Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Key Words: Wear Hydrogen Coating Pre-charge

Retention: Permanent

WEAR TESTING OF STAINLESS STEELS IN HYDROGEN – EFFECTS OF COATING AND PRE-CHARGE (U)

Poh-Sang Lam Thad M. Adams

MARCH 2010

Savannah River National Laboratory Savannah River Nuclear Solutions <u>Aiken, SC 29808</u> Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors,

subcontractors or their employees, makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned rights; or

3. endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America

Prepared for U.S. Department of Energy

Key Words: Key Words: Wear Hydrogen Coating Pre-charge

Retention: Permanent

WEAR TESTING OF STAINLESS STEELS IN HYDROGEN – EFFECTS OF COATING AND PRE-CHARGE (U)

Poh-Sang Lam Thad M. Adams

MARCH 2010

Savannah River National Laboratory Savannah River Nuclear Solutions Savannah River Site <u>Aiken, SC 29808</u> Prepared for the U.S. Department of Energy Under Contract Number DE-AC09-08SR22470

REVIEWS AND APPROVALS

TABLE OF CONTENTS

LIST OF FIGURES	iii
LIST OF TABLES	v
1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	2
3.0 TEST EQUIPMENT AND SAMPLES	3
4.0 COATING	7
5.0 HYDROGEN PRE-CHARGE	9
6.0 TEST PROCEDURE AND EQUIPMENT	11
7.0 WEAR MEASUREMENT	16
8.0 POST-TEST WEAR CHARACTERIZATION	21
8.1 Wear Surface Characterization	21
8.2 Scanning Electron Micrsocopy	36
9.0 RESULTS	46
9.1 Weight Change	46
9.2 Wear Coefficient (Kw)	53
10.0 CONCLUSIONS	59
11.0 REFERENCES	60
Appendix A Stainless Steel Type 316L (for Disks)	61
Appendix B Stainless Steel Type AUM10 (for Disks)	64
Appendix C Stainless Steel Type 316L (for Pins)	67
Appendix D Stainless Steel Type A286 (for Pins)	68
Appendix E Certificate of Research Grade Hydrogen	70
Appendix F Post-Test Sample Photographs and Contact Profilometer Scans	71

LIST OF FIGURES

Figure 1.	Schematic of disk-pin wear test system (R is the wear track radius).	3
Figure 2.	Wear sample disk design and dimensions.	4
Figure 3.	Wear sample pin design and dimensions	5
Figure 4.	The disk and pin wear test samples.	5
Figure 5.	As received DLC and Nitride coated samples	8
Figure 6.	Hydrogen concentration in pre-charged disk and pin samples 1	0
Figure 7	Wear test facilities: Disk-Pin System (left) and hydrogen gas supply cylinder (right) 1	2
Figure 8.	Wear hydrogen test system from top to bottom: pressure vessel enclosure for hydrogen	
test (t	o be lowed when testing), disk-pin holding assembly (samples are mounted), and	
Magn	edrive [®] with V-belt connected to a DC motor (a non-contact laser tachometer is visible	
above	the motor and behind the V-belt) 1	3
Figure 9.	Sample disk on a rotating platform and the sample pin mounted in a fixed position 1	4
Figure 10.	Sample pin in contact with the disk 1	4
Figure 11.	Pressure vessel lowered to enclose the wear test mechanism ready for testing in	
hydro	gen gaseous environment1	5
Figure 12.	Comparison of pin volume change by weight measurement and by calculation 1	7
Figure 13.	Post-Test Wear Surface Photographs and Profilometer Data for Test #1	2
Figure 14.	Post-Test Wear Surface Photographs and Profilometer Data for Test #6 2	3
Figure 15.	Post-Test Wear Surface Photographs and Profilometer Data for Test #4 2	4
Figure 16.	Post-Test Wear Surface Photographs and Profilometer Data for Test #8 2	5
Figure 17.	Post-Test Wear Surface Photographs and Profilometer Data for Test #10 2	6
Figure 18.	Post-Test Wear Surface Photographs and Profilometer Data for Test #14 2	7
Figure 19.	Post-Test Wear Surface Photographs and Profilometer Data for Test #12 2	8
Figure 20.	Post-Test Wear Surface Photographs and Profilometer Data for Test #16 2	9
Figure 21.	Post-Test Wear Surface Photographs and Profilometer Data for Test #17	0
Figure 22.	Post-Test Wear Surface Photographs and Profilometer Data for Test #21 3	1
Figure 23.	Post-Test Wear Surface Photographs and Profilometer Data for Test #24 3	2
Figure 24.	Post-Test Wear Surface Photographs and Profilometer Data for Test #34 3	3
Figure 25.	Post-Test Wear Surface Photographs and Profilometer Data for Test #36 3	4
Figure 26.	Post-Test Wear Surface Photographs and Profilometer Data for Test #39	5
Figure 27.	Wear track on nitride coated disk tested in air using non-charged 316L pin loaded with	l
0.1 lb		7
Figure 28.	Wear track on nitride coated disk tested in hydrogen using non-charged 316L pin	
loade	d with 0.1 lb	7
Figure 29.	Wear spot on non-charged 316L pin loaded with 0.1 lb and tested in air with nitride	
coated	1 disk	8
Figure 30.	Wear spot on non-charged 316L pin loaded with 0.1 lb and tested in hydrogen with	
nitride	e coated disk	8
Figure 31	Wear spot details on non-charged 316L pin loaded with 0.1 lb and tested in air with	
nitride	e coated disk	9
Figure 32.	Wear spot details on non-charged 316L pin loaded with 0.1 lb and tested in hydrogen	
with r	nitride coated disk	9

Figure 33. Wear track on DLC coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.1 lb	0
Figure 34. Wear track on nitride coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.1 lb.	0
Figure 35. Wear spot on pre-charged 316L pin loaded with 0.1 lb and tested in hydrogen with DLC coated disk	1
Figure 36. Wear spot on pre-charged 316L pin loaded with 0.1 lb and tested in hydrogen with nitride coated disk.	1
Figure 37. Wear track on DLC coated disk tested in hydrogen using pre-charged A286 pin loaded with 0.2 lb	l 2
Figure 38. Wear track on Nitride coated disk tested in hydrogen using pre-charged A286 pin loaded with 0.2 lb	2
Figure 39. Wear spot on pre-charged A286 pin loaded with 0.2 lb and tested in hydrogen with DLC coated disk	3
Figure 40. Wear spot on pre-charged A286 pin loaded with 0.2 lb and tested in hydrogen with nitride coated disk.	3
Figure 41. Wear track on DLC coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.2 lb	4
Figure 42. Wear track on nitride coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.2 lb	4
Figure 43. Wear spot on pre-charged 316L pin loaded with 0.2 lb and tested in hydrogen with DLC coated disk	5
Figure 44. Wear spot on pre-charged 316L pin loaded with 0.2 lb and tested in hydrogen with nitride coated disk.	5
Figure 45. Disk weight change (loss) after 2000 m of travel distance and under a pin load of 45.4 g (0.1 lb) or 91 g (0.2lb)—non-pre-charged, pre-charged, non-coated, and coated	;3
Figure 46. The wear coefficients calculated for all wear test cases	8

LIST OF TABLES

Table 1. Mechanical properties of disk and pin sample mate	erials6
Table 2. Test Matrix for Non-charged Samples	
Table 3. Test Matrix for Pre-charged Samples	
Table 4. Test Matrix for Pre-charged Samples	
Table 5. Test Results for Non-charged Samples (Disks)	
Table 6. Test Results for Non-charged Samples (Pins)	
Table 7. Test Results for Pre-charged Samples (Disks)	
Table 8. Test Results for Pre-charged Samples (Pins)	
Table 9. Test Results for Pre-charged Samples (Disks)	
Table 10. Test Results for Pre-charged Samples (Pins)	
Table 11. K _w for Non-charged Samples	
Table 12. Kw for Pre-charged Samples	
Table 13. K _w for Pre-charged Samples	
C 1	

1.0 EXECUTIVE SUMMARY

Phase I wear testing was previously conducted to evaluate the effects of hydrogen atmospheres on wear behavior of stainless steel materials. A Phase II wear testing campaign was run to investigate 1) effects of hydrogen pre-charge and increased load and 2) impact of surface coatings on wear behavior.

Testing was conducted with guidance from the ASTM G 99, "Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus," test standard. Testing was conducted in air or in gaseous hydrogen at a pressure of 13.8 MPa (2000 psig) at room temperature. The hydrogen pre-charge samples were exposed to gaseous hydrogen at an elevated temperature to produce a minimum of 30wppm atomic hydrogen at the sample surface. For the coatings tests, samples were coated with either a plasma nitride or a diamond like carbon (DLC) surface coating applied by a commercial coating vendor.

Material loss due to wear was determined by (1) weighing the specimens (disks and pins) before and after the test; and (2) by tracing the specimen surface roughness across the wear region with a profilometer for both Phase I and Phase II campaigns. Testing was performed for all Phase II samples with a nominal travel distance of 2000 m and a unidirectional disk linear speed at nominally 800 mm/sec. The phase II test data indicate the following:

- Materials transfer and excrescence was observed for metal-to-metal test conditions. Examination of the surface finish of the post-test specimens was made with optical microscopy, scanning electron microscopy (SEM), and profilometer tracing. The results are consistent with previous Phase I results and are indicative of adhesive wear and galling characteristics of stainless steels.
- Similar to Phase I results, AUM10 had a higher wear rate than 316L. Pre-charging with hydrogen showed minimal effect. Increasing load from 45.4 g (0.1lb) to 91 g (0.2 lb) resulted in a small increase in wear.
- Surface coatings reduced the overall wear of the pin and disk materials. For tests with nitride coated disks and uncoated pins increased pin wear was displayed.
- DLC coating appears to offer the most potential as a wear reducing coating—it can be used for either case of both disk and pin coated or one coated and one non-coated, with improved wear resistance.

2.0 INTRODUCTION

Joint research between the Toyota Research Institute North America and the Savannah River National Laboratory (SRNL) was performed to characterize the effects of hydrogen for materials used in fuel cell vehicles. Mechanical equipment for high pressure gaseous hydrogen service includes moving parts where two surfaces may be in contact and slide against each other, resulting in wear that may damage the component. Consideration must be given to the wear characteristics of the alloys of construction; this is especially critical for valves, pumps, bearings, seals and fasteners.

The sliding wear mechanisms of metallic and ceramic components in hydrogen may be expected to be different from the wear experienced in air or inert atmospheres. The interactions of materials with similar hardness and surface reaction behavior could be more deleterious in a hydrogen environment than in air or other atmospheres where protective surface scales may form. Excessive adhesive transfer or fragmentation of these materials could also occur in hydrogen that would not occur in air applications.

Phase I wear testing of stainless steel materials in gaseous hydrogen was completed in FY09. A Phase II program was conceived, to evaluate the impact of pre-charging samples with hydrogen to ensure that the test surface was saturated in hydrogen. A second aspect to the Phase II effort was to evaluate selected commercial coatings to assess their impact on wear behavior in gaseous hydrogen.

Results from this Phase II study together with the initial Phase I results provide key information to designers for material selection for hydrogen service applications involving metallic components with mating dynamic surfaces.

3.0 TEST EQUIPMENT AND SAMPLES

A wear test apparatus has been designed by following the guidelines described in ASTM G 99-05, "Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus," as schematically shown in Figure 1. The system was designed to allow testing samples in high pressure hydrogen environment by providing a pressure boundary made of Super Alloy HASTELLOY[®] C276 with outside diameter of 12.7 cm (5 in.), thickness of 3.81 cm (1.5 in.), and the internal cavity height of 17.78 cm (7 in.).

Figure 1. Schematic of disk-pin wear test system (R is the wear track radius).

Figure 1 shows the schematic diagram of the wear test mechanism for a stationary pin and a rotating disk with angular velocity ω (rad/sec). The linear velocity of the disk speed (v) is calculated in term of revolutions per minute (RPM = $\frac{\omega}{2\pi} \times 60$) as $v = \omega R = \frac{\pi R \times RPM}{30}$

Disk samples for wear testing were fabricated from 316L and AUM10 stainless steels. As shown in Figure 2, they are 4.76 cm (1.875 in.) in diameter and 0.635 cm (¼-in.) thick. The disks were machined from 2-inch diameter bar stock (see vendor certificate in Appendix A and Aichi Steel

information sheets in Appendix B). Two parallel flat surfaces were machined on opposite edges of each disk to keep it from rotating in the sample holder. Each disk was engraved with a unique serial number. The test side of the sample is the non-engraved side and was machined to a minimum 0.81 μ m (32 μ -in.) arithmetic average (Ra), per ASTM G 99.

Figure 2. Wear sample disk design and dimensions.

