ESH-EMS-980568

RECORDS ADMINISTRATION
R0090090

THE ENVIRONMENTAL PROTECTION DEPARTMENT ENVIRONMENTAL MONITORING SECTION

The Savannah River Site's Groundwater Monitoring Program

FIRST QUARTER 1998 (U)
(January through March 1998)

Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808

Prepared for the U.S. Department of Energy under Contract No. AB60294N

SAVANNAH RIVER SITE

THE ENVIRONMENTAL PROTECTION DEPARTMENT ENVIRONMENTAL MONITORING SECTION

The Savannah River Site's Groundwater Monitoring Program

FIRST QUARTER 1998 (U) (January through March 1998)

Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808

This Quarter at a Glance . . .

Executive Summary—table of all analytes detected at or above Flag 2 criteria

Flagging Criteria—standards for flagging results

Sample Scheduling—description of the sampling schedule

Field Notes—comments from the field-data books

Analytical Data Review—discrepancies in each laboratory's analytical data; laboratory-specific methods and estimated quantitation limits

Quality Control Samples—discussion of the quality of the analytical data in terms of precision, accuracy, representativeness, comparability, and completeness

Site Index—table of the well series and their site locations; also discusses the history of the sites Appendices:

- A. Water-Level Data-tables listing field data obtained for hydrogeologic studies
- B. Analytical Results—tables listing the quarter's analytical results and field data
- C. Sampling Blanks Results—tables listing all analytical results for sampling blanks for the quarter

• • •

The following is a key to the numbered areas of the Savannah River Site.

Site

100 Areas-Reactors

200 Areas—Separations

300 Areas-Reactor Materials

400 Area-Heavy Water

600 Areas-General

700 Area—Administration

Function

To operate and support the reactors

To separate and purify the product from fuel and target assemblies; to process waste

To fabricate new fuel and target assemblies from raw materials

To produce steam and electrical power; to process heavy water

Other (general)

To provide administrative and support services

DISCLAIMER

This report was prepared by Westinghouse Savannah River Company (WSRC) for the U.S. Department of Energy (DOE) under Contract No. AB60294N and is an account of work performed under that contract. Neither the DOE, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed herein or represents that its use will not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trademark, name, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring of same by WSRC or by the U.S. Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

THE ENVIRONMENTAL PROTECTION DEPARTMENT ENVIRONMENTAL MONITORING SECTION

The Savannah River Site's Groundwater Monitoring Program

FIRST QUARTER 1998 (U) (January through March 1998)

Environmental Protection Department Westinghouse Savannah River Company Aiken, SC

and

Exploration Resources, Inc. Athens, GA

Reviewed and approved by Charles Dan Rogers EPD/EMS Groundwater Coordinator

Cover graphic supplied by R.A. Hiergesell Savannah River Technology Center Environmental Sciences Section

Publication Date: August 1998

Westinghouse Savannah River Company Savannah River Site Aiken, SC 29808

Prepared for the U.S. Department of Energy under Contract No. AB60294N

This page was left blank intentionally.

Contents

	Page
Executive Summary	1
Introduction	5
Organization of This Report	5
Flagging Criteria	9
Sample Scheduling	19
Environmental Screening	19
GCMS VOA Analyses	20
Sampling Requests	20
Maintenance or Access Problems	21
Purge-Water Containment Program	22
Field Notes	23
Analytical Data Review	31
GIMS Data Review Module	31
Review of the Analytical Data	31
Analytical Methods	33
Quality Control Samples	55
Precision	55
Accuracy	59
Representativeness	67
Comparability	67
Completeness	67
Site Index	173
Site History	176
Glossary	187
References	195

Appendix A.	Water-Level Data	A-1
Appendix B.	Analytical Results	B-1
Appendix C.	Sampling Blanks Results	C-1

LIST OF FIGURES

		Page
Figure 1.	Areas and Locations Monitored for Groundwater Quality	7
Figure 2.	Separations and Waste Management Areas Monitored for Groundwater Quality	8
Figure 3.	Three Types of Groundwater Monitoring Wellheads	23
Figure 4.	Relative Difference vs. the Mean	56
Figure 5.	Relationship between w _i and Analyte Concentration	57
Figure 6.	Effect of a Linear-Weight Function on the MRDadj	57

LIST OF TABLES

Table 1. Analytes above Flag 2 Criteria	1
Table 2. Flagging Criteria	.10
Table 3. Comments From the Field Data	.24
Table 4. ES Samples with High Analytical Results as Compared to Historical Data	.34
Table 5. ES Samples with Low Analytical Results as Compared to Historical Data	.34
Table 6. EX Samples with High Analytical Results as Compared to Historical Data	.34
Table 7. GE Samples with High Analytical Results as Compared to Historical Data	.34
Table 8. GE Samples with Low Analytical Results as Compared to Historical Data	.35
Table 9. GP Samples with High Analytical Results as Compared to Historical Data	.35
Table 10. GP Samples with Low Analytical Results as Compared to Historical Data	.36
Table 11. WA Samples with High Analytical Results as Compared to Historical Data	.36
Table 12. WA Samples with Low Analytical Results as Compared to Historical Data	.36
Table 13. TM Samples with High Analytical Results as Compared to Historical Data	.36
Table 14. TM Samples with Low Analytical Results as Compared to Historical Data	.37
Table 15. Methods and Estimated Quantitation Limits Used by ES	.37
Table 16. Methods and Estimated Quantitation Limits Used by GE	.41
Table 17. Methods and Estimated Quantitation Limits Used by WA	.45
Table 18. Methods and Estimated Quantitation Limits Used by EX	.50
Table 19. Methods and Estimated Quantitation Limits Used by GP	.52
Table 20. Methods and Estimated Quantitation Limits Used by TM	.53
Table 21. Method and Estimated Quantitation Limit Used by EM	.54
Table 22. Quality Control Limits for Selected Laboratory Control Samples and Blank Spikes	.62
Table 23. Surrogate Recovery Limits	.63
Table 24. Quality Control Limits for Selected Matrix Spike Samples	.65
Table 25. Wells Providing Blind Replicate Samples and Associated Blanks	.68
Table 26. Analytes Not Showing Measurable Concentrations above Estimated Quantitation Limits in Any Replicated or Duplicated Samples for GE, WA, ES, and EX	า .69

Table 27.	Analytes Not Showing Measurable Concentrations above Estimated Quantitation Limits Any Replicated or Duplicated Samples for GP, TM, and ES	in 72
Table 28.	Intralaboratory MRD Indices for ES	73
Table 29.	Intralaboratory MRD Indices for EX	75
Table 30.	Intralaboratory MRD Indices for GE	76
Table 31.	Intralaboratory MRD Matrix Spike Indices for GE	77
Table 32.	Intralaboratory MRD Indices for WA	78
Table 33.	Intralaboratory MRD Indices for GP	79
Table 34.	Intralaboratory MRD Indices for TM	80
Table 35.	Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results about the RDL for GE and WA	ove 82
Table 36.	Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results ab the RDL for ES and EX	ove 82
Table 37.	Interlaboratory MRD and <i>t</i> -test Results for Analytes with at Least One Pair of Results ab the RDL for ES and WA	ove 83
Table 38.	Interlaboratory MRD and <i>t</i> -test Results for Analytes with at Least One Pair of Results ab the RDL for EX and WA	ove 84
Table 39.	Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results ab the RDL for ES and EX	ove 84
Table 40.	Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results ab the RDL for ES and TM	ove 85
Table 41.	Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results ab the RDL for EX and TM	ove 86
Table 42.	Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results ab the RDL for GP and TM	ove 86
Table 43.	ES Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another	87
Table 44.	ES Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another	87
Table 45.	EX Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another	87
Table 46.	GE Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another	87
Table 47.	GE Matrix Spikes and Matrix Spike Duplicates Yielding Results Where One Is More Than Twice Another	88

Table 48.	GP Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another88
Table 49.	GP Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another88
Table 50.	TM Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another88
Table 51.	TM Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another89
Table 52.	WA Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another89
Table 53.	WA Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another89
Table 54.	Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and EX89
Table 55.	Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and WA89
Table 56.	Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between EX and WA90
Table 57.	Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between GE and WA90
Table 58.	Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and EX90
Table 59.	Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and TM90
Table 60.	Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between GP and TM91
Table 61.	Quality Control Standards for Selected Analyses for GE
Table 62.	Quality Control Standards for Selected Analyses for WA94
Table 63.	Quality Control Standards for Selected Analyses for ES96
Table 64.	Quality Control Standards for Selected Analyses for EX99
Table 65.	ES, EX, and WA Performance Evaluation, Water Pollution Study WP037101
Table 66.	ES, EX, and GE Performance Evaluation, Water Supply Study WS038103
Table 67.	ES and EX Performance Evaluation, Water Supply Study WS039105
Table 68.	Laboratory Control Sample and Blank Spike Recoveries for ES

Table 69.	Laboratory Control Sample and Blank Spike Recoveries for EX	111
Table 70.	Laboratory Control Sample and Blank Spike Recoveries for GE	113
Table 71.	Laboratory Control Sample and Blank Spike Recoveries for WA	115
Table 72.	Laboratory Control Sample and Blank Spike Recoveries for GP	118
Table 73.	Laboratory Control Sample and Blank Spike Recoveries for TM	119
Table 74.	Surrogate Recoveries for ES	121
Table 75.	Surrogate Recoveries for EX	121
Table 76.	Surrogate Recoveries for GE	122
Table 77.	Surrogate Recoveries for WA	122
Table 78.	Matrix Spike Recoveries for ES	123
Table 79.	Matrix Spike Recoveries for EX	125
Table 80.	Matrix Spike Recoveries for GE	126
Table 81.	Matrix Spike Recoveries for WA	. 128
Table 82.	Matrix Spike Recoveries for GP	. 131
Table 83.	Analytes Detected in Method Blanks for ES	.132
Table 84.	Analytes Detected in Method Blanks for EX	.137
Table 85.	Analytes Detected in Method Blanks for GE	.140
Table 86.	Analytes Detected in Method Blanks for WA	.145
Table 87.	Analytes Detected in Method Blanks for GP	. 151
Table 88.	Analytes Detected in Method Blanks for TM	. 153
Table 89.	Analytes Detected in Field Blanks for ES	.154
Table 90.	Analytes Detected in Field Blanks for GE	. 157
Table 91.	Analytes Detected in Field Blanks for WA	. 161
Table 92.	Analytes Detected in Field Blanks for GP	.164
Table 93.	Analytes Detected in Field Blanks for TM	.166
Table 94.	Analytes Detected in Trip Blanks for ES	.167
Table 95.	Analytes Detected in Trip Blanks for EX	.167
Table 96.	Analytes Detected in Trip Blanks for GE	.168

Table 97.	Analytes Detected in Trip Blanks for WA	. 169
Table 98.	Bailed Wells	. 170
	Sampled Wells with Metal Casings	
Table 100.	Wells That Had Turbidity Greater Than 15 NTU	. 171
Table 101.	Analyses Not Performed by ES	. 172
Table 102.	Sites and Locations by Well Series	173

Executive Summary

The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During first quarter 1998, EPD/EMS conducted extensive sampling of monitoring wells.

EPD/EMS has established two sets of flagging criteria to assist in managing sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, data interpretation, and trend identification. Since 1991, the flagging criteria have been based on the U.S. Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the flagging criteria is presented in the **Flagging Criteria** section of this document. Analytical results from first quarter 1998 are included in this report, which is distributed to all site custodians.

One or more analytes exceeded Flag 2 criteria during first quarter 1998 in 39 monitoring well series. Analytes exceeded the current Flag 2 criteria for the first time since 1984 in 12 of those 39 monitoring well series.

Table 1, organized alphabetically by well series, lists those well series with analytical results above Flag 2 criteria during first quarter 1998. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from field measurements also are included in this table.

Table 1. Analytes above Flag 2 Criteria

Site	Well Series	Analytes above Flag 2 Criteria
A-Area Metals Burning Pit	ABP	pH, tetrachloroethylene, trichloroethylene
Metallurgical Laboratory Seepage Basin	AMB	Benzoic acid , dichloromethane, iron, pH, silver, tetrachloroethylene, total organic halogens, trichloroethylene
Motor Shop Oil Basin	AOB	Tetrachloroethylene, trichloroethylene
Savannah River Laboratory (SRL) Seepage Basins	ASB	Chloromethane , dichloromethane, tetrachloroethylene, trichloroethylene
C-Area Burning/Rubble Pit	CRP	Tritium
C-Area Reactor Seepage Basins	CSB	Aluminum, bis(2-ethylhexyl) phthalate, iron, manganese, trichloroethylene, tritium
Fire Department Training Facility	CSO	Aluminum, dichloromethane, iron
F-Area Burning/Rubble Pits	FBP	lron, nitrate as nitrogen, tetrachloroethylene, trichloroethylene, trichlorofluoromethane, tritium
F-Area Seepage Basins Remediation Extraction Well	FEX	Gross alpha, iodine-129, nonvolatile beta, radium-228, specific conductance, strontium-90
F-Area Seepage Basins Remediation Injection Tank	FIN	Gross alpha, iodine-129, nonvolatile beta, specific conductance, strontium-90, uranium-233/234, uranium-238

Site	Well Series	Analytes above Flag 2 Criteria
F-Area Seepage Basins	FSB	Americium-241, antimony, bis(2-ethylhexyl) phthalate, cadmium, cesium-137, cobalt, curium-243/244, dichloromethane, gross alpha, iodine-129, lead, mercury, nickel, nitrate-nitrite as nitrogen, nonvolatile beta, pH, radium-226, radium-228, specific conductance, strontium-90, tetrachloroethylene, thallium, trichloroethylene, tritium, uranium-233/234, uranium-235, uranium-238
F-Area Inactive Process Sewer Line	FSL	Gross alpha, iodine-129, nitrate-nitrite as nitrogen, nonvolatile beta, radium-228, strontium-90, technetium-99, tritium, uranium-233/234, uranium-238
F-Area Tank Farm	FTF	Gross alpha, nonvolatile beta, pH, specific conductance, tritium
H-Area Tank Farm Operable Unit	НАА	Aluminum, iron, manganese, pH, radium, total alpha-emitting, specific conductance, thallium, tritium
H-Area Canyon Building	HCA	Aluminum, pH, tetrachloroethylene, thallium, tritium
H-Area Seepage Basins Remediation Injection Tank	HIN	lodine-129, nonvolatile beta, radium-228, strontium-90
H-Area Retention Basin	HR8	Aluminum, iron, lead, radium-226
H-Area Seepage Basins	HSB	Bis(2-ethylhexyl) phthalate, gross alpha, iodine-129, lead, mercury, nickel-63, nitrate-nitrite as nitrogen, nonvolatile beta, pH, radium-226, radium-228, specific conductance, strontium-90, tetrachloroethylene, trichloroethylene, tritium, uranium-233/234, uranium-238
H-Area Inactive Process Sewer Line	HSL	Aluminum, iron, manganese, pH, radium-228, specific conductance, strontium-90, thallium, tritium
H-Area Tank Farm	HTF	Nonvolatile beta, tritium
Ford Building Seepage Basin	HXB	Aluminum, iron, specific conductance
K-Area Disassembly Basin	KDB	Specific conductance, tritium
K-Area Burning/Rubble Pit	KRP	Aluminum, iron, tetrachloroethylene, trichloroethylene
K-Area Tritium Sump Monitoring Well	KSM	Tritium
L-Area Research Wells	LAW	Tritium
L-Area Disassembly Basin	LDB	Tritium
Interim Sanitary Landfill	LFW	benzene, chloroethene, dichlorodifluoromethane, 1,1-dichloroethane, 1,2-dichloroethane, dichloromethane, specific conductance, trichloroethylene, trichloro- fluoromethane, tritium
L-Area Burning/Rubble Pit	LRP	Aluminum, antimony, bis(2-ethylhexyl) phthalate, carbon tetrachloride, iron, lead
Miscellaneous Chemical Basin	MCB	pH, specific conductance, tetrachloroethylene, trichloroethylene

Site	Well Series	Analytes above Flag 2 Criteria
M-Area Hazardous Waste Management Facility (HWMF)	MSB	carbon tetrachloride, 1,1-dichloroethylene, dichloromethane, gross alpha, lead, pH, radium, total alpha-emitting, specific conductance, tetrachloroethylene, 1,1,2-trichloroethane, trichloroethylene
R-Area Reactor Seepage Basins	RPC	Gross alpha, nonvolatile beta, pH, strontium-90
Series E, R-Area Reactor Seepage Basins	s RSE	Nonvolatile beta, strontium-90
A/M-Area Recovery Well Network	RWM	Dichloromethane, specific conductance, tetrachloroethylene, trichloroethylene
Silverton Road Waste Site	SRW	Trichloroethylene
TNX Burying Ground	TBG	Carbon tetrachloride, gross alpha, mercury, nitrate as nitrogen, tetrachloroethylene, trichloroethylene
TNX-Area Assessment Wells	TNX	Carbon tetrachloride, mercury, nitrate as nitrogen, tetrachloroethylene, trichloroethylene
TNX-Area Recovery Wells	TRW	Carbon tetrachloride, mercury, trichloroethylene
Old TNX Seepage Basin	XSB	Mercury, nitrate as nitrogen, trichloroethylene
Z-Area Saltstone Facility Background Wells	ZBG	Gross alpha, nonvolatile beta, radium, total alphaemitting, radium-226, radium-228

Note: The groundwater samples are unfiltered. Therefore, the results for metals are for total recoverable metals. Analytes in bold were detected at levels above the current Flag 2 criteria for the first time since 1984.

NOTES

Introduction

This report summarizes the Groundwater Monitoring Program conducted by SRS during first quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

EPD/EMS is responsible for providing drilling, sampling, and analytical and data management support for the SRS Groundwater Monitoring Program at approximately 135 waste sites in 17 areas at SRS (see figures 1 and 2 at the end of this section). The majority of this monitoring is required by U.S. Department of Energy (DOE) orders and by federal and state regulations administered by the EPA and the South Carolina Department of Health and Environmental Control (SCDHEC). The Groundwater Monitoring Program includes the following activities:

- · installation, maintenance, and abandonment of monitoring wells
- environmental soil borings
- development of sampling and analytical schedules
- collection and analysis of groundwater samples
- review of analytical and other data
- maintenance of the databases containing groundwater monitoring data
- quality assurance (QA) evaluations of laboratory performance
- reports of results to waste-site facility custodians and the Environmental Protection Department

The custodian of each waste site is responsible for informing EPD/EMS of sampling and analytical requirements and special requests for the sampling schedule, assisting in review of the data, and making any decisions regarding groundwater monitoring at the waste site.

Each custodian receives a copy of this report. Each custodian also receives site-specific data on request, including the following:

- a computer printout of the analytical data for the current quarter and for the previous seven quarters, designed to assist in identifying trends
- a computer printout of analytical results at or above Flag 1 and Flag 2 criteria for the quarter, designed to assist in identifying elevated constituents

ORGANIZATION OF THIS REPORT

This report is divided into sections that focus on specific aspects of the SRS Groundwater Monitoring Program. The **Executive Summary** section presents a listing by waste site and well series of all analytes detected at or above Flag 2 criteria during the quarter. Analytes detected at or above Flag 2 criteria for the first time since 1984 are indicated in bold type.

The **Flagging Criteria** section lists flagging criteria for analytes and provides a short description of how the criteria were derived. The **Sample Scheduling** section discusses the preparation of the sampling schedule and the criteria for analyte selection.

Introduction
Page 5

During sample collection, samplers write comments in the field logbooks that may be pertinent to the analysis of samples. Many of the comments concern wells that went dry during sampling or water that appeared colored, turbid, or aerated. These comments are included in the **Field Notes** section.

Samples are analyzed by the EPD/EMS (EM Lab or EM) Radiological Laboratory at SRS and by one or more off-site laboratories. During first quarter 1998, EMAX Laboratories, Inc. (EX), of Torrance, CA; General Engineering Laboratories (GE), of Charleston, SC; QST Environmental Inc. (ES), formerly Environmental Science and Engineering, Inc., of Gainesville, FL; and Recra LabNet Philadelphia (WA), of Lionville, PA, were the primary off-site laboratories. Radionuclide analyses were conducted by Environmental Physics, Inc. (GP), a subcontractor for GE, and Thermo NUtech (TM), a subcontractor for WA. The EM Lab at SRS conducted total-activity analyses of samples for shipping clearance. The **Analytical Data Review** section contains three subsections. The **GIMS Data Review Module** subsection discusses automated data management activities at EPD/EMS. The **Review of the Analytical Data** subsection includes a discussion of discrepancies in each laboratory's analytical data, including results that were considerably higher or lower than previous results. This subsection also includes information about the analytical narratives that were used as reference materials throughout the data validation process. The **Analytical Methods** subsection lists the methods the laboratories used for measuring concentrations of each analyte.

The **Quality Control Samples** section contains five subsections and discusses the analytical data in terms of the following indicators of data quality: precision, accuracy, representativeness, comparability, and completeness. The **Precision** subsection explains the replicate analysis program, gives the statistical methods used for comparison, and lists the results of the comparisons between the replicate and duplicate analyses. The **Accuracy** subsection examines the relationship between an observed value and an accepted reference value and/or the measure of the over- or underestimation of reported concentrations. The **Representativeness** subsection describes how groundwater samples can be affected to produce results that may be biased positively or negatively. The **Comparability** subsection discusses whether the laboratories use the same standardized procedures for sample preparation and analysis, whether the reporting units are the same, and whether similar quantitation limits were obtained. The **Completeness** section evaluates the amount of useable data that resulted from the data collection.

The **Site Index** section lists and gives a description of the sites associated with each well series, as well as historical information for the sites. A list of terms, abbreviations, and acronyms used in this report can be found in the **Glossary** section. References cited are included in the **References** section.

The Water-Level Data section (Appendix A) includes concurrent water elevations obtained in A/M and other areas; these data are used by SRS personnel in hydrogeologic studies. The Analytical Results section (Appendix B) includes tables listing the analytical results from all laboratories and field data for all wells sampled during the quarter. The tables appear in alphabetical order by well name. The Sampling Blanks Results section (Appendix C) contains tables listing the analytical results of laboratory tests on sampling blanks.

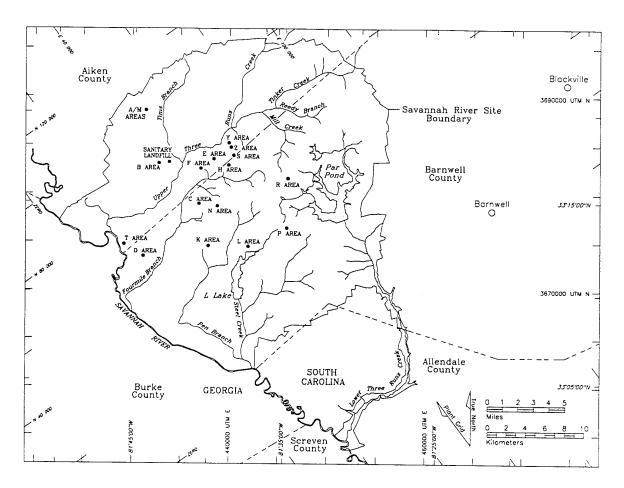


Figure 1. Areas and Locations Monitored for Groundwater Quality

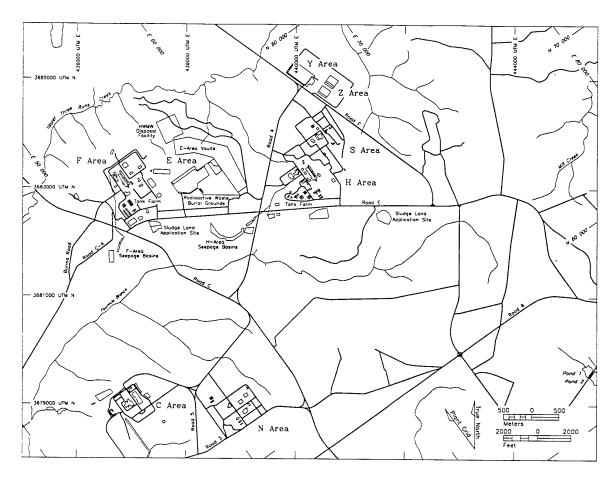


Figure 2. Separations and Waste Management Areas Monitored for Groundwater Quality

Flagging Criteria

Analytes in the data tables are assigned flagging levels (0, 1, or 2) depending on their concentrations in a ground-water sample. The flagging levels dictate the scheduling and frequency of groundwater sampling. Beginning first quarter 1992, flagging criteria were established for all of the constituents currently being analyzed as part of the EPD/EMS Groundwater Monitoring Program, except for certain aesthetic constituents, indicator parameters, major cations, and common laboratory contaminants and cleaners, which can be analyzed by special request. The flagging criteria in table 2 were determined as follows:

Flag 0: Analytical results below Flag 1 and constituents having no flagging criteria were classified as Flag 0.

Flag 1: The Flag 1 criterion for a constituent was set as one-half of the EPA final primary drinking water standard, the EPA proposed primary drinking water standard, or the EPA secondary drinking water standard for that constituent. If a constituent did not have an EPA drinking water standard, the Flag 1 criterion was set as five times a recently published 90th percentile detection limit obtained by one of the primary laboratories.

Flag 2: The Flag 2 criterion for a constituent was set as the EPA final primary drinking water standard, the EPA proposed primary drinking water standard, or the EPA secondary drinking water standard for that constituent. If a constituent did not have a drinking water standard, the Flag 2 criterion was set as 10 times a recently published 90th percentile detection limit obtained by one of the primary laboratories.

The following acronyms are used as abbreviated sources in the flagging criteria table. Complete information concerning documents cited can be found in the **References** section of this report.

APHA — American Public Health Association.

APHA Method — A specific analytical method for testing constituent levels in a sample as established by the APHA, American Water Works Association, and Water Pollution Control Federation. See American Public Health Association et al. in **References**.

EPA — U.S. Environmental Protection Agency.

EPA Method — A specific analytical method for testing constituent levels. Descriptions of these methods can be found in the EPA publications *Methods for Chemical Analysis of Water and Wastes* (1983) and *Test Methods for Evaluating Solid Waste* (1986b) and in the 1991 *Code of Federal Regulations*, Title 40, Part 136. See Environmental Protection Agency in **References**.

EPD/EMS — The Environmental Protection Department/Environmental Monitoring Section at the Savannah River Site.

PDWS — Primary Drinking Water Standards.

SCDHEC — South Carolina Department of Health and Environmental Control.

SDWS — Secondary Drinking Water Standards.

Table 2. Flagging Criteria

Analyte	Unit	Flag 1	Flag 2	Source†
Acenaphthene	μg/L	5.1	10.2	EPA Method 8270
Acenaphthylene	μg/L	5.1	10.2	EPA Method 8270
Acetone	μg/L	500	1,000	Set by EPD/EMS
Acetonitrile (Methyl cyanide)	μg/L	50	100	EPA Method 8240
Acetophenone	μg/L	85	170	EPA Method 8270
2-Acetylaminofluorene	μg/L	81	162	EPA Method 8270
Acrolein	μg/L	166.5	333	EPA Method 8240
Acrylonitrile	μg/L	250	500	EPA Method 8240
Actinium-228	μČi/mL	1.64E-06	3.27E-06	Proposed PDWS (EPA, 1991c)
Alachlor	μg/L	1.0	2.0	Final PDWS (EPA, 1996a)
Aldicarb	μg/L	1.5	3.0	Final PDWS (EPA, 1996a)
Aldicarb sulfone	μg/L	1.0	2.0	Final PDWS (EPA, 1996a)
Aldicarb sulfoxide	μg/L	2.0	4.0	Final PDWS (EPA, 1996a)
Aldrin	μg/L	0.4	0.8	EPA Method 8080
Alkalinity (as CaCO ₃)		No flag	No flag	Set by EPD/EMS
Allyl chloride	μg/L	416.5	833	EPA Method 8240
Aluminum	μg/L	25	50	SDWS (EPA, 1996b)
Aluminum, dissolved	μg/L	25	50	SDWS (EPA, 1996b)
Aluminum, total recoverable	μg/L	25	50	SDWS (EPA, 1996b)
Americium-241	μCi/mL	3.17E-09	6.34E-09	Proposed PDWS (EPA, 1991c)
Americium-243	μCi/mL	3.19E-09	6.37E-09	Proposed PDWS (EPA, 1991c)
4-Aminobiphenyl	μg/L	81	162	EPA Method 8270
Ammonia	μg/L	250	500	APHA Method 417B
Ammonia nitrogen	μg/L	500	1,000	EPA Method 350.1
Aniline	μg/L	81	162	EPA Method 8270
Anthracene	μg/L	5.1	10.2	EPA Method 8270
Antimony	μg/L	3.0	6.0	Final PDWS (EPA, 1996a)
Antimony, dissolved	μg/L	3.0	6.0	Final PDWS (EPA, 1996a)
Antimony, total recoverable	μg/L	3.0	6.0	Final PDWS (EPA, 1996a)
Antimony-124 Antimony-125	μCi/mL	3.0E-08	6.0E-08	Interim Final PDWS (EPA, 1977)
Aramite	μCi/mL	1.5E-07	3.0E-07	Interim Final PDWS (EPA, 1977)
Arsenic	μg/L	81 25	162	EPA Method 8270
Arsenic, dissolved	μg/L μg/L	25 25	50 50	Final PDWS (EPA, 1996a)
Arsenic, total recoverable	μg/L	25	50	Final PDWS (EPA, 1996a)
Asbestos	Fibers/L	3,500,000	7,000,000	Final PDWS (EPA, 1996a)
Atrazine	μg/L	1.5	3.0	Final PDWS (EPA, 1996a) Final PDWS (EPA, 1996a)
Azobenzene	μg/L	50	100	EPA Method 625
Barium	μg/L	1,000	2,000	Final PDWS (EPA, 1996a)
Barium, dissolved	μg/L	1,000	2,000	Final PDWS (EPA, 1996a)
Barium, total recoverable	μg/L	1,000	2,000	Final PDWS (EPA, 1996a)
Barium-133	μCi/mL	7.60E-07	1.52E-06	Proposed PDWS (EPA, 1991c)
Barium-140■	μCi/mL	4.5E-08	9.0E-08	Interim Final PDWS (EPA, 1977)
Benzene	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
alpha-Benzene hexachloride	μg/L	0.15	0.3	EPA Method 8080
beta-Benzene hexachloride	μg/L	0.25	0.5	EPA Method 8080
delta-Benzene hexachloride	μg/L	0.25	0.5	EPA Method 8080
Benzidine	μg/L	83.5	167	EPA Method 8270
Benzo[<i>a</i>]anthracene	μg/L	0.05	0.1	Proposed PDWS (EPA, 1990)
Benzo[<i>b</i>]fluoranthene	μg/L	0.1	0.2	Proposed PDWS (EPA, 1990)
Benzo[<i>k</i>]fluoranthene	μg/L	0.1	0.2	Proposed PDWS (EPA, 1990)
Benzoic acid	μg/L	5.0	10	EPA Method 8270
Benzo[<i>g,h,i</i>]perylene	μg/L	5.1	10.2	EPA Method 8270
Benzo[a]pyrene	μg/L	0.1	0.2	Final PDWS (EPA, 1996a)
1,4-Benzoquinone	μg/L	50	100	EPA Method 8270
Benzyl alcohol	μg/L	5.0	10	EPA Method 8270
Beryllium	μg/L	2.0	4.0	Final PDWS (EPA, 1996a)
Derymum				
Beryllium, dissolved Beryllium, total recoverable	μg/L	2.0	4.0	Final PDWS (EPA, 1996a)

Analyte	Unit	Flag 1	Flag 2	Sourcet
Beryllium-7	μCi/mL	3.0E-06	6.0E-06	Interim Final PDWS (EPA, 1977)
5-day Biochemical oxygen demand		No flag	No flag	Set by EPD/EMS
Bis(2-chloroethoxy) methane	μg/L	5.1	10.2	EPA Method 8270
Bis(2-chloroethyl) ether	μg/L	5.1	10.2	EPA Method 8270
Bis(2-chloroisopropyl) ether	μg/L	100	200	
Bis(chloromethyl) ether	μg/L	50	100	EPA Method 8270
Bis(2-ethylhexyl) phthalate	μg/L	3.0		EPA Method 8270
Bismuth-214	μg/L μCi/mL	9.4E-06	6.0	Final PDWS (EPA, 1996a)
Boron			1.89E-05	Proposed PDWS (EPA, 1991c)
Boron, dissolved	μg/L	2,500	5,000	EPA Method 6010
Boron, total recoverable	μg/L	2,500	5,000	EPA Method 6010
Bromide	μg/L	2,500	5,000	EPA Method 6010
Bromobenzene	μg/L	5,000	10,000	EPA Method 300.0
	μg/L	25	50	EPA Method 8260
Bromochloromethane	μg/L	5	10	EPA Method 8260
Bromodichloromethane	μg/L	50	100	Final PDWS (EPA, 1996a)
Bromoform	μg/L	50	100	Final PDWS (EPA, 1996a)
Bromomethane	μg/L	10	20	EPA Method 8240
4-Bromophenyl phenyl ether	μg/L	5.1	10.2	EPA Method 8270
2-sec-Butyl-4,6-dinitrophenol	μg/L	3.5	7.0	Final PDWS (EPA, 1996a)
n-Butylbenzene	μg/L	5	10	EPA Method 8260
sec-Butylbenzene	μg/L	5	10	EPA Method 8260
tert-Butylbenzene	μg/L	5	10	EPA Method 8260
Butylbenzyl phthalate	. •	No flag	No flag	Set by EPD/EMS
Cadmium	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
Cadmium, dissolved	µg/L	2.5	5.0	Final PDWS (EPA, 1996a)
Cadmium, total recoverable	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
Calcium	F3-	No flag	No flag	Set by EPD/EMS
Calcium, dissolved		No flag	No flag	
Calcium, total recoverable		No flag	No flag	Set by EPD/EMS
Carbofuran	μg/L	20	40	Set by EPD/EMS
Carbon disulfide	μg/L	25	50	Final PDWS (EPA, 1996a)
Carbon tetrachloride	μg/L	2.5	5.0	EPA Method 8240
Carbon-14	μGi/mL	2.5 1.0E-06		Final PDWS (EPA, 1996a)
Carbonate	POMIL		2.0E-06	Interim Final PDWS (EPA, 1977)
Cerium-141	uCi/ml	No flag	No flag	Set by EPD/EMS
Cerium-144	μCi/mL	1.5E-07	3.0E-07	Interim Final PDWS (EPA, 1977)
Cesium-134.	μCi/mL	1.31E-07	2.61E-07	Proposed PDWS (EPA, 1991c)
Cesium-137	μCi/mL	4.07E-08	8.13E-08	Proposed PDWS (EPA, 1991c)
Chemical Oxygen Demand	μCi/mL	1.0E-07	2.0E-07	Interim Final PDWS (EPA, 1977)
Chlordane		No flag	No flag	Set by EPD/EMS
	μg/L	1.0	2.0	Final PDWS (EPA, 1996a)
alpha-Chlordane	μg/L	0.25	0.5	EPA Method 8080
gamma-Chlordane	μg/L	0.25	0.5	EPA Method 8080
Chloride	μg/L	125,000	250,000	SDWS (EPA, 1996b)
4-Chloroaniline	μg/L	5.0	10	EPA Method 8270
Chlorobenzene	μg/L	50	100	Final PDWS (EPA, 1996a)
Chlorobenzilate	μg/L	81	162	EPA Method 8270
Chloroethane	μg/L	10	20	EPA Method 8240
Chloroethene (Vinyl chloride)	μg/L	1.0	2.0	Final PDWS (EPA, 1996a)
Chloroethyl vinyl ether	μg/L	5.0	10	EPA Method 8240
2-Chloroethyl vinyl ether	μg/L	50	100	EPA Method 8240
Chloroform	μg/L	50	100	Final PDWS (EPA, 1996a)
4-Chloro-m-cresol	μg/L	5.1	10.2	EPA Method 8270
Chloromethane	μg/L	10	20	EPA Method 8240
2-Chloronaphthalene	μg/L	5.1	10.2	EPA Method 8240
2-Chlorophenol	μg/L	5.1	10.2	
4-Chlorophenyl phenyl ether	μg/L	5.1	10.2	EPA Method 8270
Chloroprene	μg/L	1,665		EPA Method 8270
2-Chlorotoluene		•	3,330	EPA Method 8240
4-Chlorotoluene	μg/L	25 5	50	EPA Method 8260
	μg/L	5	10	EPA Method 8260
	μg/L	50	100	Final PDWS (EPA, 1996a)
Chromium Chromium dissolved				111011 DWS (LFA, 1990a)
Chromium Chromium, dissolved Chromium, total recoverable	μg/L μg/L	50 50	100 100	Final PDWS (EPA, 1996a) Final PDWS (EPA, 1996a)

Analyte	Unit	Flag 1	Flag 2	Source†
Chromium-51■	μCi/mL	3.0E-06	6.0E-06	Interim Final PDWS (EPA, 1977)
Chrysene	μg/L	0.1	0.2	Proposed PDWS (EPA, 1990)
Cobalt	μg/L	50	100	EPA Method 6010
Cobalt, dissolved	μg/L	50	100	EPA Method 6010
Cobalt, total recoverable	μg/L	50	100	EPA Method 6010
Cobalt-57	μČi/mL	5.0E-07	1.0E-06	Interim Final PDWS (EPA, 1977)
Cobalt-58	μCi/mL	4.5E-06	9.0E-06	Interim Final PDWS (EPA, 1977)
Cobalt-60	μCi/mL	5.0E-08	1.0E-07	Interim Final PDWS (EPA, 1977)
Color		No flag	No flag	Set by EPD/EMS
Copper	μg/L	500	1,000	Final PDWS (SCDHEC, 1981)
Copper, dissolved	μg/L	500	1,000	Final PDWS (SCDHEC, 1981)
Copper, total recoverable	μg/L	500	1,000	Final PDWS (SCDHEC, 1981)
Corrosivity		No flag	No flag	Set by EPD/ÈMS
m-Cresol (3-Methylphenol)	μg/L	50	100	EPA Method 8270
o-Cresol (2-Methylphenol)	μg/L	5.0	10	EPA Method 8270
p-Cresol (4-Methylphenol)	μg/L	60	120	EPA Method 8270
Curium-242	μCi/mL	6.65E-08	1.33E-07	Proposed PDWS (EPA, 1991c)
Curium-243	μCi/mL	4.15E-09	8.30E-09	Proposed PDWS (EPA, 1991c)
Curium-243/244 ©	μCi/mL	4.15E-09	8.30E-09	Proposed PDWS (EPA, 1991c)
Curium-244	μCi/mL	4.92E-09	9.84E-09	Proposed PDWS (EPA, 1991c)
Curium-245/246©	μCi/mL	3.12E-09	6.23E-09	Proposed PDWS (EPA, 1991c)
Curium-246	μCi/mL	3.14E-09	6.27E-09	Proposed PDWS (EPA, 1991c)
Cyanide	μg/L	100	200	Final PDWS (EPA, 1996a)
Dalapon	μg/L	100	200	Final PDWS (EPA, 1996a)
p,p'-DDD p,p'-DDE	μg/L	0.55	1.1	EPA Method 8080
p,p'-DDE p,p'-DDT	μg/L	0.25	0.5	EPA Method 8080
Diallate	μg/L	0.85	1.7	EPA Method 8080
Dibenz[<i>a,h</i>]anthracene	μg/L	81	162	EPA Method 8270
Dibenzofuran	µg/L	0.15	0.3	Proposed PDWS (EPA, 1990)
Dibromochloromethane	μg/L	5.0	10	EPA Method 8270
1,2-Dibromo-3-chloropropane	μg/L	50	100	Final PDWS (EPA, 1996a)
1,2-Dibromoethane	μg/L	0.1	0.2	Final PDWS (EPA, 1996a)
Dibromomethane	μg/L μg/L	0.025 10	0.05 20	Final PDWS (EPA, 1996a)
Di-n-butyl phthalate	μg/L	No flag	No flag	EPA Method 8240
1,2-Dichlorobenzene	μg/L	300	600	Set by EPD/EMS
1,3-Dichlorobenzene	μg/L	81	162	Final PDWS (EPA, 1996a) EPA Method 8270
1,4-Dichlorobenzene	μg/L	37.5	75	Final PDWS (EPA, 1996a)
3,3'-Dichlorobenzidine	μg/L	5.1	10.2	EPA Method 8270
trans-1,4-Dichloro-2-butene	μg/L	250	500	EPA Method 8240
Dichlorodifluoromethane	μg/L	10	20	EPA Method 8240
1,1-Dichloroethane	μg/L	10	20	EPA Method 8240
1,2-Dichloroethane	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
cis-1,2-Dichloroethylene	μg/L	35	70	Final PDWS (EPA, 1996a)
1,1-Dichloroethylene	μg/L	3.5	7.0	Final PDWS (EPA, 1996a)
1,2-Dichloroethylene	μg/L	25	50	EPA Method 8240
trans-1,2-Dichloroethylene	μg/L	50	100	Final PDWS (EPA, 1996a)
Dichloromethane	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
2,4-Dichlorophenol	μg/L	5.1	10.2	EPA Method 8270
2,6-Dichlorophenol	μg/L	83.5	167	EPA Method 8270
2,4-Dichlorophenoxyacetic acid	μg/L	35	70	Final PDWS (EPA, 1996a)
1,2-Dichloropropane	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
2,2-Dichloropropane	μg/L	5	10	EPA Method 8260
cis-1,3-Dichloropropene	μg/L	10	20	EPA Method 8240
trans-1,3-Dichloropropene	μg/L	10	20	EPA Method 8240
Dieldrin	μg/L	4.15	8.3	EPA Method 8080
Di(2-ethylhexyl) adipate	μg/L	200	400	Final PDWS (EPA, 1996a)
Diethyl phthalate		No flag	No flag	Set by EPD/EMS
Dimethoate	μg/L	81	162	EPA Method 8270
2,4-Dimethyl phenol	μg/L	5.1	10.2	EPA Method 8270
Dimethyl phthalate		No flag	No flag	Set by EPD/EMS
p-Dimethylaminoazobenzene	μg/L			00(0) = 0/=110

