Contract No:

This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy (DOE) Office of Environmental Management (EM).

Disclaimer:

This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied:

- 1) warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of such use of any information, product, or process disclosed; or
- 2) representation that such use or results of such use would not infringe privately owned rights; or
- 3) endorsement or recommendation of any specifically identified commercial product, process, or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors.

Calculation Cover Sheet

Project			Calculation No. S-CLC-F-00140			Project NA	Number
F-Canyon H	F-Canyon BIO		S-CLC-F-00140		INA		
Title		Functional Classification		Sheet 1	of 129		
	Analysis of Red Oil Rea nyon Evaporators (U)	ctions	Discipline Risk Analysis G	Discipline			
Prelimina		Comm		roup	Confirm	ed	
	Program No.				Version 2	.2c	- <u> </u>
Pupose and	Objective	··· ·					· · ·
reactions in dominant s fault tree ar) lbs of	TBP, in F-Canyo	n ev	aporators 8	.5E, 7.6E	E, 7.7E, , and 9.3E. The
Summary o	of Conclusion						
credible (< ture, solver	Runaway red oil reactions involving more than 3,000 lbs of TBP in the evaporators are calculated to be in- credible (<10E-6/yr). Incredibility is achieved by a combination of old and new controls involving: tempera- ture, solvent inventory, and ensuring that aqueous is present during evaporation. The results of the analysis (i.e. incredibility) are contingent upon resolution of the open items listed in this calc-note.					rols involving: tempera- e results of the analysis	
Revision							
Rev. No.	Revision Description						
Rev. A	Initial Issue						
Rev. B	Replaced pages 1-129						
Size Off			<u></u>			·	
Sign Off Rev. No.	Originator (Print) Sign/Date		fication / king Method	(Pri		hecker	Manager (Print) Sign/Date
Rev. B	L. W. Christiansen C. R. Lux		$\overline{}$		1. C. PE	RVINS	D. A. Sharp
Rev. B,	3/10/95	~	HECKING		y		
Classification ENGINEERING DOC. CONTROL - SRS							

Calculation No.	S-CLC-F-00140
Sheet No. 2 of 1	29
Rev. B	

TABLE OF CONTENTS

Section	Page
OPEN ITEMS	2
ASSUMPTIONS	3
INTRODUCTION	4
INPUT	5
ANALYTICAL METHODS & COMPUTATIONS	5
RESULTS	8
CONCLUSION	8
REFERENCES	9
APPENDICES	11
Appendix A- Memoranda	12
Appendix B- Diagrams	25
Appendix C- Tabulation of Human Error Events	29
Appendix D- 8.5E Evaporator Fault Tree and Data	40
Appendix E- 9.3E Evaporator Fault Tree and Data	71
Appendix F- 7.6E & 7.7E Evaporator Fault Tree and Data	102

OPEN ITEMS

Facility Commitments

The following is a list of commitments made by the facility (Ref. 18) that must be implemented in order for runaway red oil reactions to be incredible. These commitments must be implemented in order for the status of this calculation to be changed to "confirmed."

Eauipment-Related

1 Low solvent hold tank (906, 14.7) level interlock and high level alarm will be installed or modified to ensure that solvent losses do not exceed 10,000 lbs of 30% TBP.

Operational Basis

2 Solvent wash waste will not be fed to the batch or continuous evaporators (the batch evaporator will be fed only the continuous evaporator bottoms). Solvent wash waste will be processed via caustic evaporation.

<u>Procedural</u>

The procedural open items listed below are referred to by number in the tabulation of human error events presented in Appendix C. Appendix C specifies which procedural open items require modification of existing procedures, and which require new procedures to be written.

- 3 Operator shall verify (via flow measurement) that steam is shut off (closing the steam block valve manually if needed) whenever temperature or level interlocks demand the steam valve to close.
- 4 The solvent hold tanks (14.7, 906) inventory will be administratively controlled to prevent losses in excess of 10,000 lbs of organic.
- 5 During start-up, evaporators will not be operated until levels in solvent hold tanks have stabilized (steady state).

Calculation No. S-CLC-F-0014	40
Sheet No. 3 of 129	
Rev. B	

- 6 Any actuation of the solvent hold tank's (906, 14.7) low level interlock, or discovery of large solvent losses, will require the evaporators to be shut down until accountability of the solvent inventory is performed.
- 7 Solvent hold tank operator (906, 14.7) will ensure that the solvent feed pump (to banks) is shut off if the low level interlock is demanded.
- 8 Operations will commit to emptying out the 8.7 and 8.3 feed tanks once every six months, such that three consecutive tank cleanings would have to be missed to build up 3,000 lbs of TBP (Ref. 19).

9 OMITTED

- 10 Administrative controls will be implemented to limit transfers from 17.5 to 8.7 (and from 7.3 to 8.3) to once per 72 hours to ensure that two full sump receipt tanks are not fed to the continuous evaporator feed tank in an evaporator cycle (Ref. 10).
- 11 Operators must verify that sp g in the batch evaporator is greater than 1.1 (matches that of the feed tank at the beginning of the batch) to ensure that an aqueous layer is present.

ASSUMPTIONS

Technical Bases

The following list contains details of system operation and characteristics used in the development of the fault tree. These items have formal documentation.

- 12 Tanks, cell ventilation, and the F-Canyon structure can withstand runaway red oil reactions involving less than 3,000 lbs of TBP with minimal consequences (Ref. 1).
- 13 Experimental results indicate that a 1 ft aqueous layer will prevent red oil reaction for up to 9 feet of organic (Ref. 11).
- 14 There exist level and temperature interlocks for the continuous evaporators (Ref. 10).
- 15 There exist temperature interlocks for the batch evaporator (Ref. 10).
- 16 Each batch evaporator will process no more than 100 batches/yr (Ref. 10).
- 17 Because small amounts of the TBP in the evaporator will degrade within 72 hours, TBP can not accumulate in the evaporators unless a process upset has occurred (Ref. 10).
- 18 The probability of having 10,000 lbs of solvent in the sump receipt tanks (7.3 & 17.5) is 2.0E-3 (Ref. 3).
- 19 Process upsets occur at a frequency of 1/10 years (Ref. 10).
- 20 Operator actions are considered independent when they involve different tanks since the operations usually involve different operators and are not performed simultaneously. A review of human error dependencies and common causes was performed (Ref. 9), and the facility has agreed to operational and procedural changes that eliminate most of the dependencies between operators found during the initial human factors review (i.e. acidic evaporation of solvent wash waste streams will not be performed). A tabulation of the human error events for the continuous and batch evaporators is presented in Appendix C. This table specifies which operator actions are contingent upon open items. The tables are

Calculation No. S-CLC-F-00140
Sheet No. 4 of 129
Rev. B

somewhat different than those listed in Reference 9 because of the previously mentioned facility commitments and because of logic changes to the trees subsequent to the initial review.

- 21 Temperature of concentrate in the de-entrainment column will increase and trigger the temperature interlock if there is a failure to supply feed to the evaporator. The temperature will increase due to an increase in the boiling point and sp g of the concentrate (Ref. 2).
- 22 There is sufficient time for the operator to shut off the steam block value if a high solution temperature is detected (Ref. 10)
- 23 Cold streams are assumed to be sent to the evaporator feed tanks 25% of the time (Ref. 10).

Experience-Related and General

The following assumptions are used in the fault tree and are assumed to be true, but do not have a formally documented technical basis:

- 24 Uncontrolled reactions do not generate sufficient heat to raise the evaporator contents over 120° C and to cause a red oil reaction. Most uncontrolled reactions lead to eructation of evaporator contents, and cause high delta-p's that lead to the steam being shut off. Since it is assumed that uncontrolled reactions can not lead to red oil reactions, these scenarios are not modeled.
- 25 Direct transfer errors to the evaporator feed tanks are not considered because direct solvent paths are assumed blocked off.
- 26 Continuous evaporator will not run more than a total of 4 days/month.
- 27 OMITTED
- All TBP is assumed to "survive" the continuous evaporator and will be fed to the batch evaporator.
- 29 No credit is given to the batch evaporator temperature interlock whenever a very large amount of solvent (\geq 30,000 lbs) is fed because there may not be sufficient aqueous to prevent a runaway reaction even if the steam is shut down.
- 30 Process upsets can be detected and corrected in 12 hours.
- 31 Calibrations for instrumentation are performed every 6 months.

Continuous Evaporator 9.3E (when different from 8.5E)

- 32 Can receive excess TBP from 1A bank with credit for low level detection in 14.7 to catch a large loss of solvent ($\geq 10,000$ lbs). For losses involving $\geq 30,000$ lbs, credit was given for detection via the low level alarm, since the full capacity of the tank is slightly less than 30,000 lbs and at least one full tank would have to be sent (Ref. 12).
- 33 Can receive excess TBP from 7.3 sump receipt tank. Transfers were assumed to be sent from 7.3 5% of the time, per cognizant engineer's estimate.

INTRODUCTION

A very small potential exists in the SRS separations operations for an uncontrolled reaction between tri-n-butyl phosphate (TBP) and nitric acid that could result in unacceptable damage to separations facilities and a significant release of radioactive materials.

Calculation No.	S-CLC-F-00140
Sheet No. 5 of 1	29
Rev. B	

The recent red oil (TBP and nitric acid) accident in Tomsk, Russia, resulted in considerable damage and radioactive release. Explosions have also occurred at SRS during the early years of operations. While the SRS separations facilities have operated without incident for many years, it is prudent to revisit the SRS defense in depth approach to preventing such an accident and to upgrade preventive procedures and hardware if appropriate.

A previous analysis (Ref. 16) was performed showing that the frequency of a runaway red oil reaction in the F-Canyon feed tanks, mixer-settlers and sump receipt tanks was incredible. This analysis presents the frequency of runaway red oil reactions in the F-Canyon evaporators.

Originally, due to the lack of experimental data, it was assumed in early evaporator fault trees that a red oil reaction could occur whenever TBP was exposed to temperatures exceeding 120° C or at temperatures above 80° C under certain conditions. Since evaporation of the solution is a very good mechanism for removing any excess heat from an uncontrolled reaction at temperatures below 120° C, the original fault trees modeled runaway reactions occurring during a) cool down b) heating prior to boiling and c) during excessive heating.

Experimental results demonstrate that this reaction would not occur if an aqueous layer (Ref. 1) is present unless the temperature exceeds 120° C. Since the vessels at SRS are open systems a second set of fault trees were developed to determine the frequency of a red oil reaction due to overheating or due to evaporation of the aqueous layer. The presence of aqueous in the evaporator tanks allow credit to be taken for temperature interlocks. The temperature of the solution is limited by the boiling point of the aqueous solution, and the sp g of the solution increases as the aqueous is evaporated (Ref. 2).

INPUT

Basic data used to quantify the fault trees came from the following sources: WSRC-TR-93-262, "Savannah River Site Generic Data Base Development", WSRC-TR-83-581, "Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities", Low Activity Waste (LAW) Study Guide (221-F Canyon), High Activity Waste (HAW) Study Guide (221-F Canyon), and estimates by F-Canyon and SRTC engineers/scientists (references 2,3,4,5). Complete sources for the basic events in the fault trees are listed in their corresponding "Basic Event and Type Code" reports, which are included in this Calc-Note. The basic event file also includes assumptions involving restoration and mission times used to calculate unavailabilities and unreliabilities of equipment.

ANALYTICAL METHODS AND COMPUTATIONS

Fault tree analysis was used to generate a logic model that generates "minimal" combinations (cutsets) of events that yield a runaway red oil reaction involving in excess of 3,000 lbs of TBP. The fault trees' logic structure was developed based on extensive discussions of a) canyon operations with F-Canyon engineers (D. Chostner, R. Eubanks (Ref. 10), S. Marek, and T. G. Campbell), and b) experimental results by SRTC (Ref. 1,11).

In order for a runaway red oil reaction of sufficient magnitude to compromise the F-Canyon containment to occur, it must involve at least 3,000 pounds of TBP. In addition, the organic must be heated to 120° C or above in the absence of an aqueous layer of at least one foot.

The fault trees model failures of the three main controls that prevent runaway red oil reaction: solvent inventory control, temperature control, and ensuring the presence of aqueous in the evaporator.

The analysis is conservative because the fault tree calculates the frequency of runaway reaction for 3,000 lbs (in the first two cases below), and for 10,000 lbs (in the last case). Reactions involving more than 3,000 pounds will happen with less frequency than those involving exactly 3,000 lbs because a large process upset is less likely than a small one, so the calculated frequency will conservatively bound the "actual" frequency.

Calculation No.	S-CLC-F-00140
Sheet No. 6 of 12	9
Rev. B	

The analysis does not take credit for items not committed to by the facility in the F-Canyon Basis for Interim Operation (BIO) (Ref. 18). If a non-safety class item performs a mitigative or preventative action, then no credit was taken for it in the analysis. However if the failure of an item (for example a pressure switch) could instigate a failure scenario, then its failure was accounted for in the fault trees.

Continuous Evaporators

- Excess TBP (≥ 3,000 lbs) is fed to the continuous evaporator and failure to regulate steam pressure to maintain a safe temperature. Credit is given to automatic shut down of steam by temperature interlocks. If the interlocks do not work, but the loss of control is detected by the temperature sensors or alarms, then credit is given to an operator for closing a steam block valve.
- Excess TBP (\geq 3,000 lbs) is fed to the continuous evaporator and failure to maintain an aqueous layer, and failure to shut down steam. Credit is given to automatic shut down of steam by level and temperature interlocks if the heating tubes begin to uncover. If the interlocks do not work, but failure is detected by the temperature or level sensors or alarms, then credit is given to an operator for closing a steam block valve. It is postulated that as long as the steam is shut off before all the aqueous is evaporated a runaway reaction is prevented. It should be noted that operators could be misled by the correct instrumentation signals (high level) to increase the steam flow and therefore remove the aqueous present.
- Excess TBP (≥ 10,000 lbs) is fed to the continuous evaporator and normal operation. 10,000 lbs of TBP represents enough organic so that any aqueous present will be displaced, so that no credit can be taken for cooling by an aqueous layer. Credit is given to automatic shut down of steam by the temperature interlock. It should be noted that, due to the large amount of TBP and small amount of aqueous in this scenario, a rapid response is necessary.

Batch Evaporators

- Excess TBP (\geq 3,000 lbs) is fed to the batch evaporator and failure to regulate steam pressure to maintain a safe temperature. Credit is given to automatic shut down of steam by the temperature interlocks. If the interlocks do not work, but the loss of control is detected (by the temperature sensors or alarms), then credit is given to an operator for closing a steam block valve.
- Excess TBP (≥ 3,000 lbs) is fed to the batch evaporator and failure to maintain an aqueous layer by overcooking the feed. Credit is given to automatic shut down of steam by the temperature interlock (due to an increase in boiling point).
- Excess TBP ($\geq 10,000$) is fed to the batch evaporator from the continuous evaporator bottoms tank during normal operation. Credit is given to verification that the sp g in the batch evaporator matches that of the evaporator feed tank at the beginning of the batch.

Calculation No.	S-CLC-F-00140
Sheet No. 7 of 1	29
Rev. B	

The following table shows the sources of TBP for each evaporator and mechanisms for detecting its presence.

Evaporator	Source of TBP	Detection
Continuous		
8.5E	Solvent Extraction Bank 2A Solvent Extraction Bank 2B (cold streams operations) Sump Receipt Tank 17.5 *	Organic high level alarm in tank 906 Organic low level alarm in tank 906
9.3E	Solvent Extraction Bank 1A Sump Receipt Tank 7.3 Tank 12.6, 1C Bank (cold streams operations)	Organic high level alarm in tank 14.7 Organic low level alarm in tank 14.7

*B-Line (via tank 9.7), this event was judged incredible because: a) no further processing of B-Line material is planned b) would have to transfer organic up to B-Line unnoticed then back down to canyon again

Evaporator	Source of TBP	Detection	
Batch			
7.6E	8.5 Bottoms Tank (see above 8.5E)	Verification of matching sp g between 7.6E and 7.8 prior to evaporation	
7.7E	8.5 Bottoms Tank (see above 8.5E)	Verification of matching sp g between 7.7E and 7.8 prior to evaporation	

Calculation No. S	-CLC-F-00140
Sheet No. 8 of 129)
Rev. B	

The fault trees underwent extensive revisions and the open items represent the list of requirements needed to prevent an unacceptable runaway red oil reaction frequency. The list below shows some of the additional controls that were considered:

- High and low sp g alarms for the evaporators
- Monitoring of feed flow rate into continuous evaporators
- Improved sampling & additional sampling requirements
- Improved decanting procedures
- High organic level alarms on decanters

Reference 17 presents a scoping calculation detailing the frequency of uncontrolled red oil reactions in F-Canyon if these additional features/controls are implemented. These controls cause a reduction in frequency of approximately two orders of magnitude less than those presented in the Results section.

RESULTS

The frequency of evaporator explosion due to red oil reaction is listed in the following table for each of the evaporators analyzed. The final sets of fault trees and resulting cutsets are included in Appendices D, E and F.

Evaporator	Operation	Frequency (/yr)
· · · · · · · · · · · · · · · · · · ·		
Continuous		
8.5E	Continuous Mode	2E-7
9.3E	Continuous Mode	2E-7
Batch		
7.6E	Batch (8.5E Bottoms Only)	4E-7
7.7E	Batch (8.5E Bottoms Only)	4E-7

CONCLUSION

The frequency of red oil explosion in each F-Canyon evaporator is determined to be incredible by fault tree analysis. These results are contingent upon the facility implementation of the identified open items. Runaway red oil reactions are unlikely to occur in the evaporators because very large amounts of TBP are needed to cause significant uncontrolled reactions in a well-vented system. Experimental analysis and consequence studies demonstrate that only reactions involving more than 3,000 lbs of TBP could result in unacceptable releases to the environment and public. These red oil reactions are prevented by maintaining administrative controls of solvent inventory, ensuring that the evaporator's temperature remains below 120° C, and ensuring that one foot of aqueous is maintained in the evaporator to provide adequate heat removal.

Calculation No. S-CLC-F-00140 Sheet No. 9 of 129 Rev. B

REFERENCES

- 1. M. L. Cowen, "Uncontrolled TBP-Nitric Acid BIO Risk Analysis (F-Canyon BIO Reference Paper, Uncontrolled TBP-Nitric Acid Reactions)", EPD-SSS-950007. Westinghouse Savannah River Co. February 3, 1995.
- 2. Inter-Office Memorandum from T. G. Campbell, "Boiling Points of Various Evaporator Solutions", Westinghouse Savannah River Co. August 26, 1994.
- 3. Inter-Office Memorandum from T. G. Campbell, "Probability for Accumulation of TBP in Canyon Sumps", Westinghouse Savannah River Co. June 3, 1994.
- 4. Inter-Office Memorandum from S. H.Marek, "8.5 Evaporator Information", Westinghouse Savannah River Co. August 4, 1994.
- 5. Inter-Office Memorandum from Tracy Rudisill (with attachments), "RE: Mixing Studies", Westinghouse Savannah River Co. August 30, 1994.
- 6. C. H. Blanton and S. A. Eide. "Savannah River Site Generic Data Base Development" ,,WSRC-TR-93-262. Westinghouse Savannah River Co. June 30, 1993
- 7. H.C. Benhardt et al. "Savannah River Site Human Error Data Base Development for Nonreactor Nuclear Facilities", WSRC-TR-93-581. Westinghouse Savannah River Co. February 28, 1994.
- 8. Low Activity Waste (LAW) Study Guide (221-F Canyon). Training Course NSATSYWE. Westinghouse Savannah River Co.
- 9. R. E. Vail, "Human Factors Review of the 'Red Oil' Explosion Fault Trees for the F Canyon Evaporators", EPD-SIM-940098. Westinghouse Savannah River Co. October 5, 1994.
- 10. D. F. Chostner and R. A. L. Eubanks, "Existing Parameters to Mitigate TBP Reaction in 221-F (U)", NMP-EFA-94-0289. Westinghouse Savannah River Company. October 14, 1994.
- 11. J. R. Smith and W. S. Cavin, "Isothermal Heat Measurements of TBP-Nitric Acid Solutions", WSRC-TR-94-0540. Westinghouse Savannah River Co. December 16, 1994.
- 12. V. M. Martinez, "F-Canyon Vessels Capacities (U)", NMP-EFA-94-0054. Westinghouse Savannah River Co. February 17, 1994.
- 13. High Activity Waste (HAW) Study Guide (221-F Canyon). Training Course NSATSYWE. Westinghouse Savannah River Co.
- 14. R. A. L. Eubanks, "906 Operator Independence (U)", NMP-EFA-94-0309. Westinghouse Savannah River Co. November 21, 1994.
- 15. H. A. Ford, "Common Cause Parameters Using the Multiple Greek Letter Method-Work Performed by Los Alamos National Laboratory for WSRC (U)", WSRC-TR-92-470. Westinghouse Savannah River Co. June 21, 1993.
- 16. C. R. Lux, L. W. Christiansen, K. M. Marshall, T. L. Slaven, "Frequency Determination for Runaway TBP/Nitric Acid Reactions in Support of the F-Canyon BIO (U)." S-CLC-F-00100. Westinghouse Savannah River Co. June 21, 1994.

Calculation No. S-CLC-F-00140
Sheet No. 10 of 129
Rev. B

- 17. E. V. Browne, L. W. Christiansen, C. R. Lux, "Scoping Study of Red Oil Reactions in F-Canyon Evaporators (U)." S-CLC-F-00146. Westinghouse Savannah River Co. January, 1995.
- 18. F-Canyon Basis for Interim Operation (U). WSRC-RP-93-1215.
- 19. Inter-Office Memorandum from R. A. L. Eubanks, "Solvent Additions (U)", Westinghouse Savannah River Co. March 8, 1995.

Calculation No. S-CLC-F-00140 Sheet No. 11 of 129 Rev. B

ATTACHMENTS AND APPENDICES

APPENDIX A - MEMORANDA (Page 12) APPENDIX B - DIAGRAMS (Process Flow Diagram, Evaporator Diagrams) (Page 25) APPENDIX C - TABULATION OF HUMAN ERROR EVENTS (Page 29) APPENDIX D - 8.5E EVAPORATOR FAULT TREE AND DATA (Page 40) APPENDIX E - 9.3E EVAPORATOR FAULT TREE AND DATA (Page 71) APPENDIX F - 7.6E & 7.7 EVAPORATOR FAULT TREE AND DATA (Page 102)

Calculation No. S-CLC-F-0014	10
Sheet No. 12 of 129	
Rev. B	

APPENDIX A - MEMORANDA

MEMO

Inter-Office Memorandum from T. G. Campbell, "Boiling Points of Various Evaporator Solutions", Westinghouse Savannah River Co. August 26, 1994.

Inter-Office Memorandum from T. G. Campbell, "Probability for Accumulation of TBP in Canyon Sumps", Westinghouse Savannah River Co. June 3, 1994.

Inter-Office Memorandum from Tracy Rudisill (with attachments), "RE: Mixing Studies", Westinghouse Savannah River Co. August 30, 1994.

Inter-Office Memorandum from S. H.Marek (with attachments), "8.5 Evaporator Information", Westinghouse Savannah River Co. August 4, 1994.

Inter-Office Memorandum from R. A. L. Eubanks, "Solvent Additions (U)", Westinghouse Savannah River Co. March 8, 1995.

PAGE 13
14
15
22

24

Calculation No. S-CLC-F-00140 Sheet No. 13 of 129 Rev. B

INTER-OFFICE MEMORANDUM Savannah River Site

26-Aug-1994 02:53pm EST

To: See Below

From: Thomas G. Campbell (CAMPBELL-TG-05094 AT A1 AT SASRS2) Dept: NMPD Safety Documentation Tel: 2-3319

Boiling Points of Various Evaporator Solutions

I have found some good information on vapor-liquid equilibrium and boiling points in DPSOP 250, "200 Areas Process Guidebook". Using this information, I have made some calculations to prove our assumption that the temperature interlock will be reached before all of the aqueous in an evaporator could be boiled away. In these calculations I assumed the temperature interlock was set at 118 C, although I'm sure we could set the interlock lower without adversely impacting operations.

Under normal operating conditions, a continuous evaporator runs with a boiling sp g of 1.25, and makes overheads with about 6% nitric acid. For this condition, the vapor-liquid equilibrium chart in DPSOP 250 gives a sodium nitrate concentration of 25% (about 3.7M) and 20% nitric acid (about 4.0M), with a boiling point of 112 C, which is consistent with our experience. Concentrating this solution to a boiling point of 118 C gives a final sodium nitrate concentration of 33% and nitric acid concentration of 23%. The sp g would be about 1.33 (boiling). The volume reduction to reach this point is only about 30%.

If you assume that the evaporator bottoms have no solids (very unusual), only nitric acid, then to make 6% nitric acid overheads would require the bottoms to be about 32% nitric acid, with a boiling point of about 106 C. To reach a boiling point of 118 C, the evaporator bottoms must be concentrated to about 56% nitric acid. My calculations indicate a volume reduction in this case of about 75%, which is probably somewhat larger than actual because of the conservative assumptions I made about the amount of nitric acid lost to the overheads.

In my opinion, expected operating conditions are closer to the first example, with the second example being more of a worse case. In both of the examples, however, the temperature interlock of 118 C would be reached and the evaporator shut down well before all of the aqueous is gone. As I mentioned earlier, the interlock probably can be lowered to at least 115 C, thus providing even more margin.

Although the above calculations were primarily done with the continous waste evaporators (9.3E and 8.5E) in mind, the same conclusions can be expected with the batch evaporators, especially when they are being used for acid stripping concentrated bottoms. As for 17.7E, you can concentrate uranyl nitrate to a boiling point of 118 C also, but the U concentration (wt%) would have to be increased from about 30% (1.5 sp g) to about 75% (sp g of over 2.2). I find it hard to believe that the evaporator would continue to operate under these conditions. The temperature interlock on 17.7E could be lowered substantially, however, probably to about 110 C.

Calculation No.	S-CLC-F-00140
Sheet No. 14 of	129
Rev. B	

INTER-OFFICE MEMORANDUM Savannah River Site

03-Jun-1994 04:38pm EDT

To: See Below

From: Thomas G. Campbell (CRMPBELL-TG-05094 AT A1 AT SASRS2) Dept: NPSR Tel: 2-3319

Probability for Accumulation of TBP in Canyon Sumps

Process solvent is expected to be received in canyon sump receipt tanks from time to time due to overflows and leaks from canyon tanks and piping. Procedures require that accumulated solvent be removed from receipt tanks before amounts (about 3000 pounds of TBP) are reached that could be a concern from a "red oil" reaction standpoint. The only way an amount can be received that is large enough to be of concern is from a single sump transfer. Experience indicates that the frequency of receiving such a large mass of organic material unexpectedly into a canyon vessel is very low. Myself, Ronnye Eubanks, and Dave Chostner conservatively estimate that a receipt of solvent, containing more than 3000 pounds of TBP, can be expected in the sump receipt tanks less than once every five years. This value is considered conservative because loss of such a large volume would be detected during operations. Actions other than transfer to sump receipt would be expected in these situations. Also, in our collective experience in the canyons (more than 40 years) we can recall of no occasion when such a large volume of organic material was received into a sump receipt tank from a leak, spill, or transfer error. Please incorporate this value (once in 5 years for receipt of large volumes of solvent in sump receipt) into the sump receipt tank fault trees for "red oil".

Distribution:

- Lance W. Christiansen To: (CHRISTIANSEN-LW-L0489 @A1@SLSRP1)
- **ONELIO M. EBRA-LIMA** CC:
- (EBRALIMA-OM-T5452 @A1@SLSRP1) (LUX-CR-T7244 @A1@SLSRP1) (HARRIS-WE-05596 AT A1 AT SASRS2)
- ČČ: CC: Ray Lux William E. Harris
- David F. Chostner CC:
- (CHOSTNER-DF-03090 AT A1 AT SASRS2)
- CC:
- Ronnye A. L. Eubanks (EUBANKS-RA-06258 AT A1 AT SASRS2)
- (MAŔEK-SH-07923 AT A1 AT SASRS2) CC: Sandra H. Marek

Calculation No.	S-CLC-F-00140
Sheet No. 15 of	129
Rev. B	

INTER-OFFICE MEMORANDUM

Savannah River Site

30-Aug-1994 02:25pm EST

To: ONELIO M. EBRA-LIMA (EBRALIMA-OM-T5452 AT A1 AT SLSRP1)

CC: Thomas G. Campbell

(CAMPBELL-TG-05094 @Al@SASR52)

From: Tracy 5. Rudisill (RUDISILL-TS-T6876 AT AL AT SLSRPL Dept: CPT/CHEMICAL & HYDROGEN TECH Tel : 52539

RE: Mixing Studies

Neguib estimates the experimental work will be complete by the end of September. He anticipates data analysis and documentation will require approximately 2 months. Therefore, we should have correlation(s) for the canyon tanks by the end of November.

Calculation No.	S-CLC-F-00140
Sheet No. 16 of	129
Rev. B	

INTER-OFFICE MEMORANDOM

Savannah River Site

22-Jul-1994 08:15am EST

To: See Below

From: Neguib M. Hassan **Dept:** CPT/CHEMICAL & HYDROGEN TECH Tel : x5-5765

RE: Good News About Mixing Tests

Thomas G. Campbell

This may be a worse case, but in the next few runs we will reduce the liquid level in small increments and establish a mixing pattern. We know thus far that just below the second impeller (approximately 12 inches of liquid in our tank or about 5.3 feet scaled canyon tank-8' x 11') no organic is detectable in the current sampling procedure.

Distribution:

To:

(CAMPBELL-TG-05094 AT A1 AT SASR52) DON F. PADDLEFORD CC: (PADDLEFORD-DF-H0010 AT Al AT SLSRPl) CC: Tracy 5. Rudisill (RUDISILL-TS-T6876 AT AL AT SLSRPl) CC: Lee Hyder James R. Schornhorst CC: (SCHORNHORST-JR-Y4538 AT Al AT SLSRPl) William E. Harris CC: cc: Ray Lux ONELIO M. EBRA-LIMA CC: (EBRALIMA-OM-T5452 AT Al AT SLSRPl) Thomas G. Campbell CC: CC: David F. Chostner CC: Charlene B. Cochran CC: CLINT R. WOLFE CC: Jim Knight CC: Frank R. Graham CC: Neguib M. Hassan Major C. Thompson CC:

(HYDER-ML-T3258 AT AL AT SLSRPl)

(HASSAN-NM-L2267 AT A1 AT SASR52)

(HARRIS-WE-05596 @AlQSASRS2) (LUX-CR-T7244 AT Al AT SLSRPl)

(CAMPBELL-TG-05094 @Al@SASRS2)
(CHOSTNER-DF-03090 @Al@SASRS2)
(COCHRAN-CB-06921 @Al@SASRS2)
(WOLFE-CR-H0021 AT AL AT SLSRPL)
(KNIGHT-JR-T3559 AT AL AT SLSRPL)
(GRAHAM-FR-T6413 AT AL AT SLSRPL)
(HASSAN-NM-L2267 @Al@SASRS2)
(THOMPSON-MC-T3324 @Al@SASRS2)

Calculation No. S-CLC-F-00140 Sheet No. 17 of 129 Rev. B

INTER-OFFICE MEMORANDU~ Savannah River Site

22-Jul-1994 08:23am EST

To:See Below

From: Tracy 5. Rudisill
(RUDISILL-TS-T6876 AT A1 AT SLSRP1
Dept: CPT/CHEMICAL & HYDROGEN TECH
Tel : 52539

RE: Good News About Mixing Tests

When the tank is full, two agitator blades are used to mix the tank. This doubles the mixing power and is apparently enough to form a dispersion which reaches the dip tube at the bottom of the tank. In Neguib's previous work, the liquid level was just below the bottom of the top agitator.

There will also be a very low liquid level where the mixing quality would permit the detection of large amounts of organic. At this point, a single agitator would provide enough power to disperse the organic phase. Intermediate levels seem to be the problem.

Distribution:

To: Charlene B. Cochran (COCHRAN-CB-06921 AT Al AT To: Thomas G. Campbell	SASRS2) (CAMPBELL-TG-05094 @Al@SASR52)
CC: DON F. PADDLEFORD	
(PADDLEFORD-DF-HOO10 AT Al	
CC: Lee Hyder	(HYDER-ML-T3258 AT AL AT SLSRPL)
CC: James R. Schornhors	c c
(SCHORNHORST-JR-Y4538 AT A	LAT SLSRP1)
CC: William E. Harris	(HARRIS-WE-05596 @Al@SASRS2)
CC: Ray Lux	(LUX-CR-T7244 AT AL AT SLSRPL)
CC: ONELIO M. EBRA-LIMA	
(EBRALIMA-OM-T5452 AT Al A	ſSLSRP1)
CC: David F. Chostner	(CHOSINER-DF-03090 @AlqsAsR52)
CC: CLINT R. WOLFE	(WOLFE-CR-H0021 AT AL AT SLSRPL)
CC: Jim Knight	(KNIGHT-JR-T3559 AT Al AT SLSRPL)
CC: Frank R. Graham	(GRAHAM-FR-T6413 AT Al AT SLSRPl)
CC: Nequib M. Hassan	(HASSAN-NM-L2267 @AlgSASR52)
CC: Major C. Thompson	(THOMPSON-MC-T3324 @A1@SASRS2)

Calculation No.	S-CLC-F-00140
Sheet No. 18 of	129
Rev. B	

INTER-OFFICE MEMORANDUM Savannah River Site

22-Jul-1994 11:02am EST

To: See Below

From: Thomas G. Campbell (CAMPBELL-TG-05094 AT Al AT SASR52 Dept: NMPD Safety Documentation Tel: 2-3319

RE: Good News About Mixing Tests

I've got to make one more comment on this subject.

If covering the top set of agitator blades is what is important for sampling organic, then a tank certainly does not have to be "full". In canyon tanks, both sets of agitator blades are covered by the time the tank is about half full. In 8xll and lox1l tanks, there is four feet between the bottom of the lower set of blades and the bottom of the upper set of blades. The bottom set of blades is within about six inches of the bottom of the tank. Therefore both sets of blades should be covered before the tank contains five feet of solution. In bicell tanks, which are 15 feet high, there is six feet from bottom to bottom of the agitator blades. Again, the upper set of blades are covered by the time the tank is about half full.

From what Neguib said in his message, I'm not sure your test equipment is scaled correctly. He said the upper impeller is uncovered at 5'3" of liquid level. In an actual canyon 8x11 tank, the upper set of agitator blades would be covered by at least 3 inches of solution at that level.

Distribution:

To: Tracy 5. Rudisill (RUDISILL-TS-T6876 AT AL AT SLSRPL)

Charlene B. Cochran CC: (COCHRAN-CB-06921 AT Al AT SASRS2) DON F. PADDLEFORD CC: (PADDLEFORD-DF-HOO10 AT A1 AT SLSRPl) CC: Lee Hyder CC: James R. Schornhorst (SCHORNHORST-JR-Y4538 AT Al AT SLSRPl) William E Harris CC: CC: Ray Lux ONELIO M EBRA-LIMA CC: (EBRALIMA-OM-T5452 AT AL AT SLSRPL) CC: David F Chostner CLINT R. WOLFE CC: Jim Knight CC: CC: Frank R. Graham CC: Neguib M Hassan CC: Major C Thomp~on

(HYDER-ML-T3258 AT Al AT SLSRPl)

(HARRIS-WE-05596 QAl@SASRS2) (LUX-CR-T7244 AT Al AT SLSRPl)

(CHOSTNER-DF-03090 @Al@SASRS2)
(WOLFE-CR-H0021 AT Al AT SLSRPl)
(KNIGHT-JR-T3559 AT Al AT SLSRPl)
(GRAHAM-FR-T6413 AT Al AT SLSRPl)
(HASSAN-NM-L2267 QAl@SASRS2)
(THOMPSON-MC-T3324 @Al@SASR52)

Calculation No.	S-CLC-F-00140
Sheet No. 19 of	129
Rev. B	

INTER-OFFICE MEMORANDUM

Savannah River Site

22-Jul-1994 11:40am EST

To: See Below

From: DON F. PADDLEFORD (PADDLEFORD-DF-HOO10 AT AL AT SLSRPL Dept: WESTINGHOUSE STAFF Tel :45420

RE: Good News About Mixing Tests

I guess I meant---filled above upper stirrer blades--- instead of full. Apparently this would only be half full according to T. Campbell's response. You may well be right that full could represent a bad situation too?? I don't know whether the scale tests covered this "full" depth or not.

