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 20 

Abstract: Remote sensing technology can provide a cost-effective tool for monitoring 21 

hazardous waste sites. This study investigated the usability of HyMap airborne 22 

hyperspectral remote sensing data (126 bands at 2.3 × 2.3 m spatial resolution) to 23 

characterize the vegetation at U.S. Department of Energy uranium processing sites near 24 

Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on 25 

an engineered disposal cell cover at the Monticello site while shrub species were dominant 26 

in the phytoremediation plantings at the Monument Valley site. The specific objectives of 27 

this study were to: 1) estimate leaf-area-index (LAI) of the vegetation using three different 28 

methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning 29 

regression trees), and 2) map the vegetation cover using machine learning decision trees 30 

based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-31 

derived metrics and vegetation indices. Regression trees resulted in the best calibration 32 

performance of LAI estimation (R
2
 > 0.80. The use of REPs failed to accurately predict LAI 33 

(R
2
 < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) 34 

and a range of vegetation indices in decision trees improved the vegetation mapping when 35 

compared to the decision tree classification using just the scaled reflectance. Results suggest 36 

that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) 37 

and vegetation cover on capped hazardous waste sites. However, it is believed that the 38 
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vegetation mapping would benefit from the use of higher spatial resolution hyperspectral 1 

data due to the small size of many of the vegetation patches (< 1m) found on the sites. 2 

Keywords: hazardous waste sites; hyperspectral remote sensing; HyMap; vegetation 3 

mapping; LAI estimation; decision trees 4 

 5 

1. Introduction 6 

Humans produce large amounts of hazardous waste. In 2007, the United States generated 47 7 

million tons of hazardous waste with Louisiana and Texas responsible for more than 50% of the total 8 

[1]. Hazardous waste from current and historic activities is often isolated in landfills or disposal cells 9 

using a capping system consisting of barriers that limit deep percolation of precipitation and 10 

mobilization of the hazardous constituents [2, 3]. In addition to the thousands of capping systems in 11 

existence, in 2004 the EPA estimated that almost 300,000 additional waste sites were expected to 12 

require remediation [4]. Many of these sites, as well as the older sites contain residual contamination 13 

or are undergoing some form of in situ remediation. In all cases, the management of water infiltration 14 

into the waste area is a key issue to prevent the migration of the hazardous constituents into the 15 

environment. 16 

Historically, the vegetation component of a hazardous waste capping system has been viewed as a 17 

means to stabilize the surface soils and prevent erosion. However, for some capping systems in arid 18 

and semi-arid climates, the vegetative cover has taken an increasingly functional role through the 19 

construction of evapotranspiration or water balance cover systems [5, 6]. In these systems, the 20 

vegetative cover and soil system are constructed to maintain a hydrologic balance with the vegetation 21 

withdrawing water from the underlying soils on an annual basis, thereby minimizing deep infiltration. 22 

Proper functioning of these types of systems depends on the development and maintenance of a robust 23 

plant community that can maintain water withdrawal capacity over the life of the capping system. 24 

Some in situ remediation strategies are also being implemented whereby the migration of 25 

subsurface contaminants is dependent on the water withdrawal capability of vegetation. Considered to 26 

be a type of Phytoremediation [7], these strategies may be applicable where subsurface contaminants 27 

are potentially mobile, and management of vegetation can result in reduced infiltration and subsequent 28 

hydraulic control of the migration of contaminants in soils and shallow groundwater [8]. 29 

In all such cases, the maintenance of a high evapotranspiration capacity through well-adapted and 30 

healthy plant communities is key to the proper and long term stabilization of the wastes. Monitoring of 31 

these systems is commonly conducted by ground level observations by trained professionals and is 32 

becoming a significant cost element in the management of such systems. Consequently, there is a 33 

growing demand for an efficient and reliable approach to vegetation monitoring at waste remediation 34 

and stabilization sites. Remote sensing technology can provide a cost effective tool for this type of 35 

monitoring in harmony with information obtained from in situ investigation.  36 

Multispectral (several bands) and hyperspectral (hundreds of narrow bands) remote sensing has 37 

been used for monitoring hazardous sites [3, 9-11] as well as typical environmental resources such as 38 

water, land, and vegetation [12-15]. In particular, remote sensing-derived vegetation products can 39 
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provide valuable information regarding vegetation health and dynamics when monitoring hazardous 1 

waste sites [16]. Various classification approaches have been investigated for vegetation mapping, 2 

including: maximum likelihood classification [17], subpixel analysis [18], machine learning [19], and 3 

object-based methods [20]. The phenological cycle of vegetation has also been studied to better map 4 

vegetation dynamics [21].  5 

Several approaches have been investigated for modeling vegetation biophysical parameters such as 6 

biomass and leaf-area-index (LAI) using remotely sensed spectral data. These approaches include: 7 

empirical methods such as statistical regression, spectral positioning, and artificial intelligence, and 8 

physical modeling [22]. Simple linear regression analysis has been widely adopted to correlate 9 

vegetation biophysical parameters measured in situ with various vegetation indices such as the 10 

Normalized Difference Vegetation Index (NDVI) [23]. More advanced regression techniques, 11 

including principal component regression and partial least squares regression, have also been examined 12 

[24, 25]. Some scientists have focused on identifying the spectral reflectance red-edge position (REP) 13 

because of its close association with chlorophyll content and its seasonal variations, which directly 14 

influence vegetation health [26]. Artificial intelligence methods such as neural networks and regression 15 

trees can incorporate field training samples to estimate the vegetation parameters [27]. These methods 16 

are relatively simple, but have some limitations, including the fact that the relationships are based on 17 

representative training samples and the methods are sensitive to atmospheric conditions, sensor 18 

viewing geometry, and the spatial resolution of the remote sensor data. Therefore, the methods 19 

generally need to be calibrated each time a new remote sensing dataset is acquired [28].  20 