Additionally, pin samples for wear were fabricated from 316L and A286 stainless steel materials. They were machined from 9.525 mm (3/8-in.) rod (see vendor certificates in Appendices B and C, respectively). Each pin is 7.94 cm (3[in., which is slightly longer than that used previously $2^{3/4}$ in [9].) long with a spherical tip on one end and is threaded on the other (Figure 3). Each sample pin is engraved with a unique serial number. The spherical shape was machined on a lathe, so the tip at the end of the pin was not perfectly spherical. For this reason, the pin was mounted in the test machine at a slight angle to the vertical position so the point of contact with the disk would be made on a spherical pin surface.

To maintain the same surface finishing of the specimens as previously tested in the Phase I study [1], the same commercial fabrication vendor was used and the same fabrication instructions were provided. Typical as-finished sample disk and pin can be seen in Figure 4.

Figure 3. Wear sample pin design and dimensions.

Figure 4. The disk and pin wear test samples.

Tensile properties and material hardness values for the as-received disk and pin materials can be found in the vendor certificates or the material information sheets (Appendices A to D) and are summarized in Table 1.

	316L Disk	AUM10 Disk	316L Pin	A286 Pin
	(Appendix A)	(Appendix B)	(Appendix C)	(Appendix D)
Bar Stock	5.08 (2)	5.486 ¹ (2.16)	9.525 (3/8)	9.525 (3/8)
Diameter cm (in.)				
0.2% Yield Stress	269 (39)	$390^2(57)$	561 (81.43)	924 (134)
MPa (ksi)				
UTS	593 (86)	$530^{2}(77)$	688 (99.84)	1158 (168)
MPa (ksi)				
Elongation (%)	66	37 ²	46.01	23
RA (%)	73	74 ²	75.2	39
Hardness	HB 185	HV 183 ¹ (3mm below surface) HV 186 ¹ (D/4) HV 183 ¹ (D/2) HRB 88 ²	HB 212	HRC 34 HB 321

Table 1. Mechanical properties of disk and pin sample materials

Note 1: Information provided by Toyota Motor Company.

The heat treatment is 920 °C x0.5 Hr, furnace cool to 650 °C (2.5 Hr), 650 °C x 0.5 Hr, air cool. HV 183 is equivalent to HB 174.

Note 2: See Appendix B for the information sheets from Aichi Steel Co. (Japan) [2]. The heat treatment is 900 °C x 2 Hr which is different from that in Note 1. HRB 88 is equivalent to HB 175.

4.0 COATING

Two types of coating were selected to be evaluated for their wear performance in hydrogen service:

(1) Diamond-like-carbon (DLC)

This is a surface coating of diamond like carbon that exhibits a very low sliding friction and high surface hardness. It is possible to mask with areas and selectively coat a substrate. The coating is deposited using a combination of a physical vapor deposition process (PVD) and plasma enhanced chemical vapor deposition process (PECVD). The PVD process will deposit and initial adhesion layer and the PECVD deposits the DLC coating. In the process a carbon carrying gas is introduced into the chamber and a power supply accelerates electrons and cracks the gas breaking the carbon and hydrogen bonds and ionizing the gas as well. The ions are then drawn to the fixture holding the substrates with a negative bias potential forming a coating with a diamond like structure.

The resulting diamond-like coating is structurally amorphous and chemically inert, and may be self-lubricating with very good wear resistance. This coating will replicate the surface finish of the substrate. The typical thickness of the coating is 2 to 5 microns (8×10^{-5} to 2×10^{-4} inches) with Vickers hardness between HV 1000 and 3500 [3].

(2) Plasma nitriding:

Plasma Nitriding is a thermo-chemical diffusion process that will create a hard case several thousandths deep. Unlike a surface coating which will provide properties independent of the substrate being coated, the results from the plasma nitriding process are dependent on the composition of the steel being nitrided. Case depth and hardness will vary depending on the nitriding forming elements present in the alloy. The processing temperature is fixed to between 900 and 950 degrees F. The hardness achieved will generally increase depending on the chromium content in the steel. The surface roughness will increase after nitriding. During the initial heating step of the plasma nitriding process, a hydrogen gas is introduced into the chamber and a pulsed DC bias is supplied to the product to be nitride. The product's surface is bombarded with hydrogen ions during the initial heating cycle. This helps elevate the temperature and cleans the surface as well. When the product reaches the required processing temperature, a gas mixture of nitrogen and hydrogen is introduced and the nitriding cycle begins. The nitrogen will diffuse into the substrate reacting with nitride forming elements and create a hard layer that will continue for up to several thousandths into the steel. On the surface of the product, a compound layer will form and again will vary in thickness depending on the alloy being nitride. This is sitting on the surface and is the primary cause for the uniform growth you receive from the nitriding process. This layer is comprised of epsilon or gamma prime depending on the gas mixture used. If a small amount of carbon is included in the nitrogen and hydrogen gas mixture during the nitriding cycle, the compound layer will be an epsilon layer.

The surface hardness for the plasma nitrided 304 or 316 stainless steels is HRC 62-66 with a total hard case depth 50 to 200 microns (0.002 to 0.008 inches) [3].

Based on the test matrix, nitride coating was applied on twenty AUM10 disks and four 316L pins, and DLC was coated on twenty AUM10 disks and four 316L pins. The DLC-coated disks and pins have a bright black finish (Figure 5) that appears to have the same surface configuration (machine marks) as the original, non-coated specimens except for the black color. The nitride-coated disks (Figure 5) have a dull satin finish that masks the nitrided surface. This soft and rough layer could easily be removed with a Scotch-Brite[™] pad, or would quickly wear away at the beginning of the wear test. However, the surface condition of the nitride-coated pins looks similar to that of the DLC-coated pins (Figure 5). This indicated that the nitride surface finish is sensitive to the original substrate surface roughness, and to the curvature of the surface being coated.

Figure 5. As received DLC and Nitride coated samples.

5.0 HYDROGEN PRE-CHARGE

The test matrix required that five 316L disks and 39 pins (26 316L and 12 A286) be pre-charged with hydrogen for the wear test. None of the coated samples were pre-charged. Note that AUM10 is a soft magnetic ferritic stainless steel based on Type 410L martensitic stainless steel. The hydrogen diffusivity is high in this alloy so pre-charge was also not conducted for AUM10 samples.

The SRNL hydrogen charging facility has a capability of 68.9 MPa (10,000 psi) charge pressure. For these wear samples, an optimum charge condition was determined by SRNL in-house software such that the criterion of 30 wppm (1680 appm for typical stainless steels) at the sample surface could be met. All the samples were nominally pre-charged with 17.2 MPa (2500 psig) research grade hydrogen gas (Appendix E) at 350 °C for one week. The atomic hydrogen concentrations in a disk and at the tip of a pin are shown in Figure 6. It can be seen that the condition of 30 wppm is exceeded everywhere at the tip pf a pin, and within 1.5 mm (0.06 inch.) from the surface of a disk. Note that the boundary condition of the numerical calculation maintained at 2531 appm based on the hydrogen charge parameters. A detailed discussion on diffusion properties can be found in Reference [4].

The charge temperature (350 °C) has been shown not to alter the microstructure of the steels. After each charge, the specimens were immediately cooled with liquid nitrogen (-196 °C at 1 atm) and removed from the charge vessel, then transported in dry ice (-78 °C) to a freezer for temporary storage at -44 °C until wear testing was conducted. The length of the freezer storage and a short term exposure to room temperature prior to initiating wear testing will not affect the hydrogen concentration in the samples.

The SRNL charge container has an effective length of 20-23 cm (8-9 inch.) and 3.18 cm ($1\frac{1}{4}$ inch.) in diameter. As a result, the standard disk sample with a diameter of 4.76 cm (1.875 in.) (see Figure 2) must be re-designed for hydrogen pre-charge. An adaptor was fabricated for the smaller pre-charged disks so the wear testing can be conducted normally. Due to the size of the charge tube, only 10 pins (or 5 disks and 5 pins) could be charged at each time.

Figure 6. Hydrogen concentration in pre-charged disk and pin samples

6.0 TEST PROCEDURE AND EQUIPMENT

The non-coated sample disks and pins were cleaned in an ultrasonic cleaner, handled without any type of surface contamination, and stored in plastic bags prior to testing. The coated samples were tested with the as-received condition, except the superficial layer on the nitride-coated disks was removed with the Scotch-BriteTM pad. A four- place balance is used to obtain the pre/post-test weights of the samples.

The overall layout of the wear test laboratory can be seen in Figure 7, with the wear mechanism and its components shown in Figure 8. The threaded end of the pin (Figure 3) is screwed into a threaded hole in one end of a first class lever (Figure 9). The pin is prevented from moving by the addition of a lock nut. The fulcrum of the lever is supported by two ball bearings and the other end of the lever is threaded to hold a movable weight. The entire pin-holding assembly is designed to be positioned over the pan of a balance for setting the pin loads. The surface of the balance pan is in the same relative position as the surface of the disk in the test machine. A weight is adjusted until the force of the pin on the balance is exactly 45.4 g (0.1 lb) or 91 g (0.2 lb).

The pin-holding assembly is then mounted over the sample disk (Figure 9-Figure 10) with the load preset to either 45.4 g (0.1 lb) or 91 g (0.2 lb), the radial distance from the center of the disk to the point of contact with the pin is approximately 2.45 cm (1 in.). As discussed earlier, the pin is slightly tilted when the disk rotates because the apex of the pin head is not exactly on a spherical surface due to machining constraints. However, the contact point between the disk and the pin remains on a spherical surface as recommended by ASTM G 99-05.

Figure 11 displays the wear system with the pressure vessel lowered to enclose the disk-pin test mechanism for tests run in a hydrogen atmosphere. The pressure chamber (enclosure) is first evacuated, filled with helium, evacuated again and then filled to the desired pressure with gaseous hydrogen. The hydrogen gas used in this experiment was research grade with a purity of 99.9995% (Appendix E). Pressure is measured simultaneously by two independent pressure gages.

The disk-pin sample holder is rotated by a Magnedrive[®]. No high pressure rotating seals are required in the system so the leak path is eliminated. The Magnedrive[®] is driven by a V-belt connected to a variable speed DC motor (Figure 8). The rotational speed is measured by a non-contact laser tachometer connected to a computer which records speed vs. time during each test.

Figure 7 Wear test facilities: Disk-Pin System (left) and hydrogen gas supply cylinder (right).

Figure 8. Wear hydrogen test system from top to bottom: pressure vessel enclosure for hydrogen test (to be lowed when testing), disk-pin holding assembly (samples are mounted), and Magnedrive[®] with V-belt connected to a DC motor (a non-contact laser tachometer is visible above the motor and behind the V-belt).

Figure 9. Sample disk on a rotating platform and the sample pin mounted in a fixed position.

Figure 10. Sample pin in contact with the disk.

Figure 11. Pressure vessel lowered to enclose the wear test mechanism ready for testing in hydrogen gaseous environment.

7.0 WEAR MEASUREMENT

After the samples were run in the test apparatus at a specified speed and travel distance (nominally 2000 m) under the load of 45.4 g (0.1 lb) or 91 g (0.2 lb), the wear track on the disk and the wear area on the pin were visually examined and photographed (Appendix F). The wear track diameter on the disk and the wear spot diameter on the pin were measured with a Ram Omis II Video Microscope. The wear surface morphology is obtained from a contact profilometer (Model: Rank Taylor-Hobson S5 Form Talysurf Profilometer). For this measurement, a diamond tip stylus is moved in a straight line from a virgin undisturbed area, across the wear region, and ending in the virgin undisturbed area on the other side of the wear track. The trace of each surface profile can also be found in Appendix F. From the trace on the chart, the wear width may be identified by noting a difference in surface finish. Typically, the wear region exhibits higher peak to valley variations, signaling that the surface has been disturbed as a result of testing. However, for some coated disks, especially DLC coated samples, visual examination and the profilometer traces were unable to identify a distinct wear region due to insignificant wear.

The individual disk and pin sample weight changes were obtained by direct measurement (i.e., with a four-place balance). The weighing procedure was as follows:

- 1. Weigh the test pin and record the weight.
- 2. Weigh the standard 50 gram weight and record the weight.
- 3. Weigh the "standard" pin and record the weight.
- 4. Repeat these three measurements a total of five times.
- 5. Weigh the test disk and record the weight.
- 6. Weigh the standard 100 gram weight and record the weight.
- 7. Weigh the "standard" disk and record the weight.
- 8. Repeat these three measurements a total of five times

After each test, a repeat of the above measurement process was performed to develop the wear test weight change data.

The wear volume of the samples after wear testing was obtained from the weight change data combined with typical mass density for the stainless steels (7.98 g/cc). In the case of DLC and nitride coatings, their densities are approximated by the pure diamond density (3.5 g/cc) and the typical density for nitriding steels (H7 g/cc).