Don

Distribution:

<pre>(COCHRAN-CB-06921 AT AL AT SASRS2) CC: DON F. PADDLEFORD (PADDLEFORD-DF-HOO10 AT AL AT SLSRPl) CC: Tracy S. Rudisill (RUDISILL-TS-T6876 AT AL AT SLSRPl) CC: Lee Hyder (HYDER-ML-T3258 AT AL AT SLSRPl) CC: James R. Schornhorst (SCHORNHORST-JR-Y4538 AT AL AT SLSRPl) CC: William E. Harris (HARRIS-WE-05596 @AL@SASRS2) CC: Ray Lux (LUX-CR-T7244 AT AL AT SLSRPl) CC: ONELIO M. EBRA-LIMA (EBRALIMA-OM-T5452 AT AL AT SLSRPl) CC: Thomas G. Campbell (CAMPBELL-TG-05094 @AL@SASRS2) CC: CLINT R. WOLFE (WOLFE-CR-HO021 AT AL AT SLSRPl) CC: Jim Knight (~NIGHT-JR-T3559 AT AL AT SLSRPl) CC: Frank R. Graham (GRAHAM-FR-T6413 AT AL AT SLSRPl) CC: Neguib M. Hassan (HASSAN-NM-L2267 @AL@SASR52) CC: Major C. Thompson (THOMPSON-MC-T3324 @AL@SASRS2) </pre>	To:	Charlene B. Cochran		
<pre>(PADDLEFORD-DF-HOO10 AT AL AT SLSRPl) CC: Tracy S. Rudisill (RUDISILL-TS-T6876 AT AL AT SLSRPl) CC: Lee Hyder (HYDER-ML-T3258 AT AL AT SLSRPl) CC: James R. Schornhorst (SCHORNHORST-JR-Y4538 AT AL AT SLSRPl) CC: William E. Harris (HARRIS-WE-05596 @Al@SASRS2) CC: Ray Lux (LUX-CR-T7244 AT AL AT SLSRPl) CC: ONELIO M. EBRA-LIMA (EBRALIMA-OM-T5452 AT AL AT SLSRPl) CC: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASRS2) CC: David F. Chostner (CHOSTNER-DF-03090 @Al@SASRS2) CC: Charlene B. Cochran (COCHRAN-CB-06921 @Al@SASRS2) CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT AL AT SLSRPl) CC: Jim Knight (~NIGHT-JR-T3559 AT AL AT SLSRPL) CC: Frank R. Graham (GRAHAM-FR-T6413 AT AL AT SLSRPL) CC: Neguib M. Hassan (HASSAN-NM-L2267 @Al@SASR52)</pre>	(COCHR	AN-CB-06921 AT Al AT SASRS2)	
<pre>(PADDLEFORD-DF-HOO10 AT AL AT SLSRPl) CC: Tracy S. Rudisill (RUDISILL-TS-T6876 AT AL AT SLSRPl) CC: Lee Hyder (HYDER-ML-T3258 AT AL AT SLSRPl) CC: James R. Schornhorst (SCHORNHORST-JR-Y4538 AT AL AT SLSRPl) CC: William E. Harris (HARRIS-WE-05596 @Al@SASRS2) CC: Ray Lux (LUX-CR-T7244 AT AL AT SLSRPl) CC: ONELIO M. EBRA-LIMA (EBRALIMA-OM-T5452 AT AL AT SLSRPl) CC: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASRS2) CC: David F. Chostner (CHOSTNER-DF-03090 @Al@SASRS2) CC: Charlene B. Cochran (COCHRAN-CB-06921 @Al@SASRS2) CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT AL AT SLSRPl) CC: Jim Knight (~NIGHT-JR-T3559 AT AL AT SLSRPL) CC: Frank R. Graham (GRAHAM-FR-T6413 AT AL AT SLSRPL) CC: Neguib M. Hassan (HASSAN-NM-L2267 @Al@SASR52)</pre>	~~			
CC:Tracy S. Rudisill(RUDISILL-TS-T6876 AT Al AT SLSRPl)CC:Lee Hyder(HYDER-ML-T3258 AT Al AT SLSRPl)CC:James R. Schornhorst(SCHORNHORST-JR-Y4538 AT Al AT SLSRPl)CC:William E. Harris(HARRIS-WE-05596 @Al@SASRS2)CC:Ray Lux(LUX-CR-T7244 AT Al AT SLSRPl)CC:ONELIO M. EBRA-LIMA(EBRALIMA-OM-T5452 AT Al AT SLSRPl)CC:Thomas G. Campbell(C:David F. Chostner(C:David F. Chostner(C:Charlene B. Cochran(C:CLINT R. WOLFE(WOLFE-CR-H0021 AT Al AT SLSRPl)CC:Jim Knight(C:Frank R. Graham(GRAHAM-FR-T6413 AT Al AT SLSRPl)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	++-			
<pre>(RUDISILL-TS-T6876 AT AI AT SLSRPl) CC: Lee Hyder (HYDER-ML-T3258 AT AI AT SLSRPl) CC: James R. Schornhorst (SCHORNHORST-JR-Y4538 AT AI AT SLSRPl) CC: William E. Harris (HARRIS-WE-05596 @Al@SASRS2) CC: Ray Lux (LUX-CR-T7244 AT AI AT SLSRPl) CC: ONELIO M. EBRA-LIMA (EBRALIMA-OM-T5452 AT AI AT SLSRPl) CC: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASRS2) CC: David F. Chostner (CHOSTNER-DF-03090 @Al@SASRS2) CC: Charlene B. Cochran (COCHRAN-CB-06921 @Al@SASRS2) CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT AI AT SLSRPl) CC: Jim Knight (~NIGHT-JR-T3559 AT AI AT SLSRPl) CC: Frank R. Graham (GRAHAM-FR-T6413 AT AI AT SLSRPl) CC: Neguib M. Hassan (HASSAN-NM-L2267 @Al@SASR52)</pre>	(PADDL	EFORD-DF-HOO10 AT AL AT SLSR	РТ)
CC:Lee Hyder(HYDER-ML-T3258 AT Al AT SLSRPl)CC:James R. Schornhorst(SCHORNHORST-JR-Y4538 AT Al AT SLSRPl)CC:William E. Harris(HARRIS-WE-05596 @Al@SASRS2)CC:Ray Lux(LUX-CR-T7244 AT Al AT SLSRPl)CC:ONELIO M. EBRA-LIMA(EBRALIMA-OM-T5452 AT Al AT SLSRPl)CC:Thomas G. Campbell(CAMPBELL-TG-05094 @Al@SASRS2)CC:David F. Chostner(CHOSTNER-DF-03090 @Al@SASRS2)CC:Charlene B. Cochran(COCHRAN-CB-06921 @Al@SASRS2)CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT Al AT SLSRPl)CC:Jim Knight(GRAHAM-FR-T6413 AT Al AT SLSRPl)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	CC:	Tracy S. Rudisill		
CC: James R. Schornhorst (SCHORNHORST-JR-Y4538 AT A1 AT SLSRP1) CC: William E. Harris (HARRIS-WE-05596 @Al@SASRS2) CC: Ray Lux (LUX-CR-T7244 AT A1 AT SLSRP1) CC: ONELIO M. EBRA-LIMA (EBRALIMA-OM-T5452 AT A1 AT SLSRP1) CC: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASRS2) CC: David F. Chostner (CHOSTNER-DF-03090 @Al@SASRS2) CC: Charlene B. Cochran (COCHRAN-CB-06921 @Al@SASRS2) CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT A1 AT SLSRP1) CC: Jim Knight (~NIGHT-JR-T3559 AT A1 AT SLSRP1) CC: Frank R. Graham (GRAHAM-FR-T6413 AT A1 AT SLSRP1) CC: Neguib M. Hassan (HASSAN-NM-L2267 @Al@SASR52)	(RUDIS	ILL-TS-T6876 AT Al AT SLSRPl)	
<pre>(SCHORNHORST-JR-Y4538 AT A1 AT SLSRP1) CC: William E. Harris (HARRIS-WE-05596 @Al@SASRS2) CC: Ray Lux (LUX-CR-T7244 AT A1 AT SLSRP1) CC: ONELIO M. EBRA-LIMA (EBRALIMA-OM-T5452 AT A1 AT SLSRP1) CC: Thomas G. Campbell (CAMPBELL-TG-05094 @Al@SASRS2) CC: David F. Chostner (CHOSTNER-DF-03090 @Al@SASRS2) CC: Charlene B. Cochran (COCHRAN-CB-06921 @Al@SASRS2) CC: CLINT R. WOLFE (WOLFE-CR-H0021 AT A1 AT SLSRP1) CC: Jim Knight (~NIGHT-JR-T3559 AT A1 AT SLSRP1) CC: Frank R. Graham (GRAHAM-FR-T6413 AT A1 AT SLSRP1) CC: Neguib M. Hassan (HASSAN-NM-L2267 @Al@SASR52)</pre>	CC:	Lee Hyder	(HYDER-ML-T3258 AT Al AT SLSRP1)
CC:William E. Harris(HARRIS-WE-05596 @Al@SASRS2)CC:Ray Lux(LUX-CR-T7244 AT Al AT SLSRPl)CC:ONELIO M. EBRA-LIMA(EBRALIMA-OM-T5452 AT Al AT SLSRPl)CC:Thomas G. Campbell(CAMPBELL-TG-05094 @Al@SASRS2)CC:David F. Chostner(CHOSTNER-DF-03090 @Al@SASRS2)CC:Charlene B. Cochran(CCCHRAN-CB-06921 @Al@SASRS2)CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT Al AT SLSRPl)CC:Jim Knight(SRAHAM-FR-T6413 AT AL AT SLSRPl)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	CC:	James R. Schornhorst		
CC:Ray Lux(LUX-CR-T7244 AT Al AT SLSRPl)CC:ONELIO M. EBRA-LIMA(EBRALIMA-OM-T5452 AT Al AT SLSRPl)CC:Thomas G. Campbell(CAMPBELL-TG-05094 @Al@SASRS2)CC:David F. Chostner(CHOSTNER-DF-03090 @Al@SASRS2)CC:Charlene B. Cochran(CCHRAN-CB-06921 @Al@SASRS2)CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT Al AT SLSRPl)CC:Jim Knight(STARAR R. Graham(GRAHAM-FR-T6413 AT Al AT SLSRPl)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	(SCHOR	NHORST-JR-Y4538 AT Al AT SLS	RP.	1)
CC:ONELIO M. EBRA-LIMA(EBRALIMA-OM-T5452 AT A1 AT SLSRP1)CC:Thomas G. Campbell(C:David F. Chostner(C:Charlene B. Cochran(C:CLINT R. WOLFE(C:Jim Knight(C:Jim Knight(C:Frank R. Graham(C:Neguib M. Hassan	cc:	William E. Harris	(HARRIS-WE-05596 @Al@SASRS2)
(EBRALIMA-OM-T5452 AT A1 AT SLSRP1)CC:Thomas G. Campbell(CAMPBELL-TG-05094 @A1@SASRS2)CC:David F. Chostner(CHOSTNER-DF-03090 @A1@SASRS2)CC:Charlene B. Cochran(COCHRAN-CB-06921 @A1@SASRS2)CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT A1 AT SLSRP1)CC:Jim Knight(C:Frank R. Graham(GRAHAM-FR-T6413 AT A1 AT SLSRP1)CC:Neguib M. Hassan(HASSAN-NM-L2267 @A1@SASR52)	cc:	Ray Lux	(LUX-CR-T7244 AT Al AT SLSRPl)
CC:Thomas G. Campbell(CAMPBELL-TG-05094 @Al@SASRS2)CC:David F. Chostner(CHOSTNER-DF-03090 @Al@SASRS2)CC:Charlene B. Cochran(COCHRAN-CB-06921 @Al@SASRS2)CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT AL AT SLSRPL)CC:Jim Knight(~NIGHT-JR-T3559 AT AL AT SLSRPL)CC:Frank R. Graham(GRAHAM-FR-T6413 AT AL AT SLSRPL)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	cc:	ONELIO M. EBRA-LIMA		
CC:David F. Chostner(CHOSTNER-DF-03090 @Al@SASRS2)CC:Charlene B. Cochran(COCHRAN-CB-06921 @Al@SASRS2)CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT AL AT SLSRPL)CC:Jim Knight(~NIGHT-JR-T3559 AT AL AT SLSRPL)CC:Frank R. Graham(GRAHAM-FR-T6413 AT AL AT SLSRPL)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	(EBRAL	IMA-OM-T5452 AT Al AT SLSRP1)	
CC:Charlene B. Cochran(COCHRAN-CB-06921 @Al@SASRS2)CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT AL AT SLSRPL)CC:Jim Knight(~NIGHT-JR-T3559 AT AL AT SLSRPL)CC:Frank R. Graham(GRAHAM-FR-T6413 AT AL AT SLSRPL)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	CC:	Thomas G. Campbell	(CAMPBELL-TG-05094 @Al@SASRS2)
CC:CLINT R. WOLFE(WOLFE-CR-H0021 AT AL AT SLSRPL)CC:Jim Knight(~NIGHT-JR-T3559 AT AL AT SLSRPL)CC:Frank R. Graham(GRAHAM-FR-T6413 AT AL AT SLSRPL)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	CC:	David F. Chostner	(CHOSTNER-DF-03090 @Al@SASRS2)
CC:Jim Knight(~NIGHT-JR-T3559 AT Al AT SLSRPl)CC:Frank R. Graham(GRAHAM-FR-T6413 AT Al AT SLSRPl)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	CC:	Charlene B. Cochran	(COCHRAN-CB-06921 @Al@SASRS2)
CC:Frank R. Graham(GRAHAM-FR-T6413 AT Al AT SLSRPl)CC:Neguib M. Hassan(HASSAN-NM-L2267 @Al@SASR52)	CC:	CLINT R. WOLFE	(WOLFE-CR-H0021 AT Al AT SLSRPl)
CC: Neguib M. Hassan (HASSAN-NM-L2267 @Al@SASR52)	CC:	Jim Knight	(~NIGHT-JR-T3559 AT Al AT SLSRPl)
	CC:	Frank R. Graham	(GRAHAM-FR-T6413 AT Al AT SLSRPl)
CC: Major C. Thompson (THOMPSON-MC-T3324 @Al@SASRS2)	cc:	Neguib M. Hassan	(HASSAN-NM-L2267 @Al@SASR52)
	cc:	Major C. Thompson	(THOMPSON-MC-T3324 @Al@SASRS2)

Calculation No. S-CLC-F-00140 Sheet No. 20 of 129 Rev. B

(HASSAN-NM-L2267 AT Al AT SASR52

INTER-OFFICE MEMORANDUM

Savannah River Site

22-Jul-1994 12:30pm EST

To: See Below

From: Neguib M. Hassan Dept: CPT/CHEMICAL & HYDROGEN TECH Tel: x5-5765

RE: Good News About Mixing Tests

Thomas G. Campbell

The second impeller in our small tank is currently located 14 inches from the bottom of the tank and it can be moved up/down. In the prelimenary test runs, we collected data at 6, 8 and 12 inches with one set of impeller and found that no organic is detectable at the 12 inch level even when the initial concentration of organic was 8% volume. In the current runs, we raised the liquid level above the second impeller to see the effect. As I mentioned we can locate the second impeller at any point in the shaft and repeat an experiment. Thanks for the information

Distribution:

To:

(CAMPBELL-TG-05094 AT Al AT SASR52) CC: Tracy S. Rudisill (RUDISILL-TS-T6876 AT Al AT SLSRPl) Charlene B. Cochran CC: (COCHRAN-CB-06921 AT Al AT SASRS2) DON F. PADDLEFORD CC: (PADDLEFORD-DF-HOO10 AT AL AT SLSRPl) Lee Hyder ∞ James R. Schornhorst CC: (SCHORNHORST-JR-Y4538 AT Al AT SLSRPl) William E. Harris CC: CC: Ray Lux ONELIO M. EBRA-LIMA CC: (EBRALIMA-OM-T5452 AT Al AT SLSRPl) cc: David F Chostner CLINT R. WOLFE CC: CC: Jim Knight CC: Frank R. Graham Nequib M. Hassan CC: Major C. Thompson CC:

(HYDER-ML-T3258 AT Al AT SLSRPl)

(HARRIS-WE-05596 @Al@SASRS2)

(LUX-CR-T7244 AT Al AT SLSRP1)

(CHOSTNER-DF-03090 @Al@SASR52)
(WOLFE-CR-H0021 AT Al AT SLSRPl)
(KNIGHT-JR-T3559 AT Al AT SLSRPl)
(GRAHAM-FR-T6413 AT AL AT SLSRPl)
(HASSAN-NM-L2267 @Al@SASR52)
(THOMPSON-MC-T3324 @Al@SASR52)

Calculation No. S-CLC-F-00140
Sheet No. 21 of 129
Rev. B

INTER-OFFICE MEMORANDUM

Savannah River Site

30-Aug-1994 03:35pm EST

To: See Below

From: Thomas G. Campbell
(CAMPBELL-TG-05094 AT Al AT SASR52)
Dept: NMPD Safety Documentation
Tel : 2-3319

See Attached

It looks like it will be a long time before we have anything conclusive on O/A sampling reliability from SRTC. As Dave has suggested, an in-canyon test is still probably our best bet to get useful information anytime soon.

Diatribution:

(MOCK-AP-L0498 AT Al AT SASR52) Andrew P. Mock To: Charlene B. Cochran To: (COCHRAN-CB-06921 AT AL AT SASRS2) (SPIRES-RH-06630 AT A1 AT SASRS2) To: Renee H. Spires To: David F. Chostner (CHOSTNER-DF-03090 AT Al AT SASR52) (LUX-CR-T7244 QAlQSLSRPl) Ray Lux To: (BROWNE-EV-Y8089 QAlQSLSRPl) Eric V. Browne To: (EVANS-JS-07266 AT A1 AT SASRS2) To: J. Stuart Evans

Calculation No. S-CLC-F-00140 Sheet No. 22 of 129 Rev. B

INTER-OFFICE MEMORANDUM Savannah River Site

04-Aug-199408:26am FDT

To: Eric V. Browne

(BROWNE-EV-Y8089 eAlQSLSRPl)

CC: Charlene B. Cochran (COCHRAN-CB-06921 AT Al AT SASRS2) CC: Ronnye A. L. Eubanks (EUBANKS-RA-06258 AT Al AT SASRS2) CC: David F. Chostner (CHOSTNER-DF-03090 AT Al AT SASRS2)

From: Sandra H. Marek Dept: NMPD/SEP TECH. Tel : 9524199 (MAREK-SH-07923 AT Al AT SASRS2)

8 5 Evaporator Information

Attached is the information you reque-ted for 8.5E. Bryan, one of our STE's, reviewed some blueprints to perform the calculations and verified/corrected the numbers I gave you off the top of my head on Tuesday. I'll call you later today to discuss these numbers and some of your other assumptions.

Calculation No.	S-CLC-F-00140
Sheet No. 23 of	129
Rev. B	

INTER-OFFICE MEMORANDUM Savannah River Site

Savannan River Site

03-Aug-1994 05:28am EDT

To: Sandra H. Marek

(MAREK-SH-07923 AT A1 AT SASRS2)

From: Bryan K. Altringer (ALTRINGER-BK-Y5558 AT AL AT SASRS2 Dept: SEP TECH Tel : 952-2153

Info you requested (U)

OK...

By now you should have found the four prints I left you. Hope they are helpful. Sorry about the poor quality of the one showing the trays.

1. The overflow wier is at 96.7*, or 15,360 lb water

2. Typical steam rates for 8.5E are 13,500 lb/hr to 16,500 lb/hr (or 15,000+/-1500 lb/hr). It's unusual to see it run outside this range. I normally assume 15,000 lb/hr as the normal rate.

3. Time to lose 1 ft level....this is a fun one.

Assumptions: 15,000 lb/hr steam 90% efficiency (0.9 lb evap per lb steam) initial liquid level at wier height, 96.7" sp gr at 1.0 (this made it easier for me)

Calculations:	Feed rate = (15,000 lb/hr)(0.9) = 13,500 lb/hr Final liquid level = 96.7" - 12" = 84.7" Final pounds = ~11,634 lb (per calib chart)
	Pounds depletion = 15,360 lb - 11,634 lb = 3726 lb
	Time = (3726 lb)/(13,500 lb/hr) = 0.26 hr = 16.56 minutes (How 'bout those sig figs!)

NOTE: You know as well as I do how the lb/in varies so much in a continuous evaporator. Ultimately, this calculation is only one of many possibilities for the evaporator...

4. The typical length of a run:

Assumptions:	Full 8.7 at 146,797 lb water Heel of 36,000 lb water
	Typical run rate = 13,500 lb/hr feed

Time = (146,797 lb - 36,000 lb)/(13,500 lb/hr) 8.2 hr

If you count startup and shutdown heating and cooling times (while the evaporator above 80 degrees C), Ronnve may have been able to stretch it to 16 hours. I do not believe we could have gotten 16 hours on feed.

5. How far down 'till we uncover the tube bundle? A quickie roundabout calculation based on the prints lead~ me to believe that we could go down as far as 1.5 ft below wier level before uncovering tubes. Unfortunately, this number sounds funny to me. Check it out.

6. Distance between the bottom of the de-entrainment column and the bottoms of the reboiler looks to be about 4.5 feet based on the prints. You can check it out yourself.

I didn't have time to look into any of the instrumentation stuff. I saw the alarm light you saw for the "low hat flow," but that's all I saw.

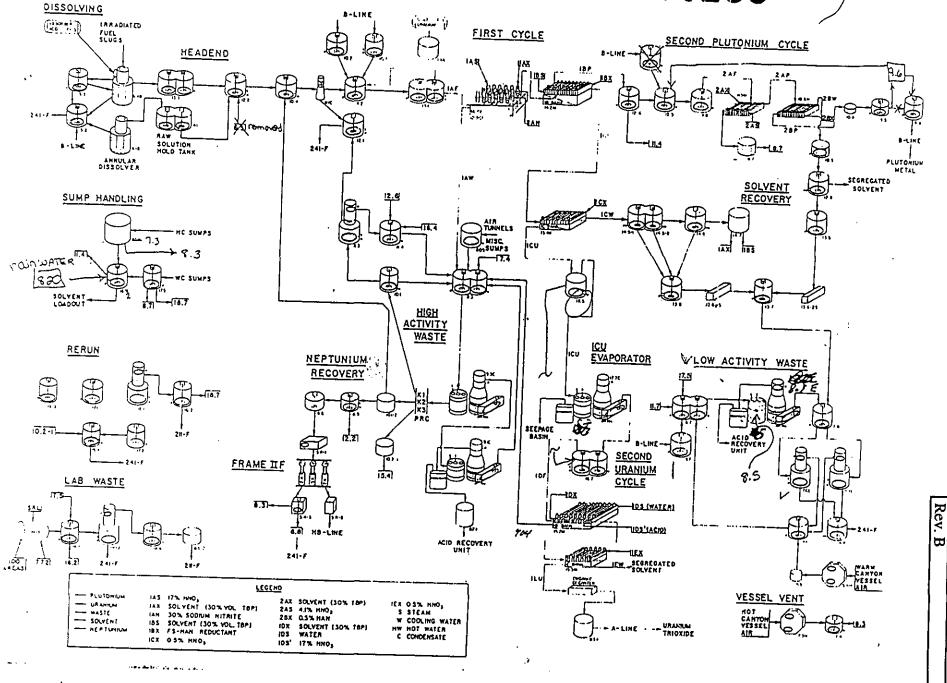
Havefun...

Calculation No.	S-CLC-F-00140
Sheet No. 24 of	129
Rev. B	

INTER-OFFICE MEMORANDUM Savannah River Site 08-Mar-1995 10:31am EST To: Thomas G. Campbell (CAMPBELL-TG-05094 AT A1 AT SASRS2) (LUX-CR-T7244 @A1@SLSRP1) To: Ray Lux CC: Dave H Ecklund (ECKLUND-DH-L1695 AT A1 AT SASRS2) David F. Chostner CC: (CHOSTNER-DF-03090 AT A1 AT SASRS2) (EUBANKS-RA-06258 AT A1 AT SASRS2 fi From: Ronnye A. L. Eubanks Dept: SEP TECH/NMPD Tel: 2-4074 Solvent additions (U) Years ago I summarized the amount of solvent added to each cycle. The data I used was from Maurice Meadows records from 1970-1985. This is what I came up with: Average solvent (n-Paraffin plus TBP) added to: 1st Cycle - 30,500 pounds/year - 13,200 pounds/year 2nd Pu - 18,700 pounds/year 2nd U Average pounds of solvent/MTU processed through 1st cycle: 1st Cycle - 28 pounds/MTU 2nd Pu - 13 pounds/MTU 2nd U - 17 pounds/MTU On average the n-paraffin and TBP addition was at 30 vol% TBP. I assumed the TBP lost to solubility in the aqueous was about equal to the evaporation rate of the n-paraffin. Solvent lost to entrainment (or oops) would have

Tom, I hope this is what you told me Ray needed. If not, I will try again.

Ronnye

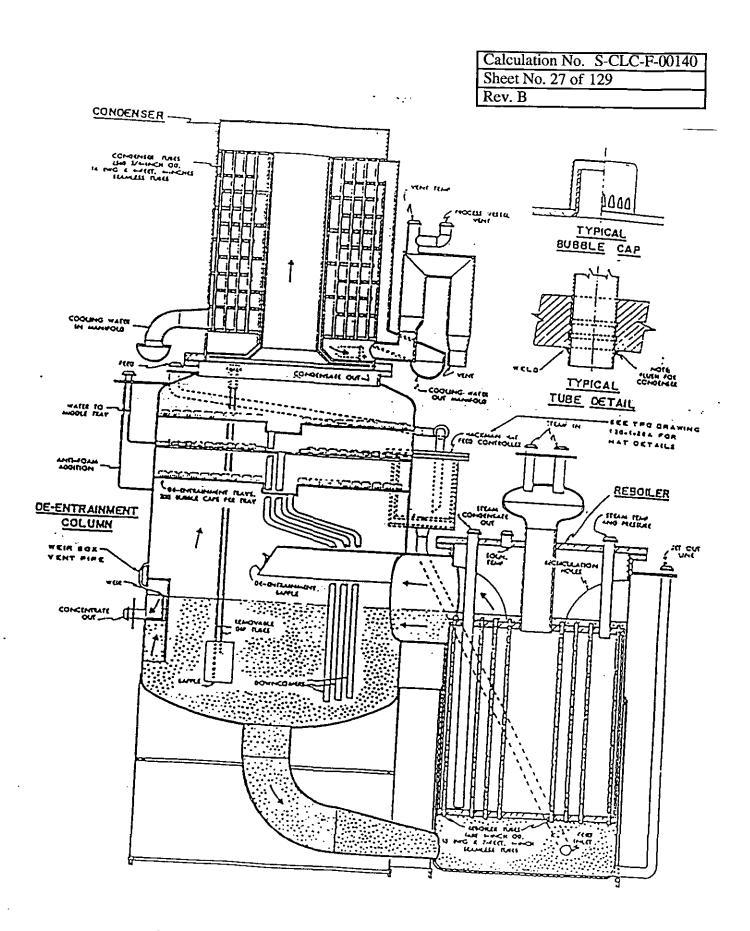

been at approximately 30 vol% TBP.

Calculation No.	S-CLC-F-00140
Sheet No. 25 of	129
Rev. B	

APPENDIX B - DIAGRAMS

- Process Flow Diagram (Page 26)
- Continuous Evaporator Diagram (Page 27)
- Batch Evaporator Diagram (Page 28)

221-F CANYON PUREX PROCESS

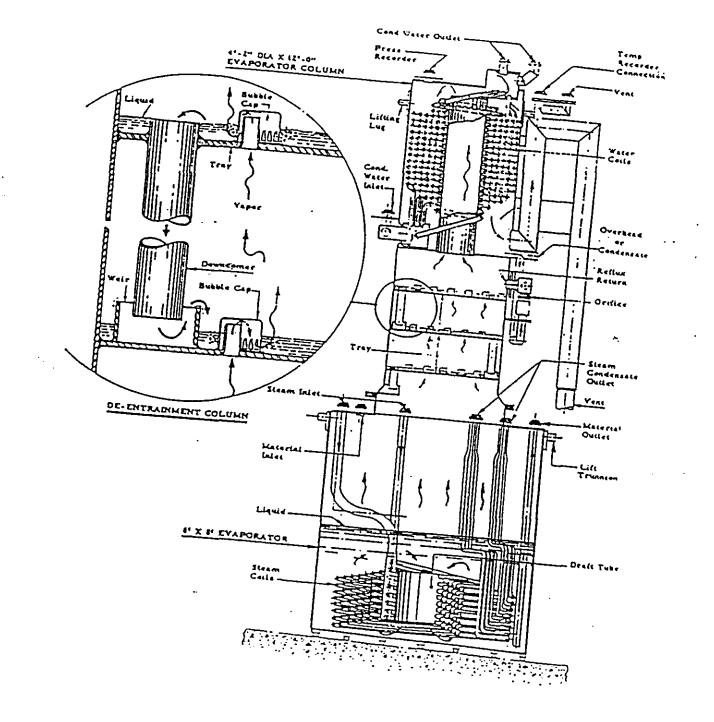

÷\$

N.

Calculation No. of 129 S-CLC-F-00140

Sheet No.

26



Schematic of Continuous Svaporator

٠.

-

Calculation No. S-CLC-F-00140 Sheet No. 28 of 129 Rev. B

** -

÷

٠.

Standard Coil Batch Evaporator and Column

Calculation No.	S-CLC-	F-00140
Sheet No. 29 of	129	
Rev. B		

APPENDIX C - TABULATION OF HUMAN ERROR EVENTS

The following Appendix contains a tabulation of the human error events for the evaporators considered (8.5E, 9.3E and 7.6E-7.7E). It gives the event names and descriptions of the human error events, as well as information on the probability of human error (Ref. 7). It also contains information on applicable procedures, and actions/equipment involved in the event where necessary.

- 8.5E Evaporator (Page 30)
- 9.3E Evaporator (Page 33)
- 7.6E & 7.7E Evaporators (Page 36)

TASK #	COMMITMENTS	ERROR CODE	ERROR DESCRIPTION	ACTION INVOLVED	OPERATOR	EQUIPMENT	FEEDBACK/	ERRORS		PROCEDURE	
	Items A-D are not	<u>)</u> () () () () () () () () () () () () ()		م هم در در میمو م	(ACTOR)	N. 1. 11.	INDICATION		<u></u>		
	explicitly modeled				1						
	in the fault tree.				1						
	They are										
1) (Y	commitments the										
	facility must implement in order										
	for the										
	assumptions in the										
· · ·	analysis to remain valid.										
A	open item 4		The solvent hold tanks							(new	
Le das	······		(14.7, 906) inventory will							procedure/requ	
			be administratively							irement).	
			controlled to prevent losses in excess of 10,000								
1	1		lbs of organic.			1		1			
B	open item 5		During start-up,					+		(new	
B			evaporators will not be							procedure/requ	
			operated until levels in							irement).	
			solvent hold tanks have stabilized (steady state).								
			stabilized (steady size).		1						
c	open item 6		Any actuation of the							(new	
1.2 1.4	[-		solvent hold tank's (906,		1					procedure/requ	
See of			14.7) low level interlock,							irement).	
	1		or discovery of large solvent losses, will		Į	l	ĺ	l	l		
			re quire the evaporators								
			to be shut down until								
			accountability of the								
ł			solvent inventory is performed.			1				1	
1. S. M.		l	•							1	
D	open item 7		Solvent hold tank operator							(new	
A State of the sta	1		(906, 14.7) will ensure that the solvent feed pump (to]				procedure/requ irement).	
			banks) is shut off if the							nomenc).	
			low level interlock is			1					
			demanded.								
	1	NEW BRANCH				<u> </u>		t	1		
ļ	l .	EVENTS SPECIFIC				l	l I	ł	ł	1	
		TO THIS TREE				1					

.

TASK #	COMMITMENTS	ERROR CODE	ERROR DESCRIPTION	ACTION INVOLVED	OPERATOR	EOUIPMENT	FEEDBACK/	ERRORS	HEP	PROCEDURE	NOTES
,					(ACTOR)	States and a second	INDICATION				
	ALL COMMITMENTS FOR THE BATCH EVAPORATOR ARE APPLICABLE TO THE CONTINUOUS EVAPORATOR										
3	ok	OPRCELE-MCNA	Calibration error- Level instrument is calibrated to give a high signal	(8.5E level it can't be too far off because the evap overflows at a known level.)	E&I techn with Operations check	x-mitter & recorder (WZ- 19)			0.005	W-770005 (x- mitter); W- 798003 (recorder)	
7	ok	OPRGCETEMCNA# consider change to OPRGCETEIRNA#	Evaporator temperature sensor is out of calibration		E&I techn with Operations check	Molytek			consider p=0.01; else 0.005	Molytek	Molytek may be a non-calibratable IPI; event may need to be re-modeled (as a programming data entry error p=0.01).
	No HRA performed Open Item 15	OPR 17.5-ACNA#	Second consecutive transfer containing TBP from tank 17.5 is fed to same batch		Rerun operator						Ensures that two full tanks of sump receipt material are not transferred during one evaporator cycle.
14	No HRA performed Open Item 8	OPR87EM1ACNA#	operator fails to feed remaining tank contents at end of 1st interval- clean out						1.0 til added (then p=0.005)	New Procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic
15 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No HRA performed Open Item 8	OPR87EM2ACNA#	operator fails to feed remaining tank contents at end of 2nd interval- clean out						1.0 til added (then p=0.005)	New Procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic

.

TASK#	COMMITMENTS	ERROR CODE	ERROR DESCRIPTION	ACTION INVOLVED		EQUIPMENT		HEP, ST	PROCEDURE	NOTES
16	No HRA performed Open Item 8	●記録を記録する OPR87EM3ACNA#	operator fails to feed remaining tank contents at end of 3rd interval- clean out		(ACTOR)		INDICATION		New Procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic
18	OMITTED									
20	Open Item 3	OPRGBLOCDENA#		alarm acknowledgement, verify no steam flow	LAW operator and Bldg operator			0.01		
26 27 28 28 28 28 28 28 28 28 28 28	Open Item 1 setpoints	OPRTK906ACNA# change to OPRTK906CSNA#	Operator fails to respond to low level alarm in tank 906	acknowledge alarm; shutdown process	OF-CR operator; 2nd Pu cycle operator	facilities;			5.6.1 (LOW LOW-LVL)	(Pump cavitation stops transfer) If no response from Canyon Supervisor, OF will shutdown process within 15 min. (avoid pump cavitation). Credit (0.5) given because of training & alert for pump cavitation
	ok	OPR906LEMCNA#	Calibration error - level instrument is calibrated to give a false reading		single E&I tech ; Op check	Outside facilities	at tank 906	0.005		This could/would be a relative amount instead of an absolute
	Open Items 4,5	OPRLV906ACNA#	Operator overfills tank 906 (Level procedurally controlled)	implies an inventory control at regular intervals at various points in the cycle	2nd Pu cycle operator and OF Operator	Outside Facil.		re- modeled with various HEPs	further developed & modified to include (events to the right):	the first response (2nd Pu cycle operator shuts down cycle); LAW operator shuts down evaporator; and maybe Solvent Recovery operator troubleshooting if Solvent recovery cycle is involved

TASK # 🚊 .	COMMITMENT	ERROR CODE	ERROR DESCRIPTION A	TION INVOLVED	OPERATOR	EQUIPMENT	FEEDBACK/	ERRORS +	HEP grow with	PROCEDURE	
	Items A-D are not explicitly modeled in the fault tree. They are commitments the facility must implement in order for the assumptions in the analysis to remain valid.				(ACTOR)		INDICATION				
	open item 4		The solvent hold tanks (14.7, 906) inventory will be administratively controlled to prevent losses in excess of 10,000 lbs of organic.							(new procedure/require ment).	
B	open item 5		During start-up, evaporators will not be operated until levels in solvent hold tanks have stabilized (steady state).							(new procedure/require ment).	
	open item 6		Any actuation of the solvent hold tank's (906, 14.7) low level interlock, or discovery of large solvent losses, will re quire the evaporators to be shut down until accountability of the solvent inventory is performed.							(new procedure/require ment).	
	open item 7		Solvent hold tank operator (906, 14.7) will ensure that the solvent feed pump (to banks) is shut off if the low level interlock is demanded.							(new procedure/require ment).	
	ok	OPR147LEMCNA#	Calibration error - Level instrument is calibrated to give a false reading -14.7		E&I technician	transmitter; recorder			0.005	SOP W-794001 (transmitter); W- 798003 (recorder)	

TASK #	COMMITMENT	ERROR CODE	ERROR DESCRIPTION	ACTION INVOLVED	OPERATOR	EQUIPMENT	FEEDBACK/			PROCEDURE	NOTES
		OPRRA147ACNA# change to OPRRA147CSNA# name changed to DOPRA147CSNA# (dependent event) in part of tree (dep. on OPRTK147ACNA#)	Operator fails to respond to level in tank 14.7	daliyotoong <u>oo (, </u>	(ACTOR)		INDICATION annun tile and orange status light for "14.7 Lo Level" WS- 23) (WT-1A)	and a second	0.02 (0.15 for dependent) assuming procedure is written, otherwise 0.5	NO ARP exists (there were & may still be operator aids on the panel boards that indicate wgt ftr when pump loses prime)	
	no HRA performed, open item 8	OPR83EM1ACNA#	operator fails to feed tank contents after 1st interval- clean tank						I until added (then p=0.005)	New procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic
	no HRA performed, open item 8	OPR83EM2ACNA#	operator fails to feed tank contents after 2nd interval- clean tank						1 until added (then p=0.005)	New procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic
	no HRA performed, open item 8	OPR83EM3ACNA#	operator fails to feed tank contents after 3rd interval- clean tank						1 until added (then p=0.005)	New procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic
	no HRA performed, open item 10	OPRQ7.3-ACNA#	second consecutive transfer containing TBP from tank 7.3 is fed to same batch		HAW				0.005	SOP 221-F- 40790 should be modified or new procedure written to prohibit 2 transfers within 72 hours	
	OMITTED										
27 27	open items 3	OPRQBLOCDENA#	operator fails to respond to 9.3E temp, level alarms (close block valve)	alarm acknowledgement verify no steam flow	HAW				0.01		
28	ok	OPRQCETEIRNA#	Evaporator temperature sensor is out of calibration		E&I	Molytek			0.01	Molytek	

.