Analyte	Unit	Flag 1	Flag 2	Sourcet
p-(Dimethylamino)ethylbenzene	μg/L	50	100	EDA M-M 1.0070
7,12-Dimethylbenz[a]anthracene	μg/L	81	162	EPA Method 8270
3,3'-Dimethylbenzidine	μg/L	81	162	EPA Method 8270
a,a-Dimethylphenethylamine	μg/L	81	162	EPA Method 8270
1,3-Dinitrobenzene	μg/L	81	162	EPA Method 8270
2,4-Dinitrophenol	μg/L	51	102	EPA Method 8270
2,4-Dinitrotoluene	μg/L	0.5	1.0	EPA Method 8270
2,6-Dinitrotoluene	μg/L	0.5	1.0	EPA Method 8270
Di-n-octyl phthalate	P9'-	No flag	No flag	EPA Method 8270
1,4-Dioxane	μg/L	500	1000	Set by EPD/EMS
Diphenylamine	μg/L	81	162	EPA Method 8270
1,2-Diphenylhydrazine	μg/L	83.5	167	EPA Method 8270
Diquat dibromide	μg/L	10	20	EPA Method 8270
Dissolved organic carbon	μg/L	10,500,000		Final PDWS (EPA, 1996a)
Disulfoton	μg/L	81	21,000,000	EPA Method 9060
Endosulfan I	μg/L	0.25	162	EPA Method 8270
Endosulfan II	μg/L μg/L	0.55	0.5	EPA Method 8080
Endosulfan sulfate		0.55	1.1	EPA Method 8080
Endothall	μg/L μg/L	50	1.1	EPA Method 8080
Endrin	μg/L μg/L	1.0	100	Final PDWS (EPA, 1996a)
Endrin aldehyde			2.0	Final PDWS (EPA, 1996a)
Endrin ketone	μg/L	0.85	1.7	EPA Method 8080
Ethyl ether	ua/I	No flag	No flag	Set by EPD/EMS
Ethyl methacrylate	μg/L	50 2.5	100	EPA Method 8260
Ethyl methanesulfonate	μg/L	2.5	5.0	EPA Method 8270
Ethylbenzene	μg/L	81	162	EPA Method 8270
Europium-152	μg/L μCi/mL	350	700	Final PDWS (EPA, 1996a)
Europium-154	μCi/mL	3.0E-08	6.0E-08	Interim Final PDWS (EPA, 1977)
Europium-155	μCi/mL	1.0E-07	2.0E-07	Interim Final PDWS (EPA, 1977)
Famphur		3.0E-07	6.0E-07	Interim Final PDWS (EPA, 1977)
Fluoranthene	μg/L	81	162	EPA Method 8270
Fluorene	μg/L	5.1	10.2	EPA Method 8270
Fluoride	μg/L	5.1	10.2	EPA Method 8270
Glyphosate	μg/L	2,000	4,000	Final PDWS (EPA, 1996a)
Gross alpha	μg/L	350	700	Final PDWS (EPA, 1996a)
Heptachlor	μCi/mL	7.5E-09	1.5E-08	Final PDWS (EPA, 1996a)
Heptachlor epoxide	μg/L	0.2	0.4	Final PDWS (EPA, 1996a)
Heptachlorodibenzo-p-dioxins	μg/L	0.1	0.2	Final PDWS (EPA, 1996a)
1,2,3,4,6,7,8-HPCDD	μg/L	0.007	0.014	EPA Method 8280
Heptachlorodibenzo-p-furans	μg/L	0.007	0.014	EPA Method 8280
1,2,3,4,6,7,8-HPCDF	μg/L	0.008	0.016	EPA Method 8280
Hexachlorobenzene	μg/L	0.008	0.016	EPA Method 8280
Hexachlorobutadiene	μg/L	0.5	1.0	Final PDWS (EPA, 1996a)
Hexachlorocyclopentadiene	μg/L	5.0	10	EPA Method 8270
Hexachlorodibenzo-p-dioxins	μg/L	25	50	Final PDWS (EPA, 1996a)
1,2,3,4,7,8-HXCDD	μg/L	0.008	0.016	EPA Method 8280
	µg/L	0.0105	0.021	EPA Method 8280
Hexachlorodibenzo-p-furans 1,2,3,4,7,8-HXCDF	μg/L	0.006	0.012	EPA Method 8280
	μg/L	0.0085	0.017	EPA Method 8280
Hexachloroethane	μg/L	0.5	1.0	EPA Method 8270
Hexachlorophene	μg/L	83.5	167	EPA Method 8270
Hexachloropropene	μg/L	81	162	EPA Method 8270
2-Hexanone	μg/L	50	100	EPA Method 8240
ndeno[1,2,3- <i>c,d</i>]pyrene	μg/L	0.5	1.0	EPA Method 8270
odine	μg/L	250	500	APHA Method 415A
odine-129	μCi/mL	5.0E-10	1.0E-09	Interim Final PDWS (EPA, 1977)
odine-131■	μCi/mL	1.5E-09	3.0E-09	Interim Final PDWS (EPA, 1977)
odomethane (Methyl iodide)	μg/L	125	250	EPA Method 8240
ron	μg/L	150	300	SDWS (EPA, 1996b)
ron, dissolved	μg/L	150	300	SDWS (EPA, 1996b)
ion, dissolved				(LI A, 1330D)
ron, total recoverable	μg/L	150	300	SDWS (FPA 1996h)
	μg/L μCi/mL	150 1.0E-06	300 2.0E-06	SDWS (EPA, 1996b) Interim Final PDWS (EPA, 1977)

Analyte	Unit	Flag 1	Flag 2	Source†
Isobutyl alcohol	μg/L	834.5	1,669	EPA Method 8240
Isodrin	μg/L	81	162	EPA Method 8270
Isophorone	μg/L	5.1	10.2	EPA Method 8270
Isopropylbenzene	μg/L	5	10.2	EPA Method 8260
p-Isopropylbenzene	μg/L	5	10	EPA Method 8260
Isosafrole	μg/L	81	162	EPA Method 8270
Kepone	μg/L	81	162	EPA Method 8270
Lanthanum-140■	μCi/mL	3.0E-08	6.0E-08	
Lead	μg/L	25	50	Interim Final PDWS (EPA, 1977 Final PDWS (SCDHEC, 1981)
Lead, dissolved	μg/L	25	50	Final PDWS (SCDHEC, 1981)
Lead, total recoverable	μg/L	25	50	Final PDWS (SCDHEC, 1981)
Lead-212	μCi/mL	6.20E-08	1.23E-07	Proposed PDWS (EPA, 1991c)
Lindane	μg/L	0.1	0.2	Final PDWS (EPA, 1991c)
Lithium	μg/L	125	250	
Lithium, dissolved	μg/L	125	250 250	EPA Method 6010
Lithium, total recoverable	μg/L	125	250	EPA Method 6010
Magnesium	μg/ L	No flag		EPA Method 6010
Magnesium, dissolved		No flag	No flag	Set by EPD/EMS
Magnesium, total recoverable		No flag	No flag	Set by EPD/EMS
Manganese	μg/L	25	No flag	Set by EPD/EMS
Manganese, dissolved	μg/L	25 25	50 50	SDWS (EPA, 1996b)
Manganese, total recoverable	μg/L μg/L	25 25	50 50	SDWS (EPA, 1996b)
Manganese-54	μ G i/mL	1.5E-07	50 3.05.07	SDWS (EPA, 1996b)
Mercury	μα/L		3.0E-07	Interim Final PDWS (EPA, 1977
Mercury, dissolved	μg/L	1.0 1.0	2.0	Final PDWS (EPA, 1996a)
Mercury, total recoverable	μg/L μg/L	1.0	2.0 2.0	Final PDWS (EPA, 1996a)
Methacrylonitrile	μg/L	416.5	833	Final PDWS (EPA, 1996a)
Methapyrilene	μg/L	81	162	EPA Method 8240
Methoxychlor	μg/L	20	40	EPA Method 8270
Methyl ethyl ketone	μg/ L	No flag		Final PDWS (EPA, 1996a)
Methyl isobutyl ketone		No flag	No flag	Set by EPD/EMS
Methyl methacrylate	μg/L	50	No flag 100	Set by EPD/EMS
Methyl methanesulfonate	μg/L	81	162	EPA Method 8270
Methyl tert-butyl ether	μg/L	5.0	102	EPA Method 8270
3-Methylcholanthrene	μg/L	81		EPA Method 8260
2-Methyl-4,6-dinitrophenol	μg/L	51	162	EPA Method 8270
2-Methylnaphthalene	μg/L	5.0	102	EPA Method 8270
Molybdenum	μg/L	250	10	EPA Method 8270
Molybdenum, dissolved	μg/L	250	500	EPA Method 6010
Molybdenum, total recoverable		250	500	EPA Method 6010
Naphthalene	μg/L		500 167	EPA Method 6010
1,4-Naphthoquinone	μg/L	83.5	167	EPA Method 8270
1-Naphthylamine	μg/L	81	162	EPA Method 8270
2-Naphthylamine	μg/L	81	162	EPA Method 8270
Neptunium-237	μg/L μCi/ml	81 3 535 00	162	EPA Method 8270
Neptunium-239	μCi/mL μCi/mL	3.53E-09	7.06E-09	Proposed PDWS (EPA, 1991c)
Nickel		8.40E-07	1.68E-06	Proposed PDWS (EPA, 1991c)
Nickel, dissolved	μg/L	50 50	100	Final PDWS (EPA, 1996a)
Nickel, total recoverable	μg/L	50	100	Final PDWS (EPA, 1996a)
Nickel-59	µg/L	50	100	Final PDWS (EPA, 1996a)
Nickel-63	μCi/mL	1.5E-07	3.0E-07	Interim Final PDWS (EPA, 1977
	μCi/mL	2.5E-08	5.0E-08	Interim Final PDWS (EPA, 1977
Niobium-95 Nitrata as nitragen	μCi/mL	1.5E-07	3.0E-07	Interim Final PDWS (EPA, 1977
Nitrate as nitrogen	μg/L	5,000	10,000	Final PDWS (EPA, 1996a)
Nitrate-nitrite as nitrogen	μg/L	5,000	10,000	Final PDWS (EPA, 1996a)
Nitrite as nitrogen	μg/L	500	1,000	Final PDWS (EPA, 1996a)
m-Nitroaniline	μg/L	5.0	10	EPA Method 8270
o-Nitroaniline	μg/L	5.0	10	EPA Method 8270
p-Nitroaniline	µg/L	5.0	10	EPA Method 8270
Nitrobenzene	μg/L	5.1	10.2	EPA Method 8270
Nitrogen by Kjeldahl method	μg/L	500	1,000	EPA Method 351.2
2-Nitrophenol	μg/L	5.1	10.2	EPA Method 8270
4-Nitrophenol	μg/L	5.1	10.2	

Analyte	Unit	Flag 1	Flag 2	Sourcet
4-Nitroquinoline-1-oxide	μg/L	81	162	EDA Mothad 9070
N-Nitrosodi-n-butylamine	μg/L	81	162	EPA Method 8270
N-Nitrosodiethylamine	μg/L	81	162	EPA Method 8270
N-Nitrosodimethylamine				EPA Method 8270
N-Nitrosodiphenylamine	μg/L	83.5	167	EPA Method 8270
N-Nitrosodipropylamine	μg/L	5.1	10.2	EPA Method 8270
N Nitrocomothylathylamia	μg/L	5.1	10.2	EPA Method 8270
N-Nitrosomethylethylamine	μg/L	81	162	EPA Method 8270
N-Nitrosomorpholine	μg/L	81	162	EPA Method 8270
N-Nitrosopiperidine	μg/L	81	162	EPA Method 8270
N-Nitrosopyrrolidine	μg/L	81	162	EPA Method 8270
5-Nitro-o-toluidine	μg/L	81	162	EPA Method 8270
Nonvolatile beta	μCi/mL	2.5E-08	5.0E-08	Interim Final PDWS (EPA, 1977)
Octachlorodibenzo-p-dioxins	μg/L	0.0085	0.017	EPA Method 8280
Octachlorodibenzo-p-furans	μg/L	0.0065	0.013	EPA Method 8280
Odor .	F-3	No flag	No flag	
Oil & grease	μg/L	8,350	•	Set by EPD/EMS
Oxamyl	μg/L		16,700	EPA Method 413.1
Parathion		100	200	Final PDWS (EPA, 1996a)
Parathion methyl	μg/L	0.4	0.8	EPA Method 8080
	μg/L	0.4	0.8	EPA Method 8080
PCB 1016	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
PCB 1221	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
PCB 1232	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
PCB 1242	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
PCB 1248	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
PCB 1254	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
PCB 1260	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
PCB 1262	μg/L	0.25	0.5	Final PDWS (EPA, 1996a)
Pentachlorobenzene	μg/L	81	162	EPA Method 8270
Pentachlorodibenzo-p-dioxins	μg/L	0.008	0.016	
1,2,3,7,8-PCDD	μg/L	0.0075		EPA Method 8280
Pentachlorodibenzo-p-furans			0.015	EPA Method 8280
1,2,3,7,8-PCDF	μg/L	0.0085	0.017	EPA Method 8280
Pentachloroethane	μg/L	0.0085	0.017	EPA Method 8280
Pentachloronitrobenzene	μg/L	81	162	EPA Method 8270
	μg/L	81	162	EPA Method 8270
Pentachlorophenol	μg/L	0.5	1.0	Final PDWS (EPA, 1996a)
pH 	рН	8.0	10	Set by EPD/EMS
pH	pН	4.0	3.0	Set by EPD/EMS
Phenacetin	μg/L	81	162	EPA Method 8270
Phenanthrene	μg/L	5.1	10.2	EPA Method 8270
Phenol	μg/L	83.5	167	EPA Method 8270
Phenols	μg/L	50	100	EPA Method 420.1
p-Phenylenediamine	μg/L	81	162	EPA Method 8270
Phorate	μg/L	0.85	1.7	EPA Method 8080
Picloram	μg/L	250	500	Final PDWS (EPA, 1996a)
2-Picoline	μg/L	81	162	
Plutonium-238	μCi/mL	3.51E-09		EPA Method 8270
Plutonium-239	μCi/mL		7.02E-09	Proposed PDWS (EPA, 1991c)
Plutonium-239/240©	•	3.11E-08	6.21E-08	Proposed PDWS (EPA, 1991c)
	μCi/mL	3.11E-08	6.21E-08	Proposed PDWS (EPA, 1991c)
Plutonium-240	μCi/mL	3.11E-08	6.22E-08	Proposed PDWS (EPA, 1991c)
Plutonium-241	μCi/mL	3.13E-08	6.26E-08	Proposed PDWS (EPA, 1991c)
Plutonium-242 Plutonium-242	μCi/mL	3.27E-08	6.54E-08	Proposed PDWS (EPA, 1991c)
Potassium		No flag	No flag	Set by EPD/EMS
Potassium, dissolved		No flag	No flag	Set by EPD/EMS
otassium, total recoverable		No flag	No flag	Set by EPD/EMS
Potassium-40	μCi/mL	1.5E-07	3.0E-07	Proposed PDWS (EPA, 1986a)
Promethium-144	μCi/mL	5.0E-08	1.0E-07	EPA Method 001 1
Promethium-146	μCi/mL	5.0E-08		EPA Method 901.1
Promethium-147	μCi/mL		1.0E-07	EPA Method 901.1
Pronamid		2.62E-06	5.24E-06	Proposed PDWS (EPA, 1991c)
	μg/L	81	162	EPA Method 8270
Propionitrile	μg/L	1,665	3,330	EPA Method 8240
n-Propylbenzene	μg/L	5	10	EPA Method 8260
Pyrene	μg/L	5.1	10.2	EPA Method 8270

110/1			
μg/L	81	162	EPA Method 8270
μČi/mL	2.5E-09	5.0E-09	Interim Final PDWS (EPA, 1977)
μCi/mL	2.5E-09	5.0E-09	Interim Final PDWS (EPA, 1977)
•			Interim Final PDWS (EPA, 1977)
μCi/mL			Proposed PDWS (EPA, 1991c)
μCi/mL			Interim Final PDWS (EPA, 1977)
μCi/mL			Interim Final PDWS (EPA, 1977)
	81		EPA Method 8270
	25		Final PDWS (EPA, 1996a)
	25		Final PDWS (EPA, 1996a)
	25		Final PDWS (EPA, 1996a)
	No flag		Set by EPD/EMS
	No flag		Set by EPD/EMS
		•	Set by EPD/EMS
μg/L	50	100	SDWS (EPA, 1996b)
μg/L	50	100	SDWS (EPA, 1996b)
μg/L	50	100	SDWS (EPA, 1996b)
μg/L	2.0	4.0	Final PDWS (EPA, 1996a)
	No flag	No flag	Set by EPD/EMS
	No flag		Set by EPD/EMS
	No flag	No flag	Set by EPD/EMS
	2.33E-07	4.66E-07	Proposed PDWS (EPA, 1991c)
•	250	500	Set by EPD/EMS
μCi/mL	1.0E-08	2.0E-08	Interim Final PDWS (EPA, 1977)
•	4.0E-09	8.0E-09	Final PDWS (EPA, 1996a)
•	4.0E-09	8.0E-09	Final PDWS (EPA, 1996a)
		100	Final PDWS (EPA, 1996a)
		•	Proposed PDWS (EPA, 1990)
			EPA Method 9030
μg/L			EPA Method 8270
		•	Set by EPD/EMS
, •			Final PDWS (EPA, 1996a)
			EPA Method 8280
•			Interim Final PDWS (EPA, 1977)
			EPA Method 8270
			EPA Method 8280
			EPA Method 8280
			EPA Method 8240
, -			EPA Method 8240
			Final PDWS (EPA, 1996a)
			EPA Method 8270
			Final PDWS (EPA, 1996a)
μg/L			Final PDWS (EPA, 1996a)
110/l			Final PDWS (EPA, 1996a) EPA Method 8270
			Proposed PDWS (EPA, 1991c)
			Proposed PDWS (EPA, 1991c) Proposed PDWS (EPA, 1991c)
•			Proposed PDWS (EPA, 1991c)
•			EPA Method 282.2
			EPA Method 282.2
			EPA Method 282.2
•			Interim Final PDWS (EPA, 1977) Final PDWS (EPA, 1996a)
			EPA Method 8270
			EPA Method 9060
: -	•		
			Final PDWS (EPA, 1996a) Set by EPD/EMS
ua/l	ų.	•	EPA Method 418.1
·			EPA Method 418.1
	•		EPA Method 9060 EPA Method 9060
· - .			EPA Method 9000 EPA Method 9020
	μCi/mL μCi/mL μCi/mL μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/	PCi/mL	PCi/mL 2.5E-09 5.0E-09 PCi/mL 1.5E-07 3.0E-07 PCi/mL 1.5E-08 3.0E-08 PGI/mL 2.5 50 PGI/mL 2.5 50 PGI/mL 2.5 50 PGI/mL 2.5 50 PGI/mL 2.0 4.0 PGI/mL 2.0 PGI/mL 2.33E-07 4.66E-07 PGI/mL 4.0E-09 PGI/mL 4.0E-07 PGI/mL 4.0E-08 PGI/mL 4.0E-09 PG

Analyte	Unit	Flag 1	Flag 2	Source†
Total organic nitrogen	μg/L	500	1 000	A DULA AA UL. 1 400
Total petroleum hydrocarbons	μg/L μg/L	8,350	1,000	APHA Method 420
Total phosphates (as P)	μg/L	No flag	16,700	EPA Method 418.1
Total phosphorus		No flag	No flag	Set by EPD/EMS
Toxaphene	µg/L	1.5	No flag	Set by EPD/EMS
2,4,5-TP (Silvex)	μg/L	25	3.0	Final PDWS (EPA, 1996a)
Tributyl phosphate			50	Final PDWS (EPA, 1996a)
1,2,3-Trichlorobenzene	μg/L	86	172	EPA Method 8270
1,2,4-Trichlorobenzene	μg/L	5	10	EPA Method 8260
1,1,1-Trichloroethane	μg/L	35	70	Final PDWS (EPA, 1996a)
	μg/L	100	200	Final PDWS (EPA, 1996a)
1,1,2-Trichloroethane	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
Trichloroethylene	μg/L	2.5	5.0	Final PDWS (EPA, 1996a)
Trichlorofluoromethane	μg/L	10	20	EPA Method 8240
2,4,5-Trichlorophenol	μg/L	5.0	10	EPA Method 8270
2,4,6-Trichlorophenol	μg/L	0.5	1.0	EPA Method 8270
2,4,5-Trichlorophenoxyacetic acid	μg/L	0.25	0.5	EPA Method 8150
1,2,3-Trichloropropane	μg/L	10	20	EPA Method 8240
Trichlorotrifluoroethane	μg/L	50	100	EPA Method 8260
O,O,O-Triethyl phosphorothioate	μg/L	81	162	EPA Method 8270
1,2,4-Trimethylbenzene	μg/L	5	10	EPA Method 8260
1,3,5- Trimethylbenzene	μg/L	5	10	EPA Method 8260
1,3,5-Trinitrobenzene	μg/L	81	162	EPA Method 8270
Tritium	μCi/mL	1.0E-05	2.0E-05	Final PDWS (EPA, 1996a)
Turbidity♦	·	No flag	No flag	Set by EPD/EMS
Uranium	μg/L	10	20	Proposed PDWS (EPA, 1991c)
Uranium alpha activity	μCi/mL	1.5E-08	3.0E-08	Proposed PDWS (EPA, 1991c)
Uranium, dissolved	μg/L	10	20	Proposed PDWS (EPA, 1991c)
Uranium, total recoverable	μg/L	10	20	Proposed PDWS (EPA, 1991c)
Uranium-233/2340	μČi/mL	6.9E-09	1.38E-08	Proposed PDWS (EPA, 1991c)
Uranium-234	μCi/mL	6.95E-09	1.39E-08	Proposed PDWS (EPA, 1991c)
Uranium-235	µCi/mL	7.25E-09	1.45E-08	Proposed PDWS (EPA, 19910)
Uranium-238	μCi/mL	7.3E-09	1.46E-08	Proposed PDWS (EPA, 1991c)
Vanadium	μg/L	66.5	133	Proposed PDWS (EPA, 1991c)
Vanadium, dissolved	μg/L	66.5	133	EPA Method 6010
Vanadium, total recoverable	μg/L	66.5	133	EPA Method 6010
Vinyl acetate	μg/L	50.5	100	EPA Method 6010
m/p-Xylene	μg/L	81	162	EPA Method 8240
o-Xylene	μg/L	5	10	EPA Method 8260
Xylenes	μg/L	5,000		EPA Method 8260
Yttrium-88	μg/L μCi/mL	5,000 5.0E-08	10,000	Final PDWS (EPA, 1996a)
Zinc			1.0E-07	EPA Method 901.1
Zinc, dissolved	μg/L	2,500	5,000	SDWS (EPA, 1996b)
Zinc, total recoverable	μg/L	2,500	5,000	SDWS (EPA, 1996b)
Zinc, total recoverable Zinc-65	μg/L	2,500	5,000	SDWS (EPA, 1996b)
Zirconium-95	μCi/mL	1.5E-07	3.0E-07	Interim Final PDWS (EPA, 1977)
Zirconium/95 Zirconium/Niobium-95■	μCi/mL	1.0E-07	2.0E-07	Interim Final PDWS (EPA, 1977)
+ Apalytical methods are discussed in the	μCi/mL	1.0E-07	2.0E-07	Interim Final PDWS (EPA, 1977)

[†] Analytical methods are discussed in the **Analytical Data Review** section of this document; references for dated sources are in the **References** section.

Note: Beginning fourth quarter 1992, samples were no longer filtered at the wells. Therefore, the methods for analyzing metals now include a digestion step. Beginning fourth quarter 1993, the laboratories were required to report all metals as total recoverable metals. Flagging criteria remain unchanged.

 [■] EMS discontinued monitoring this radionuclide because it is inappropriate for the SRS Groundwater Monitoring Program.
 ❖ EPD/EMS set this flagging criterion using the 1991 proposed PDWS because the final PDWS in 1977 may have been in error.

[•] When radionuclide analyses are combined, the lower DWS of the two isotopes is used for flagging.

[♦] The primary maximum contaminant level range for turbidity is 1–5 NTU, which is inappropriate for the SRS Groundwater Monitoring Program.

NOTES

Sample Scheduling

Scheduling of sampling and analyses for the SRS Groundwater Monitoring Program conducted by EPD/EMS is based on several factors. Environmental screening is scheduled on a regular basis. Additional scheduling is based on previous flagging levels, regulatory requirements, and special requests that fall within the scope of the Groundwater Monitoring Program. This information is used to generate *The Savannah River Site's Groundwater Monitoring Program 1998 Sampling Schedule*.

A breakdown by laboratory of the total number of analyses performed during first quarter 1998 follows:

Laboratory	Number of Analyses
EMAX Laboratories, Inc.	3,326
Environmental Physics	15,749
EPD/EMS Laboratory	198
General Engineering Laboratories	28,346
QST Environmental, Inc.	13,700
Recra LabNet Philadelphia	33,549
Thermo NUtech	2,977

ENVIRONMENTAL SCREENING

New wells designated as screening program wells are scheduled initially for four quarters of environmental screening. Environmental-screening constituents, which include indicator parameters, groundwater quality characteristics, and some drinking water characteristics, are listed below. After the initial four quarters of analyses for new wells, environmental screening is scheduled once every three years for wells identified as environmental-screening program wells. The wells are sampled only for the environmental screening that has not been analyzed within the past three years.

Beginning in 1996, EPD/EMS changed its policy concerning quarterly field measurements. Only wells scheduled by request or wells identified for environmental screening receive field measurements.

Environmental-Screening Constituents

Aluminum	рH	Well condition	Mercury
Arsenic	Phenolphthalein alkalinity	Fluoride	Nitrate-nitrite as nitrogen
Barium	Program	Gross alpha	Nonvolatile beta
Boron	Sampling method	Iron	Selenium
Cadmium	Site code	Lead	Silver
Chloride	Specific conductance	Lithium	Sodium
Chromium	Stabilized (Yes or No)	Major ions	Sulfate
Field measurements	Time	Calcium	Total dissolved solids
Air temperature	Total alkalinity	Magnesium	Total organic carbon
Date	Turbidity	Potassium	Total organic halogens
Depth to water	Volume purged	Silica	Total phosphates (as P)
Flow rate	Water temperature	Manganese	Tritium

Scheduling Based on Flagging Levels

Only the flagging criteria for environmental screening and GC VOA (see **Glossary**) are used to trigger scheduling. Wells are grouped for scheduling by monitoring site or by the investigation for which they are sampled. Specific criteria for Flag 1 and Flag 2 designations are found in the **Flagging Criteria** section of this report.

Beginning in 1996, only wells in the environmental-screening program were scheduled by flagging criteria once a year. Constituents classified as Flag 0 in each well series are scheduled for analyses only by custodian request or as part of the triennial environmental-screening program. If an analytical result for an environmental-screening or GC VOA analysis in any well exceeds Flag 2 or Flag 1, the environmental-screening wells in the same monitoring series are sampled and analyzed for that constituent once a year. If a constituent falls below Flag 2 for three consecutive sampling events, the individual well's flag is reduced from Flag 2 status to Flag 1 or Flag 0 status, depending on the results, and the well is scheduled according to the lower flag. If a constituent falls below Flag 1 for three consecutive sampling events, the individual well's flag is reduced from Flag 1 status to Flag 0 status, and the flagging-based sampling ceases.

If an environmental-screening or GC VOA constituent has ever been flagged in a well series, it automatically is flagged for all new wells of that series that are designated as environmental-screening wells. The rules previously referred to also apply to removal of a flag from a new well.

When one or more of the five constituents in the GC VOA suite are flagged, the entire suite is scheduled for analysis. The GC VOA suite includes the following: carbon tetrachloride, chloroform, tetrachloroethylene, 1,1,1-trichloroethane, and trichloroethylene.

The following constituents are exceptions to the flagging rules but still receive analyses by custodian request or during triennial environmental-screening analyses:

- Specific conductance and pH, two indicator constituents, have flagging criteria but do not trigger the scheduling mechanism.
- No flags are set for the following indicator parameters and major cations: alkalinity, 5-day biochemical oxygen demand, calcium, carbonate, chemical oxygen demand, magnesium, potassium, silica, sodium, total dissolved solids, total phosphates (as P), and total phosphorus.
- Aesthetic analyses such as color, odor, corrosivity, Eh, turbidity, and surfactants will not be assigned flagging criteria but may be analyzed by special request.
- Common laboratory contaminants and cleaners including phthalates, dichloromethane (methylene chloride), ketones, and toluene are not assigned flagging criteria unless they have primary drinking water standards. These constituents may be analyzed by special request.

GCMS VOA ANALYSES

All wells are reviewed for total organic halogens (TOH) results twice a year. GCMS VOA (see **Glossary**) is scheduled once for individual wells that are designated as environmental-screening wells, have had two results for TOH greater than 10 μ g/L (excluding the first TOH analysis), and have never received GCMS VOA analysis.

SAMPLING REQUESTS

Many analyses are scheduled at the request of various SRS groups. The person or group requesting an analysis must submit a formal sampling request form to EPD/EMS. If the request is within the scope of the Groundwater Monitoring Program, and if provision for the analysis has been made in the current laboratory contract, the analysis is added to the sampling schedule. Likewise, if a sampling request should be deleted, the originator of the request must submit a deletion form.

Regulatory Requirements

All regulatory sampling requirements, such as those mandated by the Resource Conservation and Recovery Act (RCRA), are scheduled by request.

Changes in Sampling

For changes in sampling for first quarter 1998, please refer to the *The Savannah River Site's Groundwater Monitoring Program 1998 Sampling Schedule*.

RFI/RI Projects

The following RCRA Facility Investigation/Remedial Investigation (RFI/RI) projects were either in process or new during first quarter 1998:

- A/M Area and MetLab
- F/H Area
- F-Area Water Treatment Unit
- H-Area Water Treatment Unit
- Interim Sanitary Landfill
- Sanitary Landfill
- TNX Area
- Z Area

CERCLA Projects

The following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) projects were either in process or new during first quarter 1998:

- C-Area Burning/Rubble Pit
- C-Area Reactor Seepage Basin
- F-Area Burning/Rubble Pit
- · Ford Building Seepage Basin
- H-Area Tank Farm Operable Unit
- K-Area Burning/Rubble Pit
- L-Area Burning/Rubble Pit
- R-Area Reactor Seepage Basin

Special Study

Pilot testing of the Purge Water Management System was a special study during first quarter 1998.

New Wells Scheduled for Sampling

The following new wells were scheduled for sampling for the first time during first quarter 1998: CSB 1C, 2C, 3C, and 7D; FBP 41C, 42C, 43C, 43DL, 43DU, 44D, 45D, 46D, 47D, and 48D; KRP 8 and 9; LFW 32C, 76, 77, and 78; LRP 5 and 6R; and RPC 6DL, 6DU, 7DL, 7DU, 8DL, 8DU, 10DL, 10DU, 11DL, and 11DU.

MAINTENANCE OR ACCESS PROBLEMS

The following wells had flowmeter problems during first quarter 1998: FBP 5D; FSB 77, 78, 116C, and 122D; FST 1D; LDB 1; MCB 5C; MSB 9B, 38C, and 65D; P 26A; RWM 8 and 12; TNX 10D; and ZBG 1A.

Sample Scheduling
Page 21

The following wells were scheduled for sampling during first quarter 1998, but sampling was incomplete: ABP 8C; AMB 14D and 15D; FBP 6D, 9D, 10D, and 11D; FSB111D, 114D, and 120D; HAA 3D, 6A, and 6D; HSB 68A, 147D, and 152D; HSL 3D and 7D; HXB 6D; LFW 43C, 63D, 65D, 77, and 78; MSB 1D, 39TA, 48D, and 55HC; QA 58A; and ZBG 1A.

Wells LWF 60D and 62D were resampled for volatiles in April because the volatile vials for the March sampling event were broken.

The following wells were resampled for volatiles in March because the original samples arrived at the lab out of temperature: AMB 4B, 4D, 5, 6, 11B, 11D, 12D, 13AR, 16D, 18A, 18C, and 4A and 17A with associated QA samples; and MSB 29B, 29C, 29D, 42C, 43A, 43B, and 43D.

Well MSB 74B was not sampled in March because a tracer test was run on the well.

Wells FSB106D; FSL 4D; FTF 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, and 14; and MSB 3B, 8A, 9C, 15C, 46C, and 87C were not sampled because they were dry.

Wells FSB 78A; KDB 1; LFW 58D and 65B; and MSB 6C, 15D, 16C, 27TA, 36D, and 47TA were not sampled because of mechanical problems.

Well RWM 10 was not in operation for the January and February sampling events; wells TRW 3 and 4, for the January, February and March events; and wells TRW 1 and 2, for the March event.

In February, wells TIR 3B and ZBG 1A and, in March, wells FST 1D and TNX 10D were sampled using handheld pumps.

The following wells were not sampled because they were in a contamination area: ASB 1A, 2AR, 2CR, 3CR, 6A, and 10CR.

Wells HTF 2, 3, 5, and 6 did not have field readings because they were in a contaminated area.

R-Area Bingham Pump Outage Pits wells were scheduled for field measurements in March, but the event was not completed until second quarter 1998.

Wells FSB 87D, LRP 2, MSB 82A, RPC 6DU, and RWM 1 did not have water-level measurements registered, even though the wells could be sampled.

Wells BGO 2D, HIW 2MC, and HIW 4MC did not have synchronous water-level measurements because they were inaccessible.

PURGE-WATER CONTAINMENT PROGRAM

Beginning in 1991, a purge-water containment program was partially implemented to dispose properly of the water purged from certain wells before sampling. According to the *Investigation-Derived Waste Management Plan* (WSRC, 1995), additional wells were identified for purge-water treatment at the M-1 Air Stripper and F-and H-Area Effluent Treatment Facility. The program has been implemented, and no well that was scheduled for analysis as part of the Groundwater Monitoring Program during first quarter 1998 was not sampled.

Field Notes

A sampler may visit a well to collect field data, collect samples, and/or measure depth to water. A well may be visited multiple times during a quarter for any combination of these reasons. Field measurements generally include air temperature, depth to water prior to pumping, dissolved oxygen, Eh (REDOX potential), flow rate, pH, phenolphthalein alkalinity, specific conductance, total alkalinity, turbidity, volume of water purged prior to sampling, and water temperature.

EPD/EMS personnel and RCS Corporation of Aiken, SC, performed well visitations during first quarter 1998. Each sampler maintained a field notebook. These notebooks are in the first quarter 1998 section of the EPD/EMS Groundwater Monitoring Library. All well visitations were routine during first quarter 1998, except as indicated in table 3. The table includes samplers' comments on conditions that may affect the samples or the data-collection process. The majority of wells sampled during first quarter 1998 were pumped. Bailed wells are listed in table 98 in the Quality Control Samples section.

Among Z series wells, only six of the 15 wells have casings large enough to allow sampling (Z 4, 7, 9, 19, 20, and 20B). All other Z wells have very narrow casings (~.75 in.), making bailing impractical. A bailer is stuck in well Z 3. Z wells are scheduled generally for water-level measurements only.

If a well pumps or is bailed dry during purging and is revisited and sampled within 24 hours, this is considered one sampling event yielding a single set of field and analytical data. For such wells, table 3 lists the volume purged before the well went dry during the first visitation. The **Analytical Results** section gives the total amount of water purged from each well in one sampling event.

Comments about dry wells and continuously pumping wells are in the Analytical Results section.

