Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

M-AREA MIXED WASTE GLASSES: II. DURABILITY AND VISCOSITY TESTING OF HIGH ALUMINUM AND URANIUM CONTAINING BOROSILICATE WASTE GLASSES

C. M. Jantzen J. B. Pickett* November 2018 SRNL-STI-2011-00702 Revision 0

*Retired

SRNL.DOE.GOV

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2. representation that such use or results of such use would not infringe privately owned rights; or
- 3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Keywords: mixed waste, high alumina waste, high uranium wastes, treatability study, durability testing, TCLP, durability modeling

Retention:

M-AREA MIXED WASTE GLASSES: II. DURABILITY AND VISCOSITY TESTING OF HIGH ALUMINUM AND URANIUM CONTAINING BOROSILICATE WASTE GLASSES

C.M. Jantzen J.B. Pickett*

* Retired

November 2018

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Prepared for the U.S. Department of Energy under contract number DE-AC09-08SR22470.

REVIEWS AND APPROVALS

AUTHOR:

Carol M. Jantzen, Waste Form Processing Technologies

TECHNICAL REVIEWER:

David K. Peeler, Process Technology Programs

APPROVERS:

Connie C. Herman, Director Waste Form Processing Technologies Date

Date

Date

EXECUTIVE SUMMARY

Radioactive waste sludges that were high in Al_2O_3 (14.17 to 29.02 wt%) and U_3O_8 (2.93 to 5.66 wt%) while being simultaneously low in Fe₂O₃ (1.26 to 2.01 wt%) were vitrified into borosilicate glass in the Savannah River Site's (SRS) M-Area. The overall Na₂O concentrations of borosilicate and soda-lime-silica (SLS) glasses studied at the Savannah River National Laboratory (then the Savannah River Technology Center) prior to startup of the M-Area melter ranged from 6.80 to 27.09 wt%, while the B₂O₃ concentrations ranged from 0.04 to 32.62 wt%. These glass formulations and measured durability's may, therefore, be useful for formulation and testing of high Al_2O_3 and U_3O_8 sludges to be vitrified in the Defense Waste Processing Facility (DWPF) or the Hanford Tank Waste Treatment and Immobilization Plant (WTP).

Initial glass formulations for the high Al_2O_3 and U_3O_8 M-Area waste sludges were proposed by Savannah River National Laboratory (SRNL) in the 1990-1994 timeframe. The M-Area wastes were both radioactive and Resource Conservation and Recovery Act (RCRA) hazardous "listed" mixed wastes. The wastes were F006 listed as they were nickel plating line wastes. The initial SRNL glass formulations were used as the basis for privatization of a vitrification Vendor Treatment Facility (VTF). Once the waste was vitrified, it was delisted and buried on the SRS.

Extensive durability testing was performed on forty-three high Al₂O₃ and U₃O₈ glasses made in crucibles with the actual M-Area waste during a treatability study at SRNL. Thirty-three glasses were borosilicate glasses and ten glasses were SLS glasses. The durability testing of the crucible glasses included American Society for Testing and Materials (ASTM) C1285 (Product Consistency Testing) at 90°C in deionized water for 7 days duration in deionized water and longer-term testing at 25°C in E-Area groundwater since the actual M-Area waste glass was eventually buried in the E-Area burial ground. Analysis of the homogeneity of the laboratory glasses was assessed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Measurement of selected glass viscosities and densities are also reported.

Examination of the Al_2O_3 solubility limit in the M-Area glasses was used to define new compositional regions of technological importance for DWPF and WTP. The data indicates that the P_2O_5 limit of 2.25 wt% (3 wt% PO₄) set for DWPF glass in 1987 may not apply for high alumina glasses, especially those with no Li_2O or minimal Li_2O in the frit. This is based on the data presented in this study for homogeneous and durable borosilicate glasses (SLS glasses were excluded) and the following:

- the DWPF P₂O₅ limit was set based on a simulated Stage 1 waste glass at 28 wt% waste loading: the glass contained only 4.01 wt% Al₂O₃
- the DWPF P₂O₅ limit was set using frit 165 and a 72 wt% frit loading: the glass contained 5.04 wt% Li₂O and 10.82 wt% Na₂O
- the simulated glass contained no U_3O_8 like the glasses in this study (range of U_3O_8 was 2.93-5.25 wt% in this study).
- the 3 wt% PO₄ limit agreed with data in literature which cited solubility limits in silicate and borosilicate glasses between 3-4 wt% PO₄.

Therefore, combinations of low Li₂O and P₂O₅ appear to allow high Al₂O₃ glass loadings up to 25-26 wt% without compromising glass durability. This was confirmed for two glasses that were made in a 2007 DWPF study that achieved 26.6 wt% Al₂O₃ without compromising glass durability. A potential means of accomplishing this goal would be to add a source of phosphate to the waste or to the frit/glass forming chemicals. The DWPF design basis sludges were projected to only contain ~0.22 (Purex High Activity Waste, HAW), 0.16 (Average Waste), and 0.13 (HM HAW) wt% PO₄ which at 28 wt% waste loading in glass is projected to be only 0.04-0.06 wt% PO₄ in glass. In reality, the PO₄ concentrations in the glasses made from Sludge Batch (SB) SB1b, SB2, SB3, SB4, SB5, SB6, and SB7a have been 0.47, 0.36, 0.22, 0.19, 0.16, 0.15, <0.13, and <0.29 wt%, respectively. Therefore, small concentrations of P₂O₅ up to 1-2

wt% as an additive should be investigated as a mechanism to increase the Al_2O_3 loadings of HM sludges and allow the amount of Al-dissolution to be optimized. This data could have applicability to Hanford's WTP as well.

Glass durability modeling was performed using the 90°C ASTM C1285 data and average dissolution activation energy of 75 kJ/mole from the literature was used to extrapolate to 25°C conditions to complete a Performance Assessment (PA) for burial in the E-Area trenches on the SRS site once the waste was delisted. This data is reported elsewhere but discussed in the current study and compared to the actual testing at 25°C that was completed in SRS E-Area ground water to confirm the PA extrapolations from 90°C to 25°C. The PA data was reassessed in this study to provide information about glass formulations which can minimize uranium leaching from high alumina containing glasses.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	v
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF ACRONYMS	X
1.0 INTRODUCTION	1
2.0 Background	1
3.0 QUALITY ASSURANCE (QA)	2
4.0 EXPERIMENAL	
4.1 Defining the M-Area Waste Variability Envelope	
4.2 Analyses of Sludge-Spent Filter Aid Blend	4
4.3 Glass Formulations	5
4.3.1 Crucible Tests	5
4.4 Glass Analyses	
4.5 ASTM C1285 Durability Testing	10
4.5.1 Nominal Temperature Testing (90°C)	
4.5.2 Extrapolation and Confirmation of Dissolution to Performance Assessment Conditions (25°C)	
4.5.3 Confirmatory Dissolution Testing at Performance Assessment Conditions (25°C)	11
4.6 TCLP Testing	
4.7 Viscosity Testing	12
5.0 RESULTS	
5.1 Waste Blend Characterization	13
5.2 Glass Composition and Homogeneity	13
5.3 Alumina Solubility with P2O5	
5.4 Glass Viscosity and Density	
5.5 Glass Durability	
5.5.1 Nominal Temperature Product Consistency Testing (90°C)	
5.5.2 Confirmation of 25°C Dissolution Rates for the E-Area Performance Assessment	
6.0 CONCLUSIONS	
7.0 ACKNOWLEDGEMENTS	
Appendix A. Details of Glass Melts	
Appendix B. Details of Sludge/Filter Aid Blends	
Appendix C. Glass Viscosity Measurements	
8.0 REFERENCES	49

LIST OF FIGURES

Figure 1. Alkali borosilicate glass forming system in weight percent (top) and the alkali-lime-silica glass forming system in weight percent (bottom)
Figure 2. Alkali borosilicate system showing the position of the two glasses, MN-3 and MN-14, which exhibited amorphous phase separation during SEM analyses
Figure 3. Phase separation of the glass-in-glass amorphous type observed in MN-3 and MN-14
Figure 4. Plot of the M-Area borosilicate glasses that melted between 1150-1200°C. For each data point, a glass ID is given followed by the P ₂ O ₅ concentration in wt%
Figure 5. Correlation of normalized log B release with the log Li, log Na, and log K release in g/L from 90°C for 7 days. The black circles are homogeneous borosilicate glasses while the gray circles are inhomogeneous borosilicate glasses as determined by XRD and/or SEM. The square is the only homogeneous SLS glass studied. The gray shading indicates glasses that leached greater than the HLW EA glass standard for a given element. Note that the EA glass does not contain K or U and so there is no limit on the K release shown in diagram c
Figure 6. Correlation of normalized log B release with the log Si and log U release in g/L from 90°C for 7 days. The black circles are homogeneous borosilicate glasses while the gray circles are inhomogeneous borosilicate glasses as determined by XRD or SEM. The square is the only homogeneous SLS glass
Figure 7. Positions of MN-12 (70 wt % waste loading), MN-13 (85% waste loaded), and MHSi-5 (80% waste loaded) plotted in their representative positions in the R ₂ O-B ₂ O ₃ -SiO ₂ system where R can be Li or Na27
Figure 8. Dependency of 25°C M-Area Glass Durability on Composition
Figure 9. The relative relationship between normalized PCT releases at 90°C for the glasses studied at 25°C and different SA/V ratios. Note that while the B and U releases are linear, the rate of the B release far exceeds the U release. The dashed line indicates the position of the relative releases if they were equal
Figure 10. Relationship of the SA/V and time durations in the 25°C E-Area Groundwater Tests. Solid lines are the square root correlation for each glass (HSi-5, MN-12 and MN-13) but the MN-12 and MN-13 lines overlap so the 95% error bars were shown for MN-13 as the dotted lines
Figure 11. Plot of the 25°C E-Area Groundwater Testing Fit to A Square Root Dependency to verify that the B and U leach by diffusion. The dashed horizontal line is the SRS E-Area trench performance objective for the maximum concentration of uranium in groundwater

LIST OF TABLES

Table 4-2.	Nominal, High SiO2 and Low SiO2 Waste Mixtures Representing the M-Area Compositional Envelo	pe. 4
Table 4-3.	SRNL M-Area Alkali Borosilicate Glass Formulations Made in Crucibles	8
Table 4-4.	SRNL M-Area Soda-Lime-Silica and Soda-Lime-Lithia-Silica Glass Formulations Made in Crucible	s9
Table 4-5.	Mesh Sizes and SA/V Ratios and times used for Confirmatory Testing at 25°C in E-Area Ground Wa	ater.
		11
Table 5-1.	Composition of Tank 8 Sludge and Tank 10 Filter Aids and Blends [1]	21
Table 5-2.	Analyzed Compositions of M-Area Glasses (Wt%)	22
Table 5-3.	M-Area Glasses: Fabrication Methods* and Homogeneity	24
Table 5-4.	ASTM C1285 (PCT) Average Durability Responses at 90°C in ASTM Type I Water	25
Table 5-5.	M-Area PCT's at 25°C in E-Area Groundwater*, [†]	32

AA Atomic Absorption ANL Argonne National Laboratory APS Amorphous Phase Separation ASME American Society of Mechanical Engineers ASTM American Society for Testing and Materials CIF Consolidated Incinerator Facility CPS Crystalline Phase Separation CTF Chemical Transfer Facility DETF Dilute Effluent Treatment Facility DOE Department of Energy DWPF Defense Waste Processing Facility EA Environmental Assessment EPA Environmental Assessment ETF Effluent Test Facility GEL General Engineering Laboratory HAW High Activity Waste HSi High Silica HLW High Cevel Waste IC Ion Chromatography ICP-MS Inductively Coupled Plasma – Emission Spectroscopy ISE Ion Selective Electrode IT/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica		LIST OF ACRONYMS
APS Amorphous Phase Separation ASTM American Society of Mechanical Engineers ASTM American Society for Testing and Materials CIF Consolidated Incinerator Facility CPS Crystalline Phase Separation CTF Chemical Transfer Facility DETF Dilute Effluent Treatment Facility DOE Department of Energy DWPF Defense Waste Processing Facility EA Environmental Assessment EPA Environmental Protection Agency ETF Effluent Test Facility GEL General Engineering Laboratory HAW High Activity Waste HSi High Silica HLW High Level Waste IC Ion Chromatography ICP-ES Inductively Coupled Plasma – Emission Spectroscopy ISE Ion Selective Electrode IT/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica MEP Multiple Extraction Procedure N Nominal <t< th=""><th>AA</th><th>Atomic Absorption</th></t<>	AA	Atomic Absorption
ASME American Society of Mechanical Engineers ASTM American Society for Testing and Materials CIF Consolidated Incinerator Facility CPS Crystalline Phase Separation CTF Chemical Transfer Facility DETF Dilute Effluent Treatment Facility DOE Department of Energy DWPF Defense Waste Processing Facility EA Environmental Assessment EPA Environmental Protection Agency ETF Effluent Test Facility GEL General Engineering Laboratory HAW High Activity Waste HSi High Silica HLW High Cevel Waste IC Ion Chromatography ICP-ES Inductively Coupled Plasma – Emission Spectroscopy ISE Ion Selective Electrode TI/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica MEP Multiple Extraction Procedure N Nominal NPDES National Pollution Discharge Elimination Syste	ANL	Argonne National Laboratory
ASTMAmerican Society for Testing and MaterialsCIFConsolidated Incinerator FacilityCPSCrystalline Phase SeparationCTFChemical Transfer FacilityDETFDilute Effluent Treatment FacilityDOEDepartment of EnergyDWPFDefense Waste Processing FacilityEAEnvironmental AssessmentEPAEnvironmental AssessmentEPAEnvironmental Protection AgencyETFEffluent Test FacilityGELGeneral Engineering LaboratoryHAWHigh Activity WasteHSiHigh Activity WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyICP-MSInductively Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSAS	APS	Amorphous Phase Separation
CIFConsolidated Incinerator FacilityCPSCrystalline Phase SeparationCTFChemical Transfer FacilityDETFDilute Effluent Treatment FacilityDOEDepartment of EnergyDWPFDefense Waste Processing FacilityEAEnvironmental AssessmentEPAEnvironmental Protection AgencyETFEffluent Test FacilityGELGeneral Engineering LaboratoryHAWHigh Activity WasteHSiHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSLLSSoda Lime Litia SilicaSLLSSoda Lime Litia SilicaSpgSpecific gravit	ASME	American Society of Mechanical Engineers
CPS Crystalline Phase Separation CTF Chemical Transfer Facility DETF Dilute Effluent Treatment Facility DOE Department of Energy DWPF Defense Waste Processing Facility EA Environmental Assessment EPA Environmental Protection Agency ETF Effluent Test Facility GEL General Engineering Laboratory HAW High Activity Waste HSi High Silica HLW High Level Waste IC Ion Chromatography ICP-ES Inductively Coupled Plasma – Emission Spectroscopy ISE Ion Selective Electrode IT/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica MEP Multiple Extraction Procedure N Nominal NPDES National Pollution Discharge Elimination System OCRWM Office of Civilian Radioactive Waste Management PA Performance Assessment PPC Professional Planning Commission <td>ASTM</td> <td>American Society for Testing and Materials</td>	ASTM	American Society for Testing and Materials
CTF Chemical Transfer Facility DETF Dilute Effluent Treatment Facility DOE Department of Energy DWPF Defense Waste Processing Facility EA Environmental Assessment EPA Environmental Protection Agency ETF Effluent Test Facility GEL General Engineering Laboratory HAW High Activity Waste HSi High Level Waste IC Ion Chromatography ICP-ES Inductively Coupled Plasma – Emission Spectroscopy ISE Ion Selective Electrode IT/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica MEP Multiple Extraction Procedure N Nominal NPDES National Pollution Discharge Elimination System OCRWM Office of Civilian Radioactive Waste Management PA Performance Assessment PCT Produst Consistency Test PPC Professional Planning Commission PNNL Pacific Northwest National L	CIF	Consolidated Incinerator Facility
DETFDilute Effluent Treatment FacilityDOEDepartment of EnergyDWPFDefense Waste Processing FacilityEAEnvironmental AssessmentEPAEnvironmental Protection AgencyETFEffluent Test FacilityGELGeneral Engineering LaboratoryHAWHigh Activity WasteHSiHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyICP-MSInductively Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMPPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSLSSoda Lime Lithia SilicaSLSSoda Lime SilicaSpgSpecific gravity	CPS	Crystalline Phase Separation
DOE Department of Energy DWPF Defense Waste Processing Facility EA Environmental Assessment EPA Environmental Protection Agency ETT Effluent Test Facility GEL General Engineering Laboratory HAW High Activity Waste HSi High Silica HLW High Level Waste IC Ion Chromatography ICP-ES Inductively Coupled Plasma – Emission Spectroscopy ISE Ion Selective Electrode IT/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica MEP Multiple Extraction Procedure N Nominal NPDES National Pollution Discharge Elimination System OCRWM Office of Civilian Radioactive Waste Management PA Performance Assessment PCT Product Consistency Test PPC Professional Planning Commission PNNL Pacific Northwest National Laboratory	CTF	Chemical Transfer Facility
DWPFDefense Waste Processing FacilityEAEnvironmental AssessmentEPAEnvironmental Protection AgencyETFEffluent Test FacilityGELGeneral Engineering LaboratoryHAWHigh Activity WasteHSiHigh Activity WasteHSiHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPPCProdext Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime SilicaSpgSpecific gravity	DETF	Dilute Effluent Treatment Facility
EA Environmental Assessment EPA Environmental Protection Agency ETF Effluent Test Facility GEL General Engineering Laboratory HAW High Activity Waste HSi High Silica HLW High Level Waste IC Ion Chromatography ICP-ES Inductively Coupled Plasma – Emission Spectroscopy ISE Ion Selective Electrode IT/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica MEP Multiple Extraction Procedure N Nominal NPDES National Pollution Discharge Elimination System OCRWM Office of Civilian Radioactive Waste Management PA Performance Assessment PPC Product Consistency Test PPC Professional Planning Commission PNNL Pacific Northwest National Laboratory QA Quality Assurance QARD Quality Assurance Requirements Document RCRA Resource Conservation and Recovery Act	DOE	Department of Energy
EPAEnvironmental Protection AgencyETFEffluent Test FacilityGELGeneral Engineering LaboratoryHAWHigh Activity WasteHSiHigh SilicaHLWHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality AssuranceQARDQuality AssuranceQARDQuality AssuranceSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime Lithia Silica	DWPF	Defense Waste Processing Facility
ETFEffluent Test FacilityGELGeneral Engineering LaboratoryHAWHigh Activity WasteHSiHigh SilicaHLWHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyISEIon Selective Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime SilicaSLSSoda Lime SilicaSLSSoda Lime SilicaSLSSpecific gravity	EA	Environmental Assessment
GEL General Engineering Laboratory HAW High Activity Waste HSi High Silica HLW High Level Waste IC Ion Chromatography ICP-ES Inductively Coupled Plasma – Emission Spectroscopy ICP-MS Inductively Coupled Plasma – Mass Spectroscopy ISE Ion Selective Electrode IT/SF Interim Treatment/Storage Facility KPA Kinetic Phosphorescence Analyzer LETF Liquid Effluent Treatment Facility LSi Low Silica MEP Multiple Extraction Procedure N Nominal NPDES National Pollution Discharge Elimination System OCRWM Office of Civilian Radioactive Waste Management PA Performance Assessment PCT Product Consistency Test PPC Professional Planning Commission PNNL Pacific Northwest National Laboratory QA Quality Assurance QARD Quality Assurance QARD Quality Assurance Requirements Document RCRA Resource Conservation and Recovery Act RFP Request f	EPA	Environmental Protection Agency
HAWHigh Activity WasteHSiHigh SilicaHLWHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyISEIon Selective Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaSpgSpecific gravity	ETF	Effluent Test Facility
HSiHigh SilicaHLWHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyISEIon Selective Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaSpgSpecific gravity	GEL	General Engineering Laboratory
HLWHigh Level WasteICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaSpgSpecific gravity	HAW	
ICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyICP-MSInductively Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaSpgSpecific gravity	HSi	High Silica
ICIon ChromatographyICP-ESInductively Coupled Plasma – Emission SpectroscopyICP-MSInductively Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaSpgSpecific gravity	HLW	High Level Waste
ICP-MSInductively Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaSpgSpecific gravity	IC	
ICP-MSInductively Coupled Plasma – Mass SpectroscopyISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSpgSpecific gravity	ICP-ES	Inductively Coupled Plasma – Emission Spectroscopy
ISEIon Selective ElectrodeIT/SFInterim Treatment/Storage FacilityKPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	ICP-MS	
KPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	ISE	
KPAKinetic Phosphorescence AnalyzerLETFLiquid Effluent Treatment FacilityLSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	IT/SF	Interim Treatment/Storage Facility
LSiLow SilicaMEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	КРА	Kinetic Phosphorescence Analyzer
MEPMultiple Extraction ProcedureNNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	LETF	Liquid Effluent Treatment Facility
NNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	LSi	Low Silica
NNominalNPDESNational Pollution Discharge Elimination SystemOCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	MEP	Multiple Extraction Procedure
OCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	Ν	
OCRWMOffice of Civilian Radioactive Waste ManagementPAPerformance AssessmentPCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	NPDES	National Pollution Discharge Elimination System
PCTProduct Consistency TestPPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	OCRWM	
PPCProfessional Planning CommissionPNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	РА	Performance Assessment
PNNLPacific Northwest National LaboratoryQAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	РСТ	Product Consistency Test
QAQuality AssuranceQARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSpgSpecific gravity	PPC	Professional Planning Commission
QARDQuality Assurance Requirements DocumentRCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLSSoda Lime Lithia SilicaspgSpecific gravity	PNNL	Pacific Northwest National Laboratory
RCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	QA	Quality Assurance
RCRAResource Conservation and Recovery ActRFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	QARD	Quality Assurance Requirements Document
RFPRequest for ProposalSASurface AreaSBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity		
SBSludge BatchSEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	RFP	Request for Proposal
SEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	SA	
SEMScanning Electron MicroscopySCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	SB	Sludge Batch
SCDHECSouth Carolina Department of Health and Environmental ControlSLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	SEM	
SLLSSoda Lime Lithia SilicaSLSSoda Lime SilicaspgSpecific gravity	SCDHEC	
spg Specific gravity	SLLS	
	SLS	Soda Lime Silica
	spg	Specific gravity
		Savannah River Site
SRAT Sludge Receipt and Adjustment Tank	SRAT	Sludge Receipt and Adjustment Tank