Volume loss was unable to be measured from the profilometer scans because for most of the samples the surface roughness of the wear track and the virgin area outside of the wear track were very similar—indicating minimal wear. However, the volume loss for the pins could be calculated from the measured wear spot diameter by assuming that it is nearly circular and using the following relationship:

Volume Loss =
$$(\pi R^3/3) \cdot (2 - 3\cos\theta + \cos^3\theta)$$

with $\theta = \sin^{-1}(b/R)$, where R is the pin tip radius (3/16 inch.), and b is the wear spot radius.

The accuracy of the above relationship was evaluated and is demonstrated by the comparison shown Figure 12. This also indicates that the weight measurements of the pin (and the disk) are accurate.

Figure 12. Comparison of pin volume change by weight measurement and by calculation.

Tables 2 to 4 list the test matrix for the Phase II study and the requested test parameters. For the Phase II testing, the nominal test speed is 800 mm/s and the total traveling distance is 2000 m. Note that the actual disk speed and the actual travel distance may vary slightly from the nominal (or target) values, because the actual distance from the center of the disk to the center of the wear track may not coincide exactly with the designed distance of R = 2.54 cm (1 in.).

Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 45.4 g or 0.1 lb						
Test	Priority	Disk	Pin	Test	Disk	Pin
No.		Material	Material	Environment	Number	Number
		DLC				
1	1	AUM10	316L	Air	AUM10-02	316L-06
		DLC				
2	1	AUM10	316L	Air	AUM10-01	316L-05
		Nitride				
3	1	AUM10	316L	Air	AUM10-05	316L-01
		Nitride				
4	1	AUM10	316L	Air	AUM10-06	316L-35
		DLC		Hydrogen		
5	1	AUM10	316L	2000 psig	AUM10-04	316L-08
		DLC		Hydrogen		
6	1	AUM10	316L	2000 psig	AUM10-03	316L-07
		Nitride		Hydrogen		
7	1	AUM10	316L	2000 psig	AUM10-08	316L-04
		Nitride		Hydrogen		
8	1	AUM10	316L	2000 psig	AUM10-07	316L-03
		DLC	DLC			
9	2	AUM10	316L	Air	AUM10-09	316L-41
		DLC	DLC			
10	2	AUM10	316L	Air	AUM10-10	316L-42
		Nitride	Nitride			
11	2	AUM10	316L	Air	AUM10-12	316L-48
		Nitride	Nitride			
12	2	AUM10	316L	Air	AUM10-16	316L-47
		DLC	DLC	Hydrogen		
13	2	AUM10	316L	2000 psig	AUM10-33	316L-43
		DLC	DLC	Hydrogen		
14	2	AUM10	316L	2000 psig	AUM10-34	316L-44
		Nitride	Nitride	Hydrogen		
15	2	AUM10	316L	2000 psig	AUM10-15	316L-46
		Nitride	Nitride	Hydrogen		
16	2	AUM10	316L	2000 psig	AUM10-14	316L-45

Table 2. Test Matrix for Non-charged Samples

(5 5)

(S	(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 45.4 g or 0.1 lb)						
	Test	Priority	Disk	Pin	Test	Disk	Pin
	No.		Material	Material	Environment	Number	Number
Γ					Hydrogen		
	17	1	316L	316L	2000 psig	316L-04	316L-34
ſ					Hydrogen		
	18	1	316L	316L	2000 psig	316L-02	316L-14
					Hydrogen		
	19	1	316L	316L	2000 psig	316L-03	316L-15
Ī					Hydrogen		
	20	1	AUM10	316L	2000 psig	AUM10-60	316L-25
ſ					Hydrogen		
	21	1	AUM10	316L	2000 psig	AUM10-61	316L-26
Γ					Hydrogen		
	22	1	AUM10	316L	2000 psig	AUM10-62	316L-18
Ē					Hydrogen		
	23	1	AUM10	A286	2000 psig	AUM10-63	A286L-14
Ē					Hydrogen		
	24	1	AUM10	A286	2000 psig	AUM10-41	A286L-19
Γ					Hydrogen		
	25	1	AUM10	A286	2000 psig	AUM10-42	A286L-01
Ī			DLC				
	26	2	AUM10	316L	Air	AUM10-13	316L-22
Ē			DLC				
	27	2	AUM10	316L	Air	AUM10-22	316L-23
Ī			Nitride				
	28	2	AUM10	316L	Air	AUM10-28	316L-20
Ē	-		Nitride				
	29	2	AUM10	316L	Air	AUM10-27	316L-21
Ē			DLC		Hydrogen		
	30	2	AUM10	316L	2000 psig	AUM10-25	316L-29
ŀ			DLC		Hvdrogen		
	31	2	AUM10	316L	2000 psig	AUM10-26	316L-30
Ē			Nitride		Hydrogen		
	32	2	AUM10	316L	2000 psig	AUM10-31	316L-27
ŀ			Nitride	0102	Hydrogen		
	33	2	AUM10	316L	2000 psig	AUM10-32	316L-28

Table 3. Test Matrix for Pre-charged Samples

Slidir	ng Distan	ce: 2000	m, Speed	: 800 mm/s, l	Pin Load: 91	g or 0.2 lb
Test	Priority	Disk	Pin	Test	Disk	Pin
No.		Material	Material	Environment	Number	Number
				Hydrogen		
34	1	316L	316L	2000 psig	316L-01	316L-16
				Hydrogen		
35	1	316L	316L	2000 psig	316L-05	316L-17
				Hydrogen		
36	1	AUM10	316L	2000 psig	AUM10-43	316L-32
				Hydrogen		
37	1	AUM10	316L	2000 psig	AUM10-44	316L-33
				Hydrogen		
38	1	AUM10	A286	2000 psig	AUM10-45	A286-02
				Hydrogen		
39	1	AUM10	A286	2000 psig	AUM10-46	A286-03
		DLC				
40	2	AUM10	A286	Air	AUM10-11	A286-11
		DLC				
41	2	AUM10	A286	Air	AUM10-17	A286-12
		Nitride				
42	2	AUM10	A286	Air	AUM10-19	A286-13
	_	Nitride	11200			11200 10
43	2	AUM10	A286	Air	AUM10-40	A286-04
	_	DLC	11200	Hydrogen	1101110 10	11200 01
44	2	AUM10	A286	2000 psig	AUM10-18	A286-05
	2	DLC	11200	Hydrogen		11200 05
45	2	AUM10	A286	2000 psig	AUM10-21	A286-06
15	2	Nitride	11200	Hydrogen	1101110 21	11200 00
46	2		A286	2000 psig	AUM10-20	A286-07
-10	2	Nitride	A200	Hydrogen	AGMI10-20	A200-07
47	2		A286	2000 psig	AUM10-24	A286-08
77	2	DIC	11200	2000 paig	101110-24	11200-00
48	2		3161	Air	AUM10_20	3161-24
0	2	DIC	510L		11010110-29	510L-24
40	2		3161	Air	AUM10-30	316T-11
τJ	<u>ک</u>	Nitrida	510L		AUM10-30	J10L-11
50	2		3161	Air	AUM10 22	3161 12
50	2	Nitrida	510L	<u>All</u>	AUWI10-23	510L-12
51	2		3161	Air	AUM10 27	3161 12
51	2	DLC	510L	All Under	AUWI10-3/	510L-15
50	2		2141	2000 main	AUM10.26	2161 21
32	2		310L	2000 psig	AUW110-30	310L-31
52	n		2161	2000 pair	AUM10 25	2161 52
55	2	AUMIU N'4 1	310L	2000 psig	AUWI10-33	310L-32
5 4	~	Nitride	21.67	Hydrogen	ATD (10.20	21.07 40
54	2	AUMIO	316L	2000 psig	AUM10-38	316L-49
~~	~	Nitride	21.67	Hydrogen		21/7 50
22	2	AUM10	316L	2000 psig	AUM10-39	316L-50

Table 4. Test Matrix for Pre-charged Samples

8.0 POST-TEST WEAR CHARACTERIZATION

8.1 WEAR SURFACE CHARACTERIZATION

Following the initial visual examination of the disk and pin samples after testing, photographs were used to document the wear tracks and post-test surfaces. They are displayed along with the traces from contact profilometer in Appendix F. Selected sample photographs and profilometer traces are shown in Figure 13-Figure 26. From these micrographs a few general conclusions can be drawn:

- 1. Tests conducted with non-coated disk and non-coated pin combinations displayed the most significant wear tracks visually
- 2. Coated disk-pin samples—either coated disk-coated pin or coated disk-non-coated pin displayed minimal to no wear tracks visually

Figure 13. Post-Test Wear Surface Photographs and Profilometer Data for Test #1

Test 6 316L-07 Non-coated -1009.uin 0.009uin 68.98min

Figure 14. Post-Test Wear Surface Photographs and Profilometer Data for Test #6

Figure 15. Post-Test Wear Surface Photographs and Profilometer Data for Test #4

Figure 16. Post-Test Wear Surface Photographs and Profilometer Data for Test #8

Figure 17. Post-Test Wear Surface Photographs and Profilometer Data for Test #10

Figure 18. Post-Test Wear Surface Photographs and Profilometer Data for Test #14

Figure 19. Post-Test Wear Surface Photographs and Profilometer Data for Test #12

Figure 20. Post-Test Wear Surface Photographs and Profilometer Data for Test #16

Figure 21. Post-Test Wear Surface Photographs and Profilometer Data for Test #17

Figure 25. Post-Test Wear Surface Photographs and Profilometer Data for Test #36

Figure 26. Post-Test Wear Surface Photographs and Profilometer Data for Test #39

8.2 SCANNING ELECTRON MICROSCOPY

Selected post-test samples were chosen for detailed characterization with scanning electron microscope (SEM). The wear tracks on nitride coated disks are similar for air and hydrogen tests when non-charged 316L pins were used (Figure 27-Figure 28). The wear spots on these pins appear to be smoother and unidirectional in the air test when Figure 29 - Figure 32 are compared. When the coated disks were tested with pre-charged 316L pins, Figure 33 shows a possible tearing in the DLC coating while the rough nitrided disk surface appears to be flattened (reduced roughness) by the pin (Figure 34). The wear patterns on the 316L pins are similar in Figure 35 and Figure 36; only the wear spot is much larger when it was tested with the nitride coated disk. Figure 37-Figure 40 show the wear details of DLC and nitride coated disks tested with pre-charged A286 pins in hydrogen. The wear track on the DLC coated disk is smoother but shows possible tearing. The nitrided disk shows that wear took place mainly on the ridges of the surface finish. The wear spot on the A286 pin in Figure 40 is not smooth but shows fracturing/chipping. It is possibly caused by the higher hardness of A286 (compared to 316L) and the inherent nature of the surface of the nitrided disk. Figure 41 and Figure 42 are the wear tracks on the DLC and nitrided coated disks and the pre-charged 316L pins with increasing load (0.2 lb). The test environment was 2000 psig hydrogen. Similar features can be seen earlier in Figure 33-Figure 34. The corresponding wear spots on pre-charged 316L pins are shown in Figure 43 and Figure 44, which can be compared with Figure 35 and Figure 36 when the pin load was 0.1 lb.

Figure 27. Wear track on nitride coated disk tested in air using non-charged 316L pin loaded with 0.1 lb.

Figure 28. Wear track on nitride coated disk tested in hydrogen using non-charged 316L pin loaded with 0.1 lb.

Figure 29. Wear spot on non-charged 316L pin loaded with 0.1 lb and tested in air with nitride coated disk.

Figure 30. Wear spot on non-charged 316L pin loaded with 0.1 lb and tested in hydrogen with nitride coated disk.

Figure 31. Wear spot details on non-charged 316L pin loaded with 0.1 lb and tested in air with nitride coated disk.

Figure 32. Wear spot details on non-charged 316L pin loaded with 0.1 lb and tested in hydrogen with nitride coated disk.

Figure 33. Wear track on DLC coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.1 lb.

Figure 34. Wear track on nitride coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.1 lb.

Figure 35. Wear spot on pre-charged 316L pin loaded with 0.1 lb and tested in hydrogen with DLC coated disk.

Figure 36. Wear spot on pre-charged 316L pin loaded with 0.1 lb and tested in hydrogen with nitride coated disk.

Figure 37. Wear track on DLC coated disk tested in hydrogen using pre-charged A286 pin loaded with 0.2 lb.

Figure 38. Wear track on Nitride coated disk tested in hydrogen using pre-charged A286 pin loaded with 0.2 lb.

Figure 39. Wear spot on pre-charged A286 pin loaded with 0.2 lb and tested in hydrogen with DLC coated disk.

Figure 40. Wear spot on pre-charged A286 pin loaded with 0.2 lb and tested in hydrogen with nitride coated disk.

Figure 41. Wear track on DLC coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.2 lb.