Figure 3. Three Types of Groundwater Monitoring Wellheads

Table 3. Comments from the Field Data

Well	Date	Comments
ABP Series		
ABP 8C	02/20/98	Dry after 4 gal
	03/10/98	Dry after 5 gal
AMB Series		
AMB 6	03/23/98	Resampled for volatiles
AMB 7	03/05/98	Dry after 27 gal
AMB 10A	03/09/98 03/05/98	Dry after 5 gal; not sampled Dry after 69 gal; not sampled
AMB 13AR	03/23/98	Resampled for volatiles
AMB 14D	03/05/98	Dry after 1 gal
	03/09/98	Dry after 1 gal
	03/10/98	Dry after 3 gal
AMB 15D	03/05/98	Dry after 1 gal; not sampled
AMB 16D	03/23/98	Resampled for volatiles
AMB 18C	03/23/98	Resampled for volatiles
ASB Series		
ASB 1A	03/05/98	Located in contaminated area; not sampled
ACDOAD	03/23/98	Located in contaminated area; not sampled
ASB 2AR ASB 2CR	03/05/98 03/°04/98	Located in contaminated area; not sampled Located in contaminated area; not sampled
ASB 3AR	03/05/98	Located in contaminated area; not sampled
ASB 3CR	03/04/98	Located in contaminated area; not sampled
ASB 5AR	03/03/98	Dry after 4 gal
ASB 6A	03/05/98	Located in contaminated area; not sampled
100.074	03/23/98	Located in contaminated area; not sampled
ASB 6TA ASB 10CR	03/04/98 03/02/98	Dry after 32 gal Located in contaminated area; not sampled
BGO Series		
	00/00/00	I !h.l -
BGO 2D	03/23/98	Inaccessible
CMP Series		
CMP 31C	01/08/98	Well bailed after pump removed
CRP Series		
CRP 3D	02/09/98	Dry after 2 gal
CRP 5D	02/09/98	Dry after 3 gal
CSB Series		
CSB 7D	02/24/98	Water will not come to surface
FBP Series		
FBP 4	03/30/98	Flowmeter broken, estimated volume purged calculated
EBD 6D	03/30/09	using 2.5 gal buckets
FBP 6D	03/30/98 03/31/98	Dry after 2 gal Metals not collected because of high turbidity
FBP 7D	03/30/98	Dry after 3 gal
FBP 8D	03/30/98	Dry after 23 gal
FBP 9D	03/30/98	Dry after 5 gal
FBP 10D	03/30/98	Metals not collected because of high turbidity
FBP 11D	03/30/98	Dry after 1 gal
	03/31/98	Metals not collected because of high turbidity

Well	Date	Comments
FEX Series		
FEX 6	01/21/98	No water in atendains
FEX 7	01/21/98	No water in standpipe
FEX 8	02/12/98	No water in standpipe
FEX 9		No water in standpipe
	02/12/98	No water in standpipe
FEX 10	02/12/98	No water in standpipe
FEX 11	01/22/98	No water in standpipe
FIN Series		
FIN 2TK	02/12/98	No water in standpipe
FSB Series		
FSB 77	01/12/98	Flowmeter broken, estimated volume purged
FSB 78	01/13/98	Flowmeter broken, estimated volume purged
FSB 78A	01/26/98	Pump broken; not sampled
FSB 78C	01/13/98	Dry after 43 gal
FSB 87D	01/08/98	
100010	01/00/98	No water in standpipe, water level could not be determined
FSB 88D	01/05/98	Dry after 11 gal
FSB 90D	01/20/98	Dry after 4 gal
FSB 93D	01/12/98	Dry after 6 gal
FSB 94C	01/12/98	Dry after 25 gal
FSB 97D	01/14/98	Dry after 8 gal
100010	01/19/98	Dry after 8 gal
FSB 98D	01/19/98	
FSB 99D		Dry after 9 gal
	01/12/98	Dry after 39 gal
FSB106D	01/13/98	No water in standpipe, water level could not be
E004070	0.4 (0.0 (0.0	determined
FSB107C	01/22/98	Well broken
FSB108D	01/22/98	Dry after 4 gal
	01/26/98	Dry after 5 gal
FSB109D	01/22/98	Dry after 3 gal
FSB111C	01/06/98	Unable to sample because of inclement weather
FSB113A	01/07/98	Dry after 39 gal
FSB113C	01/07/98	Dry after 26 gal
FSB115D	01/06/98	Turbidity meter failed to work
FSB116C	01/07/98	Flowmeter did not work, estimated volume purged
		calculated using 2.5 gal buckets
FSB116D	01/07/98	Dry after 3 gal
FSB119D	01/19/98	Dry after 7 gal
FSB120A	01/12/98	Dry after 34 gal
FSB120D	01/12/98	Dry after 6 gal
	01/13/98	Metals not collected because of high turbidity
FSB121DR	02/17/98	Dry after 1 gal
	02/19/98	Dry after 3 gal
FSB122D	01/09/98	Flowmeter broken, estimated volume purged
FSL Series		
FSL 1D	01/28/98	Dry after 1 gal
FSL 2D	01/26/98	Dry after 8 gal
FSL 7D	01/28/98	Dry after 1 gal
FST Series		
FST 1D	03/12/98	Flowmeter not present; used hand-held pump
FTF Series		
FTF 4	03/13/98	Pumped dry; not sampled
FTF 5	03/13/98	Pumped dry; not sampled Pumped dry; not sampled
FTF 7	03/13/98	Pumped dry; not sampled Pumped dry; not sampled
() [/	03/13/30	rumped dry, not sampled

ESH-EMS-980568 Page 25 First Quarter 1998

Well	Date	Comments
FTF 9	03/11/98	Pumped dry; not sampled
FTF 13	03/11/98	Pumped dry; not sampled
FTF 16	03/11/98	Muddy
FTF 18	03/11/98	Cloudy
FTF 22		
	03/11/98	Muddy
FTF 23	03/11/98	No sign
FTF 27	03/12/98	Turbidity >1000
HAA Series		
HAA 1TA	03/11/98	Flowmeter malfunctioned, estimated volume purged calculated using buckets
HAA 2B	01/30/98	Dry after 47 gal
HAA 3D	01/05/98	Dry after 10 gal
	01/06/98	Samples not collected because of high turbidity
	01/13/98	Dry after 3 gal
	01/14/98	Metals not collected because of high turbidity
	02/02/98	Dry after 6 gal
	02/06/98	Dry after 8 gal; metals not collected because of high turbidity
HAA 6A	01/30/98	Metals not collected because of high turbidity
HAA 6D	02/02/98	Dry after 3 gal; metals not collected because of high turbidity
HCA Series		
HCA 4	03/12/98	Dry after 20 gal
HIN Series		
HIN600TK	02/19/98	No water in standpipe
	03/17/98	No water in standpipe
HSB Series		
HSB 55A	01/12/98	Pumped claudy
		Pumped slowly
HSB 65A	01/12/98	Pumped slowly
HSB 68C	01/28/98	Dry after 20 gal
HSB 70C	01/28/98	Dry after 26 gal
HSB 71C	01/26/98	Dry after 40 gal
HSB 84B	01/05/98	Dry after 51 gal
HSB 84C	01/05/98	Dry after 14 gal
HSB 85B	01/13/98	Dry after 35 gal
HSB102D	01/07/98	Dry after 11 gal
HSB110C	01/07/98	Dry after 19 gal
HSB112D	01/07/98	Dry after 11 gal
HSB112E	01/06/98	Dry after 7 gal
HSB115D	01/06/98	Dry after 2 gal
HSB123A	01/15/98	Dry after 32 gal
	01/19/98	Dry after 33 gal
HSB126D	01/13/98	Dry after 12 gal
HSB129C	01/28/98	Dry after 26 gal
HSB132C	01/20/98	Dry after 38 gal
HSB136D	01/13/98	Dry after 12 gal
HSB138D	01/21/98	Dry after 8 gal
HSB139C	01/26/98	Dry after 24 gal
	01/28/98	Dry after 27 gal
HSB142D	01/22/98	Dry after 4 gal
HSB147D	01/22/98	Dry after 18 gal
HSB148C	01/15/98	Dry after 24 gal
	01/19/98	Dry after 24 gal
HSB148D	01/15/98	Dry after 8 gal
11001400	01/19/98	
	01/13/30	Dry after 5 gal

Well	Date	Comments
HSB152D	01/21/98	Dry after 12 gal
HSL Series		
HSL 3D HSL 7D HSL 8AA	01/28/98 01/30/98 01/29/98 02/02/98 02/06/98	Dry after 13 gal Dry after 23 gal Dry after 14 gal Dry after 15 gal Dry after 14 gal; not sampled
HTF Series		
HTF 2 HTF 3 HTF 5 HTF 6 HTF 10 HTF 12	03/25/98 03/25/98 03/25/98 03/25/98 03/24/98 03/25/98	Located in contaminated area No field reading No field reading No field reading No sign Ball valve split; not sampled
HXB Series		
HXB 5D HXB 6D	01/19/98 01/20/98 03/26/98	Dry after 9 gal Dry after 5 gal Dry after 7 gal; water purged through sample port to lower turbidity, metals not collected because of high turbidity
KDB Series		
KDB 1	01/08/98 02/25/98 03/10/98	Dry after 5 gal; gate valve cracked Dry after 16 gal; pump will not start Dry after 17 gal
KDB 3	01/08/98 02/25/98 03/10/98	Dry after 15 gal Dry after 16 gal Dry after 17 gal
KDB 4	01/08/98 02/25/98	Dry after 6 gal Dry after 6 gal
KDB 5	03/10/98 01/08/98 02/25/98 03/10/98	Dry after 7 gal Dry after 5 gal Dry after 8 gal Dry after 9 gal
KRB Series		
KRB 16D KRB 17D KRB 18D KRB 19D	03/10/98 03/10/98 03/10/98 03/10/98	Dry after 16 gal Dry after 15 gal Dry after 14 gal Dry after 13 gal
KSM Series		
KSM 1D	03/10/98	Dry after 9 gal
LDB Series		
LDB 1	01/08/98	Dry after 15 gal; flowmeter broken, estimated volume purged
	02/25/98 03/10/98	Dry after 15 gal; flowmeter broken, estimated volume purged
LDB 2	03/10/98 01/08/98 02/25/98 03/10/98	Dry after 15 gal Dry after 20 gal Dry after 32 gal Dry after 14 gal

Well	Date	Comments
LDB 4	01/08/98	Dry after 10 gal; no sign
	02/25/98	Dry after 11 gal
	03/10/98	Dry after 8 gal
LDS Series		
LDS 1P	03/10/98	Dry after 7 gal
LFW Series		
LFW 58D	03/16/98	Motor will not some to surface, not compled
LFW 65B	02/05/98	Water will not come to surface; not sampled
LFW 76	02/03/98	Variable speed box overload; not sampled Dry after 5 gal
LFW 77	02/06/98	Dry after 3 gal
LFW 78	02/17/98	Dry after 3 gal
	02/11/30	Dry aiter 5 gai
LRP Series		
LRP 2	03/12/98	No water in standpipe, depth to water could not be determined
HOD O		dotominod
MCB Series	00/00/20	-
MCB 5C	02/20/98	Flowmeter broken, estimated volume purged calculated
MCB 7C	03/04/98	using 5 gal buckets
WCB 7C	03/04/96	Dry after 23 gal
MSB Series		
MSB 1C	02/11/98	Dry after 36 gal
MSB 1CC	02/11/98	Dry after 13 gal
MSB 1D	02/11/98	Dry after 12 gal; missed two 950 amber bottles
MSB 2B	02/17/98	Dry after 22 gal
	02/18/98	Dry after 35 gal
MSB 2C	02/17/98	Dry after 10 gal
	02/18/98	Dry after 13 gal
MSB 3C	02/19/98	Dry after 13 gal
MSB 6C	02/02/98	Pump broken
1400 00	03/31/98	Well broken; not sampled
MSB 9B	03/05/98	Dry after 5 gal; flowmeter did not turn because flow was insufficient
MSB 11F	02/05/98	No water in standpipe
MSB 13CC	02/05/98	Dry after 13 gal
MSB 13D	02/05/98	Dry after 9 gal
MSB 15C	03/10/98	Dry after 1 gal; no water in standpipe
MSB 15D	02/10/98	Variable box shows overload
	03/31/98	Overload, well broken; not sampled
MSB 16C	02/09/98	Will not pump; no water in standpipe
	03/31/98	Well broken, water will not come to surface; not sampled
MSB 19B	02/06/98	Well broken
MSB 20C	02/26/98	Dry after 4 gal
MSB 24	02/09/98	Dry after 4 gal
MSB 27	03/03/98	Dry after 6 gal; no water in standpipe
MSB 27TA	03/03/98	Water will not come to the surface; not sampled
MSB 29B	03/24/98	Resampled for volatiles
MSB 29C	03/24/98	Resampled for volatiles
MSB 29D	03/24/98	Resampled for volatiles
MSB 30AA	02/06/98	Dry after 69 gal
MSB 36D	02/19/98	Pump not working
MCD 00C	03/31/98	Well broken, water will not come to surface; not sampled
MSB 38C	02/12/98	Flowmeter broken, estimated volume purged
MSB 39A	02/24/98	Dry after 111 gal
MSB 39D	02/25/98 03/23/98	Dry after 11 gal Resampled for volatiles
MSB 42C		

Well	Date	Comments
MSB 43A	03/23/98	Resampled for volatiles
MSB 43B	03/24/98	Resampled for volatiles
MSB 43D	03/09/98	Dry after 9 gal
	03/24/98	Dry after 5 gal; resampled for volatiles
MSB 46A	02/27/98	Dry after 43 gal
	03/02/98	Dry after 21 gal
MSB 47TA	02/23/98	
MSB 48D	03/10/98	Pumps too slowly; not sampled
MSB 49D	02/24/98	Dry after 6 gal
		Dry after 12 gal
MSB 55D	02/26/98	Water will not come to surface
MSB 55HC	02/26/98	Dry after 14 gal
	03/02/98	Dry after 9 gal
	03/03/98	Metals not collected
MSB 57D	02/19/98	Dry after 11 gal
MSB 58D	02/19/98	Dry after 8 gal
MSB 59D	02/19/98	Dry after 12 gal
MSB 60D	02/19/98	Dry after 11 gal
MSB 62D	02/18/98	Dry after 5 gal
MSB 63D	02/12/98	Dry after 7 gal
MSB 65D	02/24/98	
WOD 00D	02/24/90	Flowmeter not working, estimated volume purged calculated using 2.5 gal buckets
MSB 70D	02/19/98	Dry after 2 gal
	02/20/98	Dry after 3 gal
	02/23/98	Dry after 6 gal
	02/25/98	Dry after 5 gal
MSB 71B	03/03/98	Dry after 5 gal
MSB 74B	03/04/98	
MSB 74C		Tracer test being conducted on well; not sampled
MSB 74D	03/04/98	Dry after 18 gal
	03/04/98	Dry after 5 gal
MSB 75C	03/04/98	Dry after 6 gal
MSB 79B	02/19/98	Dry after 41 gal
MSB 82A	02/23/98	Dry after 53 gal
	02/25/98	Dry after 8 gal; no water in standpipe, depth to water could not be determined; not sampled
MSB 83D	02/26/98	Dry after 8 gal
MSB 84A	03/02/98	Dry after 29 gal
MSB 85D	03/02/98	Dry after 27 gal
MSB 85TA	03/02/98	Dry after 45 gal
P Series		
P 26A	03/02/98	Flowmeter not present, flowrate determined by using 2.5
	09,02.00	gal buckets
P 26B	01/29/98	Flowmeter not present
P 26D	01/29/98	Flowmeter not present
RPC Series		
DDC 4DH	04/44/00	D (1 05 1
RPC 4DU	01/14/98	Dry after 25 gal
550 5511	01/19/98	Dry after 33 gal
RPC 5DU	01/14/98	Dry after 23 gal
RPC 6DU	01/14/98	No water in standpipe, water level could not be determined
	01/28/98	Water too dark to take turbidity reading; chocolate brown
RPC 8DU	01/19/98	Dry after 13 gal
	02/05/98	Dry after 15 gal
RPC 10DU	01/19/98	3 gal purged through sample port to lower turbidity
		- 3 p get an eaght ashipto point to tomor tailbluity
RSE Series		
RSE 10	01/14/98	Dry after 13 gal
	3 3	, and 10 gai

Well	Date	Comments
RWM Series		
RWM 1	01/21/98	No water in standpipe, water level could not be determined
	02/04/98	No water in standpipe, depth to water could not be determined
	03/11/98	No water in standpipe
RWM 2	01/21/98	No water in standpipe, depth to water could not be determined
011/11/0	03/11/98	No water in standpipe
RWM 8	01/23/98	Flowmeter not working, estimated volume purged
DWM 10	02/04/98	Flowmeter broken
RWM 12 RWM 13B	01/23/98	Flowmeter not working, estimated volume purged
RWM 13C	01/22/98 01/22/98	No water in standpipe
RWM 14C	02/04/98	No water in standpipe No water in standpipe
SRW Series		
SRW 16A	03/02/98	Dry after 29 gal
TIR Series		•
TIR 3B	02/10/98	Used hand-held pump
TNX Series		
TNX 3D	03/05/98	Dry after 7 gal
TNX 6D	01/29/98	Dry after 3 gal
TNX 10D	03/02/98	Dry after 3 gal; flowmeter not present; used hand-held pump
	03/04/98	Hand-held pump stopped working; not sampled
TRW Series		
TRW 1	03/31/98	Well not operational
TRW 2	03/31/98	Well not operational
TRW 3	02/27/98	Well not operational; not sampled
TO	03/31/98	Well not operational; not sampled
TRW 4	02/27/98 03/31/98	Well not operational; not sampled Well not operational; not sampled
WTU Series		, , , , , , , , , , , , , , , , , , , ,
WILL 15V	04/04/00	
WTU 1EX	01/21/98	No water in standpipe
	01/22/98 02/12/98	No water in standpipe
WTU 2IN	02/12/98	No water in standpipe No water in standpipe
	01/22/98	No water in standpipe No water in standpipe
	02/12/98	No water in standpipe
ZBG Series		
ZBG 1A	01/30/98	Flowmeter not present
•	02/02/98	Dry after 10 gal; flowmeter not present; used hand-held submersible pump; turbidity >1,000 NTU, some
		samples not sent because of high turbidity

Analytical Data Review

The SRS Groundwater Monitoring Program evaluates all data systematically to provide high-quality data for reporting on the environmental monitoring and cleanup efforts at SRS. Data verification and validation are continuous, interactive processes, usually completed within 60 days after the last data are received for a quarter.

ES, EX, GE, and WA, the primary contracting laboratories for sample analyses, performed all analyses with the following exceptions:

- The EM Lab at SRS conducted total-activity analyses of samples for shipping clearance. The EM Lab also conducted tritium analyses of samples from specified well series.
- GE subcontracted radionuclide analyses to GP, and WA subcontracted radionuclide analyses to TM. GP and TM conducted gross alpha, nonvolatile beta, tritium, and selected radionuclide analyses.

GIMS DATA REVIEW MODULE

The Geochemical Information Management System (GIMS) is a combination of hardware, software, data, and procedures that supports EPD/EMS' data management activities. The GIMS Data Review Module provides automated data loading, validation and verification functions, data editing, determination of data review status. report generation, and data review QA. The data editing program allows users to correct errors in loaded analytical, field, and shipping data. When the review process is complete, data are loaded into the permanent production database tables in GIMS and are available sitewide.

REVIEW OF THE ANALYTICAL DATA

EPD/EMS reviews analytical data from the laboratories for errors and unusual results before releasing the data for use. The laboratories are asked to review and comment on suspect data.

Typical errors identified during data loading into GIMS include incorrect sample dates, run dates, and sample identifications; incorrectly entered analytical units, methods, and corresponding detection limits; and incorrect dilution factor calculations.

Analytical results that appear different from historical data collected since 1991 are brought to the attention of the appropriate laboratory. Thus, the laboratory is able to identify problems with some of the analyses, including incorrect dilution factor calculations and data entry errors. EPD/EMS corrects data files after receiving written notification from the laboratory. Specific details concerning the corrections are entered in the EMS Groundwater Monitoring Program Changes to the Database Logbook.

Samples that exceeded holding times are indicated by an analysis qualifier of Q in the analytical results tables (see Appendix B for further information). The analysis qualifier V is used to indicate sample results associated with method laboratory blanks at the preparation step that are elevated above the instrument detection limit. Samples that were preserved incorrectly are marked with a Yanalysis qualifier in the analytical results tables (see Appendix B). Usually, the Y indicates that the sample coolers were not cold enough. An I analysis qualifier indicates that a sample's matrix spike recovery was not within control limits.

To determine if a new analytical result for a sampling site is similar to or relatively higher or lower than historical results, new results for each well are compared to its historical results using the following procedure:

GIMS calculates the mean of the historical results and the mean of the historical results above detection for all analytes in the wells being compared. The historical results that are below their detection limit value are considered at their detection limits for the purpose of the calculation. The process eliminates any false high values due to diluted samples.

- GIMS factors in trends in the data calculated from the previous eight sampling events. If no previous
 data are available for a particular well/analyte combination, the program includes previous results from
 other wells in the same vicinity.
- Results greater than 10 times the calculated mean of the previous results are marked as "high."
 Results (or their detection limits if the results are below detection) less than 10 percent of the calculated mean of the previous results are marked as "low."

GIMS flags the potentially anomalous results for review. The data reviewer examines the results and takes into account individual historical values, variations of certain values, general trends in the data, and data in the prep batch associated with the current result. The data reviewer eliminates results if anomalous historical results have skewed the calculated mean. Another data reviewer inspects and confirms that the results marked as anomalous are properly identified. Anomalous results are presented to the lab for review and comment. Results significantly high or low compared with historical data are rerun by the lab.

Review of the Analytical Narratives

EPD/EMS reviews the analytical narratives received from the laboratories, which are used as reference materials throughout the data validation process. Any discrepancies between the narratives and the analytical or chain-of-custody (COC) data must be resolved by the laboratories. The narratives include the following types of problems: QA samples that do not meet the criteria specified by the analytical method, problems with matrix interference, sample-specific adjustments to the method caused by high concentrations of some analytes, problems with sample preservation and holding time, instrument calibration problems, and contaminated blanks. The narratives also include additional information about COC and analytical data.

The four primary laboratories (ES, EX, GE, and WA) differ in their analytical suite assignments for certain constituents. Thus, some analytes may not be analyzed by all laboratories. See the **Sample Scheduling**, **Field Notes**, **Quality Control Samples**, and **Analytical Results** sections of this report for more information on wells scheduled but not sampled this quarter.

Review of ES's Analytical Data

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 4 as high compared with historical data. A review of the laboratory records did not reveal any problems with the analyses.

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 5 as low compared with historical data. A review of the laboratory records did not reveal any problems with the analyses.

Review of EX's Analytical Data

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 6 as high compared with historical data. A review of the laboratory records did not reveal any problems with the analyses.

A technical review of the quarter's analytical data identified no reported results as low compared with historical data.

Review of GE's Analytical Data

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 7 as high compared with historical data. A review of the laboratory records did not reveal any problems with the analyses.

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 8 as low compared with historical data. A review of the laboratory records did not reveal any problems with the analyses.

Review of GP's Analytical Data

A technical review of the quarter's analytical data identified at least one reported result for each of the GP analyses in tables 9 and 10 as being either high or low, respectively, compared with historical data.

The following isotopes were rejected for several wells because of low abundance: iodine-129, lead-212, actinium-228, europium-154, cesium-137, cobalt-60, promethium-144, promethium-146, potassium-40, europium-155 and yttrium-88.

The following isotopes were rejected for several wells because of low abundance: cerium-144, cesium-137, curium-244, lead-212, manganese-54, potassium-40, thorium-228, thorium-230, yttrium-88, and zinc-65.

Review of WA's Analytical Data

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 11 as high as compared with historical data. A review of the laboratory records did not reveal any problems, except as noted previously.

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 12 as low as compared with historical data. A review of the laboratory records did not reveal any problems.

Review of TM's Analytical Data

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 13 as high as compared with historical data. A review of the laboratory records did not reveal any problems.

A technical review of the quarter's analytical data identified at least one reported result for each of the analyses in table 14 as low as compared with historical data. A review of the laboratory records did not reveal any problems.

ANALYTICAL METHODS

Sample analyses performed for EPD/EMS during first quarter 1998 were conducted using EPA and other methods as noted in tables 15–21 at the end of this section. ES, EX, GE, and WA performed most of the analyses conducted during the quarter. Their methods and estimated quantitation limits (EQLs) are listed in table 15 for ES, table 16 for GE, table 17 for WA, and table 18 for EX.

GP and TM performed the radionuclide analyses during first quarter 1998. Radionuclide methods generally are modified by the laboratories performing the analyses. Their methods and EQLs are listed in table 19 for GP and table 20 for TM.

The EM Lab conducted selected radionuclide analyses of samples required by the Groundwater Monitoring Program. The total activity method used by the EM Lab is an in-house method based on applicable EPA, DOE, or other procedures. Methods used by EPD/EMS for testing other radioisotopes also are in-house analytical methods. The EM Lab radioactivity determinations are reported as the absolute concentrations calculated from the analytical tests. The EM Lab's method and EQL are listed in table 21.

If the laboratories used more than one analytical method for an analyte, the methods are listed in the tables in descending order according to frequency of use. Generally, the method listed first was used for at least half of the analyses.

Table 4. ES Samples with High Analytical Results as Compared to Historical Data

Analyte	Well(s)	
Mercury Nitrate	TRW 1 TNX 3D	

[†] The questioned value was at least 10 times higher than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

Table 5. ES Samples with Low Analytical Results as Compared to Historical Data

Analyte	Well(s)	
Gross alpha Lead	LFW 63C TBG 4†	

[†] The questioned value was at least 10 times lower than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

Table 6. EX Samples with High Analytical Results as Compared to Historical Data

Analyte	Well(s)	
Total organic carbon	AMB 7A†, AMB 17A	

[†] The questioned value was at least 10 times higher than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

Table 7. GE Samples with High Analytical Results as Compared to Historical Data

Analyte	Well(s)
Aluminum	HAA 6A, HSL 8AA
Barium	FSB123D
Calcium	HAA 1AA, HAA 4B, HR8 14, HSL 4D, HSL 5D†, HSL 8C†
Chloromethane (methylene chloride)	FSB104C†
Copper	FSB 99D, FSL 7D†, HSB 86D
Lead	FSB105DR, HSB 86D■
Magnesium	HAA 3A, HR8 14
Mercury	FSB112D
Nitrate-nitrite as nitrogen	FSB 78A, FSB 89C, FSB115D, HSB100C†, HSB124AR†, HSB132D†, HSL 6A†, HSL 8A
Sodium	HAA 5C, HAA 6D, HR8 14†
Specific conductance	FSB 76†, FSB 76C†, FSL 1D, HSB146D†
Tetrachloroethylene	HSB147D
Thallium	FSB 79C■

Analyte	Well(s)	
Trichloroethylene Zinc	FSB 92C, FSB 98C†, HSB145C FSB 77†, HSB139C†	

[†] The questioned value was at least 10 times higher than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

Table 8. GE Samples with Low Analytical Results as Compared to Historical Data

Analyte	Well(s)		
Benzene	HSB127C		
Cadmium	HSB 65C†, HSB102D		
Chromium	FSB 76C, HSB116D		
1,1-Dichloroethane	HSB127C		
trans-1,2,-Dichloroethylene	HSB127C		
Iron	HSL 8B		
Lead	HSB 65A†, HSB116D		
Manganese	HSL 8B		
Specific conductance	FSB 78A		
Tetrachloroethylene	FSB 78, FSB106C		
Total dissolved solids	HSL 8AA		
1,1,2-Trichloroethane	HSB127C		
Trichloroethylene	HSB 84C		
Vanadium	FSB113D†, HSB 84C†		

[†] The questioned value was at least 10 times lower than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

Table 9. GP Samples with High Analytical Results as Compared to Historical Data

Analyte	Well(s)		
Cesium-137	HSB113C†		
Gross alpha	FSB 78A■, RPC 11DL		
lodine-129	HSB124AR		
Nonvolatile beta	FSB 78A , HAA 3D, HSB 85B†, HSB121A†, HSB140C, RPC 3DU†, RPC 4DL		
Plutonium-238	FSL 3D, HSB107C, HSB109C†, HSB110C, HSB112E		
Plutonium-239/240	FSB120A, FSB120C, HSB109C, HSL 6D■		
Radium-228	FSB114C, FSB115C, HSB 68†, HSB103D†, HSB104D, ZBG 1		
Strontium-90	FSB 78A■, HSB104C†, HSB133C		
Thorium-228	FSB 78B■		
Thorium-232	FSB107D		
Tritium	FSB 88C. HAA 6D■		
Uranium-233/234	FSB 76, HSB106C, HSB110C, HSB112E		
Uranium-235	FSB 98AR		

[†] The questioned value was at least 10 times higher than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

[■] The questioned value was at least 10 times higher than historical data. Because holding time had not been exceeded, the laboratory was asked to reanalyze the sample.

[■] The questioned value was at least 10 times higher than historical data. Because holding time had not been exceeded, the laboratory was asked to reanalyze the sample.

Table 10. GP Samples with Low Analytical Results as Compared to Historical Data

Analyte	Well(s)	
Radium-228	FSB105C	,
Total alpha-emitting radium	HSL 8AA	
Tritium	HSB 84C†	

[†] The questioned value was at least 10 times lower than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

Table 11. WA Samples with High Analytical Results as Compared to Historical Data

Analyte	Well(s)		
Aluminum	LRP 3		
Chromium	AMB 10A		
Dichloromethane	AMB 7B, HXB 5		
Iron	AMB 8D, LRP 3†		
Lead	MSB 12TA†, MSB 43D†		
Sodium	LRP 6		
Specific conductance	HXB 5■		
Tetrachloroethylene	MSB 63C		
Trichloroethylene	ABP 8C		

[†] The questioned value was at least 10 times higher than historical data. Because holding time had not been exceeded, the laboratory was asked to reanalyze the sample.

Table 12. WA Samples with Low Analytical Results as Compared to Historical Data

Analyte	Well(s)	
Barium	HCA 4C	

Table 13. TM Samples with High Analytical Results as Compared to Historical Data

Analyte	Well(s)	
Barium-133	ECD1100+	
Carbon-14	FSB112C†	
Cesium-134	HSB126C†	
Gross alpha	FSB112C†	
•	AMB 8D, ZBG 1A†	
Nonvolatile beta	HSB 83B, LRP 1, LRP 3, ZBG 1	
Radium-228	FSB112C†	
Total radium	ZBG 1A†, ZBG 2	
Tritium	HSB 83B†, LDB 1†, LDB 2†, LDB 4†	

[†] The questioned value was at least 10 times higher than historical data. Because holding time had not been exceeded, the laboratory was asked to reanalyze the sample.

[■] The questioned value was at least 10 times higher than historical data. Because holding time had been exceeded, the laboratory was not asked to reanalyze the sample.

Table 14. TM Samples with Low Analytical Results as Compared to Historical Data

Analyte	Well(s)
Tritium	KDB 1†, KDB 3†, KDB 5†

[†] The questioned value was at least 10 times lower than historical data. Because holding time had not been exceeded, the laboratory was asked to reanalyze the sample.

Table 15. Methods and Estimated Quantitation Limits Used by ES

Analyte	Unit	Method	Minimum/Maximum EQLs
Acenaphthene	μg/L	EPA8270	10.0/13.0
Acenaphthylene	μg/L	EPA8270	10.0/13.0
Acetone	μg/L	EPA8260	10.0/50.0
Acetonitrile	μg/L	EPA8260	20.0/100
Acrolein	μg/L	EPA8260	10.0/50.0
Acrylonitrile	μg/L	EPA8260	20.0/25.0
Actinium-228	μCi/mL	ESESOPM008	9.27E-09/2.0E-08
Aldrin	μg/L	EPA8081	0.015
Allyl chloride	μg/L	EPA8260	10.0/50.0
Aluminum	μg/L	EPA6010	20.0
Americium-241	μCi/mL	ESESOPM032	
Ammonia nitrogen	μg/L	EPA350.1	4.0E-11/1.8E-10
Anthracene	μg/L	EPA8270	50.0
Antimony	μg/L	EPA6010	10.0/13.0
Antimony-125	μCi/mL	ESESOPM008	5.0
Arsenic	•		4.66E-09/9.45E-09
Barium	μg/L	EPA6010	8.0
Benzene	μg/L	EPA6010	2.0
alpha-Benzene hexachloride	μg/L	EPA8260	5.0/25.0
beta-Benzene hexachloride	μg/L	EPA8081	0.015
delta-Benzene hexachloride	μg/L	EPA8081	0.015
Benzidine	μg/L	EPA8081	0.015
Benzidine Benzo[<i>a</i>]anthracene	μg/L	EPA8270	10.0/13.0
Benzo[<i>b</i>]fluoranthene	μg/L	EPA8270	10.0/13.0
Benzo[k]fluoranthene	μg/L	EPA8270	10.0/13.0
Benzoic acid	μg/L	EPA8270	10.0/13.0
Benzolg,h,i]perylene	μg/L	EPA8270	50.0/66.0
Benzo[<i>g,n,</i> njperylene Benzo[<i>a</i>]pyrene	μg/L	EPA8270	10.0/13.0
Benzolajpyrene Benzyl alcohol	μg/L	EPA8270	10.0/13.0
Beryllium	μg/L	EPA8270	20.0/26.0
	μg/L	EPA6010	1.0
Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether	μg/L	EPA8270	10.0/13.0
	μg/L	EPA8270	10.0/13.0
Bis(2-chloroisopropyl) ether	μg/L	EPA8270	10.0/13.0
Bis(2-ethylhexyl) phthalate Boron	μg/L	EPA8270	10.0/13.0
	μg/L	EPA6010	25.0
Bromochloromethane	μg/L	EPA8260	10.0
Bromodichloromethane	μg/L	EPA8260	5.0/25.0
Bromoform	μg/L	EPA8260	5.0/25.0
Bromomethane	μg/L	EPA8260	10.0/50.0
1-Bromophenyl phenyl ether	μg/L	EPA8270	10.0/13.0
Butylbenzyl phthalate	μg/L	EPA8270	10.0/13.0
Cadmium	μg/L	EPA6010	2.0
Calcium	μg/L	EPA6010	50.0
Carbon disulfide	μg/L	EPA8260	5.0/25.0
Carbon tetrachloride	μg/L	EPA8260	5.0/25.0
	μg/L	EPA8010	0.405/40.5
	μg/L	EPA8021	0.405/4.05

Analyte	Unit	Method	Minimum/Maximum EQLs
Carbon-14	μCi/mL	ESESOPM041	1.7E-08
Cerium-144	μCi/mL	ESESOPM008	8.18E-09/2.05E-08
Cesium-134	μCi/mL	ESESOPM008	1.76E-09/3.22E-09
Cesium-137	μCi/mL	ESESOPM008	1.91E-09/3.5E-09
Chlordane	μg/L	EPA8081	0.075
alpha-Chlordane	μg/L	EPA8081	0.075
gamma-Chlordane	μg/L	EPA8081	0.015
Chloride	μg/L	EPA9056	500
4-Chloroaniline	μg/L	EPA8270	20.0/26.0
Chlorobenzene	μg/L	EPA8260	5.0/25.0
4-Chloro-m-cresol	μg/L	EPA8270	20.0/26.0
Chloroethane	μg/L	EPA8260	10.0/50.0
Chloroethene	μg/L	EPA8260	10.0/50.0
2-Chloroethyl vinyl ether	μg/L	EPA8260	10.0
Chloroform	μg/L	EPA8260	5.0/25.0
	μg/L	EPA8010	0.428/42.8
Chloromethane	μg/L	EPA8021	0.428/4.28
2-Chloronaphthalene	μg/L μg/L	EPA8260 EPA8270	10.0/50.0
2-Chlorophenol	μg/L μg/L	EPA8270 EPA8270	10.0/13.0
4-Chlorophenyl phenyl ether	μg/L	EPA8270	10.0/13.0
Chloroprene	μg/L	EPA8260	10.0/13.0 5.0/25.0
Chromium	μg/L	EPA6010	3.0
Chrysene	μg/L	EPA8270	10.0/13.0
Cobalt	μg/L	EPA6010	5.0
Cobalt-57	μČi/mL	ESESOPM008	9.9E-10/2.7E-09
Cobalt-60	μCi/mL	ESESOPM008	1.93E-09/3.5E-09
Copper	μg/L	EPA6010	3.0
m/p-Cresol	μg/L	EPA8270	10.0/13.0
o-Cresol	μg/L	EPA8270	10.0/13.0
Curium-242	μCi/mL	ESESOPM032	1.0E-11/1.1E-10
Curium-243	μCi/mL	ESESOPM032	4.0E-11/2.2E-10
Curium-246	μCi/mL	ESESOPM032	4.0E-11/1.8E-10
Cyanide	μg/L	EPA9010A	5.0
p,p´-DDD	μg/L	EPA8081	0.015
p,p´-DDE	μg/L	EPA8081	0.015
p,p´-DDT	μg/L	EPA8081	0.015
Dibenz[a,h]anthracene	μg/L	EPA8270	10.0/13.0
Dibenzofuran	μg/L	EPA8270	10.0/13.0
Dibromochloromethane	μg/L	EPA8260	5.0/25.0
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	μg/L	EPA8260	5.0/25.0
Dibromomethane	μg/L	EPA8260	5.0/25.0
Di-n-butyl phthalate	μg/L μg/L	EPA8260 EPA8270	5.0/25.0
1,2-Dichlorobenzene	μg/L	EPA8260	10.0/13.0 5.0
, = = · - · · · · · · · · · · · · · · · ·	μg/L	EPA8270	10.0/13.0
1,3-Dichlorobenzene	μg/L	EPA8270	10.0/13.0
1,4-Dichlorobenzene	μg/L	EPA8260	5.0/25.0
	μg/L	EPA8270	10.0/13.0
3,3'-Dichlorobenzidine	μg/L	EPA8270	20.0/26.0
trans-1,4-Dichloro-2-butene	μg/L	EPA8260	5.0/25.0
Dichlorodifluoromethane	μg/L	EPA8260	5.0/25.0
1,1-Dichloroethane	μg/L	EPA8260	5.0/25.0
1,2-Dichloroethane	μg/L	EPA8260	5.0/25.0
1,1-Dichloroethylene	μg/L	EPA8260	5.0/25.0
cis-1,2-Dichloroethylene	μg/L	EPA8260	5.0
trans-1,2-Dichloroethylene	μg/L	EPA8260	5.0
Dichloromethane	μg/L	EPA8260	5.0/25.0
2,4-Dichlorophenol	μg/L	EPA8270	10.0/13.0
1,2-Dichloropropane cis-1,3-Dichloropropene	μg/L	EPA8260	5.0/25.0
	μg/L	EPA8260	5.0/25.0

Analyte	Unit	Method	Minimum/Maximum EQLs
trans-1,3-Dichloropropene	μg/L	EPA8260	5.0/25.0
Dieldrin	μg/L	EPA8081	0.015
Diethyl phthalate	μg/L	EPA8270	10.0/13.0
2,4-Dimethyl phenol	μg/L	EPA8270	10.0/13.0
Dimethyl phthalate	μg/L	EPA8270	10.0/13.0
2,4-Dinitrophenol	μg/L	EPA8270	50.0/66.0
2,4-Dinitrotoluene	μg/L	EPA8270	10.0/13.0
2,6-Dinitrotoluene	μg/L	EPA8270	10.0/13.0
Di-n-octyl phthalate	μg/Ľ	EPA8270	10.0/13.0
Endosulfan sulfate	μg/L	EPA8081	0.015
Endosulfan I	μg/L	EPA8081	0.015
Endosulfan II	μg/L	EPA8081	0.015
Endrin	μg/L	EPA8081	0.015
Endrin aldehyde	μg/L	EPA8081	0.015
Endrin ketone	μg/L	EPA8081	0.015
Ethylbenzene	μg/L	EPA8260	5.0/25.0
Europium-152	μCi/mL	ESESOPM008	8.65E-09/1.67E-08
Europium-154	μCi/mL	ESESOPM008	5.37E-09/9.19E-09
Europium-155	μCi/mL	ESESOPM008	3.9E-09/1.03E-08
Fluoranthene	μg/L	EPA8270	10.0/13.0
Fluorene	μg/L	EPA8270	10.0/13.0
Gross alpha	μCi/mL	ESESOPM017	6.2E-10/7.75E-09
Heptachlor	μg/L	EPA8081	0.015
Heptachlor epoxide	μg/L	EPA8081	0.015
Hexachlorobenzene	μg/L	EPA8270	10.0/13.0
Hexachlorobutadiene	μg/L	EPA8270	10.0/13.0
Hexachlorocyclopentadiene	μg/L	EPA8270	10.0/13.0
Hexachloroethane 2-Hexanone	μg/L.	EPA8270	10.0/13.0
Indeno[1,2,3- <i>c,d</i>]pyrene	μg/L	EPA8260	10.0/50.0
lodine-129	μg/L μCi/mL	EPA8270	10.0/13.0
lodomethane		ESESOPM008	2.69E-09/5.01E-09
Iron	μg/L	EPA8260	5.0/25.0
Isobutyl alcohol	μg/L μg/L	EPA6010	20.0
Isophorone	μg/L μg/L	EPA8260 EPA8270	100/500
Lead	μg/L	EPA6010	10.0/13.0 5.0
Lead-212	μCi/mL	ESESOPM008	3.99E-09/9.75E-09
Lindane	μg/L	EPA8081	0.015
Magnesium	μg/L	EPA6010	50.0
Manganese	μg/L	EPA6010	3.0
Manganese-54	μCi/mL	ESESOPM008	1.8E-09/3.42E-09
Mercury	μg/L	EPA7470	0.2
Methacrylonitrile	μg/L	EPA8260	5.0/25.0
Methoxychlor	μg/L	EPA8081	0.015
2-Methyl-4,6-dinitrophenol	μg/L	EPA8270	50.0/66.0
Methyl ethyl ketone	μg/L	EPA8260	10.0/50.0
Methyl isobutyl ketone	μg/L	EPA8260	12.0/60.0
Methyl methacrylate	μg/L	EPA8260	5.0/25.0
2-Methylnaphthalene	μg/L	EPA8270	10.0/13.0
Naphthalene	μg/L	EPA8270	10.0/13.0
Neptunium-237	μCi/mL	ESESOPM032	1.1E-10/2.2E-10
Nickel	μg/L	EPA6010	5.0
Nitrate as nitrogen	μg/L	EPA9056	100/200
Nitrite as nitrogen	μg/L	EPA9056	100
m-Nitroaniline	μg/L	EPA8270	50.0/66.0
o-Nitroaniline	μg/L	EPA8270	50.0/66.0
p-Nitroaniline	μg/L	EPA8270	50.0/66.0
Nitrobenzene	μg/L	EPA8270	10.0/13.0
2-Nitrophenol	μg/L	EPA8270	10.0/13.0
4-Nitrophenol	μg/L	EPA8270	50.0/66.0
4-Milliophichol	P9'-	LI 70210	30.0/00.0