.

	. Harrier weitigen	en al an			OPERATOR (ACTOR)	FEEDBACK/			NOTES
	ok		Calibration error-Level instrument is calibrated to give a high signal		E&I Tech. with operations check			W-770005 (x- mitter); W- 798003 (recorder);	
32	open items 4,5		controlled)	implies an inventory control at regular intervals at various points in the cycle	HAW		0.005	new procedure	

TASK#	COMMITMENTS		ERROR DESCRIPTION	ACTION INVOLVED	OPERATOR	EQUIPMENT	FEEDBACK/		HEP	PROCEDURE	NOTES
	Items A-D are not explicitly modeled in the fault tree. They are commitments the facility must implement in order for the assumptions in the analysis to remain valid.				(ACTOR)			· · · · · · · · · · · · · · · · · · ·		<u>、1799 (中民) 増 165</u>	
	open item 4		The solvent hold tanks (14.7, 906) inventory will be administratively controlled to prevent losses in excess of 10,000 lbs of organic.						C	(new procedure/requ irement).	
			During start-up, evaporators will not be operated until levels in solvent hold tanks have stabilized (steady state).							(new procedure/requ irement).	
	open item 6		Any actuation of the solvent hold tank's (906, 14.7) low level interlock, or discovery of large solvent losses, will require the evaporators to be shut down until accountability of the solvent inventory is performed.							(new procedure/requ irement).	
	2 N		Solvent hold tank operator (906, 14.7) will ensure that the solvent feed pump (to banks) is shut off if the low level interlock is demanded.							(new procedure/requ irement).	
		l	l		<u> </u>						

.

TASK#	COMMITMENTS	ERROR CODE	ERROR DESCRIPTION		OPERATOR (ACTOR)		FEEDBACK/	ERRORS	HEP	PROCEDURE	NOTES
	Open Item 3	change to	Operator fails to respond to 7.6E temp. alarm (close block valve)		LAW operator & Bldg operator	alarm/ annunciator tile (WX-10-1);	alarm/ red light in CCR "OSR 7.6E HI POT TEMP"; in field - rising vlv stem & no position labels; "righty-tighty"; "DIAGNOSIS	Awareness of what needs to be done; fail to close all the way; CCR Op fails to call Bldg Op when he should have		SOP-221-F- 40811 Step 4.4; then SOP 221-F-20050 Step 4.2.2;) ADD steam flow diagnosis criterion TO THESE PROCEDURE S)	fails to shut off steam; Interlock has to have failed- he needs to diagnose this (should get "OSR 7.6E HI POT TEMP" alarm)
	ok	OPRGBETEMCNA#	Tank Temperature sensor is miscalibrated	whole temp loop cal; yields false low	single E&I tech; ops checks the functionality	sensor in 7.6 tank in Warm Canyon; transmitter on 2nd Level, recorder in CCR			0.005	for Molytek	to check- look for "100C" boiling- can tell if cal is "off"
	Open Item 11	OPRG7.8-DEHA# change to OPRG7.8-ACHA#	Operator fails to assure SPG is within range	reading spg at tank 7.8 during decanting procedure; he expects & looks for the "break"	LAW operator; SUPVPERM keylock to jet to transfer	CCR panel	spg meter; graph recorder; conversion from % to sp gr required; equation below recorder	fails to recognize the break	1.0 until added, then p=0.05	NO procedure currently for this decanting	procedure to include info on "looking for the spg break"
	Open Item 1 setpoints	OPRTK906ACNA# change to OPRTK906CSNA#	Operator fails to respond to low level alarm in tank 906		OF-CR operator; 2nd Pu cycle operator	Outside facilities; CCR	OF-CR occupied at all times	NOTES containing setpoints need to be fixed for both LOW- LEVEL and LOW- LEVEL alarms			(Pump cavitation stops transfer) If no response from Canyon Supervisor, OF will shutdown process within 15 min. (avoid pump cavitation). Credit (0.5) given because of training & alert for pump cavitation
27 27	ok	OPR906LEMCNA#	Calibration error - level instrument is calibrated to give a false reading		single E&I tech ; Op check	Outside facilities	at tank 906		0.005		This could/would be a relative amount instead of an absolute

TASK#	COMMITMENTS		ERROR DESCRIPTION	ACTION INVOLVED	OPERATOR (ACTOR)	EQUIPMENT	FEEDBACK/	ERRORS		PROCEDURE	NOTES
	Open Items 4, 5	OPRLV906ACNA#	Operator fills tank 906 (Level procedurally controlled)	implies an inventory control at regular intervals at various points in the cycle	2nd Pu cycle operator and OF Operator	CCR and Outside Facil. CR			re-modeled with various HEPs	to the right):	the first response (2nd Pu cycle operator shuts down cycle); LAW operator shuts down evaporator; and maybe Solvent Recovery operator troubleshooting if Solvent recovery cycle is involved
61	ÖMITTED										
62	No HRA performed Open Item 8	OPR87EM1ACNA#	operator fails to feed tank contents after 1st interval- clean tank						1.0 til added (then p=0.005)	New procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic
63	No HRA performed Open Item 8	OPR87EM2ACNA#	operator fails to feed tank contents after 2nd interval- clean tank						1.0 til added (then p=0.005)	New procedure required to clean (empty out) feed tank	prevents accumulation of organic
										periodically to prevent accumulation of organic	
9	No HRA performed Open Item 8	OPR87EM3ACNA#	operator fails to feed tank contents after 3rd interval- clean tank						1.0 til added (then p=0.005)	New procedure required to clean (empty out) feed tank periodically to prevent accumulation of organic	prevents accumulation of organic

...

TASK			ERROR DESCRIPTION		EQUIPMENT	FEEDBACK/ INDICATION			State States
11	No HRA performed	OPR17.5-ACNA#	Second consecutive transfer	Rerun operator				No procedure	Ensures that two full
	Open Item 10		containing TBP from tank	_				exists (transfer	tanks of sump receipt
			17.5 is fed to same batch					17.5 to 8.7)	material are not
								Must include	transferred during
								step restricting	one evaporator cycle.
ł								to only one	
								transfer every	
								72 hours	
	I								

Calculation No.	S-CLC-F-(00140
Sheet No. 40 of	129	
Rev. B		

APPENDIX D - 8.5E EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:

FR=Failure Rate

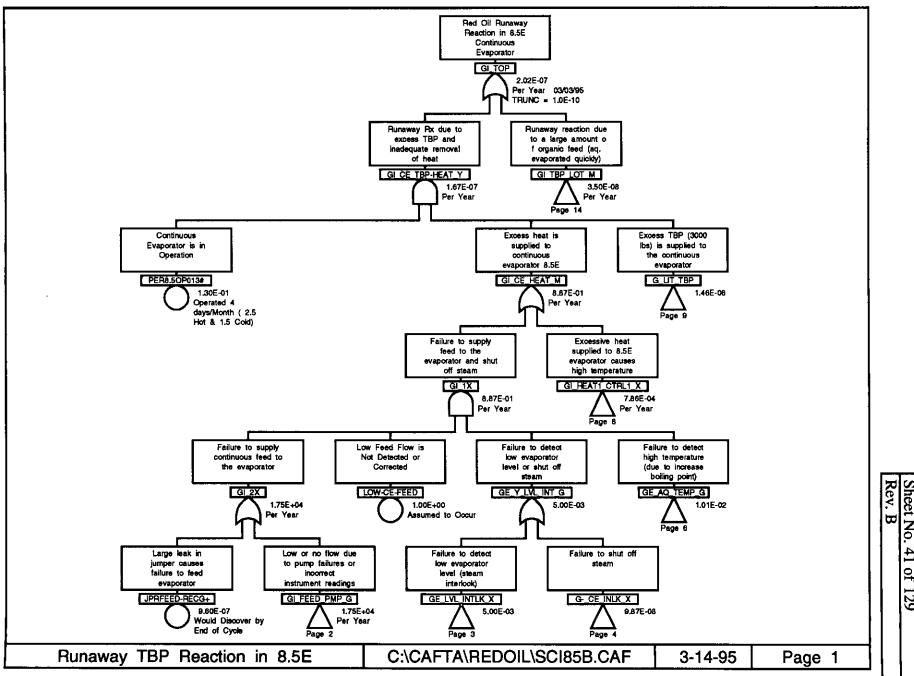
 $\mathbf{a} = assumption$

COG= cognizant engineer estimate/information

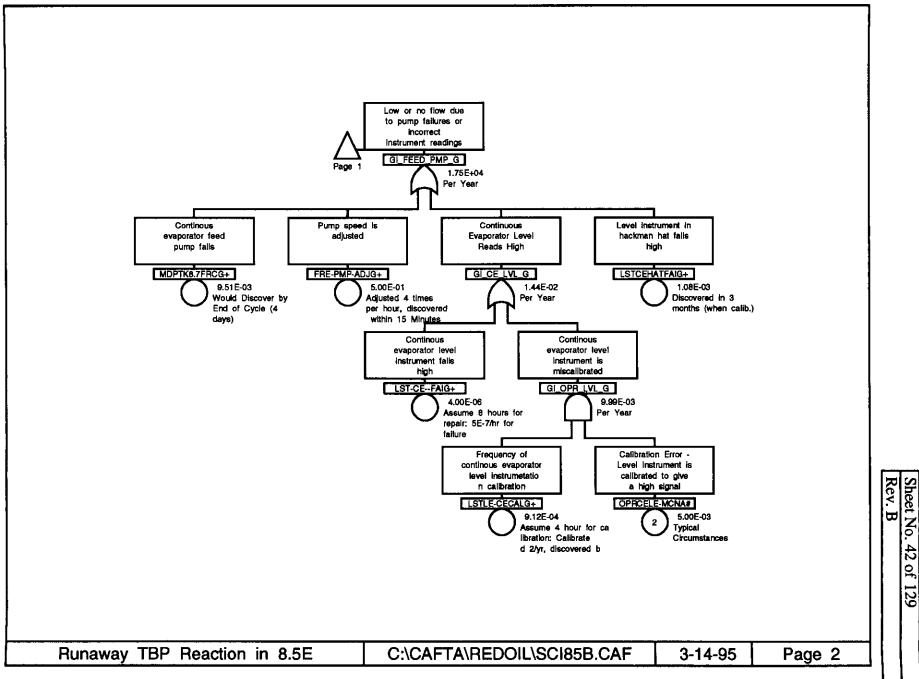
TRUNC= Truncation limit of cutset evaluator

The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.

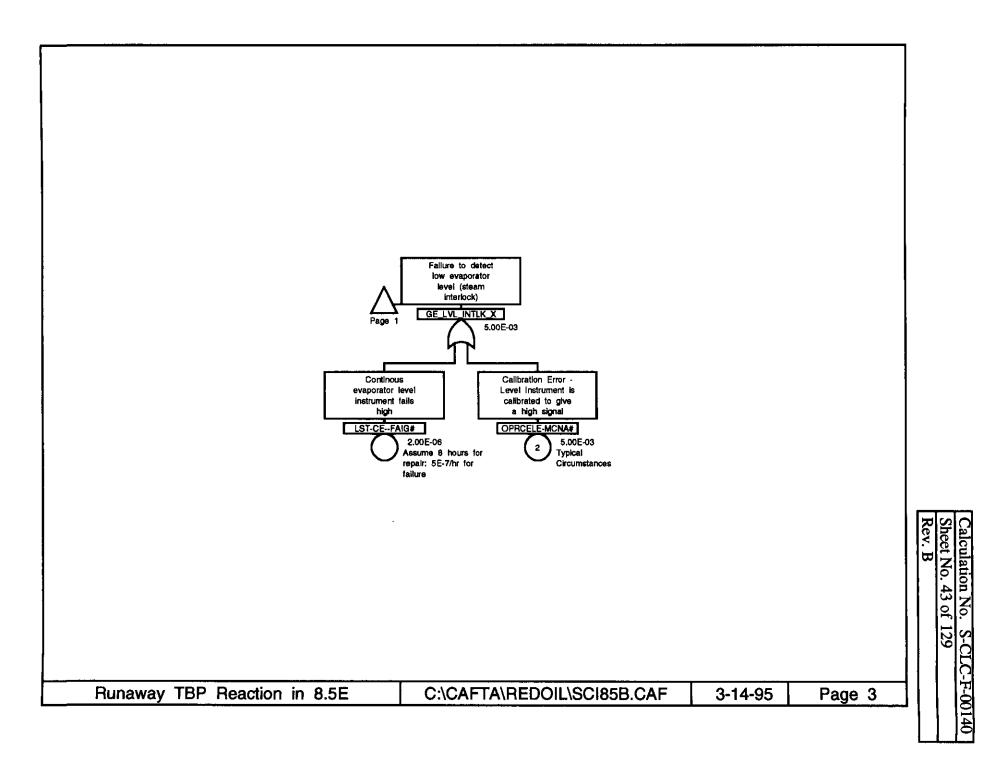
NOTE: Events in this tree with a probability of "1E-32" are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number "1E-32" was used because it is the smallest number CAFTA is capable of handling.


Fault Tree (Page 41)

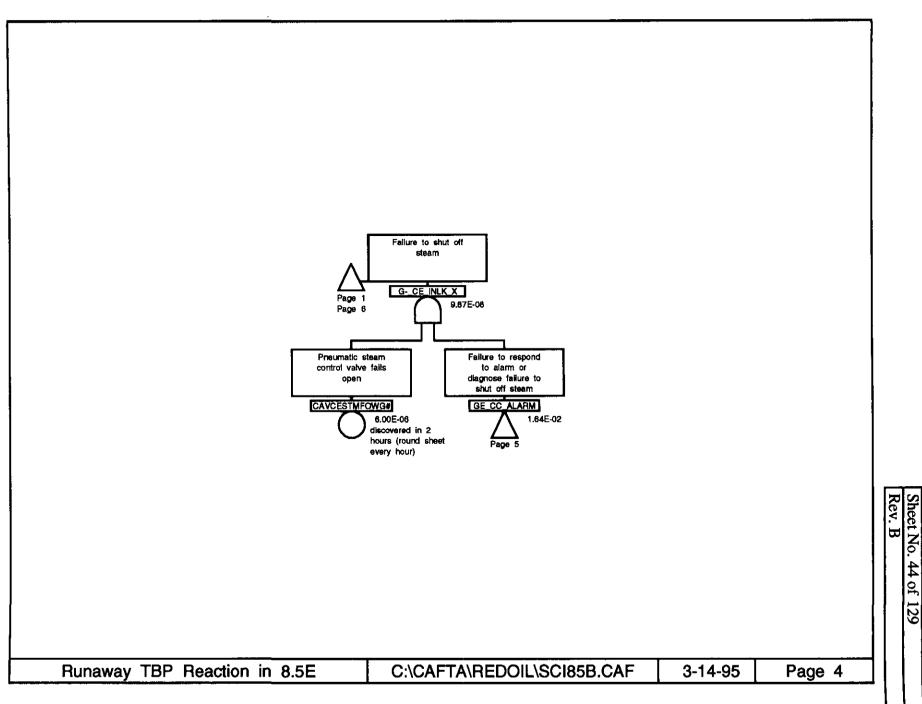
Gate/Event Cross Reference (Page 57)


Cutset Report (Page 58)

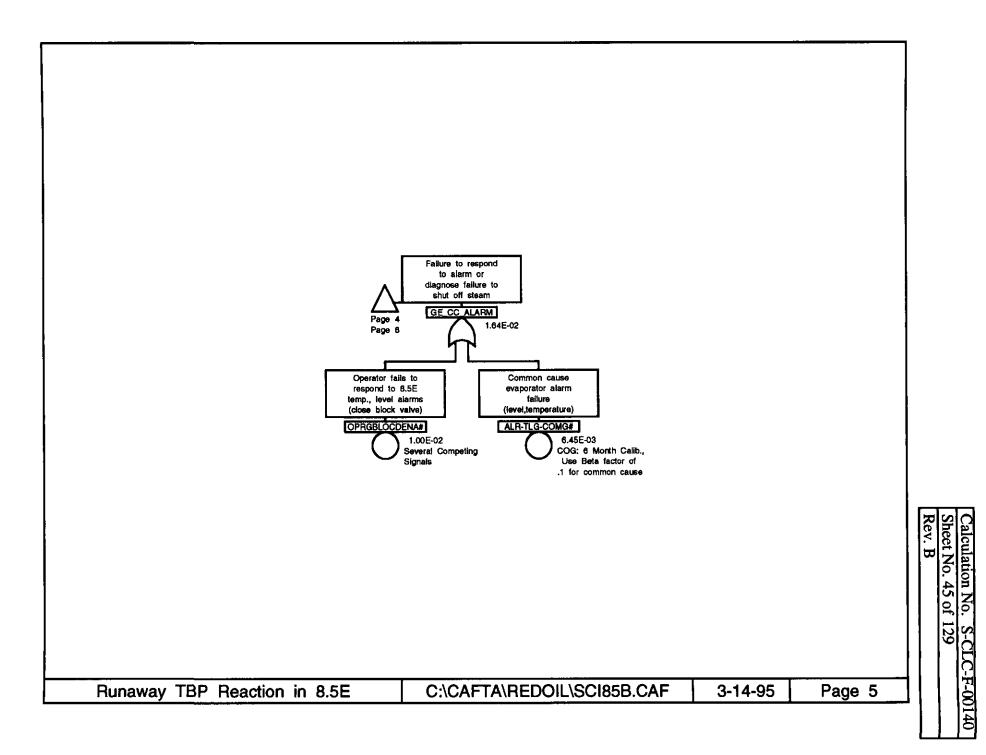
Basic Event Data (Page 68)

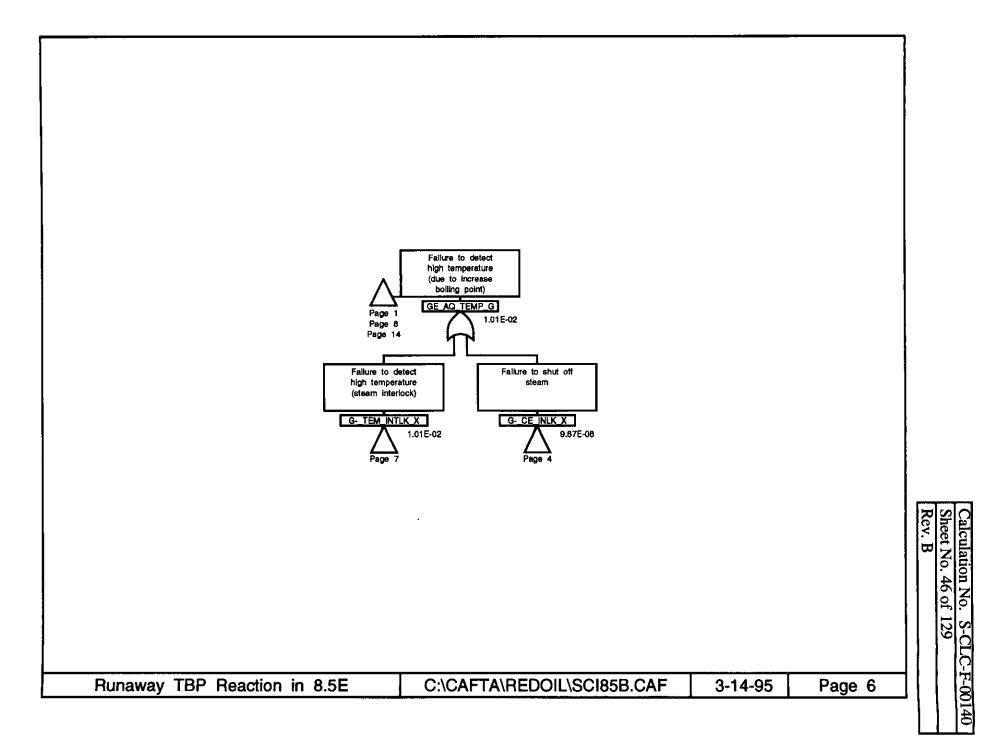

Type Code Data (Page 70)

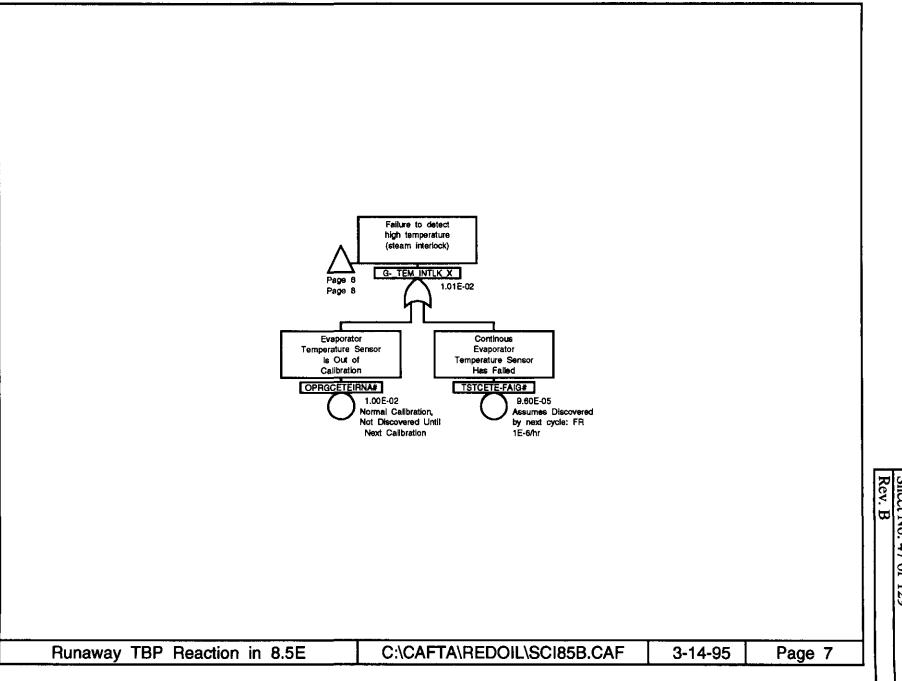
Ilation No. S-CLC-F-00140 No. 41 of 129



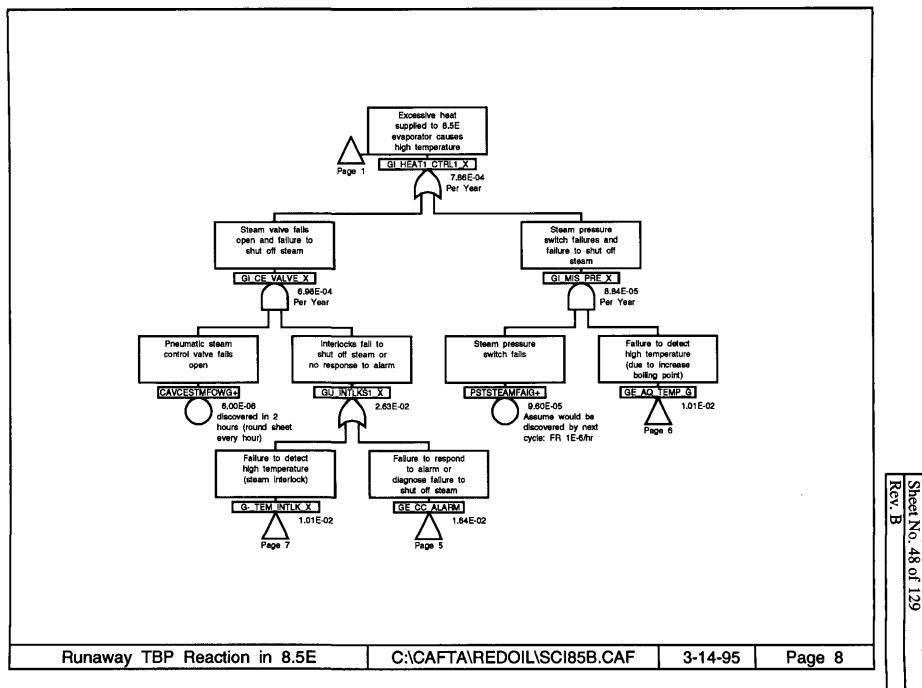
Calculation No. S-CLC-F-00140

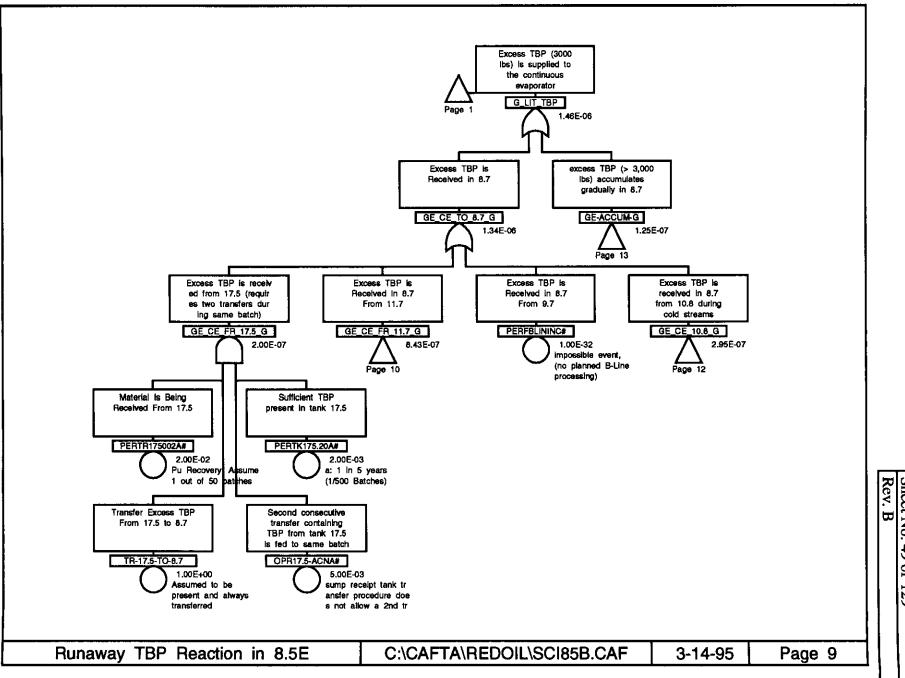

____

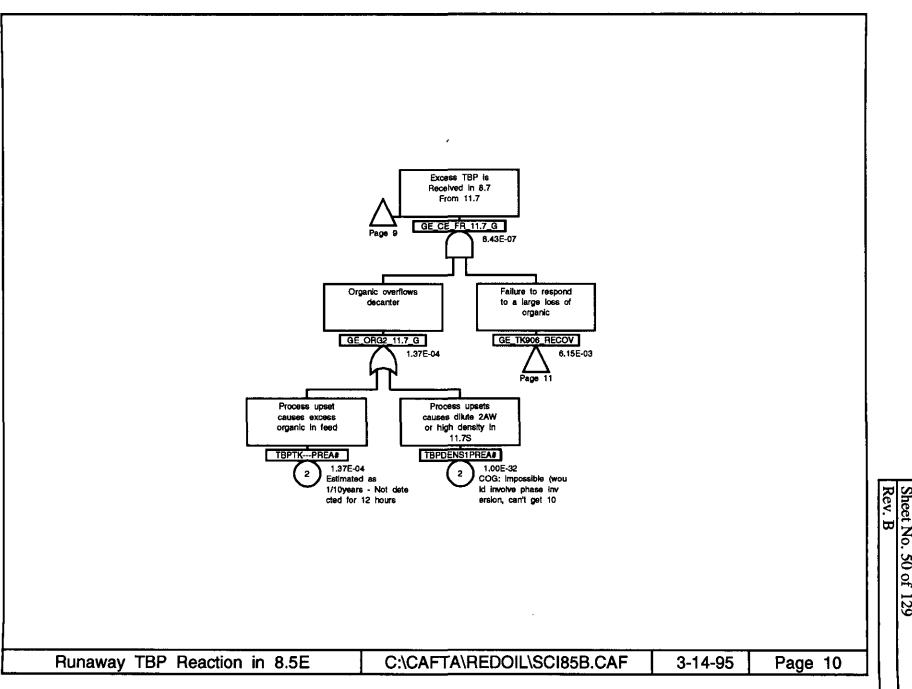

.