Figure 42. Wear track on nitride coated disk tested in hydrogen using pre-charged 316L pin loaded with 0.2 lb.

Figure 43. Wear spot on pre-charged 316L pin loaded with 0.2 lb and tested in hydrogen with DLC coated disk.

Figure 44. Wear spot on pre-charged 316L pin loaded with 0.2 lb and tested in hydrogen with nitride coated disk.

9.0 RESULTS

9.1 WEIGHT CHANGE

As discussed in a previous section, the weight change of the samples was obtained by weighing the sample with a four-place balance before and after the test. The weight changes and wear area measurements are shown in Table 5-Table 10 for the disks and for the pins. The results are shown graphically in Figure 45. From the weigh change results displayed in Figure 45 the following general conclusions can be made:

1. Wear for disk-pin combinations in which both are coated either with nitride or DLC tested in air and 2000 psig hydrogen shows minimal wear.

2. Wear for disk-pin combinations involving coated disk-non-coated pin combinations displays increased wear for the nitride coated disk cases and not the DLC, but also shows no sensitivity to environment—air vs. hydrogen.

3. For uncoated disk-pin test combination pre-charged with hydrogen and then tested in 2000 psig hydrogen, a small increase in wear is documented in comparison to similar previously tested samples in Phase I of this study

4. Samples with coated disk (nitride and DLC) tested with non-coated pre-charged pins tested at both 0.1lbs and 0.2 lbs show no significant difference between air and hydrogen environments and sample loading for tested disk-pin combinations.

	(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 45.4 g or 0.1 lb)								
				Outside	Inside	Averaged			Estimated
				Track	Track	Track	Track	Weight	Volume
Test	Disk	Pin	Test	Finish	Finish	Diameter	width	Loss	Loss
No.	Material	Material	Environ.	(µ-inch)	(µ-inch)	(inch)	(inch)	(gram)	(mm^3)
	DLC							-	
1	AUM10	316L	Air	82.4	82.4	1.0175	0.0355	0.00040	-0.11428
	DLC								
2	AUM10	316L	Air	57.5	57.5	1.0965	0.0355	0	0
	Nitride								
3	AUM10	316L	Air	33.5	29.5	0.974	0.078	0.00072	0.10285
	Nitride								
4	AUM10	316L	Air	58.9	55.3	0.941	0.074	0.00222	0.31714
	DLC		Hydrogen	not	not	not	not		
5	AUM10	316L	2000 psig	measured	measured	measured	measured	0.00030	0.08571
	DLC		Hydrogen		not	not	not		
6	AUM10	316L	2000 psig	58.9	measured.	measured	measured	0.00018	0.05142
	Nitride		Hydrogen					-	
7	AUM10	316L	2000 psig	64	73.4	0.862	0.058	0.00010	-0.01428
	Nitride		Hydrogen					-	
8	AUM10	316L	2000 psig	86	67.4	0.8425	0.0335	0.00006	-0.00857
	DLC	DLC			not			-	
9	AUM10	316L	Air	55.5	measured.	1.0845	0.0135	0.00130	-0.37142
	DLC	DLC			not				
10	AUM10	316L	Air	43.8	measured	1.008	0.01	0.00070	0.2
	Nitride	Nitride			not				
11	AUM10	316L	Air	49.5	measured	1.022	0.023	0.00076	0.10858
	Nitride	Nitride			not				
12	AUM10	316L	Air	47.8	measured	1.0275	0.0215	0.00046	0.06571
	DLC	DLC	Hydrogen						
13	AUM10	316L	2000 psig	32	25	1.1425	0.0175	0.00026	0.07428
	DLC	DLC	Hydrogen					-	
14	AUM10	316L	2000 psig	23	23	1.08	0.015	0.00038	-0.10857
	Nitride	Nitride	Hydrogen						
15	AUM10	316L	2000 psig	39	23	1.0535	0.0245	0.00068	0.09714
	Nitride	Nitride	Hydrogen						
16	AUM10	316L	2000 psig	32	32	0.9255	0.0275	0.00102	0.14571

Table 5. Test Results for Non-charged Samples (Disks)	
(Sliding Distance: 2000 m. Speed: 800 mm/s. Din Lead: 45.4 g or 0.1	112)

Note: The negative value under Weight Loss or Volume Loss indicates that the sample gained weight or volume after testing. This may be caused by material transfer or measurement imprecision.

	((Sliding D	Distance: 20	000 m, Sp	eed: 800 m	nm/s, Pin L	.oad: 45.4	g or 0.1 lb)	
				Outside	Inside	Averaged		Estimated	
				Wear	Wear	Wear	Weight	Volume	Calculated
Test	Disk	Pin	Test	Finish	Finish	Spot Dia.	Loss	Loss	Volume Loss
No.	Material	Material	Environ.	(µ-inch)	(µ-inch)	(inch)	(gram)	(mm^3)	(mm ³)
	DLC								
1	AUM10	316L	Air	8.75	3.96	0.04	0.00004	0.005013	0.01102
	DLC								
2	AUM10	316L	Air	5.4	8.6	0.035	-0.00090	-0.11278	0.00646
	Nitride								
3	AUM10	316L	Air	3.4	17.6	0.104	0.00390	0.48872	0.51534
	Nitride								
4	AUM10	316L	Air	4.44	21.38	0.0985	0.00266	0.33333	0.41351
	DLC		Hydrogen						
5	AUM10	316L	2000 psig	5.89	5.12	0.03	0.00000	0	0.00348
	DLC		Hydrogen						
6	AUM10	316L	2000 psig	9.8	4.3	0.0325	-0.00004	-0.00501	0.00480
	Nitride		Hydrogen						
7	AUM10	316L	2000 psig	2.3	28.2	0.084	0.00166	0.20802	0.21727
0	Nitride	21.67	Hydrogen		15.0	0.0005	0.000	0.04005	0.00000
8	AUM10	316L	2000 ps1g	2.5	17.9	0.0925	0.00278	0.34837	0.32068
	DLC	DLC			not		0.004.60		. .
9	AUM10	316L	Aır	9.38	measured	0.0155	-0.00160	-0.45714	0.00025
10	DLC	DLC		10.0		0.0165	0.00000	0.0551.40	0.00000
10	AUMIO	316L	Aır	10.6	3.7	0.0165	0.00020	0.057143	0.00032
1.1	Nitride	Nitride		11.7	•	0.041	0.0000	0.00057	0.01017
11	AUMIO	316L	Air	11./	2.9	0.041	0.00006	0.00857	0.0121/
10	Nitride	Nitride	A :	10	C	0.02(1	0.00002	0.00286	0.00720
12	AUMIU	DIC	Alr	12	0	0.0301	0.00002	0.00286	0.00730
12		DLC	Hydrogen	57	not	0.015	0.00002	0.00571	0.00022
13	AUMIU	316L	2000 psig	5./	measured	0.015	-0.00002	-0.005/1	0.00022
14		DLU	Hydrogen	(6	0.012	0.00009	0.02286	0.00012
14	AUNIIU Nitei 1-	JIUL Nite: 1-	2000 psig	0	0	0.013	0.00008	0.02280	0.00012
15			nyurogen	o	7	0.027	0 00000	0.14	0.00207
13	Nitrida	Nitrida	2000 psig	8	/	0.037	0.00098	0.14	0.00807
16			2000 maio	115	20	0.0415	0.00020	0 02957	0.01279
10	AUMIU	310L	∠000 psig	11.3	3.0	0.0413	-0.00020	-0.02637	0.01278

Table 6. Test Results for Non-charged Samples (Pins)

	(.			Outside	Inside	Averaged		1 0.1 10)	Estimated
				Track	Track	Track	Track	Weight	Volume
Test	Disk	Pin	Test	Finish	Finish	Diameter	width	Loss	Loss
No.	Material	Material	Environ.	(µ-inch)	(µ-inch)	(inch)	(inch)	(gram)	(mm^3)
			Hydrogen						
17	316L	316L	2000 psig	20	59	0.962	0.054	0.00314	0.39348
			Hydrogen						
18	316L	316L	2000 psig	19.7	180	0.8435	0.0635	0.00296	0.37092
			Hydrogen						
19	316L	316L	2000 psig	22	90	1.0205	0.0675	0.00334	0.41854
			Hydrogen						
20	AUM10	316L	2000 psig	26.2	39.8	0.8385	0.0175	0.00182	0.22807
			Hydrogen						
21	AUM10	316L	2000 psig	31	131.1	0.9105	0.0695	0.02058	2.57895
			Hydrogen						
22	AUM10	316L	2000 ps1g	21	132	1.032	0.103	0.03600	4.51128
		1000	Hydrogen		10	1 0 1 0 5	0.0005	0.00010	0.01050
23	AUM10	A286	2000 psig	21	49	1.0195	0.0295	0.00010	0.01253
24		1000	Hydrogen	4.4	76	1.0165	0.0745	0.01920	2 20222
24	AUMI0	A286	2000 psig	44	/6	1.0165	0.0745	0.01830	2.29323
25		1286	2000 psig	20.4	128.2	0.0055	0.0745	0.00028	0.03508
23		A200	2000 psig	29. 4	130.3	0.9955	0.0743	0.00028	0.05508
26	AUM10	3161	Air	not	not	not	measured	-0.00004	-0.011/13
20		JIOL		not	not	not	not	-0.00004	-0.01143
27	AUM10	316L	Air	measured	measured	measured	measured	0.00014	0.04
	Nitride	DIGE		measurea	measurea	measurea	measurea	0.00011	0.01
28	AUM10	316L	Air	32.2	21.7	0.9985	0.0505	0.00092	0.13143
	Nitride								
29	AUM10	316L	Air	76.3	60.9	1.023	0.06	0.00016	0.02286
	DLC		Hydrogen						
30	AUM10	316L	2000 psig	43	43	1.003	0.028	-0.00004	-0.01143
	DLC		Hydrogen						
31	AUM10	316L	2000 psig	65	65	0.9745	0.1565	-0.00004	-0.01143
	Nitride		Hydrogen						
32	AUM10	316L	2000 psig	31	23	0.9775	0.0595	0.00082	0.11714
	Nitride		Hydrogen						
33	AUM10	316L	2000 psig	37	15	0.9435	0.0515	0.00024	0.03429

Table 7. Test Results for Pre-charged Samples (Disks)

(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 45.4 g or 0.1 lb)

	(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 45.4 g or 0.1 lb)								
				Outside	Inside			Estimated	Calculated
				Wear	Wear	Averaged	Weight	Volume	Volume
Test	Disk	Pin	Test	Finish	Finish	Wear Spot	Loss	Loss	Loss
No.	Material	Material	Environ.	(µ-inch)	(µ-inch)	Dia. (inch)	(gram)	(mm^3)	(mm^3)
			Hydrogen						
17	316L	316L	2000 psig	4	71	0.0575	0.00002	0.002506	0.04727
			Hydrogen						
18	316L	316L	2000 psig	3.6	53.6	0.068	0.00212	0.265664	0.09276
			Hydrogen						
19	316L	316L	2000 psig	5	117	0.074	0.00018	0.022556	0.13035
			Hydrogen						
20	AUM10	316L	2000 psig	5.9	103.8	0.034	0.00034	0.042607	0.00575
			Hydrogen						
21	AUM10	316L	2000 psig	3.8	58.6	0.0825	0.00066	0.082707	0.20204
		A 1 67	Hydrogen	_			 .		
22	AUM10	316L	2000 ps1g	5	70	0.099	0.00274	0.343358	0.42208
			Hydrogen			0.000			
23	AUM10	A286	2000 ps1g	13	82	0.036	0.00006	0.007519	0.00723
24		1000	Hydrogen	4.5	50 (0.0765	0.00004	0.1050(0	0.1.400.2
24	AUMI0	A286	2000 psig	4.5	52.6	0.0765	0.00084	0.105263	0.14902
25		1296	Hydrogen	5 1	75.0	0.082	0 00000	0.010025	0 10714
25	AUMIU	A280	2000 psig	3.1	/5.9	0.082	0.00008	0.010025	0.19/14
26		2171	A :	22.2	12.5	0.029	0.00006	0.00752	0 00000
20	AUMIU	310L	Alr	23.3	12.3	0.038	-0.00006	-0.00752	0.00898
27	AUM10	2161	Air	5 1 8	11.24	0.038	0.00000	0	0 00808
21	Nitrida	510L	All	5.10	11.34	0.038	0.00000	0	0.00898
28		2161	Air	5 1 8	127	0 1035	0.00372	0.466165	0 50537
20	Nitride	JIOL	All	5.10	15.7	0.1055	0.00372	0.400105	0.50557
29	AUM10	316L	Air	4 97	137	0 1065	0 00408	0 511278	0 56746
	DLC	5101	Hydrogen	1.97	15.7	0.1005	0.00100	0.511270	0.50710
30	AUM10	3161	2000 nsig	8	6	0.0295	-0.00006	-0.00752	0.00326
50	DLC	5101	Hydrogen	0		0.0295	0.00000	0.00752	0.00320
31	AUM10	316L	2000 psig	8	22	0.0935	0.00038	0.047619	0.33496
	Nitride	0102	Hydrogen	0		0.0200	0.000000	5.0 ., 017	0.000.000
32	AUM10	316L	2000 nsig	4	48	0.0695	0.00056	0.070175	0.10127
	Nitride	5102	Hydrogen		10	0.00000	0.000000	5.070175	0.10127
33	AUM10	316L	2000 psig	4	23	0.0635	0.00048	0.06015	0.07044