N-Nitrosodipropylamine	EPA8270 ESESOPM017 EPA8081 EPA8070 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 ESESOPM038 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08	10.0/13.0 9.0E-10/6.6E-09 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Nonvolatile beta PCB 1016 PCB 1221 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Pentachlorophenol pH Phenanthrene Phenol Plutonium-238 Plutonium-238 Plutonium-239/240 Potassium Potassium Potassium-40 Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-228 Ruthenium-106 Selenium Silver Sodium Sodium-22 Specific conductance Strontium-90 Styrene Sulfate 1,1,2,2-Tetrachloroethane Tetrachloroethylene Picl/mL Pycl/mL P	ESESOPM017 EPA8081 EPA8270 EPA9040A EPA8270 EPA9040A EPA8270 ESESOPM032 ESESOPM032 ESESOPM032 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8260 EPA8270 ESESOPM08 EPA8260 EPA8270 ESESOPM08 EPA8260 EPA8270 ESESOPM08 EPA8260 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM080 EPA8270 ESESOPM080 ESESOPM080 EPA6010 EPA6010 EPA6010 ESESOPM088	9.0E-10/6.6E-09 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Pentachlorophenol Phenanthrene Phenol Plutonium-238 Plutonium-239/240 Potassium Potassium Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-226 Radium-228 Ruthenium-106 Selenium Silver Sodium Sodium-22 Specific conductance Strontium-90 Styrene Suffate 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Pig/L Py/L Py/L Py/L Py/L Py/L Py/L Py/L Py	EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 ESESOPM032 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8260 EPA8270 ESESOPM030	0.3 0.3 0.3 0.3 0.3 0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
PCB 1231 µg/L PCB 1242 µg/L PCB 1248 µg/L PCB 1254 µg/L PCB 1260 µg/L Pentachlorophenol µg/L PH pH Phenanthrene µg/L Phenol µg/L Phenol µg/L Phenol µg/L Plutonium-238 µCi/mL Plutonium-239/240 µCi/mL Potassium µg/L Potassium-40 µCi/mL Promethium-144 µCi/mL Promethium-144 µCi/mL Promethium-146 µCi/mL Pyrene µg/L Radium-226 µCi/mL Radium-228 µCi/mL Ruthenium-106 µCi/mL Selenium µg/L Sodium µg/L Sodium-22 µCi/mL Sodium-22 µCi/mL Styrene µg/L Sulfate µg/L 1,1,2,2-Tetrachloroethane µg/L 1,1,1,2-Tetrachloroethane µg/L 1,1,2,2-Tetrachloroethane </td <td>EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 ESESOPM032 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8260 EPA8270 ESESOPM030 ESESOPM030</td> <td>0.3 0.3 0.3 0.3 0.3 0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0</td>	EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 ESESOPM032 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 ESESOPM08 EPA8270 ESESOPM08 EPA8270 ESESOPM08 EPA8260 EPA8270 ESESOPM030	0.3 0.3 0.3 0.3 0.3 0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
PCB 1242 µg/L PCB 1248 µg/L PCB 1254 µg/L PCB 1260 µg/L Pentachlorophenol µg/L Phenanthrene µg/L Phenol µg/L Plutonium-238 µCi/mL Plutonium-239/240 µCi/mL Potassium µg/L Potassium-40 µCi/mL Promethium-144 µCi/mL Promethium-146 µCi/mL Pyrene µg/L Radium-226 µCi/mL Radium-228 µCi/mL Ruthenium-106 µCi/mL Selenium µg/L Silver µg/L Sodium-22 µCi/mL Specific conductance µS/cm Strontium-90 µCi/mL Styrene µg/L Sulfate µg/L 1,1,2,2-Tetrachloroethane µg/L 1,1,2,2-Tetrachloroethane µg/L 1,1,1,2-Tetrachloroethane µg/L 1,1,2,2-Tetrachloroethane µg/L 1,1,2,2-Tetrachloroethane µg/L 1,1,2,2-Tetrachloro	EPA8081 EPA8081 EPA8081 EPA8081 EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8270 ESESOPM030	0.3 0.3 0.3 0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
PCB 1242 µg/L PCB 1254 µg/L PCB 1260 µg/L Pentachlorophenol µg/L Phenanthrene µg/L Phenol µg/L Poimal µg/L Poimal µg/L Pyrene µg/L Radium-144 µg/L Pyrene µg/L Radium-146 µg/L Pyrene µg/L Radium-146 µg/L<	EPA8081 EPA8081 EPA8081 EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 EPA8270 ESESOPM008 EPA8270 ESESOPM030	0.3 0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
PCB 1248 µg/L PCB 1254 µg/L PCB 1260 µg/L Pentachlorophenol µg/L PH pH Phenol µg/L Phenol µg/L Plutonium-238 µCi/mL Plutonium-238 µCi/mL Plutonium-239/240 µCi/mL Potassium µg/L Potassium-40 µCi/mL Promethium-144 µCi/mL Promethium-146 µCi/mL Propionitrile µg/L Pyrene µg/L Radium-226 µCi/mL Radium-228 µCi/mL Ruthenium-106 µCi/mL Selenium µg/L Sodium µg/L Sodium-22 µCi/mL Styrene µg/L Tetrachloroethane µg/L 1,1,2,2-Tetrachloroethane µg/L <td>EPA8081 EPA8081 EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030</td> <td>0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0</td>	EPA8081 EPA8081 EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030	0.3 0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
PCB 1260 Pentachlorophenol pH Phenanthrene Phenol Phenol Plutonium-238 Plutonium-239/240 Potassium Potassium-40 Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-228 Ruthenium-106 Selenium Sodium Sodium-22 Specific conductance Strontium-90 Styrene Sulfate 1,1,2,2-Tetrachloroethane Tetrachloroethylene PH Phenanthrene Pyd L Mg/L Pyd L Mg/L P/Ci/mL Poi/mL	EPA8081 EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030	0.3 50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Pentachlorophenol pH Phenanthrene Phenol Phenol Plutonium-238 Plutonium-239/240 Potassium Potassium Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-228 Ruthenium-106 Selenium Silver Sodium Sodium-22 Specific conductance Strontium-90 Styrene Sulfate 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Phenol Pyd Pyd Pyd Pyd Pid Pid Pid Pid Pid Pid Pid Pid Pid Pi	EPA8270 EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030	50.0/66.0 3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
pH Phenanthrene Phenol Phenol Phenol Plutonium-238 Plutonium-239/240 Potassium Potassium Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-228 Ruthenium-106 Selenium Silver Sodium Sodium-22 Specific conductance Strontium-90 Styrene Sulfate 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Thorium-230 Thorium-232 Thorium-234 Pici/mL Py/L Py/L Py/L Py/L Py/L Py/L Py/L Py/	EPA9040A EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM088 EPA6010 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	3.0 10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Phenanthrene Phenol Phenol Phenol Plutonium-238 Plutonium-239/240 Potassium Potassium Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-228 Ruthenium-106 Selenium Silver Sodium Sodium-22 Specific conductance Strontium-90 Styrene Sulfate 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Thorium-230 Thorium-234 Thorium-234 Thorium-234 Pid/mL PCi/mL	EPA8270 EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM088 EPA6010 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	10.0/13.0 10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Phenol μg/L Plutonium-238 μCi/mL Plutonium-239/240 μCi/mL Potassium μg/L Potassium-40 μCi/mL Promethium-144 μCi/mL Promethium-146 μCi/mL Propionitrile μg/L Pyrene μg/L Radium-226 μCi/mL Radium-228 μCi/mL Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-231 μCi/mL Thorium-234 μCi/mL	EPA8270 ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	10.0/13.0 6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Plutonium-238 Plutonium-239/240 Plutonium-239/240 Potassium Potassium Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-228 Ruthenium-106 Selenium Silver Sodium Sodium-22 Sodium-22 Specific conductance Strontium-90 Styrene Sulfate 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Thorium-230 Thorium-234 Thorium-234 Thorium-234 PCi/mL	ESESOPM032 ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA6010 ESESOPM008	6.0E-11/2.6E-10 4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Plutonium-239/240	ESESOPM032 EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 EPA6010 EPA6010 ESESOPM008	4.0E-11/2.7E-10 400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Potassium μg/L Potassium-40 μCi/mL Promethium-144 μCi/mL Promethium-146 μCi/mL Propionitrile μg/L Pyrene μg/L Radium-226 μCi/mL Radium-228 μCi/mL Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA6010 ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM010 EPA6010 EPA6010 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA6010 ESESOPM008	400 3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Potassium-40 Promethium-144 Promethium-146 Propionitrile Pyrene Radium-226 Radium-228 Ruthenium-106 Selenium Silver Sodium Sodium-22 Sodium-22 Sodium-22 Sotium-90 Styrene Strontium-90 Styrene Sulfate 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Thorium-238 Thorium-230 Thorium-234 Thorium-234 Thorium-234 Pici/mL	ESESOPM008 ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	3.08E-08/9.5E-08 1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Promethium-144 μCi/mL Promethium-146 μCi/mL Propionitrile μg/L Pyrene μg/L Radium-226 μCi/mL Radium-228 μCi/mL Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2-Tetrachloroethylene μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	ESESOPM008 ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 EPA6010 EPA6011 ESESOPM008	1.78E-09/3.25E-09 2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Promethium-146 μCi/mL Propionitrile μg/L Pyrene μg/L Radium-226 μCi/mL Radium-228 μCi/mL Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-231 μCi/mL Thorium-234 μCi/mL	ESESOPM008 EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 EPA6010 EPA6011 ESESOPM008	2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09
Propionitrile μg/L Pyrene μg/L Radium-226 μCi/mL Radium-228 μCi/mL Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA8260 EPA8270 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA6011 ESESOPM008	2.13E-09/3.83E-09 5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09
Propionitrile μg/L Pyrene μg/L Radium-226 μCi/mL Radium-228 μCi/mL Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA8270 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	5.0/25.0 10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Pyrene µg/L Radium-226 µCi/mL Radium-228 µCi/mL Ruthenium-106 µCi/mL Selenium µg/L Soliver µg/L Sodium µg/L Sodium-22 µCi/mL Specific conductance µS/cm Strontium-90 µCi/mL Styrene µg/L Sulfate µg/L 1,1,2-Tetrachloroethane µg/L 1,1,2,2-Tetrachloroethane µg/L Tetrachloroethylene µg/L µg/L µg/L <td< td=""><td>EPA8270 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031</td><td>10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0</td></td<>	EPA8270 ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	10.0/13.0 1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Radium-226 μCi/mL Radium-228 μCi/mL Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	ESESOPM030 ESESOPM030 ESESOPM008 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	1.06E-09/1.76E-09 1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09
Ruthenium-106	ESESOPM008 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	1.17E-09/2.47E-09 1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Ruthenium-106 μCi/mL Selenium μg/L Silver μg/L Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	ESESOPM008 EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	1.66E-08/3.01E-08 5.0 2.0 100 1.91E-09/3.28E-09 1.0
Selenium µg/L Silver µg/L Sodium µg/L Sodium-22 µCi/mL Specific conductance µS/cm Strontium-90 µCi/mL Styrene µg/L Sulfate µg/L 1,1,2-Tetrachloroethane µg/L 1,1,2-Tetrachloroethane µg/L Tetrachloroethylene µg/L µg/L µg/L Thallium µg/L Thorium-228 µCi/mL Thorium-230 µCi/mL Thorium-232 µCi/mL Thorium-234 µCi/mL	EPA6010 EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	5.0 2.0 100 1.91E-09/3.28E-09 1.0
Silver µg/L Sodium µg/L Sodium-22 µCi/mL Specific conductance µS/cm Strontium-90 µCi/mL Styrene µg/L Sulfate µg/L 1,1,2-Tetrachloroethane µg/L 1,1,2-Tetrachloroethane µg/L Tetrachloroethylene µg/L µg/L µg/L µg/L µg/L Thorium-228 µCi/mL Thorium-230 µCi/mL Thorium-232 µCi/mL Thorium-234 µCi/mL	EPA6010 EPA6010 ESESOPM008 EPA120.1 ESESOPM031	2.0 100 1.91E-09/3.28E-09 1.0
Sodium μg/L Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L μg/L μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA6010 ESESOPM008 EPA120.1 ESESOPM031	100 1.91E-09/3.28E-09 1.0
Sodium-22 μCi/mL Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,2-Tetrachloroethane μg/L 1,1,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	ESESOPM008 EPA120.1 ESESOPM031	1.91E-09/3.28E-09 1.0
Specific conductance μS/cm Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA120.1 ESESOPM031	1.0
Strontium-90 μCi/mL Styrene μg/L Sulfate μg/L 1,1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	ESESOPM031	
Styrene μg/L Sulfate μg/L 1,1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL		1.401-03/1./41-03
Sulfate μg/L 1,1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA8260	5.0/25.0
1,1,1,2-Tetrachloroethane μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L μg/L μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA9056	5,000
1,1,2,2-Tetrachloroethane	EPA8260	5.0/25.0
Tetrachloroethylene μg/L μg/L μg/L μg/L μg/L Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA8260	5.0/25.0
$\begin{array}{ccc} & \mu g/L \\ & \mu g/L \\ \mu g/L \\ \mu g/L \\ Thallium & \mu g/L \\ Thorium-228 & \mu Ci/mL \\ Thorium-230 & \mu Ci/mL \\ Thorium-232 & \mu Ci/mL \\ Thorium-234 & \mu Ci/mL \\ \end{array}$	EPA8260	5.0/25.0
Thallium μg/L Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA8010	0.569/56.9
Thorium-228 μCi/mL Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA8021	0.569/5.69
Thorium-230 μCi/mL Thorium-232 μCi/mL Thorium-234 μCi/mL	EPA6010	5.0
Thorium-232 μCi/mL Thorium-234 μCi/mL	ESESOPM032	8.0E-11/7.4E-10
Thorium-234 µCi/mL	ESESOPM032	7.0E-11/1.16E-09
	ESESOPM032	2.0E-11/4.1E-10
	ESESOPM008	4.48E-08/2.41E-07
	EPA8260	5.0/25.0
Total organic carbon µg/L	EPA9060M	1,000
Total organic halogens µg/L	EPA9020A	10.0
Total phosphates (as P) μg/L	EPA365.1	10.0
Toxaphene μg/L	EPA8081	1.5
1,2,4-Trichlorobenzene µg/L	EPA8270	10.0/13.0
1,1,1-Trichloroethane µg/L	EPA8260	5.0/25.0
μg/L	EPA8010	0.462/46.2
μg/L	EPA8021	0.462/4.62
1,1,2-Trichloroethane µg/L	EPA8260	5.0/25.0
Trichloroethylene µg/L	EPA8260	5.0/25.0
μg/L	EPA8010	0.39/39.0
μg/L	ED 4 0 0 0 1	0.39/3.9
Trichlorofluoromethane µg/L	EPA8021	5.0/25.0
2,4,5-Trichlorophenol μg/L	EPA8260	10.0/13.0
2,4,6-Trichlorophenol µg/L	EPA8260 EPA8270	10.0/13.0
1,2,3-Trichloropropane µg/L	EPA8260 EPA8270 EPA8270	
Tritium µCi/mL	EPA8260 EPA8270	5.0/25.0 6.29E-07/8.4E-07

Analyte	Unit	Method	Minimum/Maximum EQLs
Uranium-234 Uranium-235 Uranium-238 Vanadium Vinyl acetate Xylenes Yttrium-88 Zinc Zinc-65	μCi/mL μCi/mL μCi/mL μg/L μg/L μGi/mL μg/L μGi/mL	ESESOPM032 ESESOPM032 ESESOPM032 EPA6010 EPA8260 EPA8260 ESESOPM008 EPA6010 ESESOPM008	1.0E-11/6.0E-11 1.0E-11/4.0E-11 1.0E-11/5.0E-11 2.0 5.0/25.0 5.0/25.0 1.98E-09/4.32E-09 10.0 3.83E-09/8.38E-09

Note: The groundwater samples are unfiltered; thus, the methods for metals are for total recoverable metals. Method 6010 is an inductively coupled plasma atomic emission spectroscopy method for metals determination and is published for RCRA determinations.

Table 16. Methods and Estimated Quantitation Limits Used by GE

Analyte	Unit	Method	Minimum/Maximum EQLs
Acenaphthene	μg/L	EPA8270B	10.0/11.0
Acenaphthylene	μg/L	EPA8270B	10.0/11.0
Acetone	μg/L	EPA8260A	5.0/50.0
Acetonitrile	μg/L	EPA8260A	10.0
Acetophenone	μg/L	EPA8270B	10.0
2-Acetylaminofluorene	μg/L	EPA8270B	10.0
Acrolein	μg/L	EPA8260A	20.0
Acrylonitrile	μg/L	EPA8260A	50.0
Aldrin	μg/L	EPA8081	0.02/0.024
Allyl chloride	μg/L	EPA8260A	10.0
Aluminum	μg/L	EPA6010A	50.0
4-Aminobiphenyl	μg/L	EPA8270B	10.0
Ammonia nitrogen	μg/L	EPA350.1	50.0
Aniline	μg/L	EPA8270B	10.0
Anthracene	μg/L	EPA8270B	10.0/11.0
Antimony	μg/L	EPA6010A	10.0/500
•	μg/L	EPA7041	5.0
Aramite	μg/L	EPA8270B	10.0
Arsenic	μg/L	EPA6010A	5.0/250
	μg/L	EPA7060	5.0
Barium	μg/L	EPA6010A	5.0/250
Benzene	μg/L	EPA8260A	1.0/10.0
alpha-Benzene hexachloride	μg/L	EPA8081	0.02/0.024
beta-Benzene hexachloride	μg/L	EPA8081	0.02/0.024
delta-Benzene hexachloride	μg/L	EPA8081	0.02/0.024
Benzo[a]anthracene	μg/L	EPA8270B	10.0/11.0
Benzo[b]fluoranthene	μg/L	EPA8270B	10.0/11.0
Benzo[<i>k</i>]fluoranthene	μg/L	EPA8270B	10.0/11.0
Benzoic acid	μg/L	EPA8270B	20.0/21.0
Benzo[<i>g,h,i</i>]perylene	μg/L	EPA8270B	10.0/11.0
Benzo[a]pyrene	μg/L	EPA8270B	10.0/11.0
Benzyl alcohol	μg/L	EPA8270B	10.0/11.0
Beryllium	μg/L	EPA6010A	5.0
Bis(2-chloroethoxy) methane	μg/L	EPA8270B	10.0/11.0
Bis(2-chloroethyl) ether	μg/L	EPA8270B	10.0/11.0
Bis(2-chloroisopropyl) ether	μg/L	EPA8270B	10.0/11.0
,	μg/L	EPA8260A	20.0
Bis(2-ethylhexyl) phthalate	μg/L	EPA8270B	10.0/13.0
- (J	μg/L	EPA8270	
Bromide	μg/L	EPA300.0	10.0/14.0 250
Bromodichloromethane	μg/L	EPA8260A	
2	μ y , Γ	EFA020UA	1.0/10.0

Analyte	Unit	Method	Minimum/Maximum EQLs
Bromoform	μg/L	EPA8260A	1.0/10.0
Bromomethane	μg/L	EPA8260A	1.0/10.0
4-Bromophenyl phenyl ether	μg/L	EPA8270B	10.0/11.0
Butylbenzyl phthalate	μg/L	EPA8270B	10.0/11.0
2-sec-Butyl-4,6-dinitrophenol	μg/L	EPA8151	0.1
	μg/L	EPA8270B	20.0
Cadmium	μg/L	EPA6010A	
Calcium	μg/L	EPA6010A	5.0/250
Carbon disulfide	μg/L	EPA8260A	100
Carbon tetrachloride	μg/L	EPA8260A	5.0/50.0
alpha-Chlordane			1.0/10.0
gamma-Chlordane	μg/L	EPA8081	0.02/0.024
Chloride	μg/L	EPA8081	0.02/0.024
Smoride	μg/L	EPA9056	100
4-Chloroaniline	μg/L	EPA300.0	250
	μg/L	EPA8270B	10.0/21.0
Chlorobenzene	μg/L	EPA8260A	1.0/10.0
Chlorobenzilate	μg/L	EPA8270B	10.0
I-Chloro-m-cresol	μg/L	EPA8270B	10.0/11.0
Chloroethane	μg/L	EPA8260A	1.0/10.0
Chloroethene	μg/L	EPA8260A	1.0/10.0
2-Chloroethyl vinyl ether	μg/L	EPA8260A	5.0/50.0
Chloroform	μg/L	EPA8260A	1.0/10.0
Chloromethane	μg/L	EPA8260A	1.0/10.0
2-Chloronaphthalene	μg/L	EPA8270B	10.0/11.0
2-Chlorophenol	μg/L	EPA8270B	10.0/11.0
I-Chlorophenyl phenyl ether	μg/L	EPA8270B	10.0/11.0
Chloroprene	μg/L	EPA8260A	2.0
Chromium	μg/L	EPA6010A	5.0/250
Chrysene	μg/L	EPA8270B	10.0/11.0
Cobalt	μg/L	EPA6010A	5.0/250
Copper	μg/L	EPA6010A	5.0/250
n/p-Cresol	μg/L	EPA8270B	10.0/11.0
o-Cresol	μg/L	EPA8270B	10.0/11.0
Cyanide	μg/L	EPA9012	10.0
p,p^-DDD	μg/L	EPA8081	0.039/0.049
p,p´-DDE	μg/L	EPA8081	0.039/0.049
p,p'-DDT	μg/L	EPA8081	0.039/0.049
Diallate	μg/L	EPA8270B	10.0
Dibenz[<i>a,h</i>]anthracene	μg/L	EPA8270B	10.0/11.0
Dibenzofuran	μg/L	EPA8270B	10.0/11.0
Dibromochloromethane	μg/L	EPA8260A	
,2-Dibromo-3-chloropropane	μg/L	EPA8260A	1.0/10.0
,2-Dibromoethane	μg/L	EPA8260A	2.0
Dibromomethane	μg/L		2.0
Di-n-butyl phthalate		EPA8260A EPA8270B	2.0
,2-Dichlorobenzene	μg/L		10.0/11.0
,2-Dictiolopenzene	μg/L	EPA8270B	10.0/11.0
,3-Dichlorobenzene	μg/L	EPA8260A	1.0
,5-Dicinorobenzene	μg/L	EPA8270B	10.0/11.0
4 Dioblorahannana	μg/L	EPA8260A	1.0
,4-Dichlorobenzene	μg/L "	EPA8270B	10.0/11.0
0/0:11	μg/L	EPA8260A	1.0
,3´-Dichlorobenzidine	μg/L	EPA8270B	49.0/52.0
ans-1,4-Dichloro-2-butene	μg/L	EPA8260A	2.0
Dichlorodifluoromethane	μg/L	EPA8260A	2.0
,1-Dichloroethane	μg/L	EPA8260A	1.0/10.0
,2-Dichloroethane	μg/L	EPA8260A	1.0/10.0
,1-Dichloroethylene	μg/L	EPA8260A	1.0/10.0
,2-Dichloroethylene	μg/L	EPA8260A	1.0/10.0
rans-1,2-Dichloroethylene	μg/L	EPA8260A	1.0/10.0
Dichloromethane	μg/L	EPA8260A	
2,4-Dichlorophenol	μg/L	EPA8270B	1.0/10.0
2,6-Dichlorophenol	μg/L	EPA8270B EPA8270B	10.0/11.0 10.0

Analyte	Unit	Method	Minimum/Maximum EQLs
2,4-Dichlorophenoxyacetic acid	μg/L	EPA8151	0.008/0.101
1,2-Dichloropropane	μg/L	EPA8260A	0.098/0.101
cis-1,3-Dichloropropene	μg/L	EPA8260A	1.0/10.0
trans-1,3-Dichloropropene	μg/L	EPA8260A	1.0/10.0
Dieldrin	μg/L μg/L	EPA8081	1.0/10.0
Diethyl phthalate	μg/L μg/L		0.039/0.049
Dimethoate	μg/L	EPA8270B	10.0/11.0
2,4-Dimethyl phenol		EPA8270B	10.0
Dimethyl phthalate	μg/L	EPA8270B	10.0/11.0
p-Dimethylaminoazobenzene	μg/L	EPA8270B	10.0/11.0
7,12-Dimethylbenz[a]anthracene	μg/L	EPA8270B	10.0
3,3'-Dimethylbenzidine	μg/L	EPA8270B	10.0
a,a-Dimethylphenethylamine	μg/L	EPA8270B	20.0
1,3-Dinitrobenzene	μg/L	EPA8270B	10.0
2,4-Dinitrophenol	μg/L	EPA8270B	10.0
2,4-Dinitrophenoi 2,4-Dinitrotoluene	μg/L	EPA8270B	10.0/21.0
	μg/L	EPA8270B	10.0/11.0
2,6-Dinitrotoluene	μg/L	EPA8270B	10.0/11.0
Di-n-octyl phthalate	μg/L	EPA8270B	10.0/11.0
1,4-Dioxane	μg/L	EPA8270B	10.0
Diphenylamine	μg/L	EPA8270B	10.0
Disulfoton	μg/L	EPA8270B	10.0
Endosulfan sulfate	μg/L	EPA8081	0.02/0.049
Endosulfan I	μg/L	EPA8081	0.02/0.024
Endosulfan II	μg/L	EPA8081	0.039/0.049
Endrin	μg/L.	EPA8081	0.039/0.049
Endrin ketone	μg/L	EPA8081	0.039/0.049
Ethyl methacrylate	μg/L	EPA8270B	10.0
Ethyl methanesulfonate	μg/L	EPA8270B	10.0
Ethylbenzene	μg/L	EPA8260A	1.0/10.0
amphur	μg/L	EPA8270B	10.0
-luoranthene	μg/L	EPA8270B	10.0/11.0
Fluorene	μg/L	EPA8270B	10.0/11.0
Fluoride	μg/L	EPA9056	50.0
Heptachlor	μg/L	EPA8081	0.02/0.024
Heptachlor epoxide	μg/L	EPA8081	0.02/0.024
dexachlorobenzene	μg/L	EPA8270B	10.0/11.0
lexachlorobutadiene	μg/L	EPA8270B	10.0/11.0
dexachlorocyclopentadiene	μg/L	EPA8270B	10.0/11.0
dexachloroethane	μg/L	EPA8270B	10.0/11.0
dexachlorophene	μg/L	EPA8270B	500
lexachloropropene	μg/L	EPA8270B	10.0
-Hexanone	μg/L	EPA8260A	5.0/50.0
ndeno[1,2,3- <i>c,d</i>]pyrene	μg/L	EPA8270B	10.0/11.0
odomethane	μg/L	EPA8260A	10.0
ron	μg/L	EPA6010A	50.0
sobutyl alcohol	μg/L	EPA8260A	20.0
sodrin	μg/L	EPA8270B	10.0
sophorone	μg/L	EPA8270B	10.0/11.0
sosafrole	μg/L	EPA8270B	10.0
(epone	μg/L	EPA8270B	10.0
ead	μg/L	EPA6010A	5.0/250
	μg/L	EPA7421	5.0
indane	μg/L	EPA8081	0.02/0.024
ithium	μg/L	EPA6010A	25.0
Magnesium	μg/L	EPA6010A	10.0
langanese	μg/L	EPA6010A	10.0
1ercury	μg/L	EPA7470	
lethacrylonitrile	μg/L μg/L	EPA/4/0 EPA8260A	0.2 10.0
Methapyrilene	μg/L		
Methoxychlor		EPA8270B	10.0
-Methyl-4,6-dinitrophenol	μg/L	EPA8081	0.196/0.244
Aethyl ethyl ketone	μg/L μg/L	EPA8270B	10.0/20.0
	11(1/)	EPA8260A	5.0/50.0

Analyte	Unit	Method	Minimum/Maximum EQLs
Methyl isobutyl ketone	μg/L	EPA8260A	5.0/50.0
Methyl methacrylate	μg/L	EPA8260A	
Methyl methanesulfonate	μg/L	EPA8270B	10.0
3-Methylcholanthrene			10.0
2-Methylnaphthalene	μg/L	EPA8270B	10.0
	μg/L	EPA8270B	10.0/11.0
Naphthalene	μg/L	EPA8270B	10.0/11.0
1,4-Naphthoquinone	μg/L	EPA8270B	10.0
1-Naphthylamine	μg/L	EPA8270B	10.0
2-Naphthylamine	μg/L	EPA8270B	10.0
Nickel	μg/L	EPA6010A	5.0/250
Nitrate as nitrogen	μg/L	EPA9056	50.0
Nitrate-nitrite as nitrogen	μg/L	EPA353.1	50.0/10,000
Nitrite as nitrogen	μg/L	EPA9056	50.0
m-Nitroaniline	μg/L	EPA8270B	
o-Nitroaniline			10.0/11.0
o-Nitroaniline	μg/L	EPA8270B	10.0/11.0
Nitrobenzene	µg/L	EPA8270B	10.0/11.0
	μg/L	EPA8270B	10.0/11.0
2-Nitrophenol	μg/L	EPA8270B	10.0/11.0
4-Nitrophenol	μg/L	EPA8270B	10.0/21.0
4-Nitroquinoline-1-oxide	μg/L	EPA8270B	10.0
N-Nitrosodi-n-butylamine	μg/L	EPA8270B	10.0
N-Nitrosodiethylamine	μg/L	EPA8270B	10.0
N-Nitrosodimethylamine	μg/L	EPA8270B	10.0
N-Nitrosodiphenylamine	μg/L	EPA8270B	10.0/11.0
N-Nitrosodipropylamine	μg/L	EPA8270B	
N-Nitrosomethylethylamine			10.0/11.0
N-Nitrosomorpholine	μg/L	EPA8270B	10.0
	μg/L	EPA8270B	10.0
N-Nitrosopiperidine	μg/L	EPA8270B	10.0
N-Nitrosopyrrolidine	μg/L	EPA8270B	10.0
5-Nitro-o-toluidine	μg/L	EPA8270B	10.0
Oil & grease	μg/L	EPA9070	2,000
PCB 1016	μg/L	EPA8081	0.123/0.152
PCB 1221	μg/L	EPA8081	0.1/0.152
PCB 1232	μg/L	EPA8081	0.123/0.152
PCB 1242	μg/L	EPA8081	0.123/0.152
PCB 1248	μg/L	EPA8081	
PCB 1254	μg/L		0.123/0.152
PCB 1260		EPA8081	0.123/0.152
Pentachlorobenzene	μg/L /1	EPA8081	0.123/0.152
Pentachloroethane	μg/L	EPA8270B	10.0
	μg/L	EPA8270B	10.0
Pentachloronitrobenzene	μg/L	EPA8270B	10.0
Pentachlorophenol	μg/L	EPA8270B	10.0/11.0
oH	pН	EPA9045C	0.0
Phenacetin	μg/L	EPA8270B	10.0
Phenanthrene	μg/L	EPA8270B	10.0/11.0
Phenol	μg/L	EPA8270B	10.0/11.0
Phenols	μg/L	EPA9066	
-Phenylenediamine	μg/L		5.0
horate		EPA8270B	10.0
P-Picoline	μg/L	EPA8270B	10.0
Potassium	μg/L	EPA8270B	10.0
	μg/L	EPA6010A	100
ronamid	μg/L	EPA8270B	10.0
Propionitrile	μg/L	EPA8260A	20.0
'yrene	μg/L	EPA8270B	10.0/11.0
Pyridine	μg/L	EPA8270B	10.0
Safrole	μg/L	EPA8270B	10.0
Selenium	μg/L	EPA6010A	
			5.0/250
Silica	μg/L	EPA7740	5.0
	μg/L	EPA6010A	100
Silver	μg/L	EPA6010A	5.0/250
Sodium Specific conductance	μg/L	EPA6010A	100
	μS/cm	EPA9050	

Analyte	Unit	Method	Minimum/Maximum EQLs
Styrene	μg/L	EPA8260A	1.0/10.0
Sulfate	μg/L	EPA9056	200
	μg/L	EPA300.0	1,000
Sulfotepp	μg/L	EPA8270B	10.0
2,4,5-T	μg/L	EPA8151	0.098/0.101
1,2,4,5-Tetrachlorobenzene	μg/L	EPA8270B	10.0
1,1,1,2-Tetrachloroethane	μg/L	EPA8260A	1.0
1,1,2,2-Tetrachloroethane	μg/L	EPA8260A	1.0/10.0
Tetrachloroethylene	μg/L	EPA8260A	1.0/10.0
2,3,4,6-Tetrachlorophenol	μg/L	EPA8270B	20.0
Thallium	μg/L	EPA6010A	5.0/250
	μg/L	EPA7841	5.0
Thionazin	μg/L	EPA8270B	10.0
Tin	μg/L	EPA6010A	10.0/50.0
Toluene	μg/L	EPA8260A	1.0/10.0
o-Toluidine	μg/L	EPA8270B	10.0
Total dissolved solids	μg/L	EPA160.1	10,000
Total organic carbon	μg/L	EPA9060	5,000
Total organic halogens	μg/L	EPA9020B	10.0
Total petroleum hydrocarbons	μg/L	EPA418.1	1,000
Total phosphates (as P)	μg/L	EPA365.4	50.0
Toxaphene	μg/L	EPA8081	0.98/1.22
2,4,5-TP (Silvex)	μg/L	EPA8151	0.098/0.101
1,2,4-Trichlorobenzene	μg/L	EPA8270B	10.0/11.0
1,1,1-Trichloroethane	μg/L	EPA8260A	1.0/10.0
1,1,2-Trichloroethane	μg/L	EPA8260A	1.0/10.0
Trichloroethylene	μg/L	EPA8260A	1.0/10.0
Trichlorofluoromethane	μg/L	EPA8260A	1.0/10.0
2,4,5-Trichlorophenol	μg/L	EPA8270B	10.0/11.0
2,4,6-Trichlorophenol	μg/L	EPA8270B	10.0/11.0
1,2,3-Trichloropropane	µg/L	EPA8260A	2.0
O,O,O-Triethyl phosphorothioate	μg/L	EPA8270B	10.0
1,3,5-Trinitrobenzene	μg/L	EPA8270B	20.0
Turbidity	NTU	EPA180.1	0.2/10.0
Vanadium	μg/L	EPA6010A	5.0/250
Vinyl acetate	μg/L	EPA8260A	5.0/50.0
m/p-Xylene	μg/L	EPA8260A	1.0
Xylenes	μg/L	EPA8260A	1.0/10.0
Zinc	μg/L	EPA6010A	5.0/250

Note: The groundwater samples are unfiltered; thus, the methods for metals are for total recoverable metals. Method 6010 is an inductively coupled plasma atomic emission spectroscopy method for metals determination and is published for RCRA determinations.

