
Contract No:

This document was prepared in conjunction with work accomplished under
Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE)
Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S.
Government. Neither the U. S. Government or its employees, nor any of its
contractors, subcontractors or their employees, makes any express or implied:

1) warranty or assumes any legal liability for the accuracy, completeness, or
for the use or results of such use of any information, product, or process
disclosed; or

2) representation that such use or results of such use would not infringe
privately owned rights; or

3) endorsement or recommendation of any specifically identified commercial
product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily
state or reflect those of the United States Government, or its contractors, or
subcontractors.

June 6, 2018 SRNL-L3200-2018-00067
 RSM Track #: 10560

TO: B. T. BUTCHER, 773-42A

FROM: J. A. DYER, 773-42A

REVIEWER: T. L. DANIELSON, 773-42A

SUBSIDENCE INFILTRATION MODEL DESIGN CHECK FOR E-AREA LLWF

Ref:

1. SRNL-STI-2017-00729, J. A. Dyer and G. P. Flach to B. T. Butcher, E-Area LLWF Vadose Zone Model:
Probabilistic Model for Estimating Subsided-Area Infiltration Rates, 12/12/2017

Scope
A design check will be performed on the revised Python-based probabilistic subsidence
infiltration model for the proposed E-Area Low-Level Waste Facility (LLWF) final closure cap
design.

Background
Dyer and Flach (ref. 1) describe a Python-based probabilistic model employing Monte Carlo
sampling that generates statistical distributions of the upslope-intact-area to subsided-area ratio
(AreaUAi/AreaSAi) for E-Area LLWF closure-cap subsidence scenarios that vary in percent
subsidence and the total number of uniformly sized compartments. The two main input
parameters in the first version of the model are the integer number of subsided compartments and
the total integer number of compartments (intact plus subsided). As a result, percent subsidence
is implicit in the assumed integer-number of subsided compartments, which leads to
computational limitations for low-percent-subsidence cases (≤ 1 percent).

The revised version of the model provides more flexibility in case definition by allowing rational
numbers to be used for all input parameters except for the total number of compartments. In
addition, the revised model calculates a cap-average infiltration rate for each subsidence case
using HELP-model-generated infiltration rates for the intact case. Revised input parameters
include compartment size (rational, feet), total number of compartments (integer), percent
subsidence (rational), average annual rainfall minus average evapotranspiration rate from HELP
(inches/year, rational), and intact infiltration rate from HELP (inches/year, rational). The benefit
of the revised model is that any percent subsidence case from 0% to 100% can be simulated.

J. A. Dyer
SRNL-L3200-2018-00067
Page 2
June 6, 2018

Design Check Objective
Table 1 below gives the average intact infiltration rate as a function of relative time for an E-
Area LLWF closure cap design with 2% slope and 585-foot slope length. Also reported in Table
1 are infiltration rates for three subsidence cases (2%, 0.6%, and 0.04%), which are slope-length-
weighted cap-averages for slope lengths of 545 feet and 110 feet.

Table 1. Average Infiltration Rates for E-Area LLWF Intact and Subsidence Cases
(Intact Case: 2% slope, 585-foot slope length)

The objective of the design check is to confirm the accuracy of the reported infiltration rates in
inches per year at each time step for the three subsidence cases.

Design Check Steps and Associated Files
All files identified below can be found at \\godzilla-01\hpc_project\projwork50\E-
Area\PA_2019\CoverSystem\Subsidence_Infiltration_Design_Check_2018

The probabilistic infiltration model consists of two key files:

• Python program file SubsideAverage_rev5a.py

2.0% Subsidence
(ST6, ST15-21)

0.6% Subsidence
(ST5, ST7, ST14)

0.04% Subsidence
(ET2)

100 0.00088 5.858 2.166 0.157
180 0.00791 5.824 2.188 0.165
290 0.18881 5.938 2.336 0.348
300 0.20409 5.972 2.353 0.361
340 0.32167 6.020 2.462 0.477
380 0.40513 6.092 2.514 0.568
480 1.45728 6.771 3.465 1.600
660 3.23003 7.928 4.982 3.358

1100 7.01494 10.380 8.274 7.102
1900 10.64990 12.719 11.416 10.708
2723 11.47210 13.255 12.129 11.520
3300 11.53200 13.302 12.195 11.582
5700 11.63140 13.346 12.271 11.678

10100 11.67340 13.373 12.304 11.720

Year 0 is the beginning of institutional control
Year 100 is the end of institutional control and the installation date of the closure cap

Relative
Year

Intact Infiltration
Rate (in/yr)

Slope-Length-Weighted, Cap-Average Infiltration Rate (in/yr)

file://godzilla-01/hpc_project/projwork50/E-Area/PA_2019/CoverSystem/Subsidence_Infiltration_Design_Check_2018
file://godzilla-01/hpc_project/projwork50/E-Area/PA_2019/CoverSystem/Subsidence_Infiltration_Design_Check_2018

J. A. Dyer
SRNL-L3200-2018-00067
Page 3
June 6, 2018

• Windows batch file runPython_rev5a.bat, which contains the required input parameters
and output filenames for each case

The Windows batch file runPython_rev5a.bat is set up to generate six infiltration-rate time
profiles, two for each percent-subsidence case of interest (545-foot and 110-foot slope lengths
each at 2%, 0.6%, and 0.04% subsidence). Fourteen time steps are included for each infiltration-
rate time profile. Figure 1 shows the two sets of batch file inputs for the 2% subsidence case.
Note that the model cases designated “545-foot slope length” are based on 550 feet in the Python
model simulations, because the total number of compartments must be an integer number (55
compartments times 10.0-foot compartment size). This model constraint introduces only a small
error in the slope-length-weighted infiltration rates in Table 1. Figure 2 displays the section of
Python script from SubsideAverage_rev5a.py that defines and reads the arguments in columns 2
through 10 on each line of the batch file.

The design check comprises the following steps:

• Copy runPython_rev5a.bat and SubsideAverage_rev5a.py to a new folder on a computer
where the Python software source code is installed.

• Confirm that the Python programming script in SubsideAverage_rev5a.py (Attachment 1)
correctly implements the subsidence infiltration conceptual model assumptions outlined
in Attachment 2. Please consult with Greg Flach or Jim Dyer for more explanation, if
needed.
 Python code was thoroughly checked for bugs and proper technical implementation

of the subsidence infiltration conceptual model. The code is essentially error free.
However, it was noticed that for small numbers of realizations, the possibility exists
for the value “length” to be undefined, which leads to errors that kill the execution of
the code. This occurs for small numbers of realizations because there is a non-zero
probability that 0 subsided compartments will be selected. This is not an issue, but I
wanted to point it out in case there is a desire to make it so that this does not kill
execution.
 The author experienced this same model execution failure when the number of

realizations was set at 100 for the 0.04% subsidence case. The Python code in
Attachment 1 has been modified to correct this limitation, and is included in
Attachment 3.