Physical models are theoretically based on leaf scattering and absorption mechanisms associated 21 

with biochemistry [29]. A representative type of model is the radiative transfer model, which simulates 22 

radiation transfer processes in vegetation by computing the interaction between plants and solar 23 

radiation. Vegetation biophysical parameters can be retrieved through inversion of the radiative 24 

transfer model (e.g., PROSPECT). Simulated reflectance databases have been frequently used with 25 

model inversion techniques [30]. Model inversion approaches may result in a multitude of different 26 

possible solutions increasing uncertainties [31]. 27 

Vegetation is typically characterized by slow rates of change and affected by other slow processes 28 

such as climate change or soil acidification. However, the vegetation cover on a hazardous waste site 29 

may rapidly change due to the unanticipated conditions (e.g., soil subsidence, biointrusion). This 30 

change must be quickly detected. The objective of this research was to demonstrate the usefulness of 31 

hyperspectral remote sensing to provide long term monitoring capability for Department of Energy 32 

(DOE) remediation and waste sites. This study investigated characteristics of vegetation cover on 33 

hazardous waste sites with regard to species type and LAI distribution using various technical 34 

approaches. 35 

2. Study Area and Data 36 

Two U.S. Department of Energy sites were investigated in this study (Figure 1): a) a uranium mill 37 

tailings disposal cell capping system near Monticello, UT, and b) a phytoremediation planting of desert 38 

shrubs near Monument Valley, AZ. 39 

 40 
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Figure 1. The HyMap imagery of two study sites (RGB = Hyperspectral bands 24, 17, 11). The 1 

yellow symbols are in situ sampling locations. 2 

 3 

 4 

To limit percolation into underlying tailings, the Monticello capping system relies on the water-5 

storage capacity of a 163-cm sandy clay loam soil and rock ―sponge‖ layer overlying a 38-cm coarse 6 

sand capillary barrier, and native sagebrush steppe vegetation to seasonally remove stored precipitation 7 

[32]. The capillary barrier increases the water-storage capacity of the soil ―sponge‖ [33]. The topsoil 8 

has favorable edaphic properties for a sustainable plant community. Percolation flux, measured within 9 

a 3-ha embedded lysimeter, was approximately 0.5 mm yr
-1

 from 2000 through 2009 [32]; the capping 10 

system has performed well in the short term. Detecting temporal changes and spatial patterns in plant 11 

species and LAI on a landscape scale will be important for performance monitoring in the long term. 12 

At the arid Monument Valley site, two deep-rooted native shrubs, Sarcobatus vermiculatus (black 13 

greasewood) and Atriplex canescens (fourwing saltbush), are part of the remedy for nitrate 14 

contamination in soil where a uranium mill tailings pile once stood, and in an alluvial aquifer 15 

spreading away from the source area soil [8]. When protected from livestock grazing, populations of 16 

these phreatophytic shrubs transpire enough water from the source area soil to limit recharge and 17 

nitrate leaching [34], and from the alluvial aquifer to slow the spread of the nitrate plume [35]. 18 

Monitoring the long-term performance of phytoremediation at Monument Valley will include tracking 19 

responses of phreatophyte health and transpiration rates to changing land management practices over 20 
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many hectares [36].  1 

HyMap hyperspectral remote sensing data were collected by HyVista, Inc. at Monument Valley, 2 

AZ on 2 June 2008 and Monticello, UT on 3 June 2008. Ground reference data were collected at these 3 

sites at the same time as data acquisition. An additional ground level dataset was collected at the 4 

Monticello, UT, site the previous week. Field data included vegetation composition (percent canopy 5 

cover) and LAI (n = 54 on the Monticello site and n = 19 on the Monument Valley site; refer to Table 6 

1). The dominant species included Artemisia tridentata (big sagebrush), Ericameria nauseosa (rubber 7 

rabbitbrush), and Pascopyrum smithii (western wheatgrass) on the Monticello site and Sarcobatus 8 

vermiculatus (black greasewood) and Atriplex canescens (fourwing saltbush) on the Monument Valley 9 

site. 10 

The HyMap hyperspectral data consisted of 126 bands from 440 to 2500 nm at 2.3 × 2.3 m nominal 11 

spatial resolution. The HyMap radiance data were radiometrically corrected to scaled reflectance using 12 

the HYCORR algorithm with EFFORT spectral polishing [37]. The scaled reflectance data were then 13 

geometrically rectified to a Universal Transverse Mercator (UTM) projection using 15 to 20 GCPs 14 

collected from the 2006 National Agricultural Imagery Program (NAIP) Digital Orthophoto Quarter 15 

Quadrangle (DOQQ) data (1 x 1 m spatial resolution) over the two study sites resulting in root-mean-16 

square-error (RMSE) < 1 pixel. 17 

Table 1. Field data characteristics for vegetation mapping and leaf-area-index (LAI) estimation. 18 

 Monticello site Monument Valley site 

Strata 

(classes)* 

Big sagebrush (n = 8) 

Rubber rabbitbrush (n = 12) 

Western wheatgrass (n = 16) 

Litter (dead plant materials; 

mostly  

  grass species) (n = 17) 

Black greasewood (n = 12; percent cover  

  available for 8 out of 12) 

Fourwing saltbush (n = 14; percent cover  

  available for 9 out of 14) 

Soil (n = 17) 

LAI range 0.09 – 5.1 (n = 54)** 0.95 – 6.26 (n = 19)*** 

* A dominant class at a sampled location was determined based on percent canopy cover. 19 

**  One of the samples was not used for the classification since the dominant class (soil) was other than the four. 20 

***  LAI was measured at only 19 sample locations of greasewood and saltbush plots. 21 

3. Methods 22 

Figure 2 is a flow diagram of the digital image processing methods used to a) predict the spatial 23 

distribution of LAI, and b) map the vegetation species present on the two hazardous waste sites. 24 