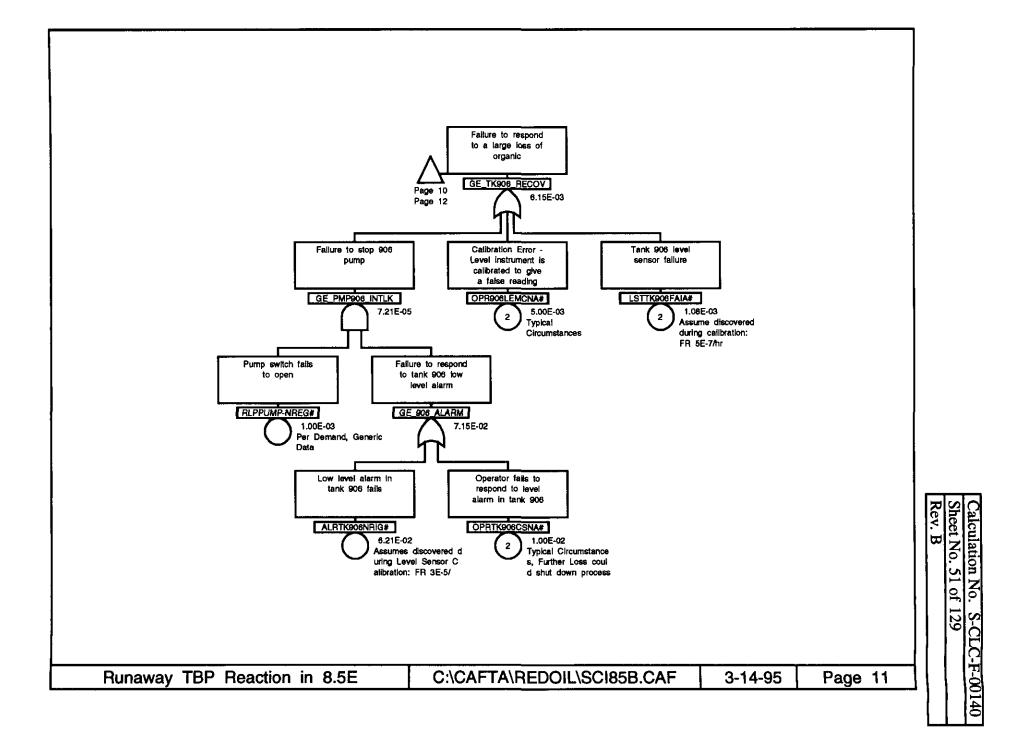


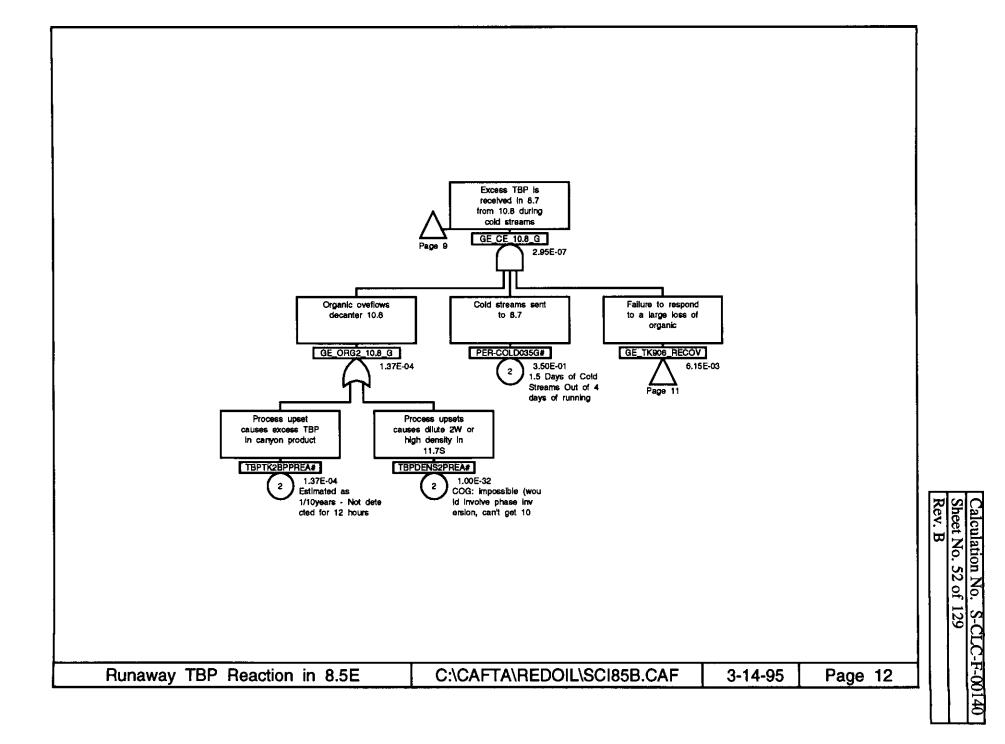
•

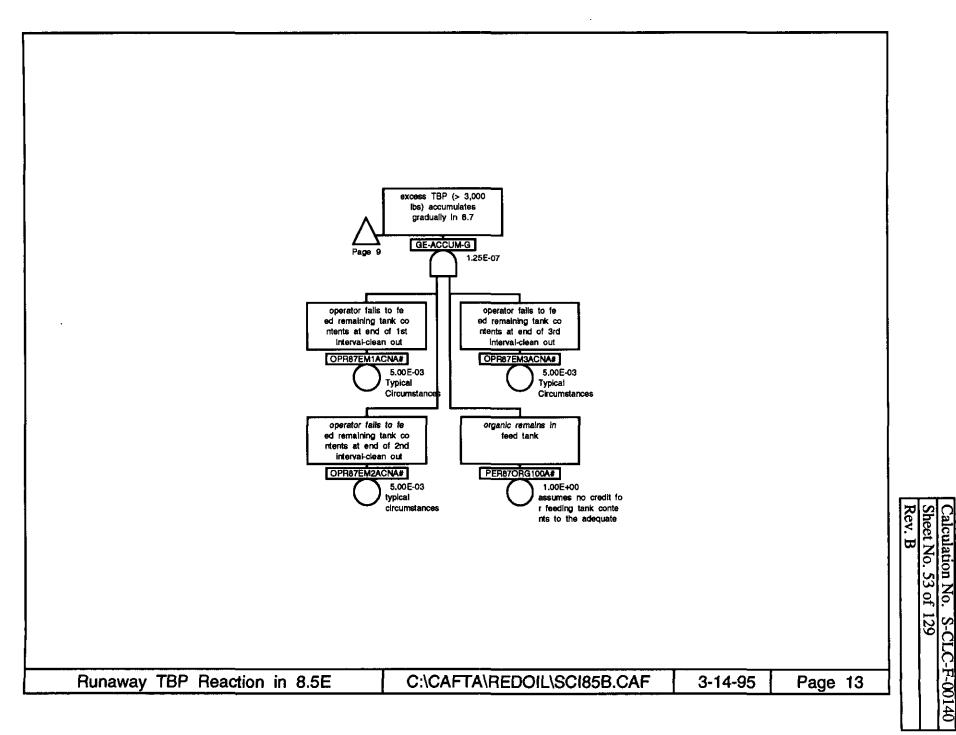

alculation No. S-CLC-F-00140

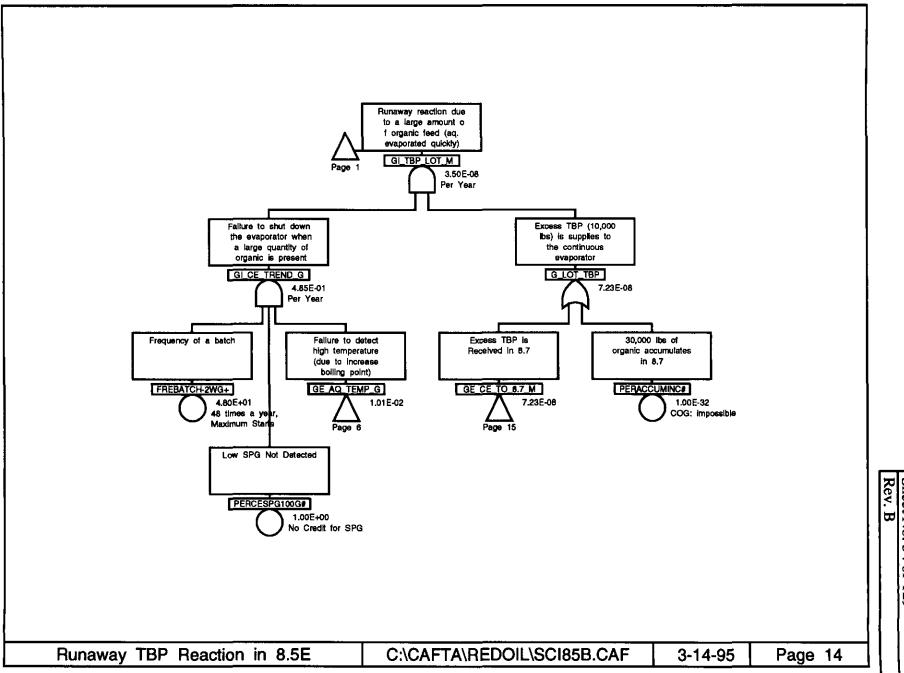


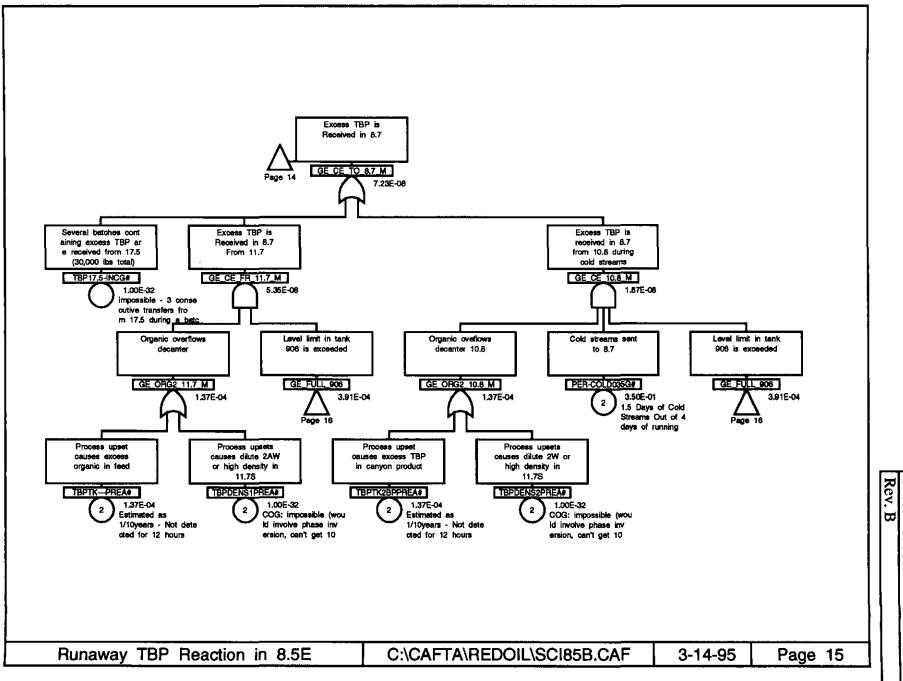

alculation No. S-CLC-F-00140 heet No. 47 of 129

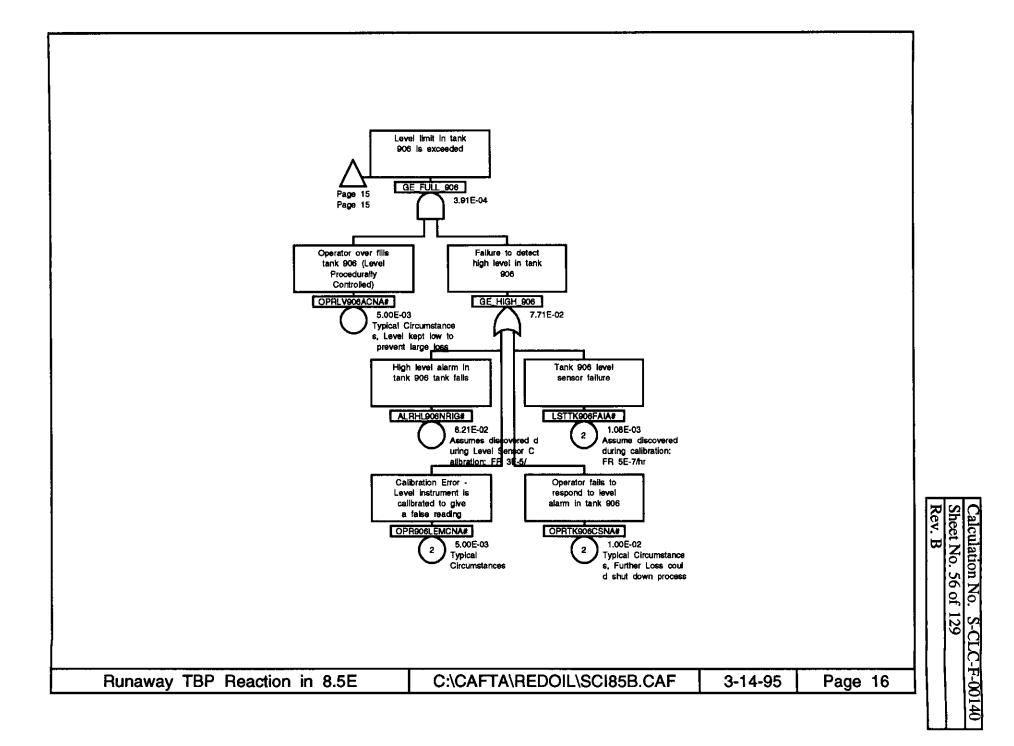

Iculation No. S-CLC-F-00140




Calculation No. S-CLC-F-00140 Sheet No. 49 of 129


lation No. S-CLC-F-00140 No. 50 of 129




| | |

Calculation No. S-CLC-F-00140 Sheet No. 54 of 129

Calculation No. S-CLC-F-00140 Sheet No. 55 of 129

<u>Gate/Event Name</u>		<u>Gate/Event Name</u>		<u>Gate/Event Name</u>		<u>Gate/Event Name</u>	<u>e_ Page Zone</u>	
ALR-TLG-COMG#	5	GE_LVL_INTLK_X	3	MDPTK8.7FRCG+	2			
ALRHL906NRIG#	16	GE_ORG2_10.8_G	12	OPR17.5-ACNA#	9			
ALRTK906NRIG#	11	GE_ORG2_10.8_M	15	OPR87EM1ACNA#	13			
CAVCESTMFOWG#	4	GE_ORG2_11.7_G	10	OPR87EM2ACNA#	13			
CAVCESTMFOWG+	8	GE_ORG2_11.7_M	15	OPR87EM3ACNA#	13			
FRE-PMP-ADJG+	2	GE_PMP906_INTLK	11	OPR906LEMCNA#	11			
FREBATCH-2WG+	14	GE_TK906_RECOV	10	OPR906LEMCNA#	16			
GCE_INLK_X	1	GE_TK906_RECOV	11	OPRCELE-MCNA#	2			
GCE_INLK_X	4	GE_TK906_RECOV	12	OPRCELE-MCNA#	3			
GCE_INLK_X	6	GE_Y_LVL_INT_G	1	OPRGBLOCDENA#	5			
GTEM_INTLK_X	6	GI_1X	1	OPRGCETEIRNA#	7			
GTEM_INTLK_X	7	GI_2X	1	OPRLV906ACNA#	16			
GTEM_INTLK_X	8	GI_CE_HEAT_M	1	OPRTK906CSNA#	11			
GE-ACCUM-G	9	GI_CE_LVL_G	2	OPRTK906CSNA#	16			
GE-ACCUM-G	13	GI_CE_TBP-HEAT_Y	1	PER-COLD035G#	12			
GE_906_ALARM	11	GI_CE_TREND_G	14	PER-COLD035G#	15			
GE_AQ_TEMP_G	1	GI_CE_VALVE_X	8	PER8.50P013#	1			
GE_AQ_TEMP_G	6	GI_FEED_PMP_G	1	PER87ORG100A#	13			
GE_AQ_TEMP_G	8	GI_FEED_PMP_G	2	PERACCUMINC#	14			
GE_AQ_TEMP_G	14	GI_HEAT1_CTRL1_X	1	PERCESPG100G#	14			
GE_CC_ALARM	4	GI_HEAT1_CTRL1_X	8	PERFBLININC#	9			
GE_CC_ALARM	5	GI_MIS_PRE_X	8	PERTK175.20A#	9			
GE_CC_ALARM	8	GI_OPR_LVL_G	2	PERTR175002A#	9			
GE_CE_10.8_G	9	GI_TBP_LOT_M	1	PSTSTEAMFAIG+	8			
GE_CE_10.8_G	12	GI_TBP_LOT_M	14	RLPPUMP-NREG#	11			
GE_CE_10.8_M	15	GI_TOP	1	TBP17.5-INCG#	15			
GE_CE_FR_11.7_G	9	GU_INTLKS1_X	8	TBPDENS1PREA#	10			
GE_CE_FR_11.7_G	10	G_LIT_TBP	1	TBPDENS1PREA#	15			
GE_CE_FR_11.7_M	15	G_LIT_TBP	9	TBPDENS2PREA#	12			<u> ଅର</u> ାର
GE_CE_FR_17.5_G	9	G_LOT_TBP	14	TBPDENS2PREA#	15			Sheet No. Rev. B
GE_CE_TO_8.7_G	9	JPRFEED-RECG+	1	TBPTKPREA#	10			B
GE_CE_TO_8.7_M	14	LOW-CE-FEED	1	TBPTKPREA#	15			5
GE_CE_TO_8.7_M	15	LST-CEFAIG#	3	TBPTK2BPPREA#	12			Sheet No. 57 of Rev. B
GE_FULL_906	15	LST-CEFAIG+	2	TBPTK2BPPREA#	15			
GE_FULL_906	15	LSTCEHATFAIG+	2	TR-17.5-TO-8.7	9			의 약, 9
GE_FULL_906	16	LSTLE-CECALG+	2	TSTCETE-FAIG#	7			<u> </u>]
GE_HIGH_906	16	LSTTK906FAIA#	11					 °
GE_LVL_INTLK_X	1	LSTTK906FAIA#	16					
Runaway	TBP Reac	tion in 8.5E	C:\CA	FTA\REDOIL\SCI	B5B.CAF	3-14-95	Page 17	129

S-CLC-F-00140

Cutset Report for 8.5E Evaporator

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	GI_TOP					2.02E-07	
1.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H	5.00E-01	7.80E-08	100.0
	LOW-CE-FEED OPR906LEMCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated to	1	4H 1.0N 1N 5.0E-3 N			
	OPRCELE-MCNA#	give a false reading Calibration Error - Level Instrument is calibrated to give a high signal	1	5.0E-3 N 5.0E-3 N	5.00E-03N		
	OPRGCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1.0E-2 N	1.00E-02N		
	PER8.50P013#	Continuous Evaporator is in Operation	11	1.30E-2 IN 1.30E-01N	1.30E-01N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	12H 0.1Y	1.37E-04		
2.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01	2.73E-08	100.0
	LOW-CE-FEED OPR906LEMCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated to	1	1.0N 1.0N 1N 5.0E-3 N	1.00E+00 5.00E-03N		
	OPRCELE-MCNA#	give a false reading Calibration Error - Level Instrument is calibrated to give a high signal	1	5.0E-3 N 1N 5.0E-3 N	5.00E-03N		
	OPRGCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1.0E-2 N	1.00E-02N		
	PER-COLD035G#	Cold streams sent to 8.7	1	1.0E-2 1N 3.50E-01N	3.50E-01N		
	PER8.50P013#	Continuous Evaporator is in Operation	1	1.30E-01N	1.30E-01N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	11.30E-01N 12H 0.1Y	1.37E-04		
3.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01	2.28E-08	100.0
	LOW-CE-FEED OPR17.5-ACNA#	Low Feed Flow is Not Detected or Corrected Second consecutive transfer containing TBP from tank 17.5 is fed to same batch	1	1.0N 1.0N 1N 5.0E-3 N	5.00E-03N		5 • •
	OPRCELE-MCNA#	Calibration Error - Level Instrument is calibrated to give a high signal	1	5.0E-3 N 1N 5.0E-3 N			
	OPRGCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1.0E-2 N	1.00E-02N		
	PER8.50P013#	Continuous Evaporator is in Operation	1		1.30E-01N		
	PERTK175.20A#	Sufficient TBP present in tank 17.5	1	1.30E-01N 1N 2.00E-03N			
	PERTR175002A#	Material Is Being Received From 17.5	1	1N 2.00E-02N	2.00E-02N		
	TR-17.5-TO-8.7	Transfer Excess TBP From 17.5 to 8.7		2.00E-02N 1N			

Calculation No. S-CLC-F-00140 Sheet No. 58 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
4.	ALRHL906NRIG# FREBATCH-2WG+ OPRGCETEIRNA#	High level alarm in tank 906 tank fails Frequency of a batch Evaporator Temperature Sensor is Out of Calibration	5	3.00E-05H 48Y 1N	6.21E-02 4.80E+01Y 1.00E-02N		100.0	
	OPRLV906ACNA# PERCESPG100G# TBPTKPREA#	Operator over fills tank 906 (Level Procedurally Controlled) Low SPG Not Detected Process upset causes excess organic in feed	1 1 3	1.00E+00N	5.00E-03N 1.00E+00N 1.37E-04			
5.	FRE-PMP-ADJG+ LOW-CE-FEED LSTTK906FAIA# OPRCELE-MCNA# OPRGCETEIRNA# PER8.5OP013# TBPTKPREA#	<pre>Pump speed is adjusted Low Feed Flow is Not Detected or Corrected Tank 906 level sensor failure Calibration Error - Level Instrument is calibrated to give a high signal Evaporator Temperature Sensor is Out of Calibration Continuous Evaporator is in Operation Process upset causes excess organic in feed</pre>	4 5 1 1 3	0.25H 4H 1.0N 6M 5.00E-07 H 1N 5.0E-3 N 1N 1.0E-2 N 1N 1.30E-01N 12H 0.1Y	1.00E+00 1.08E-03 5.00E-03N 1.00E-02N 1.30E-01N		100.0	
6.	FRE-PMP-ADJG+ LOW-CE-FEED OPR87EM1ACNA# OPR87EM2ACNA# OPR87EM3ACNA# OPRCELE-MCNA# OPRCELE-MCNA# PER8.5OP013# PER87ORG100A#	Pump speed is adjusted Low Feed Flow is Not Detected or Corrected operator fails to feed remaining tank contents at end of 1st interval-clean out operator fails to feed remaining tank contents at end of 2nd interval-clean out operator fails to feed remaining tank contents at end of 3rd interval-clean out Calibration Error - Level Instrument is calibrated to give a high signal Evaporator Temperature Sensor is Out of Calibration Continuous Evaporator is in Operation organic remains in feed tank	1	4H 1.0N 1N 5.0E-3 N 1N 5.0E-3 N 5.0E-3 N 5.0E-3 N 1.0E-2 N 1.0E-2 N 1 1.30E-01N	5.00E-03N 5.00E-03N 5.00E-03N 5.00E-03N 1.00E-02N 1.30E-01N 1.00E+00N		100.0	
7.	ALRHL906NRIG# FREBATCH-2WG+	High level alarm in tank 906 tank fails Frequency of a batch	5	6M 3.00E-05H 48Y	6.21E-02 4.80E+01Y		100.0	

Calculation No. S-CLC-F-00140 Sheet No. 59 of 129

Set Event No. Name		Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
OPRLV9 PER-COJ PERCESJ TBPTK2J 8. FRE-PM LOW-CE- LSTTK9 OPRCELJ OPRCELJ OPRGCE PER-COJ PER8.50	-FEED 06FAIA# E-MCNA# TEIRNA# LD035G#	Evaporator Temperature Sensor is Out of Calibration Operator over fills tank 906 (Level Procedurally Controlled) Cold streams sent to 8.7 Low SPG Not Detected Process upset causes excess TBP in canyon product Pump speed is adjusted Low Feed Flow is Not Detected or Corrected Tank 906 level sensor failure Calibration Error - Level Instrument is calibrated to give a high signal Evaporator Temperature Sensor is Out of Calibration Cold streams sent to 8.7 Continuous Evaporator is in Operation Process upset causes excess TBP in canyon product	1 1 1 3 4 5 1 1 1 1 3	1N 1.0E-2 N 1N 5.0E-3 N 1N 3.50E-01N 1.00E+00N 12H 0.1Y 0.25H 4H 1.0N 6M 5.00E-07 H 1.0N 6M 5.00E-07 H 1.0N 1.0N 1.0E-2 N 1N 1.0E-2 N 1N 1.2E-2 N 1.0E-2 N 1.2E-2 N 1.0E-2 N 1.2E-2 N 1.0E-2 N	1.00E-02N 5.00E-03N 3.50E-01N 1.00E+00N 1.37E-04 5.00E-01 1.00E+00 1.08E-03 5.00E-03N 1.00E-02N 3.50E-01N 1.30E-01N 1.37E-04	5.89E-09	100.0
OPRLV9 OPRTK9 PERCES TBPTK- 10. FREBAT OPR906 OPRGCE OPRLV9	TEIRNA# 06ACNA# 06CSNA# PG100G# PREA#	Frequency of a batch Evaporator Temperature Sensor is Out of Calibration Operator over fills tank 906 (Level Procedurally Controlled) Operator fails to respond to level alarm in tank 906 Low SPG Not Detected Process upset causes excess organic in feed Frequency of a batch Calibration Error - Level instrument is calibrated to give a false reading Evaporator Temperature Sensor is Out of Calibration Operator over fills tank 906 (Level Procedurally Controlled) Low SPG Not Detected	1 1 1 3 1 1 1	48Y 1N 1.0E-2 N 1N 5.0E-3 N 1.0E-2 N 1.00E+00N 1.00E+00N 12H 0.1Y 48Y 1N 5.0E-3 N 1.0E-2 N 1N 5.0E-3 N 1N 5.0E-3 N 1N 5.0E-3 N 1N 5.0E-3 N 1N 5.0E-3 N 1N 1.0E-2 N 12H 0.1Y 1N 1.0E-2 N 1N 1.0E-2 N 12H 0.1Y 1N 1.0E-2 N 1N 1.0E-2 N 1N 1.0E-2 N 1N 1.0E-2 N 12H 0.1Y 1N 1.0E-2 N 1N 1.0E-2 N 1N 1.0E-3 N 1N	4.80E+01Y 1.00E-02N 5.00E-03N 1.00E+02N 1.00E+00N 1.37E-04 4.80E+01Y 5.00E-03N 1.00E-02N 5.00E-03N 1.00E+00N	1.64E-09	100.0

Calculation No. S-CLC-F-00140 Sheet No. 60 of 129

221

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
	TBPTKPREA#	Process upset causes excess organic in feed	3	12H 0.1Y	1.37E-04		-	
11.	FREBATCH-2WG+ OPRGCETEIRNA#	Frequency of a batch Evaporator Temperature Sensor is Out of Calibration	1	48Y 1N	4.80E+01Y 1.00E-02N	1.15E-09	100.0	
	OPRLV906ACNA#	Operator over fills tank 906 (Level Procedurally Controlled)	1	1.0E-2 N 1N 5.0E-3 N	5.00E-03N			ĺ
	OPRTK906CSNA#	Operator fails to respond to level alarm in tank 906	1	1N 1.0E-2 N	1.00E-02N			
	PER-COLD035G#	Cold streams sent to 8.7	1	1.0E-2 N 1N 3.50E-01N	3.50E-01N			ĺ
	PERCESPG100G#	Low SPG Not Detected	1	1.00E+00N	1.00E+00N			
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3		1.37E-04			
12.	ALRTK906NRIG#	Low level alarm in tank 906 fails	5	6M 3.00E-05H	6.21E-02	9.69E-10	100.0	
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H	5.00E-01			ł
	LOW-CE-FEED OPRCELE-MCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level Instrument is calibrated to	1		1.00E+00 5.00E-03N			
	OPRGCETEIRNA#	give a high signal Evaporator Temperature Sensor is Out of Calibration	1	5.0E-3 N 1N 1.0E-2 N	1.00E-02N			
	PER8.50P013#	Continuous Evaporator is in Operation	1	1.30E-01N	1.30E-01N			
	RLPPUMP-NREG#	Pump switch fails to open	1	1.30E-01N 1N 1.0E-3N	1.00E-03N			l
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.0E-3N 12H 0.1Y	1.37E-04			
13.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01	7.49E-10	100.0	I٢
	LOW-CE-FEED OPR906LEMCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated to give a false reading	1	4 1.0N 1N 5.0E-3 N				
	OPRCELE-MCNA#	Calibration Error - Level Instrument is calibrated to	1	1N	5.00E-03N			
	PER8.50P013#	give a high signal Continuous Evaporator is in Operation	1	5.0E-3 N 1N	1.30E-01N			
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.30E-01N 12H	1.37E-04			
	TSTCETE-FAIG#	Continous Evaporator Temperature Sensor Has Failed	3	0.1Y 4D 1.00E-06 H	9.60E-05			
14.	FREBATCH-2WG+	Frequency of a batch		48Y	4.80E+01Y	5.75E-10	100.0	

Calculation No. S-CLC-F-00140 Sheet No. 61 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
	OPR906LEMCNA#	Calibration Error - Level instrument is calibrated to give a false reading	1	1N 5.0E-3 N	5.00E-03N			1
	OPRGCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1N 1.0E-2 N	1.00E-02N			
	OPRLV906ACNA#	Operator over fills tank 906 (Level Procedurally Controlled)	1	1N 5.0E-3 N	5.00E-03N			1
	PER-COLD035G#	Cold streams sent to 8.7	1	1N 3.50E-01N	3.50E-01N			
	PERCESPG100G#	Low SPG Not Detected	1	1N 1.00E+00N	1.00E+00N			
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	12H 0.1Y	1.37E-04			
15.	FREBATCH-2WG+ LSTTK906FAIA#	Frequency of a batch Tank 906 level sensor failure	5	48Y 6M		3.55E-10	100.0	
	OPRGCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration		5.00E-07 H 1N				
	OPRLV906ACNA#	Operator over fills tank 906 (Level Procedurally		1.0E-2 N 1N				
	PERCESPG100G#	Controlled) Low SPG Not Detected	1	5.0E-3 N 1N				
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.00E+00N 12H 0.1Y	1.37E-04			
16.	ALRHL906NRIG#	High level alarm in tank 906 tank fails	5	6M 3.00E-05H	6.21E-02	1.96E-10	100.0	
	FREBATCH-2WG+ OPRLV906ACNA#	Frequency of a batch Operator over fills tank 906 (Level Procedurally	1	48Y 1N				
	PERCESPG100G#	Controlled) Low SPG Not Detected	1	5.0E-3 N 1N	1.00E+00N			
	TBPTKPREA#	Process upset causes excess organic in feed	3		1.37E-04			
	TSTCETE-FAIG#	Continous Evaporator Temperature Sensor Has Failed	3	0.1Y 4D 1.00E-06 H	9.60E-05			
17.	FREBATCH-2WG+ LSTTK906FAIA#	Frequency of a batch Tank 906 level sensor failure	5	48Y 6M	4.80E+01Y 1.08E-03	1.24E-10	100.0	
	OPRGCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	5.00E-07 H 1N	1.00E-02N			
	OPRLV906ACNA#	Operator over fills tank 906 (Level Procedurally	1	1.0E-2 N 1N 5.0E 2 N	5.00E-03N			
	PER-COLD035G#	Controlled) Cold streams sent to 8.7	1	5.0E-3 N 1N	3.50E-01N			
	PERCESPG100G#	Low SPG Not Detected	1	3.50E-01N 1N	1.00E+00N	l		

Calculation No. S-CLC-F-00140 Sheet No. 62 of 129

,

Set No.		Description	С	B.E. Input	Calc. Result	Cutset Freg.(/yr)	CUM %
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	12H 0.1Y			
18.	CAVCESTMFOWG#	Pneumatic steam control valve fails open	3	2H 3.00E-06 H		9.36E-11	100.0
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01		
	LOW-CE-FEED OPR906LEMCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated to	1	1.0N 1N 5.0E-3 N	1.00E+00 5.00E-03N	i	
	OPRGBLOCDENA#	give a false reading Operator fails to respond to 8.5E temp., level alarms (close block valve)	11	5.0E-3 N 1N 1.0E-2 N		;	
	PER8.50P013#	Continuous Evaporator is in Operation	1	1.30E-01N		;	
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.30 <u>E</u> -01N 12H 0.1Y	1.37E-04		
19.	ALRHL906NRIG#	High level alarm in tank 906 tank fails	5	6M 3.00E-05H		6.86E-11	100.0
	FREBATCH-2WG+ OPRLV906ACNA#	Frequency of a batch Operator over fills tank 906 (Level Procedurally Controlled)	1	48Y 1N 5.0E-3 N	4.80E+01Y		
	PER-COLD035G#	Cold streams sent to 8.7	1	1N 3.50E-01N		j	
	PERCESPG100G#	Low SPG Not Detected	11	1.00E+00N	1.00E+00N	,	
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3		1.37E-04		
	TSTCETE-FAIG#	Continous Evaporator Temperature Sensor Has Failed	3	1 · · · ·	9.60E-05		
20.	ALR-TLG-COMG#	Common cause evaporator alarm failure (level,temperature)	5	6M 3.00E-06H		6.04E-11	100.0
	CAVCESTMFOWG#	Pneumatic steam control valve fails open	3	2H 3.00E-06 H	6.00E-06		
	FRE-PMP-ADJG+	Pump speed is adjusted	4		5.00E-01		
	LOW-CE-FEED OPR906LEMCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated to give a false reading	1	1.0N 1N 5.0E-3 N	1.00E+00 5.00E-03N		
	PER8.50P013#	Continuous Evaporator is in Operation	1	1.30E-01N	1.30E-01N	ŧ	
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.50E-01N 12H 0.1Y	1.37E-04		
21.	CAVCESTMFOWG#	Pneumatic steam control valve fails open	3	2H 3.00E-06 H		3.28E-11	100.0

Calculation No. S-CLC-F-00140 Sheet No. 63 of 199

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01			l
	LOW-CE-FEED OPR906LEMCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated to give a false reading	1	1.0N 1N 5.0E-3 N	1.00E+00 5.00E-03N			
	OPRGBLOCDENA#	Operator fails to respond to 8.5E temp., level alarms (close block valve)	1	1.0E-2 N	1.00E-02N			
	PER-COLD035G#	Cold streams sent to 8.7	1	1N 3.50E-01N	3.50E-01N			
	PER8.50P013#	Continuous Evaporator is in Operation	1	1N 1.30E-01N				
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	12H 0.1Y	1.37E-04			
22.	FREBATCH-2WG+ OPRLV906ACNA#	Frequency of a batch Operator over fills tank 906 (Level Procedurally Controlled)	1	48Y 1N 5.0E-3 N	4.80E+01Y 5.00E-03N		100.0	
	OPRTK906CSNA#	Operator fails to respond to level alarm in tank 906	1	1.0E-2 N	1.00E-02N			
	PERCESPG100G#	Low SPG Not Detected	1	1.00E+00N	1.00E+00N			
	TBPTKPREA#	Process upset causes excess organic in feed	3		1.37E-04			
	TSTCETE-FAIG#	Continous Evaporator Temperature Sensor Has Failed	3	4D 1.00E-06 H	9.60E-05			
23.	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01	3.12E-11	100.0	
	LOW-CE-FEED LST-CE-FAIG#	Low Feed Flow is Not Detected or Corrected Continous evaporator level instrument fails high	5	1.0N 8H 5.00E-07 H	1.00E+00 2.00E-06			
	OPR906LEMCNA#	Calibration Error - Level instrument is calibrated to give a false reading	1	1N 5.0E-3 N	5.00E-03N			
	OPRGCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1N 1.0E-2 N	1.00E-02N		=	
	PER8.50P013#	Continuous Evaporator is in Operation	1	1.30E-01N	1.30E-01N			
	TBPTKPREA#	Process upset causes excess organic in feed	3	11301 01N 12H 0.1Y	1.37E-04			
24.	CAVCESTMFOWG#	Pneumatic steam control valve fails open	3	2H 3.00E-06 H	6.00E-06	2.73E-11	100.0	
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01			
	LOW-CE-FEED OPR17.5-ACNA#	Low Feed Flow is Not Detected or Corrected Second consecutive transfer containing TBP from tank 17.5 is fed to same batch	1	4H 1.0N 1N 5.0E-3 N	1.00E+00 5.00E-03N			

Calculation No. S-CLC-F-00140 Sheet No. 64 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	OPRGBLOCDENA# PER8.50P013#	Operator fails to respond to 8.5E temp., level alarms (close block valve) Continuous Evaporator is in Operation	1 1	1.0E-2 N 1N	1.00E-02N 1.30E-01N		
	PERTK175.20A#	Sufficient TBP present in tank 17.5	1	1.30E-01N 1N 2.00E-03N	2.00E-03N		
	PERTR175002A#	Material Is Being Received From 17.5	1	1N 2.00E-02N	2.00E-02N		
25.	TR-17.5-TO-8.7 ALR-TLG-COMG#	Transfer Excess TBP From 17.5 to 8.7 Common cause evaporator alarm failure	5	1N 6M	1.00E+00 6.45E-03	2.11E-11	100.0
23.	CAVCESTMFOWG#	(level,temperature) Pneumatic steam control valve fails open	3	3.00E-06H 2H	6.00E-06	2.112 11	100.0
	FRE-PMP-ADJG+	Pump speed is adjusted	4	3.00E-06 H 0.25H 4H	5.00E-01		
	LOW-CE-FEED OPR906LEMCNA#	Low Feed Flow is Not Detected or Corrected Calibration Error - Level instrument is calibrated to	1	1.0N 1N	1.00E+00 5.00E-03N		
	PER-COLD035G#	give a false reading Cold streams sent to 8.7	1	5.0E-3 N 1N 3.50E-01N	3.50E-01N		
	PER8.50P013#	Continuous Evaporator is in Operation	1	1N 1.30E-01N	1.30E-01N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3		1.37E-04		
26.	CAVCESTMFOWG#	Pneumatic steam control valve fails open	3	2H 3.00E-06 H	6.00E-06	2.02E-11	100.0
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01		
	LOW-CE-FEED LSTTK906FAIA#	Low Feed Flow is Not Detected or Corrected Tank 906 level sensor failure	5	1.0N 6M 5.00E-07 H			
	OPRGBLOCDENA#	Operator fails to respond to 8.5E temp., level alarms (close block valve)	1	1.0E-2 N	1.00E-02N		
	PER8.50P013#	Continuous Evaporator is in Operation	1	1N 1.30E-01N	1.30E-01N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	12H 0.1Y	1.37E-04		
27.	ALR-TLG-COMG#	Common cause evaporator alarm failure (level,temperature)	5	6M 3.00E-06H	6.45E-03	1.76E-11	100.0
	CAVCESTMFOWG#	Pneumatic steam control valve fails open	3		6.00E-06		
	FRE-PMP-ADJG+	Pump speed is adjusted	4	0.25H 4H	5.00E-01		
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0N	1.00E+00		

Calculation No. S-CLC-F-00140 Sheet No. 65 of 129

-

Set No.		Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
	OPR17.5-ACNA# PER8.50P013#	Second consecutive transfer containing TBP from tank 17.5 is fed to same batch Continuous Evaporator is in Operation	1 1	1N 5.0E-3 N 1N 1.30E-01N	1.30E-01N			
	PERTK175.20A# PERTR175002A# TR-17.5-TO-8.7	Sufficient TBP present in tank 17.5 Material Is Being Received From 17.5 Transfer Excess TBP From 17.5 to 8.7	1	1N 2.00E-03N	2.00E-03N 2.00E-02N			
28.	CAVCESTMFOWG# FRE-PMP-ADJG+	Pneumatic steam control valve fails open Pump speed is adjusted	3 4	2H 3.00E-06 H 0.25H 4H	6.00E-06	1.71E-11	100.0	
	LOW-CE-FEED OPR87EM1ACNA# OPR87EM2ACNA#	Low Feed Flow is Not Detected or Corrected operator fails to feed remaining tank contents at end of 1st interval-clean out operator fails to feed remaining tank contents at end of 2nd interval-clean out	1	1.0N 1N 5.0E-3 N 1N 5.0E-3 N	5.00E-03N 5.00E-03N			
	OPR87EM3ACNA# OPRGBLOCDENA# PER8.5OP013#	operator fails to feed remaining tank contents at end of 3rd interval-clean out Operator fails to respond to 8.5E temp., level alarms (close block valve) Continuous Evaporator is in Operation		1N 5.0E-3 N 1N 1.0E-2 N 1N 1.30E-01N	1.00E-02N 1.30E-01N			
29.	PER87ORG100A# FREBATCH-2WG+ OPR906LEMCNA#	organic remains in feed tank Frequency of a batch Calibration Error - Level instrument is calibrated to give a false reading	1	1N 1.00E+00N 48Y 1N 5.0E-3 N	4.80E+01Y 5.00E-03N	1.58E-11	100.0	
	OPRLV906ACNA# PERCESPG100G# TBPTKPREA#	Operator over fills tank 906 (Level Procedurally Controlled) Low SPG Not Detected Process upset causes excess organic in feed	1 1 3	1N 5.0E-3 N 1N 1.00E+00N 12H	5.00E-03N 1.00E+00N			
	TSTCETE-FAIG#	Continous Evaporator Temperature Sensor Has Failed	3	0.1Y 4D 1.00E-06 H	9.60E-05			
30.	ALR-TLG-COMG# CAVCESTMFOWG# FRE-PMP-ADJG+	Common cause evaporator alarm failure (level,temperature) Pneumatic steam control valve fails open Pump speed is adjusted	5 3 4	6M 3.00E-06H 2H 3.00E-06 H 0.25H 4H	6.00E-06 5.00E-01	1.30E-11	100.0	
	LOW-CE-FEED	Low Feed Flow is Not Detected or Corrected		1.0N				1

S-CLC-F-00140

Z O

 $\overline{}$

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM &
	LSTTK906FAIA#	Tank 906 level sensor failure	5	6М 5.00Е-07 Н	1.08E-03		
	PER8.50P013#	Continuous Evaporator is in Operation	1	1N 1.30E-01N	1.30E-01N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	12H 0.1Y	1.37E-04		

Basic Event Dat	a for 8.5E Evaporator	

•

Event	С	Input	Calc.	Description	Source
ALR-TLG-COMG#	5	6M			COG: 6 Month Calib., Use Beta factor
ALRHL906NRIG#	5	3.00E-06H 6M 3.00E-05H	6.21E-02	(level,temperature) High level alarm in tank 906 tank fails	of .1 for common cause Assumes discovered during Level Sensor Calibration: FR 3E-5/hr
ALRTK906NRIG#	5	6M 3.00E-05H	6.21E-02	Low level alarm in tank 906 fails	Assumes discovered during Level Sensor Calibration: FR 3E-5/hr
CAVCESTMFOWG#	3	2H 3.00E-06 H	6.00E-06	Pneumatic steam control valve fails open	discovered in 2 hours (round sheet every hour)
CAVCESTMFOWG+	4	2H 3.00E-06 H	6.00E-06	Pneumatic steam control valve fails open	discovered in 2 hours (round sheet every hour)
FRE-PMP-ADJG+	4	0.25H 4H		Pump speed is adjusted	Adjusted 4 times per hour, discovered within 15 Minutes
FREBATCH-2WG+ JPRFEED-RECG+	4	48Y 96H 1.00E-08 H	9.60E-07	Frequency of a batch Large leak in jumper causes failure to feed evaporator	48 times a year, Maximum Starts
LOW-CE-FEED		1.0N			Assumed to Occur
LST-CEFAIG#	5	8H 5.00E-07 H		Continous evaporator level instrument fails high	Assume 8 hours for repair: 5E-7/hr for failure
LST-CEFAIG+	4	8H 5.00E-07 H	4.00E-06		Assume 8 hours for repair: 5E-7/hr for failure
LSTCEHATFAIG+	4	3M 5.00E-07 H	1.08E-03		Discovered in 3 months (when calib.)
LSTLE-CECALG+	4	4H 2.0Y		Frequency of continous evaporator level instrumetation calibration	Assume 4 hour for calibration: Calibrated 2/yr, discovered before next cycle
LSTTK906FAIA#	5	6М 5.00Е-07 Н	1.08E-03	Tank 906 level sensor failure	Assume discovered during calibration: FR 5E-7/hr
MDPTK8.7FRCG+	4	96H 1.00E-04 H		Continous evaporator feed pump fails	Would Discover by End of Cycle (4 days)
OPR17.5-ACNA#	1	1N 5.0E-3 N	5.00E-03N	Second consecutive transfer containing TBP from tank 17.5 is fed to same batch	sump receipt tank transfer procedure does not allow a 2nd transfer
OPR87EM1ACNA#	1	1N 5.0E-3 N		operator fails to feed remaining tank contents at end of 1st interval-clean out	Typical Circumstances
OPR87EM2ACNA#	1	1N 5.0E-3 N		operator fails to feed remaining tank contents at end of 2nd interval-clean	typical circumstances
OPR87EM3ACNA#	1	1N 5.0E-3 N		out operator fails to feed remaining tank contents at end of 3rd interval-clean out	Typical Circumstances
OPR906LEMCNA#	1			out Calibration Error - Level instrument is calibrated to give a false reading	Typical Circumstances
OPRCELE-MCNA#	1	5.0E-3 N 1N 5.0E-3 N	5.00E-03N	Calibrated to give a faise reading Calibration Error - Level Instrument is calibrated to give a high signal	Typical Circumstances
OPRGBLOCDENA#	1	5.0E-3 N 1N 1.0E-2 N	1.00E-02N	Operator fails to respond to 8.5E temp., level alarms (close block valve)	Several Competing Signals

Calculation No. S-CLC-F-00140 Sheet No. 68 of 129 Rev. B Basic Event Data for 8.5E Evaporator (CONT.)

