVE MATRIX FACTORIZATION

The effects of shielding on gamma ray spectra are two-fold: an overall attenuation of emissions, and a shift of
the emitted gamma rays to lower energies. This energy shift can be represented by a transform matrix that
maps the input energy to the output energy of the emitted gamma rays. In future work, we will investigate
methods to compensate for shielding and detector variability by combining modern signal processing meth-
ods such as non-negative matrix factorization (NMF) [21] with GADRAS-based modeling of transport and
detector physics to. In an ongoing collaboration with APL-UW, Sandia National Laboratory is modifying
GADRAS to work in a batch mode and to model the shielding and detector physics separately. We will
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Figure 3: Log values of the estimated transfer matrix for the Identifinder-NG. One vertical
column of this matrix represents the probability of detection at different energies, given a
particular energy for a photon that enters the detector.

use this tool to build a database of shielding transfer functions and shielded and unshielded isotope spectra
for a wide range of isotopes and shielding materials/thicknesses. A large database that includes the many
possible sources found in operational environments will also improve performance in the presence of clutter.
Shielding imposes an additional source of data variation (beyond that due to source variation), both by
reducing peaks in the spectrum and by shifting emitted gamma rays to lower energies. New high-resolution
(1% to 3% FWHM) gamma-ray spectroscopy systems will be particularly sensitive to shielding-induced spec-
tral variation. Sparse NMF [22] will be used on observed gamma-ray spectra to separate shielding effects
from hypothesized source spectra, yielding an estimate of the source spectrum which will be used for isotope
identification. The details of this factorization are described next.

In the general case, we observe a spectrum k composed of a background spectrum Ay and a sum of N
isotope spectra A, with strengths ¢(m), which are subject to the effects of shielding and the detector in use,
represented by the matrices A and B, respectively. The matrix A models the shift of energy by the shielding
to lower energies, and hence is non-diagonal. The observed spectrum can then be expressed succinctly in the
form K = Ap + >, BAc(m)Ap,. The challenge is to estimate the strengths c(m) of an unknown number
of isotopes, given an observed gamma ray spectrum, a library of known isotope spectra A,,, an estimate
of the background A, and the detector characteristics given by B. The shielding transform A is unknown.
Sparse non-negative matrix factorization will be useful in order to prevent over-fitting with multiple small
components, as standard least squares would do.

The standard problem in non-negative matrix factorization is to find non-negative matrices W and H
that minimize ||V — WH]|? for some observed data matrix V. Sparse NMF adds a sparsity constraint such
as the L) norm on the matrix H. The solution to this problem is iterative and typically involves alternating
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Figure 4: Removal of the effects of detector mapping and subsequent removal of (unknown)
shielding effects. The (simulated) observed spectrum is shown in blue. For a known detector
response matrix, the ML-EM estimate of the emitted spectrum is shown in red. The proposed
method, shown as a black dotted line, has fewer artifacts and higher counts at the true source
peaks, but at a tradeoff of lower resolution at high energies.

projections to solve for W and H. We need to solve a more general problem. Equating the NMF problem
with our gamma ray spectrum formulation kK = Ay + >, BAc(m)A,, we identify the observed spectrum &
with the data matrix V, the vector of unknown isotope strengths ¢ with the unknown matrix H, and the
unknown shielding transform A with the matrix W. Our problem is more general, however, in that we also
have the known detector operator B, and the known isotope spectra \,,, — just their strengths ¢ are unknown.
Denoting this library of isotope spectra by L, absorbing the background spectrum into the observed spectrum
by defining k = Kk — Ay and adding a sparsity constraint to the isotope strength vector, we have the general
sparse NMF problem for gamma ray spectroscopy:

A,é:argrgin\|k—BALc||2+fy|c\1. (5)
,C

Implicit in this formulation is a Gaussian assumption on the residual, imposed by the use of squared error
as the optimization criterion (NMF was originally implemented under this Gaussian assumption). This short-
coming may be avoided by performing sparse NMF using Poisson statistics. Recent work has investigated
NMEF for other distributions, including Poisson [23], which is more appropriate for gamma-ray spectroscopy.
This approach would use (and yield) the correct statistics, and also provide an efficient parameterization for
the data through maximum likelihood optimization, leading to improved classification performance.

In all cases, a measure of the goodness of fit is provided by the model error at end of the NMF routine,
which will be used to assign a confidence to the isotope identification. For testing, performance estimates
can be obtained through a combination of predictor output probabilities (classification error) and modeling
error. The heavy computational load would be off-line during classifier design; testing should be very efficient.

SUMMARY

The work presented in this paper represents updates in a number of areas related to a previously successful
radioisotope detection algorithm. We showed new results on a mismatched cross-detector training/testing



experiment. We showed a physics-justified approach to reducing the resolution of the spectral estimate, and
demonstrated that it could be achieved without degradation of the algorithm performance. We used this
result to suggest a straightforward method of removing detector effects and focusing on shielding effects as
a method of increasing future algorithm performance. We introduced non-negative matrix factorization as a
method for analyzing the shielding effects in this environment.
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