Figure 2. Digital image processing flow diagram. 25 
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3.1. Leaf-area-Index (LAI) Estimation 1 

One of the major goals of this research was to map the spatial distribution of vegetation biomass 2 

on the waste sites using remote sensing-derived indices and algorithms in conjunction with in situ 3 

derived LAI used as a surrogate for vegetation biomass. LAI, the total area of one-sided green leaves 4 

in relationship to the ground below them, directly quantifies the vegetation canopy structure and is 5 

highly-related to diverse canopy processes including water interception, photosynthesis, 6 

evapotranspiration, and respiration.  7 

Three approaches were investigated to estimate vegetation LAI, including: 1) vegetation index 8 

(VI)-based methods, 2) the red-edge positioning (REP) methods, and 3) the use of machine learning 9 

regression trees. Although there are numerous vegetation indices, we evaluated two basic vegetation 10 

indices:  11 

1

21
B

B
VI        (1) 12 

12

122
BB

BB
VI        (2) 13 

These are extended versions of the simple ratio (SR) and normalized difference vegetation index 14 

(NDVI), respectively [14, 38]. Unlike SR and NDVI which only use one red band and one near-15 

infrared band, we evaluated VI1 and VI2 with all 126 × 125 (= 15,750) possible band combinations in 16 

the entire spectral range from 400 to 2,500 nm as long as the value of B1 was smaller than B2. While 17 

the correlation between the VI2 and LAI results in a symmetric pattern when B1 and B2 are switched, 18 

the correlation between the VI1 and LAI is a bit asymmetric with the switch of B1 and B2. However, 19 

the asymmetric characteristic of the VI1-LAI relationship were not considered in the study because the 20 

asymmetry was slight and we were only interested in the band combinations that resulted in the highest 21 

correlation.  22 

The REP is the spectral position between the red (~680 nm) and near-infrared (~800 nm) 23 

wavelengths where the maximum slope is found [29]. The REP is sensitive to the biophysical and 24 

biogeochemical properties of vegetation such as LAI and leaf nitrogen content. Phenological change 25 

and/or vegetation stress can affect the REP. There are several methods for computing REP, including: 26 

derivative function-based methods [39] and Gaussian model-based methods [40]. Some studies have 27 

reported that the REP is not a single location, but multiple wavelengths [39, 41]. In this study, three 28 

REP techniques were tested to estimate LAI, including: 1) a linear four-point interpolation (LI_REP) 29 

[42], 2) a three-point LaGrange interpolation (LG_REP) [43], and 3) a linear extrapolation (LE_REP) 30 

[26]. 31 

LI_REP assumes that the reflectance curve at the red-edge can be simplified to a straight line 32 

centered near the midpoint between the NIR reflectance and the minimum reflectance of the 33 

chlorophyll absorption. It was computed using: 34 

nmnm

nmedgered
REPLI

700740

700
40700_ , where 

2

780670 nmnm

edgered
   (3) 35 

LG_REP uses the point with the maximum first derivative reflectance FDR , (
i

FDRi , ), and two 36 

points on both sides, (
1

,1 i
FDRi ) and (

!
,1 i
FDRi ). A second-order polynomial was fit using the 37 
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three points and the wavelength where the second derivative equals zero was determined to be the 1 

REP:  2 

 )(2

)()()(
_ 1111

CBA

CBA
REPLG iiiiii

  

 (4) 3 

where
))(( 111

1

iiii

i
FDR

A ,
))(( 11 iiii

i
FDR

B , and 
))(( 1111

1

iiii

i
FDR

C  . 4 

LE_REP was based on a double-peak feature in the first derivative reflectance resulting from the 5 

discontinuity in REP and foliar-nitrogen relationship. Four points, two at the far-red peak (680 to 700 6 

nm) and two at the NIR peak (725 to 760 nm), were used to create two straight lines. The wavelength 7 

corresponding to the intersection of the two lines was the REP: 8 

)(

)(
_

NIRredfar

NIRredfar

mm

cc
REPLE       (5) 9 

where c and m were the intercept and slope of the lines, respectively.  10 

Machine learning regression trees typically use a binary recursive partitioning process to generate 11 

rule-based models based on user-supplied training samples for estimating a target variable such as LAI 12 

[27, 44]. Cubist by RuleQuest Inc. was used in this study. The usefulness of Cubist for creating robust 13 

regression trees has been documented in the remote sensing literature [27, 45, 46]. 14 

The coefficient of determination (R
2
), representing the goodness-of-fit of a model, and RMSE were 15 

used to measure calibration performance. Due to the limited number of field data points, it was not 16 

possible to perform cross-validation associated with the three approaches. 17 

3.2. Vegetation mapping 18 

Two different classification approaches were investigated to map vegetation on the Monticello, UT, 19 

and Monument Valley, AZ, hazardous waste sites. Both approaches employed machine learning 20 

decision trees, but one used scaled reflectance data as input variables while the other used mixture-21 

tuned-matched-filtering (MTMF)-derived metrics and a suite of vegetation indices as input variables.  22 

Decision trees have wide application for classification problems because they divide a complex 23 

decision into a hierarchy of simple and interpretable decisions [47-52]. See5 by RuleQuest Research 24 

Inc., a widely used machine learning decision tree software, was used to generate decision trees for 25 

image classification. 26 

MTMF is a hybrid classification method based on a combination of linear mixture theory and 27 

matched filtering, which is based on a partial unmixing approach with user-defined targets [53]. One of 28 

the advantages of MTMF is that the endmembers (i.e., spectral reflectance characteristics for spectrally 29 

pure materials) within a scene do not need to be identified because MTMF uses each endmember 30 

independently and models the pixel at each endmember as a mixture of the endmembers and an 31 

undefined background material [54, 55]. MTMF typically uses the minimum noise fraction (MNF) 32 

results extracted from the reflectance data. In this study, the cumulative 80% variation threshold was 33 

used to determine the subset of MNF results to be used in the MTMF analysis for each site. 34 