Event	C	Input	Calc.	Description	Source
OPRGCETEIRNA#	1	1N			Normal Calibration, Not Discovered
	a 1	1.0E-2 N		of Calibration	Until Next Calibration
OPRLV906ACNA#	1	1N	5.00E-03N	Operator over fills tank 906 (Level	Typical Circumstances, Level kept low
		5.0E-3 N	1 007 001	Procedurally Controlled)	to prevent large loss of organic
OPRTK906CSNA#	1	1N	1.00E-02N		Typical Circumstances, Further Loss
		1.0E-2 N		alarm in tank 906	could shut down process
PER-COLD035G#	11	1N	3.50E-01N	Cold streams sent to 8.7	1.5 Days of Cold Streams Out of 4
		3.50E-01N			days of running
PER8.50P013#	1	1N	1.30E-01N	Continuous Evaporator is in Operation	
		1.30E-01N			Cold)
PER87ORG100A#	1	1N	1.00E+00N	organic remains in feed tank	assumes no credit for feeding tank
		1.00E+00N			contents to the adequate mixing point
PERACCUMINC#	1	1N		30,000 lbs of organic accumulates in	COG: impossible
		1.00E-32N		8.7	
PERCESPG100G#	11	1N	1.00E+00N	Low SPG Not Detected	No Credit for SPG
		1.00E+00N			
PERFBLININC#	1	1N	1.00E-32N	Excess TBP is Received in 8.7 From 9.7	
		1.00E-32N			processing)
PERTK175.20A#	1	1N	2.00E-03N	Sufficient TBP present in tank 17.5	a: 1 in 5 years (1/500 Batches)
		2.00E-03N			
PERTR175002A#	11	1N		Material Is Being Received From 17.5	Pu Recovery, Assume 1 out of 50
		2.00E-02N			batches
PSTSTEAMFAIG+	4	4D	9.60E-05	Steam pressure switch fails	Assume would be discovered by next
		1.00E-06 H			cycle: FR 1E-6/hr
RLPPUMP-NREG#	1			Pump switch fails to open	Per Demand, Generic Data
		1.0E-3N			
TBP17.5-INCG#		1.0E-32N	1.00E-32	Several batches containing excess TBP	impossible - 3 consecutive transfers
	1			are received from 17.5 (30,000 lbs	from 17.5 during a batch
				total)	
TBPDENS1PREA#		1.0E-32N	1.00E-32	Process upsets causes dilute 2AW or	COG: impossible (would involve phase
				high density in 11.7S	inversion, can't get 10,000 lbs
]]				organic)
TBPDENS2PREA#	1	1.0E-32H	8.76E-29Y	Process upsets causes dilute 2W or	COG: impossible (would involve phase
	11			high density in 11.7S	inversion, can't get 10,000 lbs
					organic)
TBPTKPREA#	3	12H		Process upset causes excess organic in	
		0.1Y		feed	for 12 hours
TBPTK2BPPREA#	3	12H		Process upset causes excess TBP in	Estimated as 1/10years - Not detected
		0.1Y		canyon product	for 12 hours
TR-17.5-TO-8.7		1N	1.00E+00	Transfer Excess TBP From 17.5 to 8.7	Assumed to be present and always
					transferred
TSTCETE-FAIG#	13	4D		Continous Evaporator Temperature	Assumes Discovered by next cycle: FR
	1	1.00E-06 H		Sensor Has Failed	1E-6/hr

Calculation No. S-CLC-F-00140 Sheet No. 69 of 129 Rev. B

Type Code Data for 8.5E Evaporator

Type Code	Rate	Description	Source	EF	D	
ALR COM	3.00E-06H	Alarm/Annunciator, Fails to alarm (Instr.	WSRC-TR-93-262, ALR-NR-I			
ALR NRI	3.00E-05H	& Control) Alarm/Annunciator, Fails to alarm (Instr.	WSRC-TR-93-262, ALR-NR-I	10	L	
CAV FOW	3.00E-06 H	& Control) Valve (Control), Air-Operated, Fails open	WSRC-TR-93-262, CAV-FO-W	10	L	
FRE ADJ	4H	(Water) Speed of Feed Pump Adjusted 4 Times per hour	Operations personnel	ł		
JPR REC		Jumper, Rupture (external) (Chemical)	WSRC-TR-93-262, JPR-RE-C	30	L	
LST CAL LST FAI		Level Instrument Calibration Frequency Sensor/Transmitter/, Transducer/Proc.	Assumed Value WSRC-TR-93-262, LST-FA-I	3	L	
MDP FRC	1.00E-04 H	Switch, Level, Failure (Instr. & Control) Pump, Motor-Driven, Fails to run	WSRC-TR-93-262, MDP-FR-C	10	L	
OPR ACN	5.0E-3 N	(Chemical) Failure of Administrative Control	WSRC-TR-93-581, Table 4, Item 1, Nominal	10	L	
OPR CSN	1.0E-2 N		WSRC-TR-93-581, Table 4, Item 2, Nominal	5	L	
OPR DEN	1.0E-2 N	(Nominal) Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4, Item 30, Nominal		L	
OPR IRN		Incorrect reading or recording of data (Nominal)	WSRC-TR-93-581, Table 4, Item 11, Nominal	5	L	
OPR MCN PER .20		Miscalibration (Nominal) 0.2% chance	WSRC-TR-93-581, Table 4, Item 12, Nominal	10	L	
PER 002 PER 013		2% chance 13% Chance				
PER 035 PER 100	3.50E-01N	35% chance 100% chance		}		
PER INC	1.00E-32N	Incredible Event	WSRC-TR-93-262, PST-FA-I		L	
PST FAI		Sensor/Transmitter/, Transducer/Proc. Sw., Press., Failure (Instr. & Control)				
RLP NRE TBP PRE	1.0E-3N 0.1Y	Relay fails to open Process upset causes excess organic in	WSRC-TR-93-262m RLP-NRE Never Seen, Estimated as Once in Ten			
TST FAI	1.00E-06 H	feed Sensor/Transmitter/, Transducer/Proc. Switch, Temp., Failure (Instr. & Control)	Years WSRC-TR-93-262, TST-FA-I	3		Rev. B

Calculation No. S-CLC-F-00140 Shpet No. 70 of 129

Calculation No.	S-CLC-	F-00140
Sheet No. 71 of	129	
Rev. B	_	

APPENDIX E - 9.3E EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:

FR=Failure Rate

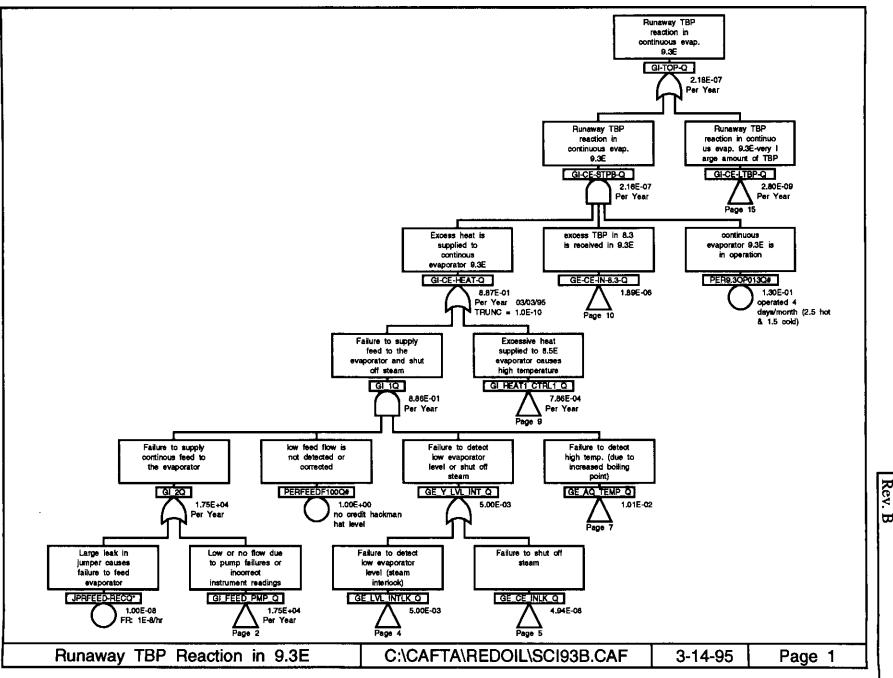
 $\mathbf{a} = assumption$

COG= cognizant engineer estimate/information

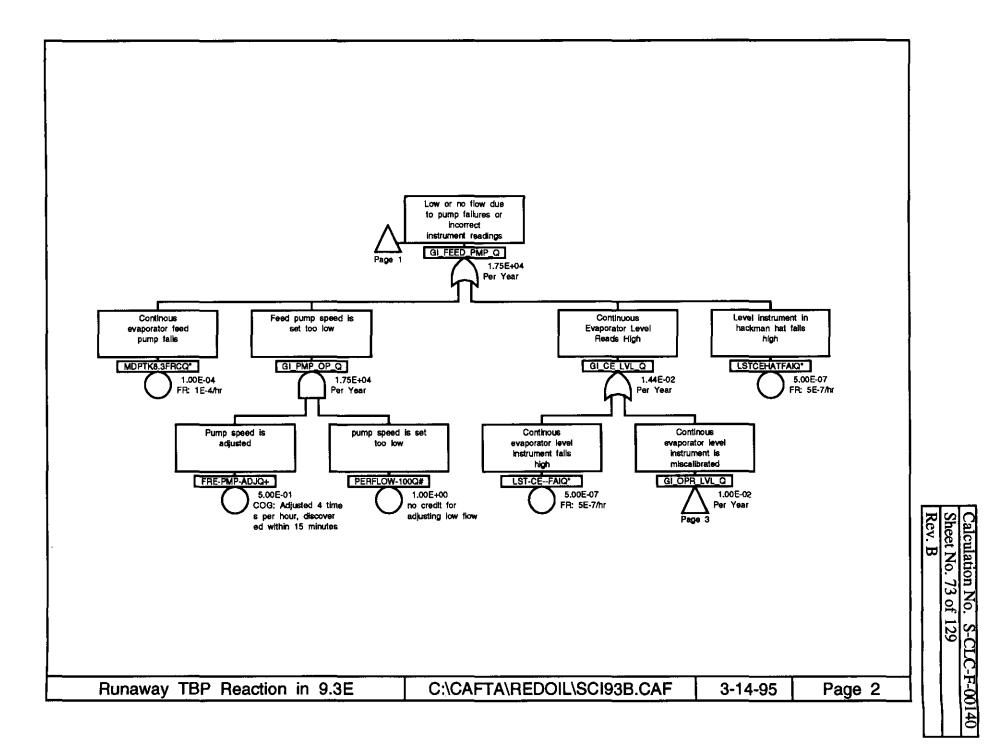
TRUNC= Truncation limit of cutset evaluator

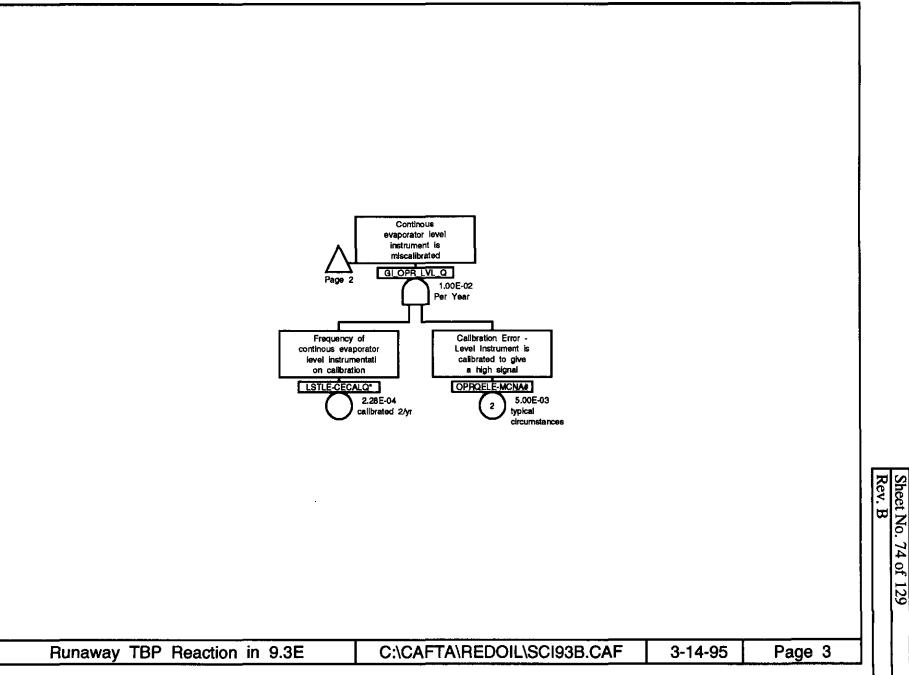
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.

NOTE: Events in this tree with a probability of "1E-32" are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number "1E-32" was used because it is the smallest number CAFTA is capable of handling.

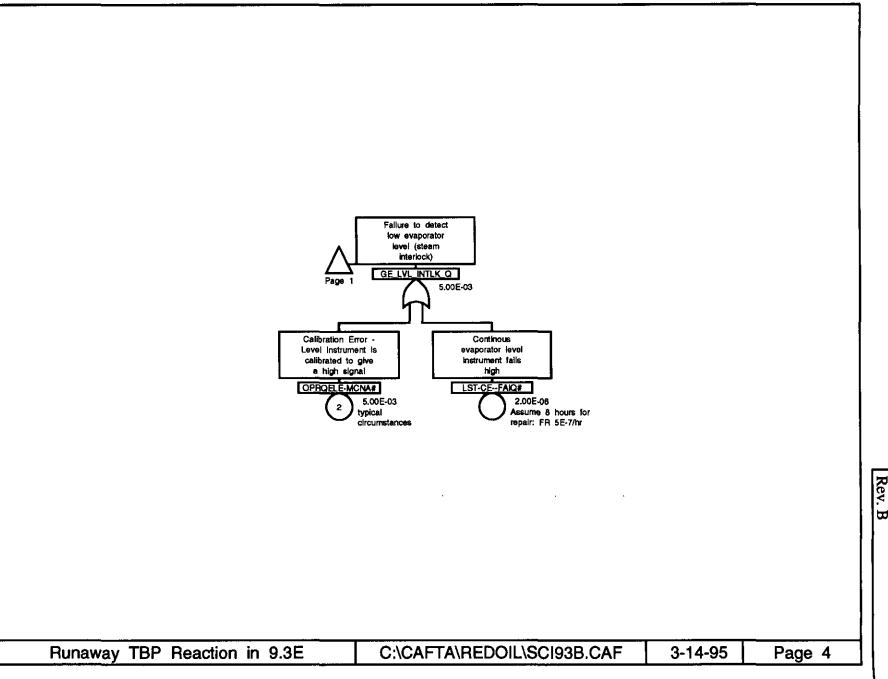

Fault Tree (Page 72)

Gate/Event Cross Reference (Page 91)

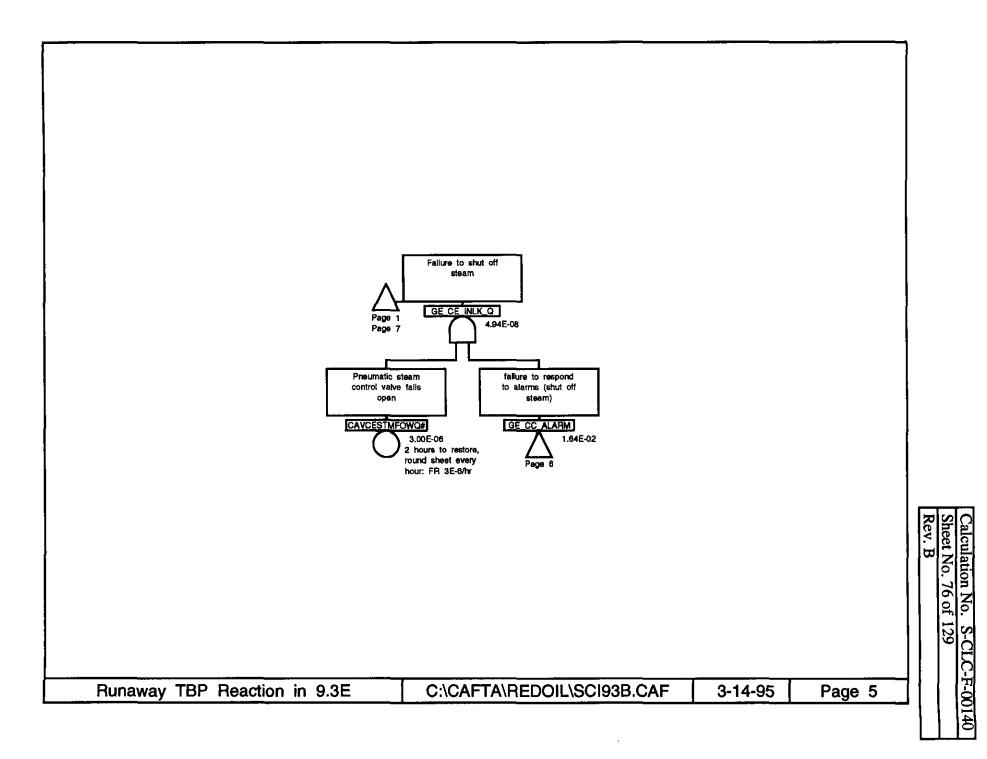

Cutset Report (Page 92)

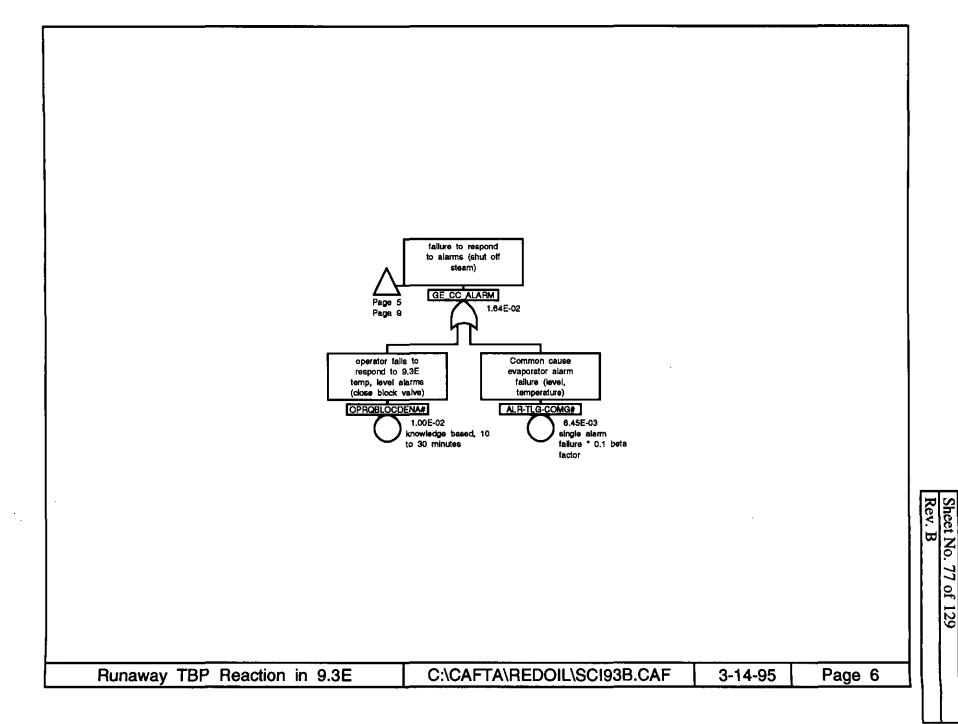

Basic Event Data (Page 99)

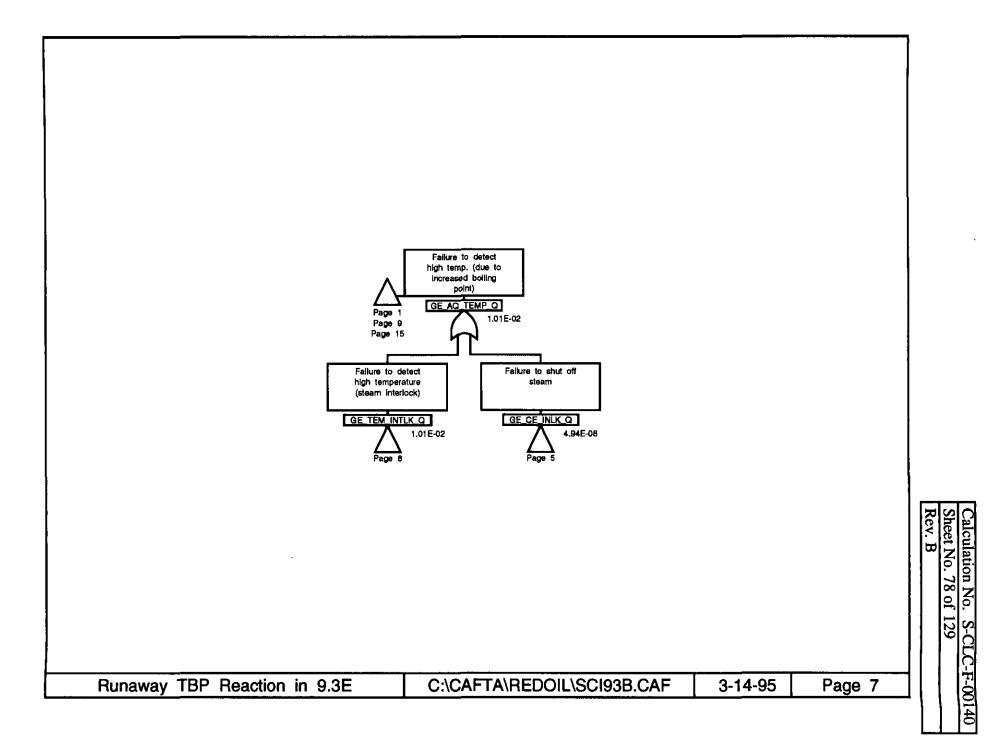
Type Code Data (Page 101)



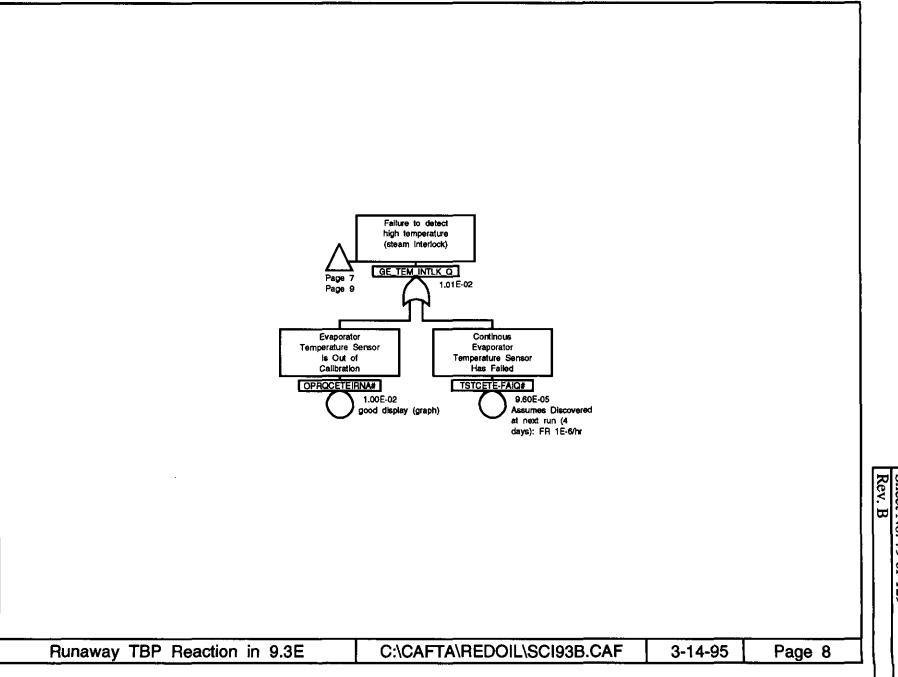
Salculation No. S-CLC-F-00140 heet No. 72 of 129