LIST OF ACRONYMS

SRNL	Savannah River National Laboratory
SRTC	Savannah River Technology Center
TCLP	Toxicity Characteristic Leaching Procedure
TTT	Time-Temperature-Transformation
VFT	Vogel-Fulcher-Tammann equation
VTF	Vendor Treatment Facility
WCP	Waste Compliance Plan
WSRC	Washington Savannah River Company
WL	Waste Loading
WTP	Hanford Tank Waste Treatment and Immobilization Plant
XRD	X-Ray Diffraction

1.0 INTRODUCTION

The initial concept of solidification of M-Area's high Al_2O_3 (14.17 to 29.02 wt.%) and high U_3O_8 (2.93 to 5.66 wt.%) containing mixed (hazardous and radioactive) waste into glass began in 1987 when the sludge and supernates were first analyzed and documented at the SRNL which was then the Savannah River Technology Center (SRTC). [1,2] In 1989, the Professional Planning Committee (PPC) formally recommended that high nitrate containing (low-level mixed) wastes, such as those existing in M-Area, be considered for vitrification. [3] The investigation of vitrification of low-level high nitrate containing wastes was considered timely because of the potential for large waste volume reduction compared to alternative solidification into cement. [2]

The M-Area operations at the SRS in Aiken, South Carolina, produced reactor components for nuclear weapons materials for the U.S. Department of Energy (DOE). The resulting waste was stored in nine tanks. The total volume in storage was initially ~1,200,000 gallons of which ~300,000 gallons were gelatinous hydroxide sludges and the other 900,000 a supernate. The supernate in the tanks was treated in a wastewater treatment facility and the resulting effluent released to a National Pollution Discharge Elimination System (NPDES) permitted outfall stream on the SRS. [4] Removing the uranium from the supernate created ~275,000 gallons of spent filter aids rich in SiO₂. After supernate treatment, approximately 425,000 gallons of waste sludge comingled with leftover supernate remained. The sludge/supernate was enriched in aluminum, sodium, uranium, and nitrate. The type of filter aid used in the wastewater treatment plant varied over the years, e.g. diatomaceous earth, perlite, and/or perflo, but all the filter aids were SiO₂ enriched and were of high surface area, e.g. >50m²/g.

Vitrification into glass was chosen as the preferred stabilization option for the remaining sludge and contaminated filter aid because it reduced the volume of sludge/filter aid by \sim 85%. Moreover, when compared to alternative stabilization technologies (e.g. cement) the final disposal volume could be reduced by 96% using vitrification where the alternative would increase volume. The large volume reductions allowed for large associated savings in disposal and/or long-term storage costs once the vitrified waste form was delisted. [5,6,7]

Since the M-Area waste contained high concentrations of Al_2O_3 and U_3O_8 , glass formulations that were high in B_2O_3 were used to flux the high Al_2O_3 content of the waste. The durability performance of these glasses during ASTM C1285 testing (Product Consistency Test or PCT, 8) is of interest to High Level Waste (HLW) glass formulations for high Al_2O_3 containing tank wastes, e.g. SRS HM wastes which, when too high in Al and other sludge is not available for blending, are aluminum dissolved to remove a fraction of the alumina through caustic dissolution. The M-Area glass formulations may help determine the limits to which HM wastes need to be aluminum dissolved. The high Al_2O_3 waste loadings should also be of interest to Hanford WTP vitrification. Moreover, the modeling of the M-Area glass dissolution rate in deionized water, as summarized in this study, provides a validated dissolution rate constant for high Al_2O_3 and U_3O_8 containing alkali borosilicate glasses.

2.0 BACKGROUND

The Liquid Effluent Treatment Facility (LETF) in M-Area was constructed in 1985 to process M-Area chemical wastes due to the federally mandated closure of the M-Area seepage basin. The LETF consisted of three facilities: the Dilute Effluent Treatment Facility (DETF), the Chemical Transfer Facility (CTF), and the Interim Treatment/Storage Facility (IT/SF). The DETF processed dilute wastewaters from the M-Area processes and released the clarified liquid to Tim's Branch. [4] The DETF was a conventional water treatment facility that used precipitation, flocculation, and filtration to remove dissolved metals. These solids were transferred through the CTF to the IT/SF.

While the M-Area waste was stored in the IT/SF tanks, it separated into a sludge fraction and a supernate. In May 1990, South Carolina Department of Health and Environmental Control (SCDHEC) approved a permit to operate the DETF- IT/SF Supernate Transfer Facility. [4] The permit allowed the DETF to be used to treat the supernate from the M-Area IT/SF tanks in addition to the dilute wastewaters from the M-Area processes. When the DETF- IT/SF Supernate Transfer Facility concept for treatment of M-Area's supernate and subsequent discharge to Tim's branch was initiated, M-Area's waste solidification strategy was altered from solidification of sludge plus supernates, to solidification of only the sludge and spent filter aid. Supernate treatment was completed in 1994.

Samples of M-Area sludge and supernate were obtained by SRNL in September 1986 from Tank 6 and 8 which were being continuously agitated at that time. Sludge samples from Tanks 1 through 6, and Tank 8 were obtained in January of 1988 after agitation. Analyses of these tank samples were documented previously. [1,2] These M-Area samples were used to demonstrate that a low temperature borophosphate glass could be produced from the M-Area waste [1] since at that time the sludge and the high nitrate containing supernate were to be treated together. The document containing the sludge and supernate analyses and proof that it could be made into a low temperature glass was subsequently used to support a request for pre-proposals to stabilize the M-Area waste by independent contractors. [9]

In 1989 when the sludge/supernate analyses were performed and two borophosphate glasses made [1], the DETF was not permitted to treat the M-Area supernate. Approval to use filtration to clean up the supernate along with other dilute wastewaters in M-Area was not received until May 1990. [4] The filter media would get contaminated with uranium in the process and the filter media would have to be co-disposed along with the sludge. Since the filter aid was primarily fine SiO_2 in the form of perlite, perflo, and diatomaceous earth, [2] the combined sludge/filter aid lent itself to vitrification in either borosilicate glass or soda-lime-silica (SLS) glass.

Sludge samples from Tank 7 and filter aid samples from Tank 10 were obtained by SRNL in March of 1992. Additional filter aid from Tank 10 was obtained in November of 1992 and the results of these tank analyses are documented elsewhere. [2] During the treatability study [10], mixtures of the Tank 8 sludge and the Tank 10 filter aid were used to make durable and processable glass compositions using the durability and process models developed for the DWPF. [11]

Results from the treatability study and subsequent sample analyses were used to support the request for proposals (RFP) and subsequent vitrification in a VTF from 1996-1999 [12], and the up-front and final delisting petitions. [6,7,13] The final delisting petition for the vitrified waste was approved by the Environmental Protection Agency (EPA) in 2000. [5] This allowed the delisted vitrified waste to be disposed of in the SRS E-Area trenches.

The results of the treatability study and the subsequent durability testing of the treatability study samples is documented in this report since this information may be useful to glass formulations related to high Al_2O_3 and high U_3O_8 containing HLW sludges currently scheduled for vitrification in the DWPF or at the WTP.

3.0 QUALITY ASSURANCE (QA)

All analyses were conducted at SRNL (then SRTC) in accordance with DOE/RW-0214 (Quality Assurance Requirements Document (QARD) for technical documents prepared by Office of Civilian Radioactive Waste Management (OCRWM), program participants, and OCRWM managed contractors that are submitted for review, acceptance, and release by OCRWM) and American Society of Mechanical Engineers (ASME) NQA-1 based quality assurance program in use at the time the work was performed. The analytic results are recorded in laboratory notebooks DPSTN-4695, WSRC-NB-95-139, WSRC-NB-95-140, WSRC-NB-96-394, WSRC-NB-96-396, and WSRC-NB-96-609 where WSRC is Washington

Savannah River Company. The vitrification was performed under waste treatability and Quality Assurance (QA) Task Plan entitled "Solidification of M-Area and Consolidated Incinerator Facility (CIF) Wastes into Glass." [14] The samples were characterized, and durability tested for several years after the treatability study ended under the sample exclusion law.

4.0 EXPERIMENAL

4.1 Defining the M-Area Waste Variability Envelope

The Tank 8 sludge represented the average sludge composition of Tanks 1-8 in M-Area and was readily available. The composition of Tank 8 sludge is given in Reference 2 and Section 5.1 of this report. Tank 10 contained mostly spent filter aid which was SiO_2 rich. The processing strategy was to blend the Tank 10 filter aid with the high sodium nitrate and alumina rich sludge wastes from the various tanks. The addition of glass formers would then be used to vitrify the sludge/filter aid into borosilicate waste glass.

When the treatability study was conducted in 1993, the M-Area Effluent Treatment Facility (ETF) was in the process of treating the supernates in Tanks 7 and 8 and returning the spent filter aid to Tank 10. The volume of the sludge remaining after supernate treatment would be completed was predicted to be \sim 244,000 gallons, with a density of 1.25 kg/L and \sim 38 dry wt. % solids. The predicted volume of filter aid in Tank 10 was \sim 412,000 gallons with a density of 1.1 kg/L and \sim 17 dry wt. % solids. These predicted volumes were used to prepare a "nominal blend (N)," mixture of 6,100 mL of Tank 8 sludge with 10,540 mL from Tank 10 (see Table 4-1).

In order to bracket the potential final volumes of waste, a high SiO₂ (HSi) and low SiO₂ (LSi) mixture was prepared. The LSi mixture, assumed a final volume of filter aid in Tank 10 of 200,000 gallons, a density of 1.1 Kg/L, and 17 wt. % solids. Density and wt. % solids for Tank 8 were the same as in the nominal blend. The LSi mixture was prepared by blending 4,600 mL of Tank 8 sludge with 3,740 mL of Tank 10 sludge (see Table 4-1). The HSi mixture was prepared by assuming a higher volume (450,000 gallons) in Tank 10 with a density of 1.2 wt.% and 30 wt.% solids. This mixture was prepared using 1,190 mL of Tank 8 sludge and 4,600 mL of Tank 10 filter aid (see Table 4-1).

The volume ratios given in Table 4-1 correspond to mass ratios of Tank 8:Tank 10 waste of 0.67, 0.52, and 1.39 for the nominal, high SiO₂, and low SiO₂ blends, respectively, using the sludge and filter aid densities given in Reference 2. It is interesting to note that the final tank volumes, when measured in 1995, were most similar to the "LSi" SRNL blend, i.e., 385,000 gallons of plating line sludge and 228,000 gallons of Tank 10 filter aid or a Tank 8/Tank 10 volume ratio of 1.69.

[§] More Tank 10 material was used in the HSi mixture to compensate for the higher estimated solids loading (30% vs. 17%) than for the other two mixtures (LSi and N).

	Tank 1-8 Sludge	Tank 8 Sludge (for Tanks 1-8)	Tank 8
Mixtures Made	Tank 10 Spent Filter Aid	Tank 10 Spent Filter Aid	Tank 10
On 03/18/93	Volume Ratio	Volume Ratio	Mass*
	(M-Area Tank Farm in gallons)	(Treatability Mixtures in mL)	Ratios
Low Si (LSi) (low Tank 10)	$\frac{244,500gal}{200,000gal} = 1.22$	$\frac{4,600mL}{3,740mL} = 1.23$	1.39
(1011 Tulik 10)		,	
Nominal (N)	$\frac{244,500gal}{412,500gal} = 0.59$	$\frac{6,100mL}{10,540mL} = 0.58$	0.67
High Si (HSi) (high Tank 10)	$\frac{244,500gal}{450,000gal \bullet \left(\frac{30}{17}\right) \bullet \left(\frac{1.2}{1.1}\right)} = 0.28$	$\frac{1,194mL}{4,600mL} = 0.26$	0.52

Table 4-1. Nominal, High SiO2 and Low SiO2 Waste Mixtures Representing the M-AreaCompositional Envelope.

* Conversion to mass ratios for Tank 8 sludge = 244,500 gal x 3.78 L/gal x 0.382 wt. % solids @ 105°C x 1.25 (spg of sludge); conversion to mass ratios for Tank 10 nominal and low Si = 412,500 gal x 3.78 L/gal x 0.17 wt.% solids @ 105°C x 1.10 (spg of filter aid); conversion factor for Tank 10 high Si = 412,500 gal x 3.78 L/gal x 0.30 wt.% solids @ 105°C x 1.20 (spg of filter aid) where spg is specific gravity of the sludge.

4.2 Analyses of Sludge-Spent Filter Aid Blend

The chemical analyses of the Tank 8 sludge/Tank 10 filter aid blends were determined in duplicate. The sludge was dried at \sim 300°C to remove residual hydroxide species and completely analyzed for the remaining cations and ions by the following techniques:

- Dissolution by Na₂O₂ with an HCl uptake
 - Inductively Coupled Plasma-Emission Spectroscopy (ICP-ES) for Al, Ca, Fe, Mg, Mn, Li, Si, Cr, B, Sr, Ti, P, Ba, Pb, Mo, Zn, Cu Atomic Absorption (AA) for Si
 - Atomic Absorption (AA) for Si
- Dissolution by HCl/HF bomb
 ICP-ES for Na, Ni, Zr
 AA for Ni, Na, K, Si
- Uranium by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)
- Dissolution by Na₂O₂ with a H₂O uptake
 Ion Chromatography (IC) for SO₄, NO₃, PO₄
 Ion Selective Electrode (ISE) for Cl and F

Weight loss was measured at 105°C to get moisture loss and at 300°C to remove hydroxide and bound waters of hydration.

4.3 Glass Formulations

4.3.1 Crucible Tests

Glass formulations were made with combinations of only one or two glass forming additives to simplify processing, i.e., eliminate the need for a prefabricated frit and minimize the potential for weighing errors during manual operation of the VTF. Because the waste blends (nominal, HSi, and LSi) were high in Al_2O_3 and SiO_2 , and the targeted waste loadings were in the 70-90 wt% range to achieve the largest volume reduction for disposal, only melt fluxes were added to fabricate alkali borosilicate glasses as indicated below and shown in Figure 1:

- Boric Acid (H₃BO₃)
- Borax (30 wt. % Na₂O + 70 wt. % B₂O₃)
- 50 wt. % $Na_2O + 50$ wt. % B_2O_3
- 50 wt. % $Li_2O + 50$ wt. % B_2O_3
- 70 wt. % $Li_2O + 30$ wt. % B_2O_3

In addition, SLS and soda-lime-lithia-silica (SLLS) glasses were fabricated from the following glass forming combinations and shown in Figure 1:

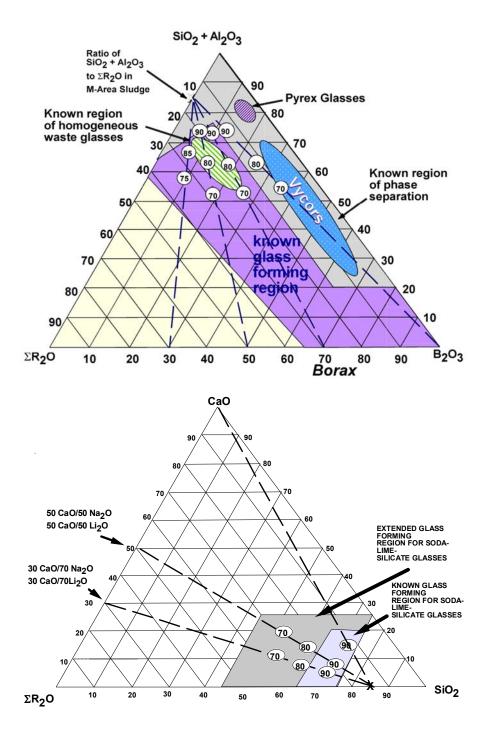
- Calcium Oxide (CaO)
- 50 wt. % $Na_2O + 50$ wt. % CaO
- 50 wt. % $Li_2O + 50$ wt. % CaO
- 70 wt. % Na₂O + 30 wt. % CaO

The use of reactive silica (surface area > 50 m²/g), in this case the Tank 10 filter aid that was part of the blended waste, was shown to extend the known processing range in the SLS glass forming system (Figure 1). [15,16]

The glass formulations and waste loadings are given in Table 4-2 and Table 4-3. The approximate melt temperatures were calculated from the DWPF viscosity model assuming that a given melt needed to be in the 20-100 poise range to pour. The actual melt temperatures are recorded in Figure 1, Table 4-2, and Table 4-3. Additional details of the furnaces used, the furnace calibrations, and the visual observations of the melts are given in Appendix A. Most of the glasses were melted in 500 mL pure Al₂O₃ crucibles as a relatively large quantity of each glass was needed for the durability testing at different surface area to leachate volumes in deionized water and E-Area ground water and for the Toxicity Characteristic Leaching Procedure (TCLP) and repetitive TCLP Multiple Extraction Procedure (MEP) tests discussed below.

4.4 Glass Analyses

The glasses made in crucibles were analyzed by the following methods:


- Dissolution by Na₂O₂ with an HCl uptake
 - ICP-ES for Al, Ca, Fe, Mg, Mn, Li, Si, Cr, B, Sr, Ti, P, Ba, Pb, Mo, Zn, Cu
- Dissolution by HCl/HF bomb
 - ICP-ES for Na, Zr, U
 - AA for K

Anions were not measured as the anion content of the sludge was very low. [2] Glasses were analyzed in duplicate and the Waste Compliance Plan (WCP) Purex glass was used as a glass standard. Glass compositions were bias corrected to the standard glass for all elements analyzed.

All glasses were examined by XRD for crystalline phases. This was important as the glasses contained P_2O_5 from 0.45 to 4.02 wt% P_2O_5 which at concentrations higher than 2.24 P_2O_5 (3 wt. % PO₄) is known to cause crystalline phase separation (CPS) as described in References 17, 18, and 19:

"In phosphate-containing borosilicate glasses, all three major glass formers are present in structural tetrahedral or trigonal groups, e.g. $(SiO_4)^{-4}$, $(BO_4)^{-5}$, $(BO_3)^{-3}$, and $(PO_4)^{-3}$. The competition for dominant structural roles causes the cation with the highest field strength, P⁵⁺, to dominate the demixing process. If the difference in the field strengths (ΔF) between the major glass forming (structural) elements exceeds 0.3, then the phase separation will be of a crystalline and not amorphous nature according to Dietzel, [20] e.g. the differences between B and P and Si and P exceed the limit of 0.3 while the ΔF difference between B and Si is only 0.06. Therefore, the phase separation in phosphate systems is of a crystalline nature, CPS. Glasses in these phosphate systems separate to crystalline or partially crystalline solids, depending on quench rate."

In addition, many of the glasses formulated with high B_2O_3 were in the region of the $Na_2O-B_2O_3-SiO_2$ system where various types of amorphous phase separation (APS) are known to occur (Figure 1-top). These glasses were examined by SEM for glass-in-glass phase separation. The glass-in-glass droplet textures were of large enough scale that acid etching was not necessary. Therefore, glasses were examined for both APS and CPS. [18,19,21]

Figure 1. Alkali borosilicate glass forming system in weight percent (top) and the alkali-lime-silica glass forming system in weight percent (bottom).

The composition of the nominal M-Area sludge is shown with an "X", the composition of the glass forming additives are shown along the alkali-borate binary (top) and the alkali-CaO binary (bottom). The glass formulations with the pertinent waste loadings are indicated by the ovals.