Consequently, the first 18 and 25 MNF transformed images were used in the MTMF analysis for the 35 

Monticello and Monument Valley sites, respectively. The MTMF output includes a matched filter 36 

(MF) score and an infeasibility value for each endmember. Ideally, pixels with a high MF score value 37 
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and a low infeasibility value have a high percent cover of each endmember (e.g., sagebrush). Pixels 1 

with high MF score values and high infeasibility values may be false alarms. We used two image-2 

derived endmembers for each class based on the percent cover data, which resulted in 8 endmembers 3 

for the Monticello site and 6 endmembers for the Monument Valley site. 4 

The MF scores and infeasibility values were used as input variables along with a suite of 5 

vegetation indices. A total of 11 vegetation indices were used and two (i.e., VI1 and VI2) of them were 6 

developed from the LAI estimation in this study (Table 2). The original scaled reflectance data (126 7 

bands) were also used as input variables in the decision tree classifications for comparison. 8 

Table 2. Vegetation indices used in the decision tree classification. 9 

Index Equation Reference 

Simple ratio (SR)  Tucker [55] 

Normalized difference vegetation index 

(NDVI) 
 Tucker [55] 

Modified NDVI (MNDVI)  Fuentes et al. [56] 

Photochemical reflectance index (PRI)  Gamon et al. [57] 

Normalized difference water index (NDWI)  Gao [58] 

Water band index (WBI)  Penuelas et al. [59] 

Normalized difference nitrogen index 

(NDNI) 
 Serrano et al. [60] 

Normalized difference lignin index (NDLI)  Serrano et al. [60] 

Cellulose absorption index (CAI)  Nagler et al. [61] 

(VI1) for the Monticello site  From this study 

(VI2) for the Monticello site  From this study 

(VI1) for the Monument Valley site  From this study 

(VI2) for the Monument Valley site  From this study 

Decision trees are known to be sensitive to the characteristics of the training samples, especially 10 

when there are a limited number of training samples [47]. To improve the stability of the decision tree 11 

classifier, an aggregation approach was introduced [55, 63-66] where multiple decision trees were 12 

generated with different sets of training samples and a majority rule was used to determine the class for 13 

each pixel. Due to the relatively small number of training data samples, we used 50% of the reference 14 
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data through random selection to train the decision tree and the remaining 50% to test the decision tree. 1 

A total of 40 decision trees were generated and 20 trees were selected based on the testing results for 2 

each site (i.e., the decision trees with higher testing accuracy were selected). These 20 trees were used 3 

for the voting process to generate the final vegetation map for each site. 4 

Accuracy assessment of the vegetation maps included the determination of commission and 5 

omission errors for each class, overall accuracy (%), and the Kappa Coefficient of Agreement ( ). A 6 

Kappa Z-test was used to determine if there was a significant difference between two Kappa 7 

Coefficients associated with each site. 8 

4. Results and Discussion 9 

4.1. LAI Estimation 10 

The results of the correlation matrices produced between the vegetation indices and LAI for all 11 

possible band combinations are shown in Figure 3. The greater the correlation of the ground reference 12 

LAI value with the two bands used to compute the vegetation index, the more blue the pixel in the 13 

diagram. Both VI1 and VI2 exhibited very similar patterns for each site. While relatively high 14 

correlations between the vegetation indices and LAI were found in the region between 1500 and 1800 15 

nm for the Monticello site, they were found in the region between 900 and 1400 nm for the Monument 16 

Valley site (Figure 3). Interestingly, the bands in the red and near-infrared regions, which are assumed 17 

to have more information regarding vegetation health, did not produce higher correlations than the 18 

bands in the middle-infrared region. This might be because the study sites are located in semi-arid/arid 19 

areas and thus the spectral response of each vegetation type may be distinguishable in the middle-20 

infrared region, where the spectral response of vegetation to water is more sensitive. 21 

Table 3 summarizes the best band combination and associated statistics (i.e., R
2
, RMSEs from 22 

calibration and cross-validation) of the two vegetation indices for each site. It was not surprising that 23 

one of the two best bands was found in the water absorption region (~1,200 nm) [67] for the 24 

Monument Valley site because some of the sample locations were irrigated while the others were not 25 

at this site. The vegetation index approach resulted in better performance for the Monument Valley site 26 

than the Monticello site (e.g., R
2
 = 0.501 accounting for 50% of the variance with r = 0.7). This might 27 

be because the vegetation distribution and structure were more dynamic in the Monticello site than in 28 

the Monument Valley site. In particular, the grass and shrub species were highly mixed in the 29 

Monticello site, and this made it difficult to calibrate the in situ LAI data with the HyMap data at the 30 

2.3 × 2.3 m resolution. Slight difference between the field and the pixel location might have also 31 

introduced errors in LAI estimation. 32 

33 
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Figure 3. The correlation matrices using the vegetation index approach to estimate LAI: 1 

using (a) VI1, and (b) VI2 for the Monticello, UT site; and using (c) VI1 and (d) VI2 for 2 

the Monument Valley, AZ site. 3 

 4 

Table 3. The best band combination and associated statistics of both VI1 and VI2 for the Monticello 5 

and Monument Valley sites.  6 

Site 
Vegetation 

index 

Band 1 

(nm) 

Band 2 

(nm) 

R
2
 RMSE 

Monticello 
VI1 1583.8 1746.6 0.343 0.90/0.93* 

VI2 1583.8 1746.6 0.341 0.90/0.93 

Monument 

Valley 

VI1 1187.8 1329.5 0.495 0.85/1.03 

VI2 1187.8 1329.5 0.501 0.84/1.03 

* RMSE from calibration/RMSE from cross validation 7 

The scatterplots between each of the three REP approaches and LAI are shown in Figure 4. The 8 