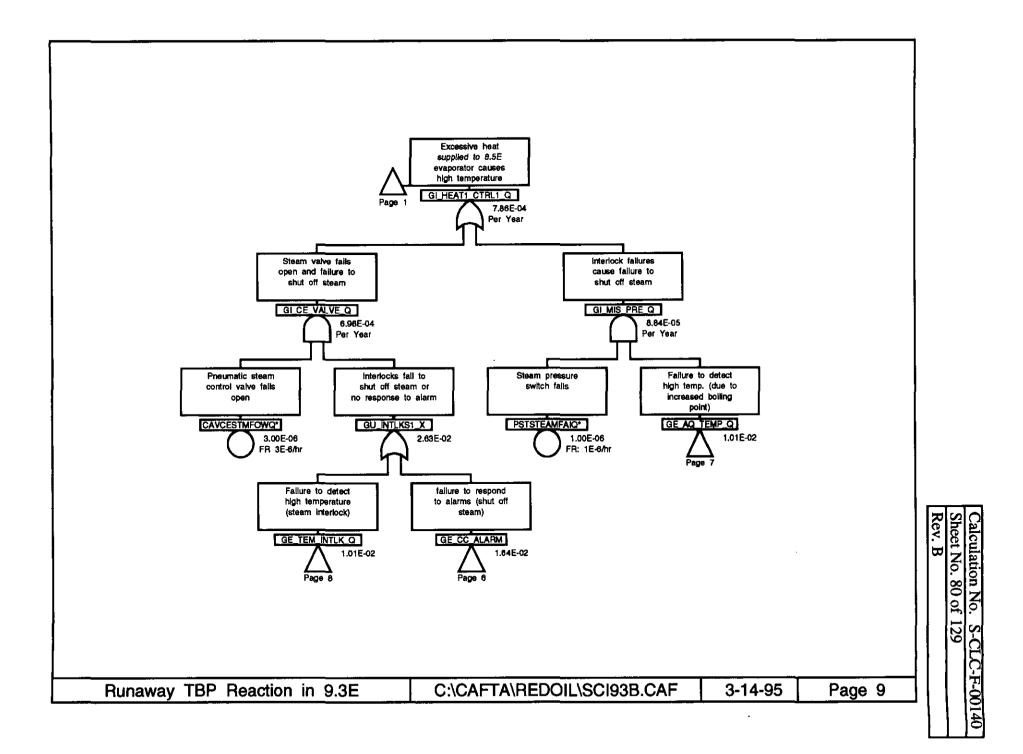

Calculation No. S-CLC-F-00140 Sheet No. 74 of 129


alculation No. S-CLC-F-00140 heet No. 75 of 129

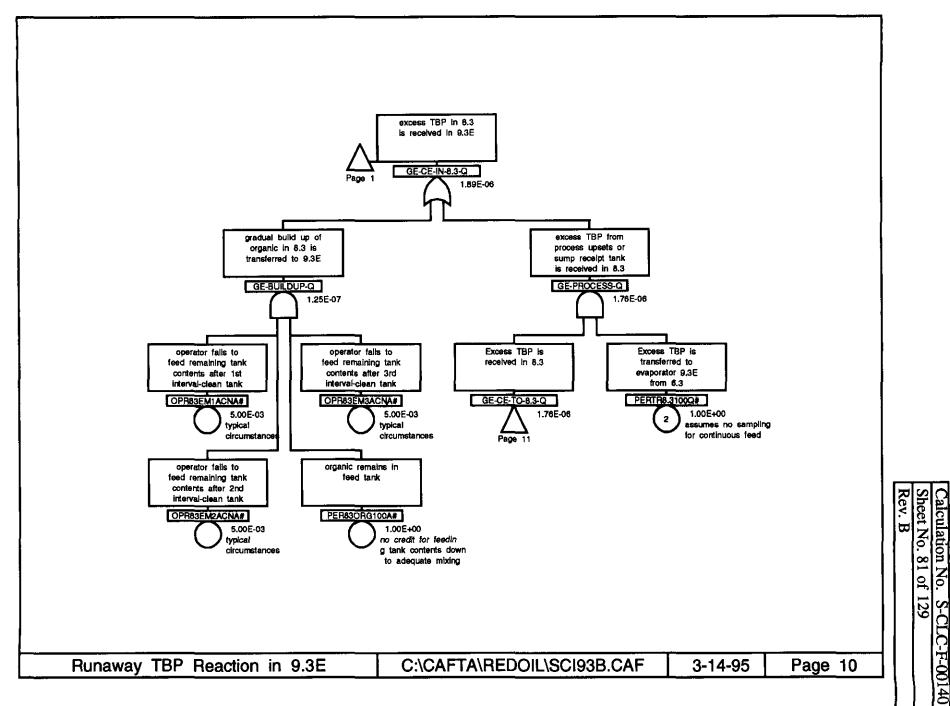
· · · · · · ·

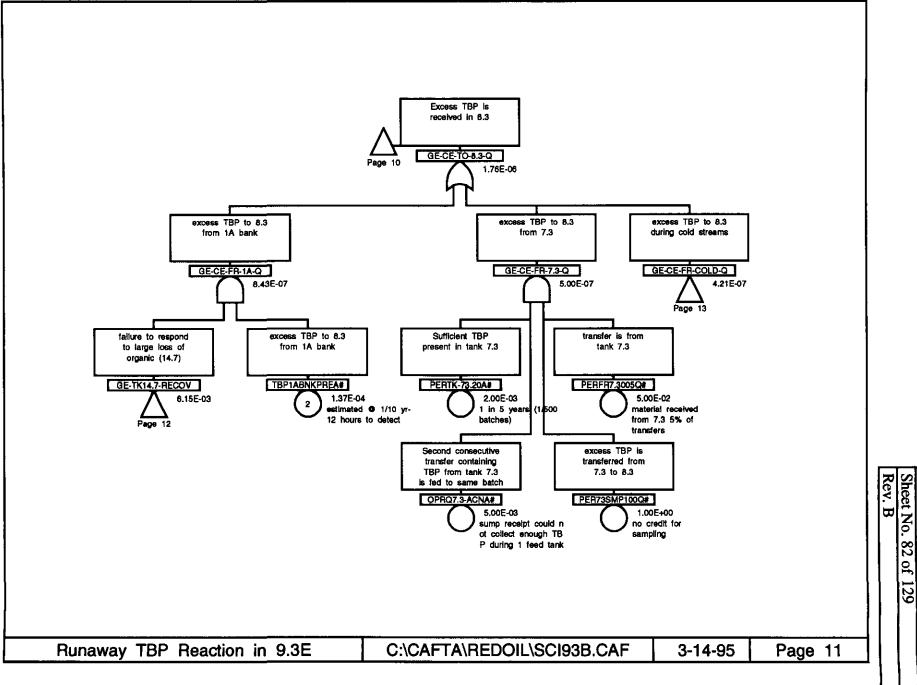


alculation No. S-CLC-F-00140

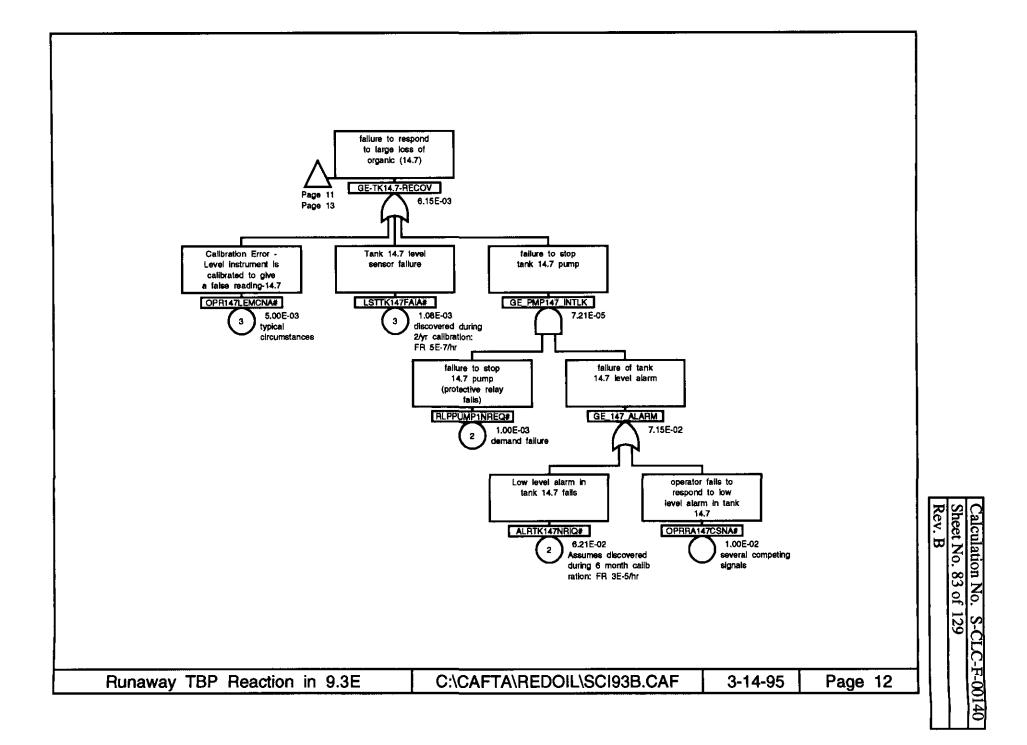


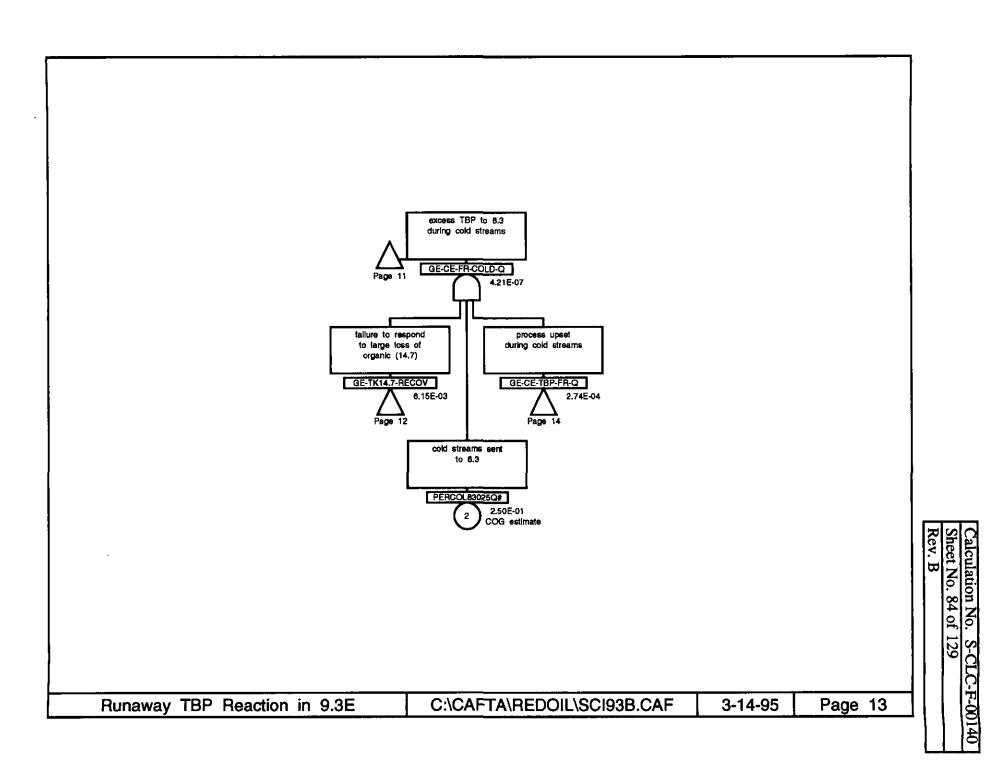
1

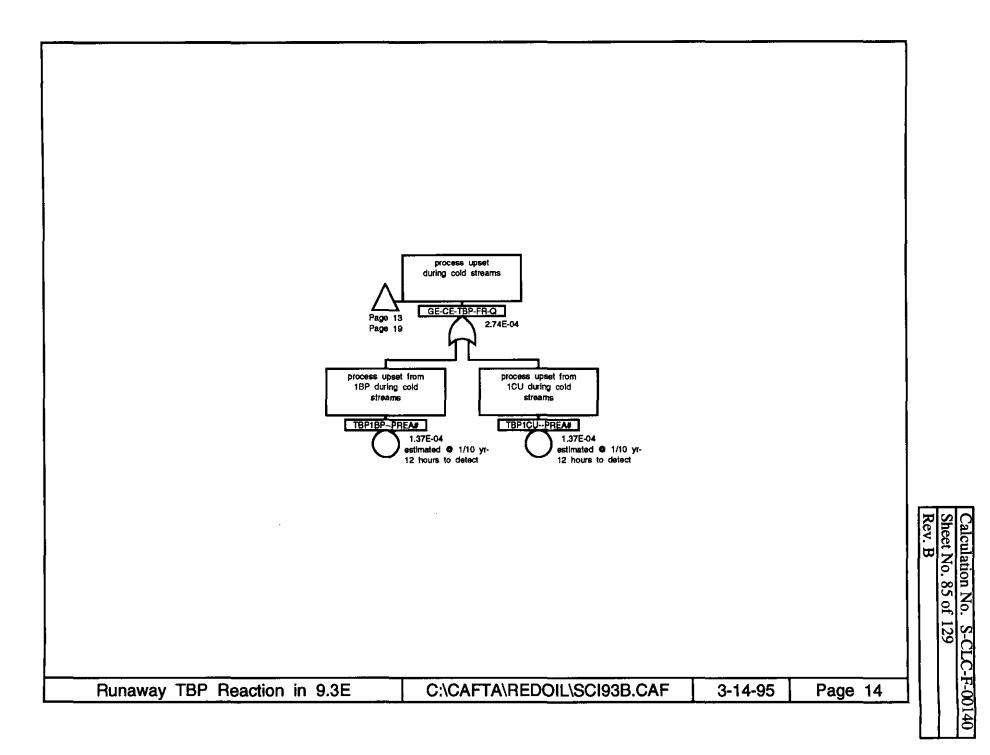


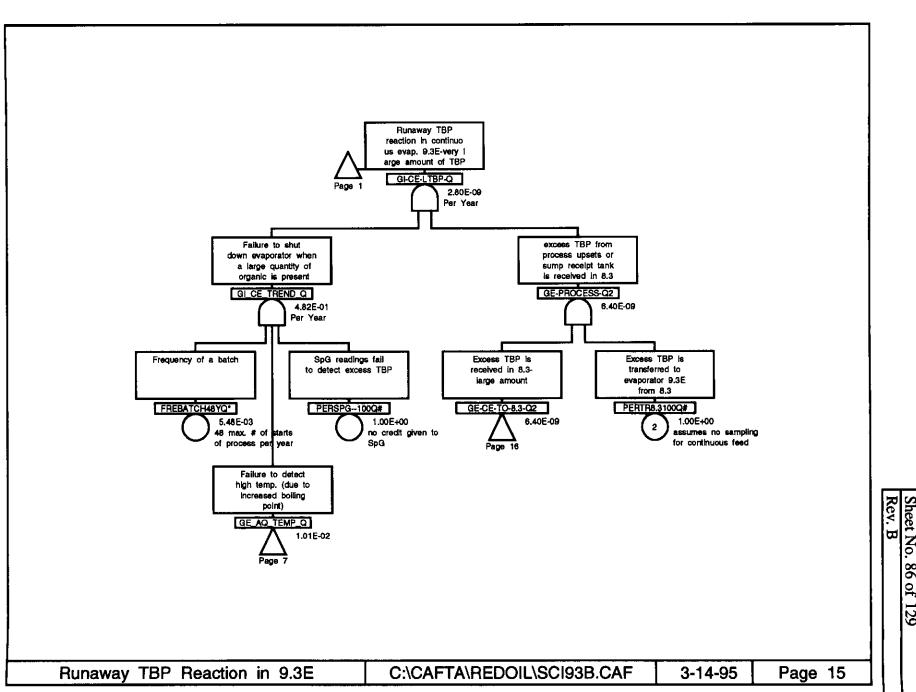


Calculation No. S-CLC-F-00140 Sheet No. 79 of 129

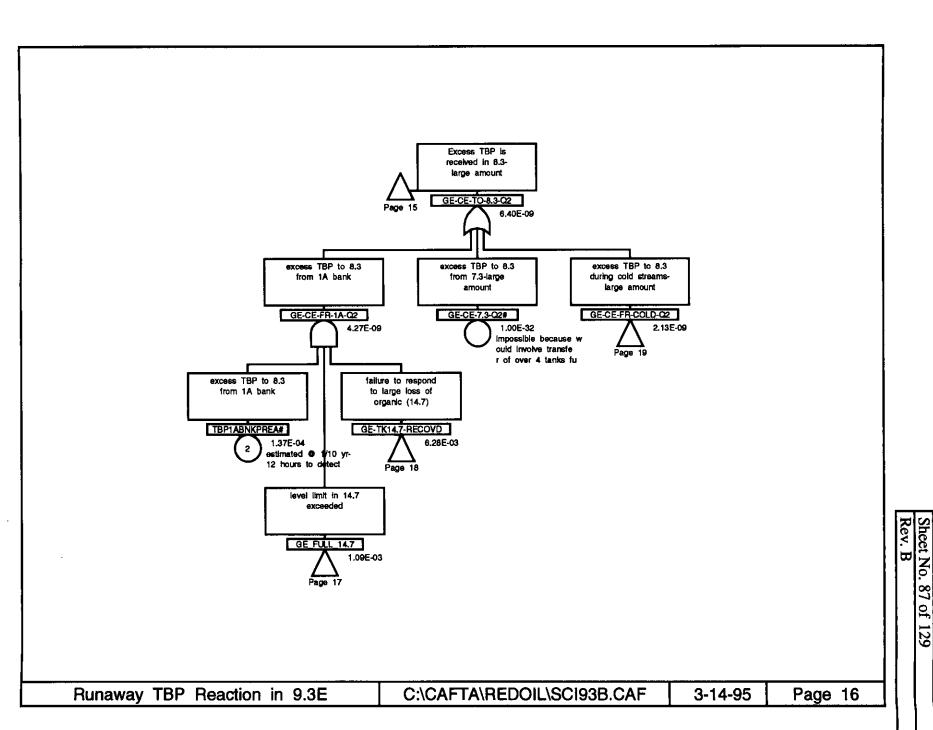


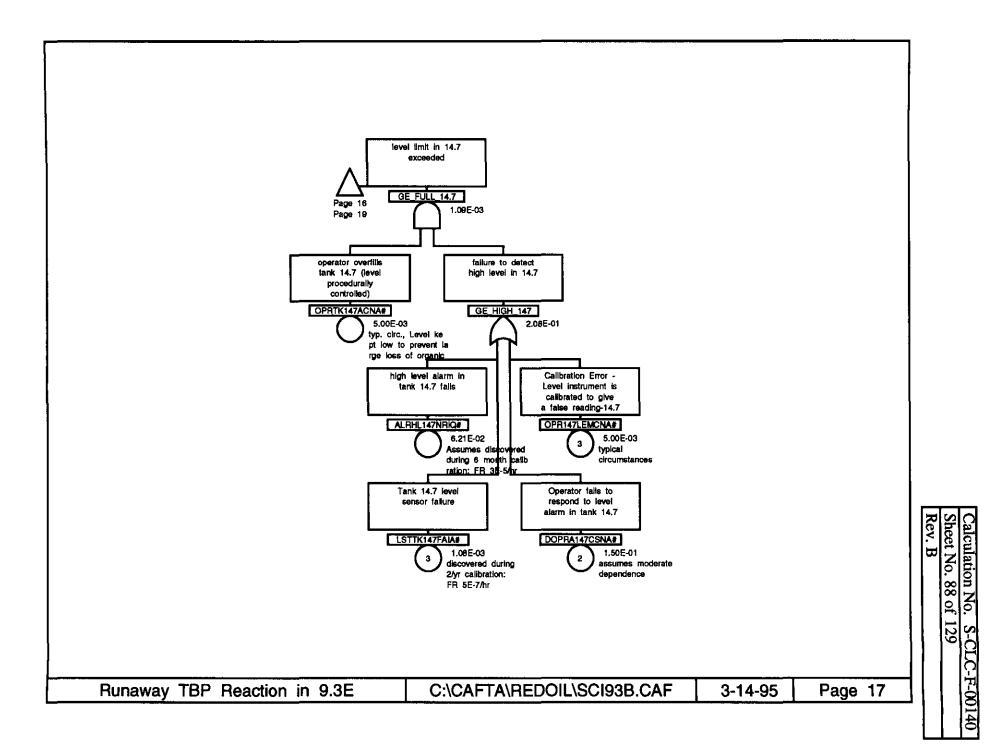

.....

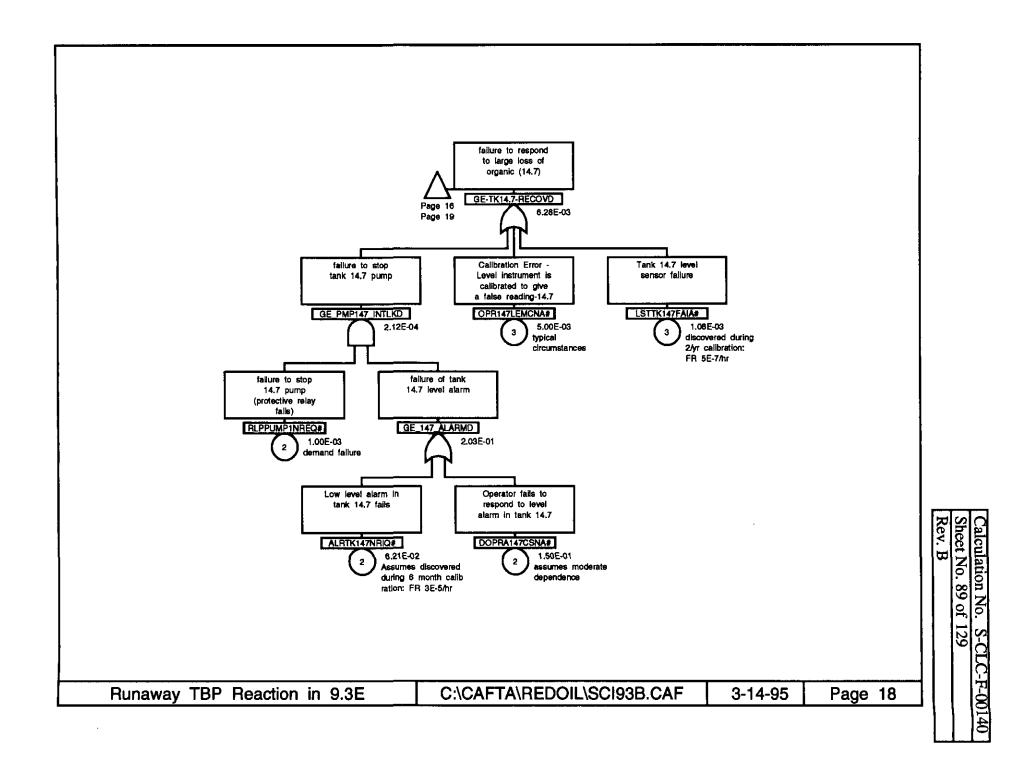




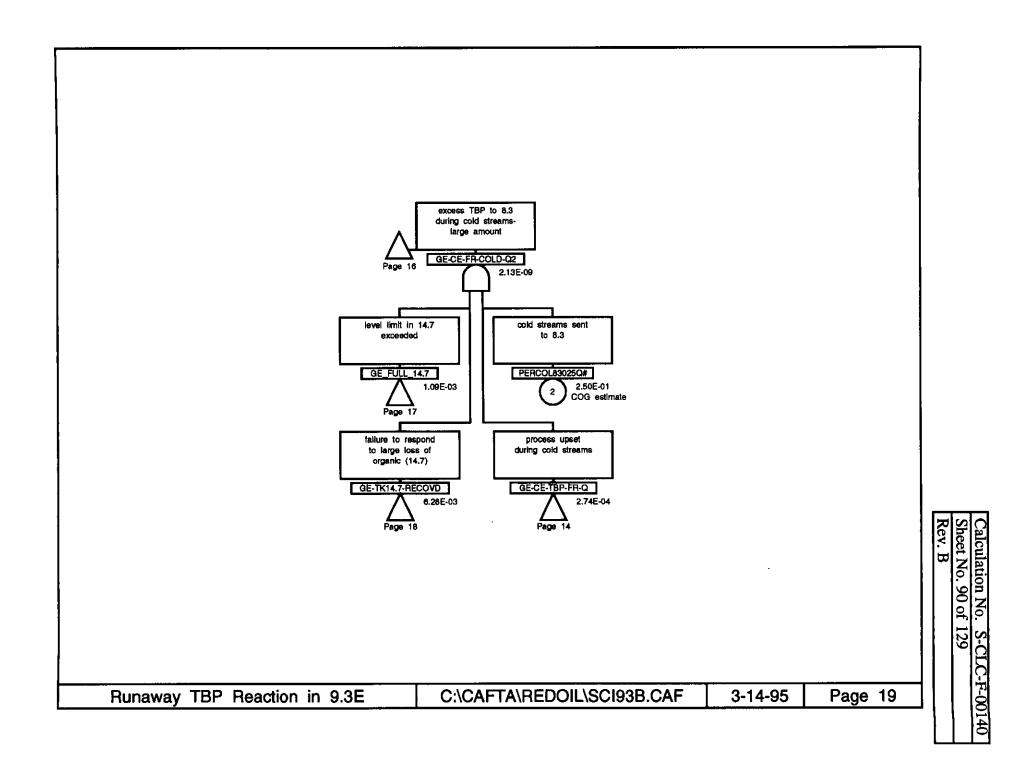
culation No. S-CLC-F-00140







culation No. S-CLC-F-00140 et No. 86 of 129



Calculation No. S-CLC-F-00140

~

~

<u>Gate/Event Name</u> 1	Page Zone	Gate/Event Name	Page Zone	<u>Gate/Event Name</u>	Page Zone	Gate/Event Name	Page Z	one
ALR-TLG-COMG#	6	GE_AQ_TEMP_Q	1	GI_OPR_LVL_Q	3	RLPPUMP1NREQ#	12	
ALRHL147NRIQ#	17	GE_AQ_TEMP_Q	7	GI_PMP_OP_Q	2	RLPPUMP1NREQ#	18	1
ALRTK147NRIQ#	12	GE_AQ_TEMP_Q	9	GU_INTLKS1_X	9	TBP1ABNKPREA#	11	
ALRTK147NRIQ#	18	GE_AO_TEMP_Q	15	JPRFEED-RECQ*	1	TBP1ABNKPREA#	16	
CAVCESTMFOWQ#	5	GE_CC_ALARM	5	LST-CEFAIQ#	4	TBP1BPPREA#	14	
CAVCESTMFOWQ*	9	GE_CC_ALARM	6	LST-CEFAIQ*	2	TBP1CUPREA#	14	1
DOPRA147CSNA#	17	GE_CC_ALARM	9	LSTCEHATFAIQ*	2	TSTCETE-FAIQ#	8	
DOPRA147CSNA#	18	GE_CE_INLK_Q	1	LSTLE-CECALQ*	3			
FRE-PMP-ADJQ+	2	GE_CE_INLK_Q	5	LSTTK147FAIA#	12			
FREBATCH48YQ*	15	GE_CE_INLK_Q	7	LSTTK147FAIA#	17			
GE-BUILDUP-Q	10	GE_FULL_14.7	16	LSTTK147FAIA#	18			
GE-CE-7.3-Q2#	16	GE_FULL_14.7	17	MDPTK8.3FRCQ*	2			
GE-CE-FR-1A-Q	11	GE_FULL_14.7	19	OPR147LEMCNA#	12			
GE-CE-FR-1A-Q2	16	GE_HIGH_147	17	OPR147LEMCNA#	17			
GE-CE-FR-7.3-Q	11	GE_LVL_INTLK_Q	1	OPR147LEMCNA#	18			
GE-CE-FR-COLD-Q	11	GE_LVL_INTLK_Q	4	OPR83EM1ACNA#	10			
GE-CE-FR-COLD-Q	13	GE_PMP147_INTLK	12	OPR83EM2ACNA#	10			
GE-CE-FR-COLD-Q2	16	GE_PMP147_INTLKD	18	OPR83EM3ACNA#	10			
GE-CE-FR-COLD-Q2	19	GE_TEM_INTLK_Q	7	OPRQ7.3-ACNA#	11			
GE-CE-IN-8.3-Q	1	GE_TEM_INTLK_Q	8	OPRQBLOCDENA#	6			
GE-CE-IN-8.3-Q	10	GE_TEM_INTLK_Q	9	OPRQCETEIRNA#	8			
GE-CE-TBP-FR-Q	13	GE_Y_LVL_INT_Q	1	OPRQELE-MCNA#	3			
GE-CE-TBP-FR-Q	14	GI-CE-HEAT-Q	1	OPRQELE-MCNA#	4			
GE-CE-TBP-FR-Q	19	GI-CE-LTBP-Q	1	OPRRA147CSNA#	12			
GE-CE-TO-8.3-Q	10	GI-CE-LTBP-Q	15	OPRTK147ACNA#	17			
GE-CE-TO-8.3~Q	11	GI-CE-STPB-Q	1	PER73SMP100Q#	11			
GE-CE-TO-8.3-Q2	15	GI-TOP-Q	1	PER83ORG100A#	10			
GE-CE-TO-8.3-Q2	16	GI_1Q	1	PER9.30P013Q#	1			
GE-PROCESS-Q	10	GI_2Q	1	PERCOL83025Q#	13			
GE-PROCESS-Q2	15	GI_CE_LVL_Q	2	PERCOL83025Q#	19			
GE-TK14.7-RECOV	11	GI_CE_TREND_Q	15	PERFEEDF100Q#	1			
GE-TK14.7-RECOV	12	GI_CE_VALVE_Q	9	PERFLOW-100Q#	2			
GE-TK14.7-RECOV	13	GI_FEED_PMP_Q	1	PERFR7.3005Q#	11			
GE-TK14.7-RECOVD	16	GI_FEED_PMP_Q	2	PERSPG100Q#	15			
GE-TK14.7-RECOVD	18	GI_HEAT1_CTRL1_Q		PERTK-73.20A#	11			
GE-TK14.7-RECOVD	19	GI_HEAT1_CTRL1_Q		PERTR8.3100Q#	10			
GE_147_ALARM	12	GI_MIS_PRE_Q	9	PERTR8.3100Q#	15			
GE_147_ALARMD	18	GI_OPR_LVL_Q	2	PSTSTEAMFAIQ*	9			
Runaway T	BP Reac	tion in 9.3E	C:\CA	TA\REDOIL\SCI	3B.CAF	3-14-95	Page 2	<u> </u>

Calculation No. S-CLC-F-00140 Sheet No. 91 of 129 Rev. B

Cutset Report for 9.3E Evaporator

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
	GI-TOP-Q					2.18E-07		
1.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	.25H	5.00E-01	7.80E-08	100.0	
	OPR147LEMCNA#	Calibration Error - Level instrument is calibrated to	1	4H 1N	5.00E-03N		1	
	OPRQCETEIRNA#	give a false reading-14.7 Evaporator Temperature Sensor is Out of Calibration	1	5.0E-3 N 1N	1.00E-02N			
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to	1	1.0E-2 N 1N	5.00E-03N			
	PER9.30P013Q#	give a high signal continuous evaporator 9.3E is in operation	1	5.0E-3 N 1N	1.30E-01N			ĺ
	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1.30E-01N 1N	1.00E+00N			
	PERFLOW-100Q#	pump speed is set too low	1	1.00E+00N 1N	1.00E+00N			
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1.00E+00N 1N	1.00E+00N			
	TBP1ABNKPREA#	excess TBP to 8.3 from 1A bank	3	1.00E+00N 12H 0.1Y	1.37E-04			
2.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	.25H	5.00E-01	5.69E-08	100.0	ĺ
	OPRQ7.3-ACNA#	Second consecutive transfer containing TBP from tank	1	4H 1N	5.00E-03N			
	OPRQCETEIRNA#	7.3 is fed to same batch Evaporator Temperature Sensor is Out of Calibration	1	5.0E-3 N 1N	1.00E-02N			
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to	1	1.0E-2 N 1N	5.00E-03N			
	PER73SMP100Q#	give a high signal excess TBP is transferred from 7.3 to 8.3	1	5.0E-3 N 1N	1.00E+00N			
	PER9.30P013Q#	continuous evaporator 9.3E is in operation	1	1.00E+00N 1N	1.30E-01N			
	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1.30E-01N 1N	1.00E+00N			۱r
	PERFLOW-100Q#	pump speed is set too low	1	1.00E+00N 1N	1.00E+00N			
	PERFR7.3005Q#	transfer is from tank 7.3	1	1.00E+00N 1N	5.00E-02N			
	PERTK-73.20A#	Sufficient TBP present in tank 7.3	1	5.00E-02N 1N	2.00E-03N			
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	2.00E-03N 1N 1.00E+00N	1.00E+00N			
3.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	.25H	5.00E-01	1.95E-08	100.0	
	OPR147LEMCNA#	Calibration Error - Level instrument is calibrated to give a false reading-14.7	1	4H 1N 5.0E-3 N	5.00E-03N			

Calculation No. S-CLC-F-00140 Sheet No. 92 of 129 ł

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	OPRQCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1N	1.00E-02N		
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to give a high signal	1	1.0E-2 N 1N 5.0E-3 N	5.00E-03N		
	PER9.30P013Q#	continuous evaporator 9.3E is in operation	1	1.30E-01N	1.30E-01N		
	PERCOL83025Q#	cold streams sent to 8.3	1	1N 2.50E-01N	2.50E-01N		
	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1N 1.00E+00N	1.00E+00N		
	PERFLOW-100Q#	pump speed is set too low	1	1N 1.00E+00N	1.00E+00N		
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1N 1.00E+00N	1.00E+00N		
	TBP1BPPREA#	process upset from 1BP during cold streams	3	12H 0.1Y	1.37E-04		
4.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	.25H 4H	5.00E-01	1.95E-08	100.0
	OPR147LEMCNA#	Calibration Error - Level instrument is calibrated to give a false reading-14.7	1	4n 1N 5.0E-3 N	5.00E-03N		
	OPRQCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1N 1.0E-2 N	1.00E-02N		
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to give a high signal	1	1.0E 2 N 1N 5.0E-3 N	5.00E-03N		
	PER9.30P013Q#	continuous evaporator 9.3E is in operation	1	1N 1.30E-01N	1.30E-01N		
	PERCOL83025Q#	cold streams sent to 8.3	1	1N 2.50E-01N	2.50E-01N		-
	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1N 1.00E+00N	1.00E+00N		
	PERFLOW-100Q#	pump speed is set too low	1	1N 1.00E+00N	1.00E+00N	ĺ	
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1N 1.00E+00N	1.00E+00N		
	TBP1CUPREA#	process upset from 1CU during cold streams	3	12H 0.1Y	1.37E-04		
5.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	.25H 4H	5.00E-01	1.68E-08	100.0
	LSTTK147FAIA#	Tank 14.7 level sensor failure	5	4H 6M 5.00E-07 H	1.08E-03		
	OPRQCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1.0E-2 N	1.00E-02N		
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to give a high signal	1	1.0E-2 N 1N 5.0E-3 N	5.00E-03N		}
	PER9.30P013Q#	continuous evaporator 9.3E is in operation	1	1.30E-01N	1.30E-01N		

Calculation No. S-CLC-F-00140 Sheet No. 93 of 129

Cutset Report for 9.3E Evaporator (CONT.)

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1N	1.00E+00N			1
	PERFLOW-100Q#	pump speed is set too low	1	1.00E+00N 1N	1.00E+00N			
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1.00E+00N 1N	1.00E+00N			
	TBP1ABNKPREA#	excess TBP to 8.3 from 1A bank	3	1.00E+00N 12H 0.1Y	1.37E-04			
6.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	.25H 4H	5.00E-01	1.42E-08	100.0	'
	OPR83EM1ACNA#	operator fails to feed remaining tank contents after	1	1N	5.00E-03N			
	OPR83EM2ACNA#	1st interval-clean tank operator fails to feed remaining tank contents after	1	5.0E-3 N 1N	5.00E-03N			
	OPR83EM3ACNA#	2nd interval-clean tank operator fails to feed remaining tank contents after	1	5.0E-3 N 1N	5.00E-03N			
	OPRQCETEIRNA#	3rd interval-clean tank Evaporator Temperature Sensor is Out of Calibration	1	5.0E-3 N 1N	1.00E-02N			
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to	1	1.0E-2 N 1N	5.00E-03N			
	PER83ORG100A#	give a high signal organic remains in feed tank	1	5.0E-3 N 1N	1.00E+00N			
	PER9.30P013Q#	continuous evaporator 9.3E is in operation	1	1.00E+00N 1N	1.30E-01N			
	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1.30E-01N 1N	1.00E+00N			
	PERFLOW-100Q#	pump speed is set too low	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		:	
7.	FRE-PMP-ADJQ+	Pump speed is adjusted	4		5.00E-01	4.21E-09	100.0)
	LSTTK147FAIA#	Tank 14.7 level sensor failure	5	4 H 6 M	1.08E-03			
	OPROCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	5.00E-07 H 1N	1.00E-02N			
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to		1.0E-2 N 1N	5.00E-03N			
	PER9.30P0130#	give a high signal continuous evaporator 9.3E is in operation		5.0E-3 N 1N				
				1.30E-01N				
	PERCOL83025Q#	cold streams sent to 8.3		1N 2.50E-01N				
	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1N 1.00E+00N	1.00E+00N			
	PERFLOW-100Q#	pump speed is set too low	1	1N 1.00E+00N	1.00E+00N			
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1		1.00E+00N			

Calculation No. S-CLC-F-00140 Sheet No. 94 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	TBP1CUPREA#	process upset from 1CU during cold streams	3	12H 0.1Y	1.37E-04		
8.	FRE-PMP-ADJQ+	Pump speed is adjusted	4	.25H 4H	5.00E-01	4.21E-09	100.0
	LSTTK147FAIA#	Tank 14.7 level sensor failure	5	6M 5.00E-07 H	1.08E-03		
ſ	OPRQCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	11	1N 1.0E-2 N	1.00E-02N		
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to give a high signal	1	1N 5.0E-3 N	5.00E-03N	í (
	PER9.30P013Q#	continuous evaporator 9.3E is in operation	1	1N 1.30E-01N	1.30E-01N		
	PERCOL83025Q#	cold streams sent to 8.3	1	1N 2.50E-01N			
i	PERFEEDF100Q#	low feed flow is not detected or corrected	1	1N 1.00E+00N			
	PERFLOW-100Q#	pump speed is set too low	1	1N 1.00E+00N	1.00E+00N		
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1N 1.00E+00N	1.00E+00N		
	TBP1BPPREA#	process upset from 1BP during cold streams	3	12H 0.1Y			
9.	FREBATCH48YQ*	Frequency of a batch	1	1H 48Y	5.48E-03	1.63E-09	100.0
	OPR147LEMCNA#	Calibration Error - Level instrument is calibrated to give a false reading-14.7	1	1N 5.0E-3 N	5.00E-03N		
	OPRQCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	1.0E-2 N	1.00E-02N		
	OPRTK147ACNA#	operator overfills tank 14.7 (level procedurally controlled)	1	1.0E 2 1N 1N 5.0E-3 N	5.00E-03N		
	PERSPG100Q#	SpG readings fail to detect excess TBP	1	1N 1.00E+00N	1.00E+00N		
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	11	1.00E+00N			
	TBP1ABNKPREA#	excess TBP to 8.3 from 1A bank	3	12H 0.1Y	1.37E-04		
10.	ALRTK147NRIQ#	Low level alarm in tank 14.7 fails	5	6M 3.00E-05 H	6.21E-02	9.69E-10	100.0
	FRE-PMP-ADJQ+	Pump speed is adjusted	4		5.00E-01		
	OPRQCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	11 1N 1.0E-2 N			
	OPRQELE-MCNA#	Calibration Error - Level Instrument is calibrated to give a high signal	1	1.0E-2 N 1N 5.0E-3 N	5.00E-03N	;	

Calculation No. S-CLC-F-00140 Sheet No. 95 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM &
	PER9.30P013Q# PERFEEDF100Q# PERFLOW-100Q#	continuous evaporator 9.3E is in operation low feed flow is not detected or corrected pump speed is set too low	1 1 1	1N 1.30E-01N 1N 1.00E+00N 1N 1.00E+00N	1.30E-01N 1.00E+00N 1.00E+00N		
	PERTR8.3100Q# RLPFUMP1NREQ# TBP1ABNKPREA#	Excess TBP is transferred to evaporator 9.3E from 8.3 failure to stop 14.7 pump (protective relay fails) excess TBP to 8.3 from 1A bank	1 1 3	1.00E+00N 1N 1.00E+00N 1N 1E-3N 12H 0.1Y	1.00E+00N 1.00E-03N 1.37E-04		
11.	FRE-PMP-ADJQ+ OPR147LEMCNA# OPRQELE-MCNA# PER9.30P013Q# PERFEEDF100Q# PERFLOW-100Q# PERTR8.3100Q# TBP1ABNKPREA# TSTCETE-FAIQ#	Pump speed is adjusted Calibration Error - Level instrument is calibrated to give a false reading-14.7 Calibration Error - Level Instrument is calibrated to give a high signal continuous evaporator 9.3E is in operation low feed flow is not detected or corrected pump speed is set too low . Excess TBP is transferred to evaporator 9.3E from 8.3 excess TBP to 8.3 from 1A bank Continous Evaporator Temperature Sensor Has Failed		1.00E+00N 1N 1.00E+00N 1N 1.00E+00N 12H 0.1Y 4D			100.0
12.	FRE-PMP-ADJQ+ OPRQ7.3-ACNA# OPRQELE-MCNA# PER73SMP100Q# PER9.3OP013Q# PERFEEDF100Q# PERFLOW-100Q# PERFLOW-100Q#	Pump speed is adjusted Second consecutive transfer containing TBP from tank 7.3 is fed to same batch Calibration Error - Level Instrument is calibrated to give a high signal excess TBP is transferred from 7.3 to 8.3 continuous evaporator 9.3E is in operation low feed flow is not detected or corrected pump speed is set too low transfer is from tank 7.3	4 1 1 1 1 1 1 1	1.00E-06 H .25H 4H 1N 5.0E-3 N 1N 5.0E-3 N 1N 1.00E+00N 1N 1.00E+00N 1N 1.00E+00N 1N 5.00E-02N	5.00E-01 5.00E-03N 5.00E-03N 1.00E+00N 1.30E-01N 1.00E+00N 1.00E+00N 5.00E-02N		100.0

Calculation No. S-CLC-F-00140 Sheet No. 96 of 129

Set No.	Event Name	Description	C	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	PERTK-73.20A#	Sufficient TBP present in tank 7.3	1	1N 2.00E-03N	2.00E-03N		
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1N	1.00E+00N		
	TSTCETE-FAIQ#	Continous Evaporator Temperature Sensor Has Failed	3	1.00E+00N 4D 1.00E-06 H	9.60E-05		
13.	FREBATCH48YQ*	Frequency of a batch	1	1H 48Y	5.48E-03	4.09E-10	100.0
	OPR147LEMCNA#	Calibration Error - Level instrument is calibrated to	1	1N	5.00E-03N		
	OPRQCETEIRNA#	give a false reading-14.7 Evaporator Temperature Sensor is Out of Calibration	1	5.0E-3 N 1N	1.00E-02N		
	OPRTK147ACNA#	operator overfills tank 14.7 (level procedurally	1	1.0E-2 N 1N	5.00E-03N		
	PERCOL83025Q#	controlled) cold streams sent to 8.3	1	5.0E-3 N 1N	2.50E-01N		
	PERSPG100Q#	SpG readings fail to detect excess TBP	1	2.50E-01N 1N	1.00E+00N		
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1.00E+00N 1N	1.00E+00N		
	TBP1BPPREA#	process upset from 1BP during cold streams	3	1.00E+00N 12H 0.1Y	1.37E-04		
14.	FREBATCH48YQ*	Frequency of a batch	1	11	5.48E-03	4.09E-10	100.0
	OPR147LEMCNA#	Calibration Error - Level instrument is calibrated to	1	48Y 1N	5.00E-03N		
	OPRQCETEIRNA#	give a false reading-14.7 Evaporator Temperature Sensor is Out of Calibration	1	5.0E-3 N 1N	1.00E-02N		
	OPRTK147ACNA#	operator overfills tank 14.7 (level procedurally	1	1.0E-2 N 1N	5.00E-03N		
	PERCOL83025Q#	controlled) cold streams sent to 8.3	1	5.0E-3 N 1N	2.50E-01N		
	PERSPG100Q#	SpG readings fail to detect excess TBP	1	2.50E-01N 1N	1.00E+00N		
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1.00E+00N 1N	1.00E+00N		
	TBP1CUPREA#	process upset from 1CU during cold streams	3	1.00E+00N 12H 0.1Y	1.37E-04		
15.	FREBATCH48YQ*	Frequency of a batch	1	1H	5.48E-03	3.53E-10	100.0
	LSTTK147FAIA#	Tank 14.7 level sensor failure	5	48Y 6M	1.08E-03		l
	OPRQCETEIRNA#	Evaporator Temperature Sensor is Out of Calibration	1	5.00E-07 H 1N 1.0E-2 N	1.00E-02N		

Calculation No. S-CLC-F-00140 Sheet No. 97 of 129

Cutset Report for 9.3E Evaporator (CONT.)