Glass Fa	amily	Sodium	Borosilicate		n + Lithium icate Glasses		
Sample ID	Waste Blend	Waste Loading (wt. %)	Melt Temperature (°C)	Waste Loading (wt. %)	Melt Temperature (°C)		
ADDITION	OF B₂O₃ C	ONLY	· · · ·		• • •		
MN-1	Nominal	90	1400				
MN-2	Nominal	80	1260				
MN-3	Nominal	70	1150				
MHSi-1	High Si	90	1400				
MHSi-2	High Si	80	1300				
MHSi-3	High Si	70	1150				
MLSi-1	Low Si	90	1350				
MLSi-2	Low Si	80	1300				
MLSi-3	Low Si	70	1150				
ADDITION	OF BORA	X (30:70 N	$a_2O:B_2O_3)$				
MN-4	Nominal	90	1400				
MN-15	Nominal	85	1200				
MN-5	Nominal	80	1300				
MN-16	Nominal	75	1150				
MN-6	Nominal	70	1150				
MHSi-4	High Si	90	1400				
MHSi-5	High Si	80	1150				
MHSi-6	High Si	70	1200				
MLSi-4	Low Si	90	1400				
MLSi-5	Low Si	80	1150				
MLSi-6	Low Si	70	1150				
ADDITION	OF 50:50 I	$Na_2O:B_2O_3$					
MN-7	Nominal	90	1400				
MN-8	Nominal	80	1150				
MN-9	Nominal	70	1200				
MLSi-7	Low Si	90	1400				
MLSi-8	Low Si	80	1150				
MLSi-9	Low Si	70	1150				
ADDITION	OF 50:50	$Li_2O:B_2O_3$					
MN-10	Nominal			90	1200		
MN-11	Nominal			80	1150		
MN-12	Nominal			70	1150		
MHSi-11	High Si			80	1200		
MLSi-10	Low Si			90	1200		
MLSi-11	Low Si			80	1150		
ADDITION	OF 70:30	$Li_2O:B_2O_3$					
MN-13	Nominal			85	1150		
MN-14	Nominal			75	1150		

Table 4-2. SRNL M-Area Alkali Borosilicate Glass Formulations Made in Crucibles

Glass	Family		e-Silica (SLS) Hasses	Sodium + Lithium-Lime- Silica Glasses										
Sample ID	Waste Blend	Waste Loading (wt. %)	Melt Temperature (°C)	Waste Loading (wt. %)	Melt Temperature (°C)									
ADDITION OF 50:50 Na ₂ O:CaO														
MN-17	Nominal	90	1350											
MN-18	Nominal	80	1150											
MN-19	Nominal	70	1150											
ADDITIO	ON OF 50:5	50 Li2O:CaC)											
MN-20	Nominal			90	1200									
MN-21	Nominal			80	1150									
MN-22	Nominal			70	1150									
ADDITIC	ON OF CaC)												
MN-23	Nominal	90	1400											
ADDITIO	ON OF 70:3	0 Na2O:Ca	0											
MN-24	Nominal	90	1400											
MN-25	Nominal	80	1150											
MN-26	Nominal	70	1150											

 Table 4-3. SRNL M-Area Soda-Lime-Silica and Soda-Lime-Lithia-Silica Glass Formulations Made in Crucibles.

4.5 ASTM C1285 Durability Testing

The PCT results can be expressed as a normalized concentration (NC_i) which have units of $g_{waste form}/L_{leachant}$, or as a normalized release (NL_i) in $g_{waste form}/m^2$, or as a normalized rate (NR_i) in $g_{waste form}/m^2$ day where "i" is the chemical element of interest. The equation for NCi is given in Equation 1. Expression of the PCT test response as NL_i or NR_i necessitates the use of the surface area (SA) of the sample releasing species "i" and the volume (V) of the leachant being used which is expressed as the SA/V ratio. Examples of the calculations are given in Equation 2 and 3

$$NC_i = \frac{c_i(sample)}{f_i} \tag{2}$$

where NC_i is the normalized concentration ($g_{waste form}/L_{leachant}$) $c_i(sample)$ is the concentration of element *i* in the leachate solution (g_i/L) f_i is the fraction of element *i* in the unleached waste form (unitless).

$$NL_{i} = \frac{c_{i}(sample)}{f_{i} \cdot (SA/V)}$$
⁽²⁾

where NL_i is the normalized release $(g_{waste form}/m^2)$ $c_i(sample)$ is the concentration of element *i* in the leachate solution (g_i/L) f_i is the fraction of element *i* in the unleached waste form (unitless).

and
$$NR_{i} = \frac{c_{i}(sample)}{f_{i} \cdot (SA/V) \cdot t}$$
(3)

where NR_i is the normalized release rate ($g_{waste form}/m^2 \cdot day$) SA/V is the surface area of the final waste form divided by the leachate volume (m^2/L) t is the time duration of test (days).

In this study the durability results are reported in *NL*_{*i*..} Leachates were analyzed by ICP-ES scan for multiple elements (B, Li, Na, Al, Fe, Ca, Mg, Si, Zn, etc) and by a Chemcheck Kinetic Phosphorescence Analyzer (KPA) which was capable of measuring trace levels of uranium and lanthanides. KPA analyses were used at SRNL before ICP-MS.

4.5.1 Nominal Temperature Testing (90°C)

The chemical durability of the M-Area glasses from the crucible studies and the pilot scale studies was determined using ASTM procedure C 1285-02. [8] The glasses were ground and sized between -100 and +200 mesh (74 μ m to 149 μ m). To remove the electrostatic fines, the sized material was washed six times with 100% ethanol. Water was not used for washing for fear of removing any water-soluble phases prior to leaching as cautioned by the ASTM C1285-02 procedure.

For all samples, ASTM Type I water [22] was used as the leachant, a constant leachant to sample ratio of 10 cm³/g or 0.01 L/g (V in equations 1 and 2 above) was used, the test temperature was 90°C, and the test duration was seven days. The temperature and 7-day duration are the nominal test conditions used for testing glass waste form performance, e.g. PCT-A. However, Teflon[®] vessels were used and so rigorously

the test is defined as PCT-B. Leachate concentrations are given as NL_i per Equation 1 for B, Si, Na, Li, Ni, and U.

4.5.2 Extrapolation and Confirmation of Dissolution to Performance Assessment Conditions (25°C)

Whited et. al. [23,24,25] used literature values to tabulate the 90°C long term (84-980 days) static dissolution data in both deionized water and Yucca Mountain J13 groundwater for a wide variety of HLW glasses from Europe (SM527 and R7T7), the United States (SRL-131, 165, 200, 202), and a statistical study related to DWPF glasses [26]. Data from 29 different glasses, some tested using the PCT (ASTM C1285) and the MCC-1 (ASTM C-1220) [27] test protocols, were compiled at a wide variety of test parameters, i.e. SA/V and time. The average long-term release rate, expressed as NR_i, was calculated and used in conjunction with an activation energy of dissolution (E_a) to use the SRNL 90°C PCT values to generate a leach rate at 25°C. This 25°C leach rate was then used in determining if the M-Area glasses, once delisted, would pass the SRS E-Area PA. An average E_a of dissolution for borosilicate glasses of 75 KJ/mole was used from White [28] for dissolution of a nuclear waste glass in ASTM Type I water. This was confirmed by more recent (1998) work of Dove [29] for the dissolution of pure SiO₂ in ASTM Type I water which gave an E_a of dissolution of 78.9 KJ/mole. This assessment assumed that uranium was released at a similar rate as boron as a worst-case scenario even though it is likely that uranium release would be solubility limited while boron release would not be solubility limited. [23,24,25]

4.5.3 Confirmatory Dissolution Testing at Performance Assessment Conditions (25°C)

Confirmatory, PCT-B tests were performed in SRS E-Area ground water from well #94 at 25°C at six different SA/V ratios at time durations of 14, 28, and 42 days yielding the (SA/V)•t matrix given in Table 4-4.

Group ID	Mesh*	Mass of glass (g)	Mass of Water (g)	Leachant Volume/Sample Mass (cm ³ /g)	Time (days)	(SA/V)•t (m²/L)•days*
Α	60-80	2	20	10	14	14,600
В	60-80	2	10	5	14	29,200
C**	270-400	2	20	10	14	69,100
D**	270-400	2	10	5	14	138,300
Е	60-80	2	20	10	28	29,200
F	60-80	2	10	5	28	58,300
G	100-140	2	20	10	28	49,000
Н	100-140	2	10	5	28	98,000
Ι	270-400	2	20	10	42	207,400
J	270-400	2	10	5	42	414,800

Table 4-4. Mesh Sizes and SA/V Ratios and times used for Confirmatory Testing at 25°C in E-Area Ground Water.

* Mesh sizes were used to calculate the glass surface area (SA) as per the Appendix of the ASTM C1285 test protocol

** Groups C and D durability tests were not performed due to lack of funding as the (SA/V)•t range was covered by experiments G, H, and I

Since testing was performed at eight different (SA/V)•t ratios to accelerate the dissolution, large quantities of glass were required. Only three glasses were available in sufficient quantity to be tested (MN-12, MN-13 and MHSi-5) at the time at which this confirmatory study was initiated.

4.6 TCLP Testing

The EPA TCLP was carried out on the glass samples for Ba, Cr, Ni, Pb by General Engineering Laboratories (GEL) in Charleston, SC, an EPA certified laboratory. In addition, GEL measured the TCLP leachates for total U as an indication of the uranium drinking water standard. The results of the standard TCLP and the TCLP MEP testing are given elsewhere. [5,30]

4.7 Viscosity Testing

The SRNL setup and established a Harrop, high-temperature viscometer in 1998 for measuring the viscosity of radioactive glasses. [31] The unit uses approximately 6 grams of glass, which is considerably less than the amount used by commercial laboratories (200-700 grams) and other national laboratories such as the Pacific Northwest National Laboratory (PNNL) which uses 200 grams. Two crucible/spindle sets (Set A and Set B) are used for these measurements. This allows one viscosity measurement per day, since it takes ~ 1 day to clean the crucible and spindle. Set A was calibrated using the NIST 717a borosilicate glass standard. This NIST glass is significantly more viscous than DWPF-type glasses with a viscosity close to 2000 Poise at 1200°C. For comparison, the normal range for DWPF glasses is from 20 to 110 Poise at 1150°C. Due to the high viscosity of the NIST 717a glass, it was decided to measure the viscosities of the HM, Purex, and Batch 1 WCP glasses. The melt viscosities for these glasses had been previously measured by a commercial laboratory, thereby providing an independent measure of glass viscosity for glasses in the range of interest for DWPF.

The melt viscosity was measured according to ASTM-965A. The glass density for each sample was determined since a constant volume of glass is required in the crucible for each glass sample. The mass of glass to be added to the crucible is 2.6 cc • glass density in (g/cc). Viscosity measurements were made at 5 temperatures starting with a temperature of ~ 1190°C. For the high Al₂O₃ containing glasses sometimes higher starting temperatures of ~1300°C were necessary. The temperature was lowered in ~ 50°C intervals and, after equilibration at each temperature, another measurement was made.

Volatilization and crystallization can affect the viscosity results. For example, volatilization of a compound that reduces viscosity will lead to an increase in viscosity with time. On the other hand, crystallization in the melt has the potential to increase the measured viscosity and crystallized glasses are non-Newtonian in behavior [32] and do not obey the Vogel-Fulcher-Tammann (VFT) relationship at temperatures above the glass transition temperature but, instead, obey the Einstein-Smoluchowsky equation for the diffusion of spherical particles through a liquid.[32] Starting the viscosity experiment at temperatures above the liquidus temperatures of ~850°C, the temperature of maximum crystallization in a time-temperature-transformation (TTT) diagram minimizes the effect of crystallization on glass viscosity. By limiting the temperature range of the viscosity measurement, crystallization does not significantly impact the VFT fit for these data unless a discontinuity is observed in the 1/T (°K) vs. logarithm (base 10) viscosity plot.

The viscosities at a series of temperatures were calculated from the rpm's of the spindle, the %torque on the spindle, and a constant, K, measured from the NIST 717a glass. The K constant actually varies slightly with temperature, and for temperatures between 1050 and 1500 °C it is fit to an equation of the form: a-(b x T in °C) where a and b are constants. Using this equation, which differs for each crucible-spindle set (A or B), the viscosity at a given measurement temperature was then calculated by equation (4):

Viscosity (Poise)
$$\eta = [\% \text{ torque / RPM}] \cdot K$$
 (4)

5.0 RESULTS

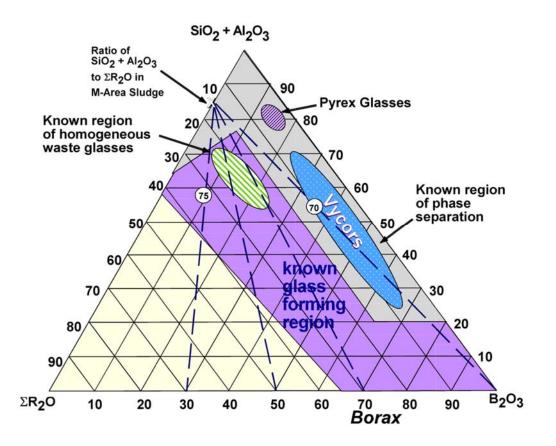
5.1 Waste Blend Characterization

The results of the analyses of Tank 8 and Tank 10 from Reference 2 are given in Table 5-1. In addition, the averaged results of the two separate analyses on each of the Tank 8/Tank 10 blends are given in Table 5-1. The details of the three blend analyses are given in Appendix B.

The Tank 8, Tank 10, and blend compositions in Table 5-1 are given on an element wt% basis. Note that the SiO₂ range for the HSi-LSi blends varies between 42.95-50.23 wt%, the U_3O_8 varies between 4.16-6.44 and the Al₂O₃ is 16.67-17.39 wt% for all three blends.

5.2 Glass Composition and Homogeneity

The M-Area mixed waste treatability study consisted of 43 analyzed glasses from vitrification of SRS M-Area wastes (crucible studies). Thirty-three were borosilicate glasses and ten were SLS glasses. The analyzed average and bias corrected compositions are given in Table 5-2 on an oxide basis. All analyses summed to 100±5 wt% indicating the high quality of the analyses.


The conditions of fabrication and quenching method used for the M-Area treatability glasses are given in Table 5-3 and Appendix A. The M-Area waste glasses had all been melted in 99.99% Al_2O_3 crucibles. Since the waste contained between 4 and 15 wt% Al_2O_3 , no interaction with the ceramic crucibles was observed visually and there was no impact noted on the measured Al_2O_3 concentrations as compared to the target values. The M-Area glasses from the crucible treatability study had been allowed to air cool in the ceramic crucibles, undergoing a somewhat slower quench than if the glasses had been poured onto steel blocks or pans for a rapid quench. Most of the crystallization was Li_3PO_4 CPS which develops virtually instantaneous regardless of the quench rate [16, 17, 18] and the other crystallizing species were aluminates indicative of exceeding the alumina solubility in the glass. Both these phenomena are relatively independent of quench rate.

The crystalline phases that formed in the M-Area glasses, including the Li-phosphate CPS phases, were identified by XRD (Table 5-3). Eight of the 41 M-Area glasses crystallized Li₃PO₄ as the primary crystalline phase and three crystallized Li₃PO₄ along with an additional silicate or SiO₂ phase. Only two glasses, MN-5 and MHSi-11 exceeded the Al₂O₃ solubility limit and crystallized α -Al₂O₃ or LiAlO₂. Glass MN-26 appeared to have incompletely reacted and sodium carbonate (a glass forming additive) was identified. The data for this sample was not used.

Many of the glasses appeared visually to be amorphous which was confirmed by XRD analyses (Table 5-3). However, it was suspected that several of the glasses had undergone APS that would not have been observed by XRD, i.e., they were either in the range of known phase separation in the borosilicate glass system (Figure 2) or if the glasses were predicted or observed to contain amorphous phase separation [19,21] and contained >14 wt% B₂O₃ [33] (see Table 5-3).

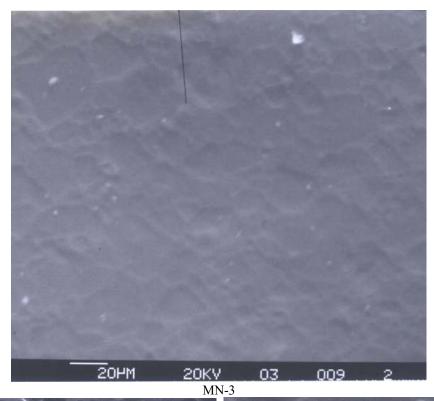

The two glasses that exhibited APS were MN-3 and MN-14. Morphologically, APS may take the form of droplets or channels of various dimensions which have defined boundaries. Glass MN-3 contained 28.25 wt% B_2O_3 and was made with only one frit addition, B_2O_3 (see Figure 1 and

Table 4-2). At 70 wt% waste loading of the high Al sludge and high Si filter aid nominal mixture, this glass was in the region of the alkali borosilicate waste glasses where Vycor glasses, which are known to be phase separated, form (Figure 2). MN-3 contained no Li_2O and the only Na₂O in the glass (7.96 wt%) was from the alkali in the M-area sludge (see Table 5-2). The SiO₂-B₂O₃ separation morphology [34] is visible in Figure 3 (top) in the as prepared sample which was not etched with any chemicals or steam.

Figure 2. Alkali borosilicate system showing the position of the two glasses, MN-3 and MN-14, which exhibited amorphous phase separation during SEM analyses.

Glass MN-3 contained 28.25 wt% B₂O₃ and is in the region labeled Vycors. Glass MN-14 contained high Li₂O and also exhibits phase separation. Both glasses have < 60 wt% SiO₂.

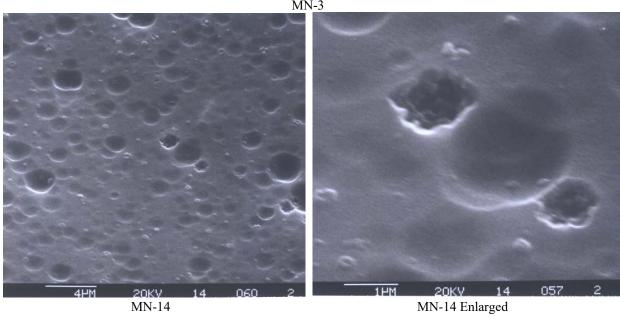


Figure 3. Phase separation of the glass-in-glass amorphous type observed in MN-3 and MN-14.

Glass MN-14 was made with a two component frit (see Figure 1 and Table 4-2) of 70% Li₂O and 30% B_2O_3 . The glass contains 16.86 wt% Li₂O, 17.53 wt% Na₂O, and only 7.45 wt% B_2O_3 (Table 5-2 and Figure 2). Spherical regions of a second phase can be observed in this glass (Figure 3). The regions are about 2 microns in size and are either a different density or have been etched out by SEM preparation techniques.

MN-3 and MN-14 were the only two glasses predicted to be phase separated as APS and the only two glasses that were found to be phase separated by SEM. Both glasses contained <60 wt% SiO₂. Because B and Li cannot be distinguished in the Energy Dispersive X-ray Analysis by SEM, the compositional nature of the phase separation could not be determined.

5.3 Alumina Solubility with P₂O₅

In order to assess the solubility of Al_2O_3 in the high U_3O_8 and P_2O_5 containing borosilicate glasses that could be compositionally useful for DWPF or WTP, a plot was made of all the M-Area glasses that were melted between 1150-1200°C at all the Al_2O_3 concentrations studied. The following conditions were applied:

- SLS glasses were excluded as DWPF and Hanford will vitrify borosilicate glasses (see Table 5-3)
- Glasses with P₂O₅ levels above 2.25 wt% (3 wt% PO₄) from Table 5-2, which is the DWPF phosphate solubility limit, were allowed to evaluate whether the DWPF solubility limit applies to high alumina glasses
- Glasses that failed the ASTM C1285 7 day test at 90°C (data in Table 5-4) at 2 standard deviations (2σ) below the Environmental Assessment (EA) glass limits for B, Li, and Na [35] were excluded
- Glasses that were phase separated (data in Table 5-3) were excluded

Then the logarithms of the PCT B release in g/L were plotted against the Al₂O₃ concentration in the glass (Figure 4). For each data point in Figure 4 a glass ID is given followed by the P₂O₅ concentration in wt%. These 15 glasses contain between 0.45 and 3.08 wt% P₂O₅ and are amorphous as determined by visual observation, XRD, and a calculation using the phase separation discriminator [21]. Glass symbols shown as X's contain Li₂O and Na₂O while the glass symbols shown as squares contain only Na₂O. The U₃O₈ range for these 15 glasses is 2.93-5.25 wt%. Figure 4 indicates the following:

- The P₂O₅ limit of 2.25 wt% P₂O₅ (3 wt% PO₄) may not apply for high alumina glasses, especially those with no Li₂O or minimal Li₂O in the frit
 - the DWPF P₂O₅ limit was set based on a simulated Stage 1 waste glass at 28 wt% waste loading [36]: the glass contained 11.17 wt% Fe₂O₃, 4.01 wt% Al₂O₃ and 53.74 wt% SiO₂ (17, notebook DPSTN E28150^f)
 - the DWPF P₂O₅ limit was set using frit 165 at 72 wt% waste loading: the glass contained 5.04 wt% Li₂O and 10.82 wt% Na₂O (17, notebook DPSTN E28150^f)
 - \circ -the simulated glass contained no U₃O₈
 - the 3 wt% PO₄ limit agreed with data in literature which cited solubility limits in silicate and borosilicate glasses between 3-4 wt% PO₄. [17]
- Combinations of low Li₂O and P₂O₅ appear to allow high Al₂O₃ glass loadings up to 25-26 wt% without compromising glass durability

^{*f*} The notebook number in reference 16 is reported incorrectly as DPSTN-25180 (several numbers are transposed) and thus incorrect

- This implies that DWPF glasses rich in Al₂O₃ might be processed with additional phosphate added as acids, e.g. H₃PO₄ or H₃PO₂ during Sludge Receipt and Adjustment Tank (SRAT) processing, these acids were examined in 1987 for DWPF as a partial replacement for nitric acid [17], since DWPF design basis sludges [17] were projected to only contain ~0.22 (Purex High Activity Waste, HAW), 0.16 (Average Waste), and 0.13 (HM HAW) wt% PO₄ which at 28 wt% waste loading in glass is projected to be only 0.04-0.06 wt% PO₄ in glass. In reality, the PO₄ concentrations in the glasses made from Sludge Batch (SB) SB1b, SB2, SB3, SB4, SB5, SB6, and SB7a have been 0.47, 0.36, 0.22, 0.19, 0.16, 0.15, <0.13, and <0.29 wt%, respectively. Even at higher waste loadings (WL) of 40% the design basis PO₄ concentrations are only 0.06-0.09 wt%
- Small concentrations of P₂O₅ up to 1-2 wt% should be investigated as a mechanism to increase the Al₂O₃ loadings of HM sludges and allow the amount of Al-dissolution to be optimized. These studies may also have applicability to Hanford's WTP as well.