Table 8. Test Results for Pre-charged Samples (Pins)

	(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 91 g or 0.2 lb)								
				Outside	Inside	Averaged			Estimated
				Track	Track	Track	Track	Weight	Volume
Test	Disk	Pin	Test	Finish	Finish	Diameter	width	Loss	Loss
No.	Material	Material	Environ.	(µ-inch)	(µ-inch)	(inch)	(inch)	(gram)	(mm^3)
			Hydrogen						
34	316L	316L	2000 psig	25.9	307.9	0.808	0.073	0.00380	0.47619
			Hydrogen						
35	316L	316L	2000 psig	21.7	59.8	0.817	0.076	0.00396	0.49624
			Hydrogen						
36	AUM10	316L	2000 psig	32	182	0.9665	0.0985	0.02774	3.47619
		21.67	Hydrogen		0.6	0.0565	0.001.5	0.00456	2 0 5 5 6 0
37	AUMI0	316L	2000 psig	27	96	0.9765	0.0915	0.02456	3.07769
•		1.000	Hydrogen	•	1.5.6	0.0(1.5	0.101.5	0.04107	5 1 4 5 0 C
38	AUMI0	A286	2000 psig	28	176	0.9615	0.1015	0.04106	5.14536
20		1000	Hydrogen	22	120	0.0105	0.0005	0.02022	2 52 62 4
39	AUMIO	A286	2000 psig	33	138	0.9195	0.0895	0.02822	3.53634
10	DLC	1000		not	not	not	not	0.0001.0	0.04571
40	AUMIO	A286	Aır	measured	measured	measured	measured	-0.00016	-0.04571
4.1		1200	A *	not	not	not	not	0.00004	0.01142
41	AUMIU	A280	Air	measured	measured	measured	measured	-0.00004	-0.01143
12	Nitride	1200	A *	50.1	40.9	0.095	0.050	0.00000	0.20714
42	AUMIU Nituida	A280	Alr	59.1	40.8	0.985	0.039	0.00208	0.29/14
12	Nitride	1206	A in	24	26	0.0665	0.0605	0.00094	0.12
43		A200	All	24	20	0.9003	0.0095	0.00084	0.12
11		1286	2000 psig	15	15	1 0215	0.0205	0.00016	0.04571
44		A200	2000 psig	43	43	1.0213	0.0293	-0.00010	-0.04371
45		۵286	2000 psig	35	35	1.04	0.015	-0.00012	-0.03428
-15	Nitride	A200	Hydrogen	55	55	1.04	0.015	-0.00012	-0.03420
46		۵286	2000 psig	35	23	0 943	0.046	0.00210	03
-10	Nitride	11200	Hydrogen	55	25	0.945	0.040	0.00210	0.5
47	AUM10	A286	2000 psig	57	42	0 984	0.043	0.00006	0.00857
.,	DLC	11200	2000 pbig		12	0.201	0.015	0.00000	0.00027
48	AUM10	316L	Air	29.5	28.5	0 978	0 026	0.00026	0 07429
10	DLC	DICE		not	not	not	not	0.00020	0.07 125
49	AUM10	316L	Air	measured	measured	measured	measured	-0.00006	-0.01714
.,	Nitride	0102		11100000100	11100000100		11100000100	0100000	0101711
50	AUM10	316L	Air	83.8	74.6	1.0005	0.0875	-0.00028	-0.04
	Nitride				,				
51	AUM10	316L	Air	101.2	65.1	1.0205	0.0695	0.00042	0.06
	DLC		Hvdrogen						
52	AUM10	316L	2000 psig	28	28	1.1055	0.0285	-0.00006	-0.01714
	DLC		Hydrogen						
53	AUM10	<u>31</u> 6L	2000 psig	21	21	1.024	0.025	-0.00022	-0.06286
	Nitride		Hydrogen						
54	AUM10	316L	2000 psig	30	17	0.992	0.064	0.00054	0.07714
	Nitride		Hydrogen						
55	AUM10	316L	2000 psig	53	46	0.971	0.083	0	6.3E-18

Table 9. Test Results for Pre-charged Samples (Disks)

Table 10.	Test Results for	Pre-charged	Samples (Pins)
-----------	-------------------------	--------------------	----------------

	(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 91 g of 0.2 lb)									
				Outside	Inside			Estimated	Calculated	
				Wear	Wear	Averaged	Weight	Volume	Volume	
Test	Disk	Pin	Test	Finish	Finish	Wear Spot	Loss	Loss	Loss	
No.	Material	Material	Environ.	(µ-inch)	(µ-inch)	Dia. (inch)	(gram)	(mm^3)	(mm^3)	
			Hydrogen							
34	316L	316L	2000 psig	9.1	76.2	0.0805	0.00088	0.110276	0.18300	
			Hydrogen							
35	316L	316L	2000 psig	8.7	68.1	0.0805	0.00074	0.092732	0.18300	
			Hydrogen							
36	AUM10	316L	2000 psig	8	116	0.094	0.00192	0.240602	0.34223	
			Hydrogen							
37	AUM10	316L	2000 psig	3	101	0.0885	0.00310	0.388471	0.26822	
			Hydrogen							
38	AUM10	A286	2000 psig	5	123	0.097	0.00146	0.182957	0.38861	
			Hydrogen							
39	AUM10	A286	2000 psig	5	70	0.0925	0.00174	0.218045	0.32067	
	DLC	11200	2000 pbig			0.0020	0.00111	0.2.00.0	0.02001	
40	AUM10	A286	Air	10.4	13.6	0.0545	0.00004	0.005013	0.03812	
	DLC	11200		1011	1010	0.0010	-	01000010	0.00012	
41	AUM10	A286	Air	10.5	2.6	0.042	0.00088	-0.11028	0.01341	
	Nitride	11200		1010	2.0	01012	0.00000	0111020	0.01011	
42	AUM10	A286	Air	72	93	0 119	0 00252	0 315789	0 89095	
72	Nitride	11200	2 111	1.2	0.0	0.110	0.00202	0.010700	0.00000	
43	AUM10	A286	Air	6	14	0 11	0.00536	0 671679	0 64706	
15	DLC	11200	Hydrogen			0.11	0.00000	0.07 1070	0.01700	
11	AUM10	1286	2000 psig	6	7	0 0385	0 00092	0 115288	0.00946	
		A200	Hydrogen	0	1	0.0000	0.00032	0.110200	0.00040	
45	AUM10	Δ286	2000 psig	4	5	0.033	0 00042	-0.05263	0.00510	
-15	Nitrida	11200	Hydrogen	-	0	0.000	0.00042	0.00200	0.00010	
46		1286	2000 psig	7	25	0.083	0 00148	0 185/6/	0 20702	
40	Nitride	A200	2000 psig	1	25	0.005	0.00140	0.100404	0.20702	
47		۵286	2000 psig	8	33	0.067	0.00360	0 451128	0 08739	
т <i>1</i>		A200	2000 psig	0		0.007	0.00000	0.401120	0.00700	
18	AUM10	3161	Air	10.00	4 01	0.0315	0 00006	0.007510	0.00423	
40		JIOL	All	13.33	4.01	0.0010	0.00000	0.007513	0.00423	
49	AUM10	3161	Air	Q 1	11 3	0.03	0 00004	-0.00501	0.00348	
77	Nitride	5101	2 111	0.1	11.0	0.00	0.00004	0.00001	0.00040	
50		3161	Air	13.8	83	0 1085	0 00482	0 60401	0 61107	
50	Nitride	JIOL	All	10.0	0.5	0.1005	0.00402	0.00401	0.01137	
51		3161	Air	63	10 1	0 112	0 00602	0 867168	0.69620	
51		510L	Hudrogan	0.0	10.1	0.112	0.00032	0.007 100	0.03020	
52	AUM10	216I	2000 psig	6	3	0 0205	0.00010	-0.01253	0.00326	
52		JIOL	2000 psig	0	5	0.0235	0.00010	-0.01233	0.00320	
53	AUM10	3161	2000 peig	10	Δ	0 028	-	-0 01253	0.00264	
55	Nitrida	JIUL	Hudrogen	10	+	0.020	0.00010	0.01200	0.00204	
54		3161	2000 pair	F	20	0.071	0 00040	0.050125	0 11035	
54	Nitrida	JIOL	2000 psig	5	52	0.071	0.00040	0.000120	0.11033	
55		3161	2000 peig	Δ	20	0 0035	0 00268	0 3358/	0 33402	
55	11011110	5101	2000 paig	-+	20	0.0000	0.00200	0.00004	0.00402	

(Sliding Di n/a Din Land, 01 a a. 2000 and, 200 0.216)

Weight Loss Normalized by Sliding Distance

Figure 45. Disk weight change (loss) after 2000 m of travel distance and under a pin load of 45.4 g (0.1 lb) or 91 g (0.2lb)—non-pre-charged, pre-charged, non-coated, and coated.

9.2 WEAR COEFFICIENT (Kw)

A wear coefficient was calculated based on the Archard Equation [5-8] for each test where the volume loss took place by the wear. This coefficient is the proportionality between the wear rate (volume loss per unit sliding distance) and the ratio of the external load to the flow pressure of the material. Mathematically, it can be regarded as the probability of any material surface junctions leading to transferred fragments [5]. The majority of the wear coefficients based on the SRNL test data are within the range of those for the stainless steels as reported in the literature, on the order of 0.01 [5].

A wear equation was proposed by Holm in 1946 [6] and later was derived analytically by Archard in 1953 [7,8] as

W=kL/3p,

where W is the wear rate (volume loss per unit sliding distance), L is the external loading acting on the flat plate, p is the flow pressure of the metal (the Brinell Hardness can be used as an approximation), the "3" in the denominator is a shape factor for the assumed circular junctions and hemispheric fragments or debris (for a square junctions and cubical fragment, the factor would be 1), and k is the probability of any material surface junctions leading to transferred fragments [5].

The above Archard Equation is rearranged to incorporate the test data for calculation the wear coefficient K_w , in which the shape factor has been absorbed:

$$K_{w} = \frac{\text{Hardness} (\text{kg/mm}^{2}) \times (\text{Wear Volume per unit Sliding Distance, mm}^{2})}{\text{Total Normal Load (kg)}}$$

Typical density of 7.98 g/cc was used in estimating the wear volume for the stainless steels (316L, A285, and AUM10). For the DLC coating, the pure diamond density 3.5 g/cc [9] was used in the Archard equation for DLC-coated samples. Because its hardness is from HV 1000 to 3500 [3], which exceeds the Brinell hardness scale HB 739 (at HV 832) [10], a value of 1000 was used in the Archard equation for DLC coating by extrapolating from charts provided in the literature [11].

The maximum density of the nitriding steels is 7.7g/cc (typical stainless steel is 7.98 g/cc) [12]. Therefore, a density of 7 g/cc was used for the nitride coating in the analysis for K_w. Because nitriding is a thermo-chemical diffusion process and its properties depend on the substrate material, the hardness of the nitriding steel in general increases with the chromium content in the steel. The surface hardness of 17% Cr stainless steel was used (Note that the chromium contents in the materials investigated in this report are 16.7, 14.0, and 12.5% for, respectively, 316L pins, A286 pins, and AUM10 disks). The surface hardness value is HV 1050 [3], which quickly drops to HV 200 at 0.2 mm (0.008 inch.) below the surface, typical for the stainless steels.

The wear coefficients for the test samples are listed in Table 11-Table 13 below, and is shown graphically in Figure 46. Many of the tests resulted in $K_w < 0.001$, which may be consistent with the observation by Rabinowicz (Table 6.1 of Ref. 5), in which he reported that $k = 21 \times 10^{-3}$ (equivalently, $Kw = 7 \times 10^{-3}$) for stainless steels. Rabinowicz also reported that the values of k above 0.1 are very rare in his 172 data points, with most of them are in between 10^{-4} and 10^{-2} (Figure 6.15 in Ref. 5) on non-lubricated surfaces for metals and non-metals.