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	OPRTK147ACNA#	operator overfills tank 14.7 (level procedurally controlled)	1	1N 5.0E-3 N	5.00E-03N		
	PERSPG100Q#	SpG readings fail to detect excess TBP	1	1N 1.00E+00N	1.00E+00N		
	PERTR8.3100Q#	Excess TBP is transferred to evaporator 9.3E from 8.3	1	1N 1.00E+00N	1.00E+00N		
	TBP1ABNKPREA#	excess TBP to 8.3 from 1A bank	3	12H 0.1Y	1.37E-04		

Basic Event Data for 9.3E Evaporator

11	Input	Calc.	Description	Source
5				single alarm failure * 0.1 beta
5			(level, temperature) high level alarm in tank 14.7 fails	factor Assumes discovered during 6 month
5			-	calibration: FR 3E-5/hr Assumes discovered during 6 month
[]	3.00E-05 H	0.210 02	DOW TEVEL GIAIM IN CANK 14.7 FALLS	calibration: FR 3E-5/hr
5		3.00E-06	Pneumatic steam control valve fails	2 hours to restore, round sheet every hour: FR 3E-6/hr
1	1H	3.00E-06	Pneumatic steam control valve fails	FR 3E-6/hr
		1.50E-01	open Operator fails to respond to level	assumes moderate dependence
	0.5.11	F 005 01	alarm in tank 14.7	
4			Pump speed is adjusted	COG: Adjusted 4 times per hour, discovered within 15 minutes
1			Frequency of a batch	48 max. # of starts of process per
	48Y			year
	1E-32N	1.00E-32		impossible because would involve transfer of over 4 tanks full
1	1H	1.00E-08		
			feed evaporator	i i
5				Assume 8 hours for repair: FR 5E-7/hr
1				FR: 5E-7/hr
			fails high	
1				FR: 5E-7/hr
1		2.28E-04		calibrated 2/yr
			level instrumentation calibration	-
5			Tank 14.7 level sensor failure	discovered during 2/yr calibration:
1			Continous evaporator feed pump fails	FR 5E-7/hr FR: 1E-4/hr
1	1.00E-04 H		-	
1			Calibration Error - Level instrument	typical circumstances
	5.0E-3 N			
1		5.00E-03N	operator fails to feed remaining tank	typical circumstances
			contents after 1st interval-clean tank	
11			operator falls to feed remaining tank contents after 2nd interval-clean tank	typical circumstances
1	1N		operator fails to feed remaining tank	typical circumstances
			contents after 3rd interval-clean tank	
1	1N 5 0F-3 N		TRP from tank 7 3 is fed to same	sump receipt could not collect enough TBP during 1 feed tank run time
	510E 5 IN		batch	The during i reca cank functine
1			operator fails to respond to 9.3E	knowledge based, 10 to 30 minutes
1,1			temp, level alarms (close block valve) Evaporator Temperature Sensor is Out	good display (graph)
^			of Calibration	good display (graph)
	5 5 1 4 1 5 1 1 5 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 3.00E-06H\\ 6M\\ 3.00E-05H\\ 6M\\ 3.00E-05H\\ 2H\\ 3.00E-06H\\ 1H\\ 3.00E-06H\\ 0.15N\\ 4\\ .25H\\ 4H\\ 1\\ .00E-06H\\ 0.15N\\ 4\\ .25H\\ 4H\\ 1\\ .00E-06H\\ 1H\\ 1\\ .00E-06H\\ 1H\\ 1.00E-08H\\ 5.00E-07H\\ 1\\ .1H\\ .00E-04H\\ 1\\ .1N\\ 5.0E-3N\\ 1\\ .0E-3N\\ 1\\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.00E-06H 6 6.21E-02(level, temperature) high level alarm in tank 14.7 fails3.00E-05 H 5 .00E-05 HLow level alarm in tank 14.7 fails3.00E-06 H 1 H3.00E-06 H 0.15N 1.50E-01Pneumatic steam control valve fails open 0.15N 1.50E-014 .25H 4 .25H5.00E-01 0.15N 1.50E-01Prequency of a batch 48Y 1E-32N 1.00E-32 amount1 H 1 .00E-08 H 48Y 1 E-32N 1.00E-32Frequency of a batch ced evaporator1 H 1 .00E-08 H 1 .00E-07 HLarge leak in jumper causes failure to feed evaporator1 00E-07 H 5 .00E-07 HS.00E-07 H 1 H 5 .00E-07 H2 .00E-07 H 1 HS.00E-07 H 1 H1 10E-08 I 1 .00E-08 H 1 .00E-07 HContinous evaporator level instrument fails high 1 1 H 1 S.00E-07 H2 .00E-07 H 1 H 5 .00E-07 HContinous evaporator level instrument fails high 1 1 H 1 .00E-08 H 1 .00E-08 H1 .00E-08 H 1 .00E-07 HContinous evaporator level instrument fails high 1 1 H 1 .00E-03N2 .00E-07 H 1 1 .00E-04 HContinous evaporator level instrument is calibrated to give a false reading-14.72 .00E-03 N 1 .00E-03NCalibration Error - Level instrument is calibrated to give a false reading-14.73 .00E-3 N 1 .00E-03NCalibration Error - Level instrument is calibrated to give a false reading-14.71 1N 1 .00E-03N 1 .00E-03NS.00E-03N contents after 1st interval-clean tank contents after 1st interval-clean tank contents after 3rd interval-clean tank contents after 3rd interval-clean tank scond consecutive transfer containing TBP from tank 7.3 is fed to same<

Calculation No. S-CLC-F-00140 Sheet No. 99 of 129 Rev. B

Basic Event Data for 9.3E Evaporator (CONT.)

Event	С	Input	Calc.	Description	Source
OPRQELE-MCNA#	1	1N		Calibration Error - Level Instrument	typical circumstances
OPRRA147CSNA#	1	5.0E-3 N 1N 1E-2N	1.00E-02N	is calibrated to give a high signal operator fails to respond to low level alarm in tank 14.7	several competing signals
OPRTK147ACNA#	1	1N 5.0E-3 N		operator overfills tank 14.7 (level procedurally controlled)	typ. circ., Level kept low to prevent large loss of organic
PER73SMP100Q#	1	1N 1.00E+00N	1.00E+00N	excess TBP is transferred from 7.3 to 8.3	no credit for sampling
PER83ORG100A#	1	1.00E+00N 1N 1.00E+00N		organic remains in feed tank	no credit for feeding tank contents down to adequate mixing point
PER9.30P013Q#	1	1.30E-01N	1.30E-01N	continuous evaporator 9.3E is in operation	operated 4 days/month (2.5 hot & 1.5 cold)
PERCOL83025Q#	1	1N 2.50E-01N	2.50E-01N	cold streams sent to 8.3	COG estimate
PERFEEDF100Q#	1	1N 1.00E+00N	1.00E+00N	low feed flow is not detected or corrected	no credit hackman hat level
PERFLOW-100Q#	1	1.00E+00N	1.00E+00N	pump speed is set too low	no credit for adjusting low flow
PERFR7.3005Q#	1	1N 5.00E-02N	5.00E-02N	transfer is from tank 7.3	material received from 7.3 5% of transfers
PERSPG100Q#	1	1N 1.00E+00N	1.00E+00N	SpG readings fail to detect excess TBP	no credit given to SpG
PERTK-73.20A#	1	1N 2.00E-03N	2.00E-03N	Sufficient TBP present in tank 7.3	1 in 5 years (1/500 batches)
PERTR8.3100Q#	1	1N 1.00E+00N	1.00E+00N	Excess TBP is transferred to evaporator 9.3E from 8.3	assumes no sampling for continuous feed
PSTSTEAMFAIQ*	1	1H 1.00E-06 H	1.00E-06	Steam pressure switch fails	FR: 1E-6/hr
RLPPUMP1NREQ#	1	1N 1E-3N	1.00E-03N	failure to stop 14.7 pump (protective relay fails)	demand failure
TBP1ABNKPREA#	3	12H 0.1Y	1.37E-04	excess TBP to 8.3 from 1A bank	estimated @ 1/10 yr- 12 hours to detect
TBP1BPPREA#	3	12H 0.1Y	1.37E-04	process upset from 1BP during cold streams	estimated @ 1/10 yr- 12 hours to detect
TBP1CUPREA#	3	12H 0.1Y	1.37E-04	process upset from 1CU during cold streams	estimated @ 1/10 yr- 12 hours to detect
TSTCETE-FAIQ#	3		9.60E-05	Continous Evaporator Temperature Sensor Has Failed	Assumes Discovered at next run (4 days): FR 1E-6/hr

Calculation No. S-CLC-F-00140 Sheet No. 100 of 129 Rev. B

Type Code Data for 9.3E Evaporator

.

Type Code	Rate	Description	Source	EF	D
ALR COM	3.00E-06H	common cause alarm failure (single * 0.1	WSRC-TR-93-262, ALR-NR-I * 0.1 beta	10	L
		beta factor)	factor for common cause		1
ALR NRI	3.00E-05 H	Alarm/Annunciator, Fails to alarm (Instr.		10	L
		& Control)			
CAV FOW	3.00E-06 H	Valve (Control), Air-Operated, Fails open (Water)	WSRC-TR-93-262, CAV-FO-W	10	L
FRE 48Y	48Y	frequency of a batch	operations personnel		
FRE ADJ			Operations personnel		
JPR REC	1 00E-08 H	Jumper, Rupture (external) (Chemical)	WSRC-TR-93-262, JPR-RE-C	130	T.
LST CAL		level instrument calibration	operations personnel	[-
LST FAI		Sensor/Transmitter/, Transducer/Proc.	WSRC-TR-93-262, LST-FA-I	1 3	L
LOI FAL		Switch, Level, Failure (Instr. & Control)			
MDP FRC	1.00E-04 H	Pump, Motor-Driven, Fails to run (Chemical)	WSRC-TR-93-262, MDP-FR-C	10	L
OPR ACN	5.0E-3 N	Failure of Administrative Control (Nominal)	WSRC-TR-93-581, Table 4, Item 1, Nominal	10	L
OPR CSN	1E-2N	failure to respond to compelling signal (nominal)	WSRC-TR-93-581, Table 4, Item 2, Nominal		
OPR DEN	1.0E-2 N	Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4, Item 30, Nominal	1 5	т.
OPR IRN		Incorrect reading or recording of data	WSRC-TR-93-581, Table 4, Item 11, Nominal		ΙT.
OFR IRN		(Nominal)	$\begin{bmatrix} WBRC-IR-3D-36I, IdDIE 4, ICEM II, WOMINGI$	ן י	
OPR MCN	5.0E-3 N	Miscalibration (Nominal)	WSRC-TR-93-581, Table 4, Item 12, Nominal	10	L
PER .20		0.2% chance		1	
PER 005		5% chance		1	
PER 013		13% chance		1	
PER 025		25% chance		1	
PER 100		100% chance		1	
PST FAI		Sensor/Transmitter/, Transducer/Proc.	WSRC-TR-93-262, PST-FA-I	1 2	L
FOI FAL	1.00E-00 H		M3RC-1R-9J-202, F31-FR-1	1	
	10 20	Sw., Press., Failure (Instr. & Control)		110	1
RLP NRE		Relay, protective, fails to open/close	WSRC-TR-93-262, RLE-NR-E	110	1-
TBP PRE	0.14	Process upset causes excess organic in feed	Never Seen, Estimated as Once in Ten Years		
	1.00E-06 H	Sensor/Transmitter/, Transducer/Proc.	WSRC-TR-93-262, TST-FA-I	3	L_
TST FAI	11002 00	Switch, Temp., Failure (Instr. & Control)		1	

Calculation No. S-CLC-F-00140 Shpet No. 101 of 129

Calculation No. S-CLC-F-00140 Sheet No. 102 of 129 Rev. B

APPENDIX F - 7.6E & 7.7 EVAPORATOR FAULT TREE AND DATA

The following abbreviations appear on the fault tree print out and in the basic event file for the fault tree:

FR=Failure Rate

a: = assumption

COG= cognizant engineer estimate/information

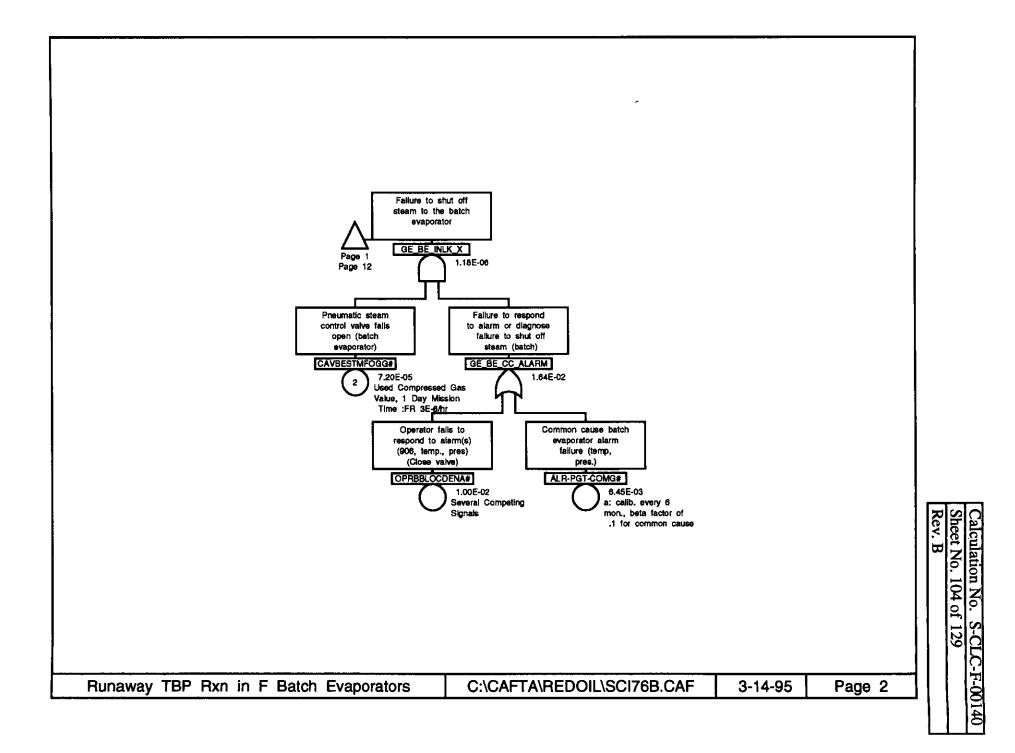
TRUNC= Truncation limit of cutset evaluator

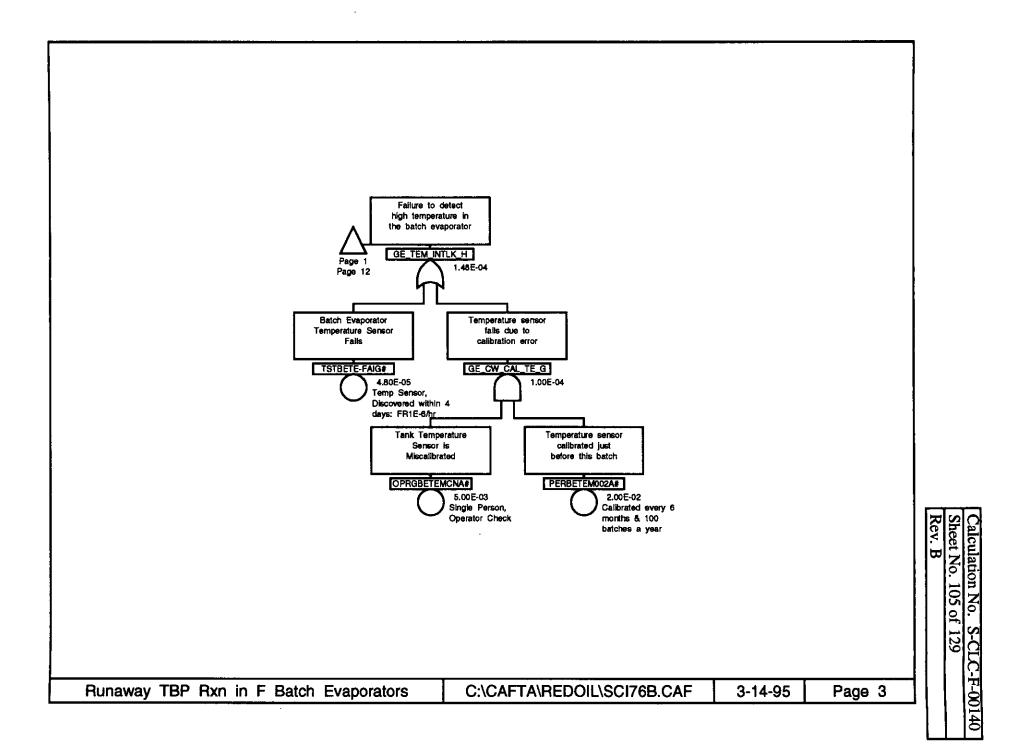
The Beta Factor method used to estimate common cause alarm failure is explained in Reference 15.

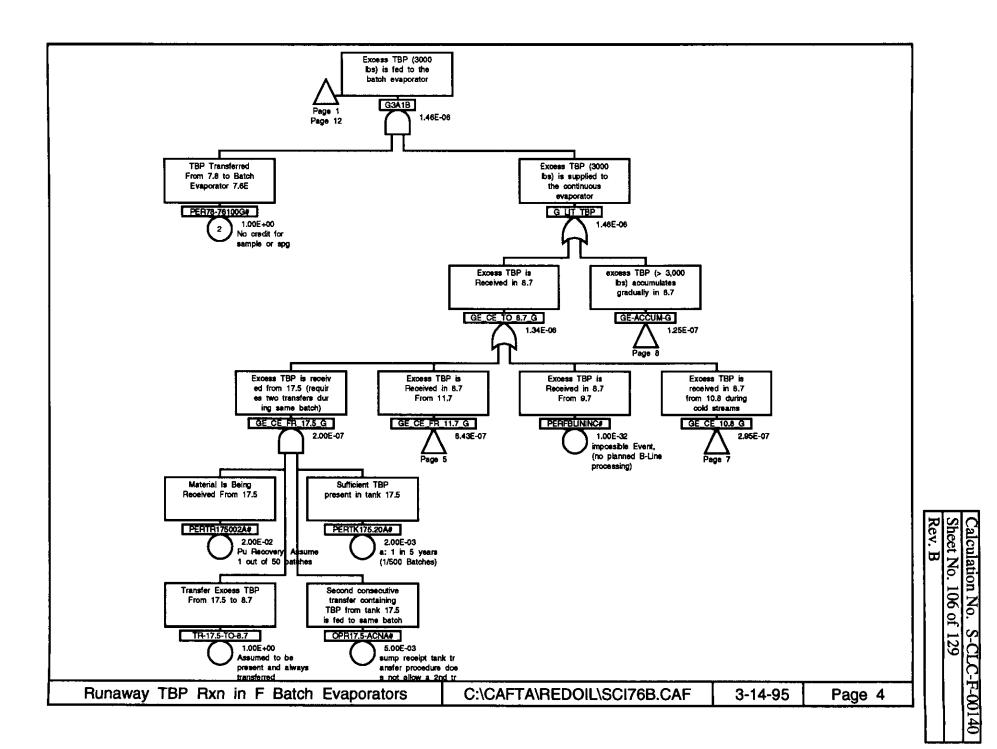
NOTE: Events in this tree with a probability of "1E-32" are incredible. They do not contribute to the top event frequency and were included only to show that they had been considered. The number "1E-32" was used because it is the smallest number CAFTA is capable of handling.

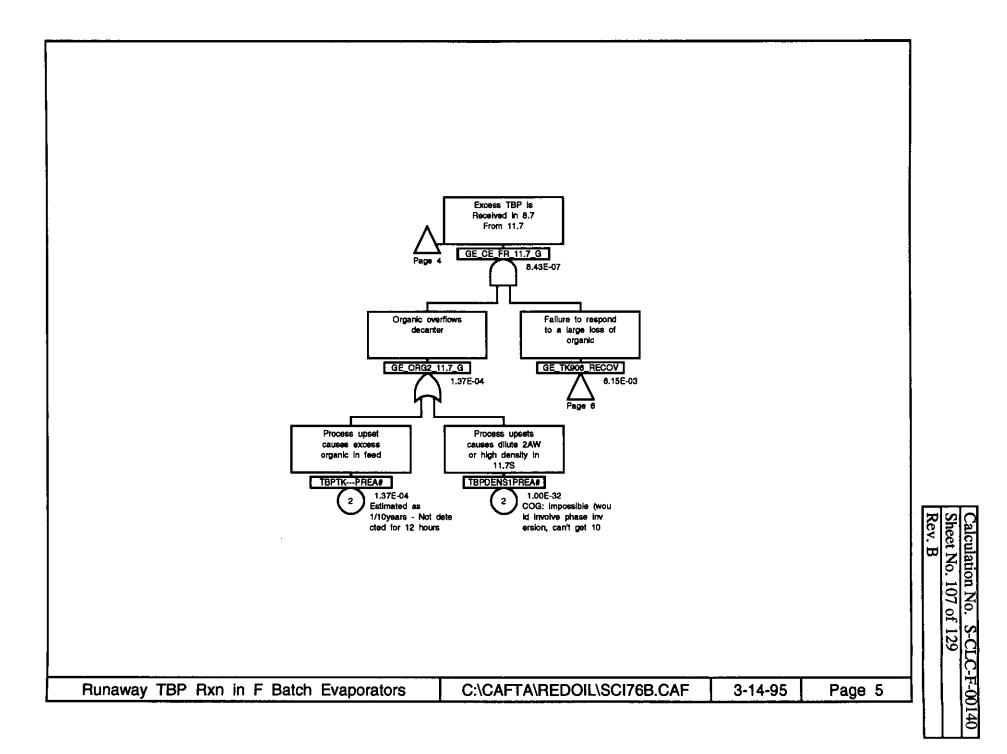
Fault Tree (Page 103)

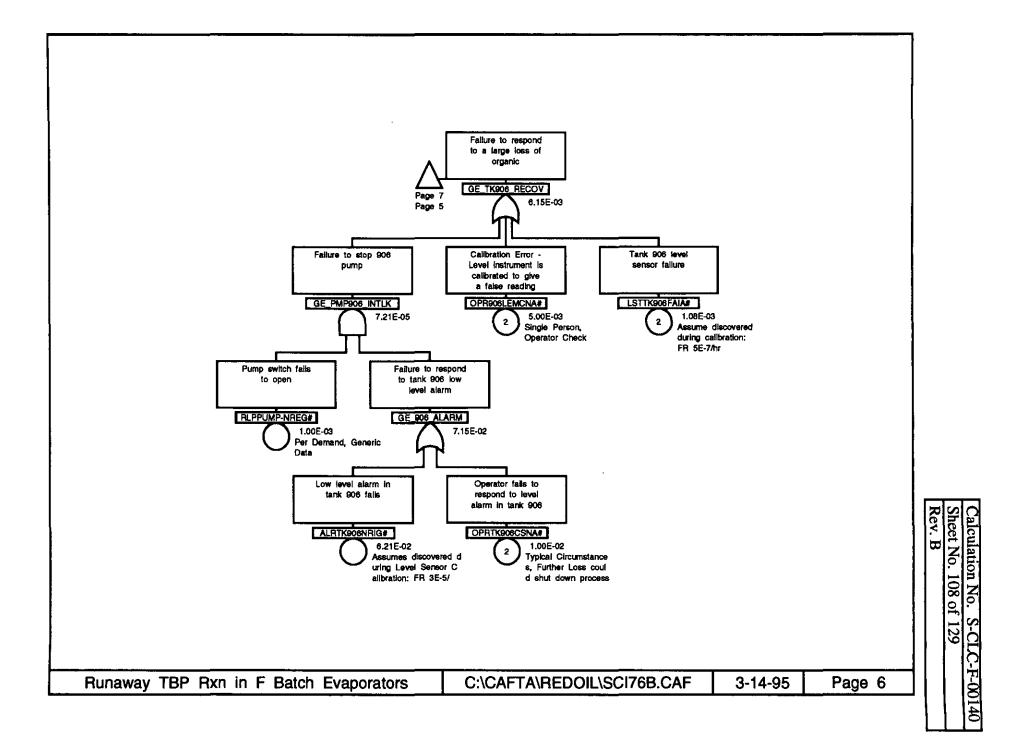
Gate/Event Cross Reference (Page 115)

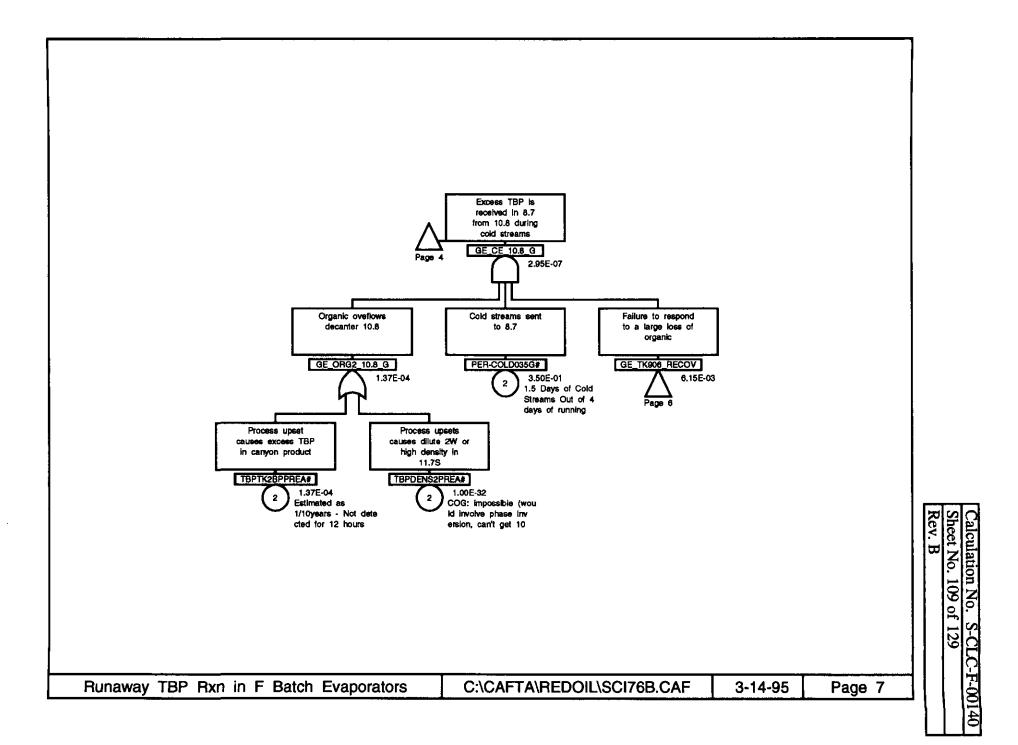

Cutset Report (Page 116)

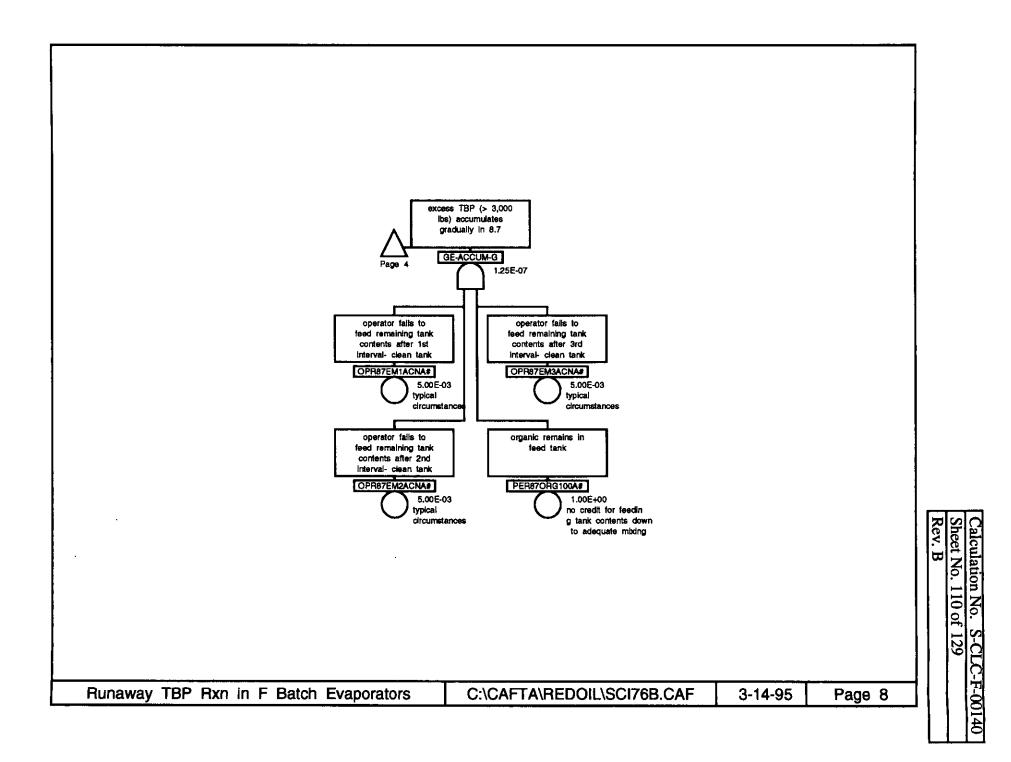

Basic Event Data (Page 126)

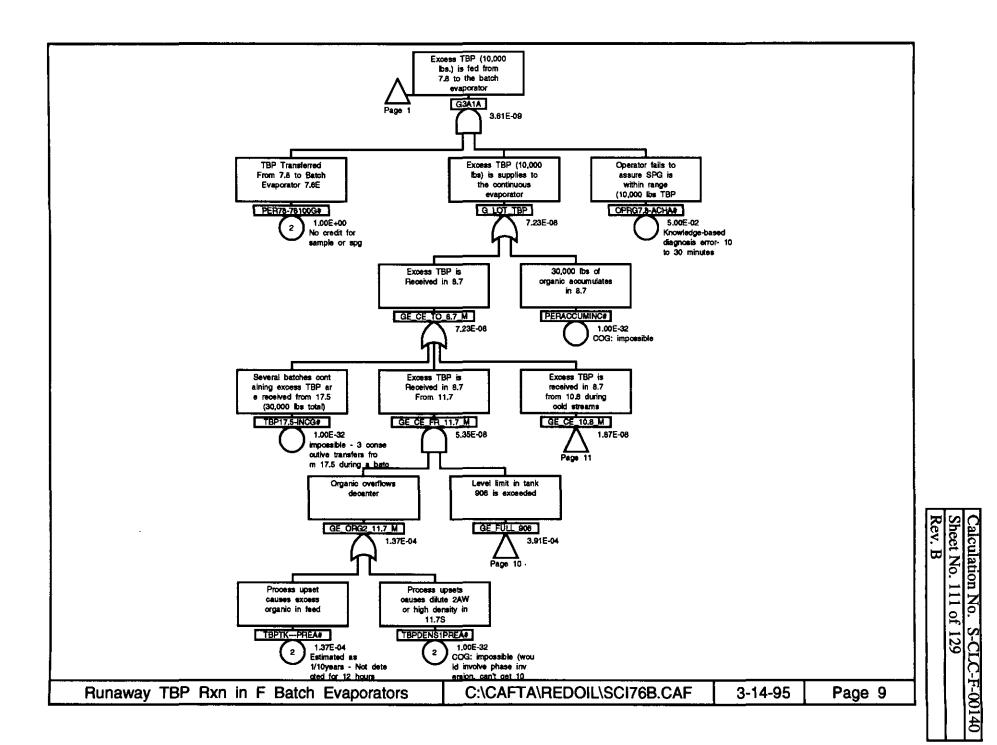

Type Code Data (Page 128)

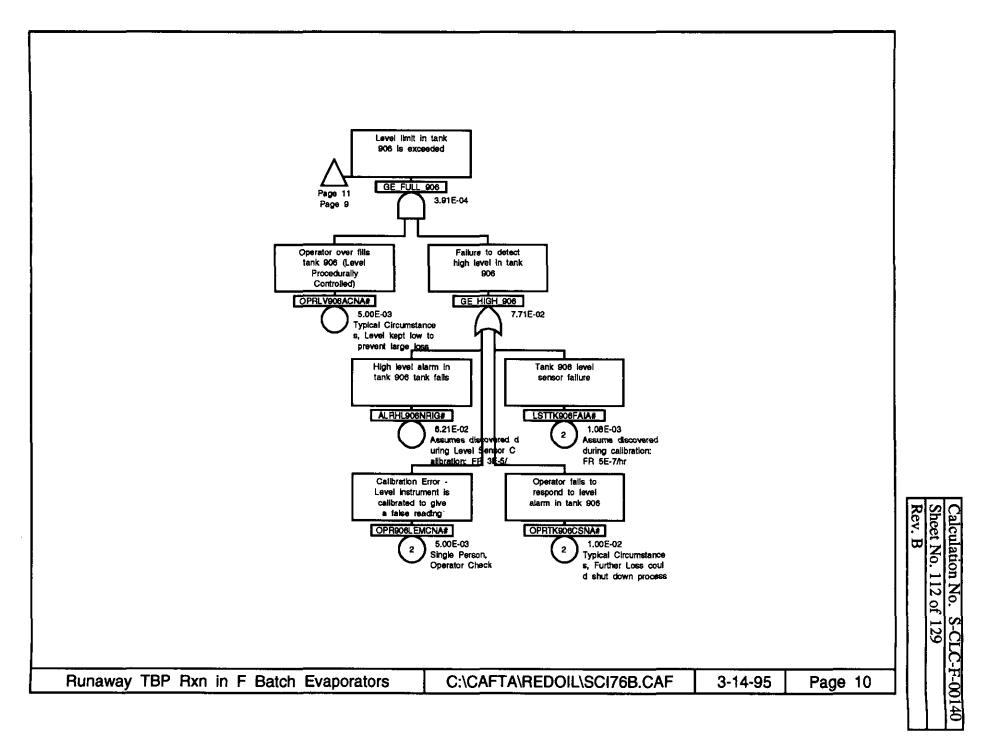


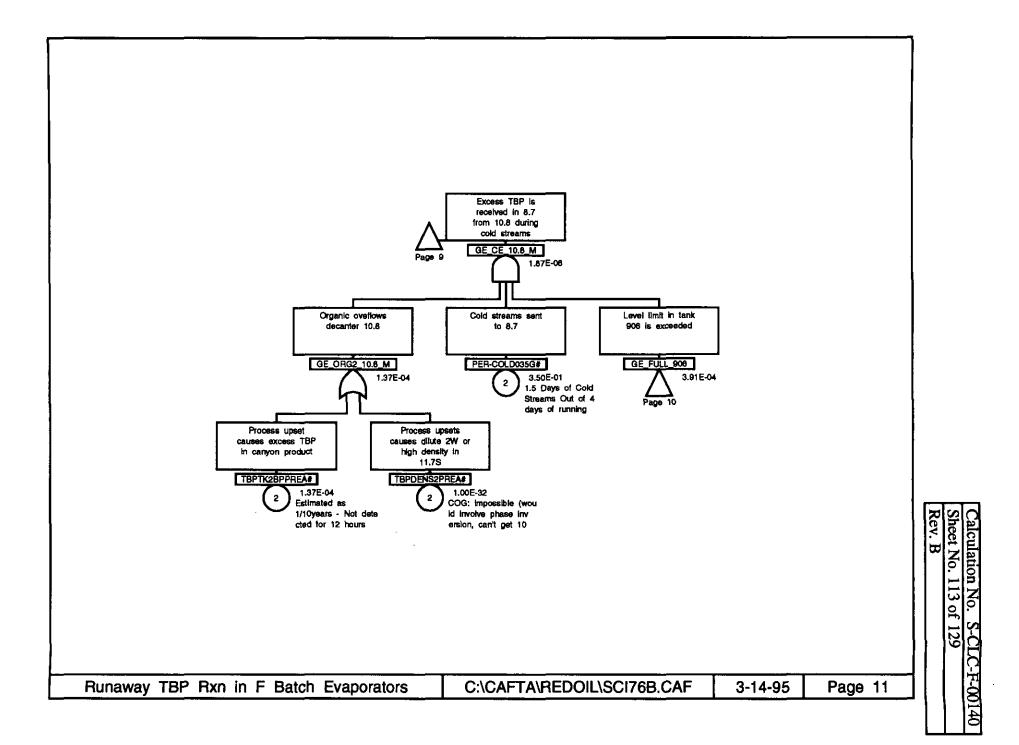

Calculation No. S-CLC-F-00140 Sheet No. 103 of 129

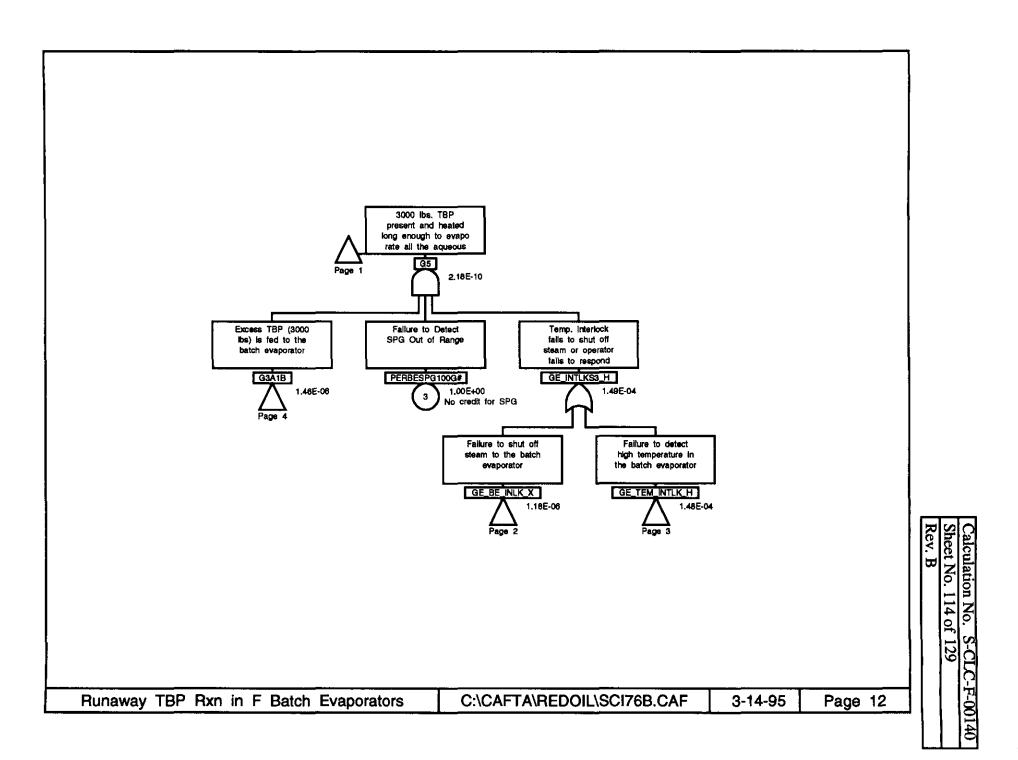












Gate/Event Name	Page Zone	<u>Gate/Event Name</u>	<u>Page</u> Zone	<u>Gate/Event Name</u>	<u>Page</u> Zone	<u>Gate/Event Nam</u>	<u>ne Page Zone</u>
ALR-PGT-COMG#	2	GE_FULL_906	10	PERBESPG100G#	1		
ALRHL906NRIG#	10	GE_FULL_906	11	PERBESPG100G#	12		
ALRTK906NRIG#	6	GE_HIGH_906	10	PERBETEM002A#	3		
CAVBESTMFOGG#	1	GE_INTLKS3_H	12	PERFBLININC#	4		
CAVBESTMFOGG#	2	GE_ORG2_10.8_G	7	PERTK175.20A#	4		
EVPBEVAPON-G+	1	GE_ORG2_10.8_M	11	PERTR175002A#	4		
G1	1	GE_ORG2_11.7_G	5	RLPPUMP-NREG#	6		
G2	1	GE_ORG2_11.7_M	9	TBP17.5-INCG#	9		
G3A	1	GE_PMP906_INTLK	6	TBPDENS1PREA#	5		
G3A1A	1	GE_TEM_INTLK_H	1	TBPDENS1PREA#	9		
G3A1A	9	GE_TEM_INTLK_H	3	TBPDENS2PREA#	7		
G3A1B	1	GE_TEM_INTLK_H	12	TBPDENS2PREA#	11		
G3A1B	4	GE_TK906_RECOV	5	TBPTKPREA#	5		
G3A1B	12	GE_TK906_RECOV	6	TBPTKPREA#	9		
G4	1	GE_TK906_RECOV	7	TBPTK2BPPREA#	7		
G5	1	G_LIT_TBP	4	TBPTK2BPPREA#	11		
G5	12	G_LOT_TBP	9	TR-17.5-TO-8.7	4		
GE-ACCUM-G	4	LSTTK906FAIA#	6	TSTBETE-FAIG#	3		
GE-ACCUM-G	8	LSTTK906FAIA#	10				
GE_906_ALARM	6	OPR17.5-ACNA#	4				
GE_BE_CC_ALARM	2	OPR87EM1ACNA#	8				
GE_BE_INLK_X	1	OPR87EM2ACNA#	8				
GE_BE_INLK_X	2	OPR87EM3ACNA#	8				
GE_BE_INLK_X	12	OPR906LEMCNA#	6				
GE_BE_INTLKS1_H	1	OPR906LEMCNA#	10				
GE_BE_VALVE_H	1	OPRBBLOCDENA#	2				
GE_CE_10.8_G	4	OPRG7.8-ACHA#	9				
GE_CE_10.8_G	7	OPRGBETEMCNA#	3				
GE_CE_10.8_M	9	OPRLV906ACNA#	10				
GE_CE_10.8_M	11	OPRTK906CSNA#	6	•			
GE_CE_FR_11.7_G	4	OPRTK906CSNA#	10				
GE_CE_FR_11.7_G	5	PER-COLD035G#	7				
GE_CE_FR_11.7_M	9	PER-COLD035G#	11				
GE_CE_FR_17.5_G	4	PER78-76100G#	4				
GE_CE_TO_8.7_G	4	PER78-76100G#	9				
GE_CE_TO_8.7_M	9	PER87ORG100A#	8				
GE_CW_CAL_TE_G	3	PERACCUMINC#	9				
GE_FULL_906	9	PERBESPG100G#	1				
Runaway TB	P Rxn in F	Batch Evaporato	rs C	CAFTA	CI76B.CAF	3-14-95	Page 13