Waste loadings in this range were confirmed for two glasses that were made in a 2007 DWPF study that achieved 26.63-26.64 wt% Al₂O₃ with and without Li₂O and in the presence of 1.1-1.2 wt% P₂O₅. These high Al₂O₃ content glasses did not compromise glass durability either. [37]

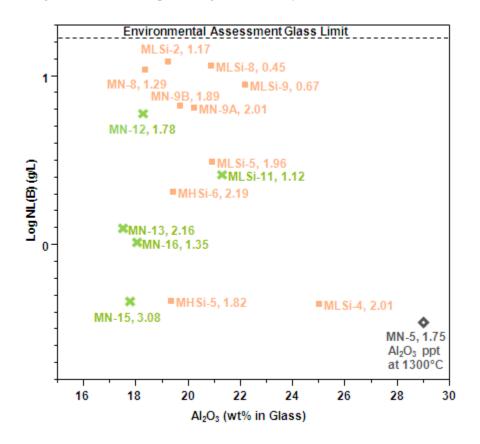


Figure 4. Plot of the M-Area borosilicate glasses that melted between 1150-1200°C. For each data point, a glass ID is given followed by the P₂O₅ concentration in wt%.

Glass symbols shown as X's (green) contain Li₂O and Na₂O while the square (orange) glass symbols contain only Na₂O. One glass which precipitated Al₂O₃ when cooled from a melt temperature of 1300°C is shown for reference at 29 wt% Al₂O₃ which appears to be the limit of Al₂O₃ solubility even at this elevated temperature.

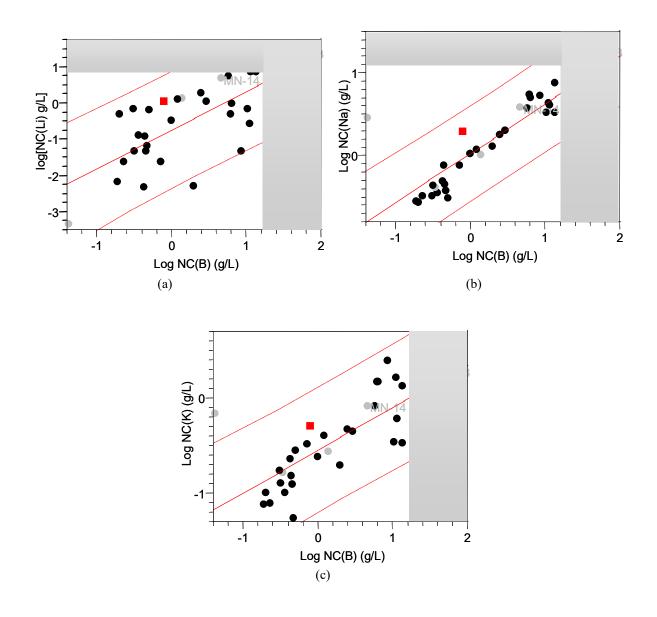
5.4 Glass Viscosity and Density

All the viscosity measurements generated by SRNL are provided in Appendix A. The viscosity (in Poise) of each of these glasses at 1150°C is to be estimated from a Fulcher equation fitted to these measurements. The functional form of the (three-parameter) Fulcher equation (expressed in Poise) used to fit these data is given by equation (4):

$$\ln \hat{\eta} = A + \frac{B}{(T - C)} \tag{4}$$

where $\ln \hat{\eta}$ represents the natural logarithm of the estimated viscosity (in Poise), $\hat{\eta}$, and A, B, and C represent the parameters of the model that were determined from the available measurements (expressed in Poise) at various temperatures (represented by T, in degrees Celsius). The fitted model was then used to predict the viscosity of the given glass at 1150°C.

5.5 Glass Durability


5.5.1 Nominal Temperature Product Consistency Testing (90°C)

The durability of the M-Area waste glasses were tested using ASTM C1285 (Method B for the M-Area glasses in Teflon[®] at the Method A reference conditions of 7 day duration, 90°C, and 1:10 ratio of mass solids:mass solution). Teflon[®] was used so that the leachates would be exposed to CO_2 from the atmosphere as they would in groundwater leachants during shallow land burial at the SRS. All glasses were measured in triplicate and the average of the triplicate normalized logarithms is given in Table 5-4.

The normalized release rates of Li, Na, and K calculated in NC_i from Equation 2 compared to the normalized release rate of B also calculated from Equation 2 demonstrate that the releases are congruent (Figure 5) for glasses that are not crystallized (Table 5-3). Figure 5 plots mainly borosilicate releases and only one SLS glass. It should be noted that the log NC_{Na} is a better linear fit of the data to the log NC_B (Figure 5b) than log NC_{Li} (Figure 5a) and log NC_K (Figure 5c). The poor correlation between log NC_B and log NC_{Li} (Figure 5a) is attributed to the strong interactions between Li and the high concentration of P in these glasses which often caused lithium phosphate CPS to form. The poor correlation between log NC_B and log NC_K is that B is measured by ICP-ES while K is measured by a less accurate AA method. The shaded regions in Figure 5a-c are glasses that are less durable than the DWPF EA glass.

It should be noted that log NC_{Si} and log NC_U are solubility limited and there is little correlation of either with soluble boron (Figure 6). However, log NC_U never rises above log = 0 as it is solubility limited. The use of NC_B , which does rise above log zero, can be used to demonstrate that U leach rate is always much less than the B leach rate (Figure 6b), i.e. if a glass passes the PCT for B release, it will always pass the PCT for U release.

A stepwise regression of the mean uranium ppm values measured in the triplicate PCT's indicated that the Li_2O content of the glass was the single most important parameter in determining the release of uranium to the groundwater. Many of the glasses contained no Li_2O but of the glasses that contained >9 wt% Li_2O , the durability decreased as the Li_2O content increased above 9 wt%.

Figure 5. Correlation of normalized log B release with the log Li, log Na, and log K release in g/L from 90°C for 7 days.

The black circles are homogeneous borosilicate glasses while the gray circles are inhomogeneous borosilicate glasses as determined by XRD and/or SEM. The square is the only homogeneous SLS glass studied. The gray shading indicates glasses that leached greater than the HLW EA glass standard for a given element. Note that the EA glass does not contain K or U and so there is no limit on the K release shown in diagram c.

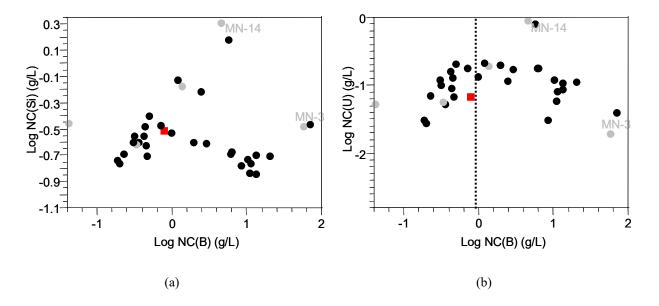


Figure 6. Correlation of normalized log B release with the log Si and log U release in g/L from 90°C for 7 days.

The black circles are homogeneous borosilicate glasses while the gray circles are inhomogeneous borosilicate glasses as determined by XRD or SEM. The square is the only homogeneous SLS glass.

Element	Tank 8	Tank 10	Tank 10	Nominal	High SiO ₂	Low SiO ₂	
(dry wt%)	(11/88)	(5/92)	(7/93)	Blend	Blend	Blend	
CATIONS AN							
Al (ICP)	10.734	8.896	9.642	8.827	9.147	9.206	
Ca (ICP)	0.307	0.351	0.425	0.313	0.332	0.320	
Fe (ICP)	0.402	0.870	1.046	0.715	0.852	0.660	
Mg (ICP)	0.122	0.122	0.122	0.167	0.150	0.163	
Mn (ICP)	0.422	0.035	0.049	0.024	0.029	0.018	
Na (ICP)	7.010	7.196	5.132	6.134	5.802	7.028	
Na (AA)	7.056	7.433	5.233	7.049	6.552	9.047	
Li (ICP)	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Ni (ICP	0.728	0.064	0.081	0.551	0.409	0.670	
Ni (AA)	0.990	< 0.06	< 0.06	0.674	0.504	0.785	
Si (ICP)	11.301	24.785	25.144	22.977	23.479	20.076	
Si (AA*)	14.715	27.445	24.845	21.765	23.380	19.093	
Cr (ICP)	0.017	< 0.004	< 0.004	0.011	< 0.004	0.027	
B (ICP)	0.010	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	
U (ICP-MS)	5.133	0.045†	0.222†	4.762	3.524	5.458	
Sr (ICP)	0.006	N/A	0.002	0.002	0.002	0.002	
Zr (ICP)	0.010	< 0.002	< 0.002	0.014	< 0.002	< 0.002	
Ti (ICP)	0.029	0.027	0.062	0.057	0.055	0.056	
K (AA*)	0.121	2.605	2.053	0.936	0.966	0.687	
P (ICP)***	1.896	1.031	0.959	1.338	1.259	1.179	
P (Calc IC)**	0.973	1.035	0.997	0.915	1.030	1.081	
Ba (ICP)	0.053	N/A	0.016	0.011	0.011	0.009	
Pb (ICP)	0.137	0.035	0.032	0.036	0.035	0.041	
Mo (ICP)	0.009	< 0.004	0.005	0.004	0.005	0.005	
Zn (ICP)	0.794	0.172	0.464	0.413	0.328	0.855	
Cu (ICP)	0.022	0.003	0.065	0.014	0.014	0.016	
F (ISE)	N/A	0.060	1.189	0.551	< 0.093	<0.102	
Cl (ISE)	0.059	0.310	0.134	0.112	0.100	0.112	
SO ₄ (IC)	<0.5	< 0.2	0.332	0.212	0.133	0.129	
NO ₃ (IC)	16.376	7.935	6.202	7.197	6.710	10.319	
PO ₄ (IC)**	2.984	3.175	3.057	2.807	3.160	3.315	
PROPERTIES	5						
wt% SOLIDS (105°C)	38.23	17.56	19.97	26.19	25.25	26.99	
wt% SOLIDS (300°C)	NM	NM	18.39	24.38	23.35	24.91	
MOLAR MAS	S BALANC	E					
Al(OH) ₃	25.06	23.12	23.81	22.15	23.27	23.64	
NaNO3	22.45	27.48	8.50	9.86	9.20	14.15	
Filter Aid	33.07	52.95	53.62	49.02	50.09	42.82	
Na ₆ U ₇ O ₂₄	6.75	0.06	0.29	6.25	4.63	7.17	
Ca Zeolite-A	2.82	1.30	3.91	2.88	3.05	2.94	
AlPO ₄	5.82	3.16	2.94	4.10	3.86	3.62	
SUM	95.96	108.065	95.58	94.26	94.09	94.33	
			dissolution al				

 Table 5-1.
 Composition of Tank 8 Sludge and Tank 10 Filter Aids and Blends [1]

l

*AA silicon values in italics from HCl/HF dissolution all others with * from Na₂O₂ dissolution; **water soluble phosphate only; *** acid soluble phosphate; NM means Not Measured

Sample ID	Al2O3	B_2O_3	BaO	CaO	Ce ₂ O ₃	Cr2O3	CuO	Fe2O3	K20	Li ₂ O	MgO	OuM	M0O3	Na2O	Nd2O3	NiO	P2O5	PbO	SiO ₂	TiO ₂	U3O8	ZnO	ZrO ₂	Oxide Sum
	01.67	10.16	0.00	0.50	0.00	0.00	0.02	1.76	1.50	0.02	0.07	0.04	0.01	10.01	0.01	0.62	1.00	0.00	17.07	0.00	5.04	0.00	0.00	101.15
	21.67	10.16	0.00	0.58	0.02	0.08	0.02	1.76	1.50	0.02	0.27	0.04	0.01	10.21	0.01	0.63	1.92	0.02	47.07	0.09	5.04	0.00	0.02	101.15
MN-2	16.85		0.01	0.37	0.02	0.09	0.02	1.63	1.33	0.01	0.23	0.03	0.01	8.75	0.01	0.55	1.54	0.04	38.76	0.08	4.44	0.03	0.02	96.67
MN-3		28.26	0.01	0.31	0.02	0.09	0.02	1.55	1.28	0.02	0.21	0.03	0.01	7.96	0.01	0.50	1.14	0.03	35.55	0.08	4.20	0.03	0.02	95.94
MN-4	21.24	7.52	0.01	0.42	0.02	0.09	0.03	1.76	1.51	0.00	0.26	0.04	0.01	12.50	0.01	0.62	2.01	0.03	44.79	0.09	4.99	0.03	0.01	98.00
MN-5	29.02	11.69	0.01	0.29	0.02	0.095	0.02	1.74	1.09	0.00	0.19	0.03	0.01	11.88	0.01	0.48	1.75	0.03	34.15	0.07	3.88	0.02	0.01	96.50
MN-6	16.76	18.89	0.01	0.29	0.02	0.07	0.02	1.43	1.20	0.00	0.21	0.03	0.01	15.28	0.01	0.49	1.10	0.02	35.42	0.07	3.81	0.02	0.02	95.17
MN-7	21.39	5.19	0.01	0.39	0.02	0.07	0.02	1.71	1.48	0.00	0.26	0.03	0.01	14.86	0.01	0.62	2.46	0.02	45.39	0.09	5.00	0.03	0.01	99.07
MN-8	18.38	19.22	0.01	0.33	0.02	0.07	0.01	1.64	1.40	0.03	0.24	0.03	0.01	8.91	0.01	0.56	1.29	0.02	38.92	0.08	4.59	0.03	0.01	95.82
MN-9A	20.26	14.09	0.01	0.35	0.00	0.07	0.02	1.45	0.92	0.00	0.20	0.03	0.00	16.29	0.00	0.49	2.01	0.03	35.98	0.07	3.52	0.03	0.06	95.89
MN-9B	19.70	13.70	0.01	0.34	0.00	0.06	0.02	1.37	0.91	0.00	0.19	0.03	0.00	17.94	0.00	0.47	1.89	0.04	34.97	0.07	3.53	0.03	0.08	95.35
MN-10	18.97	5.68	0.01	0.43	0.02	0.10	0.03	1.86	1.54	4.80	0.27	0.04	0.01	9.71	0.01	0.63	2.19	0.02	45.95	0.09	4.94	0.03	0.02	97.35
MN-11	17.76	10.65	0.00	0.33	0.02	0.08	0.01	1.59	1.30	10.04	0.22	0.03	0.01	8.58	0.01	0.52	1.94	0.02	37.97	0.06	4.20	0.02	0.02	95.39
MN-12	18.33	14.26	0.00	0.30	0.02	0.09	0.01	1.56	1.10	14.67	0.20	0.03	0.01	6.80	0.01	0.47	1.78	0.02	32.77	0.06	3.72	0.02	0.02	96.28
MN-13	17.52	5.09	0.01	0.35	0.02	0.08	0.02	1.81	1.40	11.15	0.25	0.03	0.01	7.87	0.01	0.59	2.16	0.02	43.00	0.08	4.42	0.03	0.02	95.94
MN-14	15.91	7.45	0.00	0.43	0.02	0.08	0.01	1.59	1.24	16.86	0.22	0.03	0.01	7.64	0.01	0.52	2.22	0.00	37.05	0.07	4.07	0.02	0.03	95.50
MN-15	17.79	4.15	0.00	0.39	0.02	0.09	0.01	1.67	1.41	0.17	0.27	0.03	0.01	17.53	0.01	0.63	3.08	0.02	44.52	0.08	4.69	0.03	0.03	96.64
MN-16	18.06	5.85	0.00	0.38	0.02	0.06	0.01	1.61	1.36	0.84	0.26	0.03	0.01	17.27	0.01	0.59	1.35	0.02	44.29	0.08	2.93	0.03	0.02	95.08
MN-17	18.15	0.38	0.00	5.96	0.04	0.07	0.03	1.67	1.54	0.00	0.26	0.03	0.01	15.63	0.02	0.61	2.48	0.04	47.30	0.08	5.14	0.03	0.02	99.50
MN-18	15.77	0.18	0.00	10.23	0.03	0.08	0.02	1.53	1.36	0.01	0.22	0.03	0.01	17.96	0.02	0.56	2.86	0.03	41.67	0.06	4.17	0.03	0.02	96.86
MN-19	14.48	0.42	0.00	13.54	0.02	0.09	0.02	1.56	1.30	0.46	0.27	0.03	0.01	20.80	0.01	0.50	1.17	0.02	38.14	0.06	4.10	0.02	0.02	97.07
MN-20	17.63	0.07	0.00	5.79	0.02	0.08	0.02	1.73	1.58	4.77	0.25	0.03	0.01	9.29	0.01	0.58	2.69	0.02	46.51	0.07	4.90	0.03	0.02	96.11
MN-21	15.88	0.06	0.00	11.62	0.02	0.09	0.02	1.66	1.38	10.48	0.28	0.03	0.01	9.01	0.01	0.55	1.74	0.02	41.30	0.06	4.02	0.03	0.03	98.32
MN-22	15.62	0.11	0.00	14.35	0.02	0.08	0.02	1.55	1.49	13.69	0.27	0.03	0.01	7.92	0.01	0.51	1.56	0.02	38.64	0.06	3.98	0.02	0.01	100.00
MN-23	19.19	0.07	0.00	11.70	0.02	0.09	0.03	1.83	1.44	0.16	0.26	0.04	0.01	9.89	0.01	0.61	2.60	0.03	46.44	0.07	4.91	0.03	0.02	99.46
MN-24	18.80	0.08	0.00	4.76	0.02	0.08	0.02	1.68	1.42	0.00	0.25	0.03	0.01	15.78	0.01	0.59	2.27	0.02	45.60	0.07	4.90	0.03	0.02	96.45
MN-25	15.97	0.04	0.00	6.30	0.02	0.08	0.02	1.62	1.26	0.14	0.23	0.03	0.01	21.08	0.01	0.56	1.87	0.02	42.26	0.07	4.34	0.03	0.02	96.01
MN-26	14.17	0.57	0.00	10.18	0.02	0.08	0.02	1.48	3.22	0.67	0.23	0.03	0.06	26.70	0.01	0.50	1.58	0.03	37.75	0.06	3.84	0.02	0.02	101.22

Table 5-2. Analyzed Compositions of M-Area Glasses (Wt%)

SRNL-STI-2011-00702 Revision 0

Sample ID	Al2O3	B2O3	BaO	CaO	Ce2O3	Cr2O3	CuO	Fe2O3	K2O	Li2O	MgO	MnO	M0O3	Na ₂ O	Nd2O3	NiO	P2O5	PbO	SiO ₂	TiO ₂	U_3O_8	ZnO	ZrO ₂	Oxide Sum
MHSi-1	19.93	7.83	0.01	0.42	0.02	0.08	0.02	1.77	2.01	0.02	0.24	0.04	0.01	9.71	0.01	0.51	1.60	0.02	47.81	0.08	3.82	0.03	0.02	96.02
MHSi-2	19.11	15.12	0.01	0.40	0.02	0.08	0.02	1.66	1.89	0.00	0.22	0.04	0.01	9.05	0.01	0.43	2.10	0.02	45.24	0.08	3.52	0.04	0.01	99.12
MHSi-3	16.97	23.46	0.01	0.38	0.02	0.08	0.03	1.58	1.69	0.01	0.21	0.04	0.01	7.99	0.01	0.44	1.55	0.02	41.18	0.07	3.18	0.03	0.01	98.97
MHSi-4	21.95	5.65	0.02	0.42	0.04	0.07	0.03	1.74	1.97	0.00	0.24	0.05	0.01	11.56	0.02	0.48	2.44	0.03	50.12	0.09	3.79	0.03	0.01	100.77
MHSi-5	19.36	11.95	0.01	0.38	0.02	0.08	0.03	1.68	1.83	0.00	0.22	0.04	0.01	13.58	0.01	0.62	1.82	0.03	44.54	0.08	3.39	0.03	0.01	99.72
MHSi-6	19.43	15.79	0.01	0.33	0.02	0.08	0.02	1.67	1.66	0.02	0.20	0.04	0.01	13.30	0.01	0.40	2.19	0.02	40.51	0.07	3.03	0.03	0.09	98.94
MHSi-11	24.35	7.15	0.01	0.39	0.02	0.09	0.03	2.01	1.74	6.82	0.21	0.05	0.01	7.27	0.01	0.42	2.34	0.03	44.54	0.08	3.36	0.03	0.04	100.99
MLSi-1	20.70	11.16	0.01	0.33	0.07	0.08	0.03	1.55	1.13	0.40	0.24	0.03	0.01	12.26	0.04	0.72	1.56	0.04	38.99	0.08	5.66	0.03	0.04	95.17
MLSi-2	19.26	23.20	0.01	0.41	0.12	0.09	0.05	1.48	0.97	0.07	0.22	0.03	0.01	10.50	0.06	0.66	1.17	0.06	35.35	0.08	4.89	0.04	0.03	98.75
MLSi-3	15.44	32.62	0.01	0.25	0.08	0.08	0.02	1.43	0.87	0.06	0.19	0.03	0.01	9.43	0.04	0.60	1.27	0.04	31.44	0.07	4.32	0.02	0.02	98.36
MLSi-4	25.04	8.78	0.01	0.31	0.14	0.08	0.03	1.48	1.01	0.02	0.23	0.03	0.01	13.60	0.07	0.69	2.01	0.06	37.86	0.08	5.24	0.03	0.03	96.86
MLSi-5	20.94	14.32	0.01	0.30	0.08	0.09	0.07	1.53	0.94	0.04	0.22	0.03	0.01	13.45	0.04	0.67	1.96	0.04	36.45	0.08	4.55	0.09	0.02	95.94
MLSi-7	24.87	5.73	0.01	0.37	0.02	0.07	0.02	1.49	0.98	0.00	0.24	0.03	0.01	17.15	0.01	0.68	1.13	0.03	37.79	0.08	5.45	0.03	0.02	96.22
MLSi-8	20.91	15.67	0.01	0.23	0.06	0.18	0.02	1.34	0.77	0.01	0.18	0.03	0.01	22.12	0.03	0.78	0.45	0.02	35.89	0.06	3.57	0.02	0.02	102.39
MLSi-9	22.18	14.47	0.01	0.25	0.02	0.07	0.02	1.26	0.70	0.00	0.18	0.03	0.01	27.09	0.01	0.51	0.67	0.02	28.61	0.06	3.88	0.02	0.01	100.08
MLSi-11	21.33	9.34	0.01	0.32	0.02	0.08	0.02	1.51	0.98	9.30	0.21	0.03	0.01	9.23	0.01	0.75	1.12	0.02	39.90	0.07	5.25	0.02	0.02	99.56