Table 17. Methods and Estimated Quantitation Limits Used by WA

Analyte	Unit	Method	Minimum/Maximum EQLs
Acenaphthene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	18.0/36.7
Acenaphthylene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	23.0/46.9
Acetone	μg/L	EPA8260	10.0/50.0
Acetonitrile	μg/L	EPA8260	20.0/100
Acetophenone	μg/L	EPA8270	10.0/20.0
2-Acetylaminofluorene	μg/L	EPA8270	10.0/20.0
Acrolein	μg/L	EPA8260	10.0/100
Acrylonitrile	μg/L	EPA8260	5.0/25.0
Aldrin	μg/L	EPA8081	0.05/0.111

Analyte	Unit	Method	Minimum/Maximum EQL
Alkalinity (as CaCO ₃)	meg/L	EDA210 1	0.700
Allyl chloride	•	EPA310.1	6,700
Aluminum	μg/L	EPA8260	10.0/50.0
4-Aminobiphenyl	μg/L	EPA6010	146
	μg/L	EPA8270	10.0/20.0
Ammonia	μg/L	EPA350.3	122
Aniline	μg/L	EPA8270	10.0/20.0
Anthracene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	6.6/13.5
Antimony	μg/L	EPA6010	19.0/32.0
Aramite	μg/L	EPA8270	20.0/40.0
Arsenic	μg/L	EPA6010	
,			32.0/40.0
Barium	μg/L	EPA7060	32.0
	μg/L	EPA6010	1.8
Benzene	μg/L	EPA8260	5.0/2,500
	μg/L	EPA8020	1.0
alpha-Benzene hexachloride	μg/L	EPA8081	0.05/0.111
eta-Benzene hexachloride	μg/L	EPA8081	0.05/0.111
lelta-Benzene hexachloride	μg/L	EPA8081	0.05/0.111
Benzidine	μg/L	EPA8270	
Benzo[a]anthracene	μg/L		50.0
ochzo[a]antinacene		EPA8270	10.0/60.0
Dames Childhanna and	μg/L	EPA8310	0.13/0.265
Benzo[b]fluoranthene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	0.18/0.367
Benzo[<i>k</i>]fluoranthene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	0.17/0.347
Benzoic acid	μg/L	EPA8270	25.0/55.0
Benzo[<i>g,h,i</i>]perylene	μg/L	EPA8270	
19, 1,1p 1, 1	μg/L		10.0/60.0
Benzo[<i>a</i>]pyrene	μ9/Ε	EPA8310	0.76/1.55
onzolajpyrene	μg/L	EPA8270	10.0/60.0
Demonstrate at a second	μg/L	EPA8310	0.23/0.469
Benzyl alcohol	μg/L	EPA8270	10.0/20.0
Beryllium	μg/L	EPA6010	1.6
Bis(2-chloroethoxy) methane	μg/L	EPA8270	10.0/60,0
Bis(2-chloroethyl) ether	μg/L	EPA8270	10.0/60.0
Bis(2-chloroisopropyl) ether	μg/L	EPA8270	10.0/60.0
Bis(2-ethylhexyl) phthalate	μg/L	EPA8270	
Boron			5.0/60.0
Bromodichloromethane	μg/L	EPA6010	266
Bromoform	μg/L	EPA8260	5.0/2,500
	hg/T	EPA8260	5.0/2,500
Bromomethane	μg/L	EPA8260	10.0/5,000
-Bromophenyl phenyl ether	μg/L	EPA8270	5.0/60.0
Butylbenzyl phthalate	μg/L	EPA8270	10.0/60.0
-sec-Butyl-4,6-dinitrophenol	μg/L	EPA8270	50.0/100
admium	μg/L	EPA6010	
Calcium	μg/L	EPA6010	4.7
Carbazole			471
Carbon disulfide	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8260	5.0/25.0
arbon tetrachloride	μg/L	EPA8260	5.0/2,500
	μg/L	EPA8010	1.0
arbonate	μg/L	EPA310.1	6,700
lpha-Chlordane	μg/L	EPA8081	0.05/0.111
amma-Chlordane	μg/L	EPA8081	0.05/0.111
hloride	μg/L	EPA9056	
	μg/L		210/420
-Chloroaniline		EPA300.0	210
	μg/L	EPA8270	10.0/60.0
Chlorobenzene	μg/L	EPA8260	5.0/2,500
Chlorobenzilate	μg/L	EPA8270	10.0/20.0
-Chloro-m-cresol	μg/L	EPA8270	10.0/60.0
Chloroethane	μg/L	EPA8260	10.0/5,000
hloroethene	μg/L	EPA8260	
-Chloroethyl vinyl ether	μg/L		10.0/5,000
Chloroform	μg/L μg/L	EPA8260 EPA8260	10.0/5,000
	11(1/1	トトリカススと	5.0/2,500

Analyte	Unit	Method	Minimum/Maximum EQL
	μg/L	EPA8010	1.0
Chloromethane	μg/L	EPA8260	
2-Chloronaphthalene	μg/L	EPA8270	10.0/5,000
2-Chlorophenol	μg/L	EPA8270	10.0/60.0
4-Chlorophenyl phenyl ether	μg/L	EPA8270	10.0/60.0
Chloroprene	μg/L	EPA8260	10.0/60.0
Chromium	μg/L	EPA6010	5.0/25.0
Chrysene	μg/L	EPA8270	7.0
•	μg/L	EPA8310	10.0/60.0
Cobalt	μg/L	EPA6010	1.5/3.06
Copper	μg/L		4.5
m-Cresol	μg/L	EPA6010	15.0
m/p-Cresol	μg/L	EPA8270	10.0/20.0
o-Cresol	μg/L	EPA8270	10.0/60.0
p-Cresol		EPA8270	10.0/60.0
Cyanide	μg/L μg/L	EPA8270	10.2
p,p'-DDD	µg/L	EPA9010A	15.0/30.4
p,p´-DDE	μg/L	EPA8081	0.1/0.222
p,p -DDC p,p -DDT	μg/L	EPA8081	0.1/0.222
Diallate	μg/L	EPA8081	0.1/0.222
Dibenz[<i>a,h</i>]anthracene	μg/L	EPA8270	10.0/20.0
Discrizia, njanimacene	μg/L	EPA8270	10.0/60.0
Dibenzofuran	μg/L	EPA8310	0.3/0.612
Dibromochloromethane	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8260	5.0/2,500
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	μg/L	EPA8260	5.0/25.0
	μg/L	EPA8260	5.0/25.0
Dibromomethane	μg/L	EPA8260	5.0/25.0
Di-n-butyl phthalate	μg/L	EPA8270	10.0/60.0
1,2-Dichlorobenzene	μg/L	EPA8270	10.0/60.0
1.0 Diablambana	μg/L	EPA8260	5.0
1,3-Dichlorobenzene	μg/L	EPA8270	10.0/60.0
I 4 Diablanda	μg/L	EPA8260	5.0
I,4-Dichlorobenzene	μg/L	EPA8270	10.0/60.0
20/5/11	μg/L	EPA8260	5.0
3,3'-Dichlorobenzidine	μg/L	EPA8270	10.0/60.0
rans-1,4-Dichloro-2-butene	μg/L	EPA8260	20.0/100
Dichlorodifluoromethane	μg/L	EPA8260	10.0/50.0
,1-Dichloroethane	μg/L	EPA8260	5.0/2,500
,2-Dichloroethane	μg/L	EPA8260	5.0/2,500
,1-Dichloroethylene	μg/L	EPA8260	5.0/2,500
,2-Dichloroethylene	μg/L	EPA8260	5.0/2,500
sis-1,2-Dichloroethylene	μg/L	EPA8260	5.0/25.0
rans-1,2-Dichloroethylene	μg/L	EPA8260	5.0
Dichloromethane	μg/L	EPA8260	5.0/2,500
2,4-Dichlorophenol	μg/L	EPA8270	10.0/60.0
2,6-Dichlorophenol	μg/L	EPA8270	10.0/20.0
2,4-Dichlorophenoxyacetic acid	μg/L	EPA8151	1.0/2.0
,2-Dichloropropane	μg/L	EPA8260	5.0/2,500
is-1,3-Dichloropropene	μg/L	EPA8260	
ans-1,3-Dichloropropene	μg/L	EPA8260	5.0/2,500
Pieldrin	μg/L	EPA8081	5.0/2,500
iethyl phthalate	μg/L	EPA8270	0.1/0.222
imethoate	μg/L	EPA8141	10.0/60.0
,4-Dimethyl phenol	μg/L		0.2/0.408
imethyl phthalate		EPA8270	10.0/60.0
-Dimethylaminoazobenzene	μg/L	EPA8270	10.0/60.0
,12-Dimethylbenz[a]anthracene	μg/L	EPA8270	10.0/20.0
,3'-Dimethylbenzidine	μg/L	EPA8270	10.0/20.0
	μg/L	EPA8270	10.0/20.0
,a-Dimethylphenethylamine	μg/L	EPA8270	10.0/20.0
,3-Dinitrobenzene	μg/L 	EPA8270	10.0/20.0
,4-Dinitrophenol	μg/L	EPA8270	25.0/150
,4-Dinitrotoluene	μg/L	EPA8270	10.0/60.0

Analyte	Unit	Method	Minimum/Maximum EQL
2,6-Dinitrotoluene	μg/L	EPA8270	10.0/60.0
Di-n-octyl phthalate	μg/L	EPA8270	10.0/60.0
1,4-Dioxane	μg/L	EPA8270	10.0/60.0
Diphenylamine	μg/L	EPA8270	10.0/20.0
1,2-Diphenylhydrazine	μg/L	EPA8270	10.0/20.0
Disulfoton	μg/L		10.0
Endosulfan sulfate	μg/L	EPA8141 EPA8081	0.2/0.408
Endosulfan I	μg/L		0.1/0.222
Endosulfan II	μg/L	EPA8081	0.05/0.111
Endrin		EPA8081	0.1/0.222
Endrin aldehyde	μg/L μg/L	EPA8081	0.1/0.222
Endrin ketone		EPA8081	0.1/0.204
Ethyl methacrylate	μg/L	EPA8081	0.1/0.222
Ethyl methanesulfonate	μg/L	EPA8270	10.0/20.0
Ethylbenzene	μg/L	EPA8270	10.0/20.0
Lunyiberizerie	μg/L	EPA8260	5.0/2,500
Famphur	μg/L	EPA8020	1.0
Fluoranthene	μg/L	EPA8141	1.0/2.04
luoranmene	μg/L	EPA8270	10.0/60.0
Fluorene	µg/L	EPA8310	2.1/4.28
ridorene	μg/L	EPA8270	10.0/60.0
Fluoride	μg/L	EPA8310	2.1/4.28
	μg/L	EPA340.2	40.0
Heptachlor	μg/L	EPA8081	0.05/0.111
Heptachlor epoxide	μg/L	EPA8081	0.05/0.111
lexachlorobenzene	μg/L	EPA8270	5.0/60.0
-lexachlorobutadiene	μg/L	EPA8270	10.0/60.0
Hexachlorocyclopentadiene	μg/L	EPA8270	10.0/60.0
Hexachlorodibenzo-p-dioxins	μg/L	EPA8280	0.00036/0.0093
Hexachlorodibenzo-p-furans	μg/L	EPA8280	0.00028/0.0089
Hexachloroethane	μg/L	EPA8270	10.0/60.0
Hexachlorophene	μg/L	EPA8270	100/200
Hexachloropropene	μg/L	EPA8270	10.0/20.0
2-Hexanone	μg/L	EPA8260	10.0/50.0
ndeno[1,2,3- <i>c,d</i>]pyrene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	0.43/0.877
odomethane	μg/L	EPA8260	5.0/25.0
ron	μg/L	EPA6010	74.0
sobutyl alcohol	μg/L	EPA8260	100/500
sodrin	μg/L	EPA8081	0.1/0.204
sophorone	μg/L	EPA8270	10.0/60.0
sosafrole	μg/L	EPA8270	10.0/20.0
(epone	μg/L	EPA8081	0.5/1.02
.ead	μg/L	EPA6010	
	μg/L	EPA7421	47.0
indane	μg/L	EPA8081	47.0
ithium	μg/L	EPA6010	0.05/0.111
/lagnesium	μg/L	EPA6010	2.7
Manganese	μg/L		74.0
Mercury	μg/L	EPA6010	7.8
Methacrylonitrile		EPA7470	0.7
Methapyrilene	μg/L	EPA8260	10.0/50.0
Methoxychlor	μg/L	EPA8270	10.0/20.0
-Methyl-4,6-dinitrophenol	μg/L	EPA8081	0.5/1.11
tethyl ethyl ketone	μg/L	EPA8270	25.0/150
	μg/L	EPA8260	10.0/50.0
Methyl isobutyl ketone	μg/L	EPA8260	10.0/50.0
Methyl methacrylate	μg/L	EPA8270	10.0/20.0
Methyl methanesulfonate	μg/L	EPA8270	10.0/20.0
-Methylcholanthrene	μg/L	EPA8270	10.0/20.0
-Methylnaphthalene	μg/L	EPA8270	10.0/60.0
laphthalene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	18.0/36.7
,4-Naphthoquinone			

Analyte	Unit	Method	Minimum/Maximum EQLs
1-Naphthylamine	μg/L	EPA8270	10.0/00.0
2-Naphthylamine	μg/L	EPA8270	10.0/20.0
Nickel	μg/L	EPA6010	10.0/20.0 26.0
Nitrate as nitrogen	μg/L	EPA353.2	
Nitrate-nitrite as nitrogen	μg/L	EPA353.2	20.0/4,000
Nitrite as nitrogen	μg/L	EPA353.2	20.0/10,000
m-Nitroaniline	μg/L	EPA8270	20.0
o-Nitroaniline	μg/L		25.0/150
p-Nitroaniline	μg/L	EPA8270 EPA8270	25.0/150
Nitrobenzene	μg/L	EPA8270	25.0/150
2-Nitrophenol	μg/L	EPA8270	10.0/60.0
4-Nitrophenol	μg/L		10.0/60.0
4-Nitroquinoline-1-oxide	μg/L	EPA8270	25.0/150
N-Nitrosodi-n-butylamine		EPA8270	20.0/40.0
N-Nitrosodiethylamine	μg/L	EPA8270	10.0/20.0
N-Nitrosodimethylamine	μg/L	EPA8270	10.0/20.0
N-Nitrosodiphenylamine	μg/L	EPA8270	10.0/20.0
N-Nitrosodipropylamine	μg/L	EPA8270	5.0/60.0
N-Nitrosomethylethylamine	μg/L	EPA8270	10.0/60.0
N-Nitrosomorpholine	μg/L	EPA8270	10.0/20.0
N-Nitrosopiperidine	μg/L ···-/	EPA8270	10.0/20.0
	μg/L	EPA8270	50.0/100
N-Nitrosopyrrolidine 5-Nitro-o-toluidine	μg/L	EPA8270	10.0/20.0
Parathion ethyl	μg/L	EPA8270	10.0/20.0
	μg/L	EPA8141	0.2/0.408
Parathion methyl PCB 1016	μg/L	EPA8141	0.2/0.408
PCB 1016 PCB 1221	μg/L	EPA8081	1.0/2.22
PCB 1221 PCB 1232	μg/L	EPA8081	2.0/4.44
PCB 1232 PCB 1242	μg/L	EPA8081	1.0/2.22
PCB 1248	μg/L	EPA8081	1.0/2.22
PCB 1254	μg/L	EPA8081	1.0/2.22
PCB 1254 PCB 1260	μg/L	EPA8081	1.0/2.22
_	μg/L	EPA8081	1.0/2.22
Pentachlorobenzene	μg/L	EPA8270	10.0/20.0
Pentachlorodibenzo-p-dioxins	μg/L	EPA8280	0.00025/0.005
Dantashlassathasa	μg/L	EPA8280	0.00029/0.0055
Pentachloroethane	μg/L	EPA8270	10.0/20.0
Pentachloronitrobenzene	μg/L	EPA8270	50.0/100
Pentachlorophenol	μg/L	EPA8270	25.0/150
pH	pН	EPA9040A	0.1
Phenacetin	μg/L	EPA8270	10.0/20.0
Phenanthrene	μg/L	EPA8270	10.0/60.0
n	μg/L	EPA8310	6.4/13.1
Phenol	μg/L	EPA8270	10.0/60.0
Phenols	μg/L	EPA9066	36.2
o-Phenylenediamine	μg/L	EPA8270	10.0/20.0
Phorate	μg/L	EPA8141	0.2/0.408
Phosphate	μg/L	EPA365.2	67.0
2-Picoline	μg/L	EPA8270	10.0/20.0
Potassium	μg/L	EPA6010	187
Pronamid	μg/L	EPA8270	10.0/20.0
Propionitrile	μg/L	EPA8260	50.0/250
^O yrene	μg/L	EPA8270	10.0/60.0
	μg/L	EPA8310	2.7/5.51
Pyridine	μg/L	EPA8270	10.0/20.0
Safrole	μg/L	EPA8270	10.0/20.0
Selenium	μg/L	EPA6010	66.0
	μg/L	EPA7740	16.0
Silica	μg/L	EPA6010	1,350
Silver	μg/L	EPA6010	5.0
Sodium	μg/L	EPA6010	285
Specific conductance	μS/cm	EPA9050	
Styrene	μg/L	EPA8260	8.9/10.0 5.0/25.0
· ,	P9' -	LI 7020U	コリノコリ

Analyte	Unit	Method	Minimum/Maximum EQLs
Sulfate	μg/L	EPA9056	340/680
	µg/L	EPA375.4	340
Sulfide	μg/L	EPA376.2	6,010/12,000
Sulfotepp	μg/L	EPA8141	0.2/0.408
2,4,5-T	μg/L	EPA8150	0.5/0.51
2,3,7,8-TCDD	μg/L	EPA8280	0.00017/0.0034
1,2,4,5-Tetrachlorobenzene	μg/L	EPA8270	10.0/20.0
Tetrachlorodibenzo-p-dioxins	μg/L	EPA8280	0.00017/0.0034
Tetrachlorodibenzo-p-furans	μg/L	EPA8280	0.00017/0.0034
1,1,1,2-Tetrachloroethane	μg/L	EPA8260	5.0/25.0
1,1,2,2-Tetrachloroethane	μg/L	EPA8260	
Tetrachloroethylene	μg/L	EPA8260	5.0/2,500
remainer early tone	μg/L		5.0/2,500
2,3,4,6-Tetrachlorophenol	μg/L	EPA8010	1.0
Thallium		EPA8270	10.0/20.0
mamam	μg/L	EPA6010	55.0
Thionazin	μg/L	EPA7841	25.0
Tin	μg/L	EPA8141	0.2/0.408
Toluene	μg/L	EPA6010	70.0
rolderie	μg/L	EPA8260	5.0/2,500
o-Toluidine	μg/L	EPA8020	1.0
Total dissolved solids	µg/L	EPA8270	10.0/20.0
Total organic carbon	μg/L	EPA160.1	47,000
	μg/L	EPA9060	1,000/1,800
Total organic halogens	μg/L	EPA9020B	120/480
Total petroleum hydrocarbons	μg/L	EPA418.1	3,210
Total phosphates (as P)	μg/L	EPA365.2	67.0/134
Toxaphene	μg/L	EPA8081	5.0/11.1
2,4,5-TP (Silvex)	μg/L	EPA8150	0.5/1.0
1,2,4-Trichlorobenzene	μg/L	EPA8270	10.0/60.0
1,1,1-Trichloroethane	μg/L	EPA8260	5.0/2,500
4.4.0 T (albita a and	μg/L	EPA8010	1.0
1,1,2-Trichloroethane	μg/L	EPA8260	5.0/2,500
Trichloroethylene	μg/L	EPA8260	5.0/2,500
T 1 1 0 0 0	μg/L	EPA8010	1.0
Trichlorofluoromethane	μg/L	EPA8260	5.0/2,500
2,4,5-Trichlorophenol	μg/L	EPA8270	25.0/150
2,4,6-Trichlorophenol	μg/L	EPA8270	10.0/60.0
1,2,3-Trichloropropane	μg/L	EPA8260	5.0/25.0
O,O,O-Triethyl phosphorothioate	μg/L	EPA8141	0.2/0.408
1,3,5-Trinitrobenzene	μg/L	EPA8270	10.0/20.0
Turbidity	NTU	EPA180.1	0.4/0.41
Vanadium	μg/L	EPA6010	6.9
Vinyl acetate	μg/L	EPA8260	10.0/50.0
Xylenes	μg/L	EPA8260	5.0/2,500
	μg/L	EPA8020	1.0
Zinc	μg/L	EPA6010	53.0

Note: The groundwater samples are unfiltered; thus, the methods for metals are for total recoverable metals. Method 200.7 is an inductively coupled plasma atomic emission spectroscopy method for metals determination and is published for Safe Drinking Water Act investigations.

Table 18. Methods and Estimated Quantitation Limits Used by EX

Analyte	Unit	Method	Minimum/Maximum EQLs
Acetone	µg/L	EPA8260A	5.0/500
Acetonitrile	µg/L	EPA8260A	200/10,000
Acrolein	µg/L	EPA8260A	10.0/500
Acrylonitrile	µg/L	EPA8260A	10.0/500

Analyte	Unit	Method	Minimum/Maximum EQLs
Allyl chloride	μg/L	EPA8260A	20.0/1,000
Aluminum	μg/L	EPA6010A	100
Antimony	μg/L	EPA6010A	100
Arsenic	μg/L	EPA6010A	10.0/100
Barium	μg/L	EPA6010A	5.0/25.0
Benzene	μg/L	EPA8260A	1.0/250
beta-Benzene hexachloride	μg/L	EPA8081	0.05
Beryllium	μg/L	EPA6010A	5.0
Bromochloromethane	μg/L	EPA8260A	5.0
Bromodichloromethane	μg/L	EPA8260A	
Bromoform	μg/L		1.0/250
Bromomethane	μg/L	EPA8260A	1.0/250
Cadmium		EPA8260A	2.0/250
Calcium	μg/L	EPA6010A	5.0
Carbon disulfide	μg/L	EPA6010A	1,000
Carbon tetrachloride	μg/L	EPA8260A	1.0/250
Carbon tetracinoriae	μg/L	EPA8260A	1.0/250
Chloride	μg/L	EPA8010A	1.0
Chlorobenzene	μg/L	EPA300.0	200
Chloroethane	μg/L	EPA8260A	1.0/250
Chloroethene	μg/L	EPA8260A	2.0/250
	μg/L	EPA8260A	1.0/250
2-Chloroethyl vinyl ether Chloroform	μg/L "	EPA8260A	5.0/250
Chloroform	μg/L	EPA8260A	1.0/250
Chlara a sh a s	μg/L	EPA8010A	1.0
Chloromethane	μg/L	EPA8260A	2.0/250
Chloroprene	µg/L	EPA8260A	20.0/1,000
Chromium	μg/L	EPA6010A	10.0
Cobalt	μg/L	EPA6010A	20.0
Copper	μg/L	EPA6010A	10.0
Cyanide	μg/L	EPA9010A	10.0
Dibromochloromethane	μg/L	EPA8260A	1.0/250
1,2-Dibromo-3-chloropropane	μg/L	EPA8260A	10.0/500
1,2-Dibromoethane	μg/L	EPA8260A	5.0/250
Dibromomethane	µg/L	EPA8260A	5.0/250
Di-n-butyl phthalate	μg/L	EPA8270B	10.0
1,2-Dichlorobenzene	μg/L	EPA8260A	5.0/250
1,3-Dichlorobenzene	μg/L	EPA8260A	5.0/250
1,4-Dichlorobenzene	μg/L	EPA8260A	5.0/250
trans-1,4-Dichloro-2-butene	μg/L	EPA8260A	20.0/1,000
Dichlorodifluoromethane	µg/L	EPA8260A	5.0/250
1,1-Dichloroethane	μg/L	EPA8260A	1.0/250
1,2-Dichloroethane	μg/L	EPA8260A	1.0/250
1,1-Dichloroethylene	μg/L	EPA8260A	1.0/250
1,2-Dichloroethylene	μg/L	EPA8260A	5.0/10.0
cis-1,2-Dichloroethylene	μg/L	EPA8260A	5.0/25.0
trans-1,2-Dichloroethylene	μg/L	EPA8260A	5.0/250
Dichloromethane	μg/L	EPA8260A	1.0/500
2,4-Dichlorophenoxyacetic acid	μg/L	EPA8151	0.5
1,2-Dichloropropane	μg/L	EPA8260A	1.0/250
cis-1,3-Dichloropropene	μg/L	EPA8260A	1.0/250
trans-1,3-Dichloropropene	μg/L	EPA8260A	1.0/250
1,4-Dioxane	μg/L	EPA8260A	1,000/50,000
Ethyl methacrylate	μg/L	EPA8260A	10.0/500
Ethylbenzene	μg/L	EPA8260A	1.0/250
Fluoride	μg/L	EPA300.0	200/400
2-Hexanone	μg/L	EPA8260A	1.0/500
lodomethane	μg/L	EPA8260A	5.0/250
ron	μg/L	EPA6010A	
sobutyl alcohol	μg/L		100
Lead		EPA8260A	1,000/50,000
Lindane	μg/L	EPA6010A	5.0/100
Magnesium	μg/L	EPA8081	0.05
Magnesium	μg/L	EPA6010A	500

Analyte	Unit	Method	Minimum/Maximum EQLs
Manganese	μg/L	EPA6010A	10.0
Mercury	μg/L	EPA7470A	10.0
Methacrylonitrile	μg/L	EPA8260A	0.2
Methyl ethyl ketone	μg/L		500/25,000
Methyl isobutyl ketone	μg/L	EPA8260A	5.0/500
Methyl methacrylate	μg/L	EPA8260A	5.0/500
Nickel	μg/L	EPA8260A	50.0/2,500
Nitrate as nitrogen		EPA6010A	20.0
Nitrate-nitrite as nitrogen	μg/L	EPA300.0	100
Pentachloroethane	μg/L	EPA300.0	200/1,000
pH	μg/L	EPA8260A	20.0/1,000
Phenol	pH	EPA150.1	0.0
Potassium	μg/L	EPA8270B	10.0
	μg/L	EPA6010A	1,000
Propionitrile	μg/L	EPA8260A	500/25,000
Selenium Silver	μg/L	EPA6010A	10.0/200
	μg/L	EPA6010A	20.0
Sodium	μg/L	EPA6010A	100/1,000
Specific conductance	μS/cm	EPA120.1	1.0
Styrene	μg/L	EPA8260A	1.0/250
Sulfate	μg/L	EPA300.0	200
1,1,1,2-Tetrachloroethane	μg/L	EPA8260A	5.0/250
1,1,2,2-Tetrachloroethane	μg/L	EPA8260A	1.0/250
Tetrachloroethylene	μg/L	EPA8260A	1.0/250
	μg/L	EPA8010A	1.0
Thallium	μg/L	EPA6010A	500
Toluene	μg/L	EPA8260A	1.0/250
Total organic carbon	μg/L	EPA415.1	5,000
Total phosphates (as P)	μg/L	EPA365.2	50.0
1,1,1-Trichloroethane	μg/L	EPA8260A	1.0/250
	μg/L	EPA8010A	1.0
1,1,2-Trichloroethane	μg/L	EPA8260A	1.0/250
Trichloroethylene	μg/L	EPA8260A	1.0/250
	μg/L	EPA8010A	1.0
Trichlorofluoromethane	μg/L	EPA8260A	5.0/250
1,2,3-Trichloropropane	μg/L	EPA8260A	5.0/250
Vanadium	μg/L	EPA6010A	10.0
Vinyl acetate	μg/L	EPA8260A	1.0/500
Xylenes	μg/L	EPA8260A	10.0/500
Zinc	μg/L	EPA6010A	10.0

Note: The groundwater samples are unfiltered; thus, the methods for metals are for total recoverable metals. Method 6010 is an inductively coupled plasma atomic emission spectroscopy method for metals determination and is published for RCRA determinations.

Table 19. Methods and Estimated Quantitation Limits Used by GP

Analyte	Unit	Method	Minimum/Maximum EQLs
Actinium-228 Americium-241 Antimony-125 Carbon-14 Cerium-144 Cesium-134 Cesium-137 Cobalt-57 Cobalt-60 Curium-242 Curium-243/244	μCi/mL μCi/mL μCi/mL μCi/mL μCi/mL μCi/mL μCi/mL μCi/mL μCi/mL	EPIA-013 EPIA-011 EPIA-013 EPIA-013 EPIA-013 EPIA-013 EPIA-013 EPIA-011 EPIA-011	3.24E-09/4.04E-08 3.9E-11/1.41E-09 2.07E-09/2.4E-08 7.48E-09/4.35E-08 4.72E-09/5.7E-08 6.55E-10/8.65E-09 6.98E-10/8.71E-09 5.94E-10/7.99E-09 8.78E-10/9.14E-09 2.1E-11/1.18E-09 4.8E-11/1.48E-09

Analyte	Unit	Method	Minimum/Maximum EQLs
Curium-245/246	μCi/mL	EDIA 044	475 440 455 40
Europium-152	μCi/mL	EPIA-011	1.7E-11/8.47E-10
Europium-154	μCi/mL	EPIA-013	2.09E-09/2.46E-08
Europium-155	μCi/mL	EPIA-013	2.33E-09/2.54E-08
Gross alpha		EPIA-013	2.33E-09/3.3E-08
lodine-129	μCi/mL	EPIA-001	1.66E-10/3.21E-07
Lead-212	μCi/mL	EPIA-006	3.21E-10/5.46E-09
Manganese-54	μCi/mL	EPIA-013	1.41E-09/1.69E-08
Neptunium-237	μCi/mL	EPIA-013	7.18E-10/9.21E-09
Nickel-63	μCi/mL	EPIA-032	3.6E-11/9.64E-10
Nonvolatile beta	μCi/mL	EPIA-022	1.45E-07/3.24E-07
	μCi/mL	EPIA-001	4.56E-10/3.83E-07
Plutonium-238	μCi/mL	EPIA-011	5.76E-13/1.57E-09
Plutonium-239/240	μCi/mL	EPIA-011	3.79E-13/1.0E-09
Potassium-40	μCi/mL	EPIA-013	7.91E-09/1.25E-07
Promethium-144	μCi/mL	EPIA-013	6.85E-10/8.37E-09
Promethium-146	μCi/mL	EPIA-013	9.39E-10/1.17E-08
Promethium-147	μCi/mL	EPIA-020	8.51E-10/1.44E-09
Radium, total alpha-emitting	μCi/mL	EPIA-010	2.44E-10/6.15E-10
Radium-226	μCi/mL	EPIA-008	1.05E-10/1.01E-09
Radium-228	μCi/mL	EPIA-009	5.63E-10/8.5E-09
Ruthenium-106	μCi/mL	EPIA-013	6.1E-09/8.65E-08
Sodium-22	μCi/mL	EPIA-013	8.39E-10/9.21E-09
Strontium-90	μCi/mL	EPIA-004	5.21E-10/2.27E-08
Technetium-99	μCi/mL	EPIA-005	3.24E-09/3.3E-08
Thorium-228	μCi/mL	EPIA-012	3.6E-11/1.44E-09
Thorium-230	μCi/mL	EPIA-012	1.5E-11/9.56E-10
Thorium-232	μCi/mL	EPIA-012	1.5E-11/9.65E-10
Tritium	μCi/mL	EPIA-002	4.19E-07/9.89E-06
Uranium-233/234	μCi/mL	EPIA-011	2.0E-11/2.24E-09
Uranium-235	μCi/mL	EPIA-011	1.8E-11/1.37E-09
Uranium-238	μCi/mL	EPIA-011	1.2E-11/1.98E-09
Yttrium-88	μCi/mL	EPIA-013	9.59E-10/1.36E-08
Zinc-65	μCi/mL	EPIA-013	8.34E-10/1.96E-08

Table 20. Methods and Estimated Quantitation Limits Used by TM

Analyte	Unit	Method	Minimum/Maximum EQLs
Actinium-228	µCi/mL	EPA901.1MOD	1.0005.00/0.0455.00
Americium-241	μCi/mL	EMLAM01MOD	1.062E-08/2.815E-08
Americium-241/Curium-246	μCi/mL	EMLAMO1MOD EMLAM01MOD	1.7E-10/1.3E-09
Antimony-124	μCi/mL		9.0E-11/9.3E-10
Antimony-125		EPA901.1MOD	4.24E-09/1.122E-08
Barium-133	μCi/mL	EPA901.1MOD	8.23E-09/1.967E-08
Carbon-14	μCi/mL	EPA901.1MOD	4.14E-09/1.309E-08
Cerium-144	μCi/mL	ENICMOD	1.64E-09/1.9881E-07
	μCi/mL	EPA901.1MOD	1.772E-08/4.719E-08
Cesium-134	μCi/mL	EPA901.1MOD	3.53E-09/1.084E-08
Cesium-137	μCi/mL	EPA901.1MOD	3.29E-09/7.3E-09
Cobalt-57	μCi/mL	EPA901.1MOD	2.1E-09/6.08E-09
Cobalt-58	μCi/mL	EPA901.1MOD	3.24E-09/8.45E-09
Cobalt-60	μCi/mL	EPA901.1MOD	3.26E-09/7.73E-09
Curium-242	μCi/mL	EMLAM01MOD	1.2E-10/6.6E-10
Curium-243/244	μCi/mL	EMLAM01MOD	1.5E-10/1.11E-09
Europium-152	μCi/mL	EPA901.1MOD	1.903E-08/5.304E-08
Europium-154	μCi/mL	EPA901.1MOD	8.31E-09/2.181E-08
Europium-155	μCi/mL	EPA901.1MOD	5.71E-09/2.656E-08
Gross alpha	μCi/mL	EPA900.0MOD	1.3E-10/8.152E-08
lodine-129	μCi/mL	EPA902.0MOD	1.7E-10/1.298E-08
Lead-212	μCi/mL	EPA901.1MOD	5.03E-09/1.067E-08

Analyte	Unit	Method	Minimum/Maximum EQLs
Manganese-54	μCi/mL	EPA901.1MOD	3.11E-09/6.97E-09
Neptunium-237	μCi/mL	EMLPU02MOD	8.0E-11/3.5E-10
Neptunium-239	μCi/mL	EPA901.1MOD	1.844E-08/3.456E-06
Nickel-63	μCi/mL	3500NIEMOD	2.53E-09/1.8E-08
Nonvolatile beta	μCi/mL	EPA900.0MOD	2.5E-10/7.815E-08
Plutonium-238	μCi/mL	EMLPU02MOD	9.0E-11/4.9E-10
Plutonium-239	μCi/mL	EMLPU02MOD	1.9E-10/2.5E-10
Plutonium-239/240	μCi/mL	EMLPU02MOD	1.0E-10/4.5E-10
Potassium-40	μCi/mL	EPA901.1MOD	3.02E-08/9.284E-08
Promethium-144	µCi/mL	EPA901.1MOD	3.33E-09/7.77E-09
Promethium-146	μCi/mL	EPA901.1MOD	6.36E-09/1.444E-08
Promethium-147	μCi/mL	EMLPM01MOD	2.6E-09/6.2E-09
Radium, total alpha-emitting	μCi/mL	EPA903.0MOD	3.0E-11/2.53E-09
Radium-226	μCi/mL	EPA903.0MOD	1.0E-10/1.54E-09
Radium-228	μCi/mL	EPA904.0MOD	1.05E-09/5.39E-09
Ruthenium-106	μCi/mL	EPA901.1MOD	3.163E-08/6.712E-08
Sodium-22	μCi/mL	EPA901.1MOD	2.98E-09/7.85E-09
Strontium-90	μCi/mL	EMLSR02MOD	5.8E-10/2.3E-09
Technetium-99	μCi/mL	EICHROMTC1MOD	1.34E-09/2.547E-08
Thorium-228	μCi/mL	EMLTH01MOD	8.0E-11/5.0E-10
Thorium-230	µCi/mL	EMLTH01MOD	4.0E-11/3.9E-10
Thorium-232	μCi/mL	EMLTH01MOD	6.0E-11/3.8E-10
Tin-113	μCi/mL	EPA901.1MOD	3.75E-09/9.93E-09
Tritium	μCi/mL	EPA906.0MOD	3.5E-07/3.775E-05
Uranium-234	μCi/mL	EMLU02MOD	6.0E-11/5.7E-10
Uranium-235	μCi/mL	EMLU02MOD	9.0E-11/6.4E-10
Uranium-238	μCi/mL	EMLU02MOD	1.0E-10/5.6E-10
Yttrium-88	μCi/mL	EPA901.1MOD	3.48E-09/8.04E-09
Zinc-65	μCi/mL	EPA901.1MOD	7.05E-09/1.805E-08
Zirconium-95	μCi/mL	EPA901.1MOD	5.5E-09/1.453E-08

Table 21. Method and Estimated Quantitation Limit Used by EM

6-1420 1.5E-06 6-1420 1.5E-06

Quality Control Samples

This section discusses the analytical data in terms of the following indicators of data quality: precision, accuracy, representativeness, comparability, and completeness. Precision is determined from the field and laboratory duplicate or replicate analyses and indicates the consistency of field and laboratory techniques. Accuracy is determined from the quality control standards, laboratory control samples or blank spikes, surrogates, matrix spikes, and the results of method, field, and trip blanks and indicates the ability of the laboratory to generate correct results. (Equipment blanks are used to evaluate the effectiveness of the cleaning procedures used in the field.) Representativeness is the determination of how well the sample reflects the site's characteristics. Comparability expresses the confidence with which data from different laboratories are considered to be equivalent. Completeness measures the amount of useable data resulting from the data collection activity.

PRECISION

Precision is a measure of the repeatability of a measurement and is evaluated from the results of duplicate samples and splits. Blind replicates, or field replicates, measure the repeatability of the sampling and analytical techniques, and laboratory duplicates measure the ability of the laboratory to reproduce a result. Split samples measure whether two laboratories using comparable procedures obtain equivalent results. Low precision can be caused by poor instrument performance, poor operator technique, inconsistent application of method protocols, laboratory environment, time between analyses, or by a difficult, heterogeneous sample matrix.

Replicate and Duplicate Analyses of Samples

Blind replicate and duplicate samples are analyzed to establish the precision of scheduled analyses. The replicate and duplicate analytical results are used to generate Mean Relative Difference (MRD) indices, which are used to evaluate the laboratories' performances.

The primary laboratories, ES, EX, GE, and WA, performed all analyses with the following exceptions: GP and TM performed radionuclide analyses for EX, GE, and WA.

For intralaboratory comparisons, generally 10% of the samples are analyzed in duplicate. In addition, EPD/EMS sends blind replicates of approximately 5% of the total samples to the laboratories for analysis. The results of the blind replicate analyses are used for both intralaboratory and interlaboratory comparisons.

All these results are included in the **Analytical Results** section (**Appendix B**) of this report. Results from duplicate samples are included in the main table for a given well and sample date. Results from analyses of replicate samples and duplicate analyses of the replicates are reported in a second table for the same well and sample date.

Table 25 lists the well names, sample dates, and associated blanks for wells used as blind replicates for ES, EX, GE, and WA.

Certain analytes were not present in concentrations above estimated quantitation limits in any well samples having replicates or duplicates. These analytes are not considered in further evaluation of replicate and duplicate analyses and are listed in tables 26 and 27. See tables 15–21 for the estimated quantitation limits that are applicable this quarter.

Intralaboratory Comparisons

Intralaboratory comparisons are of two types: in-house duplicates and blind replicates. The MRD was developed by R.C. Tuckfield of the Applied Statistics Group at the Savannah River Technology Center, in conjunction with M.M. Khalil of EPD/EMS, to assess the reproducibility of identical chemical analyses. For both intralaboratory comparisons, the MRD is defined as the average absolute difference between an original sample and its duplicate or blind replicate, expressed as a percentage of the mean of those two values. It is calculated as

MRD =
$$\begin{cases} \sum_{i=1}^{n} (|x_i - y_i| / [(x_i + y_i) / 2]) \\ \hline n \end{cases} \times 100,$$

where

 x_i = an analyte's mean concentration in a water sample for the i^{th} well,

 y_i = the analyte's mean concentration in the replicate or duplicate, and

n =the number of pairs of observations.

For the in-house duplicate comparisons, the quantities x_i and y_i represent the results for the original sample and the in-house duplicate, respectively. For the blind replicate comparisons, x_i and y_i represent the results for the known sample and the EPD blind replicate, respectively. Generally, the closer the original results and their replicate or duplicate results are to each other, the lower the MRD.

An Adjusted Mean Relative Difference

A drawback to the MRD statistic occurs when x_i and y_i are close to zero. This drawback can be illustrated by determining the relative difference (RD) for the *i*th well or sample as follows:

$$\mathsf{RD}_i = \frac{\left| x_i - y_i \right|}{z_i}$$

where
$$z_i = \left(\frac{x_i + y_i}{2}\right)$$

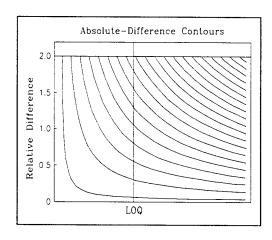


Figure 4. Relative Difference vs. the Mean

The RD_i is an individual term in the MRD calculation for the *i*th replicated sample. For example, if $x_i = 99$ and $y_i = 101$, then RD_i = 2%. However, if $x_i = 3$ and $y_i = 1$, then RD_i = 100%. Both situations have the same absolute difference, but the latter situation has a much larger relative difference. The effect can be shown by graphing the relative difference vs. the mean (z_i) and marking contours for constant levels of absolute difference (figure 4). The first contour, in the lower left corner of the figure, represents the smallest absolute difference. The last contour, in the upper right corner of the figure, represents the largest absolute difference.

The inordinate inflation of the MRD when x_i and y_i are near zero is of particular concern when the results are below the limit of quantitation (LOQ). Briefly, the LOQ is defined by L.H. Keith (1991) as 10 times the instrument signal standard deviation (σ) for blank samples. For perspective, the limit of detection is defined as 3σ .

The reproducibility of analytical results less than the LOQ is considered by environmental chemists to be questionable. In this situation, the RD_i may reflect variation more in the measuring device itself than in the measuring process. However, the MRD can be a useful statistic if adjusted so that results below the LOQ have less influence than more reproducible results above the LOQ.

The simplest adjustment to the MRD to reduce the influence of analyte concentrations near zero is to weight each RD_i in the calculation by an amount, w_i , that reflects its proximity to the LOQ value. Figure 5 shows the relationship between w_i and analyte concentration. This relationship is a linear-weight function.

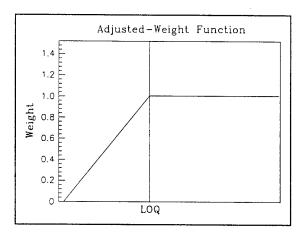


Figure 5. Relationship between w_i and Analyte Concentration

Figure 6 shows the computer simulation results for the effect of a linear-weight function on the now-adjusted MRD (MRDadj), developed by Tuckfield and Khalil, again by determining constant contours of absolute difference. Below the LOQ, all samples with the same absolute difference are given the same adjusted RD value. Above the LOQ, the unadjusted RD is preserved because the weight function is unity when z_i is greater than the LOQ.