• Execute the runPython_rev5a.bat file by double-clicking on the filename.

• The batch file will generate three output files for each percent-subsidence case: detailed
output file (.out), summary file (.sum), and tabulated results file for import into Microsoft
Excel (.tab). Figures 3, 4, and 5 display examples of the three output files.
 Works as expected

J. A. Dyer
SRNL-L3200-2018-00067
Page 4
June 6, 2018

• The results from the .tab files were copied onto the “By Slope Length & % Subsid.”
worksheet in Average Infiltration Case for Low Percent Subsidence_05-29-2018.xlsx.
Confirm that the results from the three .tab files for each percent-subsidence case were
correctly transcribed. Note that output values for the new Monte Carlo simulations may
not exactly match the values in Average Infiltration Case for Low Percent
Subsidence_05-29-2018.xlsx; however, agreement should be very good for 100,000
realizations.
 Comparison of the data set originally obtained by Dyer and Flach and the data set

obtained by Danielson for design checking has relatively good agreement. The
largest percent difference in the cap averaged infiltration rate is 3.39% and was for
the following case “SubsidedAverage_rev5a_DesignCheck.py Case_0.04Percent 10.
55 0.04 16.5 0.00088 100000 False True w” where the infiltration rates predicted
from the Monte Carlo code are 0.181 and 0.187 for the original and current test runs,
respectively. This difference is not expected to be significant.
 A less than 5 percent difference is acceptable.

• The infiltration rates reported in Table 1 are the slope-length-weighted cap-averages for
slope lengths of 545 feet and 110 feet. The slope-length weighting occurs on Worksheet
“Slope-Length-Weighted Data” in Average Infiltration Case for Low Percent
Subsidence_05-29-2018.xlsx. Confirm that the results reported in Table 1 for the three
subsidence cases are correctly calculated.
 Calculation of slope-length-weighted cap-averages has been performed correctly.

J. A. Dyer
SRNL-L3200-2018-00067
Page 5
June 6, 2018

Figure 1. Example Windows Batch File Input for Python Probabilistic Model

Figure 2. Definition of Arguments in Windows Batch File

J. A. Dyer
SRNL-L3200-2018-00067
Page 6
June 6, 2018

Figure 3. Output File – Portion of First Time Step in Two-Percent Subsidence Case (> represents

an intact compartment and O represents a subsided compartment)

J. A. Dyer
SRNL-L3200-2018-00067
Page 7
June 6, 2018

Figure 4. Portion of Summary File – First Time Step in Two-Percent Subsidence Case

J. A. Dyer
SRNL-L3200-2018-00067
Page 8
June 6, 2018

Figure 5. Complete Tabular Output File – Two-Percent Subsidence Case

Att.

Hole/
Compartment

Size (ft)
Number of

Compartments

Slope
Length

(ft)
Percent

Subsidence

Infiltration Rate Less
Evapotranspiration

(in/yr)

Intact
Infiltration
Rate (in/yr)

Number of
Realizations

Upslope-to-
Subsided

Area Ratio

Fraction
Intact

(fIntact)

Fraction
Subsided

(fSubsided)
fSubsided,

Intact
fSubsided,
Subsided

Cap-Averaged
Infiltration Rate

(in/yr)

J. A. Dyer
SRNL-L3200-2018-00067
Page 9
June 6, 2018

Attachment 1
Design-Check Version (Rev. 5a) of Python Source Code for Revised Probabilistic Model

#!/bin/env python

import sys
import random
import numpy

print "Running:", sys.argv[0]

Read filenames
prefixFile = sys.argv[1] # prefix for output files
compartmentsSize = float(sys.argv[2]) # size of compartment (feet)
compartmentsTotal = int(sys.argv[3]) # total number of compartments
percentSubsided = float(sys.argv[4]) # percent subsidence
F_notET = float(sys.argv[5]) # annual average rainfall minus evapotranspiration
F_intact = float(sys.argv[6]) # intact infiltration rate
realizations = int(sys.argv[7]) # (number of Monte Carlo realizations)
debugArg = sys.argv[8] # debug flag (true or false)
graphicArg = sys.argv[9] # graphic flag for .out file (>>>>>>O>>>>>>)
appendFlag = sys.argv[10] # append flag for summary file (w for overwrite or a for append)

slopeLength = compartmentsSize*float(compartmentsTotal)

F_netRunoff = F_notET - F_intact

outputFile = prefixFile + ".out"
summaryFile = prefixFile + ".sum"
tabFile = prefixFile + ".tab"

if debugArg == "True":
 debugFlag = 1
else:
 debugFlag = 0

if graphicArg == "True":
 graphicFlag = 1
else:
 graphicFlag = 0

print " compartmentsSize:", compartmentsSize
print " compartmentsTotal:", compartmentsTotal
print " slopeLength:", slopeLength

J. A. Dyer
SRNL-L3200-2018-00067
Page 10
June 6, 2018

print " percentSubsided:", percentSubsided
print " F_notET:", F_notET
print " F_intact:", F_intact
print " realizations:", realizations
print " outputFile:", outputFile

output = open(outputFile, appendFlag)
output.write(" Compartment size: %f\n" % (compartmentsSize))
output.write(" Total number of compartments: %d\n" % (compartmentsTotal))
output.write(" Slope length: %f\n" % (slopeLength))
output.write(" Percent subsided compartments: %f\n" % (percentSubsided))
output.write(" Flux, intact cover: %f\n" % (F_intact))
output.write(" Flux, subsided cover: %f\n" % (F_notET))
output.write(" Realizations: %d\n" % (realizations))

summary = open(summaryFile, appendFlag)
summary.write(" Compartment size: %f\n" % (compartmentsSize))
summary.write(" Total number of compartments: %d\n" % (compartmentsTotal))
summary.write(" Slope length: %f\n" % (slopeLength))
summary.write(" Percent subsided compartments: %f\n" % (percentSubsided))
summary.write(" Flux, intact cover: %f\n" % (F_intact))
summary.write(" Flux, subsided cover: %f\n" % (F_notET))
summary.write(" Realizations: %d\n" % (realizations))

tabdelimited = open(tabFile, appendFlag)