REP approach did not predict LAI well, resulting in low correlations (< 0.2). Similar to the vegetation 9 

index approach, REP methods resulted in better performance for the Monument Valley site than the 10 

Monticello site. While the LG_REP resulted in the best performance for the Monticello site, the 11 

LI_REP produced the highest accuracy in LAI estimation for the Monument Valley site. However, 12 
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there was no significant relationship between any of the REPs and LAI (p > 0.05). One of the reasons 1 

for the poor performance of the REP approach might be background soil spectral influence within 2 

pixels. The REP approach typically works well for vegetation with full canopies [68, 69]. Many of the 3 

sample pixels had vegetation cover between 70% and 90%, and thus the background soil could have 4 

influenced the spectral response associated with the red-edge. That most of the sample pixels contained 5 

multiple vegetation species may have also caused the REP approach fail to estimate LAI because each 6 

species typically has a unique REP characteristic.  7 

Figure 4. The scatterplots between each of the Red-edge position (REP) and LAI: using (a) 8 

LI_REP, (b) LG_REP, and (c) LE_REP for the Monticello, UT site; and using (d) LI_REP, 9 

(e) LG_REP, and (f) LE_REP for the Monument Valley, AZ site. The R
2
 and RMSEs from 10 

calibration (CAL) and cross-validation (CV) are also provided. 11 

 12 
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Unlike the results of the VI- and REP-based LAI estimation, the regression trees resulted in very 1 

good LAI estimation performance (R
2
 > 0.8) (Figure 5). The regression trees generated three rules for 2 

the Monticello, UT, site and two rules for the Monument Valley, AZ, site. Interestingly, one of the 3 

three rules for the Monticello site were associated mainly with the grass species samples (i.e., 4 

wheatgrass and litter) while the other two rules were applied to most of shrub species samples (i.e., 5 

sagebrush and rabbitbrush). Eight bands were used to generate the multivariate equations for the 6 

Monticello site, which was not efficient and resulted in inflation of the fitness of the models. 7 

Conversely, only two bands (709 and 754 nm) in the red-edge region were used to generate the 8 

multivariate equations in the regression trees for the Monument Valley site. One rule was applied to 9 

relatively high LAI (> 2) samples for the Monument Valley site, while the other was applied to the 10 

lower LAI samples. The red-edge bands effectively divided the samples into the two groups. 11 

Figure 5. LAI estimation using the regression tree approach for (a) the Monticello, UT site, 12 

and (b) the Monument Valley, AZ site. The R
2
 and RMSEs from calibration (CAL) and 13 

cross-validation (CV) are summarized in the plots. 14 

 15 

Although the calibration using the regression trees outperformed those using the vegetation index 16 

and REP data, the cross validation did not correspond to the calibration results. The RMSEs through 17 

cross-validation using the regression trees were higher than those using the other approaches. While 18 

most of the folds for cross-validation generally resulted in low errors, some of the folds (~ 25%) 19 

resulted in high LAI estimation errors (e.g., > 2), which consequently increased the total RMSE. The 20 

overfitting problem of the regression trees, especially when a small number of samples are used, often 21 

occurs [27]. This is also related to the well known problem of decision/regression trees, which are 22 

sensitive to the training data configuration [70]. Glenn et al. [71] investigated black greasewood and 23 

fourwing saltbush over the Monument Valley site using 2007 MODIS data. They measured LAI using 24 

the traditional direct method and found a good agreement with the scaled Enhanced Vegetation Index 25 

(EVI) from MODIS data based on a simple linear regression (R
2
 = 0.77; n = 55; P < 0.001). Figure 6 26 

shows the LAI distribution maps estimated using the regression trees for the Monticello and 27 

Monument Valley sites. 28 
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Although all possible two-band combinations were tested for the VI1 and VI2 in this study, the 1 

most valuable VI might consist of more than two narrow hyperspectral bands. We tested a few narrow 2 

band-derived VIs such as the Vogelmann Red Edge Index 2 [72], which uses spectral data at more than 3 

two wavelengths. However, the additionally tested indices did not outperform the VIs used in this 4 

study. Optimization of multiple wavelengths associated with such narrow band-derived VIs might 5 

further improve the performance of LAI estimation.  6 

Figure 6. The estimated LAI distribution maps for (a) the Monticello site, and (b) the 7 

Monument Valley site. The dirt road and other land cover classes were masked out for the 8 

Monticello site. 9 

 10 

4.2. Vegetation Mapping 11 

Figures 7 and 8 show the relationship between the percent cover and the matched filter scores for 12 

the Monticello, UT, and Monument Valley, AZ, sites, respectively. The percent covers of wheatgrass 13 

and litter were correlated with the matched filter scores at the 90% and 95% confident levels, 14 

respectively. However, the percent covers of sagebrush and rabbitbrush failed to be significantly 15 

correlated with the corresponding matched filter scores. There might be two reasons for this: the 16 

spectral separability of sagebrush and rabbitbrush from other species was not strong. In addition, most 17 

of the sagebrush and rabbitbrush samples were dominated by the corresponding species (i.e., percent 18 
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cover > 70%), while a few of them were mixed with other species (i.e., percent cover < 60%). MTMF 1 

is known to be sensitive to the amount of green vegetation present within a pixel [38, 55]. Litter (dead 2 

plant materials) for the Monticello site and soil for the Monument Valley site could affect determining 3 

the matched filter scores of the healthy vegetation species. Locational errors could also influence the 4 

relatively lower correlation between the percent covers and the matched filter scores. Interestingly, the 5 

percent covers of saltbush were well correlated with the matched filter scores (Figure 8b). Excluding 6 

one outlier, the percent covers of greasewood were also well correlated with the scores. The MTMF 7 