Sample ID	Melt Temp. (°C)	Type of Glass	Analytic Tool Used	Crystalline Phase Separation	Observed Amorphous Phase Separation	Predicted Amorphous Phase Separation [38]
MN-1	1400	Na Borosilicate	XRD	Amorphous		No
MN-2	1260	Na Borosilicate	XRD/SEM	Amorphous	No	No
MN-3	1150	Na Borosilicate	XRD/SEM	Amorphous	Yes	Yes
MN-4	1400	Na Borosilicate	XRD	Amorphous		No
MN-5	1300	Na Borosilicate	XRD	α -Al ₂ O ₃		No
MN-6	1150	Na Borosilicate	XRD	Amorphous		No
MN-7	1400	Na Borosilicate	XRD	Amorphous		No
MN-8	1150	Na Borosilicate	XRD/SEM	Amorphous	No	No
MN-9A	1200	Na Borosilicate	XRD	Amorphous		No
MN-9B	1200	Na Borosilicate	XRD	Amorphous		No
MN-10	1200	Na-Li Borosilicate	XRD	Li ₃ PO ₄		No
MN-11	1150	Na-Li Borosilicate	XRD	Li ₃ PO ₄		No
MN-12	1150	Na-Li Borosilicate	XRD	Amorphous		No
MN-13	1150	Na-Li Borosilicate	XRD	Amorphous		No
MN-14	1150	Na-Li Borosilicate	XRD/SEM	Li _{3.2} Mg _{0.4} SiO ₄	Yes	Yes
MN-15	1200	Na Borosilicate	XRD	Amorphous		No
MN-16	1150	Na Borosilicate	XRD	Amorphous		No
MN-17	1350	SLS	XRD	Li ₃ PO ₄ , Ca ₃ Mg(SiO ₄) ₂		No
MN-18	1150	SLS	XRD	Amorphous		No
MN-19	1150	SLS	XRD	Amorphous		No
MN-20	1200	SLLS	XRD	Li ₃ PO ₄		No
MN-21	1150	SLLS	XRD	Amorphous		No
MN-22	1150	SLLS	XRD	Li _{2.8} Mg _{0.6} SiO ₄		No
MN-23	1400	SLS	XRD	Na ₂ Ca ₃ Al ₂ (PO ₄) ₂ (SiO ₄) ₂		No
MN-24	1400	SLS	XRD	Li ₃ PO ₄		No
MN-25	1150	SLS	XRD	Amorphous		No
MN-26	1150	SLS	XRD	$Na(HCO_3)_2$		No
MHSi-1	1400	Na Borosilicate	XRD	Amorphous		No
MHSi-2	1300	Na Borosilicate	XRD	Amorphous		No
MHSi-3	1150	Na Borosilicate	XRD/SEM	Amorphous	No	No
MHSi-4	1400	Na Borosilicate	XRD	Amorphous		No
MHSi-5	1150	Na Borosilicate	XRD	Amorphous		No
MHSi-6	1200	Na Borosilicate	XRD	Amorphous		No
MHSi-11	1350	Na-Li Borosilicate	XRD	LiAlO ₂		No
MLSi-1	1300	Na Borosilicate	XRD	Amorphous		No
MLSi-2	1150	Na Borosilicate	XRD	Amorphous		No
MLSi-3	1400	Na Borosilicate	XRD/SEM	Amorphous	No	No
MLSi-4	1150	Na Borosilicate	XRD	Amorphous		No
MLSi-5	1150	Na Borosilicate	XRD	Amorphous		No
MLSi-7	1400	Na Borosilicate	XRD	Amorphous		No
MLSi-8	1150	Na Borosilicate	XRD	Amorphous		No
MLSi-9	1150	Na Borosilicate	XRD	Amorphous		No
MLSi-11	1150	Na-Li Borosilicate	XRD	Amorphous		No

Table 5-3. M-Area Glasses: Fabrication Methods* and Homogeneity

* all melted and quenched in high purity alumina crucibles

	Mean			log10[NL	.(i) g/L]		
Sample ID	pН	В	Li	Na	Si	K	U
MN-1	8.66	-0.69	-0.31	-0.57	-0.77	-0.99	-1.57
MN-2	7.81	1.15	0.85	0.52	-0.70	-0.48	-0.98
MN-3	6.78	1.78	1.06	1.13	-0.49	0.17	-1.71
MN-4	8.36	-0.43	-0.89	-0.44	-0.60	-1.00	-1.01
MN-5	8.74	-0.46	-1.32	-0.38	-0.62	-0.78	-1.26
MN-6	9.03	1.14	0.99	0.88	-0.85	0.13	-1.06
MN-7	9.32	-0.48	-1.32	-0.35	-0.56	-0.90	-1.00
MN-8	8.11	1.03	-0.15	0.52	-0.73	-0.46	-0.94
MN-9A	9.80	0.8	-0.31	0.73	-0.69	0.17	-0.76
MN-9B	9.80	0.82	-0.01	0.69	-0.68	0.17	-0.76
MN-10	11.51	-1.37	-3.35	0.46	-0.46	-0.17	-1.28
MN-11	11.17	0.15	0.12	0.02	-0.18	-0.56	-0.72
MN-12	11.86	0.77	0.74	0.57	0.18	-0.08	-0.10
MN-13	11.54	0.09	0.11	0.08	-0.13	-0.39	-0.68
MN-14	11.94	0.67	0.68	0.59	0.30	-0.08	-0.05
MN-15	10.32	-0.34	-0.93	-0.12	-0.48	-0.82	-1.05
MN-16	10.02	0.01	-0.47	0.03	-0.54	-0.62	-0.89
MN-17	10.09	-0.87	-1.32	-0.36	-0.79	-0.91	-1.88
MN-18	10.72	-0.16	-1.59	0.08	-0.66	-0.52	-1.37
MN-19	11.02	-0.14	0.01	0.28	-0.52	-0.31	-1.19
MN-20	10.12	-1.24	-0.34	-0.38	-0.64	-0.69	-1.81
MN-21	10.94	-0.3	0.16	0.08	-0.49	-0.37	-1.15
MN-22	11.08	-0.12	0.51	0.35	-0.12	-0.20	-0.7
MN-23	10.01	-1.32	-1.23	-0.65	-1.09	-1.02	-2.72
MN-24	10.33	-0.71	-1.32	-0.12	-0.67	-0.81	-2.68
MN-25	10.82	-0.68	-0.55	0.33	-0.25	-0.17	-1.05
MN-26	11.34	-0.36	0.73	0.94	0.08	0.19	-0.22
MHSi-1	8.39	-0.71	-2.17	-0.55	-0.74	-1.12	-1.50
MHSi-2	8.50	-0.31	-1.19	-0.42	-0.71	-1.26	-1.18
MHSi-3	7.76	1.32	0.43	0.66	-0.71	-0.38	-0.95
MHSi-4	8.53	-0.63	-1.62	-0.49	-0.69	-1.10	-1.15
MHSi-5	8.70	-0.33	-1.32	-0.34	-0.63	-0.91	-0.90
MHSi-6	8.73	0.31	-2.28	0.11	-0.60	-0.71	-0.70
MHSi-11	10.38	-0.29	-0.20	-0.53	-0.41	-0.55	-0.70
MLSi-1	8.59	-0.5	-0.16	-0.49	-0.60	-0.76	-0.92
MLSi-2	8.39	1.08	0.86	0.61	-0.76	-0.21	-1.10
MLSi-3	7.02	1.87	1.61	1.42	-0.47	0.66	-1.41
MLSi-4	8.69	-0.35	-2.32	-0.31	-0.56	-0.64	-0.81
MLSi-5	9.01	0.48	0.03	0.30	-0.62	-0.35	-0.77
MLSi-7	9.33	-0.14	-1.62	-0.12	-0.47	-0.49	-0.76
MLSi-8	9.31	1.06	-0.57	0.63	-0.84	0.22	-1.24
MLSi-9	10.20	0.95	-1.32	0.73	-0.79	0.39	-1.52
MLSi-11	11.28	0.41	0.29	0.25	-0.22	-0.33	-1.07

Table 5-4. ASTM C1285 (PCT) Average Durability Responses at 90°C in ASTM Type I Water

5.5.2 Confirmation of 25°C Dissolution Rates for the E-Area Performance Assessment

Whited et. Al. [23,24,25] estimated the release of uranium to the SRS groundwater from the HLW literature. The 90°C long term (84-980 days) static dissolution data were tabulated in both deionized water and Yucca Mountain J13 groundwater for a wide variety of HLW glasses from Europe (SM527 and R7T7), the United States (SRL-131, 165, 200, 202), and a statistical study related to DWPF glasses [26]. The average long term release rate, expressed as NR_i was calculated and used in conjunction with an E_a of dissolution to generate a leach rate at 25°C for use in determining if the M-Area glasses, once delisted, would pass the SRS burial ground PA. The E_a of dissolution for borosilicate glasses of 75 KJ/mole was used from White [28] for dissolution of a nuclear waste glass in ASTM Type I water. This was confirmed by more recent (1998) work of Dove [29] for the dissolution of pure SiO₂ in ASTM Type I water which gave an E_a of dissolution of 78.9 KJ/mole. This assessment assumed that uranium was released at a similar rate as boron as a worst case scenario even though it is likely that uranium release would be solubility limited while boron release would not be solubility limited. [23,24,25]

Confirmatory, PCT-B tests were performed in SRS E-Area ground water from well #94 at 25°C at six different SA/V ratios at time durations of 14, 28, and 42 days yielding the (SA/V)•t values given in Table 4-4.

Whited tested the eight different (SA/V) \bullet t ratios given in Table 4-4. This required large quantities of glass. Only three homogeneous glasses were available in sufficient quantity to be tested (MN-12, MN-13 and MHSi-5) at the time at which the study was initiated. The positions of these glasses in the alkali borosilicate system are shown in Figure 7. Glass MN-12 was at 70% waste loading and made with a 50:50 two component frit of Li₂O and B₂O₃. Glass MN-13 was at 85% waste loading and made with a two-component frit of 70% Li₂O and 30 wt% B₂O₃. Glass MHSi5 was at 80% waste loading and made with a two-component frit of 30 wt% Na₂O and 70 wt% B₂O₃. Of these three glasses MN-12 (at 70 wt% waste loading) was the least durable and the 80-85% waste loaded MHSi-5 and MN-13 glasses were of comparable durability even though the ratio of alkali (Li₂O in the case of MN-12 and Na₂O in the case of MHSi-5) were highly variable.

For the set of three glasses used as confirmation of the 90° C to 25° C extrapolation, the impacts of glass formulation can be examined since Li₂O, Na₂O, SiO₂ and B₂O₃ were widely varied. Both the B release and the U release seem to be positively correlated (Figure 8a and c) with the Li/Si cation ratio within a narrow composition range, i.e. more Li or less Si makes the glass more durable. Likewise, the durability of the glass in terms of the leach rate release of B and U is negatively correlated with the Na/Al cation ratio (Figure 8b and d), i.e. the most durable glasses are formed when the cation Na/Al or cation Na/(Al+Si) ratio is high.

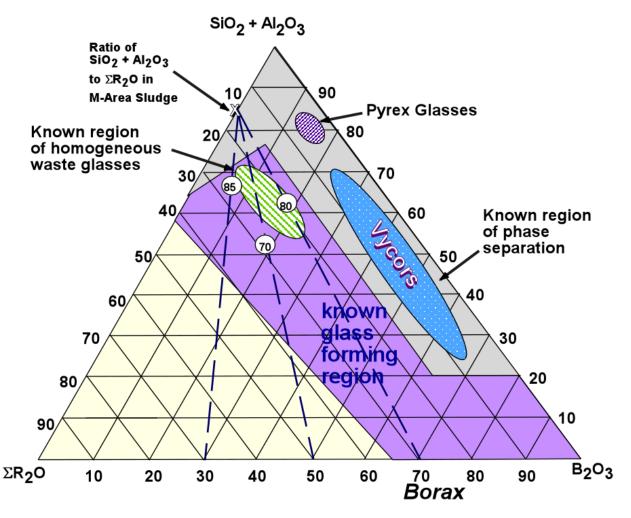


Figure 7. Positions of MN-12 (70 wt % waste loading), MN-13 (85% waste loaded), and MHSi-5 (80% waste loaded) plotted in their representative positions in the R₂O-B₂O₃-SiO₂ system where R can be Li or Na.

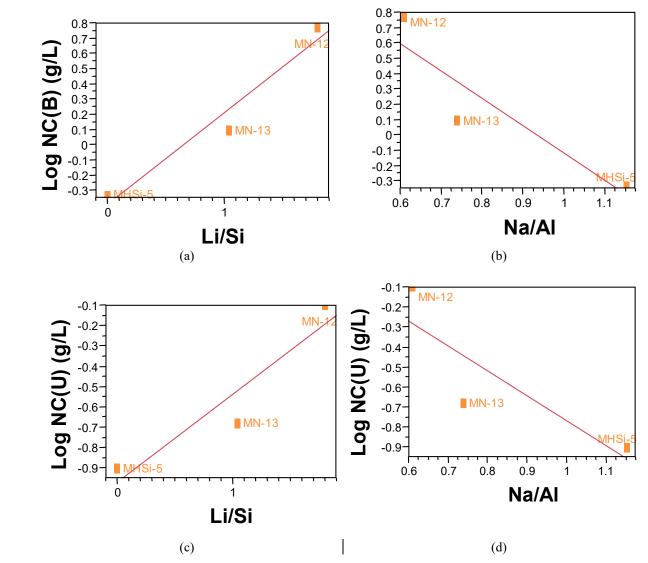


Figure 8. Dependency of 25°C M-Area Glass Durability on Composition.

Moreover, it is noted that for the three glasses studied at 25° C that the log NC_B and log NC_U leaching are linearly related but that the B is released at a much more rapid rate (above the dashed 1:1 correspondence line) in Figure 9. This can also be seen in Figure 8a and b where the B release is greater than the U release in Figure 8c and d. So, the use of B at 90°C to bound U release at 25° C can be justified. In all cases (Figure 8 and Figure 9) MHSi-5 is less durable than MN-13 which is less durable than MN-12.

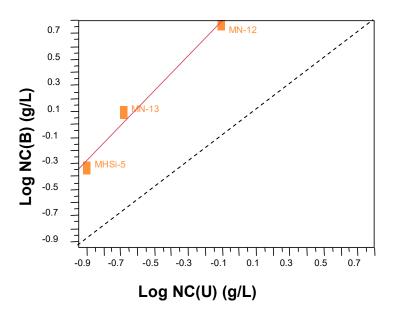


Figure 9. The relative relationship between normalized PCT releases at 90°C for the glasses studied at 25°C and different SA/V ratios. Note that while the B and U releases are linear, the rate of the B release far exceeds the U release. The dashed line indicates the position of the relative releases if they were equal.

The average normalized leaching rate of radionuclide i, NR_i, can be calculated using

$$NR_i = \frac{NL_i}{t}$$
,

where t is the duration of the test in days and the NL_i is as defined in Equation 2.

A plot of NR_i in $g/m^2 \cdot day$ vs time (in cumulative years) follows a square root dependency with time if the leaching is occurring as an ion exchange mechanism rather than by a linear hydrolysis mechanism. This is because the SA/V term in Equation 2 is related to the test duration by a square root dependency. It can be shown that the size fractions and amounts of sample and leachant varied in the E-Area groundwater (see Table 4-4) fall within this square root dependency (Figure 10). In addition, Figure 10 demonstrates that none of the SA/V combinations used for the E-Area ground water testing were in the range of 20,000 m⁻¹ where the leaching mechanism may change due to the participation of crystallites formed from back reactions and saturation in the leachate. [39,40]

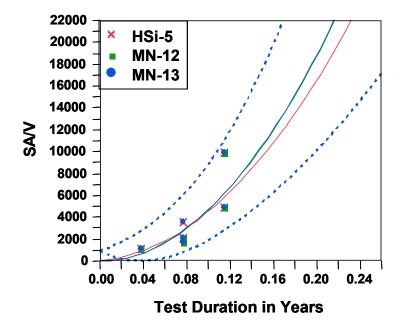


Figure 10. Relationship of the SA/V and time durations in the 25°C E-Area Groundwater Tests.

Solid lines are the square root correlation for each glass (HSi-5, MN-12 and MN-13) but the MN-12 and MN-13 lines overlap so the 95% error bars were shown for MN-13 as the dotted lines.

The data of Whited [23,24], using an approximate 75 kcal/mole activation energy for M-Area glass dissolution, states "if M-Area waste glass is of above average durability compared with the reference glasses, those from which the activation energy was derived, the allowable leach rate of NR_B = 2.7 E-05 g/m²•day determined by performance assessment calculations should be met, and the performance objective (maximum uranium concentration of 20 μ g/L in the groundwater) for trench disposal should be satisfied."

To graphically illustrate this by a different mathematical treatment, one can plot the NR_i as the ordinate in $g/m^2 \cdot day$ versus test duration time (in cumulative days or years) as the abscissa and fit this to a square root dependency which demonstrates that the leaching is via diffusion (Figure 11). This is an intrinsic characteristic of a diffusion-controlled process rather than a mechanism of glass matrix dissolution via hydrolysis. The latter mechanism would show a constant leaching rate.

The point at which the square root dependency for diffusion crosses the ordinate axis at the value of NR_B or NR_U = 2.7 E-05 g/m²•day is the length of time it will take for the glass to reach the desired long-term rate once exposed to the groundwater. After that time period the long-term rate will be less than the 2.7 E-05 g/m²•day. The NR_i vs test duration time plots for NR_B and NR_U are shown in Figure 11 fit with a square root dependency. The dashed horizontal line in Figure 11 represents the SRS burial ground performance objective for the maximum concentration of uranium in groundwater. The normalized release (NR_i in g/m²day) vs. cumulative time, which defines the final long term rate, decreases asymptotically to values <2.7 E-05 g/m²•day in 44-80 days for B release (Figure 11a) and ~44 days for U release (Figure 11b). Since the M-Area glass is sealed in canisters, dissolution will not be uniform but will occur only as the canister degrades. In addition, there is a large uncertainty and a large amount of scatter in the E-area groundwater analyses since it has subsequently been determined that leaching in the 20°C range creates such minimal concentrations of species in solution, compared to leaching at 40°C and 90°C, that

measurements are usually at the detection limit of the analytic instrument. This is why leaching analyses are normally performed at 40°C or above. [41]

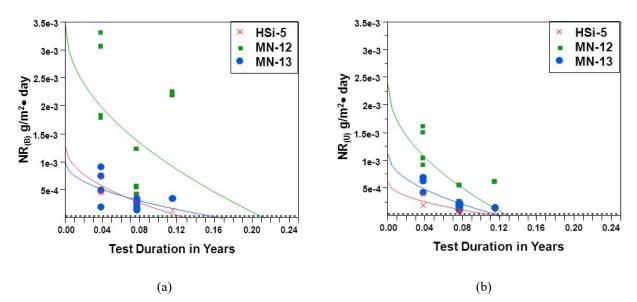
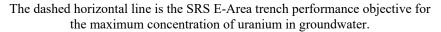



Figure 11. Plot of the 25°C E-Area Groundwater Testing Fit to A Square Root Dependency to verify that the B and U leach by diffusion.