(Slid	ing Distance:	2000 m, Spee	<u>ed: 800 mm/s, Pi</u>	in Load: 45.4 g	g or 0.1 lb)
Test	Disk				
Number	Material	Pin Material	Test Environ.	K _w (Disk)	K _w (Pin)
	DLC				
1	AUM10	316L	Air	-0.00136	0.00001
	DLC				
2	AUM10	316L	Air	0.00000	-0.00026
	Nitride				
3	AUM10	316L	Air	0.00094	0.00129
	Nitride				
4	AUM10	316L	Air	0.00301	0.00091
	DLC		Hydrogen 2000		
5	AUM10	316L	psig	0.00094	0.00000
	DLC		Hydrogen 2000		
6	AUM10	316L	psig	0.00056	-0.00001
	Nitride		Hydrogen 2000		
7	AUM10	316L	psig	-0.00015	0.00062
	Nitride		Hydrogen 2000		
8	AUM10	316L	psig	-0.00009	0.00106
	DLC				
9	AUM10	DLC 316L	Air	-0.00414	-0.00510
	DLC				
10	AUM10	DLC 316L	Air	0.00240	0.00069
	Nitride				
11	AUM10	Nitride 316L	Air	0.00095	0.00007
	Nitride				
12	AUM10	Nitride 316L	Air	0.00057	0.00002
	DLC		Hydrogen 2000		
13	AUM10	DLC 316L	psig	0.00079	-0.00006
	DLC		Hydrogen 2000		
14	AUM10	DLC 316L	psig	-0.00122	0.00026
	Nitride		Hydrogen 2000		
15	AUM10	Nitride 316L	psig	0.00082	0.00119
	Nitride		Hydrogen 2000		
16	AUM10	Nitride 316L	psig	0.00141	-0.00028

Table 11. K_w for Non-charged Samples

Note: The negative values of K_w are associated with negative wear volume in the previous section

<u>(Slic</u>	(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 45.4 g or 0.1 lb)								
Test	Disk								
Number	Material	Pin Material	Test Environ.	K _w (Disk)	K _w (Pin)				
			Hydrogen 2000						
17	316L	316L	psig	0.00091	0.00001				
			Hydrogen 2000						
18	316L	316L	psig	0.00098	0.00081				
			Hydrogen 2000						
19	316L	316L	psig	0.00092	0.00006				
			Hydrogen 2000						
20	AUM10	316L	psig	0.00057	0.00013				
			Hydrogen 2000						
21	AUM10	316L	psig	0.00596	0.00023				
			Hydrogen 2000						
22	AUM10	316L	psig	0.00920	0.00085				
			Hvdrogen 2000						
23	AUM10	A286	psig	0.00003	0.00003				
			Hydrogen 2000						
24	AUM10	A286	psig	0.00475	0.00040				
			Hydrogen 2000						
25	AUM10	A286	psig	0.00007	0.00004				
	DLC								
26	AUM10	316L	Air	-0.00012	-0.00002				
	DLC								
27	AUM10	316L	Air	0.00044	0.00000				
	Nitride								
28	AUM10	316L	Air	0.00118	0.00120				
	Nitride								
29	AUM10	316L	Air	0.00020	0.00128				
	DLC		Hydrogen 2000						
30	AUM10	316L	psig	-0.00014	-0.00002				
	DLC		Hvdrogen 2000						
31	AUM10	316L	psig	-0.00014	0.00013				
	Nitride		Hvdrogen 2000						
32	AUM10	316L	psig	0.00107	0.00018				
	Nitride		Hydrogen 2000						
33	AUM10	316L	psig	0.00032	0.00016				

Table 12. Kw for Pre-charged Samples

Note: The negative values of Kw are associated with negative wear volume in the previous section

(Sli	(Sliding Distance: 2000 m, Speed: 800 mm/s, Pin Load: 91 g or 0.2 lb)									
Test	Disk									
Number	Material	Pin Material	Test Environ.	K _w (Disk)	K _w (Pin)					
			Hydrogen							
34	316L	316L	2000 psig	0.00066	0.00017					
			Hydrogen							
35	316L	316L	2000 psig	0.00068	0.00015					
			Hydrogen							
36	AUM10	316L	2000 psig	0.00378	0.00032					
			Hydrogen							
37	AUM10	316L	2000 psig	0.00331	0.00051					
			Hvdrogen							
38	AUM10	A286	2000 psig	0.00563	0.00037					
			Hvdrogen							
39	AUM10	A286	2000 psig	0.00404	0.00046					
	DLC									
40	AUM10	A286	Air	-0.00025	0.00001					
-	DLC									
41	AUM10	A286	Air	-0.00006	-0.00019					
	Nitride									
42	AUM10	A286	Air	0.00135	0.00062					
	Nitride									
43	AUM10	A286	Air	0.00055	0.00135					
	DLC		Hydrogen							
44	AUM10	A286	2000 psig	-0.00027	0.00022					
	DLC	11200	Hydrogen	0.00027	0.00022					
45	AUM10	A286	2000 psig	-0.00020	-0.00010					
	Nitride	11200	Hydrogen	0.000120	0.00010					
46	AUM10	A286	2000 psig	0.00142	0.00038					
10	Nitride	11200	Hydrogen	0.00112	0.00020					
47	AUM10	A286	2000 nsig	0 00004	0.00089					
.,	DLC	11200	2000 pbig	0100001	0.00000					
48	AUM10	316L	Air	0 00046	0.00001					
10	DLC	5102	7 111	0.00010	0.00001					
49	AUM10	316L	Air	-0.0009	-0.00001					
1,5	Nitride	5102	7 111	0.00000	0.00001					
50	AUM10	316L	Air	-0.00018	0.00077					
50	Nitride	5101	7 111	0.00010	0.00077					
51	AUM10	316L	Air	0.00026	0.00109					
51	DLC	5101	Hydrogen	0.00020	0.00109					
52		3161	2000 psig	-0 00009	-0.00001					
52	DLC	510L	Hydrogen	-0.00007	-0.00001					
53	AUM10	316L	2000 nsig	-0.00037	-0.00002					
	Nitride	5101	Hydrogen	0.00007	5.00002					
54		3161	2000 psig	0 00035	0 00006					
57	Nitrida	510L	Hydrogen	0.00035	0.00000					
55		3161	2000 psig	0 00000	0 00044					
55			2000 psig	0.00000	0.00044					

Table 13. Kw for Pre-charged Samples

Note: The negative values of K_w are associated with negative wear volume in the previous section

Figure 46. The wear coefficients calculated for all wear test cases.

Examination of the wear coefficient data displayed in Figure 46 indicates that consistent with the previous Phase I wear testing study AUM10 disk material exhibits more wear in comparison to the 316L disk material in the uncoated disk-uncoated pin condition for samples tested in hydrogen in the pre-charged condition and at both 0.1 and 0.2 lb loads. Additional observations from the wear coefficient data are as follows:

- 1. Samples tested with nitride coated disk display highest pin wear—this can be attributed to the high hardness and increased surface roughness associated with the nitride coatings.
- 2. There is minimal influence associated with hydrogen pre-charge and increasing load on K_w.
- 3. Samples involving the DLC coating typically display the lowest K_w value which is consistent both with visual surface examination and wear track measurements.

10.0 CONCLUSIONS

Based on the data collected for a travel distance of 2000 m and loads of both 45.4 g and 91 g, the tribological effects of the stainless disks (316L and AUM10) and the pins (316L and A286) in the pre-charged or coated conditions are not significant. Consistent with Phase I test results, the Phase II results do show a tendency for somewhat higher wear of non-coated materials sliding against each other in a gaseous hydrogen environment. Results for coated samples either nitride or DLC show that the coatings reduce the overall sample wear for samples tested in both air and hydrogen. It should be noted that for test conducted with nitride coated disks and non-coated pins, that increased wear was seen on the pins when compared to similar samples tested with DLC coated disks. This increased pin wear is most likely due to the increased roughening of the disk surface associated with the nitride coating application process.

Testing conducted in Phase II which was aimed at helping understand the previously collected results in Phase I; several critical questions were addressed: 1) does increasing the wear distance increase wear and aid weight change measurement sensitivity, 2) will pre-charging in hydrogen exacerbate the effect of gaseous hydrogen on surface wear, 3) will increased load increase the wear in hydrogen, and 4) can surface coatings reduce wear in both air and hydrogen.

Results from Phase II testing indicate that increasing the load from 45g to 91g (0.1 to 0.2 lb) does show some increase in wear. Additionally, increased test load also shows a trend of increasing wear for nitride coated samples. The increased load, however, does not appear to influence the wear behavior of DLC coated materials. Analysis of the test data also indicates that pre-charging with hydrogen has a slight effect for uncoated samples but shows essentially no effect for coated samples.

The major result from Phase II testing is the significant impact of surface coatings on wear. Both surface coating materials—nitride or DLC—reduce wear in air and in hydrogen (compared to non-coated disks), and they performed equally well in resisting wear. However, as previously mentioned, the non-coated materials (pins) tested against nitride coated materials (disks) exhibited more wear than the non-coated materials tested against DLC coated materials resulting from the inherent nature of the surface due to nitriding. From the Phase II test results, it may be concluded that DLC coating appears to be the most versatile coatings for reducing wear.

11.0 REFERENCES

- [1] Lam, P. S. and Adams, T. M., "Wear Testing of Stainless Steels in Hydrogen," SRNS-STI-2008-00100, Savannah River National Laboratory, Aiken, SC, September 2008.
- [2] Private Communication with Professor Naoya Tada, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan, August 25, 2008.
- [3] Technical Reference Literature, Northeast Coating Technology, www.northeastcoating.com.
- [4] San Marchi, C., Somerday, B. P., and Robinson, S. L., "Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressure," International Journal of Hydrogen Energy, Volume 32, pp. 100-116, 2007.
- [5] Rabinowicz, E., Friction and Wear of Materials, John Wiley and Sons, Inc., New York, 1965.
- [6] Holm, R. and Heijne, A. V., Electric Contacts, H. Geber, Stockholm, 1946.
- [7] Archard, J. F., "Contact and Rubbing of Flat Surfaces," Journal of Applied Physics, Vol. 24, pp. 981-988, 1953.
- [8] Archard, J. F. and Hirst, W., "Wear of Metals under Unlubricated Conditions," Proceedings of Royal Society, Vol. A-236, pp. 397-410, 1956.
- [9] Technical Reference Literature, DLC Coatings, www.diamondcoating.net/Example.htm.
- [10] Technical Resource, Hardness Conversions, www.carbidedepot.com/formulas-hardness.htm
- [11] Steels Hardness Conversions, www.grantadesign.com/images/hardness.fe3.gif.
- [12] Nitriding Steels, <u>www.thomasnet.com/products/nitriding-steel-80033004-1.html</u>

APPENDIX A STAINLESS STEEL TYPE 316L (FOR DISKS)

TOLL FREE: 800-628-3035 EMAIL: SALES@DIVERSIFIEDMETALS.COM WEBSITE: WWW.DIVERSIFIEDMETALS.NET 49 MAIN STREET MONSON, MA 01057-0065 FAX: 413-267-3151 PHONE: 413-267-5101 CAGE CODE: 57067 PO BOX 65

		TES	T CERTIFICA	TE		
Customer: Washington S Building 723-4 Aiken, SC 298 Ship To Addr Washington S Operations Re Aiken, SC 298 Specification	avannah River C A 108 ess: avannah River C sceiving 731-1N 108 //Grade: QQ-S-	:0 :0 763 REV F	Customer Order: Item No.: 3 PN: NONE Dimensions: 2.0 Alloy/Grade: STA	7P5896 00 IN DIA X 27.1 NINLESS STEEL	250 INCHES 316 COND A	
No. Of Boxes	No of Pieces	Length	Weight	Packing Slip No.	Heat No.	Lat No.
1	1	27.1250 INCHE	S 24.0 LBS	59849	415377	426500950
MILL TEST R	EPORT ATTAC	HED X				
MATERIAL HA	S NOT BEEN EXP fy that the materia th, and has been forming a part of	POSED TO MERCUP al covered by this n found to meet the a	RY WHILE IN DIVERS	SIFIED METALS IN In the above order ents described he	NC. FACILITY. has been insprewith, involvi	pected in ng any
We certify that true.	the Chemical An	alysis and Physical	l Test Results applyi	ing on the above o	order number i	are correct and
	PROVAL:					
Sharon Brown Quality Contro	Administrator					
Date: Novemb	per 29, 2007					

Mill Cert. - REV 2. - 2/27/2007

Scanned Acciaierie Valbruna s.p.A.