approach has been successfully applied to map single vegetation species resulting in good relationships 8 

between percent cover and matched filter scores [73], but it typically results in more variation and 9 

confusion between species when multiple species are considered [74]. In this study, while several 10 

vegetation species were mixed at each sampling location in the Monticello site, one species was 11 

dominant at each sampling location in the Monument Valley site. Consequently, there was less 12 

influence from other species in the relationship between the percent cover and the matched filter scores 13 

for the Monument Valley site than for the Monticello site. However, because the matched filter scores 14 

were not sufficient for separating each species from the others, the use of a suite of vegetation indices 15 

was expected to improve classification accuracy using decision tree logic. 16 

Figure 7. The relationships between the matched filter scores and the percent cover of the 17 

vegetation species for the Monticello site: (a) sagebrush, (b) rabbitbrush, (c) wheatgrass, 18 

and (d) litter. 19 

 20 
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Figure 8. The relationships between the matched filter scores and the percent cover of the 1 

vegetation species for the Monument Valley site: (a) greasewood and (b) saltbush. 2 

 3 

Figure 9 shows the performance variations of the multiple (i.e., 20) decision trees using different 4 

sets of training samples for each site. Since the size of the reference data was small (i.e., 53 samples of 5 

four classes for the Monticello site and 43 samples of three classes for the Monument Valley site), the 6 

performance variation of the multiple decision trees for training and testing was a bit large. For both 7 

sites, the MTMF-derived metrics and the vegetation indices (labeled MV in Figure 9) resulted in better 8 

performance (for both training and testing) than the original scaled reflectance (labeled REF in Figure 9 

9) in decision tree classification. 10 

Table 4 lists the key input variables to the decision trees classifications for each site. The PRI and 11 

NDNI among the vegetation indices were very useful in the decision tree classification for the 12 

Monticello site. The MF scores of sagebrush and rabbitbrush also contributed to the decision tree 13 

generation for the Monticello site. When the original scaled reflectance data were used in the decision 14 

tree classification for the Monticello site, the red (663.4 nm) and red-edge bands (709 nm) contributed 15 

most to the classification, followed by the blue (443.3 nm) and middle-infrared band (2477.5 nm). A 16 

different pattern of contributing variables was found for the Monument Valley site: The WBI, NDLI, 17 

and NDWI contributed most to the MTMF and vegetation index-based decision tree classification. The 18 

infeasibility of greasewood was also very useful. When the reflectance data were used, the bands near 19 

the water absorption features (i.e., around 1400 and 1940 nm) contributed most to the classification. 20 

This may be because the Monument Valley site is located in an arid area and some of the sampling 21 

locations were irrigated while others were not. That is why the water-related vegetation indices and 22 

reflectance were very useful in vegetation mapping for the Monument Valley site. The chlorophyll 23 

absorption features and related vegetation indices contributed moderately to the decision trees for both 24 

sites. 25 

26 
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Figure 9. Box plots showing the performance variation of the multiple decision trees using 1 

different sets of training and testing samples: (a) for the Monticello site, and (b) for the 2 

Monument Valley site. MV represents the decision trees using the MTMF-derived metrics 3 

and vegetation indices and REF represents the decision trees using the original scaled 4 

reflectance data. 5 

 6 

7 
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Table 4. Key input variables to the decision trees classifications: (a) for the Monticello site, 1 

and (b) for the Monument Valley site. 2 

(a) 3 

Ranking 

MTMF + Vegetation indices Reflectance 

Variable 

Average 

contribution 

(%) 

Variable 

Average 

contribution 

(%) 

1 PRI 65.9 Band 16 (663.4 nm) 30.0 

2 NDNI 50.0 Band 19 (709.0 nm) 26.9 

3 MF-Sagebrush 1 49.4 Band 1 (443.3 nm) 25.9 

4 CAI 35.0 Band 126 (2477.5 nm) 25.2 

5 MF-Sagebrush 2 31.1 Band 21 (739.2 nm) 22.8 

6 MF-Rabbitbrush 1 21.3 Band 2 (451.1 nm) 22.4 

7 MF-Rabbitbrush 2 15.9 Band 3 (464.5 nm) 16.7 

8 INF-Sagebrush 2 14.8 Band 28 (844.4 nm)  14.1 

9 VI1 11.9 Band 64 (1419.9 nm) 11.3 

10 MF-Litter 1 10.2 Band 94 (1805.8 nm) 10.2 

(b) 4 

Ranking 

MTMF + Vegetation indices Reflectance 

Variable 

Average 

contribution 

(%) 

Variable 

Average 

contribution 

(%) 

1 WBI 50.0 Band 63 (1405.4 nm) 35.0 

2 NDLI 38.0 Band 97 (1987.0 nm) 30.0 

3 NDWI 30.0 Band 31 (892.3 nm) 20.5 

4 INF-Greasewood 2 20.5 Band 1 (443.3 nm) 17.5 

5 MF-Saltbush 1 18.7 Band 17 (678.4 nm) 15.0 

6 NDNI 15.0 Band 61 (1329.5 nm) 15.0 

7 VI1 6.9 Band 4 (480.6 nm) 12.1 

8 MF-Greasewood 1 6.0 Band 22 (754.1 nm)  10.0 

9 INF-Greasewood 1 5.5 Band 94 (1805.8 nm) 10.0 

10 MF-Soil 1 5.0 Band 23 (769.3 nm) 8.4 

A majority rule was applied to produce the final species distribution map based on the multiple 5 

decision trees. Because some pixels had multiple maximum votes, additional processing was necessary. 6 