Subsided trench compartments
if debugFlag or graphicFlag: output.write("==\n")
if debugFlag:
 output.write("Subsided compartments followed by upslope ratios\n")
elif graphicFlag:
 output.write("Subsided compartments\n")

compartments = range(1,compartmentsTotal+1)
if debugFlag: print "compartments:", compartments

stringIntact = []
for key in compartments:
 stringIntact.append(">")
if debugFlag: print stringIntact

realization = 0

countSubsided = 0
countTotal = 0

J. A. Dyer
SRNL-L3200-2018-00067
Page 11
June 6, 2018

maxCompartments = 0
minCompartments = [compartmentsTotal]
avgCompartments = float(0)

slicesIntact = 0
slicesSubsided = 0
slicesTotal = 0

avgLength = float(0)
avgCount = 0

lengths = []

avgLengthSingleHole = float(0)
avgCountSingleHole = 0

lengthsSingleHole = []

infiltration = float(0)

precise = 1000

while realization < realizations: #Monte Carlo loop
 realization = realization + 1
 if debugFlag: print realization

 ### Randomly place subsided compartments
 subsided = []
 localCount = 0
 for i in compartments:
 draw = float(random.uniform(0,100*precise))/float(precise)
 countTotal = countTotal + 1
 if draw < percentSubsided:
 countSubsided = countSubsided + 1
 subsided.append(i)
 localCount = localCount + 1
 maxCompartments = max(maxCompartments, localCount)
 minCompartments = min(minCompartments, localCount)
 avgCompartments = avgCompartments + float(localCount)

 if debugFlag: print "subsided:", subsided

 sortedSubsided = sorted(subsided, key=float)
 if debugFlag: print "sortedSubsided:", sortedSubsided

J. A. Dyer
SRNL-L3200-2018-00067
Page 12
June 6, 2018

 stringSubsided = list(stringIntact)
 for key in sortedSubsided:
 stringSubsided[int(key)-1] = 'O'
 if debugFlag: print "stringSubsided:", "".join(stringSubsided)

 ### Tally subsided versus intact slices (realizations)
 slicesTotal = slicesTotal + 1
 if len(sortedSubsided) == 0:
 slicesIntact = slicesIntact + 1
 else:
 slicesSubsided = slicesSubsided + 1

 ### Compute upslope length for slices with holes
 lengthSubsided = []

 for i in range(len(sortedSubsided)):
 if i == 0:
 length = sortedSubsided[i] - 1
 else:
 length = sortedSubsided[i] - sortedSubsided[i-1] - 1
 lengths.append(length)

 if debugFlag: print "i, sortedSubsided[i], length:", i, sortedSubsided[i], length

 lengthSubsided.append(length)

 if debugFlag: print "lengthSubsided:", lengthSubsided

 if debugFlag: print >> output, sortedSubsided
 if graphicFlag: print >> output, "".join(stringSubsided)

 for i in range(len(lengthSubsided)):
 avgCount = avgCount + 1
 avgLength = avgLength + lengthSubsided[i]
 if debugFlag: output.write("%s\n" % (lengthSubsided[i]))

 ### Compute upslope length after consolidating to 1 hole
 if len(sortedSubsided) > 0:
 iBottomHole = len(sortedSubsided)-1
 lengthSingleHole = sortedSubsided[iBottomHole] - 1
 lengthsSingleHole.append(lengthSingleHole)

 if debugFlag: print "iBottomHole, sortedSubsided[iBottomHole], lengthSingleHole:", iBottomHole, sortedSubsided[iBottomHole],
lengthSingleHole

 avgCountSingleHole = avgCountSingleHole + 1

J. A. Dyer
SRNL-L3200-2018-00067
Page 13
June 6, 2018

 avgLengthSingleHole = avgLengthSingleHole + lengthSingleHole

 if debugFlag: output.write("%s single hole\n" % (lengthSingleHole))

 ### Compute infiltration
 infiltration = infiltration + float(compartmentsTotal - localCount)*F_intact

 for i in range(len(sortedSubsided)):
 if i == 0:
 length = sortedSubsided[i] - 1
 else:
 length = sortedSubsided[i] - sortedSubsided[i-1] - 1

 infiltration = infiltration + F_notET + length*F_netRunoff

Compute statistics / proportions
avgCompartments = avgCompartments/float(realizations)

sampleSubsided = float(countSubsided)/float(countTotal)*100

avgLength = avgLength/float(avgCount)

medianLength = numpy.median(lengths)
meanLength = numpy.mean(lengths)
minLength = numpy.min(lengths)
maxLength = numpy.max(lengths)

avgLengthSingleHole = avgLengthSingleHole/float(avgCountSingleHole)

medianLengthSingleHole = numpy.median(lengthsSingleHole)
meanLengthSingleHole = numpy.mean(lengthsSingleHole)
minLengthSingleHole = numpy.min(lengthsSingleHole)
maxLengthSingleHole = numpy.max(lengthsSingleHole)

fractionSlicesIntact = float(slicesIntact)/float(slicesTotal)
fractionSlicesSubsided = float(slicesSubsided)/float(slicesTotal)

Compute infiltration, assuming one hole per subsided slice

Monte Carlo average
F_coverAvg = infiltration/(float(realizations)*float(compartmentsTotal))

preparation
f_subsidedSliceIntact = (float(compartmentsTotal) - 1.)/float(compartmentsTotal)
f_subsidedSliceSubsided = 1./float(compartmentsTotal)

J. A. Dyer
SRNL-L3200-2018-00067
Page 14
June 6, 2018

F_runonAvg = avgLengthSingleHole*F_netRunoff

local
F_intactAvg = F_intact
F_subsidedAvg = F_notET + F_runonAvg

aligned with slope
F_intactDownAvg = F_intactAvg
F_subsidedDownAvg = f_subsidedSliceIntact*F_intactAvg + f_subsidedSliceSubsided*F_subsidedAvg

F_coverDownAvg = fractionSlicesIntact*F_intactDownAvg + fractionSlicesSubsided*F_subsidedDownAvg

transverse to slope
F_intactAcrossAvg = F_intactAvg
F_subsidedAcrossAvg = fractionSlicesIntact*F_intactAvg + fractionSlicesSubsided*F_subsidedAvg

F_coverAcrossAvg = f_subsidedSliceIntact*F_intactAcrossAvg + f_subsidedSliceSubsided*F_subsidedAcrossAvg

