Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

INTER-OFFICE MEMORANDUM

SRNL-L2100-2012-00043

Tracking Number:10562Disposal Authority:NI-434-96-1.B.1.cRetention:10 yearsKeywords:13X, SF₆, Adsorption

October 11, 2012

TO: James E. Klein, 773-A

FROM: Steve Xiao, 999-2W

CONTRIBUTIONS: Henry T. Sessions

CC: Tom P. Varallo, 999-2W ORG_L2110

Adsorption Study of SF₆, H₂ and N₂ over 13X Molecular Sieve

Summary

This is a short study on SF₆, H₂ and N₂ adsorption over 13X Molecular Sieve. It is confirmed that 13X can be used to remove SF₆. At cryogenic temperature, 13X adsorbs significant amount of H₂ which can be purged out with He or He with N₂ doses. The N₂ adsorption was not affected with pre-adsorbed H₂.

Background

Molecular sieves are widely used to purify various streams in tritium process: either by removing hydrogen isotopes from, e.g., He-3 streams at cryogenic temperature; or by removing trace impurities from hydrogen stream at a relative higher temperature. Sulfur hexafluoride (SF₆) is used in the circuit breakers, switchgear, and other electrical equipment due to its unique dielectric property. Questions have been raised when a tritium stream is contaminated with SF₆, can the SF₆ be easily removed using a molecular sieve, and if it is a cryogenic adsorption condition, would the adsorbed tritium be recovered by displacement adsorption with nitrogen gas (N₂).

Materials

Sulfur hexafluoride (SF₆) is an inorganic, colorless, odorless, and non-flammable gas. SF₆ has an octahedral geometry, consisting of six fluorine atoms attached to a central sulfur atom. It is a hypervalent molecule, has poor water solubility (typical for a nonpolar gas), but is soluble in nonpolar organic solvents. It has a density of 6.12 g/L at sea level conditions, which is considerably higher than the density of air (1.225 g/L). It has a boiling point of -64°C (1 torr) and a melting point of -50°C.

We Put Science To Work

The Savannah River National Laboratory is managed and operated for the U.S. Department of Energy by

SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC AIKEN, SC USA 29808 • SRNL.DOE.GOV The following materials were used for the experiments:

13X molecular sieve, UOP MS-1347, Lot#2890000438 Sulfur hexafluoride, Sigma-Aldrich 295701-227G, Lot#MKB0598V Nitrogen, Air Liquide Alphagaz 2, 99.9995% Hydrogen, Air Liquide Alphagaz 2, 99.9995% Helium, Air Liquide Alphagaz 2, 99.9999%

Adsorption Study

Molecular sieve 13X was selected for SF_6 adsorption study based on its large pore size and the relatively bulky SF_6 molecule. The adsorption was measured as SF_6 uptake at corresponding equilibrium vapor pressure in a Micromeritics TriStar II 3020 instrument. Prior to the study, the 13X molecular sieve was degassed at 350°C under vacuum for 10 hours. Since SF_6 is a condensable gas at cryogenic temperature, two adsorptions were performed at ambient (22°C) and ice-water (0°C) temperatures, respectively. Figure 1 shows the adsorption / desorption isotherms for the 13X material. Even at ambient temperature, the 13X material adsorbed more than 10 std cc/g SF_6 at a pressure of about 20 torr, and 44 std cc/g at 800 torr. After the analysis, the 13X sample was shown to have gained about 9% mass, indicating that SF_6 was not removed during sample evacuation. Bake out of the 13X is probably needed for SF_6 removal. At 0°C (273 K), 13X adsorbed more SF_6 and had a steeper slope at low pressure. The removal of SF_6 at cryogenic temperature from a process stream is expected to be complete since the temperature is below its freezing point of SF_6 .

The heat of adsorption information is derived from the above adsorption data at two different temperatures. Figure 2 shows that the heat of adsorption is mostly in 30 - 45 kJ/mole range. This information indicates the sensitivity of adsorption to temperature, and allows estimation of adsorption at different temperatures.

In a parallel test, the 13X molecular sieve was loaded in a Micromeritics AutoChem II 2920 instrument, degassed with a He flow at 450°C for 1.0 hour. The 13X molecular sieve sample was then cooled in a liquid nitrogen bath (-196°C), saturated with flowing H₂ (about 90 std cc/g uptake in flow conditions - in static equilibrium conditions the measured uptake was 125.1 std cc/g at 800 torr), injected with N₂ gas in doses to the He carrier stream. The effluent off-gas was monitored by a Pfeiffer Prism Plus RGA (Residue Gas Analyzer by mass spectrum).

Figure 3 shows the N₂ and H₂ in off-gas. The initial 8 doses of N₂ were completely adsorbed. After a few partial peaks, the N₂ peaks reached a steady state, indicating saturation adsorption. The cumulative N₂ adsorption was 184 std cc/g. This is comparable to 229.4 std cc/g at 800 torr static equilibrium conditions (measured separately). On the other hand, the H₂ concentration decreased steadily until about 50 minutes when the adsorbed H₂ on 13X was completely stripped out. During the initial 50 minutes, the H₂ peaks trended with the N₂ injections. As a baseline comparison, H₂ elution in a He carrier gas without N₂ injection is shown in Figure 4. The figure shows the adsorbed H₂ was carried out by the He gas in about 50 minutes as well, simply by reducing its equilibrium vapor pressure over the sample.

Figure 1: SF₆ Adsorption Isotherm over 13X Molecular Sieve

Figure 2: Heat of Adsorption of SF₆ on 13X Molecular Sieve

N2 Injection to He Purging through 13X Molar Sieve Pre-adsorped with H2 at LN2 Temperature

Figure 3: N₂ and H₂ in off-gas over 13X at LN₂ Temperature

He Purging through 13X Molar Sieve Pre-adsorped with H2 at LN2 Temperature

Time, min

Figure 4: N₂ and H₂ in off-gas over 13X at LN₂ Temperature

Conclusions

1. SF₆ can be removed by 13 X molecular sieve. The pores of the 13X molecular sieve are big enough to adsorb SF₆ molecule. The 13X molecular sieve has significant adsorption capacity

even at ambient temperature. Complete removal of SF_6 is expected at lower temperatures. The adsorbed SF_6 will need to be baked out for removal from the 13X.

2. The adsorbed H_2 on 13X at LN₂ temperature will be purged out by either He or N₂. The N₂ doses had some effect promoting H_2 off-gas however the purging time for complete H_2 removal was about the same. The N₂ adsorption was not affected by pre-adsorbed H_2 at LN₂ temperature.

Future Work

More studies are needed at various temperatures and also use flowing adsorption to define a set of conditions to separate SF_6 from H_2 . Other inert gases, e.g., nitrogen or argon may be used to get the H_2 off without removing the SF_6 . The ultimate goal would be to keep the SF_6 on the 13X while recovering the H_2 (tritium) from the 13X. If successful, the data have potential to lead to a pilot scale test.