36100 VICENZA (Italia) - Viale della scienza, 25 z.i. Stab.: 39100 BOLZANO (Italia) - Via A. Volta, 4 Cliente / subserf upbeen Client VALBRUNA CORP. 31 IRON HORSE ROAD

USA-OAICLAND NJ 07436-USA Produttore: STABILIMENTO DI BOLZANO Avviso di Spadizione: D-8205001142

Ordine nr. 12779/STOCK (1)

Tipo di Elaborazione: E+AOD

Oggetto Prove: Polished Annealed Peeled

Specifichor: Articidaneguei / Regulamenta / Delgenox FIRST METALS 2003 316/316L A ASME (1) SA182 2001 S31600/03 (p) ASME (1) SA182 2001 S31600/03 (p) ASTM A193 2004C BBM ASTM A276 2004 S31600/03

ASTM A276 2004 \$31600/03 ASTM A370 2003A . MIL-S-802 B/1 316 AMS-QQ-S-763 98 316/316L (0) SEC,II PTA 2001 EDITION ADD.2002 (3) SEC,II PTA 2001 EDITION ADD.2002 (3) SEC,II PTA 2001 EDITION ADD.2002

Trade mark Sigle de fusine prototion

12.4

DIVERSIFIED METALS, INC.

SOLD TO:

P.O. # ITEM#

49 MAIN STREET, MONSON, MA 01057 PH 413-267-5101/FAX 413-267-3151

70 5901

CUSTOMER: WASHINGTON SAVANNAN CO.

Marchio di Fabbrica

Punzona del Collaudatore Stempol dos Worksmolwareland Impantor's stamp/Poliston de Fe

Conterna ordine nr. El04007851

CERTIFICATO DI COLLAUDO

ABNAHMEPRUEFZEUGNIS INSPECTION CERTIFICATE CERTIFICAT DE RECEPTION

EN 10204, 3.1.B

Certificato nr: MEST184033/2005/ 2

AMS 5653 F 531603 ASME (1) SA320 2001 BBM (2) ASTM A182 2002 S31600/03 (4) ASTM A262 2002A . ASTM A250 2004 BBM ASTM A479 2004 S31600/03 QQ-S-763 F 316/316L

AMS 5648 K S31600 ASME (1) SA193 2001 BBM (1) ASME (1) SA484 2001 . ASTM A194 99 BM ASTM A314 97 S31600/03 ASTM A373 99 S31600/03 ACE MR0175 2002 S31600/03 QQ-S-763 E/1 316/316L (0) Cher (0) Chemical analysis only and mechanical properties. APPROVED BY (2) SEC./I PT.A 2001 EDITION ADD.2002 (4) Chemical analysis only. DATE

IK DATE 6106 CAROL RALPH Q.C. MANAGER

QualitA: 531603

Specifichet

Punzonatura: S31603 Marca: MVAPML MAXIVAL ghinzza - Fi Lange Length Longune Pesa - LB Greaters Weigns In Colatz Pazzl Lotto nr. Pos. nr. Pas. or. Nr. de pissia Oggetto Dimensioni - In Tollaranz Loinr. Coper and desay Places Heat Goulder Tolecard, Alaywayon Tolerance Din 426500950 0180 4.113 Round 2.0000 A484 12/13 415377 no stato soddisfatte tutin je condizjo paslalen kolanterurye strati K, Antere mita e materia has been fundshed in soemiance with A Controllo Benchigung Visual Imped richleste in a de ate: so Controllo Verwechsking Antimisting ter antimescola The mail internand: D ING P Resilienz Inged Value Durszza rovetta/ Allunga Striziona nza Rp 0,2% Long dans Ernen Brats Diege Dicks Weich Diage Thick and Long Diege state TUTAT Sapple Zuglestykel Terrife strength Yall Break Constantions and ۰F TEST RA E 4d HB Rm k.s.i. . 55 30 40 50 140 223 Valori richiusti 1 75 min max 115 A 12,50 68 L 39 86 66 73 185

Grain size for ASTM E112 1

Analisi chimica

Colata need	min - 0,030	1,00	1,25	15,50	3,00	1,00	10,00 14.00	0,040	0,020	0,100	2	:	0	1	12
	C %	Si %	Mn %	Cr %	Mo %	Cu %	Ni %	P%	5%	N %					
415377	0,018	0,70	1,57	17,11	2,01	0,42	10,23	0,028	0,026	0,078			- 1	1.000	

Annealing temperature: 1960° F for 2.50h/H2O. Micro and macro atch test: OK

Reduction ratio > 4 : 1

1

Intergranular corrosion test per ASTM A262,02, pract. A&E:ok

Melted and manufactured in Italy No welding or weld repair Material free from Mercury or radio-activity The Quality Management System is Destined acc. Pressure Equipment Directive (\$7/2VEC) Annux 1,4,4,3 by TUEV and LLOYO'S Material free from Mercury or radio-activity or

5

Bolzano, 15/11/05	Il colleudatore di stabilimento / der Warkssechverständige / Warks inspector / L'egont d'usine R. Cristof.	Pagina - 1 di 1	
	1		

A V Valbruna G	roup	Valbru	ına Sta	31 Iron Horse Road Oakland, NJ 07436 Tel. (201) 337-1233 Fax (201) 337-0833 njsales@valbruna.com					
				TEST CE	RTIFICA	TE			
BUYER : BUYERS P.	Divers O. No	sified Metals 42239				11/10/2005 VALBRUNA No:	1277	79	
GRADE	SIZ	E/SHAPE		DESCRI	PTION AND	SPECIFICATION		QTY (LBS)	
S31603	S31603 ROUND 2.000"		FIRST METAL ASME(1)SA18 ASME (1) SA4 ASTM A193 20 ASTM A276 20 ASTM A370 20 ML-S-862 B/1	S 2003 316/316 2 2001 S31600/ 79 2001 S31600 004C B8M 004 S311600/03 003A 316	IL (03 (1) 0/03 (3)	AMS-QS-763 98 316/316L 1, (o) SEC.11PT A 2001 EDITION ADD 2002 (1) SEC.11PT A 2001 EDITION ADD 2002 (2) SEC.11PT A 2001 EDITION ADD 2002			
Chomical	nalvei	e only		CHEMICA	L ANALYS	IS			
HEAT NUN	IBER	C	Mn	P	S	Si	Ni	Cr	
415377	7						1		
Mo	Cu	Ti		Co	2.5	Cb+Ta	Sn	N	
TENSIL	E	YIELD	ELONG	RED.OF	L PROPER	HARDNESS	ELL	AS SHIPPED	
(KSI)		(KSI)	%	%		"B"	"C"	HARDNESS	
OTHER TEST(S) AND / OR REC AMS 5648 K S31600 AMS 5653 FS31603 ASME (1) SA193 2001 B8M(1) ASME (1) SA320 2001 B8M (2) ASME(1) SA484 2001 ASTM A162 2002 S31600/03 ASTM A194 99 8M ASTM A262 2002A ASTM A314 97 S31600/03 ASTM A479 99 S31600/03 ASTM A479 99 S31600/03 ASTM A479 2004S31600/03 NACE MR0175 2002 S31600/03 QQ-S-763 F 316316L						JIREMENTS (1) Chemical analysis on (2) SEC 11PT A 2001 EI (4) Chemical analysis on	l In and mechan DITION ADD 2 Iy	lical properties 002	
"Statement o "This materia Valbruna Sta requirementa	of Con al, is p ainless s of th	N npliance" oroduced by Ac s, Inc., is merc e related spec	OTES ccialerie Valbr ury free and s ifications and	una and transi atisfies the standards."	ferred to	Timothy P.	Cooney	tative	
APPENDIX B STAINLESS STEEL TYPE AUM10 (FOR DISKS)

電磁弁、EFI(電子制御式燃料噴射装置)、スピードセンサ など

AUMシリーズ

特

性

分		化学成分(%)								
類	詞程白	C+N	Si	Cr	AI	Pb	S	TI	Mo	
切	AUM6	0.02	2.2	3.6	添加	添加	調整	-	-	
削	AUM10	0.02	2.4	12.5	-	-	調整	添加	-	
用	AUMIT	0.02	2.2	12.5	-	添加	圓整	添加	-	
9	AUM12	0.02	0.2	12.0	-	-	-	-	-	
(T) 955	AUM15	0.02	0,7	12.0	添加	添加	調整	添加	-	
戦田	AUM15H	0.02	0.2	12.0	添加	添加	調整	添加	-	
m	AUM25	0.02	0.2	10.0	添加	添加	調整	-	-	
副語用	AUM20	0.02	0.2	19.0	-	-	-	-	添加	

化学成分

- (1) 13% Crステンレス鋼をペース成分として低 (C+N) 化とAI、TI等の添加により磁気特性、 電気抵抗、耐食性、冷鍛性を改善しています。
- (2) 高耐食性用途のために19%Cr鋼をペースとし、必要に応じてMoを添加することにより 耐食性を改善しています。
- (3) Pb、Sにより切削性を改善しています。
- (4) AUM 6 は磁束密度を改善するためにCr量 を3.6%にしています。

1. 電磁特性(代表特性值)

分	特性	磁	東西	國際	(G)	保磁力	電気抵抗	透磁率
類	銅種名	Br	8:	B10	B20	Hc(Oe)	μΩ-cm	μmax
切	AUM6	4000	12000	14000	14500	1.0	72	4700
甩	AUM10	3000	11000	12000	12800	1.0	93	4200
用	AUM11	3600	11000	12100	12900	1.0	90	4100
4	AUM12	3300	11200	12900	14000	1.5	47	3500
173	AUM15	3500	10800	11800	12900	1.0	72	4500
報	AUM15H	5400	11000	12200	13200	1.0	60	5000
rts .	AUM25	5400	10800	11700	12700	1.0	100	4900
町開	AUM20	6000	10500	11500	12000	1.0	53	5000
比	軟鉄(SIOC)	480	9000	13200	15500	1.8	15	1700
胬	SUS403	30	140	290	660	3.3	.57	40

2. 耐食性(耐海水性)

 (1) AUM20はSUS316より耐食性が良好で、 特に耐食性が要求される場合に最適です。

(2) AUM10からAUM25までは、13%Crス テンレス鋼より耐食性が優れています。

		爱	知	製	錮	株	式	숨	社	
本	社愛	田県東海市荒	尾町ワ	1 30 1 2	B 地 〒47	6 2 (052)	604 - 1111	(大代表)	FAX.052 - 601 - 0301	
東京支	店 東京	都千代田区大手町	2丁目6番	2号(日本)	ビル) 〒10	0 1 (03)	3270 - 0854	(代 表)	FAX.03 - 3245 - 0649	
名古屋支	店 名書	属市中村区名駅。	4 丁目7番2	3号(豊田)	ビル) 〒45	0 🕿 (052)	571 - 6493	(头 为)	FAX.052 - 561 - 8432	
大阪支	唐 大阪	市中央区南船場47	丁目3番目号	(大阪豊田)	L'N) 754	2 2 (06)	252 - 7373	(法 31)	FAX.06 -251-9497	
広島営業	所広島	5市中区八了堀	11番28号	(朝日広告)	ビル) 〒73	0 2 (082)	228-0228	(代表)	FAX.082 - 227 - 5140	
福岡営業	所 福岡	市博多区博多职前2	丁目11番1649	(第2大西)	ビル) 〒81	2 🕿 (092)	474 - 1690	(水 小))	FAX.092-474-0558	
米国駐在員事	勝所 771 Ken	Corporate Drive, tucky 40503, -5444	Suite 460 L I. U.S.A.	exington,		1 (606)	223 - 7052		FAX 606 - 224 - 4736	
I	鳿 知多	· 刘谷· 锁道 · 東新	fi (

2008年8月24日 愛知製鋼㈱ 品質保証部 品質・技術サービス室 余語

軟磁性ステンレス鋼AUM10の機械的性質

熱処理 焼鈍 900℃×2Hr での機械的性質を下記に示します。

and a second sec	
0.2%前力(N/mm2) 290以上(代表例 390)	
引張強さ(N/~mm2) : 490以上 (代表例 530)	
伸び(%) 30以上(代表例 37)	
絞り(%) : 55以上 (代表例 74)	
硬さ(HRB) · 83~95 (代表例 88)	