###write output to file
output.write("==\n")
output.write("Percent subsided/Avg upslope ratio\n")
output.write("\t%.2f/%.2f\n" % (percentSubsided, avgLength))

output.write("Percent subsided/Avg upslope ratio single hole\n")
output.write("\t%.2f/%.2f\n" % (percentSubsided, avgLengthSingleHole))

output.write("Sample subsided\n")
output.write("\t%.2f\n" % (sampleSubsided))

output.write("Min/avg/max compartments\n")
output.write("\t%d/%.2f/%d\n" % (minCompartments, avgCompartments, maxCompartments))

output.write("Min/median/mean/max length\n")
output.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLength, medianLength, meanLength, maxLength))

output.write("Min/median/mean/max single hole length\n")
output.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLengthSingleHole, medianLengthSingleHole, meanLengthSingleHole, maxLengthSingleHole))

output.write("Slices intact/subsided (%)\n")
output.write("\t%.2f/%.2f\n" % (fractionSlicesIntact*100, fractionSlicesSubsided*100))

output.write("Subsided slice intact/subsided (%)\n")
output.write("\t%.2f/%.2f\n" % (f_subsidedSliceIntact*100, f_subsidedSliceSubsided*100))

output.write("Fluxes notET/intact/runoff (in/yr)\n")

J. A. Dyer
SRNL-L3200-2018-00067
Page 15
June 6, 2018

output.write("\t%f/%f/%f\n" % (F_notET,F_intact,F_netRunoff))

output.write("Fluxes intactAvg/subsidedAvg (in/yr)\n")
output.write("\t%f/%f\n" % (F_intactAvg,F_subsidedAvg))

output.write("Fluxes intactDownAvg/subsidedDownAvg/coverDownAvg (in/yr)\n")
output.write("\t%f/%f/%f\n" % (F_intactDownAvg,F_subsidedDownAvg,F_coverDownAvg))

output.write("Fluxes intactAcrossAvg/subsidedAcrossAvg/coverAcrossAvg (in/yr)\n")
output.write("\t%f/%f/%f\n" % (F_intactAcrossAvg,F_subsidedAcrossAvg,F_coverAcrossAvg))

output.write("Fluxes coverAvg (in/yr)\n")
output.write("\t%f\n" % (F_coverAvg))
output.write("\n\n==\n")

summary.write("==\n")
summary.write("Percent subsided/Avg upslope ratio\n")
summary.write("\t%.2f/%.2f\n" % (percentSubsided, avgLength))

summary.write("Percent subsided/Avg upslope ratio single hole\n")
summary.write("\t%.2f/%.2f\n" % (percentSubsided, avgLengthSingleHole))

summary.write("Sample subsided\n")
summary.write("\t%.2f\n" % (sampleSubsided))

summary.write("Min/avg/max compartments\n")
summary.write("\t%d/%.2f/%d\n" % (minCompartments, avgCompartments, maxCompartments))

summary.write("Min/median/mean/max length\n")
summary.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLength, medianLength, meanLength, maxLength))

summary.write("Min/median/mean/max single hole length\n")
summary.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLengthSingleHole, medianLengthSingleHole, meanLengthSingleHole, maxLengthSingleHole))

summary.write("Slices intact/subsided (%)\n")
summary.write("\t%.2f/%.2f\n" % (fractionSlicesIntact*100, fractionSlicesSubsided*100))

summary.write("Subsided slice intact/subsided (%)\n")
summary.write("\t%.2f/%.2f\n" % (f_subsidedSliceIntact*100, f_subsidedSliceSubsided*100))

summary.write("Fluxes notET/intact/runoff (in/yr)\n")
summary.write("\t%f/%f/%f\n" % (F_notET,F_intact,F_netRunoff))

summary.write("Fluxes intactAvg/subsidedAvg (in/yr)\n")
summary.write("\t%f/%f\n" % (F_intactAvg,F_subsidedAvg))

J. A. Dyer
SRNL-L3200-2018-00067
Page 16
June 6, 2018

summary.write("Fluxes intactDownAvg/subsidedDownAvg/coverDownAvg (in/yr)\n")
summary.write("\t%f/%f/%f\n" % (F_intactDownAvg,F_subsidedDownAvg,F_coverDownAvg))

summary.write("Fluxes intactAcrossAvg/subsidedAcrossAvg/coverAcrossAvg (in/yr)\n")
summary.write("\t%f/%f/%f\n" % (F_intactAcrossAvg,F_subsidedAcrossAvg,F_coverAcrossAvg))

summary.write("Fluxes coverAvg (in/yr)\n")
summary.write("\t%f\n" % (F_coverAvg))
summary.write("\n\n==\n")

###write output to screen
print ("percentSubsided/avgLength/avgLengthSingleHole: \n\t%.2f/%.2f/%.2f" % (percentSubsided, avgLength, avgLengthSingleHole))

print ("sampleSubsided: %.2f" % (sampleSubsided))

print ("Slices intact/subsided (%)")
print ("\t%.2f/%.2f" % (fractionSlicesIntact*100, fractionSlicesSubsided*100))

print ("Subsided slice intact/subsided (%)")
print ("\t%.2f/%.2f" % (f_subsidedSliceIntact*100, f_subsidedSliceSubsided*100))

print ("Fluxes notET/intact/runoff (in/yr)")
print ("\t%f/%f/%f" % (F_notET,F_intact,F_netRunoff))

print ("Fluxes intactAvg/subsidedAvg (in/yr)")
print ("\t%f/%f" % (F_intactAvg,F_subsidedAvg))

print ("Fluxes intactDownAvg/subsidedDownAvg/coverDownAvg (in/yr)")
print ("\t%f/%f/%f" % (F_intactDownAvg,F_subsidedDownAvg,F_coverDownAvg))

print ("Fluxes intactAcrossAvg/subsidedAcrossAvg/coverAcrossAvg (in/yr)")
print ("\t%f/%f/%f" % (F_intactAcrossAvg,F_subsidedAcrossAvg,F_coverAcrossAvg))

print ("Fluxes coverAvg (in/yr)")
print ("\t%f" % (F_coverAvg))

write one-line, tab-delimited, results summary
tabdelimited.write("%f\t%d\t%f\t%f\t%f\t%f\t%d\t%f\t%f\t%f\t%f\t%f\t%f\n" %
(compartmentsSize,compartmentsTotal,slopeLength,percentSubsided,F_notET,F_intact,realizations,avgLengthSingleHole,fractionSlicesIntact,fr
actionSlicesSubsided,f_subsidedSliceIntact,f_subsidedSliceSubsided,F_coverAvg))

J. A. Dyer
SRNL-L3200-2018-00067
Page 17
June 6, 2018

Attachment 2
Assumptions Used to Calculate Infiltration Rates for E-Area Intact and Subsidence Cases

General

• Reported infiltration rates at each time step on the infiltration-rate degradation curve will
be average values based on the portion of the total cap area that overlies the waste
footprint (i.e., 40-foot overhangs excluded). This is true for both the intact and
subsidence cases, and is different from the original PORFLOW simulations where both
an intact infiltration rate and a subsided-area-only (or hole-only) infiltration rate were
provided. An intact infiltration rate will be applied for the 40-foot overhangs.