A three-step approach was used: a majority rule was first applied using all of the 20 decision trees, and 7 

then another majority rule was applied to the undecided pixels using the top 10 decision trees based on 8 

their testing performance. Finally, the best decision tree was used to determine the classes for the still 9 

undecided pixels and the final vegetation maps were created for each site. 10 

Figure 10 shows the vegetation maps over the Monticello site using the two sets of decision trees 11 
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(i.e., one set using the MTMF variables and vegetation indices and the other using the scaled 1 

reflectance). Sagebrush appeared to be somewhat overestimated through visual inspection when the 2 

MTMF variables and vegetation indices were used (Figure 10a). On the other hand, rabbitbrush and 3 

litter were generally overestimated when the scaled reflectance data were used for decision tree 4 

classification (Figure 10b). The vegetation maps of the Monument Valley site using the two sets of the 5 

decision trees are shown in Figure 11. The classes were more clumped in the map using the scaled 6 

reflectance than using the MTMF variables and vegetation indices. Soil appeared to be overestimated 7 

when the reflectance data were used. These classification maps exhibited some discrepancies with the 8 

actual field conditions. For example, while the disposal cell cover (central region) in Figure 10 appears 9 

close to the field conditions, a monoculture of rabbitbrush on the side slopes does not agree with the 10 

field conditions. At the Monument Valley site, greasewood appears to be over classified. The limited 11 

quantity and quality of the field reference data might account for the discrepancies, including 1) the 12 

small sample size resulted in variations in performance for multiple decision tree classifications; and 2) 13 

each ground reference sample was measured using a circular plot with a diameter of 1 m, which is 14 

smaller than the hyperspectral image pixel size (2.3 x 2.3 m). Given the small shrub and grass patches 15 

in the sites, this could result in significant confusion in classification. 16 

Figure 10. The vegetation species distribution maps for the Monticello site based on the 17 

decision trees (a) using the MTMF-derived metrics and vegetation indices, and (b) using 18 

the original scaled reflectance data. The road and other land cover classes were masked out. 19 

 20 

21 
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Figure 11. The vegetation species distribution maps for the Monument Valley site based 1 

on the decision trees (a) using the MTMF-derived metrics and vegetation indices, and (b) 2 

using the original scaled reflectance data. 3 

 4 

Since all of the reference data might have been used to train decision trees (50% on average), the 5 

classification accuracy based on the assessment using the reference data might be a bit inflated. The 6 

classification accuracy assessment for the Monticello site is presented in Table 5. Interestingly, 7 

although the MTMF variables and the vegetation indices outperformed the original scaled reflectance 8 

based on the individual decision trees for both training and testing (refer to Figure 9), the accuracy 9 

assessment results were similar between the two maps, resulting in the overall accuracy around 87% 10 

and Kappa around 0.82. Similar to the visual inspection of the classification maps, the commission 11 

error of sagebrush when using the MTMF variables and vegetation indices was large (~36.4%), while 12 

the omission error of sagebrush when using the reflectance data was large (~37.5%). Due to the small 13 

size of the reference data, the overestimation of rabbitbrush and litter when using the scaled reflectance 14 

was not clearly indicated by the error matrix. Wheatgrass was confused with sagebrush and litter in the 15 
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classification using the reflectance data. There was no significant difference between the two Kappa 1 

values (Table 5c). 2 

Table 5. Accuracy assessment results of the decision tree classifications for the Monticello site: (a) 3 

using the MTMF variables and vegetation indices, (b) using the scaled reflectance data, and (c) Kappa 4 

Z-test between the two classifications. 5 

(a) 6 

Ref. 

Class. 
Sagebrush Rabbitbrush Wheatgrass Litter Sum 

Commission Errors 

(%) 

Sagebrush 7 2 1 1 11 36.4 

Rabbitbrush 0 10 1 0 11 9.1 

Wheatgrass 1 0 14 1 16 12.5 

Litter 0 0 0 15 15 0 

Sum 8 12 16 17 53  

Omission Errors 

(%) 
12.5 16.7 12.5 11.8   

Overall accuracy: 86.79% 

Kappa Coefficient of Agreement: 0.821 

(b) 7 

Ref. 

Class. 
Sagebrush Rabbitbrush Wheatgrass Litter Sum 

Commission Errors 

(%) 

Sagebrush 5 1 1 0 7 28.6 

Rabbitbrush 1 11 0 0 12 8.3 

Wheatgrass 2 0 15 2 19 11.1 

Litter 0 0 0 15 15 0 

Sum 8 12 16 17 53  

Omission Errors 

(%) 
37.5 8.3 6.3 11.8   

Overall accuracy: 86.79% 

Kappa Coefficient of Agreement: 0.819 

(c) 8 

 Kappa ASE MTMF + VIs Reflectance 

MTMF + VIs 0.821 0.0622 NA  

Reflectance 0.819 0.0629 0.0276* NA 

* no significant difference between the two Kappa values at the 95% confidence level 9 

Table 6 presents the accuracy assessment results of the classification maps for the Monument 10 

Valley site. Saltbush was confused with soil for both maps. This might be because some of the saltbush 11 

sample locations were grazed and not irrigated, causing their spectral response to be similar to soil. 12 

Saltbush was also confused with greasewood when the reflectance data were used in the decision tree 13 

classification. However, the confusion was much improved when the MTMF variables and vegetation 14 
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indices were used in the decision tree classification. There was no significant Kappa difference 1 

between the two classifications due to the relatively large asymptotic standard errors (ASE), a 2 

measurement of uncertainty, even though there was a 10% difference between the two Kappa values 3 

(Table 6c). 4 

Table 6. Accuracy assessment results of the decision tree classifications for the Monument Valley site: 5 

(a) using the MTMF variables and vegetation indices, (b) using the scaled reflectance data, and (c) 6 

Kappa Z-test between the two classifications. 7 

(a) 8 

Ref. 