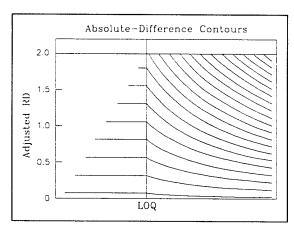


Figure 6. Effect of a Linear-Weight Function on the MRDadj

The MRDadj, then, has the following form:

$$\mathsf{MRDadj} = \frac{\sum\limits_{i=1}^{n} \mathsf{w}_i \, \mathsf{RD}_i}{n},$$
 where $\mathsf{w}_i = \begin{cases} \frac{z_i}{\mathsf{LOQ}} & \text{; if } z_i < \mathsf{LOQ} \\ 1 & \text{; otherwise.} \end{cases}$

This adjustment has several advantages. For example, the weight function reflects the chemist's view of the reliability of the measurement. If analyses are conducted on different equipment (i.e., with different LOQs), the precision of the equipment is included automatically in the MRD. Data from more precise equipment are given more influence. Also, no data are removed from the computation completely, so the sample size (n) is not affected.

Normalizing Data to the Reference Detection Limit

Because some detection limits may be anomalously high (because of dilution or other effects, for example), it is necessary to use a reference detection limit (RDL) in the MRD calculations. This is set as the 90th percentile value of the detection limits of the not-detected samples. All the results less than the RDL are adjusted up to that value. Results that are detection limit values above the RDL are eliminated from the MRD index calculations. By definition, fewer than 10% of the detection limit values are above the RDL. The intralaboratory MRD indices are listed in tables 28-34.

Interlaboratory Comparisons

For interlaboratory comparisons, the MRD is calculated as the average absolute difference between the laboratories for the ith well expressed as a percentage of the mean of both laboratories. For these comparisons, x_i and y_i represent the mean analyte concentrations for the *i*th well; x_i represents the mean from one laboratory, and y_i represents the mean from the other. The means are calculated from the known sample results and the EPD blind replicate results.

Choosing an RDL

For interlaboratory comparisons, a new RDL must be established for calculation of the MRD. The interlaboratory RDL is chosen as the 90th percentile value from the combined array of non-detected sample results from both laboratories.

Normalizing Data to the RDL

All results less than the RDL are adjusted to the new RDL value. Detection limit values above the RDL are eliminated from the MRD index comparison and from the t-tests. By definition, fewer than 10% of the detection limit values are above the RDL. In addition to the interlaboratory MRD calculations, paired t-tests are performed to see if the difference between the mean concentrations of an analyte from the same well reported by each laboratory is significant. The t-test tests the null hypothesis that there is no significant difference in the concentrations reported by the two laboratories. The MRD and the t-test results for analytes with at least one pair of results above the interlaboratory RDL are listed in tables 35-42. No result pairs were above the RDL for ES and

Analytes with significance-of-probability values less than .050 (tables 35-42) indicate a probability of less than 5% that the results for that analyte are the same from both laboratories.

Presentation of the Replicate and Duplicate Analyses

In tables 28-34, high MRDs (greater than or equal to 20) appear in bold type. Low MRDs (less than or equal to .050) appear in bold italic type.

Table 43 lists analytes and wells for which samples and blind replicates analyzed by ES yielded results where one was more than twice another.

Table 44 lists analytes and wells for which samples and laboratory duplicates analyzed by ES yielded results where one was more than twice another.

Table 45 lists analytes and wells for which samples and laboratory duplicates analyzed by EX yielded results where one was more than twice another.

Table 46 lists analytes and wells for which samples and blind replicates analyzed by GE yielded results where one was more than twice another.

Table 47 lists analytes and wells for which matrix spikes and matrix spike duplicates analyzed by GE yielded results where one was more than twice another.

Table 48 lists analytes and wells for which samples and blind replicates analyzed by GP yielded results where one was more than twice another.

Table 49 lists analytes and wells for which samples and laboratory duplicates analyzed by GP yielded results where one was more than twice another.

Table 50 lists analytes and wells for which samples and blind replicates analyzed by TM yielded results where one was more than twice another.

Table 51 lists analytes and wells for which samples and laboratory duplicates analyzed by TM yielded results where one was more than twice another.

Table 52 lists analytes and wells for which samples and blind replicates analyzed by WA yielded results where one was more than twice another.

Table 53 lists analytes and wells for which samples and laboratory duplicates analyzed by WA yielded results where one was more than twice another.

Tables 54–60 list analytes and wells where a result from one laboratory was more than twice the corresponding result from the other laboratory.

See the **Analytical Methods** subsection of the **Analytical Data Review** section of this report for more information.

ACCURACY

Accuracy is defined as the closeness of agreement between an observed value and an accepted reference value or as a measure of the over- or underestimation of reported concentrations. Accuracy is especially important when the concentration of concern approaches the detection limit and/or the action limit. When the concentration is underestimated near the detection limit, the analyte may be present but reported as not detected; near the action limit, the analyte may be at a concentration that would require remediation, but the remediation would not be performed. When the concentration is overestimated near the detection limit, the analyte may not be present but reported as detected; near the action limit, the analyte may not be at a concentration that would require remediation, but the remediation would be performed. Quality control standards, performance evaluation studies, laboratory data records reviews, laboratory control samples and blank spikes, surrogate and matrix spikes, and method blanks are used to evaluate accuracy.

Quality Control Standards

During first quarter 1998, EPD/EMS conducted quality assessments of ES, EX, GE, and WA laboratories. Each laboratory received a set of certified environmental quality control standards from Environmental Resource Associates (ERA) of Arvada, CO (lot numbers 436, 581, 3223, 3423, 8915, and 9981). Each laboratory's results were compared with the ERA-certified values and performance acceptance limits (PALs). The PALs are listed as guidelines for acceptable analytical results given the limitations of the EPA methods used to determine these parameters. The PALs closely approximate the 95% confidence interval. The laboratories' results and the certified values and limits are listed in tables 61–64.

ES, EX, GE, and WA analyzed total petroleum hydrocarbons by the infrared method.

Of the 106 analyses reported by EX, 96, or 90.1%, were within the PALs. Of the 106 analyses reported by ES, 103, or 97.2%, were within the PALs. Of 106 analyses reported by GE, 102, or 96.2%, were within the PALs. Of 106 analyses reported by WA, 105, or 99.1%, were within the PALs.

Performance Evaluation Studies

ES, EX, and WA participated in EPA's Laboratory Performance Evaluation Water Pollution Study WP037, for which results were reported in May 1997. ES, EX and GE participated in Water Supply Study WS038, for which results were reported in April 1997; ES and EX participated in WS039, reported in September 1997. EPA conducts the studies biannually to certify laboratories for specific analyses. EPA's Environmental Monitoring Systems Laboratory (EMSL) of Cincinnati, OH, prepares water samples spiked with known concentrations of constituents found in polluted waters and submits them to all laboratories seeking certification to analyze wastewater. EMSL evaluates the results, using limits statistically based on the performance of approximately 100 top-rated laboratories that analyze each constituent by the same procedure as the laboratory being evaluated.

Table 65 contains results for WP037. In study WP037, the ES results for beryllium and total phenolics were outside the acceptance limits. The result for carbonaceous biochemical oxygen demand was acceptable but near the acceptance limits; ES was instructed to check for error. The EX results for fluoride, total phosphorus, and total phenolics were outside the acceptance limits. The WA results for calcium, total organic carbon, and nonfilterable residue were outside the acceptance limits. The results for magnesium and sodium were acceptable but near the acceptance limits; WA was instructed to check for error.

Table 66 contains results for WS038. In study WS038, the ES results for 2,4-D, cis-1,2-dichloroethylene, and orthophosphate were outside the acceptance limits. The EX results for 2,4-D, propachlor, tetrachloroethylene, and total organic carbon were outside the acceptance limits. The GE results for dicamba and zinc were outside the acceptance limits.

Table 67 contains results for WS039. In study WS039, the ES results for beryllium, fluoride, total cyanide, and turbidity were outside the acceptance limits. The EX results for 2,4-D, cis-1,2-dichloroethylene, ethylene dibromide, and nitrate were outside the acceptance limits.

Laboratory Data Records Review

Reviewers visited ES, EX, GE, GP, TM, and WA during June 1998 to determine if the laboratories' practices and recordkeeping conformed with the standards of SW-846 for definitive data (EPA, 1986b). The reviewers examined SRS Groundwater Monitoring Program records for samples collected during first quarter 1998. Reviews were not conducted for the other off-site laboratories.

The purpose of the reviews was to investigate technical validation issues that are not adequately addressed by computer review of electronic data deliverables, review of analytical narratives, or review of COC forms. These technical issues included instrument calibration and performance, analyte identification, and analyte quantitation. The issues were addressed by comparing the instrument printouts associated with particular analyses to validation checklists. These method-specific checklists consisted of approximately 8 to 20 questions and were compiled from discussions with laboratory personnel and both laboratory-specific and standard operating procedures.

First Quarter 1998 Records Review of ES

During June 1998, laboratory data records were reviewed for inorganic, and organic analyses conducted by ES during first quarter 1998. Approximately 3% of the samples analyzed for each analytical method were chosen for review.

Major Issues

No technical issues of concern were identified during the review.

First Quarter 1998 Records Review of EX

During June 1998, laboratory data records were reviewed for inorganic, and organic analyses conducted by EX during first quarter 1998. Approximately 3% of the samples analyzed for each analytical method were chosen for review.

Major Issues

No technical issues of concern were identified during the review.

First Quarter 1998 Records Review of GE

During June 1998, laboratory data records were reviewed for inorganic and organic analyses conducted by GE during first quarter 1998. A representative cross section of the preparation batches and samples analyzed for each analytical method was chosen for review.

Major Issues

No technical issues of concern were identified during the review.

First Quarter 1998 Records Review of GP

During June 1998, laboratory data records were reviewed for radiochemical analyses conducted by GP during first quarter 1998. A representative cross section of the samples analyzed for each analytical method was chosen for review.

Major Issues

No technical issues of concern were identified during the review.

First Quarter 1998 Records Review of TM

During June 1998, laboratory data records were reviewed for radiochemical analyses conducted by TM during first quarter 1998. A representative cross section (approximately 3%) of the preparation batches and samples analyzed for each analytical method was chosen for review.

Major Issues

No technical issues of concern were identified during the review.

First Quarter 1998 Records Review of WA

During June 1998, laboratory data records were reviewed for inorganic and organic analyses conducted by WA during first quarter 1998. Approximately 3% of the samples analyzed for each analytical method were chosen for review.

Major Issues

No technical issues of concern were identified during the review.

Laboratory Control Samples and Blank Spikes

Laboratory control samples and blank spikes are used to monitor the performance of all steps in the analysis process, including sample preparation, and are used to identify problems with the analytical procedure. Laboratory control samples are deionized water that is spiked with the target analyte, digested, and analyzed with the regular samples for inorganic parameters. Blank spikes are organic-free water that is spiked with selected target analytes, extracted, and analyzed with the regular samples for organic parameters. The spiking solutions for laboratory control samples and blank spikes are obtained from the EPA or a third party supplier, or they are prepared in the laboratory with chemicals from a different source than the calibration standards. Table 22 lists the quality control limits for each analyte type.

The percent recovery (% R) for laboratory control samples or blank spikes is calculated as

% R =
$$\frac{\text{Observed concentration}}{\text{Known concentration}} \times 100.$$

Table 22. Quality Control Limits for Selected Laboratory Control Samples and Blank Spikes

Analyte	EPA % Recovery	ES % Recovery	EX % Recovery	GE % Recovery	WA % Recovery
Dioxins/Furans†					
Heptachlorodibenzo-p-dioxin isomers	40-120		_	**	50-150
Hexachlorodibenzo-p-dioxin isomers	40-120	_	_	*	75–123
Hexachlorodibenzo-p-furan isomers	40-120	_	_	*	61-150
Pentachlorodibenzo-p-dioxin isomers	40-120	_	_	•	68-142
Pentachlorodibenzo-p-furan isomers	40-120	_	_	*	64-137
Tetrachlorodibenzo-p-dioxin isomers	40-120	_		•	71-123
Tetrachlorodibenzo-p-furan isomers	40–120	_	_	*	73–114
Herbicides					
2,4-D	_	9-119	15-134	75–125	28-154
Silvex	_	33–135	54-107	75–125	54–134
Inorganics	80–120	Vary	75–125	80–120	80–120
Inorganics (misc.)					
Chromium, hexavalent	_	83-113	85-115	80–120	80-120
Cyanide	80-120	71–123	85–115	80–120	80–120
Pesticides ©					•
Aldrin	40-120	37–127	45-132	75–125	48–133
gamma-Benzene hexachloride (Lindane)		43–145	56–132	75–125 75–125	46–133 56–127
4,4'-DDT	38–127	46–152	52–136	75–125 75–125	38–127 38–138
Dieldrin	52–126	56–142	58–126	75–125 75–125	
Endrin	56–121	35–155	54–145	75–125 75–125	57–131 46–150
Radionuclides#	80–120	75–125	*	00.400	
nadionuciidesж Technetium-99	- 120	75–125 70–130	*	80–120	80–120
1 Conniction 1-33	_	/0-130			-
Semivolatiles ♦	40 110	40.440	07.400	75	
Acenaphthene	46–118	46–118	27–106	75–125	46–118
4-Chloro-band	23–97	23–97	21–110	75–125	23–97
2-Chlorophenol	27–123	27–123	24–99	75–125	27-123
1,4-Dichlorobenzene	36–97	36–97	24–97	75–125	36–97
2,4-Dinitrotoluene	24–96	24–96	23–113	75–125	24–96
4-Nitrophenol	10-80	10-80	0–143	75–125	10–80
N-Nitrosodi-n-propylamine	41–116	41–116	24–112	75–125	41–116

Analyte	EPA % Recovery	ES % Recovery	EX % Recovery	GE % Recovery	WA % Recovery
Pentachlorophenol	9–103	9–103	0–169	75–125	9–103
Phenol	12–110	12-110	25–94	75–125	12-110
Pyrene	26-127	26-127	36-104	75–125	26-127
1,2,4-Trichlorobenzene	39–98	39–98	24-100	75–125	39–98
Volatiles♦					
Benzene	76-127	76-127	75–123	75–125	76–127
Chlorobenzene	75-130	75-130	76-122	75-125	75-130
1,1-Dichloroethane	61-145	-	_	75-125	61-145
1,1-Dichloroethylene	_	61-145	68-133	_	_
Toluene	76-125	76-125	77-123	75-125	76-125
Trichloroethylene	71–120	71-120	75-122	75–125	71-120

[†] These limits are from SW-846 method EPA8280 for EPA and GE; WA uses laboratory-determined limits.

Note: TM analyzes WA's radionuclides; GP analyzes GE's radionuclides.

Tables 68–73 list the statistical information for the percent recovery for laboratory control samples and blank spikes by analyte for ES, EX, GE, WA, GP, and TM. The *Qualified Out of Range* column provides the number of laboratory control samples or blank spikes that had percent recoveries outside the acceptance limits compared to the total number analyzed; the other columns provide the mean recovery, standard deviation, and the minimum and maximum recoveries.

Surrogates

Surrogates are analytes not normally found in environmental samples that are used to spike all samples, QC samples, and calibration standards for organic analyses. Surrogates are added prior to analysis for VOAs (volatile organic analyses) and prior to extraction for semivolatiles, pesticides, and herbicides. Low surrogate recovery is a measure of the effect of the sample matrix, high analyte concentration, or laboratory error. High surrogate recovery usually indicates instrument or sample preparation errors. Table 23 lists the recovery limits for each surrogate.

Table 23. Surrogate Recovery Limits

Analyte	EPA % Recovery	ES % Recovery	EX % Recovery	GE % Recovery	WA % Recovery
Herbicides†					
4-(2,4-Dichlorophenoxy)butyric acid	_	_	_	50-150	_
2,4-Dichlorophenylacetic acid	_	28–112	-	50–150	40–150
Pesticides					
Decachlorobiphenyl	30-150	31-145	_	_	22-126
Dibutylchlorendate	-	_	_	40-127	
Tetrachloro-m-xylene	30–150	23–109	_	40–156	27–129
Semivolatiles *					
2-Chlorophenol-d4	33–110 (advisory)	_		48.5–112	27–123
1,2-Dichlorobenzene-d4	16–110 (advisory)	-	-	43.2–144	-

^{■ -} Not available.

^{**} Not analyzed.

[•] GE and WA use laboratory-determined limits.

[#] GE and WA develop their own methods based on EPA, DOE, and other methods.

GE uses laboratory-determined limits.

Analyte	EPA % Recovery	ES % Recovery	EX % Recovery	GE % Recovery	WA % Recovery
2-Fluorobiphenyl	43–116	43–116	43–116	43–108.3	43–116
2-Fluorophenol	21–110	21–100	27–89	21–100	21–100
Nitrobenzene-d5	35–114	35–114	35–114	35–114	35–114
Phenoi-d5 (used by ES, EX, and WA)	10-94	10-94	28–91	-	10–94
Phenol-d6 (used by GE)	10-94	-	_	18.9–94	-
Terphenyl-d14	33–141	33-141	33-141	33–125.5	33-141
2,4,6-Tribromophenol	10–123	10–123	36–103	26.9-123	10–123
Volatiles (8240)❖					
p-Bromofluorobenzene	86-115	-	_	86-115	86-155
1,2-Dichloroethane-d4	76–114	_		76-114	76-114
Toluene-d8	88–110	_	_	78.1–115.6	88–110
Volatiles (8260)❖					
p-Bromofluorobenzene	86-115	86-115	86-115	80–128	86-115
Dibromofluoromethane-d4	86-118	86-118	86-118	67.7-135	86-118
1,2-Dichloroethane-d4	_	80-120	76–114	86118	76-114
Toluene-d8	88-110	88-110	88-110	76.8-121.9	88-110

[†] There are no established limits for herbicide surrogate recoveries.

Tables 74–77 list the statistical information for the percent recovery for the surrogates by analyte for ES, EX, GE, and WA. The *Qualified Out of Range* column gives the number of surrogates that had percent recoveries outside the acceptance limits compared to the total number analyzed; the other columns provide the mean recovery, standard deviation, and the minimum and maximum recoveries.

Matrix Spikes

Matrix spikes are used to evaluate the effect of the sample matrix on the analytical procedure. Matrix spikes are prepared by adding a known quantity of the target analyte to at least 5% of the samples prior to sample preparation. For the inorganic analyses, all target analytes are spiked. For the organic analyses, selected target analytes are used in the spiking solution. Results from the matrix spike are used to evaluate the extent of matrix interference and to determine the bias of the procedure for the sample matrix. Table 24 lists the quality control limits for each analyte type.

The percent recovery for matrix spikes is calculated as

$$\% R = \frac{SSR - SR}{SA} \times 100,$$

where

% R = percent recovery

SSR = spiked sample result

SR = sample result

SA = spike added.

Not available.

GE uses laboratory-determined limits.

Table 24. Quality Control Limits for Selected Matrix Spike Samples

* 50–150 * 75–123 * 61–150 * 68–142 * 64–137 * 71–123 * 71–123 * 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
* 75–123 * 61–150 * 68–142 * 64–137 * 71–123 * 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
* 75–123 * 61–150 * 68–142 * 64–137 * 71–123 * 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
* 61–150 * 68–142 * 64–137 * 71–123 * 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
* 68–142 * 64–137 * 71–123 * 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
* 64–137 * 71–123 * 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
* 71–123 * 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
* 73–114 -125 75–125 75–125 -115 75–125 96–109 -115 75–125 83–112
-115 75-125 96-109 -115 75-125 83-112
-115 75-125 83-112
-115 75-125 83-112
-115 75-125 83-112
_124
_124
-107 50 -150 30 -150
–132 29.5 –147 48 –133
-132 39.5 -148.2 56 -127
-136 23.2–146 38–138
-145 39.2-161.4 46-150
–116 43.4 –158 50 –129
-130 75 -125 75 -125
75–125 75–125
-106 50.2 -133 46 -118
-110 52.4-134 23-97
-99 48.5-112 27-123
-97 40.2-120 36-97
-112 56-132 24-96
143 1–91 10–80
-112 35-111.4 41-116 169 14-176 9-103
-94 20.4-74 12-110 -104 52-115 26-127
-104 52-115 26-127 -100 44-142 39-98
-130 75–125 75–125
–130
-130 75-125 75-125
-123 76–127 76–127 -122 75–130 75–130

Analyte	ES % Recovery	EX % Recovery	GE % Recovery	WA % Recovery
1,1-Dichloroethane	61–145	68–133	61–145	61–145
Toluene	76–125	77-123	76-125	76-125
Trichloroethylene	71–120	75-122	35-146	71-130

^{† -} Not available.

Note: TM analyzes WA's radionuclides; GP analyzes GE's radionuclides.

Percent bias in tables 78–82 is the difference between 100% and the mean recovery; a negative value indicates that the mean recovery was below 100%. If the bias is consistently positive, the laboratory may be overestimating the concentration of the analyte, and if the bias is consistently negative, the laboratory may be underestimating the concentration of the analyte. Results close to the quantitation and action limits should be closely examined, and their use in decision-making should be carefully considered.

Matrix spikes are rejected if the concentration of the analyte in the sample is more than four times the amount of the spike. Results for matrix spikes are provided in tables 78–82 for ES, EX, GE, WA, and GP. The *Qualified Out of Range* column provides the number of matrix spikes that had percent recoveries outside the acceptance limits compared to the total number analyzed; the other columns provide the mean recovery, standard deviation, percent bias, and the minimum and maximum recoveries.

Method Blanks

Method blanks, or laboratory blanks, are used to determine the existence and magnitude of contamination problems resulting from the analytical process. Method blanks are deionized water to which all reagents are added in the same proportions used in sample processing. When method blanks have detectable concentrations of the analytes, the laboratory must determine the cause and take corrective action to eliminate the contamination.

Tables 83–88 list the statistical information for analytes detected in method blanks for ES, EX, GE, WA, GP, and TM. The *Frequency of Detection* column provides the number of method blanks analyzed for each analyte during the quarter that had detectable concentrations compared to the total number that were analyzed. The other columns list the mean result, standard deviation, and minimum and maximum results.

Field Blanks

Field blanks (called QA blanks in the tables) are used to identify possible sources of contamination from the processing and shipping of samples. Field blanks are sample bottles filled with deionized water prior to well sampling; the bottles are not opened at the sampling site. The field blanks are sent along with, and analyzed in the same manner as, the samples. Positive results from field blanks can result from analytical bias, contaminated sample bottles, contaminated deionized water, or contamination during shipping or analysis. The results from all samples in the sample delivery group are evaluated by the laboratory and data validators to determine the cause of the contamination and the corrective action to be taken.

Tables 89–93 list the statistical information for the field blanks by analyte for ES, GE, WA, GP, and TM. The *Frequency of Detection* column gives the number of field blanks analyzed for each analyte during the quarter that had detectable concentrations compared to the total number analyzed. The other columns list the mean result, standard deviation, and minimum and maximum results.

Trip Blanks

Trip blanks are vials of deionized water sent to the laboratory for volatiles analysis with each shipping cooler containing volatiles samples. Trip blanks are used to check for contamination resulting from shipping, primarily due to the breaking of the vial's seal because of depressurization during air transport. Trip blanks are used also to test the laboratories' reliability. The blanks are prepared by adding preservative to a 40 mL vial, filling it

^{*} Not analyzed.

completely with deionized water, and sealing the top with a teflon-lined septum cap. The results from all samples in the sample delivery group are evaluated by the laboratory and data validators to determine the cause of the contamination and the corrective action to be taken.

Tables 94–97 list the statistical information for the analytes detected in trip blanks by ES, EX, GE, and WA. The *Frequency of Detection* column gives the number of trip blanks analyzed for each analyte during the quarter that had detectable concentrations compared to the total number analyzed. The other columns list the mean result, standard deviation, and minimum and maximum results.

Equipment Blanks or Rinsates

Equipment blanks (called EPT blanks in the tables) or rinsates are used to determine if sampling equipment that has been cleaned in the field is contaminated. Prior to sampling, deionized water is poured over or pumped through portions of the sampling equipment that come in contact with the sample. If the equipment blank is contaminated, the field cleaning procedure must be evaluated to determine the cause of the contamination. Results for all samples collected with equipment cleaned in the field must be evaluated to determine whether the contamination is isolated or generalized.

No information about equipment blanks was provided for first quarter 1998.

Blanks Results

The blanks results tables in **Appendix C** list the dates, field measurements, and analytical results for the sampling blanks. See **Appendix B** for a key to the abbreviations used in the tables.

REPRESENTATIVENESS

A representative sample is a sample that can be expected to exhibit the average properties of the population being sampled. Representativeness for groundwater samples can be affected by using a bailer to collect the sample from the well, metal casings in the well, and turbidity (suspended particulates) in the sample. The results may be biased positively or negatively.

If a well is bailed, VOAs are biased negatively due to aeration of the sample in the sampling process. Table 98 lists the wells that were bailed during first quarter 1998.

For metal casings, the bias for metals can be positive or negative depending on whether the casing is releasing or absorbing metals. Table 99 lists the wells with metal casings that were sampled during first quarter 1998.

If turbidity is greater than 15 NTU, the metals can be biased positively or negatively, and the radionuclides—particularly those that are determined by gamma spectroscopy—can be masked due to self-absorption. Table 100 lists the wells that had turbidity results greater than 15 NTU during first quarter 1998.

COMPARABILITY

Comparability is evaluated by confirming that the laboratories used the same standardized procedures for sample preparation and analysis, that the reporting units are the same, and that similar quantitation limits were obtained. The analytical methods, reporting units, and estimated quantitation limits (EQLs) reported by each laboratory are given in tables 15–21 in the **Analytical Data Review** section. Tables 54–60 list the analytes and wells where a result from one laboratory was more than twice the corresponding result from the other laboratory.

COMPLETENESS

Completeness is evaluated by comparing the wells scheduled for sampling with the wells sampled and comparing the requested analyses with the analytical data received. The number of wells sampled and the requested analyses are determined from the chains of custody. Table 101 lists the reasons the laboratories did not perform certain analyses on samples from wells that could be sampled. See the **Sample Scheduling**, **Field**

Notes, and Analytical Results sections of this report for more information on wells scheduled but not sampled this quarter.

Table 25. Wells Providing Blind Replicate Samples and Associated Blanks

	Sample		Associated
Well	Date	Replicate	Blank
AMB 4A	03/09/98	QA 1A	QA 2A
AMB 7A	03/06/98	QA 3A	QA 4A
AMB 17A	03/09/98	QA 5A	QA 6A
ASB 5C	03/04/98	QA 7A	QA 8A
ASB 6AA	03/04/98	QA 9A	QA 10A
ASB 6C	03/04/98	QA 11A	QA 10A QA 12A
CSB 1C	02/24/98	QA 87A	QA 88A
CSO 1	01/19/98	QA 65A	QA 66A
FSB 78A	02/19/98	QA 29A	QA 30A
FSB 78B	01/26/98	QA 31A	QA 32A
SB 99A	01/28/98	QA 33A	QA 34A
FSB112C	01/21/98	QA 35A	QA 36A
FSB120C	01/13/98	QA 37A	QA 38A
HAA 1B	03/10/98	QA 53A	QA 54A
HCA 4AA	03/12/98	QA 55A	QA 56A
HCA 4C	03/12/98	QA 57A	QA 58A QA 58A
HR8 11	01/05/98	QA 67D	QA 56A QA 68D
ISB 68A	01/22/98	QA 39A	QA 40A
HSB 83B	01/29/98	QA 41A	QA 40A QA 42A
SB107C	01/23/98	QA 43A	QA 44A
HSB126C	01/29/98	QA 45A	QA 44A QA 46A
HSB130C	01/29/98	QA 47A	
HSB143D	01/28/98	QA 49A	QA 48A QA 50A
HSB146C	01/26/98	QA 51A	
HXB 5D	03/26/98	QA 99A	QA 52A
(RP 8	01/29/98	QA 79A	QA 100A
(RP 9	02/23/98		QA 80A
.FW 43C	03/16/98	Not applicable QA 61A	QA 82A
.FW 59D	03/16/98	QA 63A	QA 62A
.FW 74C	02/02/98	QA 77A	QA 64A
RP 3	03/09/98	QA 77A QA 89A	QA 78A
.RP 4	03/24/98	QA 91A	QA 90A
MSB 1B	02/11/98	QA 13A	QA 92A
MSB 23TA	03/04/98	QA 19A	QA 14A
MSB 29A	03/05/98	QA 19A QA 21A	QA 20A
MSB 35B	03/04/98		QA 22A
MSB 4B	02/12/98	QA 23A	QA 24A
MSB 9A	02/12/98	QA 15A	QA 16A
RGW 17A	01/22/98	QA 17A	QA 18A
RGW 21		QA 83A	QA 84A
RPC 8D	01/21/98	QA 89D	QA 90D
SRW 14A	02/05/98	QA 69A	QA 70A
TBG 5B	03/02/98	QA 25A	QA 26A
TNX 9D	03/03/98	QA 75A	QA 76A
	03/03/98	QA 73A	QA 74A
ZBG 1	01/30/98	QA 59A	QA 60A

Table 26. Analytes Not Showing Measurable Concentrations above Estimated Quantitation Limits in Any Replicated or Duplicated Samples for GE, WA, ES, and EX

Amalists	Number of Analyses			
Analyte	GE	WA	ES	EX
Acenaphthene	8	27	7	
Acenaphthylene	8	37	, 7	
Acetonitrile	_	9	17	22
Acetophenone	_	9		
2-Acetylaminofluorene	_	9		
Acrolein		9	17	22
Acrylonitrile	_	9	17	22
Aldrin	8	17	7	~~
Allyl chloride	_	9	17	13
4-Áminobiphenyl		9		-
Ammonia		2		_
Ammonia nitrogen	_	_	2	_
Aniline	_	9	_	_
Anthracene	8	37	7	_
Aramite	<u>-</u>	9	, -	
Arsenic	112	44	11	8
Benzene	37	99	23	26
alpha-Benzene hexachloride	8	23	7	-
beta-Benzene hexachloride	8	23	9	2
delta-Benzene hexachloride	8	23	7	_
Benzidine	_	_	6	
Benzo[a]anthracene	8	37	7	
Benzo[b]fluoranthene	8	37	7	_
Benzo[k]fluoranthene	8	37	7	-
Benzoic acid	8	25	6	-
Benzo[<i>g,h,i</i>]perylene	8	37	7	
Benzo[<i>a</i>]pyrene	8	37	7	-
Benzyl alcohol	8	25	6	-
Beryllium	14	20	7	2
Bis(2-chloroethoxy) methane	8	35	7	2
Bis(2-chloroethyl) ether	8	35	7	-
Bis(2-chloroisopropyl) ether	8	35	7	_
Boron	-	2	2	-
Bromochloromethane	_	_	8	1
Bromodichloromethane	31	119	23	26
Bromoform	31	119	23	26
Bromomethane	31	119	23	26
4-Bromophenyl phenyl ether	8	35	7	20
Butylbenzyl phthalate	8	35	7	- .
2-sec-Butyl-4,6-dinitrophenol	_	9	1	_
Carbazole	<u> </u>	26	_	
Carbon disulfide	7		- 22	-
Carbonate	<u>_</u>	25 2	23	22
Chlordane	_	<u> -</u>	- 6	-
alpha-Chlordane	8	23	6 7	-
gamma-Chlordane	8	23 23	7	-
4-Chloroaniline	8	23 35	7	-
Chlorobenzene	37	97		-
Chlorobenzilate	- -	97 9	23	26
4-Chloro-m-cresol	8	9 25	-	-
Chloroethane	o 31		7	-
Chloroethene	31	119	23	26
2-Chloroethyl vinyl ether	31 24	119	23	26
Chloromethane		94	-	19
Chloromethane 2-Chloronaphthalene	31	119	23	26
	8	35	7	
2-Chlorophenol	8	25	7	
1-Chlorophenyl phenyl ether	8	35	7	

	Number of Analyses			
Analyte	GE	WA	ES	EX
Chloroprene		0	4.7	10
Chrysene	8	9 37	17	13
m-Cresol	0		7	-
m/p-Cresol	-	9	_	-
o-Cresol	8	31	7	-
	8	35	7	-
Cyanide p,p´-DDD	135	82	5_	13
p,p -000 p,p -DDE	8	23	7_	
	8	23	7	-
p,p'-DDT	8	17	7	-
Diallate	_	9	_	
Dibenz[a,h]anthracene	8	37	7	-
Dibenzofuran	8	35	7	
Dibromochloromethane	31	119	23	26
1,2-Dibromo-3-chloropropane	-	9	17	13
1,2-Dibromoethane	_	9	17	13
Dibromomethane	_	9	17	13
Di-n-butyl phthalate	8	35	9	2
1,2-Dichlorobenzene	8	35	15	13
1,3-Dichlorobenzene	8	35	7	12
1,4-Dichlorobenzene	8	25	24	15
3,3´-Dichlorobenzidine	8	35	7	_ '
trans-1,4-Dichloro-2-butene	***	9	17	13
Dichlorodifluoromethane	_	9	17	20
1,1-Dichloroethane	31	119	23	26
1,1-Dichloroethylene	37	97	23	26
1,2-Dichloroethylene	7	105	_	
2,4-Dichlorophenol	8	35	7	-
2,6-Dichlorophenol	_	9		_
2,4-Dichlorophenoxyacetic acid	4	15	. <u>-</u>	3
1,2-Dichloropropane	31	119	23	26
cis-1,3-Dichloropropene	31	119	23	26
rans-1,3-Dichloropropene	31	119	23	26
Dieldrin	8	17	7	_
Diethyl phthalate	8	35	7	_
Dimethoate	_	4	<u>-</u>	_
2,4-Dimethyl phenol	8	35	7	_
Dimethyl phthalate	8	35	7	_
o-Dimethylaminoazobenzene	_	9	<u>.</u>	_
7,12-Dimethylbenz[a]anthracene	_	9	_	_
3,3´-Dimethylbenzidine	_	9	_	_
a,a-Dimethylphenethylamine	_	9		_
1,3-Dinitrobenzene	_	9	_	_
2,4-Dinitrophenol	8	35	7	- · _
2,4-Dinitrotoluene	8	25	7	_
2,6-Dinitrotoluene	8	35	7	_
Di-n-octyl phthalate	8	35	7	_
I,4-Dioxane	-	9	<u>, </u>	12
Diphenylamine	_	9	_	14
Disulfoton	_	4	_	_
Endosulfan sulfate	8	23	7	_
Endosulfan I	8	23	7	-
Endosulfan II	8	23 23		_
Endrin	8	23 17	7	-
Endrin aldehyde	_		7	-
Endrin alderryde Endrin ketone	8	8	6	-
Ethyl methacrylate	O	20	7	
	_	9	_	12
Ethyl methanesulfonate		9	_	_
Ethylbenzene	31	121	23	26
Europethana	_	4	-	-
Fluoranthene Fluorene	8 8	37 37	7	***
	u u	^7	7	

_	Number of Analyses			
Analyte	GE	WA	ES	EX
-luoride	6	15	-	4
Heptachlor	8	17	7	
Heptachlor epoxide	8	23	7	
Hexachlorobenzene	8	35	7	_
Hexachlorobutadiene	8	35	7	_
dexachlorocyclopentadiene	8	35	7	_
Hexachlorodibenzo-p-dioxins		2	_	_
Hexachlorodibenzo-p-furans	_	2	-	-
Hexachloroethane	8	35	7	
Hexachlorophene		9	_	_
Hexachloropropene		9	_	_
2-Hexanone	7	25	23	22
ndeno[1,2,3- <i>c,d</i>]pyrene	8	37	7	
odomethane	_	9	17	13
sobutyl alcohol	_	9	17	13
sodrin	_	3	_	_
sophorone	8	35	7	. _
sosafrole		9	<u>-</u>	
Kepone	_	3	_	_
indane	8	29	7	3
Methacrylonitrile	<u>·</u>	9	17	13
Methapyrilene		9		13
Methoxychlor	8	23	7	_
2-Methyl-4,6-dinitrophenol	8	35	7	_
Methyl ethyl ketone	7	25	23	22
Methyl isobutyl ketone	7	25	23	22
Methyl methacrylate	.	9	17	13
Methyl methanesulfonate		9	- I <i>I</i>	13
3-Methylcholanthrene	_	9	<u>-</u>	_
2-Methylnaphthalene	8	35	7	_
Naphthalene	8	37	7	_
,4-Naphthoquinone	_	9	1	-
-Naphthylamine	_	9	_	-
2-Naphthylamine	_	9	-	_
Nitrite as nitrogen	2	5	-	-
n-Nitroaniline	8	35	3	-
-Nitroaniline	8		7	_
-Nitroaniline	8	35 35	7	
Vitrobenzene	8	35	7	-
2-Nitrophenol	8	35 25	7	-
l-Nitrophenol	8	35 25	7	-
-Nitroquinoline-1-oxide	_	25	7	
V-Nitrosodi-n-butylamine	_	9	_	_
N-Nitrosodi-n-butylamine		9	-	-
N-Nitrosodiethylamine		9	-	-
N-Nitrosodimethylamine N-Nitrosodiphenylamine	_ Ω	9	-	***
N-Nitrosodipnenylamine N-Nitrosodipropylamine	8	35	7	-
I-Nitrosodipropylamine I-Nitrosomethylethylamine	8	25	7	-
	-	9	-	-
I-Nitrosomorpholine	-	9	-	-
I-Nitrosopiperidine	_	9	-	-
I-Nitrosopyrrolidine	-	9	-	_
-Nitro-o-toluidine	_	9	-	_
Parathion ethyl	-	4	_	_
Parathion methyl	-	4	_	
CB 1016	8	38	7	-
CB 1221	8	38	7	_
CB 1232	8	38	7	_
PCB 1242	8	38	7	
PCB 1248	8	38	7	_
PCB 1254	8	33	7	
CB 1260	8	38	7	

	Number of Anal	lyses		V 100 - 100
Analyte	GE	WA	ES	EX
Pentachlorobenzene	_	9	_	_
Pentachlorodibenzo-p-dioxins	_	2		_
Pentachlorodibenzo-p-furans	_	2	_	_
Pentachloroethane	_	9		12
Pentachloronitrobenzene	_	9		_
Pentachlorophenol	8	25	7	_
Phenacetin	_	9	<u>-</u>	
Phenanthrene	8	37	7	_
Phenol	8	36	7	3
Phenols	33	10	<u>,</u>	_
p-Phenylenediamine	_	9		
Phorate	_	4		
2-Picoline	_	9		
Pronamid	_	9		·
Propionitrile	_	9	17	13
Pyrene	8	27	7	-
Pyridine	_	9	<u>-</u>	-
Safrole	_	9	-	-
Selenium	112	86	11	20
Styrene	7	25	23	22
Sulfide	_	2	-	_
Sulfotepp	_	4	_	
2,4,5-T	2	<u>-</u>	_	_
2,3,7,8-TCDD	_	2	_	_
1,2,4,5-Tetrachlorobenzene	_	9	-	_
Tetrachlorodibenzo-p-dioxins	_	2		_
Tetrachlorodibenzo-p-furans	_	2	_	_
1,1,1,2-Tetrachloroethane	_	9	17	13
1,1,2,2-Tetrachloroethane	31	119	23	26
2,3,4,6-Tetrachlorophenol	_	9	_	=
Thionazin	-	4	_	-
Tin	14	10	_	_
o-Toluidine	_	9	_	_
Toxaphene	8	23	7	_
2,4,5-TP (Silvex)	4	2	<u>-</u>	_
1,2,4-Trichlorobenzene	8	_ 25	7	_
1,1,1-Trichloroethane	37	123	27	28
1,1,2-Trichloroethane	31	119	23	26
2,4,5-Trichlorophenol	8	35	7	_
2,4,6-Trichlorophenol	8	35	7	
1,2,3-Trichloropropane	-	9	17	13
O,O,O-Triethyl phosphorothioate	_	4	-	-
1,3,5-Trinitrobenzene	_	9	-	_ ,
Vinyl acetate	7	25	23	22

⁻ No replicate or duplicate analyses were performed.