• Intact infiltration rates will not be adjusted for location along the sloped length of the cap

(i.e., increasing rate from crest to base).

• For the low-percent subsidence cases (typically < 2%), hole (or compartment) size will be
fixed at 10 feet in the infiltration model simulations to comply with the assumption of a
minimum 10-foot hole size.

• For PORFLOW simulations, the cap-averaged infiltration rate for the subsided case of

interest will be used to back-calculate the effective infiltration rate into the subsided
“hole(s)” in PORFLOW, which in some cases may differ in number and size compared to
the infiltration model.

• F-Area Tank Farm cap design bases, cap degradation assumptions, and material property

assumptions will be used in the E-Area HELP model simulations, except where impacted
by the 100-year shift in the timeline (i.e., changes in number of geomembrane defects due
to differences in age of geomembrane when pine tree intrusion occurs).

• Vegetative cover is Bahia grass (no bamboo).

Intact Case

• A single intact infiltration case based on 2% slope and 585-foot slope length will be used
for all E-Area disposal units. This case represents an upper bound for the proposed E-
Area final closure cap when considering variability in percent slope and slope length and
other HELP model parameter uncertainties.

Subsided Cases

• New/future trench units: Assume 2% subsidence based on input from E-Area operations.

J. A. Dyer
SRNL-L3200-2018-00067
Page 18
June 6, 2018

• Closed trench units: Percent subsidence will be based on reported non-crushable content
(area).

• Partially filled trench units: Percent subsidence will be based on the reported non-

crushable area linearly extrapolated to 100% full.

• For closed and partially filled open trench units, unit-by-unit total footprint area as
reported in Table 2 below will be used to calculate percent subsidence.

• For closed and partially filled open trench units, non-crushable content (area) and

percent-filled values are reported in Table 3 below.

• Percent subsidence for closed units will be calculated by (non-crush area) / (total
footprint area) x 100%

• Percent subsidence for partially filled units will be calculated by (non-crush area) / (total

footprint area) / (fraction filled) x 100%

• New/future units: ST15, ST16, ST17, ST18, ST19, ST20, ST21 (all will be set at 2%
subsidence)

• Closed units: ST5 and ET1

• Open units: ST6, ST7, ET2, and ST14

• Calculated percent subsidence

ST5: 0.54%
ET1: 0.00%
ST6: 2.00%
ST7: 0.64%
ET2: 0.04%
ST14: 0.56%

• Propose reducing number of cases to:

ST6, ST15-ST21: 2% subsidence
ET2: 0.04% subsidence
ST5, ST7, ST14: 0.6% subsidence
ET1: Intact case

J. A. Dyer
SRNL-L3200-2018-00067
Page 19
June 6, 2018

• Run Python probabilistic model two times for each percent-subsidence case above
assuming slope lengths of 545 feet and 110 feet (represents the two sides of the
PORFLOW cap transect). Calculate a slope-length-weighted cap-average infiltration rate
curve for each percent subsidence case from the two probabilistic simulations.

• Four (4) sets of infiltration vs. time data will be provided for the vadose zone PORFLOW

simulations: intact, 2% subsidence, 0.6% subsidence, and 0.04% subsidence.

J. A. Dyer
SRNL-L3200-2018-00067
Page 20
June 6, 2018

Table 2. Calculated Areas for E-Area LLWF Disposal Units (from Rev4-E-Area_LLWF_Coordinates_and_Areas_27-Feb-2017.xlxs)

Area
(m2)

Calculated
Area (m2)

Calculated
Area (ft2)

SRS N SRS E SRS N SRS E SRS N SRS E SRS N SRS E SRS N SRS E

Slit Trench 1 9,568 9,581 103,126 N77434.5 E58157.1 N77318.4 E58263.6 N77757.8 E58750.0 N77874.2 E58644.9
Slit Trench 2 9,568 9,586 103,184 N77307.1 E58273.7 N77190.1 E58379.2 N77630.4 E58865.8 N77746.9 E58760.6
Slit Trench 3 9,568 9,569 102,995 N77179.9 E58389.5 N77063.7 E58495.1 N77503.4 E58981.9 N77619.6 E58876.3
Slit Trench 4 9,568 9,566 102,969 N77052.6 E58505.1 N76936.4 E58610.7 N77375.8 E59097.2 N77492.3 E58991.9
Slit Trench 5 9,568 9,564 102,947 N76674.9 E58856.7 N76558.4 E58961.9 N76998.1 E59448.8 N77114.5 E59343.6
Slit Trench 6 9,568 9,568 102,984 N76548.4 E58971.0 N76431.8 E59076.2 N76871.5 E59563.0 N76988.0 E59457.8
Slit Trench 7 9,568 9,570 103,012 N76419.6 E59087.3 N76303.1 E59192.5 N76742.7 E59679.4 N76859.3 E59574.1
Slit Trench 8 9,567 102,973 N77804.0 E57809.6 N77877.7 E57671.0 N78456.9 E57979.0 N78383.2 E58117.6
Slit Trench 9 9,567 102,973 N77797.4 E57822.0 N77723.7 E57960.6 N78376.6 E58130.0 N78302.9 E58268.6
Slit Trench 10 8,692 93,557 N78278.6 E58271.6 N78204.9 E58410.2 N77752.4 E57991.7 N77678.7 E58130.3
Slit Trench 11 7,455 80,242 N77622.1 E58085.5 N77503.1 E58188.0 N77955.7 E58472.6 N77836.8 E58575.1
Slit Trench 14 9,568 102,989 N75830.9 E58944.8 N75673.9 E58944.8 N75673.9 E59600.8 N75830.9 E59600.8
Slit Trench 15 9,564 102,949 N75659.6 E58945.4 N75502.6 E58945.9 N75502.6 E59601.4 N75659.6 E59601.4
Slit Trench 16 8,726 93,928 N75315.0 E58941.5 N75170.0 E58941.5 N75170.0 E59589.3 N75315.0 E59589.3
Slit Trench 17 8,726 93,928 N75155.0 E58941.5 N75010.0 E58941.5 N75010.0 E59589.3 N75155.0 E59589.3
Slit Trench 18 8,726 93,928 N74995.0 E58941.5 N74850.0 E58941.5 N74850.0 E59589.3 N74995.0 E59589.3
Slit Trench 19 8,726 93,928 N74835.0 E58941.5 N74690.0 E58941.5 N74690.0 E59589.3 N74835.0 E59589.3
Slit Trench 20 8,726 93,928 N74675.0 E58941.5 N74530.0 E58941.5 N74530.0 E59589.3 N74675.0 E59589.3
Slit Trench 21 15,668 168,651 N74515.0 E58941.5 N74140.0 E58941.5 N74140.0 E59391.5 N74515.0 E59391.0
CIG Trench 1 9,568 9,866 106,192 N77362.3 E59110.0 N77246.1 E59215.6 N76805.0 E58730.0 N76921.2 E58624.4
CIG Trench 2 9,568 9,566 102,965 N77125.7 E59333.5 N77242.2 E59228.3 N76686.0 E58846.7 N76802.5 E58741.5
Engineered Trench #1 9,568 8,913 95,936 N75995.2 E58944.7 N75845.2 E58943.8 N75845.1 E59590.3 N75992.1 E59590.3
Engineered Trench #2 9,568 9,559 102,895 N76286.7 E58946.3 N76127.6 E58946.0 N76129.0 E59601.9 N76283.3 E59603.7
Engineered Trench #3 7,880 84,819 N78727.8 E57528.3 N78522.9 E57934.5 N78443.2 E57899.4 N78378.9 E57817.6 N78564.7 E57448.6
Engineered Trench #4 9,638 103,740 N77943.5 E57147.3 N77865.0 E57283.8 N78465.6 E57574.4 N78533.8 E57433.5
LAW Vault 8,662 8,666 93,275 N75475.0 E59589.3 N75330.0 E59589.3 N75330.0 E58946.0 N75475.0 E58946.0
IL Vault 1,256 1,262 13,582 N77790.4 E57679.7 N77748.1 E57657.0 N77658.1 E57928.4 N77615.4 E57905.6
643-26E NRCDA 4,435 4,430 47,686 N78152.4 E57675.1 N78241.6 E57504.9 N78434.5 E57598.2 N78327.4 E57819.6
643-7E NRCDA 1,226 546 5,878 N74311.6 E58333.3 N74310.5 E58425.0 N74418.9 E58426.6 N74424.0 E58396.4 N74347.9 E58370.6