以上

AND HIGHWAY 42 EAST			EW	TAL	LURG	ICAL	TEST	REPOR	T 689	TH AMERICAN ST HIGHWAY 42 EAS NT, KY 41045	AINLESS
Certificate: 434100 4	IOL TIM					ship To				Date: 10/23	1/2008 Paget 1
Cuatomet: RICKARD METAL	S, INC. # 14	193				SAVANN	AH RIVER I	VL P.O. # 4R3	619	Steel: 3165/ Finish: CD	91C
Tour Order:				S Orde		052893	01			Corrosions ASTH	AJ63-02. PRACFIC
FRODUCT DESCR Round ber, sunseled, cold d 03, Astr Aa76/04, Astr Aa 10204 J. IS ASKE SA679/01	L P T L O J 19/04, ANS 19/04, ANS	81. 5540%, N 638	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	31500 t	1637, 24		REMART Weited & M ments of mury content is on cent	KS: anufacturad an directive mination. No ifiuntion is	In the 3 2001.95.1 Wald re correct	M. Product comp CC.nogs.Material Mair. MAS certifi e the material	lies w/ Everifit Free foor Ver Lee the molys Leets apece at
Product Id	skid	# Diamete	60		Waigh		langth	Area Mark	Pieces	Commodity Code	
BC1389 1		F.	150		F	11	1	£ 00.11	-		
CHEMICAL ANA!	SIST	CM(Count	by of Mel) E9(5r	ath) US(U	nited States	ZA(South A	Inica) JP(Japan			
REAT	U	٥	8		6	B	NON	8	-	I	
4859 03	9620.	9510.	36.	25 16	1313	4985	1.4133	2.1839	0620.	11.0062	
		ŋ	18								
	.0309	C720-	.43	9	.0053						
MECHANICAL P	ROPER										
Product Id.	4 0 V		1 51 1 20	181	2*	Elo-4D	Oxalia P/F				
1 961298	3	8 00.21	1.43	99.84	75.20	46.01	1.00				
NAS hereby certifies that th material meets the specifics	e analysis o tions stated	in this con	tification	la con	ect and (2	OC 2010	INER	SRIC HES	S Su.	10/23/2008

APPENDIX C STAINLESS STEEL TYPE 316L (FOR PINS)

APPENDIX D STAINLESS STEEL TYPE A286 (FOR PINS)

CERTIFICATE OF TESTS CERT SERIAL# 000661755	ABNAHMEPR	UEFZEUGNIS	CERTIFICAT D	DE CONTROLI
Carpenter Technology Corporation 101 West Bern Street, Reading, Pa. 19601 Tel: (610) 208-2000 (100) 338-4592 08/30/08	THE RECORDING MAY BE PUMISI CHAPITR 4 ³ THE VALUES AN OWN SAMPLES REFERENCE TO MATERIAL IS M IMITERIAL IS M THIS DOCUMENT	OF FALSE, HICTICIOUS OR FRAND IEO AS A FILOMY UNDER FLORAL OR LICTED FORM THE TOTAL INT INE CARPENTER ORDER NUMBER ANULACTURED FREE FROM MERCURY SHALL NOI DE REPRODUCED. ET ILCHMOLOGY COMPOSATION	ULENT STATEMENTS ON FATRIE STATUTES INCLUDING FEDER FAT THE RESULTS OF ANALYS "REIGINAL DATA RECORDS RADIUM, ALPHA AND GAMA SCI REED IN FULL, WITHOUT TH	S ON THIS DOCUMENT AL LAW, TITLE 18. ESM AND TESSEE MADE IRCE CONTANINATION. IE NRITTLE EONSENT
S RICKARD METALS, INC. # 1493		<u>SELLER / V</u> SAVANNAH R	ERKÄUFFR / VENDEUBPP IVER NL P.O. # 4R3679	AGE 1 OF 2
CUSTOMER ORDER NO. / BESTELL -AR. / Nº DE COMPANDE	CARPENTER NO	WERKS . NR M. DE REFLRENCE IN	IENNE MATE/DATUN/DATE	WE LOUT /GFWICHT/POLD
	4	W94868	08/30/08	1888.000
SPECIFICATION: ASTM-A638-00(2 ASTM-A453-04 (AMS 5732 REV 2 GE S-400 (10/3	2004) GRADE GRADE 660 C (09/ /06)	660, TYPE 2 LASS'B (REPORT (GRAIN AS SHIPP	PED)
GE S-400 (10/3 GE S-1000 (01/ FAIRCHILD MS DFARS 1998 ED SIZE 0.375000 IN.(9.53 MA	1/07) 02/08) 314 "CLASS TION () RD BAR	A" REV 4 (01/17)	/03) INGOT 3	
PRIMARY HEAT CHEMISTRY (WT*) :	(TEST METH	OD IS SHOWN IN	PARENTHESIS)	
C (OES) MN (XRF) 0.04 0.40	SI (XRF 0.13) P (OES) 0.021	S (OES) 0.001	14.04 CR (XRF)
NI (XRF) MO (XRF) 24.27 1.18	0.24 CU (XRF) CO(XRF) 0.35	AL (OES) 0.17	2.18 (OES)
V (XRF) B (OES) 0.26 0.007				
GEAG SUPPLIER CODE 21100 / CA THE CHEMICAL ANALYSIS OF THIS SPECIALTY ALLOYS CHEMICAL LAE ACCREDITED TO THE ISO/IEC 170 MILL HEAT TREATMENT:	RPENTER HEAT HAS (ORATORY, (25.	BEEN PERFORMED I CODE NUMBER PRI	BY THE CARPENT 100004), WHIC	TER CH WAS
TIME (BATCH FURNACE) 1800F (TIME (BATCH FURNACE) 1.00 H QUENCH WATER	982C) OURS	1328F (720C) 16.00 HOURS AIR		
HARDNESS AS SHIPPED, HRC	- 34		(MIDRADIUS)	
<i>..</i> .		CONTINUED ON NE	XT PAGE	

CERTIFICATE OF TESTS	BNAHMEPRUEFZEUGNIS	CERTIFICAT DE	CONTROLE
CARPENTER Carpenter Technology Corporation 101 West Bern Street, Reading, Pa. 19601 Tel: (610) 208-2000 (800) 338-4592 08/30/08	• THE RECORDING OF FALSE FICTICIDUS DE FRAUDULF MAY BE PURISHED AS A FILOMY UMBER FREUERAL SI CHAPTER 47. THE WALKS AND OTHER TECHNICAL DATA REPRESENT DE SAWLISS COLLECTED FROM THE OTHER LOTA REFERENCE TO THE CARPENIEN ONLINE NUMBER. MARCHILE TO THE CARPENIEN ONLINE NUMBER. MARCHILE TO THE SAML MOT IN HEPPRODUCED, ELECT OF CARPENTER TECHNOLOCY CORPORATION.	AT STATEMENTS ON ENTRIES ATUTEST INCLUMENT PEDEAL REGINAL TO TA RECORDS SEA TUR ALPHA AND GAMMA SOUNC PT IN FULL NITHOUT THE	NI TRIS DOCUMENT LAN. TTICK MATH AND TESTEO BY E CONTAMINATION. WRITTEN CONSINI
CUSTOMER / BESTELLER / CLIENT RICKARD METALS, INC. # 1493	SELLER / VFR SAVANNAH	KAUFER / VENDEURPAG RIVER NL P.O. # 4R36	E 2 OF 2 79
CUSTOMER URDER NO./BESTELL-NR./N- OF COMMANDE	CARPENTER NO./WFRKS-NR./N= DE REFERENCE INIERD	NE DATE/DATUN/DATE	WEIGHT/GENICHT/POID
	W94868	08/30/08	1888.000
YIELD STRENGTH, (0.20 %) KSI TENSILE STRENGTH, KSI (MPA) ELONGATION IN 1.53", % REDUCTION OF AREA, % GRAIN SIZE PER ASTM E112.	L(MPA) 134.0 (924) 168.0 (1158) 23.0 39.0 (KALLINGS)		
COMBINATION STRESS RUPTI TEST TEMP 1200 F STRESS, KSI (MPA) 56.0 ELONGATION & 31.3 HOURS 149.2	7.8 649 386)		
AFTER MINIMUM TIME UNDER SPE WAS OVERLOADED IN INCREMENTS TOTAL HOURS STRESS KSJ 103 61.0(42 111 66.0(45 119 71.0(45) 127 76.0(52) 135 81.0(55) 143 86.0(55)	CIFIED STRESS, THE STRESS F AS FOLLOWS: (MPA) 11 55 60 60 60 60 60 60 60 60 60 60 60 60 60	RUPTURE TEST	
COMBINATION STRESS RUPTO TEST TEMP 1200 F{ STRESS, KSI (MPA) 70.0 (ELONGATION % 27.6 HOURS 82.2	JRE 649 C) 483)		
AFTER MINIMUM TIME UNDER SPE WAS OVERLOADED IN INCREMENTS TOTAL HOURS STRESS KSI 55 75.0 (51 66 80.0 (55 79 85.0 (58	CIFIED STRESS, THE STRESS F AS FOLLOWS: (MPA) (7) 2) 6)	OPTORE TEST	
MATERIAL PRODUCED ON THIS ORE MATERIAL HAS BEEN MELTED IN U MENTS 252.225-7014 WITH ALTER CARPENTER'S QUALITY MANAGEMEN THE REQUIREMENTS OF ISO 9001: REVIEW INSTITUTE. CERTIFICATE 3.1 OF EN 10204 (DIN 50049). IN ACCORDANCE WITH THE PURCHA	DER WAS MELTED AND MANUFACTU ISA OR QUALIFYING COUNTRY TO INATE 1 FOR QUALIFYING COUNT IT SYSTEM WAS REGISTERED AS 2000 APPROVAL CERTIFICATE (8 OF TEST IS PREPARED IN ACC WE HEREBY CERTIFY THAT THE USE ORDER AND SPECIFICATION	DED IN THE U. DPARS REQUIS RY 225.872.1. OF SEPTEMBER OF 0869 BY PER ORDANCE WITH ABOVE TEST DA REQUIREMENTS	S.A. 2. 2004 TO PORMANCE PARAGRAPH VTA ARE
	MICHELE L. HEPFN MET RELEASE/REQU CARPENTER TECHNO	IREMENTS ANAL LOGY CORPORAT	YST
This certifications a made to the customer parated on this form. Carpenter Die verflegende Zertifizierung at sur für des in dimensi Formular gening Generitikasi die unsereniere visibler govier is chara dom in none au norme	r netilizer realizer, not maximus responsibility for, say representation or carritorial neu Kunden giblig Chrysteler ibernissent gegenüber Dritten insurriet Haffung i n sar on formidene. Chrysteler presenter pix da responsibilite met war carritori	to to other parties. UU W die pagewinnen Dates oder Zans dies was sin dies meteore peranen	lioarman

APPENDIX E CERTIFICATE OF RESEARCH GRADE HYDROGEN

		n Batch/Lot #: 348	LAP7698A		
	Product: H	ydrogen Gra	de: Research		
Customer: Date of Certification: P.O. Number: Document Number:	WSRC 1/3/2008 KO84592 27606650		Test Cylinder # Item Number: Valve: Cylinder Size:	: K-9017 350 44	
	ANA	LYSIS REPORT			
Major Component Hydrogen Research		Specification 99.9995%	Purity >99.9995%	-	
Impurities		Specification	Actual Analysis		
Moisture		<1 ppm	0.1 PPM		
Oxygen		<1 ppm	0.1 PPM		
Total Hydrocarbons		<0.2 ppm	N/D		
Carbon Dioxide		<1 ppm	N/D		
Carbon Monoxide		<1 ppm	N/D		
Nitrogen		<1 ppm	N/D		
					\cap
SERIAL NUMBERS: H-73268, W-402637, H-8 H-2087368, 55961, H-875 AF-9053, H1098996, T24 250-032814, 84-16414, 99 K-071920, 250-278966, K K-128664, T-180699, K-9	7986, H-2434889, 1341, T210623, T24 0371, K118929, 39 18, T-146554, K133 161980, 250-72126 017, K-127508	14869, 11253, Certified 1771, 1399, 1, K-78020,	By: Name		-(
ure date: 12/14 xp date : 12/14	/07 /12				
ir Liquide America, L.F	8.	11426 Fairmont P Phone: 281-	kwy LaPorte, TX 77: 174-8400	571-6000	
CSC-CYL-0307-W		Revision: 2	E.		Effective Date:
and the survey					

APPENDIX F POST-TEST SAMPLE PHOTOGRAPHS AND CONTACT PROFILOMETER SCANS

98.55min

0.000uin

(Wear track on disk was not measurable.)

-600.0uin 8.000uin 157.6min

2.000min		al address in		
			Fest 14	A CAR
-3.008min		3 2	316L-44 Pin DLC 2000 psi Hydrogen	
0.000ui	n		行用的人名英法法法法	37.82min

Page 85 of 126

Page 90 of 126

189.0min

Page 94 of 126

(Wear track on disk was not measurable.)

(Wear track on disk was not measurable.)

Page 104 of 126

Test 34

316L-01 Disk Non-coated

(Wear track on disk was not measurable.)

(Wear track on disk was not measurable.)

Page 114 of 126

18.00min

0.000uin

Test 46

AUM10-20 Disk Nitride

147.7min

Pin Load= 0.2 lb

Page 117 of 126

(Wear track on disk was not measurable.)

DISTRIBUTION

SAVANNAH RIVER SITE

N. C. Iyer, 773-41A R. L. Sindelar, 773-41A T. M. Adams, 773-41A P. S. Lam, 773-41A

EXTERNAL

Rana Mohtadi, Toyota Research Institute North America