Table 27. Analytes Not Showing Measurable Concentrations above Estimated Quantitation Limits in Any Replicated or Duplicated Samples for GP, TM, and ES

	Number of Analyses		
Analyte	GP	ТМ	ES
Antimony-124	_	39	_
Barium-133	_	39	_ ,
Cerium-144	81	43	8
Cesium-134	81	43	8
Cobalt-58	_	41	-

	Number of An	alyses		
Analyte	GP	ТМ	ES	
Curium-246	_	<u></u>	6	
Europium-155	81	43	8	
Neptunium-239	_	18	_	
Nickel-63	41	14		
Plutonium-239	_	2	_	
Promethium-144	81	- 43	8	
Promethium-146	81	43	8	
Promethium-147	13	6	<u> </u>	
Ruthenium-106	81	43	8	
Tin-113	_	39	-	
Zirconium-95	_	39	_	

⁻ No replicate or duplicate analyses were performed.

Table 28. Intralaboratory MRD Indices for ES

		In-house Duplicates Number of			Blind Replicates Number of		
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Acetone	1.0E+01 µg/L	7	6.59	2.57	5	28.72	15.00
Actinium-228	1.13E-08 µCi/mL	3	0.00	0.00	1	0.00	0.00
Aluminum	†	0	-	-	2	57.27	57.27
Americium-241	1.3E-10 µCi/mL	2	0.00	0.00	2	0.00	0.00
Antimony	5.0E+00 µg/L	0	-	-	3	0.00	0.00
Antimony-125	9.45E-09 μCi/mL	3	0.00	0.00	1	0.00	0.00
Barium	†	0	-	-	5	5.43	5.43
Bis(2-ethylhexyl) phthalate	1.3E+01 µg/L	1	107.14	69.23	2	0.00	0.00
Cadmium	2.0E+00 µg/L	0 .	-	-	5	0.00	0.00
Calcium	†	0	-	-	2	12.28	12.28
Carbon tetrachloride	5.0E+00 µg/L	7	0.00	0.00	7	0.00	0.00
Carbon-14	1.7E-08 μCi/mL	1	0.00	0.00	1	0.00	0.00
Cesium-137	3.17E-09 μCi/mL	3	0.00	0.00	1	0.00	0.00
Chloride	†	1	2.25	2.25	1	2.98	2.98
Chloroform	5.0E+00 µg/L	7	0.00	0.00	7	0.00	0.00
Chromium	3.0E+00 µg/L	0	-	-	5	3.24	1.20
Cobalt	5.0E+00 µg/L	0	-	-	3	0.00	0.00
Cobalt-57	2.0E-09 µCi/mL	3	0.00	0.00	1	0.00	0.00
Cobalt-60	3.44E-09 µCi/mL	3	0.00	0.00	1	0.00	0.00
Copper	3.0E+00 µg/L	0	-	-	3	41.34	28.00
Curium-242	1.1E-10 µCi/mL	2	0.00	0.00	2	0.00	0.00
Curium-243	2.2E-10 µCi/mL	2	0.00	0.00	2	0.00	0.00
1,2-Dichloroethane	5.0E+00 µg/L	7	0.00	0.00	5	0.00	0.00
cis-1,2-Dichloroethylene	5.0E+00 µg/L		0.00	0.00	3	0.00	0.00
trans-1,2-Dichloroethylene			0.00	0.00	2	0.00	0.00
Dichloromethane	5.0E+00 µg/L		0.00	0.00	5	0.00	0.00
Europium-152	1.67E-08 μCi/mL	3	0.00	0.00	1	0.00	0.00

		In-house Dup Number of	olicates	·	Blind Replica Number of	ites	
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Europium-154	9.19E-09 µCi/mL	3	0.00	0.00	1	0.00	0.00
Gross alpha	2.23E-09 µCi/mL	8	5.12	3.92	6	0.00	0.00
lodine-129	5.01E-09 µCi/mL	1	0.00	0.00	1	0.00	0.00
Iron	†	0	_	_	2	60.60	69.60
Lead	5.0E+00 μg/L	Ö	_	_	7	69.60	
Lead-212	8.61E-09	3	0.00	0.00	1	6.08	4.82
Leau-212	μCi/mL	3	0.00	0.00	ı	0.00	0.00
Magnesium	5.0E+01 µg/L	0	_	_	2	1.26	1.26
Manganese	†	Ö	-	_	2	7.53	
Manganese-54	3.38E-09	3	0.00	0.00	1		7.53
Wanganese-54	μCi/mL	3	0.00	0.00	1	0.00	0.00
Mercury	2.0E-01 µg/L	0		_	6	0.00	0.00
Neptunium-237	†	Ö	_	_	2	76.35	76.35
Nickel	5.0E+00 μg/L	=	_		3		
Nitrate as nitrogen	1.3E+02 µg/L		1.21	1 01		0.00	0.00
Nonvolatile beta	2.22E-09	6		1.21	3	28.99	15.38
Nonvoiatile beta	2.22Ε-09 μCi/mL	0	26.81	24.52	2	0.22	0.07
рH	•	18	0.34	0.24	4	4.04	4.04
Plutonium-238	† 1.0E-10	1		0.34	1	1.91	1.91
ridiomani-236		•	0.00	0.00	2	0.00	0.00
Plutonium-239/240	μCi/mL 8.0E-11	4	0.00	0.00	0	0.00	
Flutomum-239/240		1	0.00	0.00	2	0.00	0.00
Potassium	μCi/mL	^			•		
Potassium-40	4.0E+02 µg/L	0	-	-	2	9.69	3.30
Potassium-40	9.5E-08	3	0.00	0.00	1	0.00	0.00
Radium-226	μCi/mL 1.6E-09 μCi/mL	1	55.53	23.06	1	0.00	0.00
Radium-228	2.07E-09	2	0.00	0.00	1	0.00	0.00
	μCi/mL						
Silver	2.0E+00 μg/L	0	-	-	5	0.00	0.00
Sodium	†	0	-	-	2	4.23	4.23
Sodium-22	3.28E-09 µCi/mL	3	0.00	0.00	1	0.00	0.00
Specific conductance	†	1	2.17	2.17	1	1.58	1 50
Strontium-90	1.46E-09	Ö	2.17	2.17	1		1.58
Stromani 30	μCi/mL	0	-	-	1	55.45	23.01
Sulfate	5.0E+03 μg/L	1	0.00	0.00	1	0.00	0.00
Tetrachloroethylene	5.0E+00 µg/L		0.92	0.86	7	0.00	0.00
Thallium	5.0E+00 µg/L	ń	-	0.00	3		0.00
Thorium-228	1.8E-10	2	0.00	0.00	2	0.00	0.00
monam 220	μCi/mL	2	0.00	0.00	2	0.00	0.00
Thorium-230	2.7E-10	2	0.00	0.00	2	0.00	0.00
	μCi/mL	-	0.00	0.00	2	0.00	0.00
Thorium-232	1.0E-10 µCi/mL	2	0.00	0.00	2	0.00	0.00
Thorium-234	2.06E-07	3	0.00	0.00	1	45.98	17.91
Toluene	μCi/mL 5.0E+00 μg/L	7	0.00	0.00	E	0.00	0.00
			0.00	0.00	5	0.00	0.00
Total organic carbon	1.0E+03 µg/L		40.00	15.00	1 \	104.76	66.00
Total organic halogens	1.0E+01 µg/L		-	-	1	0.00	0.00
Total phosphates (as P)	1.0E+01 µg/L		0.00	0.00	<u>1</u>	24.54	24.54
Trichloroethylene	5.0E+00 µg/L		0.00	0.00	7	0.36	0.36
Trichlorofluoromethane	5.0E+00 µg/L		1.33	1.00	3	0.00	0.00
Tritium	8.4E-07 μCi/mL	14	3.95	2.81	5	22.18	11.21
Unknown	рСі/mL †	0	-	-	1	44.50	44.50
	•	•			•	77.30	 .5∪

Quality Control Samples

		In-house Dup Number of	olicates		Blind Replicates Number of		
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Uranium-234	6.0E-11 μCi/mL	3	6.03	6.03	2	0.00	0.00
Uranium-235	3.0E-11 µCi/mL	3	2.90	2.90	2	0.00	0.00
Uranium-238	5.0E-11 μCi/mL	3	5.96	5.96	2	0.00	0.00
Vanadium	2.0E+00 µg/L	0	-	-	3	0.00	0.00
Xylenes	5.0E+00 µg/L	7	0.00	0.00	5	0.00	0.00
Yttrium-88	3.56E-09 µCi/mL	3	0.00	0.00	1	0.00	0.00
Zinc	1.0E+01 μg/L	0	-	•	3	12.94	6.30
Zinc-65	7.29E-09 μCi/mL	3	0.00	0.00	1	0.00	0.00

[†] No detection limit, or no replicate or duplicate results below detection limit.

Table 29. Intralaboratory MRD Indices for EX

		In-house Duplicates			Blind Replica	tes	
Analyte	RDL	Number of Dup. Pairs	MRD	1400 - ·//	Number of		
	- TOL	Dup. Pail'S	עחואו	MRDadj	Dup. Pairs	MRD	MRDadj
Acetone	5.0E+02 µg/L	1	0.00	0.00	0	_	_
Aluminum	1.0E+02 µg/L	1	0.00	0.00	Ö	_	_
Antimony	1.0E+02 µg/L	1	0.00	0.00	Ö	-	_
Barium	2.5E+01 µg/L	4	0.00	0.00	Ö	_	
Cadmium	5.0E+00 µg/L		0.00	0.00	Ö	_	_
Calcium	t	1	3.48	3.48	Ŏ	_	
Carbon tetrachloride	2.5E+02 µg/L	1	0.00	0.00	Ŏ	_	
Chloride	†	1	0.00	0.00	Ō	_	_
Chloroform	2.5E+02 µg/L	1	0.00	0.00	Ö	_	
Chromium	1.0E+01 µg/L	2	0.00	0.00	Ö	_	_
Cobalt	2.0E+01 µg/L		0.00	0.00	Ö		_
Copper	1.0E+01 µg/L		0.00	0.00	Ö		_
1,2-Dichloroethane	2.5E+02 µg/L		0.00	0.00	Ö	_	_
cis-1,2-Dichloroethylene	2.5E+01 µg/L		-	-	Ö	_	_
trans-1,2-Dichloroethylene	2.5E+02 ug/L	1	0.00	0.00	Ö	_	_
Dichloromethane	5.0E+02 µg/L	1	0.00	0.00	Ö	_	_
Iron	1.0E+02 µg/L		0.00	0.00	Ö	_	_
Lead	5.0E+00 µg/L		0.00	0.00	Ö	_	-
Magnesium	†	1	7.20	7.20	Ö	_	
Manganese	1.0E+01 µg/L	2	0.00	0.00	Ö	_	•
Mercury	2.0E-01 µg/L	1	0.00	0.00	Ŏ	_	-
Nickel	2.0E+01 μg/L		0.00	0.00	Ö		•
Nitrate as nitrogen	1.0E+02 µg/L	1	0.00	0.00	0	-	-
Nitrate-nitrite as nitrogen	1.0E+03 µg/L	i	0.00	0.00	0	-	-
pH	†	1	0.00	0.00	0	•	•
Potassium	1.0E+03 µg/L	i	0.00	0.00	0	-	-
Silver	2.0E+01 µg/L	2	86.84	86.84	0	-	-
Sodium	1.0E+02 µg/L		92.01	92.01	_	-	-
Specific conductance	+	1			0	-	•
Sulfate	I +	1	0.00	0.00	0	-	-
Tetrachloroethylene	1 2.5E+02 μg/L	1	5.41	5.41	0	-	-
renacificioentyleffe	2.5E+02 µg/L	1	0.00	0.00	0	-	-

⁻ No replicate or duplicate analyses could be calculated.

		In-house Duplicates Number of			Blind Replicates Number of		
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Thallium	5.0E+02 μg/L	1	0.00	0.00	0	_	_
Toluene	2.5E+02 µg/L		0.00	0.00	Ô	_	-
Total organic carbon	5.0E+03 µg/L	1	18.18	6.00	Ô		
Total phosphates (as P)	5.0E+01 µg/L	1	0.00	0.00	Ô	_	-
Trichloroethylene	5.0E+00 µg/L	1	12.53	12.53	0	_	_
Trichlorofluoromethane	2.5E+02 µg/L	1	0.00	0.00	Ô	_	_
Vanadium	1.0E+01 µg/L	1	0.00	0.00	Ô	_	_
Xylenes	5.0E+02 µg/L	1	0.00	0.00	Ö	-	_
Zinc	1.0E+01 µg/L	1	0.00	0.00	Ō	-	-

[†] No detection limit, or no replicate or duplicate results below detection limit.

Table 30. Intralaboratory MRD Indices for GE

		In-house Dur Number of	olicates		Blind Replica	tes	
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Number of Dup. Pairs	MRD	MRDadj
Acetone	5.0 μg/L	0					
Aluminum	50.0 μg/L	0	-	•	3	0.00	0.00
Antimony	10.0 µg/L	0	•	•	6	6.15	4.87
Barium	5.0 μg/L	0	•	•	16	0.00	0.00
Bis(2-ethylhexyl) phthalate	10.0 µg/L	0	-	-	17	4.84	4.69
Cadmium	5.0 μg/L	0	-	-	13	0.00	0.00
Calcium	1.0 μg/L	0	-	-	16	0.00	0.00
Carbon tetrachloride			-	-	6	4.96	4.96
Chloride	1.0 μg/L †	0	4.05	-	17	0.00	0.00
Chloroform	•	2	4.65	4.65	2	8.79	8.79
Chromium	1.0 μg/L	0	-	-	17	0.00	0.00
Cobalt	5.0 μg/L	0	-	-	16	2.91	0.99
	5.0 μg/L	0	-	-	17	0.28	0.28
Copper	5.0 μg/L	0	-	•	16	6.83	6.34
1,2-Dichloroethane	1.0 μg/L	0	-	-	14	0.55	0.17
trans-1,2-Dichloroethylene		0	-	-	11	0.00	0.00
Dichloromethane	3.6 µg/L	0	-	-	12	0.00	0.00
Iron	55.8 μg/L	0	-	-	6	33.26	24.97
Lead	5.0 μg/L	0	-	-	16	2.56	0.92
Lithium	25.0 μg/L	0	-	-	2	0.00	0.00
Magnesium	†	0	-	-	6	2.31	2.31
Manganese	10.0 μg/L	0	-	-	6	0.00	0.00
Mercury	0.2 μg/L	0	-	-	16	19.27	11.65
Nickel	5.0 µg/L	0	-	-	17	5.09	3.07
Nitrate-nitrite as nitrogen	50.0 μg/L	34	1.25	0.89	16	16.39	11.27
pН	†	45	0.60	0.60	16	4.93	4.93
Potassium	†	0	_	•	6	4.88	4.88
Silica	†	0	-	-	2	2.30	2.30
Silver	5.0 μg/L	0	-	_	16	0.00	0.00
Sodium	†	0	_	_	6	3.07	
Specific conductance	÷	28	1.03	1.03	13		3.07
Sulfate	÷	2	2.71	2.71	2	2.27	2.27
Tetrachloroethylene	1.0 μg/L	0		2.11	17	19.10	19.10
	5.0 μg/L	Ŏ	_	<u>-</u>	9	10.70	10.56
Toluene	1.0 μg/L	Ö	-	•	-	0.00	0.00
Total dissolved solids	1.0 μg/L 10,000 μg/L	7	- 8.20	- 000	17	0.00	0.00
. 4.5. 0.0001700 001100	10,000 µg/L	,	0.20	8.20	5	13.29	13.29

⁻ No replicate or duplicate analyses could be calculated.

Analyte		In-house Duplicates Number of			Blind Replicates Number of			
	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj	
Total organic carbon	5,000 µg/L	11	0.00	0.00	5	0.00	0.00	
Total organic halogens	10.0 μg/L	3	0.00	0.00	2	0.00	0.00	
Total phosphates (as P)	50.0 µg/L	1	0.00	0.00	2	0.00	0.00	
Trichloroethylene	1.0 µg/L	0	-	-	17	3.89	1.55	
Trichlorofluoromethane	1.0 µg/L	0	-	-	11	0.00	0.00	
Turbidity	0.4 NTU	9	3.47	3.47	3	50.79	31.25	
Vanadium	5.0 μg/L	0	-	_	16	0.00	0.00	
Xylenes	1.0 µg/L	0	-	•	3	0.00	0.00	
Zinc	10.6 μg/L	0	-	-	15	4.33	2.21	

[†] No detection limit, or no replicate or duplicate results below detection limit.

Table 31. Intralaboratory MRD Matrix Spike Indices for GE

		In-house Duplicat	tes	
Analyte	RDL	Number of Dup. Pairs	MRD	MRDadj
Acenaphthene	†	6	11.55	11.55
Aldrin	†	4	48.74	48.74
Benzene	†	38	6.97	6.97
Chlorobenzene	Ť	38	6.90	6.90
4-Chloro-m-cresol	†	6	27.63	27.63
2-Chlorophenol	†	6	41.07	41.07
p,p'-DDT	Ť	4	39.98	39.98
1,4-Dichlorobenzene	†	6	10.94	10.94
1,1-Dichloroethylene	÷	38	12.90	12.90
2,4-Dichlorophenoxyacetic acid	,	2	13.40	13.40
Dieldrin	÷	4	44.77	44.77
2,4-Dinitrotoluene	Ť	6	12.27	12.27
Endrin	,	4	42.34	42.34
Heptachlor	†	4	44.75	44.75
Lindane	,	4	42.51	42.51
4-Nitrophenol	÷	4	27.51	27.51
N-Nitrosodipropylamine	,	6	11.14	11.14
Pentachlorophenol	0.011 mg/L	6	11.43	11.43
Phenol	†	6	35.29	35.29
Pyrene	,	6	10.41	10.41
2,4,5-T	'	2	16.25	16.25
Toluene	÷	38	7.34	7.34
2,4,5-TP (Silvex)	÷	2	14.88	7.34 14.88
1,2,4-Trichlorobenzene	'	6	8.86	8.86
Trichloroethylene	,	38	9.01	9.01

[†] No detection limit, or no replicate or duplicate results below detection limit.

⁻ No replicate or duplicate analyses could be calculated.

Table 32. Intralaboratory MRD Indices for WA

		In-house Dup Number of	licates		Blind Replica Number of	tes	
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Acetone	20.0 µg/L	3	0.00	0.00	4	0.00	0.00
Alkalinity (as CaCO3)	†	1	1.58	1.58	0	-	-
Aluminum	181 μg/L	4	0.00	0.00	2	30.12	12.93
Antimony	27.0 μg/L	8	0.00	0.00	3	12.94	4.81
Barium	1.8 µg/L	22	3.06	2.51	16	17.34	16.48
Bis(2-ethylhexyl) phthalate		10	0.00	0.00	2	0.00	0.00
Cadmium	4.7 μg/L	9	0.00	0.00	3	0.00	0.00
Calcium	471 µg/L	5	0.27	0.27	2	9.87	4.55
Carbon tetrachloride	50.0 μg/L	19	0.00	0.00	_ 15	0.00	0.00
Chloride	†	7	3.38	3.38	3	52.70	52.70
Chloroform	50.0 µg/L	19	0.00	0.00	15	0.00	0.00
Chromium	7.0 μg/L	10	0.00	0.00	6	0.00	0.00
Cobalt	4.5 µg/L	9	0.00	0.00	2	34.31	15.67
Copper	15.0 µg/L	9	0.31	0.17	2	11.25	11.25
1,2-Dichloroethane	50.0 μg/L	18	0.00	0.00	15	0.00	0.00
cis-1,2-Dichloroethylene	25.0 µg/L	1	0.00	0.00	3	0.00	0.00
trans-1,2-Dichloroethylene		Ö	-	-	1	0.00	0.00
Dichloromethane	22.7 µg/L	17	0.00	0.00	12	9.10	9.10
Iron	74.0 µg/L	7	27.97	16.35	5	26.88	24.55
Lead	47.0 µg/L	22	0.00	0.00	16	0.00	0.00
Lithium	†	1	1.36	1.36	0	0.00	0.00
Magnesium	74.0 µg/L	5	1.49	1.49	2	6.91	- 6.91
Manganese	7.8 µg/L	7	1.82	1.04	5	8.13	3.69
Mercury	0.7 µg/L	12	0.00	0.00	5	0.00	0.00
Nickel	26.0 µg/L	22	0.00	0.00	15	0.00	0.00
Nitrate as nitrogen	†	1	1.63	1.63	0	0.00	0.00
Nitrate-nitrite as nitrogen	20.0 µg/L	6	1.50	1.50	4	5.89	5.89
pH	†	6	0.35	0.35	1	6.47	6.47
Potassium	426 μg/L	5	1.72	0.74	2	0.00	0.00
Silica	†	1	1.19	1.19	0	-	0.00
Silver	5.0 μg/L	10	1.82	0.60	6	0.00	0.00
Sodium	†	7	1.27	1.27	5	5.46	5.46
Specific conductance	†	3	1.10	1.10	0	5.40	5.40
Sulfate	340 µg/L	7	1.08	1.08	3	31.79	16.03
Tetrachloroethylene	5.0 µg/L	20	3.51	3.25	14	31.73	3.07
Thallium	55.0 µg/L	8	0.00	0.00	2	0.00	0.00
Toluene	50.0 μg/L	19	0.00	0.00	15	0.00	0.00
Total dissolved solids	47,000 µg/L	2	0.00	0.00	0	0.00	0.00
Total organic carbon	1,000 μg/L	5	1.75	0.66	3	0.00	0.00
Total organic halogens	120 µg/L	6	0.38	0.00	3		
Total phosphates (as P)	67.0 µg/L	7	0.40	0.13	3	21.86	18.76
Trichloroethylene	5.0 μg/L	20	2.01	1.36	3 16	0.00	0.00
Trichlorofluoromethane	50.0 μg/L	16	0.00	0.00	13	4.66	4.66
Turbidity	0.41 NTU	2	0.00		0	0.00	0.00
Vanadium	6.9 µg/L	9	0.00	0.00 0.00	2	-	-
Xylenes	50.0 μg/L	19	0.00	0.00	15	0.00	0.00
Zinc		9				0.00	0.00
ZIIIO	53.0 µg/L	J	0.00	0.00	2	0.00	0.00

[†] No detection limit, or no replicate or duplicate results below detection limit.

⁻ No replicate or duplicate analyses could be calculated.

Table 33. Intralaboratory MRD Indices for GP

		<u>In-house Dur</u> Number of	<u>In-house Duplicates</u> Number of		Blind Replicates Number of		
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Actinium-228	1.77E-08 μCi/mL	20	4.19	1.75	13	0.42	0.13
Americium-241	8.05E-10 µCi/mL	27	3.00	2.60	12	18.04	8.49
Antimony-125	1.02E-08 µCi/mL	21	0.00	0.00	12	0.00	0.00
Carbon-14	1.01E-08	16	9.03	6.85	8	6.83	2.82
Cesium-137	μCi/mL 4.2E-09	21	8.54	3.70	14	10.18	4.58
Cobalt-57	μCi/mL 3.43E-09	20	0.00	0.00	15	0.00	0.00
Cobalt-60	μCi/mL 4.71E-09	21	1.19	0.69	14	0.00	0.00
Curium-242	μCi/mL 6.08E-10	21	0.00	0.00	11	0.00	0.00
Curium-243/244	μCi/mL 9.59E-10	21	1.85	1.64	11	0.00	0.00
Curium-245/246	μCi/mL 4.39E-10	20	10.76	4.54	12	0.00	0.00
Europium-152	μCi/mL 1.08E-08	20	0.00	0.00	14	0.00	0.00
Europium-154	μCi/mL 1.21E-08	19	0.00	0.00	14	0.00	0.00
Gross alpha	μCi/mL 9.94E-10	25	14.27	11.58	17	9.22	5.03
lodine-129	μCi/mL 1.31E-09	22	17.39	12.72	13	3.58	1.69
Lead-212	μCi/mL 7.38E-09	20	1.31	0.41	14	5.84	2.22
Manganese-54	μCi/mL 4.09E-09	20	3.50	1.62	14	0.00	0.00
Neptunium-237	μCi/mL 7.2E-10	4	0.00	0.00	2	0.00	0.00
Nonvolatile beta	μCi/mL 1.67E-09	27	10.07	7.39	17	8.71	4.99
Plutonium-238	μCi/mL 8.01E-10	18	0.00	0.00	13	0.63	0.20
Plutonium-239/240	μCi/mL 6.59E-10	22	0.00	0.00	14	0.92	0.30
Potassium-40	μCi/mL 5.14E-08	19	1.44	0.50	15	3.04	1.07
Radium, total alpha-	μCi/mL 5.26E-10	3	9.57	6.35	0	-	
emitting Radium-226	μCi/mL 7.44E-10	25	6.15	4.40	12	17.15	10.96
Radium-228	μCi/mL 1.13E-09	24	19.28	15.03	13	37.16	30.96
Sodium-22	μCi/mL 4.33E-09	20	0.00	0.00	13	0.00	0.00
Strontium-90	μCi/mL 1.67E-09	24	4.40	4.40	15	5.42	4.51
Fechnetium-99	μCi/mL 2.28E-08 μCi/mL	24	3.67	3.01	14	1.79	1.25

		In-house Dup Number of	olicates		Blind Replica	ites	
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Number of Dup. Pairs	MRD	MRDadj
Thorium-228	1.12E-09 µCi/mL	21	1.83	0.63	9	5.67	2.08
Thorium-230	μΟ//πΕ 5.99E-10 μCi/mL	20	1.84	0.61	11	0.00	0.00
Thorium-232	5.07E-10 μCi/mL	18	0.00	0.00	12	0.00	0.00
Tritium	7.11E-07 µCi/mL	25	2.37	2.35	16	4.46	3.89
Uranium-233/234	4.94E-10 μCi/mL	22	4.42	3.79	10	0.50	0.50
Uranium-235	4.18E-10 µCi/mL	22	2.36	2.36	10	5.38	2.21
Uranium-238	4.36E-10 μCi/mL	22	1.91	1.91	10	1.29	1.29
Yttrium-88	5.41E-09 µCi/mL	18	0.00	0.00	14	1.06	0.34
Zinc-65	8.53E-09 µCi/mL	20	0.00	0.00	14	0.00	0.00

⁻ No replicate or duplicate analyses could be calculated.

Table 34. Intralaboratory MRD Indices for TM

	<u>In-house Duplicates</u> Number of				<u>Blind Replicates</u> Number of		
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Actinium-228	2.534E-08 µCi/mL	15	0.00	0.00	1	0.00	0.00
Americium-241	4.5E-10 µCi/mL	3	19.69	19.69	0	-	-
Americium-241/Curium- 246	4.4E-10 µCi/mL	10	5.33	2.18	0	-	-
Antimony-125	1.652E-08 µCi/mL	16	0.00	0.00	1	0.00	0.00
Carbon-14	1.9613E-07 µCi/mL	7	1.50	0.48	0	-	-
Cesium-137	6.71E-09 μCi/mL	17	0.00	0.00	1	0.00	0.00
Cobalt-57	3.9E-09 μCi/mL	17	0.00	0.00	1	0.00	0.00
Cobalt-60	7.27E-09 µCi/mL	17	0.00	0.00	1	0.00	0.00
Curium-242	4.2E-10 µCi/mL	11	0.00	0.00	0	-	-
Curium-243/244	5.8E-10 μCi/mL	11	0.00	0.00	0	- ,	-
Europium-152	4.602E-08 µCi/mL	16	0.00	0.00	0	-	-
Europium-154	1.888E-08 µCi/mL	16	0.00	0.00	0	-	-

		In-house Duplicates Number of		Blind Replica Number of	ites		
Analyte	RDL	Dup. Pairs	MRD	MRDadj	Dup. Pairs	MRD	MRDadj
Gross alpha	1.41E-09 µCi/mL	33	12.15	8.48	6	14.72	11.06
lodine-129	1.248E-08 µCi/mL	11	0.00	0.00	0	-	-
Lead-212	8.75E-09 µCi/mL	16	0.00	0.00	1	0.00	0.00
Manganese-54	6.44E-09 µCi/mL	17	0.00	0.00	1	0.00	0.00
Neptunium-237	3.5E-10 μCi/mL	4	0.00	0.00	0	-	-
Nonvolatile beta	3.61E-09 μCi/mL	31	16.02	11.55	6	34.10	27.85
Plutonium-238	4.2E-10 μCi/mL	11	5.02	2.08	0	-	-
Plutonium-239/240	3.3E-10 µCi/mL	10	0.00	0.00	0	-	•
Potassium-40	7.275E-08 µCi/mL	17	2.25	0.84	1	0.00	0.00
Radium, total alpha- emitting	5.9E-10 µCi/mL	9	12.25	6.61	4	0.00	0.00
Radium-226	9.7E-10 µCi/mL	14	3.95	2.32	1	0.00	0.00
Radium-228	3.47E-09 µCi/mL	13	2.62	1.37	1	0.00	0.00
Sodium-22	6.9E-09 µCi/mL	17	0.00	0.00	1	0.00	0.00
Strontium-90	1.93E-09 µCi/mL	14	2.73	1.85	0	-	-
Technetium-99	2.254E-08 µCi/mL	13	0.16	0.11	1	0.00	0.00
Thorium-228	4.6E-10 µCi/mL	11	0.00	0.00	0	-	-
Thorium-230	3.7E-10	12	7.42	7.26	0	-	-
Thorium-232	μCi/mL 3.5E-10	12	0.00	0.00	0	-	-
Tritium	μCi/mL 8.4E-07	31	17.71	16.62	4	23.54	17.98
Uranium-234	μCi/mL 4.5E-10	11	5.66	3.39	0	•	-
Uranium-235	μCi/mL 4.2E-10	11	0.00	0.00	0	-	-
Uranium-238	μCi/mL 4.1E-10	12	0.56	0.37	0	-	-
Yttrium-88	μCi/mL 7.27E-09	16	0.00	0.00	0	-	-
Zinc-65	μCi/mL 1.436E-08 μCi/mL	17	0.00	0.00	1	0.00	0.00

⁻ No replicate or duplicate analyses could be calculated.

Table 35. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for GE and WA

Analyte	RDL	Unit	MRD	t-test Probability
Acetone	20.0	μg/L	0.00	-
Aluminum	146	μg/L	8.40	-
Antimony	27.0	μg/L μg/L	1.13	.380
Barium	5.0	μg/L	15.85	.331 .762
Bis(2-ethylhexyl) phthalate	20.0	μg/L	0.00	
Cadmium	5.0	μg/L	0.00	-
Calcium	471	μg/L	33.27	.966
Carbon tetrachloride	25.0	μg/L	0.00	.900
Chloroform	25.0			-
Chromium	7.0	μg/L μg/L	0.00	-
Cobalt	5.0	μg/L μg/L	0.00 2.90	-
Copper	15.0	μg/L		.354
1,2-Dichloroethane	25.0	μg/L	3.85 0.00	.207
Dichloromethane	17.2			-
Iron	74.0	μg/L μg/L	0.00	-
Lead	47.0		29.98	.362
Lithium	25.0	μg/L	0.00	-
Magnesium	74.0	μg/L	0.00	-
Manganese	10.0	μg/L	17.71	.788
Mercury	0.7	μg/L	1.98	.356
Nickel	26.0	μg/L	0.00	•
Nitrate-nitrite as nitrogen	50.0	μg/L	0.33	.331
Potassium	426	μg/L	40.45	.303
Silver	· — -	μg/L	25.46	.880
Sulfate	5.0	μg/L	0.00	-
Tetrachloroethylene	340	μg/L	14.27	-
Thallium	5.0	μg/L	0.88	.491
Toluene	55.0	μg/L	0.00	•
Total dissolved solids	25.0	μg/L	0.00	-
	47,000	μg/L	44.83	.994
Total organic carbon Total organic halogens	5,000	μg/L	0.00	-
	120	μg/L	0.00	•
Total phosphates (as P) Trichloroethylene	67.0	μg/L "	0.00	-
Trichlorofluoromethane	5.0	μg/L	0.00	-
Turbidity	50.0	μg/L	0.00	-
,	0.41	NTU	32.62	.333
Xylenes Zinc	50.0	μg/L	0.00	-
ZITIC	53.0	μg/L	0.53	.331

⁻ Could not calculate because there are no differences between pairs.

Table 36. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for ES and EX

nalyte	RDL	Unit	MRD	t-test Probability
etone	13.0	μg/L	23.53	500
inum				.500
	181	μg/L	0.76	.500
mony	27.0	μg/L	0.00	-
rium	1.8	μg/L	6.25	.874

Analyte	RDL	Unit	MRD	t-test Probability
Ric/2 othylboxyl) phtholeta	00.0			
Bis(2-ethylhexyl) phthalate Calcium	22.0	μg/L	86.10	.500
	471	μg/L	4.31	.027
Carbon tetrachloride	50.0	μg/L	0.00	•
Chloroform	50.0	μg/L	0.00	-
Chromium	7.0	μg/L	0.00	-
Cobalt	5.0	μg/L	0.00	-
Copper	15.0	μg/L	0.00	-
Dichloromethane	19.2	μg/L	0.00	-
lron	74.0	μg/L	50.14	.344
Lead	47.0	μg/L	0.00	-
Magnesium	74.0	μg/L	0.28	.500
Manganese	7.8	μg/L	0.95	.500
Potassium	426	μg/L	11.67	.212
Silver	5.0	μg/L	4.76	.500
Sulfate	5,000	μg/L	0.00	•
Tetrachloroethylene	5.0	μg/L	7.46	.500
Toluene	50.0	μg/L	0.00	•
Total organic carbon	1,000	μg/L	70.97	•
Total organic halogens	120	μg/L	0.00	•
Trichloroethylene	5.0	μg/L	7.17	.500
Vanadium	6.9	μg/L	2.06	.500
Zinc	53.0	μg/L	0.00	.500

⁻ Could not calculate because there are no differences between pairs.

Table 37. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for ES and WA

Analyte	RDL	Unit	MRD	t <i>-test</i> Probability
Acetone	13.0	μg/L	23.53	.500
Aluminum	181	μg/L	0.76	.500
Antimony	27.0	μg/L	0.00	.500
Barium	1.8	μg/L	6.25	- .874
Bis(2-ethylhexyl) phthalate	22.0	μg/L	86.10	.500
Calcium	471	μg/L	4.31	.027
Carbon tetrachloride	50.0	μg/L	0.00	.027
Chloroform	50.0	μg/L	0.00	- -
Chromium	7.0	μg/L	0.00	- -
Cobalt	5.0	μg/L	0.00	-
Copper	15.0	μg/L	0.00	-
Dichloromethane	19.2	μg/L	0.00	-
ron	74.0	μg/L	50.14	.344
_ead	47.0	μg/L	0.00	-
Magnesium	74.0	μg/L	0.28	.500
Manganese	7.8	μg/L	0.95	.500
otassium	426	μg/L	11.67	.212
Silver	5.0	μg/L	4.76	.500
Sulfate	5,000	μg/L	0.00	-
etrachloroethylene	5.0	μg/L	7.46	.500
oluene	50.0	μg/L	0.00	•
otal organic carbon	1,000	μg/L	70.97	-
otal organic halogens	120	μg/L	0.00	-

Analyte	RDL	Unit	MRD	t-test Probability
Trichloroethylene Vanadium Zinc	5.0 6.9 53.0	μg/L μg/L μg/L	7.17 2.06 0.00	.500 .500

⁻ Could not calculate because there are no differences between pairs.

Table 38. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for EX and WA

Analyte	RDL	Unit	MRD	t-test Probability
•			,	······································
Acetone	500	μg/Ľ	0.00	•
Barium	25.0	μg/L	0.00	•
Carbon tetrachloride	50.0	μg/L	0.00	-
Chloroform	50.0	μg/L	0.00	
cis-1,2-Dichloroethylene	25.0	μg/L	0.00	•
trans-1,2-Dichloroethylene	250	μg/L	0.00	•
Dichloromethane	50.0	μg/L	20.65	.068
Iron	100	μg/L	0.00	•
Lead	47.0	μg/L	0.00	•
Manganese	10.0	μg/L	1.15	.423
Nitrate-nitrite as nitrogen	1,000	μg/L	0.00	
Silver	20.0	μg/L	51.16	.423
Sodium	100	μg/L	30.32	.822
Sulfate	340	μg/L	21.87	.655
Tetrachloroethylene	50.0	μg/L	0.42	.250
Toluene	50.0	μg/L	0.00	.230
Total organic carbon	5,000	μg/L	25.40	.368
Total phosphates (as P)	67.0	μg/L	0.00	.500
Trichloroethylene	5.0	μg/L	8.46	420
Trichlorofluoromethane	50.0	μg/L μg/L	0.00	.439

⁻ Could not calculate because there are no differences between pairs.

Note: Values less than .050 indicate a probability of less than 1 in 20 that the results for that analyte are the same from both laboratories. MRD results greater than or equal to 20 appear in **bold**.

Table 39. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for ES and EX

Analyte	RDL	Unit	MRD	t-test Probability
Antimony-125	1.652E-08	μCi/mL	0.00	
Carbon-14	1.9613E-07	μCi/mL	0.00	•
Cesium-137	6.64E-09	μCi/mL	0.00	-
Chloride	†	•	3.91	-
Curium-242	4.1E-10	μCi/mL	0.00	-
Europium-152	4.602E-08	μCi/mL	0.00	-
Gross alpha	1.79E-09	μCi/mL	18.20	.371

Quality Control Samples
Page 84

Analyte	RDL	Unit	MRD	t-test Probability
lodine-129	1.248E-08	μCi/mL	0.00	
Neptunium-237	3.5E-10	μCi/mL	23.90	-
Nonvolatile beta	3.03E-09	μCi/mL	0.00	•
Plutonium-238	3.8E-10	uCi/mL	0.00	-
Potassium-40	7.275E-08	μCi/mL	0.00	-
Radium-226	1.09E-09	μCi/mL	0.00	•
Radium-228	3.44E-09	μCi/mL	0.00	-
Sodium	†	•	5.65	.751
Strontium-90	1.93E-09	μCi/mL	15.53	-
Thorium-230	3.7E-10	μCi/mL	0.00	-
Thorium-232	3.0E-10	μCi/mL	0.00	-
Tritium	8.4E-07	μCi/mL	30.52	.212
Uranium-234	4.5E-10	μCi/mL	0.00	-
Uranium-235	3.9E-10	μCi/mL	0.00	-
Uranium-238	4.1E-10	μCi/mL	0.00	-

[†] No detection limit, or no replicate or duplicate results below detection limit.