Low-Level Waste Facility

corner #5corner #1 corner #2 corner #3 corner #4

J. A. Dyer
SRNL-L3200-2018-00067
Page 21
June 6, 2018

Table 3. Non-Crushable Content and Percent-Filled Values for Closed and Partially Filled Open E-Area LLWF Trench Units

J. A. Dyer
SRNL-L3200-2018-00067
Page 22
June 6, 2018

Page Intentionally Blank

J. A. Dyer
SRNL-L3200-2018-00067
Page 23
June 6, 2018

Attachment 3
Corrected Version (Rev. 6) of Python Source Code for Revised Probabilistic Model

#!/bin/env python

import sys
import random
import numpy

print "Running:", sys.argv[0]

Read filenames
prefixFile = sys.argv[1] # prefix for output files
compartmentsSize = float(sys.argv[2]) # size of compartment (feet)
compartmentsTotal = int(sys.argv[3]) # total number of compartments
percentSubsided = float(sys.argv[4]) # percent subsidence
F_notET = float(sys.argv[5]) # annual average rainfall minus evapotranspiration
F_intact = float(sys.argv[6]) # intact infiltration rate
realizations = int(sys.argv[7]) # (number of Monte Carlo realizations)
debugArg = sys.argv[8] # debug flag (true or false)
graphicArg = sys.argv[9] # graphic flag for .out file (>>>>>>O>>>>>>)
appendFlag = sys.argv[10] # append flag for summary file (w for overwrite or a for append)

slopeLength = compartmentsSize*float(compartmentsTotal)

F_netRunoff = F_notET - F_intact

outputFile = prefixFile + ".out"
summaryFile = prefixFile + ".sum"
tabFile = prefixFile + ".tab"

if debugArg == "True":
 debugFlag = 1
else:
 debugFlag = 0

if graphicArg == "True":
 graphicFlag = 1
else:
 graphicFlag = 0

J. A. Dyer
SRNL-L3200-2018-00067
Page 24
June 6, 2018

print " compartmentsSize:", compartmentsSize
print " compartmentsTotal:", compartmentsTotal
print " slopeLength:", slopeLength
print " percentSubsided:", percentSubsided
print " F_notET:", F_notET
print " F_intact:", F_intact
print " realizations:", realizations
print " outputFile:", outputFile

output = open(outputFile, appendFlag)
output.write(" Compartment size: %f\n" % (compartmentsSize))
output.write(" Total number of compartments: %d\n" % (compartmentsTotal))
output.write(" Slope length: %f\n" % (slopeLength))
output.write(" Percent subsided compartments: %f\n" % (percentSubsided))
output.write(" Flux, intact cover: %f\n" % (F_intact))
output.write(" Flux, subsided cover: %f\n" % (F_notET))
output.write(" Realizations: %d\n" % (realizations))

summary = open(summaryFile, appendFlag)
summary.write(" Compartment size: %f\n" % (compartmentsSize))
summary.write(" Total number of compartments: %d\n" % (compartmentsTotal))
summary.write(" Slope length: %f\n" % (slopeLength))
summary.write(" Percent subsided compartments: %f\n" % (percentSubsided))
summary.write(" Flux, intact cover: %f\n" % (F_intact))
summary.write(" Flux, subsided cover: %f\n" % (F_notET))
summary.write(" Realizations: %d\n" % (realizations))

tabdelimited = open(tabFile, appendFlag)

Subsided trench compartments
if debugFlag or graphicFlag: output.write("==\n")
if debugFlag:
 output.write("Subsided compartments followed by upslope ratios\n")
elif graphicFlag:
 output.write("Subsided compartments\n")

compartments = range(1,compartmentsTotal+1)
if debugFlag: print "compartments:", compartments

stringIntact = []
for key in compartments:
 stringIntact.append(">")
if debugFlag: print stringIntact

realization = 0

J. A. Dyer
SRNL-L3200-2018-00067
Page 25
June 6, 2018

countSubsided = 0
countTotal = 0

maxCompartments = 0
minCompartments = [compartmentsTotal]
avgCompartments = float(0)

slicesIntact = 0
slicesSubsided = 0
slicesTotal = 0

avgLength = float(0)
avgCount = 0

lengths = []

avgLengthSingleHole = float(0)
avgCountSingleHole = 0

lengthsSingleHole = []

infiltration = float(0)

precise = 1000

while realization < realizations: #Monte Carlo loop
 realization += 1
 if debugFlag: print realization