Sample ID	Size ID	Test Duration (Days)	Test Duration (Years)	Ηd	fi(B)	fi(Na)	fi(U)	B (ppm)	Na (ppm)	U D	Li (ppm)	(mqq)	Fe (ppm)	Si (ppm)	(mg (ppm)	Ca (ppm)	(mqq) nZ	SA/V (m ² /L)	SA/V*t (day/m ⁻¹)
Saı		ā	D			-		B	Na	Ŭ	Ľ	AI	Fe	Si	M	C	Zı		S (q
HSi-5	А	14	0.04	9.29	0.037	0.1007	0.0287	0.261	6.533	0.079	0.004	0.027	0.003	2.840	0.355	2.432	0.179	1043	14602
HSi-5	А	14	0.04	9.25	0.037	0.1007	0.0287	0.239	6.503	0.082	0.004	0.027	0.003	2.683	0.349	2.421	0.080	1043	14602
MN-12	А	14	0.04	9.58	0.044	0.0504	0.0316	1.175	6.242	0.42	3.220	1.502	0.003	3.306	0.226	1.171	0.071	1043	14602
MN-12	А	14	0.04	9.60	0.044	0.0504	0.0316	1.149	6.209	0.48	3.228	1.411	0.003	3.324	0.227	1.148	0.171	1043	14602
MN-13	А	14	0.04	9.70	0.016	0.0584	0.0375	0.043	2.747	0.23	0.874	0.027	0.003	1.432	0.17	1.114	0.061	1043	14602
MN-13	А	14	0.04	9.65	0.016	0.0584	0.0375	0.112	5.582	0.23	1.699	0.264	0.013	3.087	0.337	2.231	0.175	1043	14602
HSi-5	В	14	0.04	8.79	0.037	0.1007	0.0287	0.414	7.728	0.16	0.047	0.027	0.003	3.049	0.345	2.117	0.172	1043	14602
HSi-5	В	14	0.04	8.85	0.037	0.1007	0.0287	0.397	7.642	0.16	0.033	0.027	0.003	3.024	0.339	2.087	0.130	1043	14602
MN-12	В	14	0.04	9.73	0.044	0.0504	0.0316	2.142	7.609	0.74	5.832	2.899	0.003	4.823	0.087	0.325	0.152	1043	14602
MN-12	В	14	0.04	9.71	0.044	0.0504	0.0316	1.982	7.765	0.69	6.016	2.334	0.003	3.869	0.115	0.402	0.191	1043	14602
MN-13	В	14	0.04	9.74	0.016	0.0584	0.0375	0.209	6.164	0.38	2.824	0.477	0.003	3.651	0.298	1.713	0.069	1043	14602
MN-13	В	14	0.04	9.71	0.016	0.0584	0.0375	0.173	6.072	0.34	2.817	0.375	0.003	3.852	0.286	1.700	0.113	1043	14602
HSi-5	Е	28	0.08	7.38	0.037	0.1007	0.0287	0.319	6.824	0.09	0.030	0.027	0.003	2.942	0.342	2.426	0.108	2085	58380
HSi-5	Е	28	0.08	7.4	0.037	0.1007	0.0287	0.316	6.954	0.08	0.026	0.027	0.038	3.003	0.352	2.512	0.091	2085	58380
MN-12	Е	28	0.08	9.50	0.044	0.0504	0.0316	1.434	6.658	0.49	3.903	2.289	0.017	3.553	0.2203	1.025	0.099	2085	58380
MN-12	Е	28	0.08	9.45	0.044	0.0504	0.0316	1.459	6.652	0.48	3.946	2.222	0.012	3.574	0.201	1.025	0.075	2085	58380
MN-13	Е	28	0.08	9.28	0.016	0.0584	0.0375	0.145	5.645	0.25	1.952	0.561	0.018	3.324	0.322	2.233	0.085	2085	58380
MN-13	Е	28	0.08	9.29	0.016	0.0584	0.0375	0.130	5.589	0.25	1.838	0.514	0.015	3.285	0.322	2.299	0.071	2085	58380
HSi-5	F	28	0.08	7.98	0.037	0.1007	0.0287	0.498	8.139	0.15	0.065	0.027	0.018	4.240	0.324	2.041	0.103	2082	58296
HSi-5	F	28	0.08	7.94	0.037	0.1007	0.0287	0.534	8.456	0.13	0.045	0.027	0.014	3.401	0.338	2.138	0.114	2082	58296
MN-12	F	28	0.08	9.80	0.044	0.0504	0.0316	3.145	8.889	1.01	7.558	6.062	0.018	6.358	0.047	0.209	0.075	2082	58296
MN-12	F	28	0.08	9.76	0.044	0.0504	0.0316	1.392	6.701	0.48	3.946	1.879	0.12	3.388	0.199	0.980	0.069	2082	58296
MN-13	F	28	0.08	9.58	0.016	0.0584	0.0375	0.227	6.369	0.48	3.240	0.908	0.009	3.915	0.278	1.732	0.068	2082	58296
MN-13	F	28	0.08	9.60	0.016	0.0584	0.0375	0.186	6.065	0.37	2.696	0.644	0.049	3.578	0.307	2.025	0.080	2082	58296
HSi-5	G	28	0.08	10.86	0.037	0.1007	0.0287	18.145	16.833	5.00	26.314	29.42	1.037	35.575	0.038	0.130	0.081	1750	49000
HSi-5	G	28	0.08	10.88	0.037	0.1007	0.0287	17.68	16.19	4.7	25.561	28.078	0.920	33.785	0.026	0.067	0.081	1750	49000
MN-12	G	28	0.08	8.83	0.044	0.0504	0.0316	0.920	3.488	0.2	0.062	0.951	0.010	2.413	0.010	0.64	0.074	1750	49000
MN-12	G	28	0.08	8.75	0.044	0.0504	0.0316	0.923	3.417	0.2	0.065	0.992	0.003	2.452	0.007	0.44	0.054	1750	49000
MN-13	G	28	0.08	9.63	0.016	0.0584	0.0375	0.260	6.172	0.41	2.994	0.945	0.057	4.182	0.290	1.865	0.068	1750	49000

Table 5-5. M-Area PCT's at 25°C in E-Area Groundwater*,†

Revision 0	
------------	--

Sample ID	Size ID	Test Duration (Days)	Test Duration (Years)	hц	fi(B)	fi(Na)	fi(U)	B (ppm)	Na (ppm)	(mqq) U	Li (ppm)	Al (ppm)	Fe (ppm)	Si (ppm)	Mg (ppm)	Ca (ppm)	Zn (ppm)	SA/V (m ² /L)	SA/V*t (day/m ⁻¹)
MN-13	G	28	0.08	9.67	0.016	0.0584	0.0375	0.220	6.071	0.39	2.751	0.914	0.025	4.084	0.295	2.016	0.069	1750	49000
HSi-5	Н	28	0.08	8.72	0.037	0.1007	0.0287	1.488	5.731	0.38	0.105	1.167	0.035	3.425	0.017	0.119	0.084	3500	98000
HSi-5	Н	28	0.08	8.72	0.037	0.1007	0.0287	1.408	5.418	0.36	0.104	1.086	0.011	3.136	0.014	0.084	0.066	3500	98000
MN-12	Н	28	0.08	10.88	0.044	0.0504	0.0316	26.823	22.983	0.004	38.579	39.246	1.094	43.159	0.035	0.154	0.101	3500	98000
MN-12	Н	28	0.08	10.86	0.044	0.0504	0.0316	18.611	17.033	0.004	27.004	29.254	0.999	35.964	0.022	0.065	0.087	3500	98000
MN-13	Н	28	0.08	10.25	0.016	0.0584	0.0375	0.456	7.503	0.68	5.046	1.934	0.018	5.521	0.187	1.134	0.083	3500	98000
MN-13	Н	28	0.08	10.30	0.016	0.0584	0.0375	1.262	5.871	1.6	5.921	7.685	0.144	14.145	0.014	0.053	0.077	3500	98000
HSi-5	Ι	42	0.12	8.59	0.037	0.1007	0.0287	1.027	11.949	0.43	0.131	0.418	0.025	3.832	0.226	1.024	0.082	4938	207396
HSi-5	Ι	42	0.12	8.62	0.037	0.1007	0.0287	0.995	11.726	0.43	0.123	0.461	0.018	3.735	0.218	0.974	0.112	4938	207396
MN-12	Ι	42	0.12	10.90	0.044	0.0504	0.0316	20.232	23.218	4.01	31.194	35.435	0.625	33.731	0.040	0.142	0.106	4938	207396
MN-12	Ι	42	0.12	10.88	0.044	0.0504	0.0316	20.557	23.486	4.01	31.400	35.535	0.680	34.151	0.063	0.222	0.127	4938	207396
MN-13	Ι	42	0.12	10.52	0.016	0.0584	0.0375	1.093	10.357	1.2	8.962	6.668	0.067	11.152	0.052	0.290	0.082	4938	207396
MN-13	Ι	42	0.12	10.55	0.016	0.0584	0.0375	1.100	10.469	1.1	9.081	6.866	0.056	11.327	0.051	0.292	0.085	4938	207396
HSi-5	J	42	0.12	8.81	0.037	0.1007	0.0287	0.559	8.226	0.16	0.117	0.188	0.017	3.476	0.334	2.20	0.078	9876	414792
HSi-5	J	42	0.12	8.55	0.037	0.1007	0.0287	1.998	16.558	0.85	0.214	0.995	0.048	4.772	0.048	0.176	0.091	9876	414792
MN-12**	J	42	0.12	10.00	0.044	0.0504	0.0316	5.387	10.995	1.7	10.962	11.736	0.116	11.421	0.018	0.106	0.030	9876	414792
MN-13**	J	42	0.12	10.33	0.016	0.0584	0.0375	0.84	9.159	1.1	7.968	4.607	0.035	8.607	0.078	0.457	0.081	9876	414792

*The data that is shaded was not used in the plots of durability in E-Area groundwater leaching as the values would be negative after blank correction to the composition of the E-Area groundwater

† sets C and D were cancelled due to funding issues

**no sample

Table 5-5. (Continued with NLi's)

Sample ID	Size ID	Test Duration (Days)	Test Duration (Years)	SA/V (m ² /L)	SA/V*t (day/m ⁻¹)	NLi(B) (g/m ²)	NLi(Na) (g/m²)	NLi(U) (g/m²)	NC(B) (g/L)	NC(Na) (g/L)	NC(U) (g/L)	NRi (B) (g/m²⊕day)	NRi(Na) (g/m²⊕day)	NRi(U) (g/m²⊕day)
HSi-5	Α	14	0.04	1043	14602	6.76E-03	1.54E-02	2.64E-03	7.05	16.09	2.75	4.83E-04	1.10E-03	1.89E-04
HSi-5	А	14	0.04	1043	14602	6.19E-03	1.51E-02	2.74E-03	6.46	15.79	2.86	4.42E-04	1.08E-03	1.96E-04
MN-12	А	14	0.04	1043	14602	2.55E-02	2.53E-02	1.27E-02	26.64	26.39	13.29	1.82E-03	1.81E-03	9.10E-04
MN-12	А	14	0.04	1043	14602	2.49E-02	2.47E-02	1.46E-02	25.96	25.79	15.19	1.78E-03	1.77E-03	1.04E-03
MN-13	А	14	0.04	1043	14602	2.61E-03	#	5.88E-03	2.72	#	6.13	1.86E-04	#	4.20E-04
MN-13	А	14	0.04	1043	14602	6.79E-03	1.10E-02	5.88E-03	7.09	11.47	6.13	4.85E-04	7.86E-04	4.20E-04
HSi-5	В	14	0.04	1043	14602	1.07E-02	2.68E-02	5.35E-03	11.19	28.00	5.57	7.66E-04	1.92E-03	3.82E-04
HSi-5	В	14	0.04	1043	14602	1.03E-02	2.60E-02	5.35E-03	10.73	27.11	5.57	7.35E-04	1.86E-03	3.82E-04
MN-12	В	14	0.04	1043	14602	4.63E-02	5.14E-02	2.25E-02	48.31	53.57	23.42	3.31E-03	3.67E-03	1.60E-03
MN-12	В	14	0.04	1043	14602	4.29E-02	5.44E-02	2.09E-02	44.70	56.75	21.84	3.06E-03	3.89E-03	1.50E-03
MN-13	В	14	0.04	1043	14602	1.27E-02	2.05E-02	9.72E-03	13.23	21.40	10.13	9.06E-04	1.47E-03	6.94E-04
MN-13	В	14	0.04	1043	14602	1.05E-02	1.90E-02	8.69E-03	10.95	19.86	9.07	7.50E-04	1.36E-03	6.21E-04
HSi-5	Е	28	0.08	2085	58380	4.14E-03	9.10E-03	1.50E-03	8.62	18.97	3.14	1.48E-04	3.25E-04	5.37E-05
HSi-5	Е	28	0.08	2085	58380	4.10E-03	9.72E-03	1.34E-03	8.54	20.26	2.79	1.46E-04	3.47E-04	4.77E-05
MN-12	Е	28	0.08	2085	58380	1.55E-02	1.67E-02	7.44E-03	32.28	34.72	15.51	5.53E-04	5.95E-04	2.66E-04
MN-12	Е	28	0.08	2085	58380	1.58E-02	1.66E-02	7.29E-03	32.96	34.52	15.19	5.65E-04	5.91E-04	2.60E-04
MN-13	Е	28	0.08	2085	58380	4.55E-03	6.08E-03	3.20E-03	9.49	12.67	6.67	1.63E-04	2.17E-04	1.14E-04
MN-13	Е	28	0.08	2085	58380	3.95E-03	5.58E-03	3.20E-03	8.23	11.64	6.67	1.41E-04	1.99E-04	1.14E-04
HSi-5	F	28	0.08	2082	58296	6.46E-03	1.54E-02	2.51E-03	13.46	32.08	5.23	2.31E-04	5.50E-04	8.97E-05
HSi-5	F	28	0.08	2082	58296	6.93E-03	1.69E-02	2.18E-03	14.43	35.25	4.53	2.48E-04	6.05E-04	7.77E-05
MN-12	F	28	0.08	2082	58296	3.42E-02	3.79E-02	1.54E-02	71.11	78.97	31.96	1.22E-03	1.35E-03	5.48E-04
MN-12	F	28	0.08	2082	58296	1.51E-02	1.71E-02	7.30E-03	31.38	35.52	15.19	5.38E-04	6.09E-04	2.61E-04
MN-13	F	28	0.08	2082	58296	6.99E-03	1.20E-02	6.15E-03	14.56	25.00	12.80	2.50E-04	4.29E-04	2.20E-04
MN-13	F	28	0.08	2082	58296	5.78E-03	9.54E-03	4.74E-03	12.03	19.86	9.87	2.06E-04	3.41E-04	1.69E-04
HSi-5	G	28	0.08	1750	49000	2.80E-01	6.75E-02	9.96E-02	490.54	118.07	174.22	1.00E-02	2.41E-03	3.56E-03
HSi-5	G	28	0.08	1750	49000	2.73E-01	6.41E-02	9.36E-02	477.84	112.12	163.76	9.75E-03	2.29E-03	3.34E-03
MN-12	G	28	0.08	1750	49000	1.19E-02	#	3.62E-03	20.77	#	6.33	4.24E-04	#	1.29E-04
MN-12	G	28	0.08	1750	49000	1.19E-02	#	3.62E-03	20.77	#	6.33	4.24E-04	#	1.29E-04
MN-13	G	28	0.08	1750	49000	9.40E-03	1.23E-02	6.25E-03	16.46	21.58	10.93	3.36E-04	4.40E-04	2.23E-04

Sample ID	Size ID	Test Duration (Days)	Test Duration (Years)	SA/V (m ² /L)	SA/V*t (day/m ⁻¹)	NLi(B) (g/m ²)	NLi(Na) (g/m ²)	NLi(U) (g/m ²)	NC(B) (g/L)	NC(Na) (g/L)	NC(U) (g/L)	NRi (B) (g/m²⊕day)	NRi(Na) (g/m²⊕day)	NRi(U) (g/m²●day)
MN-13	G	28	0.08	1750	49000	7.96E-03	1.14E-02	5.94E-03	13.92	19.86	10.40	2.84E-04	4.05E-04	2.12E-04
HSi-5	Н	28	0.08	3500	98000	1.15E-02	9.16E-03	3.78E-03	40.27	32.07	13.24	4.11E-04	3.27E-04	1.35E-04
HSi-5	Н	28	0.08	3500	98000	1.09E-02	1.01E-02	3.58E-03	38.11	35.21	12.54	3.89E-04	3.59E-04	1.28E-04
MN-12	Н	28	0.08	3500	98000	1.73E-01	1.02E-01	3.62E-05	604.97	356.94	0.13	6.17E-03	3.64E-03	1.29E-06
MN-12	Н	28	0.08	3500	98000	1.20E-01	6.91E-02	3.62E-05	419.86	241.87	0.13	4.28E-03	2.47E-03	1.29E-06
MN-13	Н	28	0.08	3500	98000	8.32E-03	1.27E-02	5.18E-03	29.11	44.52	18.13	2.97E-04	4.54E-04	1.85E-04
MN-13	Н	28	0.08	3500	98000	2.28E-02	4.70E-03	1.22E-02	79.75	16.44	42.67	8.14E-04	1.68E-04	4.35E-04
HSi-5	Ι	42	0.12	4938	207396	5.62E-03	1.41E-02	3.03E-03	27.76	69.41	14.98	1.34E-04	3.35E-04	7.22E-05
HSi-5	Ι	42	0.12	4938	207396	5.45E-03	1.37E-02	3.03E-03	26.89	67.43	14.98	1.30E-04	3.25E-04	7.22E-05
MN-12	Ι	42	0.12	4938	207396	9.23E-02	7.35E-02	2.57E-02	455.98	362.90	126.90	2.20E-03	1.75E-03	6.12E-04
MN-12	Ι	42	0.12	4938	207396	9.42E-02	7.47E-02	2.57E-02	465.01	368.85	126.90	2.24E-03	1.78E-03	6.12E-04
MN-13	Ι	42	0.12	4938	207396	1.40E-02	1.90E-02	6.48E-03	68.99	94.01	32.00	3.33E-04	4.53E-04	1.54E-04
MN-13	Ι	42	0.12	4938	207396	1.41E-02	1.94E-02	5.94E-03	69.62	95.72	29.33	3.36E-04	4.62E-04	1.41E-04
HSi-5	J	42	0.12	9876	414792	1.53E-03	3.33E-03	5.64E-04	15.11	32.93	5.57	3.64E-05	7.94E-04	1.34E-05
HSi-5	J	42	0.12	9876	414792	5.47E-03	1.12E-02	3.00E-03	54.00	110.13	29.62	1.30E-04	2.66E-04	7.14E-05
MN-12	J	42	0.12	9876	414792	1.23E-02	1.22E-02	5.45E-03	121.60	120.73	53.80	2.93E-04	2.91E-04	1.30E-04
MN-13	J	42	0.12	9876	414792	5.39E-03	7.37E-03	2.97E-03	53.23	72.76	29.33	1.28E-04	1.75E-04	7.07E-05

6.0 CONCLUSIONS

The target composition envelope developed for the M-Area sludges were bracketed by making nominal, low SiO_2 and high SiO_2 blend mixtures of sludge tanks and the spent filter aid tank while spent filter aid was actively being added to the tank, i.e. the exact final volume of filter aid was an unknown. It is interesting to note that the final tank volumes, when measured in 1995, were most similar to the "low SiO_2 " SRNL blend, i.e.; 385,000 gallons of plating line sludge and 228,000 gallons of Tank 10 filter aid or a Tank 8/Tank 10 volume ratio of 1.69.

The glass formulations from the M-Area study can be used to illustrate that high durability glasses can be made with high Al_2O_3 and high U_3O_8 sludges. The glass formulations and PCT results serve to illustrate the range of successful combinations of alkali and B_2O_3 can be used to target these high durability glasses. The details of the QA under which this task was performed is also documented in this report so that these glasses can be used in ComProTM to facilitate glass formulations for high Al_2O_3 and U_3O_8 sludges. Specifically, examination of the Al_2O_3 solubility limit in these glasses, was used to define new compositional regions of technological importance for DWPF and WTP. The data indicates that the P_2O_5 limit of 2.25 wt% P_2O_5 (3 wt% PO₄) set for DWPF glass in 1987 may not apply for high alumina glasses, especially those with no Li_2O or minimal Li_2O in the frit. This is based on the data presented in this study for homogeneous and durable borosilicate glasses (SLS glasses were excluded) and the following:

- the DWPF P₂O₅ limit was set based on a simulated Stage 1 waste glass at 28 wt% waste loading: the glass contained only 4.01 wt% Al₂O₃
- o the DWPF P_2O_5 limit was set using frit 165 at 72 wt% waste loading
- o the simulated glass contained no U_3O_8 as did the glasses in this study (2.93-5.25 wt%).
- the 3 wt% PO₄ limit agreed with data in literature which cited solubility limits in silicate and borosilicate glasses between 3-4 wt% PO₄.

Therefore, combinations of low Li₂O and P₂O₅ appear to allow high Al₂O₃ glass loadings up to 25-26wt% without compromising glass durability. Since nominal DWPF sludges only contain ~0.22 (Purex HAW), 0.16 (Average), and 0.13 (HM HAW) wt% PO₄, which at 28 wt% waste loading in glass is only 0.05-0.08 wt% PO₄, small concentrations of P₂O₅ up to 1-2 wt% could be investigated as a mechanism to increase the Al₂O₃ loadings of HM sludges and allow the amount of Al-dissolution to be optimized. This data will have applicability to WTP as well.

The logarithm of the normalized release rates (NC_i) for 90°C PCT tests, where "i" equals Li, Na, and K, were compared to the logarithm of the normalized release rate of B to demonstrate that the alkali and boron releases are congruent for glasses that are not crystallized. It should be noted that the log NC_{Na} is a better linear fit of the data to the log NC_B than log NC_{Li} or log NC_K. The poor correlation between log NC_B and log NC_{Li} is attributed to the strong interactions between Li and P in these glasses which can cause lithium phosphate CPS to form. The poor correlation between log NC_B and log NC_K was attributed to the fact that B was measured by ICP-ES while K was measured by a less accurate AA method.