Class. 
Greasewood Saltbush Soil Sum Commission Errors 

Greasewood 10 1 0 11 9.1 

Saltbush 1 10 1 12 16.7 

Soil 1 3 16 20 20 

Sum 12 14 17 43  

Omission Errors 16.7 28.6 5.9   

Overall accuracy: 83.72% 

Kappa Coefficient: 0.751 

(b) 9 

Ref. 

Class. 
Greasewood Saltbush Soil Sum Commission Errors 

Greasewood 11 3 1 15 26.7 

Saltbush 1 7 0 8 12.5 

Soil 0 4 16 20 20 

Sum 12 14 17 43  

Omission Errors 8.3 50 5.9   

Overall accuracy: 79.07% 

Kappa Coefficient: 0.682 

(c) 10 

 Kappa ASE MTMF + VIs Reflectance 

MTMF + VIs 0.751 0.0856 NA  

Reflectance 0.682 0.0905 0.5541* NA 

* no significant difference between the two Kappa values at the 95% confidence level 11 

For vegetation mapping over hazardous waste sites, the omission errors of shrub could be more 12 

serious than the commission errors. The commission errors could be false alarms for biointrusion on 13 

the capped materials, but the omission errors might indicate undetected biointrusion, which requires 14 

quick response and treatment. From this point of view, the use of the MTMF-derived metrics and 15 

vegetation indices was better than the use of the scaled reflectance for vegetation mapping. The 16 

omission errors of rabbitbrush and saltbush (both shrub species) were relatively large when the scaled 17 

reflectance data were used. 18 
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At the Monticello site, rabbitbrush is an early successional shrub adapted to disturbed, unstructured 1 

soils. Sagebrush is a later successional shrub that appears to be increasing in abundance as soil 2 

structure develops in the engineered soil cover, creating preferential flow pathways for water to move 3 

deeper in the profile and, hence, gradually creating a more favorable habitat for sagebrush. The 4 

phytoremediation study at the Monument Valley site was designed, in part, to compare the two 5 

dominant native desert phreatophytes: the obligate black greasewood and facultative four-wing 6 

saltbush. Consequently, for long-term monitoring of these sites, differentiating rabbitbrush and 7 

sagebrush at the Monticello site, and greasewood and saltbush at the Monument Valley site are critical.  8 

When considering the small shrub and grass patches (~ 1 m and sometimes < 1 m in size) found in 9 

the study sites, the spatial resolution of the HyMap imagery (2.3 × 2.3 m) appears to be a bit coarse. 10 

Although there is a concern that higher spatial resolution data may actually reduce classification 11 

accuracy by increasing within-class spectral variability [75], the Monticello and Monument Valley 12 

sites should benefit from higher spatial resolution data (e.g., ~ 1 × 1m) for vegetation mapping because 13 

small grass and shrub patches (not tall vegetation) are dominant and their cover is relatively dense 14 

(percent cover > 70%). 15 

5. Summary and Conclusions 16 

This study evaluated the usefulness of HyMap hyperspectral data for characterizing the vegetation 17 

cover (i.e., LAI estimation and vegetation species mapping) on two hazardous waste sites. The 18 

findings of this study are: 19 

 The vegetation index approach to estimating LAI revealed that reflectance data in the middle-20 

infrared region were more useful than reflectance data in the red or near-infrared region. The 21 

REP approach failed to estimate LAI mainly because the 2.3 x 2.3 m pixels often contained 22 

multiple species and background soil spectral influence. The regression trees resulted in the 23 

best calibration accuracy for estimating LAI (R
2
 > 0.80), but the instability of the models due to 24 

the small sample size was a concern. More sophisticated narrow band-derived vegetation 25 

indices need to be investigated further.  26 

 Aggregated decision trees were successfully used to map the vegetation species with a limited 27 

amount of reference data. Overall accuracies exceeded 85% in both study areas with Kappa 28 

Coefficients of Agreement > 0.81. The MTMF approach and the associated metrics improved 29 

the classification accuracy. However, if the endmember pixels contained only one species (i.e., 30 

they were pure pixels), the MTMF approach resulted in improved classification. In other words, 31 

the MTMF approach would benefit from the use of higher spatial resolution hyperspectral 32 

remote sensor data. A suite of vegetation indices were also useful for the vegetation mapping. 33 

In particular, the water-related indices were especially useful for classification of the 34 

Monument Valley site.  35 

 The site characteristics influenced the performance of the LAI estimation and vegetation 36 

mapping. While multiple species were generally found in the individual pixels in the 37 

Monticello site, only two species were dominant within the scene in the Monument Valley site, 38 

which was more arid than the Monticello site and included irrigation/non-irrigation treatments. 39 

These site characteristics affected the performance of the LAI estimation and vegetation 40 
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mapping, and provided an explanation of the performance to some extent.  1 

Automated monitoring of vegetation cover on hazardous waste sites using hyperspectral remote 2 

sensing data and modeling techniques appears feasible, but requires further investigation using 3 

different remote sensing data sources, higher spatial resolution hyperspectral data, and more 4 

advanced modeling techniques. Site characteristics must be carefully considered when determining the 5 

remote sensing data to be collected and the approaches to be used. Future research includes 6 

applications of multi-sensor data fusion (e.g., high density LiDAR data + hyperspectral imagery) 7 

and/or different modeling techniques (e.g., artificial immune networks, support vector machines, and 8 

artificial neural networks) for monitoring hazardous waste sites. In addition, while this study provided 9 

the preliminary results and single-date baseline data associated with monitoring of the 10 

phytoremediation systems at the Monticello and Monument Valley sites, linking remote sensing 11 

methods with actual monitoring tasks in a hazardous waste context should be further examined. Such 12 

links include: (1) detecting changes in the spatial distribution of plant species and LAI through time at 13 

the landscape scale using < 1 x 1 m multiple-date hyperspectral remote sensor data, and (2) tracking 14 

the response of phreatophyte health and evapotranspiration rates to changing land management 15 

practices.  16 
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