 ### Randomly place subsided compartments
 subsided = []
 localCount = 0
 for i in compartments:
 draw = float(random.uniform(0,100*precise))/float(precise)
 countTotal += 1
 if draw < percentSubsided:
 countSubsided += 1
 subsided.append(i)
 localCount += 1
 maxCompartments = max(maxCompartments, localCount)
 minCompartments = min(minCompartments, localCount)
 avgCompartments = avgCompartments + float(localCount)

 if debugFlag: print "subsided:", subsided

J. A. Dyer
SRNL-L3200-2018-00067
Page 26
June 6, 2018

 sortedSubsided = sorted(subsided, key=float)
 if debugFlag: print "sortedSubsided:", sortedSubsided

 stringSubsided = list(stringIntact)
 for key in sortedSubsided:
 stringSubsided[int(key)-1] = 'O'
 if debugFlag: print "stringSubsided:", "".join(stringSubsided)

 ### Tally subsided versus intact slices (realizations)
 slicesTotal += 1
 if len(sortedSubsided) == 0:
 slicesIntact += 1
 else:
 slicesSubsided += 1

 ### Compute upslope length for slices with holes
 lengthSubsided = []

 for i in range(len(sortedSubsided)):
 if i == 0:
 length = sortedSubsided[i] - 1
 else:
 length = sortedSubsided[i] - sortedSubsided[i-1] - 1
 lengths.append(length)

 if debugFlag: print "i, sortedSubsided[i], length:", i, sortedSubsided[i], length

 lengthSubsided.append(length)

 if debugFlag: print "lengthSubsided:", lengthSubsided

 if debugFlag: print >> output, sortedSubsided
 if graphicFlag: print >> output, "".join(stringSubsided)

 for i in range(len(lengthSubsided)):
 avgCount += 1
 avgLength += lengthSubsided[i]
 if debugFlag: output.write("%s\n" % (lengthSubsided[i]))

 ### Compute upslope length after consolidating to 1 hole
 if len(sortedSubsided) > 0:
 iBottomHole = len(sortedSubsided)-1
 lengthSingleHole = sortedSubsided[iBottomHole] - 1
 lengthsSingleHole.append(lengthSingleHole)

J. A. Dyer
SRNL-L3200-2018-00067
Page 27
June 6, 2018

 if debugFlag: print "iBottomHole, sortedSubsided[iBottomHole], lengthSingleHole:", iBottomHole, sortedSubsided[iBottomHole],
lengthSingleHole

 avgCountSingleHole += 1
 avgLengthSingleHole += lengthSingleHole

 if debugFlag: output.write("%s single hole\n" % (lengthSingleHole))

 ### Compute infiltration
 infiltration = infiltration + float(compartmentsTotal - localCount)*F_intact

 for i in range(len(sortedSubsided)):
 if i == 0:
 length = sortedSubsided[i] - 1
 else:
 length = sortedSubsided[i] - sortedSubsided[i-1] - 1

 infiltration += F_notET + length*F_netRunoff

Compute statistics / proportions
avgCompartments /= float(realizations)

sampleSubsided = float(countSubsided)/float(countTotal)*100

if avgCount > 0:
 avgLength /= float(avgCount)
else:
 avgLength = -999

if len(lengths) > 0:
 medianLength = numpy.median(lengths)
 meanLength = numpy.mean(lengths)
 minLength = numpy.min(lengths)
 maxLength = numpy.max(lengths)
else:
 medianLength = -999
 meanLength = -999
 minLength = -999
 maxLength = -999

if avgCountSingleHole > 0:
 avgLengthSingleHole /= float(avgCountSingleHole)
else:
 avgLengthSingleHole = -999

J. A. Dyer
SRNL-L3200-2018-00067
Page 28
June 6, 2018

if len(lengthsSingleHole) > 0:
 medianLengthSingleHole = numpy.median(lengthsSingleHole)
 meanLengthSingleHole = numpy.mean(lengthsSingleHole)
 minLengthSingleHole = numpy.min(lengthsSingleHole)
 maxLengthSingleHole = numpy.max(lengthsSingleHole)
else:
 medianLengthSingleHole = -999
 meanLengthSingleHole = -999
 minLengthSingleHole = -999
 maxLengthSingleHole = -999

fractionSlicesIntact = float(slicesIntact)/float(slicesTotal)
fractionSlicesSubsided = float(slicesSubsided)/float(slicesTotal)

Compute infiltration, assuming one hole per subsided slice

Monte Carlo average
F_coverAvg = infiltration/(float(realizations)*float(compartmentsTotal))

preparation
f_subsidedSliceIntact = (float(compartmentsTotal) - 1.)/float(compartmentsTotal)
f_subsidedSliceSubsided = 1./float(compartmentsTotal)

F_runonAvg = avgLengthSingleHole*F_netRunoff

local
F_intactAvg = F_intact
F_subsidedAvg = F_notET + F_runonAvg

aligned with slope
F_intactDownAvg = F_intactAvg
F_subsidedDownAvg = f_subsidedSliceIntact*F_intactAvg + f_subsidedSliceSubsided*F_subsidedAvg

F_coverDownAvg = fractionSlicesIntact*F_intactDownAvg + fractionSlicesSubsided*F_subsidedDownAvg

transverse to slope
F_intactAcrossAvg = F_intactAvg
F_subsidedAcrossAvg = fractionSlicesIntact*F_intactAvg + fractionSlicesSubsided*F_subsidedAvg

F_coverAcrossAvg = f_subsidedSliceIntact*F_intactAcrossAvg + f_subsidedSliceSubsided*F_subsidedAcrossAvg

###write output to file
output.write("==\n")
output.write("Percent subsided/Avg upslope ratio\n")
output.write("\t%.2f/%.2f\n" % (percentSubsided, avgLength))