A stepwise regression of the mean uranium ppm values measured in the triplicate PCT's indicated that the Li_2O content of the glass was the single most important parameter in determining the release of uranium to the groundwater. Many of the glasses contained no Li_2O . However, for the glasses that contained >9 wt% Li_2O , the durability decreased as the Li_2O content increased above 9 wt%. This may be due to the interactions between Li_2O and PO₄ in these glasses.

The extrapolation made for the M-Area glass PA from 90°C PCT data to 25°C data are also confirmed in this report. In this extrapolation, the release of U was bounded by the release of B. It should be noted that log NC_U at 90°C is solubility limited and little correlation was found with soluble boron in this study. However, since log NC_U never rises above log = 0, the use of NC_B which does rise above log = 0, as an indication of the maximum radionuclide release is conservative.

This report documents the 25° C PCT release data in E-Area groundwater not previously published. For the set of three glasses used for the PA confirmation of the 90°C to 25° C extrapolation at varying SA/V, the impacts of glass formulation can be examined since Li₂O, Na₂O, SiO₂ and B₂O₃ were widely varied. Both the B release and the U release seem to be positively correlated with the Li/Si cation ratio, i.e. more Li or less Si makes the glass more durable. The durability of the glass in terms of the leach rate release of B and U is negatively correlated with the Na/Al cation ratio (Figure 8b and d), i.e. the most durable glasses are formed when the cation Na/Al is high.

Lastly, the M-Area 25° C data was fit to a cumulative release plot (NR_i in g/cm²day vs. cumulative time in years) and the data fit was achieved as the square root of the cumulative time. The square root dependency demonstrates that the leaching is via diffusion. This is an intrinsic characteristic of a diffusion-controlled process rather than a mechanism of glass matrix dissolution via hydrolysis. The latter mechanism would show a constant leaching rate.

The point at which the square root dependency for diffusion crosses the ordinate axis at the value of NR_B or $NR_U = 2.7 \text{ E-05 g/m}^2 \cdot \text{day}$ is the length of time it will take for the glass to reach the desired long-term rate once exposed to the groundwater. After that time period, the long-term rate will be less than the 2.7 $\text{E-05 g/m}^2 \cdot \text{day}$. The NR_i vs test duration time plots for NR_B and NR_U decrease asymptotically to values $<2.7 \text{ E-05 g/m}^2 \cdot \text{day}$ in 44-80 days for B release and \sim 44 days for U release. Since the M-Area glass is sealed in canisters, dissolution will not be uniform but occur only as the canister degrades. In addition, there is a large uncertainty and a large amount of scatter in the E-area groundwater analyses since it was subsequently determined by researchers at Argonne National Laboratory (ANL) that leaching in the 20°C range creates such minimal concentrations of species in solution, compared to leaching at 40°C and 90°C, that measurements are usually at the detection limit of most analytic instruments.[41] This is why leaching analyses are normally performed at 40°C or above.

7.0 ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the assistance of Patricia Toole-Simmons of SRNL in performing the durability experiments. This paper was prepared in connection with work done under Contract No. DE-AC09-96SR18500 with the U.S. Department of Energy (DOE).

APPENDIX A. DETAILS OF GLASS MELTS

Table A1. Nominal M-Area Glasses

GLASS	TYPE OF				TOTAL	ADDITIVE	TYPE OF		ACTUAL			OVEN				1
ID	GLASS	TANK 10	TANK 8	NOMINAL	WASTE	WASTE	ADDITIVE	GLASS	MELT	DATE		CALIB	EASY TO	COMMEN	TS	
				SLUDGE	LOADING	LOADING		ADDITIVE	TEMP (°C)	MELTED	OVEN ID	DATE	POUR			
		(ML)	(ML)	(ML)	(WT%)	(WT%)		(GMS)								
		. ,	. ,		. ,	. ,		. ,								
MN-1	BS	193	112	305	90	10	H3BO3	17.76	1400	9/14/1993	GT-1-227	4/30/1993	YES			1
										9/14/1993	GT-1-227	4/30/1993	YES			
MN-2	BS	171	100	271	80	20	НЗВОЗ	35.52	1260	8/10/1993	GT-1-097	7/29/1993	YES			
MN-3	BS	150	87	237	70	30	H3BO3	53.30	1150	8/1/1993	GT-1-097	7/29/1993	YES			
									1150	8/1/1993	GT-1-097	7/29/1993	YES			
MN-4	BS	193	112	305	90	10	H3BO3	12.43	1400	9/9/1993	GT-1-227	4/30/1993	YES			
							Na2CO3	5.13	1400	9/9/1993	GT-1-227	4/30/1993	YES			
MN-5	BS	171	100	271	80	20	НЗВОЗ	24.87	1300	7/20/1993	GT-1-227	4/30/1993	YES	MN - NO V	VISIBLE AL	
							Na2CO3	10.26	1300	7/20/1993	GT-1-227	4/30/1993	YES	MN-5 AL		
									1300	7/20/1993	GT-1-227	4/30/1993	YES	MN-5 AL		
MN-6	BS	150	87	237	70	30	НЗВОЗ	37.30	1150	7/8/1993	GT-1-227	4/30/1993	YES	EXCELLE	NT GLASS	
							Na2CO3	15.39						POPPED	OUT OF CRL	JCIBLE
MN-7	BS	193	112	305	90	10	НЗВОЗ	8.88	1400	9/21/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS	
							Na2CO3	8.55								
MN-8	BS	171	100	271	80	20	НЗВОЗ	17.76	1150	8/1/1993	GT-1-097	7/29/1993	YES	DID NOT F	FINE	
							Na2CO3	17.10	1150	8/3/1993	GT-1-097	7/29/1993	YES	DID NOT F	FINE	
MN-9	BS	150	87	237	70	30	НЗВОЗ	26.64	1200	7/8/1993	GT-1-227	4/30/1993	YES	EXCELLE	NT GLASS	
							Na2CO3	25.65	1200	7/11/1993	GT-1-227	4/30/1993	YES	POPPED	OUT OF CRU	JCIBLE
														RATHER	FLAKY	
MN-10	BS	193	112	305	90	10	H3BO3	8.88	1200	8/7/1993	GT-1-097	7/29/1993	YES			
							Li2CO3	12.36	1200	9/13/1993	GT-1-227	4/30/1993	YES			

GLASS	TYPE OF				TOTAL	ADDITIVE	TYPE OF		ACTUAL			OVEN				
ID	GLASS	TANK 10	TANK 8	NOMINAL	WASTE	WASTE	ADDITIVE	GLASS	MELT	DATE		CALIB	EASY TO	OMMENT	S	
				SLUDGE	LOADING	LOADING	;	ADDITIVE	TEMP (°C)	MELTED	OVEN ID	DATE	POUR			
		(ML)	(ML)	(ML)	(WT%)	(WT%)		(GMS)								
	DC	474	100	074	00	00	110000	47.70	4450	7/0/4002	OT 4 007	4/20/4002	YES			
MN-11	BS	171	100	271	80	20	H3BO3 Li2CO3	17.76 24.73	1150	7/9/1993	GT-1-227	4/30/1993	TES			
							LIZOOU	21.70								
MN-12	BS	150	87	237	70	30	H3BO3	26.64	1150	7/9/1993	GT-1-227	4/30/1993	YES			
							Li2CO3	37.09								
MN-13	BS	182	106	288	85	15	H3BO3	7.99	1150	7/9/1993	GT-1-227	4/30/1993	YES			
							Li2CO3	25.96	1150	7/11/1993	GT-1-227	4/30/1993	YES			
	BS	161	94	255	75	25	112002	13.99	1150	7/10/1993	GT-1-227	4/30/1993	YES			
MN-14	60	101	94	255	75	20	H3BO3 Li2CO3	43.27	1150	7/10/1993	G1-1-227	4/30/1993	TEO			
														_		
MN-15	BS	182	106	288	85	15	H3BO3	7.99	1200	8/8/1993	GT-1-097	7/29/1993	YES			
							Na2CO3	17.95								
MN-16	BS	161	94	255	75	25	H3BO3	13.32	1150	7/10/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS	
							Na2CO3	29.92								
MN-17	SLS	193	112	305	90	10	CaCO3	8.92	1350	9/10/1993	GT-1-227	4/30/1993	YES		OGENEOUS	
VIIN-17	OLO	130	112		30	10	Na2CO3	8.55	1000	3/10/1333	01-1-227	4/30/1333	120		COLINECOU	
MN-18	SLS	171	100	271	80	20	CaCO3	17.85 17.10	1150 1150	8/3/1993	GT-1-097 GT-1-097	7/29/1993	YES YES	GOOD GL	ASS	
							Na2CO3	17.10	1150	8/3/1993	G1-1-097	7/29/1993	TEO			
MN-19	SLS	150	87	237	70	30	CaCO3	26.77	1150	7/10/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS-SOME	
							Na2CO3	25.65	1150	7/12/1993	GT-1-227	4/30/1993	YES	CRYSTAL	S ON MELT S	3URF
MN-20	LLS	193	112	305	90	10	CaCO3	8.92	1200	8/7/1993	GT-1-097	7/29/1993	YES	_		
							Li2CO3	12.36	1200	8/7/1993	GT-1-097	7/29/1993	YES	_		

GLASS	TYPE OF				TOTAL	ADDITIVE	TYPE OF		ACTUAL			OVEN			
ID	GLASS	TANK 10	TANK 8	NOMINAL	WASTE	WASTE	ADDITIVE	GLASS	MELT	DATE		CALIB	EASY TO	OMMENT	S
				SLUDGE	LOADING	LOADING	i	ADDITIVE	TEMP (°C)	MELTED	OVEN ID	DATE	POUR		
		(ML)	(ML)	(ML)	(WT%)	(WT%)		(GMS)							
MN-21	LLS	171	100	271	80	20	CaCO3	17.85	1150	7/11/1993	GT-1-227	4/30/1993	YES	NOT A GO	DOD GLASS
							Li2CO3	24.73							
MN-22	LLS	150	87	237	70	30	CaCO3	26.77	1150	7/12/1993	GT-1-227	4/30/1993	YES	STUCK TO	O CRUCIBLE
							Li2CO3	37.09		7/15/1993	GT-1-227	4/30/1993	YES	BADLY	
MN-23	SLS	193	112	305	90	10	CaCO3	17.85	1400	9/20/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS
MN-24	SLS	193	112	305	90	10	CaCO3	5.35	1400	9/20/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS
							Na2CO3	11.97							
MN-25	SLS	171	100	271	80	20	CaCO3	10.70	1150	8/4/1993	GT-1-097	7/29/1993	YES		
							Na2CO3	23.94							
MN-26	SLS	150	87	237	70	30	CaCO3	16.05	1150	7/12/1993	GT-1-227	4/30/1993	YES		
							Na2CO3	35.91							

Table A2. High SiO₂-Containing M-Area Glasses

01 400					TOTAL				AOTUAL						
	TYPE OF	TANU (40	TANK	NOMINAL				01.400	ACTUAL	BATE		OVEN	5 4 OV TO		
ID	GLASS	TANK 10	TANK 8	NOMINAL			ADDITIVE		MELT	DATE		CALIB	EASY TO	COMMENT	5
				SLUDGE					TEMP (°C)	MELTED	OVEN ID	DATE	POUR		
		(ML)	(ML)	(ML)	(WT%)	(WT%)		(GMS)							
MHSI-1	BS	361	94	455	90	10	H3BO3	17.76	1400	9/16/1993	GT-1-227	4/30/1993	YES		ASS -SOME
									1400	9/16/1993	GT-1-227	4/30/1993	YES	BUBBLES	5
MHSI-2	BS	321	83	404	80	20	H3BO3	35.52	1300	9/17/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS WITH AL
														CHUNKS	
MHSI-3	BS	281	73	354	70	30	H3BO3	53.30	1150	8/30/1993	GT-1-097	7/29/1993	YES		ASS WITH AL
									1150	8/30/1993	GT-1-097	7/29/1993	YES	CHUNKS	
MHSI-4	BS	361	94	455	90	10	H3BO3	12.43	1400	9/20/1993	GT-1-227	4/30/1993	YES		ASS-SOME
VIN31-4	60	301	94	400	90	10	Na2CO3	5.13	1400	9/20/1993	GT-1-227 GT-1-227	4/30/1993	YES	BUBBLES	
							Nazcos	5.15		9/10/1993	G1-1-227	4/30/1993	123	DUBBLES	,
MHSI-5	BS	321	83	404	80	20	H3BO3	24.87	1150	9/18/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS WITH AL
							Na2CO3	10.26	1150	9/18/1993	GT-1-227	4/30/1993	YES	CHUNKS	
MHSI-6	BS	281	73	354	70	20	НЗВОЗ	37.30	1200	9/15/1993	GT-1-227	4/30/1993	YES		
VIII 31-0	60	201	/3	304	70		Na2CO3	15.39	1200	9/15/1993	GT-1-227 GT-1-227	4/30/1993	YES		
							Nazcus	15.59	1200	9/10/1995	G1-1-227	4/30/1993	163		
MHSI-7	BS	361	94	455	90	10	НЗВОЗ	8.88	NOT MADE	DUE TO SLU	DGE VOLUM	E LIMITATION	IS		
							Na2CO3	8.55							
MHSI-8	BS	321	83	404	80	20	НЗВОЗ	17.76	NOT MADE			E LIMITATION	IS		
		021	00	+0+	00	20	Na2CO3	17.10	NOT MIXEE						
MHSI-9	BS	281	73	354	70	30	H3BO3	26.64	NOT MADE	DUE TO SLU	DGE VOLUM	E LIMITATION	۱S		
							Na2CO3	25.65							
MHSI-10	BS	361	94	455	90	10	H3BO3	8.88	NOT MADE	DUF TO SI U	DGE VOLUM	E LIMITATION	IS		
							Li2CO3	12.36							
		001						47.70	1000	0454000	OT 4 007	4/00/4002	\/F0		
MHSI-11	BS	321	83	404	80	20	H3BO3	17.76	1200	9/15/1993	GT-1-227	4/30/1993	YES		ASS-NI PARTICL
							Li2CO3	24.73						on wall	

Table A3. Low SiO₂-Containing M-Area Glasses

GLASS	TYPE OF				TOTAL	ADDITIVE	TYPE OF		ACTUAL			OVEN				
ID			TANK 8	NOMINAL			ADDITIVE	GLASS	MELT	DATE		CALIB	EASY TO	OMMENT	S	
				SLUDGE					TEMP (°C)		OVEN ID	DATE	POUR		_	
		(ML)	(ML)	(ML)	(WT%)	(WT%)		(GMS)								
				. ,	. ,	· /		· /								-
	BS	440	140	050	00	40	110000	47.70	4050	0/40/4002	OT 4 007	4/20/4002	YES			
MLSI-1	85	116	143	259	90	10	H3BO3	17.76	1350 1350	9/10/1993	GT-1-227 GT-1-227	4/30/1993	YES			
									1350	9/10/1993	GT-1-227	4/30/1993	YES			
MLSI-2	BS	103	127	230	80	20	H3BO3	35.52	1300	9/17/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS-FALLS F	ROM
										9/17/1993	GT-1-227	4/30/1993	YES	CRUCIBL	E IN CHUNKS	
MLSI-3	BS	90	111	201	70	30	H3BO3	53.30	1150	8/30/1993	GT-1-097	7/29/1993	YES	EXCELLE	NT GLASS	
MLSI-4	BS	116	143	259	90	10	H3BO3	12.43	1400	9/9/1993	GT-1-227	4/30/1993	YES			
				200			Na2CO3	5.13	1.00	9/14/1993	GT-1-227	4/30/1993	YES	_		
							huzeee	0.110			0		0			
	BS	402	407	000	00	00	H3BO3	04.07	4450	8/16/1993	OT 4 007	7/29/1993	YES			
MLSI-5	82	103	127	230	80	20	Na2CO3	24.87 5.13	1150	8/16/1993	GT-1-097 GT-1-097	7/29/1993	YES			
							Nazuus	5.15		8/18/1993	GT-1-097 GT-1-097	7/29/1993	YES	-		
										8/19/1993	GT-1-097 GT-1-097	7/29/1993	YES			
MLSI-6	BS	90	111	201	70	30	H3BO3	37.30	1150	8/27/1993	GT-1-097	7/29/1993	YES			
							Na2CO3	15.39								
MLSI-7	BS	116	143	259	90	10	H3BO3	8.88	1400	9/12/1993	GT-1-227	4/30/1993	YES			
WLOI-7	60	110	145	209	30	10	Na2CO3	8.55	1400	9/12/1993	GT-1-227 GT-1-227	4/30/1993	YES			
							Na2005	0.00	1400	9/12/1993	GT-1-227	4/30/1993	YES			
MLSI-8	BS	103	127	230	80	20	H3BO3	17.76	1150	8/27/1993	GT-1-097	7/29/1993	YES			
							Na2CO3	17.10	1150	8/27/1993	GT-1-097	7/29/1993	YES			
MLSI-9	BS	90	111	201	70	30	НЗВОЗ	26.64	1150	9/18/1993	GT-1-227	4/30/1993	YES	GOOD GL	ASS	
							Na2CO3	25.65		9/19/1993	GT-1-227	4/30/1993	YES			
	BS	140	140	050	00	40	112002	8.88	1200	0/12/1002	OT 1 007	4/20/1002	YES			
MLSI-10	50	116	143	259	90	10	H3BO3 Li2CO3	12.36	1200	9/13/1993 9/13/1993	GT-1-227 GT-1-227	4/30/1993 4/30/1993	YES			
MLSI-11	BS	103	127	230	80	20	H3BO3	17.76	1150	9/19/1993	GT-1-227	4/30/1993	YES		ASS BUT ST	JCK TO
							Li2CO3	24.73						CRUCIBLI	E	

APPENDIX B. DETAILS OF SLUDGE/FILTER AID BLENDS

ANALYSIS #	NOMINAL	NOMINAL		
		nominal	NOMINAL	NOMINAL
	300011340	300011341	AVERAGE	STANDARD
ANALYSIS DATE	7/6/1993	7/6/1993		DEVIATION
RECORDED	DPSTN 4695	DPSTN 4695		
Al (ICP)	8.786	8.867	8.827	0.057
Ca (ICP)	0.318	0.308	0.313	0.007
Fe (ICP)	0.711	0.719	0.715	0.006
Mg (ICP)	0.168	0.166	0.167	0.001
Mn (ICP)	0.025	0.022	0.024	0.002
Na (ICP)	6.529	5.738	6.134	0.559
Na (AA)	6.689	7.410	7.049	0.510
Li (ICP)	0.004	< 0.001	< 0.001	
Ni (ICP)	0.540	0.562	0.551	0.016
Ni (AA)	0.687	0.660	0.674	0.019
Si (ICP)	22.920	23.033	22.977	0.080
Si (AA)	21.640	21.890	21.765	0.177
Cr (ICP)	0.010	0.011	0.011	
B (ICP)	< 0.004	< 0.004	< 0.004	
U (ICP-MS)	4.709	4.815	4.762	0.075
Sr (ICP)	0.002	0.002	0.002	0.000
Zr (ICP)	0.014	0.013	0.014	
Ti (ICP)	0.057	0.057	0.057	0.000
K (AA)	0.885	0.987	0.936	0.072
P (ICP)***	1.325	1.350	1.338	0.018
P (Calc IC)**	0.936	0.895	0.915	0.029
Ba (ICP)	0.011	0.010	0.011	
Pb (ICP)	0.035	0.037	0.036	
Mo (ICP)	0.004	0.004	0.004	
Zn (ICP)	0.418	0.408	0.413	0.007
Cu (ICP)	0.013	0.014	0.014	
F (ISE)	0.551	< 0.101	0.551	0.000
Cl (ISE)	0.1175	0.1073	0.1124	
SO ₄ (IC)	0.212	< 0.101	0.212	
NO ₃ (IC)	6.833	7.560	7.197	0.514
PO ₄ (IC)**	2.870	2.744	2.807	0.089
% SOLIDS (105°C)	26.220	26.150	26.185	0.049
% SOLIDS (90°C)	5.310	5.310	5.310	
Moles of Na	0.291	0.322	0.307	0.022
		0.122		
Moles of NO ₃ Moles of Cl	0.110	0.122	0.116	0.008