•

Calculation No. S-CLC-F-00140 Sheet No. 115 of 129 Rev. B

Set No.		Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM &
	G1		Г			3.83E-07	
1.	ALRHL906NRIG#	High level alarm in tank 906 tank fails	5	6M	6.21E-02	2.13E-07	55.5
	EVPBEVAPON-G+ OPRG7.8-ACHA#	Batch Evaporator is Used Operator fails to assure SPG is within range (10,000 lbs TBP	1	3.00E-05H 100Y 1N 5.0E-2 N	1.00E+02Y 5.00E-02N		
	OPRLV906ACNA#	Operator over fills tank 906 (Level Procedurally	1	1N	5.00E-03N		
	PER78-76100G#	Controlled) TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	5.0E-3 N 1N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N	1.00E+00N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.00E+00N 12H 0.1Y	1.37E-04		
2.	ALRHL906NRIG#	High level alarm in tank 906 tank fails	5	6M 3.00E-05H	6.21E-02	7.44E-08	74.9
	EVPBEVAPON-G+ OPRG7.8-ACHA#	Batch Evaporator is Used Operator fails to assure SPG is within range (10,000 lbs TBP	1	100Y 1N	1.00E+02Y 5.00E-02N		
	OPRLV906ACNA#	Operator over fills tank 906 (Level Procedurally	1	1N	5.00E-03N		
	PER-COLD035G#	Controlled) Cold streams sent to 8.7	1	5.0E-3 N 1N	3.50E-01N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	3.50E-01N 1N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N	1.00E+00N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	1.00E+00N 12H 0.1Y	1.37E-04		
3.	EVPBEVAPON-G+ OPRG7.8-ACHA#	Batch Evaporator is Used Operator fails to assure SPG is within range (10,000	1	100Y 1N	1.00E+02Y 5.00E-02N		83.8
	OPRLV906ACNA#	lbs TBP Operator over fills tank 906 (Level Procedurally	1	5.0E-2 N 1N	5.00E-03N		
	OPRTK906CSNA#	Controlled) Operator fails to respond to level alarm in tank 906	1	5.0E-3 N 1N	1.00E-02N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1		1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1		1.00E+00N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.00E+00N 12H 0.1Y	1.37E-04		
4.	EVPBEVAPON-G+	Batch Evaporator is Used		1004	1.00E+02Y	1.71E-08	88.3

Calculation No. S-CLC-F-00140 Sheet No. 116 of 129 Rev P

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	OPR906LEMCNA# OPRG7.8-ACHA# OPRLV906ACNA# PER78-76100G# PERBESPG100G# TBPTKPREA#	Calibration Error - Level instrument is calibrated to give a false reading Operator fails to assure SPG is within range (10,000 lbs TBP Operator over fills tank 906 (Level Procedurally Controlled) TBP Transferred From 7.8 to Batch Evaporator 7.6E Failure to Detect SPG Out of Range Process upset causes excess organic in feed	1 1 1 1 3	1N 5.0E-3 N 1N 5.0E-2 N 1N 5.0E-3 N 1.00E+00N 1N 1.00E+00N 12H 0.1Y			
5.	EVPBEVAPON-G+ OPRG7.8-ACHA# OPRLV906ACNA# OPRTK906CSNA# PER-COLD035G# PER78-76100G# PERBESPG100G# TBPTK2BPPREA#	Batch Evaporator is Used Operator fails to assure SPG is within range (10,000 lbs TBP Operator over fills tank 906 (Level Procedurally Controlled) Operator fails to respond to level alarm in tank 906 Cold streams sent to 8.7 TBP Transferred From 7.8 to Batch Evaporator 7.6E Failure to Detect SPG Out of Range Process upset causes excess TBP in canyon product	1 1 1 1 1 1 3	100Y 1N 5.0E-2 N 1N 5.0E-3 N 1N 1.0E-2 N 1N 3.50E-01N 1N 1.00E+00N	1.00E-02N 3.50E-01N 1.00E+00N 1.00E+00N		91.4
6.	EVPBEVAPON-G+ OPR906LEMCNA# OPRGBETEMCNA# PER78~76100G# PERBESPG100G# PERBETEM002A# TBPTKPREA#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to give a false reading Tank Temperature Sensor is Miscalibrated TBP Transferred From 7.8 to Batch Evaporator 7.6E Failure to Detect SPG Out of Range Temperature sensor calibrated just before this batch Process upset causes excess organic in feed	1 1 1 1 3	100Y 1N 5.0E-3 N 1N 5.0E-3 N 1N 1.00E+00N 1N 1.00E+00N 1N 2.00E-02N	1.00E+00N 1.00E+00N 2.00E-02N		93.2
7.	EVPBEVAPON-G+ OPR906LEMCNA# OPRG7.8-ACHA#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to give a false reading Operator fails to assure SPG is within range (10,000 lbs TBP	1	5.0E-3 N	5.00E-03N 5.00E-02N		94.8

Calculation No. S-CLC-F-00140 Sheet No. 117 of 129

Set No.		Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %	
	OPRLV906ACNA# PER-COLD035G#	Operator over fills tank 906 (Level Procedurally Controlled) Cold streams sent to 8.7	1	1N 5.0E-3 N 1N 3.50E-01N				
1	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	11	1.00E+00N	1.00E+00N		!	
1	PERBESPG100G#	Failure to Detect SPG Out of Range	11	1.00E+00N	1.00E+00N	1 '	1	
1	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	1.00 L 10 N 12H 0.1Y		-		1
8.	EVPBEVAPON-G+ LSTTK906FAIA#	Batch Evaporator is Used Tank 906 level sensor failure	5	100Y 6M 5.00E-07 H		3.70E-09	95.8	
, I	OPRG7.8-ACHA#	Operator fails to assure SPG is within range (10,000 lbs TBP	11	1N 5.0E-2 N		1	ŧ !	
! !	OPRLV906ACNA#	Operator over fills tank 906 (Level Procedurally Controlled)	11	1N 5.0E-3 N	5.00E-03N	'	1 !	1
1	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.00E+00N	1.00E+00N		1 '	
1	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N 1.00E+00N	1.00E+00N	. /	1 '	
1	TBPTKPREA#	Process upset causes excess organic in feed	3	1.00E+00N 12H 0.1Y	1.37E-04	/		
9.	EVPBEVAPON-G+ OPR906LEMCNA#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to give a false reading	1	100Y 1N 5.0E-3 N	5.00E-03N	1	96.6	
1	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	11	1N 1.00E+00N			1 '	
1	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N 1.00E+00N			1 '	
1	TBPTKPREA#	Process upset causes excess organic in feed	3	3 12H 0.1Y		'	1 '	
	TSTBETE-FAIG#	Batch Evaporator Temperature Sensor Fails	5	4D 1.00E-06 H	4.80E-05	. '	'	
10.	EVPBEVAPON-G+ OPR906LEMCNA#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to give a false reading	1	100Y 1N 5.0E-3 N	5.00E-03N		97.2	
1	OPRGBETEMCNA#	Tank Temperature Sensor is Miscalibrated	1	5.0E-3 N 5.0E-3 N	5.00E-03N	1	1	
1	PER-COLD035G#	Cold streams sent to 8.7	1	5.0E-3 N 1N 3.50E-01N	3.50E-01N	(1 '	
1	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	L 1N	1.00E+00N	1	'	
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N 1.00E+00N	1.00E+00N	1		ļ

Calculation No. S-CLC-F-00140 Sheet No. 118 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	PERBETEM002A# TBPTK2BPPREA#	Temperature sensor calibrated just before this batch Process upset causes excess TBP in canyon product	1 3	2.00E-02N	2.00E-02N 1.37E-04		
11.	EVPBEVAPON-G+ OPR17.5-ACNA# OPRGBETEMCNA# PER78-76100G#	Batch Evaporator is Used Second consecutive transfer containing TBP from tank 17.5 is fed to same batch Tank Temperature Sensor is Miscalibrated TBP Transferred From 7.8 to Batch Evaporator 7.6E	1 1 1	100Y 1N 5.0E-3 N 1N 5.0E-3 N 1N	1.00E+02Y 5.00E-03N 5.00E-03N 1.00E+00N		97.8
	PERBESPG100G# PERBETEM002A#	Failure to Detect SPG Out of Range Temperature sensor calibrated just before this batch		1.00E+00N 1N 1.00E+00N 1N			
	PERTK175.20A#	Sufficient TBP present in tank 17.5	1	2.00E-02N 1N 2.00E-03N	2.00E-03N		
	PERTR175002A# TR-17.5-TO-8.7	Material Is Being Received From 17.5 Transfer Excess TBP From 17.5 to 8.7	1	1N 2.00E-02N 1.0N			
12.	EVPBEVAPON-G+ LSTTK906FAIA#	Batch Evaporator is Used Tank 906 level sensor failure	5	100Y 6M 5.00E-07 H	1.00E+02Y 1.08E-03	1.48E-09	98.1
	OPRGBETEMCNA# PER78-76100G#	Tank Temperature Sensor is Miscalibrated TBP Transferred From 7.8 to Batch Evaporator 7.6E		1N 5.0E-3 N 1N		1	
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		
	PERBETEM002A# TBPTKPREA#	Temperature sensor calibrated just before this batch Process upset causes excess organic in feed	1 3	1N 2.00E-02N 12H 0.1Y	2.00E-02N		
L3.	EVPBEVAPON-G+ LSTTK906FAIA#	Batch Evaporator is Used Tank 906 level sensor failure	5	100Y 6M 5.00E-07 H		1.29E-09	98.5
	OPRG7.8-ACHA# OPRLV906ACNA#	Operator fails to assure SPG is within range (10,000 lbs TBP Operator over fills tank 906 (Level Procedurally Controlled)	1 1	1N 5.0E-2 N 1N 5.0E-3 N	5.00E-03N		
	PER-COLD035G# PER78-76100G#	Cold streams sent to 8.7 TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1N 3.50E-01N 1N 1.00E+00N]	

Calculation No. S-CLC-F-00140 Sheet No. 119 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N	1.00E+00N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	1.00E+00N 12H 0.1Y	1.37E-04		
14.	EVPBEVAPON-G+ OPR87 EM1ACNA# OPR87 EM2ACNA#	Batch Evaporator is Used operator fails to feed remaining tank contents after 1st interval- clean tank operator fails to feed remaining tank contents after 2nd interval- clean tank	1	100Y 1N 5.0E-3 N 1N 5.0E-3 N	5.00E-03N		98.8
	OPR87 EM3ACNA#	operator fails to feed remaining tank contents after	1	1N	5.00E-03N		
	OPRGBETEMCNA#	3rd interval- clean tank Tank Temperature Sensor is Miscalibrated	1	5.0E-3 N 1N	5.00E-03N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	5.0E-3 N 1N	1.00E+00N		
	PER87ORG100A#	organic remains in feed tank	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N	1.00E+00N		
	PERBETEM002A#	Temperature sensor calibrated just before this batch	1	1.00E+00N 1N 2.00E-02N	2.00E-02N		
15.	EVPBEVAPON-G+ OPR906LEMCNA# PER-COLD035G#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to give a false reading Cold streams sent to 8.7	1	100Y 1N 5.0E-3 N 1N	5.00E-03N		99.1
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	3.50E-01N 1N			
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	12H	1.37E-04		
	TSTBETE-FAIG#	Batch Evaporator Temperature Sensor Fails	5	0.1Y 4D 1.00E-06 H	4.80E-05		
16.	EVPBEVAPON-G+ OPR17.5-ACNA#	Batch Evaporator is Used Second consecutive transfer containing TBP from tank 17.5 is fed to same batch	1	100Y 1N 5.0E-3 N		9.60E-10	99.4
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.00E+00N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N			
	PERTK175.20A#	Sufficient TBP present in tank 17.5	1	1.00E+00N 1N	2.00E-03N		
	PERTR175002A#	Material Is Being Received From 17.5	1	2.00E-03N 1N 2.00E-02N	2.00E-02N		

Calculation No. S-CLC-F-00140 Sheet No. 120 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	TR-17.5-TO-8.7 TSTBETE-FAIG#	Transfer Excess TBP From 17.5 to 8.7 Batch Evaporator Temperature Sensor Fails	5	1.0N 4D 1.00E-06 H	1.00E+00 4.80E-05		
17.	EVPBEVAPON-G+ LSTTK906FAIA# PER78-76100G#	Batch Evaporator is Used Tank 906 level sensor failure TBP Transferred From 7.8 to Batch Evaporator 7.6E	5	100Y 6M 5.00E-07 H 1N	1.08E-03		99.5
	PERBESPG100G#	Failure to Detect SPG Out of Range		1.00E+00N	1.00E+00N		
	TBPTKPREA# TSTBETE-FAIG#	Process upset causes excess organic in feed Batch Evaporator Temperature Sensor Fails	3 5		1.37E-04 4.80E-05		
18.	EVPBEVAPON-G+ OPR87EM1ACNA# OPR87EM2ACNA#	Batch Evaporator is Used operator fails to feed remaining tank contents after 1st interval- clean tank operator fails to feed remaining tank contents after 2nd interval- clean tank	1	1.00E-00 H 100Y 1N 5.0E-3 N 1N 5.0E-3 N	1.00E+02Y 5.00E-03N		99.7
	OPR87EM3ACNA# PER78-76100G# PER87ORG100A#	operator fails to feed remaining tank contents after 3rd interval- clean tank TBP Transferred From 7.8 to Batch Evaporator 7.6E organic remains in feed tank	1	1N 5.0E-3 N 1N 1.00E+00N	1.00E+00N		
	PERBESPG100G# TSTBETE-FAIG#	Failure to Detect SPG Out of Range Batch Evaporator Temperature Sensor Fails	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		
19.	EVPBEVAPON-G+ LSTTK906FAIA# OPRGBETEMCNA#	Batch Evaporator is Used Tank 906 level sensor failure Tank Temperature Sensor is Miscalibrated	5	100Y 6M 5.00E-07 H 1N	1.00E+02Y 1.08E-03 5.00E-03N		99.8
	PER-COLD035G#	Cold streams sent to 8.7	1	3.50E-01N	3.50E-01N		
	PER78-76100G# PERBESPG100G# PERBETEM002A#	TBP Transferred From 7.8 to Batch Evaporator 7.6E Failure to Detect SPG Out of Range Temperature sensor calibrated just before this batch	1 1 1	1N 1.00E+00N 1N 1.00E+00N 1N	1.00E+00N 1.00E+00N 2.00E-02N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	2.00E-02N 12H 0.1Y	1.37E-04		

culation No. S-CLC-F-00140 eet No. 121 of 129

3

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
20.	EVPBEVAPON-G+ LSTTK906FAIA#	Batch Evaporator is Used Tank 906 level sensor failure	5	100Y 6M		2.48E-10	99.9
	PER-COLD035G#	Cold streams sent to 8.7	1	5.00E-07 H 1N 3.50E-01N	3.50E-01N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.00E+00N	1.00E+00N		
:	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N 1.00E+00N	1.00E+00N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3		1.37E-04		
	TSTBETE-FAIG#	Batch Evaporator Temperature Sensor Fails	5	4D 1.00E-06 H	4.80E-05		
21.	ALRTK906NRIG#	Low level alarm in tank 906 fails	5	6М 3.00Ё-05Н	6.21E-02	8.50E-11	99.9
	EVPBEVAPON-G+ OPRGBETEMCNA#	Batch Evaporator is Used Tank Temperature Sensor is Miscalibrated	1	100Y 100Y 1N 5.0E-3 N	1.00E+02Y 5.00E-03N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.00E+00N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		
	PERBETEM002A#	Temperature sensor calibrated just before this batch	1	1.00E+00N 1N 2.00E-02N	2.00E-02N		
	RLPPUMP-NREG#	Pump switch fails to open	1	1.0E-3N	1.00E-03N		
	TBPTKPREA#	Process upset causes excess organic in feed	3		1.37E-04		
22.	CAVBESTMFOGG#	Pneumatic steam control valve fails open (batch evaporator)	3	24H 3.00E-06 H	7.20E-05	4.93E-11	99.9
	EVPBEVAPON-G+ OPR906LEMCNA#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to	1	100Y 1N			
	OPRBBLOCDENA#	give a false reading Operator fails to respond to alarm(s) (906, temp.,	1	5.0E-3 N 1N	1.00E-02N		
	PER78-76100G#	pres) (Close valve) TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.0E-2 N 1N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.00E+00N 12H 0.1Y	1.37E-04		
23.	ALRTK906NRIG#	Low level alarm in tank 906 fails	5	6M	6.21E-02	4.08E-11	99.9
	EVPBEVAPON-G+	Batch Evaporator is Used		3.00E-05H 100Y	1.00E+02Y		

Calculation No. S-CLC-F-00140 Sheet No. 122 of 129

Set No.	Event Name	Description	c	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
****	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1N 1.00E+00N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N 1.00E+00N	1.00E+00N		
	RLPPUMP-NREG#	Pump switch fails to open	1	1.0E-3N	1.00E-03N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	12H 0.1Y	1.37E-04		
	TSTBETE-FAIG#	Batch Evaporator Temperature Sensor Fails	5	4D 1.00E-06 H	4.80E-05		
24.	ALR-PGT-COMG#	Common cause batch evaporator alarm failure (temp, pres.)	5	6М 3.00Е-06Н	6.45E-03	3.18E-11	100.0
	CAVBESTMFOGG#	Pneumatic steam control valve fails open (batch evaporator)	3	24H 3.00E-06 H	7.20E-05		
	EVPBEVAPON~G+ OPR906LEMCNA#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to	1	100Y 1N	1.00E+02Y 5.00E-03N		
	PER78-76100G#	give a false reading TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	5.0E-3 N 1N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1N 1.00E+00N	1.00E+00N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	1.00E+00N 12H 0.1Y	1.37E-04		
25.	ALRTK906NRIG#	Low level alarm in tank 906 fails	5	6М 3.00Е-05Н	6.21E-02	2.98E-11	100.0
	EVPBEVAPON-G+ OPRGBETEMCNA#	Batch Evaporator is Used Tank Temperature Sensor is Miscalibrated	1	100Y 1N 5.0E-3 N	1.00E+02Y 5.00E-03N		
	PER-COLD035G#	Cold streams sent to 8.7	1	5.0E-3 N 1N 3.50E-01N	3.50E-01N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1.00E+00N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1.00E+00N 1.00E+00N	1.00E+00N		
	PERBETEM002A#	Temperature sensor calibrated just before this batch	1	1.00E-02N 2.00E-02N	2.00E-02N		
	RLPPUMP-NREG#	Pump switch fails to open	1	1.0E-3N	1.00E-03N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	1.0E 3N 12H 0.1Y	1.37E-04		
26.	CAVBESTMFOGG#	Pneumatic steam control valve fails open (batch evaporator)	3	24H 3.00E-06 H	7.20E-05	1.73E-11	100.0
	EVPBEVAPON-G+ OPR906LEMCNA#	Batch Evaporator is Used Calibration Error - Level instrument is calibrated to give a false reading	1	100Y 100Y 1N 5.0E-3 N	1.00E+02Y 5.00E-03N		

Calculation No. S-CLC-F-00140 Sheet No. 123 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	OPRBBLOCDENA# PER-COLD035G# PER78-76100G# PERBESPG100G# TBPTK2BPPREA#	Operator fails to respond to alarm(s) (906, temp., pres) (Close valve) Cold streams sent to 8.7 TBP Transferred From 7.8 to Batch Evaporator 7.6E Failure to Detect SPG Out of Range Process upset causes excess TBP in canyon product	1 1 1 3	1N 1.0E-2 N 1N 3.50E-01N 1N 1.00E+00N 1N 1.00E+00N 12H 0.1Y			
27.	CAVBESTMFOGG# EVPBEVAPON-G+ OPR17.5-ACNA# OPRBBLOCDENA# PER78-76100G# PERBESPG100G# PERTK175.20A# PERTR175002A# TR-17.5-TO-8.7	Pneumatic steam control valve fails open (batch evaporator) Batch Evaporator is Used Second consecutive transfer containing TBP from tank 17.5 is fed to same batch Operator fails to respond to alarm(s) (906, temp., pres) (Close valve) TBP Transferred From 7.8 to Batch Evaporator 7.6E Failure to Detect SPG Out of Range Sufficient TBP present in tank 17.5 Material Is Being Received From 17.5 Transfer Excess TBP From 17.5 to 8.7	3 1 1 1 1 1 1	3.00E-06 H 100Y 1N 5.0E-3 N 1.0E-2 N 1.0E-2 N 1N 1.00E+00N	5.00E-03N 1.00E-02N 1.00E+00N 1.00E+00N 2.00E-03N 2.00E-02N		100.0
28.	ALRTK906NRIG# EVPBEVAPON-G+ PER-COLD035G# PER78-76100G# PERBESPG100G# RLPPUMP-NREG# TBPTK2BPPREA# TSTBETE-FAIG#	Low level alarm in tank 906 fails Batch Evaporator is Used Cold streams sent to 8.7 TBP Transferred From 7.8 to Batch Evaporator 7.6E Failure to Detect SPG Out of Range Pump switch fails to open Process upset causes excess TBP in canyon product Batch Evaporator Temperature Sensor Fails	5 1 1 1 3 5	3.00E-05H	1.00E+02Y 3.50E-01N 1.00E+00N 1.00E+00N 1.00E-03N 1.37E-04 4.80E-05		100.0
29.	EVPBEVAPON-G+ OPRGBETEMCNA#	Batch Evaporator is Used Tank Temperature Sensor is Miscalibrated	1	100Y 1N 5.0E-3 N		1.37E-11	100.0

Calculation No. S-CLC-F-00140 Sheet No. 124 of 129

Set No.	Event Name	Description	С	B.E. Input	Calc. Result	Cutset Freq.(/yr)	CUM %
	OPRTK906CSNA#	Operator fails to respond to level alarm in tank 906	1	1N 1.0E-2 N	1.00E-02N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1N 1.00E+00N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N 1.00E+00N	1.00E+00N		
	PERBETEM002A#	Temperature sensor calibrated just before this batch	1	1N 2.00E-02N	2.00E-02N		
	RLPPUMP-NREG#	Pump switch fails to open	1	1N 1.0E-3N	1.00E-03N		
	TBPTKPREA#	Process upset causes excess organic in feed	3	12H 0.1Y	1.37E-04		
30.	ALR-PGT-COMG#	Common cause batch evaporator alarm failure (temp, pres.)	5	6M 3.00E-06H	6.45E-03	1.11E-11	100.0
	CAVBESTMFOGG#	Pneumatic steam control valve fails open (batch evaporator)	3	24H 3.00E-06 H	7.20E-05		
	EVPBEVAPON-G+	Batch Evaporator is Used		100Y	1.00E+02Y		
	OPR906LEMCNA#	Calibration Error - Level instrument is calibrated to give a false reading	1	1N 5.0E-3 N	5.00E-03N		
	PER-COLD035G#	Cold streams sent to 8.7	1	1N 3.50E-01N	3.50E-01N		
	PER78-76100G#	TBP Transferred From 7.8 to Batch Evaporator 7.6E	1	1N 1.00E+00N	1.00E+00N		
	PERBESPG100G#	Failure to Detect SPG Out of Range	1	1N 1.00E+00N	1.00E+00N		
	TBPTK2BPPREA#	Process upset causes excess TBP in canyon product	3	12H 0.1Y	1.37E-04		

Calculation No. S-CLC-F-00140 Sheet No. 125 of 129 Rev. B

Basic Event Data for 7.6E & 7.7E Evaporators

Event	C	Input	Calc.	Description	Source
ALR-PGT-COMG#	5	6M 3.00E-06H		Common cause batch evaporator alarm failure (temp, pres.)	a: calib. every 6 mon., beta factor of .1 for common cause
ALRHL906NRIG#	5		6.21E-02	High level alarm in tank 906 tank fails	Assumes discovered during Level Sensor Calibration: FR 3E-5/hr
ALRTK906NRIG#	5	5.00E-05H 6M 3.00E-05H	6.21E-02	Low level alarm in tank 906 fails	Assumes discovered during Level Sensor Calibration: FR 3E-5/hr
CAVBESTMFOGG#	3	24H 3.00E-06 H	7.20E-05	Pneumatic steam control valve fails open (batch evaporator)	Used Compressed Gas Value, 1 Day Mission Time :FR 3E-6/hr
EVPBEVAPON-G+ LSTTK906FAIA#	5	100Y 6M 5.00E-07 H	1.00E+02Y 1.08E-03	Batch Evaporator is Used	Assumed to Operate 100 Times per Year Assume discovered during calibration: FR 5E-7/hr
OPR17.5-ACNA#	1	1N 5.0E-3 N	5.00E-03N	Second consecutive transfer containing TBP from tank 17.5 is fed to same batch	
OPR87EM1ACNA#	1	1N 5.0E-3 N		operator fails to feed remaining tank contents after 1st interval- clean tank	typical circumstances
OPR87EM2ACNA#	1	1N 5.0E-3 N		operator fails to feed remaining tank contents after 2nd interval- clean tank	typical circumstances
OPR87EM3ACNA#	1	1N 5.0E~3 N		operator fails to feed remaining tank contents after 3rd interval- clean tank	typical circumstances
OPR906LEMCNA#	1	1N 5.0E-3 N		Calibration Error - Level instrument is calibrated to give a false reading	Single Person, Operator Check
OPRBBLOCDENA#	1	1N 1.0E-2 N	1.00E-02N	Operator fails to respond to alarm(s) (906, temp., pres) (Close valve)	Several Competing Signals
OPRG7.8-ACHA#	1		5.00E-02N	Operator fails to assure SPG is within range (10,000 lbs TBP	Knowledge-based diagnosis error- 10 to 30 minutes
OPRGBETEMCNA#	1	1N 5.0E-3 N	5.00E-03N	Tank Temperature Sensor is Miscalibrated	Single Person, Operator Check
OPRLV906ACNA#	1		5.00E-03N	Operator over fills tank 906 (Level Procedurally Controlled)	Typical Circumstances, Level kept low to prevent large loss of organic
OPRTK906CSNA#	1	1.0E-2 N	1.00E-02N	Operator fails to respond to level alarm in tank 906	Typical Circumstances, Further Loss could shut down process
PER-COLD035G#	1	1N 3.50E-01N	3.50E-01N	Cold streams sent to 8.7	1.5 Days of Cold Streams Out of 4 days of running
PER78-76100G#	1		1.00E+00N	TBP Transferred From 7.8 to Batch Evaporator 7.6E	No credit for sample or spg
PER87ORG100A#	1	1.00E+00N 1N 1.00E+00N	1.00E+00N	organic remains in feed tank	no credit for feeding tank contents down to adequate mixing point
PERACCUMINC#	1	1.00E+00N 1N 1.00E-32N	1.00E-32N	30,000 lbs of organic accumulates in 8.7	COG: impossible
PERBESPG100G#	1	1.00E-32N 1N 1.00E+00N	1.00E+00N	Failure to Detect SPG Out of Range	No credit for SPG
PERBETEM002A#	1	1.00E+00N 1N 2.00E-02N	2.00E-02N	Temperature sensor calibrated just	Calibrated every 6 months & 100
PERFBLININC#	1	2.00E-02N 1N 1.00E-32N	1.00E-32N	before this batch Excess TBP is Received in 8.7 From 9.7	batches a year impossible Event, (no planned B-Line processing)

Calculation No. S-CLC-F-00140 Sheet No. 126 of 129 Rev. B

Basic Event	Data	for	7.6E	&	7.7E	Evaporators	(CONT.)
-------------	------	-----	------	---	------	-------------	---------

Event	С	Input	Calc.	Description	Source
PERTK175.20A#	1	1N		Sufficient TBP present in tank 17.5	a: 1 in 5 years (1/500 Batches)
PERTR175002A#	1	2.00E-03N 1N 2.00E-02N	2.00E-02N	Material Is Being Received From 17.5	Pu Recovery, Assume 1 out of 50 batches
RLPPUMP-NREG#	1	2.00E-02N 1N 1.0E-3N	1.00E-03N	Pump switch fails to open	Per Demand, Generic Data
TBP17.5-INCG#		1.0E-32N		Several batches containing excess TBP are received from 17.5 (30,000 lbs total)	impossible - 3 consecutive transfers from 17.5 during a batch
TBPDENS1PREA#		1.0E-32N	1.00E-32	Process upsets causes dilute 2AW or high density in 11.7S	COG: impossible (would involve phase inversion, can't get 10,000 lbs organic)
TBPDENS2PREA#		1.0E-32H	8.76E-29Y	Process upsets causes dilute 2W or high density in 11.7S	COG: impossible (would involve phase inversion, can't get 10,000 lbs organic)
TBPTK~~-PREA#	3	12H 0.1Y		Process upset causes excess organic in feed	
TBPTK2BPPREA#	3	12H 0.1Y	1.37E-04	Process upset causes excess TBP in canyon product	Estimated as 1/10years - Not detected for 12 hours
TR-17.5-TO-8.7		1.0N			Assumed to be present and always transferred
TSTBETE-FAIG#	5	4D 1.00E-06 H		Batch Evaporator Temperature Sensor Fails	Temp Sensor, Discovered within 4 days: FR1E-6/hr

Calculation No. S-CLC-F-00140 Sheet No. 127 of 129 Rev. B

Type Code Data for 7.6E & 7.7E Evaporators

Type Code	Rate	Description	Source	EF	D
ALR COM	3.00E-06H	Alarm/Annunciator, Fails to alarm (Instr.	WSRC-TR-93-262, ALR-NR-I		
		& Control)		1.0	1.
ALR NRI	3.00E-05H	Alarm/Annunciator, Fails to alarm (Instr. & Control)	WSRC-TR-93-262, ALR-NR-1	10	
CAV FOG	3.00E-06 H	Valve (Control), Air-Operated, Fails open (Compressed Gas)	WSRC-TR-93-262, CAV-FO-G	10	L
LST FAI		Sensor/Transmitter/, Transducer/Proc.	WSRC-TR-93-262, LST-FA-I	3	L
		Switch, Level, Failure (Instr. & Control)			1
OPR ACH		Failure of Administrative Control (High)	WSRC-TR-93-581, Table 4, Item 1, High		L
OPR ACN	5.0E-3 N	Failure of Administrative Control (Nominal)	WSRC-TR-93-581, Table 4, Item 1, Nominal	10	L
OPR CSN	1.0E-2 N	Failure to respond to compelling signal (Nominal)	WSRC-TR-93-581, Table 4, Item 2, Nominal	5	L
OPR DEN	1.0E-2 N	Diagnosis error (Nominal)	WSRC-TR-93-581, Table 4, Item 30, Nominal	5	L
OPR MCN		Miscalibration (Nominal)	WSRC-TR-93-581, Table 4, Item 12, Nominal		L
PER .20	2.00E-03N	0.2% chance		ļ	1
PER 002	2.00E-02N	2% chance			1
PER 035	3.50E-01N	35% chance			1
PER 100	1.00E+00N	100% chance			1
PER INC		Incredible Event			1
RLP NRE	1.0E-3N	Relay fails to open	WSRC-TR-93-262m RLP-NRE		1
TBP PRE		Process upset causes excess organic in feed	Never Seen, Estimated as Once in Ten Years		
TST FAI	1.00E-06 H	Sensor/Transmitter/, Transducer/Proc. Switch, Temp., Failure (Instr. & Control)	WSRC-TR-93-262, TST-FA-I	3	L

_

Calculation No. S-CLC-F-00140 Sheet No. 128 of 129 Rev. B

Calculation No. S-CLC-F-00140
Sheet No. 129 of 129
Rev. B

THIS PAGE INTENTIONALLY LEFT BLANK