J. A. Dyer
SRNL-L3200-2018-00067
Page 29
June 6, 2018

output.write("Percent subsided/Avg upslope ratio single hole\n")
output.write("\t%.2f/%.2f\n" % (percentSubsided, avgLengthSingleHole))

output.write("Sample subsided\n")
output.write("\t%.2f\n" % (sampleSubsided))

output.write("Min/avg/max compartments\n")
output.write("\t%d/%.2f/%d\n" % (minCompartments, avgCompartments, maxCompartments))

output.write("Min/median/mean/max length\n")
output.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLength, medianLength, meanLength, maxLength))

output.write("Min/median/mean/max single hole length\n")
output.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLengthSingleHole, medianLengthSingleHole, meanLengthSingleHole, maxLengthSingleHole))

output.write("Slices intact/subsided (%)\n")
output.write("\t%.2f/%.2f\n" % (fractionSlicesIntact*100, fractionSlicesSubsided*100))

output.write("Subsided slice intact/subsided (%)\n")
output.write("\t%.2f/%.2f\n" % (f_subsidedSliceIntact*100, f_subsidedSliceSubsided*100))

output.write("Fluxes notET/intact/runoff (in/yr)\n")
output.write("\t%f/%f/%f\n" % (F_notET,F_intact,F_netRunoff))

output.write("Fluxes intactAvg/subsidedAvg (in/yr)\n")
output.write("\t%f/%f\n" % (F_intactAvg,F_subsidedAvg))

output.write("Fluxes intactDownAvg/subsidedDownAvg/coverDownAvg (in/yr)\n")
output.write("\t%f/%f/%f\n" % (F_intactDownAvg,F_subsidedDownAvg,F_coverDownAvg))

output.write("Fluxes intactAcrossAvg/subsidedAcrossAvg/coverAcrossAvg (in/yr)\n")
output.write("\t%f/%f/%f\n" % (F_intactAcrossAvg,F_subsidedAcrossAvg,F_coverAcrossAvg))

output.write("Fluxes coverAvg (in/yr)\n")
output.write("\t%f\n" % (F_coverAvg))
output.write("\n\n==\n")

summary.write("==\n")
summary.write("Percent subsided/Avg upslope ratio\n")
summary.write("\t%.2f/%.2f\n" % (percentSubsided, avgLength))

summary.write("Percent subsided/Avg upslope ratio single hole\n")
summary.write("\t%.2f/%.2f\n" % (percentSubsided, avgLengthSingleHole))

summary.write("Sample subsided\n")
summary.write("\t%.2f\n" % (sampleSubsided))

J. A. Dyer
SRNL-L3200-2018-00067
Page 30
June 6, 2018

summary.write("Min/avg/max compartments\n")
summary.write("\t%d/%.2f/%d\n" % (minCompartments, avgCompartments, maxCompartments))

summary.write("Min/median/mean/max length\n")
summary.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLength, medianLength, meanLength, maxLength))

summary.write("Min/median/mean/max single hole length\n")
summary.write("\t%.2f/%.2f/%.2f/%.2f\n" % (minLengthSingleHole, medianLengthSingleHole, meanLengthSingleHole, maxLengthSingleHole))

summary.write("Slices intact/subsided (%)\n")
summary.write("\t%.2f/%.2f\n" % (fractionSlicesIntact*100, fractionSlicesSubsided*100))

summary.write("Subsided slice intact/subsided (%)\n")
summary.write("\t%.2f/%.2f\n" % (f_subsidedSliceIntact*100, f_subsidedSliceSubsided*100))

summary.write("Fluxes notET/intact/runoff (in/yr)\n")
summary.write("\t%f/%f/%f\n" % (F_notET,F_intact,F_netRunoff))

summary.write("Fluxes intactAvg/subsidedAvg (in/yr)\n")
summary.write("\t%f/%f\n" % (F_intactAvg,F_subsidedAvg))

summary.write("Fluxes intactDownAvg/subsidedDownAvg/coverDownAvg (in/yr)\n")
summary.write("\t%f/%f/%f\n" % (F_intactDownAvg,F_subsidedDownAvg,F_coverDownAvg))

summary.write("Fluxes intactAcrossAvg/subsidedAcrossAvg/coverAcrossAvg (in/yr)\n")
summary.write("\t%f/%f/%f\n" % (F_intactAcrossAvg,F_subsidedAcrossAvg,F_coverAcrossAvg))

summary.write("Fluxes coverAvg (in/yr)\n")
summary.write("\t%f\n" % (F_coverAvg))
summary.write("\n\n==\n")

###write output to screen
print ("percentSubsided/avgLength/avgLengthSingleHole: \n\t%.2f/%.2f/%.2f" % (percentSubsided, avgLength, avgLengthSingleHole))

print ("sampleSubsided: %.2f" % (sampleSubsided))

print ("Slices intact/subsided (%)")
print ("\t%.2f/%.2f" % (fractionSlicesIntact*100, fractionSlicesSubsided*100))

print ("Subsided slice intact/subsided (%)")
print ("\t%.2f/%.2f" % (f_subsidedSliceIntact*100, f_subsidedSliceSubsided*100))

print ("Fluxes notET/intact/runoff (in/yr)")
print ("\t%f/%f/%f" % (F_notET,F_intact,F_netRunoff))

J. A. Dyer
SRNL-L3200-2018-00067
Page 31
June 6, 2018

print ("Fluxes intactAvg/subsidedAvg (in/yr)")
print ("\t%f/%f" % (F_intactAvg,F_subsidedAvg))

print ("Fluxes intactDownAvg/subsidedDownAvg/coverDownAvg (in/yr)")
print ("\t%f/%f/%f" % (F_intactDownAvg,F_subsidedDownAvg,F_coverDownAvg))

print ("Fluxes intactAcrossAvg/subsidedAcrossAvg/coverAcrossAvg (in/yr)")
print ("\t%f/%f/%f" % (F_intactAcrossAvg,F_subsidedAcrossAvg,F_coverAcrossAvg))

print ("Fluxes coverAvg (in/yr)")
print ("\t%f" % (F_coverAvg))

write one-line, tab-delimited, results summary
tabdelimited.write("%f\t%d\t%f\t%f\t%f\t%f\t%d\t%f\t%f\t%f\t%f\t%f\t%f\n" %
(compartmentsSize,compartmentsTotal,slopeLength,percentSubsided,F_notET,F_intact,realizations,avgLengthSingleHole,fractionSlicesIntact,fr
actionSlicesSubsided,f_subsidedSliceIntact,f_subsidedSliceSubsided,F_coverAvg))

J. A. Dyer
SRNL-L3200-2018-00067
Page 32
June 6, 2018

c:

S. E. Aleman, 735-A L. L. Hamm, 735-A
B. T. Butcher, 773-42A T. Hang, 773-42A
D. A. Crowley, 773-42A L. T. Reid, 773-A
T. L. Danielson, 703-41A T. Whiteside, 773-42A
K. L. Dixon, 773-42A J. L. Wohlwend, 703-41A
J. A. Dyer, 773-42A EM File, 773-42A – Rm. 243
G. P. Flach, 773-42A

	_SRNS contract no. and disclaimer
	SRNL-L3200-2018-00067
	Attachment 1
	Attachment 2
	Assumptions Used to Calculate Infiltration Rates for E-Area Intact and Subsidence Cases
	Attachment 3