N/A = Not Analyzed Insufficient Sample

*AA Silicon values in italics from HCl/HF dissolution; others from Na_2O_2 dissolution

all anions from Na₂O₂ fusion with H₂O uptake (see text)

water soluble phosphate only * acid soluble phosphate

TABLE B2. HIGH Si SLUDGE MIXTURE (TANKS 8 AND 10) ANALYSES IN WT%				
			HIGH Si	шеце:
	HIGH Si	HIGH Si		HIGH Si
ANALYSIS #	300011342	300011343	AVERAGE	STANDARD
ANALYSIS DATE	7/6/1993	7/6/1993		DEVIATION
RECORDED	DPSTN 4695	DPSTN 4695		
Al (ICP)	9.040	9.253	9.147	0.151
Ca (ICP)	0.290	0.374	0.332	0.059
Fe (ICP)	0.967	0.736	0.852	0.163
Mg (ICP)	0.146	0.153	0.150	0.005
Mn (ICP)	0.030	0.028	0.029	0.001
Na (ICP)	5.714	5.890	5.802	0.124
Na (AA)	6.614	6.490	6.552	0.088
Li (ICP)	< 0.001	< 0.001	< 0.001	
Ni (ICP)	0.393	0.425	0.409	0.023
Ni (AA)	0.505	0.503	0.504	
Si (ICP)	23.265	23.693	23.479	0.303
Si (AA)	23.229	23.531	23.380	0.214
Cr (ICP)	0.010	0.012	< 0.004	
B (ICP)	< 0.004	< 0.004	< 0.004	
U (ICP-MS)	3.561	3.486	3.524	0.053
Sr (ICP)	0.001	0.002	0.002	0.001
Zr (ICP)	0.015	0.012	< 0.002	
Ti (ICP)	0.052	0.057	0.055	0.004
K (AA)	0.842	1.089	0.966	0.175
P (ICP)***	1.304	1.214	1.259	0.064
P (Calc IC)**	1.017	1.044	1.030	0.018
Ba (ICP)	0.011	0.011	0.011	
Pb (ICP)	0.033	0.037	0.035	
Mo (ICP)	0.005	0.004	0.005	
Zn (ICP)	0.492	0.164	0.328	0.232
Cu (ICP)	0.013	0.015	0.014	
F (ISE)	< 0.084	< 0.102	< 0.093	
Cl (ISE)	0.0929	0.1077	0.1003	
SO ₄ (IC)	0.133	< 0.102	0.133	
NO ₃ (IC)	7.010	6.410	6.710	0.424
PO4(IC)**	3.120	3.200	3.160	0.057
% SOLIDS (105°C)	25.190	25.300	25.245	0.078
% SOLIDS (90°C)	6.530	6.530	6.530	
				ļ
Moles of Na	0.288	0.282	0.285	0.004
Moles of NO ₃	0.113	0.103	0.108	0.007
Moles of Cl	0.000	0.000	0.000	0.000

N/A = Not Analyzed Insufficient Sample

*AA Silicon values in italics from HCl/HF dissolution; others from Na₂O₂ dissolution all anions from Na₂O₂ fusion with H₂O uptake (see text)

water soluble phosphate only * acid soluble phosphate

ANALYSIS # ANALYSIS DATE RECORDED Al (ICP) Ca (ICP) Fe (ICP) Mg (ICP) Mn (ICP) Na (ICP) Na (AA) Li (ICP)	300011344 7/6/1993 DPSTN 4695 9.143 0.319 0.606 0.166 0.017 6.848 8.703 <0.001 0.675	300011345 7/6/1993 DPSTN 4695 9.268 0.320 0.714 0.160 0.019 7.208 9.390 <0.001	AVERAGE 9.206 0.320 0.660 0.163 0.018 7.028 9.047	STANDARD DEVIATION 0.088 0.001 0.076 0.004 0.001 0.255
RECORDED Al (ICP) Ca (ICP) Fe (ICP) Mg (ICP) Mn (ICP) Na (ICP) Na (ICP) Li (ICP)	DPSTN 4695 9.143 0.319 0.606 0.166 0.017 6.848 8.703 <0.001 0.675	DPSTN 4695 9.268 0.320 0.714 0.160 0.019 7.208 9.390 <0.001	0.320 0.660 0.163 0.018 7.028	0.088 0.001 0.076 0.004 0.001
Al (ICP) Ca (ICP) Fe (ICP) Mg (ICP) Mn (ICP) Na (ICP) Na (AA) Li (ICP)	9.143 0.319 0.606 0.166 0.017 6.848 8.703 <0.001 0.675	9.268 0.320 0.714 0.160 0.019 7.208 9.390 <0.001	0.320 0.660 0.163 0.018 7.028	0.001 0.076 0.004 0.001
Ca (ICP) Fe (ICP) Mg (ICP) Mn (ICP) Na (ICP) Na (AA) Li (ICP)	0.319 0.606 0.166 0.017 6.848 8.703 <0.001 0.675	0.320 0.714 0.160 0.019 7.208 9.390 <0.001	0.320 0.660 0.163 0.018 7.028	0.001 0.076 0.004 0.001
Fe (ICP) Mg (ICP) Mn (ICP) Na (ICP) Na (ICP) Li (ICP)	$\begin{array}{c c} 0.606 \\ \hline 0.166 \\ \hline 0.017 \\ \hline 6.848 \\ \hline 8.703 \\ \hline < 0.001 \\ \hline 0.675 \\ \hline \end{array}$	0.714 0.160 0.019 7.208 9.390 <0.001	0.660 0.163 0.018 7.028	0.076 0.004 0.001
Mg (ICP) Mn (ICP) Na (ICP) Na (AA) Li (ICP)	0.166 0.017 6.848 8.703 <0.001 0.675	0.160 0.019 7.208 9.390 <0.001	0.163 0.018 7.028	0.004
Mn (ICP) Na (ICP) Na (AA) Li (ICP)	0.017 6.848 8.703 <0.001 0.675	0.019 7.208 9.390 <0.001	0.018 7.028	0.001
Na (ICP) Na (AA) Li (ICP)	6.848 8.703 <0.001 0.675	7.208 9.390 <0.001	7.028	
Na (AA) Li (ICP)	8.703 <0.001 0.675	9.390 <0.001		0.255
Li (ICP)	<0.001 0.675	< 0.001	9.047	
	0.675			0.486
			< 0.001	
Ni (ICP)	0 776	0.665	0.670	0.007
Ni (AA)	0.776	0.793	0.785	
Si (ICP)	20.003	20.149	20.076	0.103
Si (AA)	19.037	19.150	19.093	0.080
Cr (ICP)	0.043	0.011	0.027	
B (ICP)	< 0.004	< 0.004	< 0.004	
U (ICP-MS)	5.396	5.520	5.458	0.088
Sr (ICP)	0.003	0.001	0.002	0.001
Zr (ICP)	0.012	0.015	< 0.002	
Ti (ICP)	0.052	0.059	0.056	0.005
K (AA)	0.656	0.717	0.687	0.043
P (ICP)***	1.188	1.170	1.179	0.013
P (Calc IC)**	1.053	1.109	1.081	0.039
Ba (ICP)	0.010	0.008	0.009	
Pb (ICP)	0.042	0.040	0.041	
Mo (ICP)	0.005	0.005	0.005	
Zn (ICP)	1.308	0.402	0.855	0.641
Cu (ICP)	0.019	0.013	0.016	
F (ISE)	< 0.1055	< 0.0987	< 0.1021	0.000
Cl (ISE)	0.1129	0.1115	0.1122	
SO ₄ (IC)	< 0.1055	0.129	0.129	
NO ₃ (IC)	9.979	10.659	10.319	0.481
PO ₄ (IC)**	3.230	3.400	3.315	0.120
% SOLIDS (105°C)	27.010	26.970	26.990	0.028
% SOLIDS (90°C)	7.120	7.120	7.120	
Moles of Na	0.379	0.408	0.394	0.021
Moles of NO ₃	0.161	0.172	0.166	0.008

N/A = Not Analyzed Insufficient Sample

*AA Silicon values in italics from HCl/HF dissolution; others from Na₂O₂ dissolution

all anions from Na₂O₂ fusion with H₂O uptake (see text)

water soluble phosphate only * acid soluble phosphate

APPENDIX C. GLASS VISCOSITY MEASUREMENTS

Sample ID	Temp (°C)	Log ₁₀ (Visc)	Visc (poise)
MN-2	1293.50	2.59	389.18
MN-2	1247.50	2.74	543.59
MN-2	1198.50	2.95	896.69
MN-2	1152.50	3.18	1526.83
MN-2	1095.00	3.50	3141.84
MN-3	1199.00	2.56	364.78
MN-3	1150.00	2.77	594.67
MN-3	1100.00	3.01	1027.27
MN-3	1050.00	3.28	1888.92
MN-3	996.00	3.59	3930.66
MN-5D	1249.50	2.80	625.72
MN-5D	1197.00	3.05	1121.64
MN-5D	1197.00	3.32	2068.55
MN-5D	1098.50	3.60	3981.01
MN-5D	1050.00	3.90	7974.78
MN-6	1289.00	1.75	56.30
MN-6	1250.00	1.87	74.36
MN-6	1200.00	2.04	110.53
MN-6	1149.00	2.24	172.35
MN-6	1100.00	2.45	279.82
MN-7	1301.50	3.22	1648.77
MN-7	1251.00	3.48	2992.64
MN-7	1200.00	3.76	5809.80
MN-10	1200.00	2.51	321.49
MN-10	1149.00	2.72	529.78
MN-10	1099.00	2.95	897.09
MN-10	1099.00	3.20	1595.28
MN-11	1200.50	1.25	17.91
MN-11	1151.50	1.39	24.55
MN-11	1100.00	1.56	36.06
MN-11	1050.00	1.73	54.31
MN-11	1000.00	1.93	85.78

Sample ID	Temp (°C)	Log ₁₀ (Visc)	Visc (poise)
MN-14	1200.00	0.68	4.82
MN-14	1151.00	0.81	6.44
MN-14	1100.00	0.95	8.93
MN-14	1050.00	1.11	12.90
MN-14	1000.00	1.29	19.33
MN-14	950.00	1.48	30.03
MH-Si-2	1290.00	3.04	1101.12
MH-Si-2	1250.00	3.23	1716.90
MH-Si-2	1200.00	3.50	3192.84
MH-Si-3	1200.00	2.95	893.80
MH-Si-3	1150.00	3.18	1527.48
MH-Si-3	1100.00	3.45	2823.38
MHSi-6	1255.50	2.39	246.65
MHSi-6	1199.00	2.62	420.44
MHSi-6	1151.00	2.84	686.81
MHSi-6	1099.50	3.09	1238.28
MHSi-6	1048.50	3.37	2327.40
MHSi- 11A	1253.00	2.18	151.55
MHSi- 11A	1198.50	2.40	252.53
MHSi- 11A	1150.00	2.61	412.01
MHSi- 11A	1097.50	2.86	728.75
MHSi- 11A	1048.50	3.12	1325.60
MLSi-1	1299.50	2.67	471.05
MLSi-1	1249.00	2.91	811.74
MLSi-1	1199.00	3.16	1448.03
MLSi-1	1148.00	3.44	2745.67
MLSi-2	1288.00	2.22	165.51
MLSi-2	1250.00	2.37	236.65
MLSi-2	1200.00	2.59	391.65
MLSi-2	1150.00	2.83	683.35

Sample	Temp (°C)	Log ₁₀ (Visc)	Visc (poise)
ID			
MLSi-3B	1199.00	2.10	124.86
MLSi-3B	1150.00	2.29	194.44
MLSi-3B	1099.50	2.51	322.92
MLSi-3B	1049.50	2.75	561.50
MLSi-3B	999.50	3.03	1059.58
MLSi-5	1200.00	2.53	339.87
MLSi-5	1150.00	2.76	570.95
MLSi-5	1100.00	3.00	1009.54
MLSi-5	1050.00	3.28	1900.12
MLSi-5	1000.00	3.58	3835.91
MLSi-9	1200.00	1.70	49.92
MLSi-9	1149.50	1.88	75.06
MLSi-9	1099.00	2.07	117.00
MLSi-9	1050.00	2.27	186.98
MLSi-9	1001.00	2.50	317.18

8.0 REFERENCES

- 1 C.M. Jantzen, "Solidification of M-Area Sludge and Supernate Into Low Temperature Glass: Sludge and Supernate Characterization," U.S. DOE Report DPST-89-351, E.I. duPont deNemours & Co., Aiken, SC (March 1, 1989).
- 2 C.M. Jantzen and J.B. Pickett, "Vitrification of M-Area (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization," U.S. DOE Report WSRC-TR-94-0234, Westinghouse Savannah River Company, Aiken, SC (September 2001).
- 3 J.A. Stone, **"PPC Program Proposals for FY-1989 and Beyond,"** U.S. DOE Report DPST-88-599, Savannah River Laboratory, E.I. DuPont deNemours & Co., Aiken, SC (1988).
- 4 C.M. Jantzen, J.B. Pickett, and W.G. Ramsey, "Glassification of Hazardous and Mixed Wastes," U.S. DOE Report WSRC-MS-92-261 (1992), Westinghouse Savannah River Company, Aiken, SC and SCDHEC Construction Permit #14,832 (January 11, 1989).
- 5 J.B. Pickett, **"Delisting Petition for Vitrified M-Area Plating Line Wastes,"** U.S. DOE Report WSRC-TR-96-0244, Rev. 2, Westinghouse Savannah River Company, Aiken, SC (September 2000)
- 6 J.B. Pickett, C.M. Jantzen, and L.C. Martin, "First Delisting Petition Approval by the US EPA for a Vitrified Mixed Waste," U.S. DOE Report WSRC-MS-2002-00576, Westinghouse Savannah River Company, Aiken, SC, Spectrum (2002).
- 7 J.B. Pickett, C.M. Jantzen, and L.C. Martin, "First Delisting Petition Approval by the US EPA for a Vitrified Mixed Waste," Ceramic Transactions, v.143, 83-94 (2003)
- 8 ASTM C1285. Annual Book of ASTM Standards, Vol. 12.01, "Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT)"
- 9 J.B. Pickett, J.D. Musall, H.L. Martin, **"Treatment and Disposal of Mixed F006 Plating Line Sludge at the Savannah River Site,"** Proceedings of the Second International Symposium on Mixed Waste," A.A. Moghissi, R.K. Blauvelt, G.A. Benda, and N.E. Rothermich (Eds.), American Society of Mechanical Engineers, 1.3.1-1.3.9 (1993).
- 10 C.M. Jantzen, J.B. Pickett, W.G. Ramsey, and D.C. Beam, "Treatability Studies on Mixed (Radioactive and Hazardous) M-Area F006 Waste Sludge: Vitrification Via the <u>Reactive</u> <u>Additive Stabilization Process</u> (RASP)," Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management, Vol. I, Spectrum 1994, American Nuclear Society, La Grange Park, IL, 737-742 (1994).
- 11 C.M. Jantzen, "Relationship of Glass Composition to Glass Viscosity, Resistivity, Liquidus Temperature, and Durability: First Principles Process-Product Models for Vitrification of Nuclear Waste," Proceedings of the 5th International Symposium on Ceramics in Nuclear Waste Management, G.G. Wicks, D.F. Bickford, and R. Bunnell (Eds.), American Ceramic Society, Westerville, OH, 37-51 (1991).
- 12 B.W. Bowan, II and M.H. Clements, "Vendor Vitrification Programs for the Savannah River

Site," Proceedings of the Third International Symposium on Mixed Waste, A.A. Moghissi, B.R. Love, R.K. Blauvelt (Eds.), American Society of Mechanical Engineers, p.8.4.1 to 8.4.8 (1995).

- 13 D.G. Poulos, J.B. Pickett, and C.M. Jantzen, "Up-Front Delisting of F006 Mixed Waste," Paper #37-17 <u>Waste Management 95</u> (1995).
- 14 C.M. Jantzen. "Waste Treatability and QA Task Plan: Solidification of M-Area and Consolidated Incinerator Facility (CIF) Wastes into Glass," U.S. DOE Report WSRC-RP-91-922, Westinghouse Savannah River Company, Aiken, SC (1991).
- 15 C.M. Jantzen, J.B. Pickett, and W.G. Ramsey, "**Reactive Stabilization Process (RASP) for Hzardous and Mixed Waste Vitrification**," Proceedings of the Second International Symposium on Mixed Waste, A.A. Moghissi, B.R. Love, R.K. Blauvelt (Eds.), American Society of Mechanical Engineers, p.4.2.1 to 4.2.13 (1993).
- 16 C.M. Jantzen, J.B. Pickett, L.M. Martin, "Method for Treating Materials for Solidification (RASP[™])," U.S. Patent #5,434,333 (July, 1995)
- 17 C.M. Jantzen, "Phosphate Additions to Borosilicate Waste Glass Cause Phase Separation," U.S. DOE Report DPST-86-389 (1986).
- 18 C.M. Jantzen, K.G. Brown, J.B. Pickett, and G.L. Ritzhaupt, "Crystalline Phase Separation in Phosphate Containing Waste Glasses: Relevance to INEEL HAW," U.S. DOE Report WSRC-TR-2000-00339, Westinghouse Savannah River Company, Aiken, SC (September 30, 2000).
- 19 C.M. Jantzen, K.G. Brown, and J.B. Pickett, **"Impact of Phase Separation on Durability in Phosphate Containing Borosilicate Waste Glass for INEEL,"** Environmental Issues and Waste Management Technologies, D.R. Spearing, G.L. Smith, and R.L. Putnam (Eds.), Ceramic Transactions, V. 119, Amer. Ceram. Soc., Westerville, OH, VI, 271-280 (2001).
- 20 W. Vogel, "Chemistry of Glass," Am. Ceram. Soc., Columbus, OH, pp.111-113 (1985).
- 21 C.M. Jantzen, and K.G. Brown, **"Impact of Phase Separation on Waste Glass Durability,"** Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries, V, G. T. Chandler (Eds.), Ceramic Transactions, V. 107, 289-300 (2000).
- 22 ASTM D 1193. Annual Book of ASTM Standards, Vol. 11.01, "Specification for Reagent Water"
- 23 A.R. Whited, "Vitrified Waste Form Performance Modeling Applied to the Disposal of a Mixed Waste Sludge at the Savannah River Site," Unpublished MS Thesis, Clemson University, Environmental Systems Engineering (August 1996).
- 24 A.R. Whited, R.A. Fjeld, and J.R. Cook, "Vitrified Waste Form Performance Modeling Applied to the Treatment Disposal of a Mixed-Waste Sludge at the Savannah River Site," Nuclear Technology, v.123, 304-319 (1998)
- 25 J.B. Pickett, C.M. Jantzen, J.R. Cook, A.R. Whited, and R.A. Fjeld, "Performance Modeling Applied to the Treatment and Disposal of a Mixed Waste at the Savannah River Site," Ceramic Trans. V. 87, 665-676 (1998).

- 26 W.G. Ramsey, "Glass Dissolution Chemistry of the System Na₂O-B₂O₃-SiO₂-Al₂O₃-Fe₂O₃-CaO," Unpublished Ph.D. Thesis Clemson University, 202pp (1995).
- 27 ASTM C1220. Annual Book of ASTM Standards, Vol. 12.01, "Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste"
- 28 W.B. White, "Dissolution Mechanisms of Nuclear Waste Glasses: A Critical Review," Adv. Ceram. V. 20, Am. Ceram. Soc., Westerville, OH, 431-441 (1986).
- 29 P. Dove, Tank Focus Area Workshop in Salt Lake City, UT (December 1998).
- 30 J.B. Pickett and C.M. Jantzen, **"TCLP Leaching Prediction from the "THERMO™" Model for Borosilicate Glasses,**" Environmental Issues and Waste Management Technologies, VII, G.L. Smith, L.K. Sundaram, and D.R. Spearing (Eds.), Am. Ceram. Soc., Westerville, OH, p. 323-333 (2002).
- 31 R.F. Schumacher and D.K. Peeler, **"Establishment of Harrop, High Temperature Viscometer,"** WSRC-RP-98-00737, Revision 0, Westinghouse Savannah River Company, Aiken, South Carolina (1998).
- 32 M.J. Plodinec, **"Rheology of Glasses Containing Crystalline Material,"** Advances in Ceramics, V. 20, Nuclear Waste Management II, D.E. Clark, W.B. White, and A.J. Machiels (Eds.), Am. Ceram. Soc., Westerville, OH, 117-124 (1986).
- 33 I. Tovena, T. Advocat, D. Ghaleb, E. Vernaz and F. Larche, "Thermodynamic and Structural Models Compared with the Initial Dissolution Rates of SON Glass Samples," <u>Sci. Basis for</u> <u>Nucl. Waste Mgt., XVII,</u> A. Barkatt and R.A. Van Konynenburg (Eds.), Mat. Res. Soc., Pittsburgh, PA, 595-602 (1994).
- 34 M.B. Volf, **"Chemical Approach to Glass,"** Glass Science and Technology, V. 7, Elsevier Science Publishing Co., Inc, New York, 594 pp (1984).
- 35 C.M. Jantzen, N.E. Bibler, D.C. Beam, and M.A. Pickett, "Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material," U.S. DOE Report WSRC-TR-92-346, Rev.1, 92p (1993).
- 36 "Preliminary Technical Data Summary for the Defense Waste Processing Facility, Stage 1," U.S. DOE Report DPSTD-80-38, E.I. duPont deNemours & Co., Savannah River Plant, Aiken, SC (September, 1980).
- 37 K.M. Fox and D.K. Peeler, "Demonstration of Very High Aluminum Retention in Simulated HLW Glasses," SRNL-PSE-2007-00231 (2007).
- 38 C.M. Jantzen, J.B. Pickett, K.G. Brown, T.B. Edwards, and D.C. Beam, "Process/Product Models for the Defense Waste Processing Facility (DWPF): Part I. Predicting Glass Durability from Composition Using a <u>Thermodynamic Hydration Energy Reaction MOdel</u> (THERMO)," US DOE Report WSRC-TR-93-0672, Westinghouse Savannah River Company, Aiken, SC (September, 1995).
- 39 W.L. Ebert and J.K. Bates, "A Comparison of Glass Reaction at High and Low Glass Surface/Solution Volume," Nucl. Technology, 104, 372-384 (1993).

- 40 W.L. Ebert, "The Effects of the Glass Surface Area/Solution Volume Ratio on Glass Corrosion: A Critical Review," U.S. DOE Report ANL-94/34, Argonne National Laboratory, Chicago, IL (March 1995).
- 41 A.J. Bakel, W.L. Ebert, D.M. Strachan and N.R. Brown, "Glass Dissolution at 20, 40, 70 and 90°C: Short-term Effects of Solution Chemistry and Long-Term Na Release," Ceramic Trans. V.72. 271-278 (1996).