Table 40. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for ES and TM

Analyte	RDL	Unit	MRD	t-test Probability
Antimony-125	1.652E-08	μCi/mL	0.00	
Carbon-14	1.9613E-07	μCi/mL	0.00	-
Cesium-137	6.64E-09	μCi/mL	0.00	-
Chloride	+	μΟι/ΠΕ	3.91	-
Curium-242	4.1E-10	μCi/mL	0.00	-
Europium-152	4.602E-08	µCi/mL	0.00	- -
Gross alpha	1.79E-09	μCi/mL	18.20	.371
lodine-129	1.248E-08	μCi/mL	0.00	.571
Neptunium-237	3.5E-10	μCi/mL	23.90	•
Nonvolatile beta	3.03E-09	μCi/mL	0.00	_
Plutonium-238	3.8E-10	μCi/mL	0.00	
Potassium-40	7.275E-08	μCi/mL	0.00	-
Radium-226	1.09E-09	μCi/mL	0.00	-
Radium-228	3.44E-09	μCi/mL	0.00	-
Sodium	†	•	5.65	.751
Strontium-90	1.93E-09	μCi/mL	15.53	-
[horium-230	3.7E-10	μCi/mL	0.00	-
Thorium-232	3.0E-10	μCi/mL	0.00	-
Γritium	8.4E-07	μCi/mL	30.52	.212
Jranium-234	4.5E-10	μCi/mL	0.00	-
Jranium-235	3.9E-10	μCi/mL	0.00	
Jranium-238	4.1E-10	μCi/mL	0.00	-

[†] No detection limit, or no replicate or duplicate results below detection limit.

⁻ Could not calculate because there are no differences between pairs.

⁻ Could not calculate because there are no differences between pairs.

Table 41. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for EX and TM

Analyte	RDL	Unit	MRD	t-test Probability
Chloride			19.68	.624

[†] No detection limit, or no replicate or duplicate results below detection limit.

Table 42. Interlaboratory MRD and t-test Results for Analytes with at Least One Pair of Results above the RDL for GP and TM

Analyte	RDL	Unit	MRD	t-test Probability
Actinium-228	2.438E-08	C:/!	0.00	
Americium-241	8.05E-10	μCi/mL	0.00	-
Antimony-125	1.514E-08	μCi/mL	74.32	.500
Carbon-14	1.7788E-07	μCi/mL	0.00	•
Cesium-137		μCi/mL	6.95	.246
Chloride	6.47E-09	μCi/mL	2.09	.130
Cobalt-57	† 3.82E-09	0:/1	7.43	•
Cobalt-60		μCi/mL	0.00	-
Curium-242	6.81E-09	μCi/mL	0.00	•
Curium-242 Curium-243/244	5.44E-10	μCi/mL	3.37	.339
	9.21E-10	μCi/mL	3.23	.337
Europium-152	4.251E-08	μCi/mL	0.00	-
Europium-154	1.79E-08	μCi/mL	0.00	-
Gross alpha	1.13E-09	μCi/mL	26.25	.519
lodine-129	1.121E-08	μCi/mL	1.13	.363
Lead-212	8.45E-09	μCi/mL	1.28	.322
Manganese-54	6.19E-09	μCi/mL	0.00	-
Nonvolatile beta	2.56E-09	μCi/mL	32.72	.407
pH	†		5.43	.773
Plutonium-238	7.61E-10	μCi/mL	0.95	.336
Plutonium-239/240	6.55E-10	μCi/mL	0.50	.336
Potassium-40	6.285E-08	μCi/mL	2.36	.472
Radium, total alpha-emitting	5.9E-10	μCi/mL	9.68	- ,
Radium-226	8.2E-10	μCi/mL	16.30	.209
Radium-228	3.44E-09	μCi/mL	28.18	.331
Sodium	†	•	12.56	.435
Sodium-22	6.42E-09	μCi/mL	0.00	.400
Specific conductance	†	L	19.97	.337
Strontium-90	i.89E-09	μCi/mL	17.00	.318
Technetium-99	2.27E-08	μCi/mL	1.14	.237
Thorium-228	1.01E-09	μCi/mL	2.85	.222
Thorium-230	5.89E-10	μCi/mL	5.88	.389
Thorium-232	4.83E-10	μCi/mL	0.00	.369
Tritium	7.11E-07	μCi/mL	28.61	104
Uranium-235	4.18E-10			.134
Uranium-238	4.16E-10 4.2E-10	μCi/mL μCi/mL	3.43 4.16	.336 .183

Analyte	RDL	Unit	MRD	t-test Probability
Yttrium-88	6.66E-09	μCi/mL	0.00	•
Zinc-65	1.33E-08	μCi/mL	0.00	

[†] No detection limit, or no replicate or duplicate results below detection limit.

Table 43. ES Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Acetone	CSB 1C	
Aluminum	KRP 8	
Copper	LFW 74C	
Iron	KRP 8	
Neptunium-237	KRP 8	
Nitrate as nitrogen	TNX 9D	
Total organic carbon	CSB 1C	

Table 44. ES Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Bis(2-ethylhexyl) phthalate	CSB 2C	

Table 45. EX Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Silver Sodium	AMB 17A AMB 17A	

Table 46. GE Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Iron Mercury Nitrate-nitrite as nitrogen Tetrachloroethylene Turbidity	CSO 1, HAA 1B HSB 83B, HSB126C, HSB143D HCA 4AA HSB107C HAA 1B	

⁻ Could not calculate because there are no differences between pairs.

Table 47. GE Matrix Spikes and Matrix Spike Duplicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Aldrin	QA 100A	
2-Chlorophenol	HAA 3D	
p,p´-DDT	QA 100A	
1,1-Dichloroethylene	HSB133C	
Dieldrin	QA 100A	
Endrin	QA 100A	
Lindane	QA 100A	
Phenoi	HAA 3D	

Note: Results for blind blanks are given in Appendix B.

Table 48. GP Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Americium-241	HSB 83B, HSB126C	
Cesium-137	HR8 11	
Nonvolatile beta	HSB126C	
Radium-226	HXB 5D	

Table 49. GP Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Gross alpha	HAA 3AA	
lodine-129	FSB114A	
Manganese-54	HSB145D	
Nonvolatile beta	HSB118A	
Radium-228	FSB105C, HXB 6D	

Table 50. TM Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Nonvolatile beta	LRP 3	

Table 51. TM Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Nonvolatile beta Radium, total alpha-emitting Thorium-230 Tritium	LRP 1, ZBG 1 AMB 14D HSB 68A CSB 1C, FSB121DR	

Table 52. WA Samples and Blind Replicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells	
Barium Chloride Cobalt Iron Sulfate	MSB 35B AMB 4A LRP 3 LRP 3 AMB 4A	

Table 53. WA Samples and Laboratory Duplicates Yielding Results Where One Is More Than Twice Another

Analyte	Wells
Iron	CSB 1C

Table 54. Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and EX

Analyte	Wells	
Bis(2-ethylhexyl) phthalate	CSB 1C	
Iron	CSB 1C	
Total organic carbon	CSB 1C	

Table 55. Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and WA

Analyte	Wells	
Bis(2-ethylhexyl) phthalate	CSB 1C	
Iron	CSB 1C	
Total organic carbon	CSB 1C	

Table 56. Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between EX and WA

Analyte	Wells	
Dichloromethane	ASB 6AA, MSB 4B	
Silver	AMB 17A	
Total organic carbon	AMB 7A	

Table 57. Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between GE and WA

Analyte	Wells		
Barium	HCA 4AA, HCA 4C		
Calcium	HCA 4AA, HCA 4C		
Iron	LRP 3		
Nitrate-nitrite as nitrogen	HAA 1B, HCA 4AA, HSB143D, ZBG 1		
Potassium	HCA 4AA, HCA 4C		
Total dissolved solids	HCA 4AA, HCA 4C		
Turbidity	HAA 1B		

Table 58. Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and EX

Analyte	Wells	
Gross alpha Tritium	LFW 43C CSB 1C	

Table 59. Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between ES and TM

Analyte	Wells	
Gross alpha Tritium	LFW 43C CSB 1C	

Table 60. Analytes with One Laboratory's Result Greater Than Twice the Result from the Other Laboratory between GP and TM

Analyte	Wells	
Americium-241 Gross alpha Nonvolatile beta Radium-226 Radium-228 Specific conductance Strontium-90 Thorium-230 Tritium	RGW 21 FSB 78B, FSB112C, RGW 21, ZBG 1 FSB 78B, HSB 83B, LRP 3 FSB121DR FSB112C, FSB121DR HXB 5D RGW 21, RPC 8DU HSB 68A HSB 83B	

Table 61. Quality Control Standards for Selected Analyses for GE

Analyte	Certified Value	Performance Acceptance Limits	GE Result	Result Qualifier
Acids (Lot 581)				
2,4-Dichlorophenol (µg/L)	121	51.3–133	84.0	
o-Cresol (2-methyphenol) (µg/L)	35.2	11.2–40.7	23.4	
Pentachlorophenol (µg/L)	50.8	15.8–63.8	33.3	
Phenol (µg/L)	140	56.8–173	46.7†	J
2,4,5-Trichlorophenol (µg/L)	41.2	16.2-47.6	32.3	3
2,4,6-Trichlorophenol (µg/L)	63.4	27.4–72.7	47.1	
Base/Neutrals (Lot 581)				
cenaphthylene (µg/L)	39.6	17.0–46.6	32.4	J
inthracene (μg/L)	99.6	47.0–116	78.8	J
Benzo[a]anthracene (µg/L)	74.4	31.2–88.4	58.8	j
Bis(2-ethylhexyl) phthalate (µg/L)	28.5	11.5–36.4	33.5	J
-Bromophenyl phenyl ether (µg/L)	109	53.9-130	80.1	J
Chrysene (µg/L)	14.9	6.89–18.3	15.0	Ĵ
ibenzofuran (µg/L)	109	51.9–121	76.3	J
,2-Dichlorobenzene (µg/L)	92.5	21.7–106	57.6	J
,4-Dichlorobenzene(µg/L)	48.3	10.6–57.0	30.7	Ĵ
,4-Dinitrotoluene (μg/L)	59.5	24.9-68.6	44.4	Ĵ
,6-Dinitrotoluene (µg/L)	60.8	31.2-68.9	42.1	Ĵ
luorene (μg/L)	72.8	35.8-87.4	55.0	J
laphthalene (µg/L)	111	39.4-127	72.0	Ĵ
yrene (μg/L)	40.8	19.1–49.6	36.7	J
2,4-Trichlorobenzene (µg/L)	87.7	25.6–99.6	51.0	j
ations (Lot 436)				
Calcium (μg/L)	67,900	61,100–74,700	70,400	
fagnesium (µg/L)	45,500	40,500-50,500	45,500	
otassium (µg/L)	86,900	79,100–94,700	88.200	
odium (µg/L)	75,800	66,700-84,900	77,000	
yanide and Phenol (Lot 9981)				
Syanide, total (µg/L)	111	81.0–141	116	
henols (µg/L)	335	255–415	297	
rease and Oil (Lot 9981)				
rease and oil (gravimetric) (mg/bottle)	47.8	28.7–59.8	37.5	

Analyte	Certified Value	Performance Acceptance Limits	GE Result	Result Qualifier
Inorganics (Lot 3423)				
Alkalinity (as CaCO₃) (μg/L)	142,000	132,000-160,000	138,000	
Chloride (µg/L)	70,000	62,200-78,900	76,400	J
Fluoride (µg/L)	3,340	3,010–3,670	2,870†	_
Nitrate as nitrogen (µg/L) pH (pH units)	7,500	6,750–8,250	7,600	J
Potassium (μα/L)	9.04 27,800	8.84-9.24	9.02	
Sodium (µg/L)	155,000	23,900–32,400 140,000–172,000	28,800	
Specific conductance (µS/cm)	783	655–891	158,000 785	
Sulfate (µg/L)	93,600	80,200–106,000	96,100	
Total dissolved solids (µg/L)	655,000	537,000–733,000	640,000	
Nutrients (Lot 9981)				
Ammonia as nitrogen (μg/L)	5,830	4,900–6,760	5,500	
Nitrate-nitrite as nitrogen (µg/L)	7,320	6,510-8,130	7,550	
Total phosphates (as P) (µg/L)	8,870	7,540–10,200	9,200	
PCBs (Lot 581)				
PCB 1254 (μg/L)	2.61	1.56–3.28	1.67	
Pesticides (Lot 581)				
Aldrin (µg/L)	2.19	1.14-2.70	1.81	
alpha-Benzene hexachloride (µg/L)	3.92	2.18-4.99	3.35	
peta-Benzene hexachloride (µg/L)	1.32	0.704-1.67	0.84	
delta-Benzene hexachloride (μg/L) alpha-Chlordane (μg/L)	4.99	2.20-6.41	1.94†	
4,4'-DDD (μg/L)	2.61 6.98	1.58–3.23 4.29–9.06	2.33	
4,4'-DDE (μg/L)	3.09	4.29 - 9.06 1.80 - 3.87	6.46 2.98	
4,4'-DDT (μg/L)	9.19	5.34–11.5	8.00	
Dieldrin (µg/L)	2.12	1.31–2.74	1.79	
Endrin (µg/L)	0.885	0.554-1.14	0.835	J
Heptachlor (µg/L)	5.02	2.27-6.22	4.14	•
-leptachlor epoxide (µg/L) Lindane (µg/L)	1.80	1.11–2.20	1.68	
Methoxychlor (μg/L)	5.20 5.85	2.93–6.76	4.35	
	5.65	3.34–7.89	6.78	
Pesticides/Herbicides (Lot 3223)				
2-sec-Butyl-4,6-dinitrophenol (μg/L) 2,4-Dichlorophenoxyacetic acid (μg/L)	8.08	2.65-10.5	5.11	
2,4,5-TP (Silvex) (µg/L)	9.96 8.86	4.98–14.9	6.69	
· · · - ·		4.43–13.3	5.56	J ,
otal Petroleum Hydrocarbons (Lot 8915	•			
otal petroleum hydrocarbons, standard 1, infrared (mg/bottle)	44.4	28.4–58.5	31.2	J
oxaphene (Lot 3223)				
oxaphene (µg/L)	1.43	0.787-2.07	0.843	J
race Metals (Lot 9981)				
Numinum (μg/L)	613	503–723	648	
Antimony (µg/L)	98.9	74.2-124	103	
rsenic (µg/L)	133	99.8–157	137	
Barium (µg/L) Beryllium (µg/L)	433	355–511	431	
Boron (µg/L)	112 486	91.8–132	113	
Cadmium (µg/L)	92.2	399–608 75.6–109	533	
Chromium (µg/L)	422	346–498	94.9	

Quality Control Samples

Analyte	Certified Value	Performance Acceptance Limits	GE Result	Result Qualifier
Coholt (us/l)	404			······································
Cobalt (µg/L)	101	82.8–119	105	
Copper (µg/L)	113	92.7–133	112	
lron (µg/L)	506	415–597	523	
Lead (µg/L)	189	155–223	194	
Manganese (µg/L)	408	335–481	410	
Mercury (µg/L)	11.1	8.33–13.9	11.3	
Molybdenum (μg/L)	444	364-524	437	
Nickel (μg/L)	389	319–459	406	
Selenium (µg/L)	122	91.5–144	128	
Silver (µg/L)	116	95.1-137	106	
Strontium (µg/L)	321	263-379	314	
Γhallium (μ̈g/L) ΄	95.6	71.7–120	96.2	
Vanadium (μg/L)	304	249-359	300	
Zinc (µg/L) "	611	501–721	625	
Turbidity (Lot 3423)				
Furbidity (NTU)	5.20	4.42-6.08	5.36	
Volatiles (Lot 581)				
Acetone (μg/L)	150	75.2–233	182	
Benzene (µg/L)	50.0	38.7–62.3	51.8	
Bromodichloromethane (µg/L)	60.0	46.1–74.8	52.2	
Bromoform (µg/L)	85.1	62.2–110	95.7	
Carbon tetrachloride (µg/L)	94.5	69.4–118	75.4	
Chlorobenzene (µg/L)	20.1	15.7–24.1	19.0	
Chloroform (µg/L)	75.5	58.0–92.3	62.2	
Dibromochloromethane (µg/L)	67.3	52.4 – 83.0		
,2-Dichlorobenzene (µg/L)	21.5	16.3–26.4	64.8 21.7	
l,3-Dichlorobenzene (µg/L)	119	91.0–143		
,4-Dichlorobenzene (µg/L)	41.8		111	
,2-Dichloroethane (µg/L)	47.9	31.4–50.9	45.1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		37.4–60.2	41.6	
)ichloromethane (mothylone chlorida) (::=4)	100	65.5–127	92.0	
Dichloromethane (methylene chloride) (µg/L)		46.2–85.1	61.8	
Ethylbenzene (µg/L)	15.3	11.4–17.9	12.3	
Methyl isobutyl ketone (µg/L)	89.9	52.0–123	127†	
Styrene (µg/L)	24.9	17.3–30.3	23.2	
etrachloroethylene (µg/L)	110	81.2–133	118	
oluene (μg/L)	62.8	48.4–75.8	54.6	
,1,1-Trichloroethane (µg/L)	40.0	28. 9–4 7.7	31.7	
richloroethylene (µg/L)	19.4	14.4–23.5	16.2	
n/p-Xylene (µg/L)	36.6	23.7-46.1	34.6	

[†] Result is out of range.

J The analytical result is an estimated quantity.

Table 62. Quality Control Standards for Selected Analyses for WA

Analyte	Certified Value	Performance Acceptance Limits	WA Result	Result Qualifier
Acids (Lot 581)				
2,4-Dichlorophenol (µg/L)	121	51.3–133	94.0	
o-Cresol (2-methyphenol) (µg/L)	35.2	11.2–40.7	29.4	
Pentachlorophenol (µg/L)	50.8	15.8–63.8	34.2	1
Phenol (µg/L)	140	56.8–173	128	J
2,4,5-Trichlorophenol (µg/L)	41.2	16.2–47.6	31.8	J
2,4,6-Trichlorophenol (µg/L)	63.4	27.4–72.7	54.7	J
Base/Neutrals (Lot 581)				
Acenaphthylene (µg/L)	39.6	17.0-46.6	28.6	
Anthracene (µg/L)	99.6	47.0–116	74.9	
Benzo[a]anthracene (µg/L)	74.4	31.2–88.4	61.2	
Bis(2-ethylhexyl) phthalate (µg/L)	28.5	11.5–36.4	24.7	
4-Bromophenyl phenyl ether (µg/L)	109	53.9–130	88.5	
Chrysene (µg/L)	14.9	6.89–18.3	12.8	
Dibenzofuran (µg/L)	109	51.9–121	89.8	J
1,2-Dichlorobenzene (µg/L)	92.5	21.7–106	71.0	
1,4-Dichlorobenzene(µg/L)	48.3	10.6–57.0	71.0 37.7	
2,4-Dinitrotoluene (µg/L)	59.5	24.9-68.6	46.6	
2,6-Dinitrotoluene (μg/L)	60.8	31.2–68.9	46.3	
Fluorene (µg/L)	72.8	35.8–87.4	60.6	
Naphthalene (µg/L)	111	39.4–127	88.4	
Pyrene (μg/L)	40.8	19.1–49.6	36.8	
1,2,4-Trichlorobenzene (µg/L)	87.7	25.6–99.6	67.6	
Cations (Lot 436)				
Calcium (µg/L)	67,900	61,100-74,700	66,000	
Magnesium (µg/L)	45,500	40,500–50,500	66,800	
Potassium (μg/L)	86,900	79,100–94,700	45,800	
Sodium (μg/L)	75,800	66,700-84,900	85,800 77,200	
Cyanide and Phenol (Lot 9981)			,	
Cyanide, total (μg/L)	111	81.0–141	120	
Phenols (µg/L)	335	255–415	331	J
Grease and Oil (Lot 9981)				
Grease and oil (gravimetric) (mg/bottle)	47.8	28.7–59.8	36.2	j
norganics (Lot 3423)				•
Alkalinity (as CaCO ₃) (µg/L)	142,000	120,000, 400,000	444.000	
Chloride (µg/L)	70,000	132,000–160,000	141,000	
Fluoride (µg/L)		62,200–78,900	64,900	J
Nitrate as nitrogen (μg/L)	3,340 7,500	3,010–3,670	3,270	
θΗ (pH units)	7,500 9.04	6,750–8,250	7,660	J
Potassium (µg/L)	9.04	8.84–9.24	9.15	J
Sodium (µg/L)	27,800	23,900–32,400	29,200	
Specific conductance (µS/cm)	155,000	140,000–172,000	160,000	
Sulfate (µg/L)	783	655–891	768	
otal dissolved solids (µg/L)	93,600 655,000	80,200–106,000 537,000–733,000	87,600 615,000	J J
lutrients (Lot 9981)			,	J
Ammonia as nitrogen (μg/L)	5,830	4,900–6,760	5,790	
litrate-nitrite as nitrogen (µg/L)	7,320	6,510–8,130	5,790 7,500	J
whate-nime as mirogen (hg/L)	7,020	0.510-0.150		

Quality Control Samples
Page 94

Analyte	Certified Value	Performance Acceptance Limits	WA Result	Result Qualifier
Total phosphates (as P) (μg/L)	8,870	7,540–10,200	9,010	J
PCBs (Lot 581)				
PCB 1254 (µg/L)	2.61	1.56–3.28	2.14	J
Pesticides (Lot 581)				· ·
Aldrin (µg/L)	2.19	1.14–2.70	1.9	J
alpha-Benzene hexachloride (µg/L)	3.92	2.18–4.99	3.57	J
peta-Benzene hexachloride (µg/L)	1.32	0.704-1.67	1.22	Ĭ
delta-Benzene hexachloride (μg/L)	4.99	2.20-6.41	4.86	Ĵ
alpha-Chlordane (µg/L)	2.61	1.58-3.23	2.46	Ĵ
1,4'-DDD (μg/L)	6.98	4.29-9.06	6.72	Ĵ
l,4'-DDE (μg/L)	3.09	1.80–3.87	2.98	Ĵ
I,4'-DDT (µg/L)	9.19	5.34–11.5	8.87	J
Dieldrin (µg/L)	2.12	1.31–2.74	1.93	J
Endrin (µg/L) Heptachlor (µg/L)	0.885	0.554–1.14	0.90	J
тергастног (руг.) Heptachlor epoxide (µg/L)	5.02	2.27–6.22	4.23	J
indane (μg/L)	1.80	1.11-2.20	1.72	j
Methoxychlor (µg/L)	5.20	2.93-6.76	4.85	J
	5.85	3.34–7.89	6.21	J
Pesticides/Herbicides (Lot 3223)				
2-sec-Butyl-4,6-dinitrophenol (μg/L)	8.08	2.65-10.5	0.65†	J
/,4-Dichlorophenoxyacetic acid (μg/L)	9.96	4.98–14.9	9.23	J
2,4,5-TP (Silvex) (µg/L)	8.86	4.43–13.3	7.29	J
otal Petroleum Hydrocarbons (Lot 8915)	1			
otal petroleum hydrocarbons, standard 1, infrared (mg/bottle)	44.4	28.4–58.5	36.7	J
oxaphene (Lot 3223)				
oxaphene (μg/L)	1.43	0.787–2.07	0.89	J
race Metals (Lot 9981)				•
lluminum (μg/L)	613	503–723	639	
Intimony (µg/L)	98.9	74.2–124	98.2	
rsenic (µg/L)	133	99.8–157	135	
arium (μg/L)	433	355–511	429	
eryllium (μg/L)	112	91.8–132	112	
oron (μg/L)	486	399–608	485	
admium (µg/L)	92.2	75.6–109	92.8	
thromium (µg/L)	422	346-498	418	
obalt (µg/L)	101	82.8–119	104	
copper (µg/L)	113	92.7–133	112	
on (µg/L)	506	415–597	494	
ead (µg/L)	189	155–223	192	
langanese (µg/L) lercury (µg/L)	408	335–481	414	
lolybdenum (µg/L)	11.1	8.33–13.9	9.67	
ickel (µg/L)	444	364–524	446	
elenium (µg/L)	389	319-459	390	
elerium (µg/L) ilver (µg/L)	122	91.5–144	125	
trontium (µg/L)	116	95.1–137	116	
nallium (µg/L)	321	263–379	311	
anadium (µg/L)	95.6	71.7–120	97.8	
inc (µg/L)	304 611	249–359	313	
··· \ry -/	011	501–721	624	

Analyte	Certified Value	Performance Acceptance Limits	WA Result	Result Qualifier	
Turbidity (Lot 3423)					
Turbidity (NTU)	5.20	4.42-6.08	4.98	J	
Volatiles (Lot 581)					
Acetone (μg/L)	150	75.2–233	187		
Benzene (µg/L)	50.0	38.7-62.3	48.1		
Bromodichloromethane (µg/L)	60.0	46.1-74.8	58.2		
Bromoform (µg/L)	85.1	62.2-110	96.3		
Carbon tetrachloride (µg/L)	94.5	69.4–118	82.4		
Chlorobenzene (µg/L)	20.1	15.7–24.1	19.8		
Chloroform (µg/L)	75.5	58.0-92.3	70.2		
Dibromochloromethane (µg/L)	67.3	52.4-83.0	68.0		
1,2-Dichlorobenzene (µg/L)	21.5	16.3-26.4	21.1		
1,3-Dichlorobenzene (µg/L)	119	91.0–143	108		
I,4-Dichlorobenzene (µg/L)	41.8	31.4-50.9	45.2		
I,2-Dichloroethane (µg/L)	47.9	37.4-60.2	51.8		
1,1-Dichloroethylene (µg/L)	100	65.5–127	91.1		
Dichloromethane (methylene chloride) (µg/L)	65.3	46.2-85.1	52.5		
Ethylbenzene (µg/L)	15.3	11.4–17.9	14.2		
Methyl isobutyl ketone (µg/L)	89.9	52.0-123	102		
Styrene (µg/L)	24.9	17.3-30.3	22.3		
Tetrachloroethylene (μg/L)	110	81.2-133	96.7		
foluene (μg/L)	62.8	48.4–75.8	58.6		
1,1,1-Trichloroethane (µg/L)	40.0	28. 94 7.7	36.5		
Frichloroethylene (µg/L)	19.4	14.4-23.5	16.6		
n/p-Xylene (μg/L)	36.6	23.7-46.1	34.2		

Table 63. Quality Control Standards for Selected Analyses for ES

Analyte	Certified Value	Performance Acceptance Limits	ES Result	Result Qualifier	
Acids (Lot 581)					
2,4-Dichlorophenol (µg/L)	121	51.3–133	64.0		
o-Cresol (2-methyphenol) (µg/L)	35.2	11.2–40.7	21.0		
Pentachlorophenol (µg/L)	50.8	15.8–63.8	22.0	J.	
Phenol (µg/L)	140	56.8–173	68.0	J	
2,4,5-Trichlorophenol (µg/L)	41.2	16.2–47.6	27.0		
2,4,6-Trichlorophenol (µg/L)	63.4	27.4–72.7	36.0		
Base/Neutrals (Lot 581)					
Acenaphthylene (µg/L)	39.6	17.0-46.6	25.0		
Anthracene (µg/L)	99.6	47.0–116	60.0		
Benzo[a]anthracene (µg/L)	74.4	31.2–88.4	44.0		
Bis(2-ethylhexyl) phthalate (µg/L)	28.5	11.5–36.4	22.0		
4-Bromophenyl phenyl ether (µg/L)	109	53.9–130	69.0		
Chrysene (µg/L)	14.9	6.89-18.3	9.9	J	
Dibenzofuran (µg/L)	109	51.9-121	61.0	Ū	
1,2-Dichlorobenzene (µg/L)	92.5	21.7–106	31.0		
1,4-Dichlorobenzene(µg/L)	48.3	10.6-57.0	14.0		
2,4-Dinitrotoluene (μg/L)	59.5	24.9-68.6	42.0		
2,6-Dinitrotoluene (μg/L)	60.8	31.2-68.9	41.0		
Fluorene (µg/L)	72.8	35.8-87.4	42.0		

[†] Result is out of range.

J The analytical result is an estimated quantity.

Analyte	Certified Value	Performance Acceptance Limits	ES Result	Result Qualifier	
Naphthalene (µg/L)	111	39.4–127	42.0		
Pyrene (µg/L)	40.8	19.1–49.6	26.0		
1,2,4-Trichlorobenzene (µg/L)	87.7	25.6–99.6	27.0		
Cations (Lot 436)					
Calcium (µg/L)	67,900	61,100-74,700	66,300		
Magnesium (µg/L)	45,500	40,500-50,500	43,900		
Potassium (µg/L)	86,900	79,100–94,700	94,600		
Sodium (μg/L)	75,800	66,700–84,900	75,900		
Cyanide and Phenol (Lot 9981)					
Cyanide, total (µg/L)	111	81.0-141	113	J	
Phenols (µg/L)	335	255–415	283	-	
Grease and Oil (Lot 9981)					
Grease and oil (gravimetric) (mg/bottle)	47.8	28.7–59.8	43.6		
norganics (Lot 3423)					
Alkalinity (as CaCO₃) (µg/L)	142,000	132,000-160,000	130,000†	J	
Chloride (μg/L)	70,000	62,200–78,900	75,000	j	
Fluoride (µg/L)	3,340	3,010–3,670	3,230	.	
Nitrate as nitrogen (μg/L)	7,500	6,750-8,250	7,530	j	
pH (pH units)	9.04	8.84-9.24	9.16	J	
Potassium (µg/L) Sodium (µg/L)	27,800	23,900–32,400	31,000		
Specific conductance (µS/cm)	155,000	140,000–172,000	153,000		
Sulfate (µg/L)	783 93,600	655–891	781		
Total dissolved solids (µg/L)	655,000	80,200–106,000 537,000–733,000	94,040 615,000	J	
Nutrients (Lot 9981)					
Ammonia as nitrogen (µg/L)	5,830	4,900–6,760	6,050		
Nitrate-nitrite as nitrogen (µg/L)	7,320	6,510–8,130	7,210		
otal phosphates (as P) (µg/L)	8,870	7,540–10,200	8,350		
PCBs (Lot 581)					
PCB 1254 (μg/L)	2.61	1.56-3.28	2.39		
Pesticides (Lot 581)					
Aldrin (µg/L)	2.19	1.14–2.70	1.64		
alpha-Benzene hexachloride (μg/L)	3.92	2.18–4.99	3.52		
eta-Benzene hexachloride (µg/L)	1.32	0.704-1.67	1.24		
lelta-Benzene hexachloride (µg/L)	4.99	2.20-6.41	4.51		
llpha-Chlordane (μg/L)	2.61	1.58–3.23	2.22		
i,4'-DDD (μg/L)	6.98	4.29-9.06	6.59		
I,4'-DDE (µg/L)	3.09	1.80–3.87	2.75		
I,4'-DDT (µg/L)	9.19	5.34–11.5	7.87		
Dieldrin (µg/L) Endrin (µg/L)	2.12	1.31–2.74	1.88		
leptachlor (µg/L)	0.885 5.02	0.554–1.14	0.764		
leptachlor (μg/L) leptachlor epoxide (μg/L)	1.80	2.27–6.22 1.11–2.20	4.22		
indane (µg/L)	5.20	2.93-6.76	1.81 3.97		
Methoxychlor (μg/L)	5.85	3.34–7.89	5.29		
Pesticides/Herbicides (Lot 3223)					
Logo Dishid A.C. altatasanah amad (0.00	0.05 10.5	0.00		
-sec-Butyl-4,6-dinitrophenol (μg/L) ,4-Dichlorophenoxyacetic acid (μg/L)	8.08	2.65–10.5	3.38		

Analyte	Certified Value	Performance Acceptance Limits	ES Result	Result Qualifier
Total Petroleum Hydrocarbons (Lot 8915)				
Total petroleum hydrocarbons, standard 1, infrared (mg/bottle)	44.4	28.4-58.5	364†	
Toxaphene (Lot 3223)				
Γoxaphene (μg/L)	1.43	0.787-2.07	1.14	J
Frace Metals (Lot 9981)				
Aluminum (µg/L)	613	503–723	649	
Antimony (μg/L)	98.9	74.2–124	101	
Arsenic (μg/L)	133	99.8–157	136	
Barium (μ̈g/L)	433	355–511	436	
Beryllium (µg/L)	112	91.8–132	113	
Boron (μg/L)	486	399-608	502	
Cadmium (µg/L)	92.2	75.6 – 109	90.5	
Chromium (µg/L)	422	346–498	90.5 423	
Cobalt (µg/L)	101	82.8–119	102	
Copper (µg/L)	113	92.7–133	116	
ron (µg/L)	506	415–597	501	
-ead (μg/L)	189	155–223	191	
Manganese (μg/L)	408	335–481	407	
Mercury (µg/L)	11.1	8.33–13.9		
Molybdenum (µg/L)	444	364-524	10.9 444	
Nickel (µg/L)	389	319-459	390	
Selenium (µg/L)	122	91.5–144	116	
Silver (µg/Ľ)	116	95.1–137	110	
Strontium (µg/L)	321	263–379	318	
Fhallium (µg/L)	95.6	71.7–120	91.8	
/anadium (µg/L)	304	249–359	311	
Zinc (µg/L)	611	501–721	605	
Furbidity (Lot 3423)				
Turbidity (NTU)	5.20	4.42-6.08	14.0†	J
/olatiles (Lot 581)				J
•				
Acetone (µg/L)	150	75.2–233	140	J
Benzene (µg/L)	50.0	38.7–62.3	48.0	J
Bromodichloromethane (µg/L)	60.0	46.1–74.8	63.0	J
Bromoform (µg/L)	85.1	62.2–110	100	J
Carbon tetrachloride (µg/L)	94.5	69.4–118	89.0	J
Chlorobenzene (µg/L)	20.1	15.7–24.1	20.0	J
Chloroform (µg/L)	75.5	58.0–92.3	74.0	J
Dibromochloromethane (µg/L)	67.3	52.4-83.0	71.0	J
,2-Dichlorobenzene (µg/L)	21.5	16.3–26.4	24.0	J
,3-Dichlorobenzene (µg/L)	119	91.0–143	120	J
,4-Dichlorobenzene (μg/L)	41.8	31.4–50.9	41.0	J
,2-Dichloroethane (µg/L)	47.9	37.460.2	48.0	J
,1-Dichloroethylene (µg/L)	100	65.5–127	100	Ĵ
Dichloromethane (methylene chloride) (µg/L)	65.3	46.2-85.1	69.0	Ĵ
thylbenzene (µg/L)	15.3	11.4–17.9	15.0	Ĵ
	89.9	52.0-123	80.0	ď
tyrene (μg/L)	24.9	17.3-30.3	22.0	Ĭ
etrachloroethylene (µg/L) oluene (µg/L)	110	81.2-133	84.0	Ĭ
	62.8			

Analyte	Certified Value	Performance Acceptance Limits	ES Result	Result Qualifier	
1,1,1-Trichloroethane (µg/L)	40.0	28.9–47.7	39.0	J	
Trichloroethylene (µg/L)	19.4	14.4-23.5	18.0	Ĵ	
m/p-Xylene (µg/L)	36.6	23.7–46.1	34.0	Ĵ	

Table 64. Quality Control Standards for Selected Analyses for EX

Analyte	Certified Value			Result Qualifier	
Acids (Lot 581)					
2,4-Dichlorophenol (µg/L)	121	51.3–133	85.2		
-Cresol (2-methyphenol) (µg/L)	35.2	11.2–40.7	25.8		
Pentachlorophenol (µg/L)	50.8	15.8–63.8	40.0	J	
Phenol (µg/L)	140	56.8–173	96.8	3	
2,4,5-Trichlorophenol (µg/L)	41.2	16.2–47.6	34.5	J	
2,4,6-Trichlorophenol (µg/L)	63.4	27.4–72.7	49.0	J	
Base/Neutrals (Lot 581)					
Acenaphthylene (µg/L)	39.6	17.0-46.6	37.7		
Inthracene (µg/L)	99.6	47.0-116	83.8		
Benzo[a]anthracene (µg/L)	74.4	31.2-88.4	71.0		
Bis(2-ethylhexyl) phthalate (µg/L)	28.5	11.5–36.4	33.0		
-Bromophenyl phenyl ether (µg/L)	109	53.9-130	94.8		
Chrysene (µg/L)	14.9	6.89-18.3	15.4		
Dibenzofuran (µg/L)	109	51.9–121	90.8		
,2-Dichlorobenzene (µg/L)	92.5	21.7–106	65.6		
,4-Dichlorobenzene(µg/L)	48.3	10.6–57.0	35.7		
,4-Dinitrotoluene (µg/L)	59.5	24.9-68.6	48.1		
,6-Dinitrotoluene (µg/L)	60.8	31.2-68.9	50.2		
luorene (μg/L)	72.8	35.8-87.4	73.1		
laphthalene (µg/L)	111	39.4–127	87.1		
Pyrene (µg/L)	40.8	19.1–49.6	43.4		
,2,4-Trichlorobenzene (µg/L)	87.7	25.6–99.6	66.1		
Cations (Lot 436)					
Calcium (µg/L)	67,900	61,100-74,700	66,500		
/lagnesium (μg/L)	45,500	40,500–50,500	43,900		
otassium (μg/L)	86,900	79,100–94,700	89,300		
odium (μg/̈L) ΄	75,800	66,700–84,900	75,700		
yanide and Phenol (Lot 9981)					
Cyanide, total (µg/L)	111	81.0–141	102		
henols (µg/L)	335	255–415	284		
Grease and Oil (Lot 9981)					
Grease and oil (gravimetric) (mg/bottle)	47.8	28.7–59.8	43.0		
norganics (Lot 3423)					
alkalinity (as CaCO ₃) (μg/L)	142 000	132,000, 160,000	140.000		
	142,000	132,000–160,000	148,000		
Chloride (µg/L)	70,000	62,200–78,900	74,900		
luoride (µg/L)	3,340	3,010–3,670	2,970†		
litrate as nitrogen (µg/L)	7,500	6,750–8,250	6,920		

[†] Result is out of range.

J The analytical result is an estimated quantity.

Analyte	Certified Value	Performance Acceptance Limits	EX Result	Result Qualifier	
pH (pH units)	9.04	8.84–9.24	9.06		
Potassium (μg/L)	27,800	23,900–32,400	30,300		
Sodium (µg/L)	155,000	140,000–172.000			
Specific conductance (µS/cm)	•	, -,	164,000		
	783	655–891	776		
Sulfate (µg/L)	93,600	80,200-106,000	88,600		
Total dissolved solids (μg/L)	655,000	537,000–733,000	635,000		
lutrients (Lot 9981)					
Ammonia as nitrogen (μg/L)	5,830	4,900-6,760	5,490		
Nitrate-nitrite as nitrogen (µg/L)	7,320	6.510-8.130	6,950		
Total phosphates (as P) (µg/L)	8,870	7,540-10,200	9,090		
, , , , , , , , , , , , , , , , , , ,	2,2	7,010 10,200	0,000		
PCBs (Lot 581)	0.04	4.50.000			
PCB 1254 (μg/L)	2.61	1.56–3.28	3.42†		
Pesticides (Lot 581)					
Aldrin (µg/L)	2.19	1.14-2.70	2.46		
alpha-Benzene hexachloride (µg/L)	3.92	2.18-4.99	4.83		
peta-Benzene hexachloride (µg/L)	1.32	0.704-1.67	1.95†		
delta-Benzene hexachloride (µg/L)	4.99	2.20-6.41	6.62†		
alpha-Chlordane (µg/L)	2.61	1.58–3.23	3.32†		
l,4'-DDD (μg/L)	6.98	4.29-9.06	9.71†		
1,4'-DDE (µg/L)	3.09	1.80–3.87	4.23†		
1,4'-DDT (μg/L)	9.19	5.34–11.5	14.0†		
Dieldrin (μg/L)	2.12	1.31-2.74			
Endrin (µg/L)	0.885		2.8†		
Heptachlor (µg/L)	5.02	0.554-1.14	1.13		
Heptachlor (µg/L)		2.27-6.22	5.48		
	1.80	1.11–2.20	2.16		
Lindane (µg/L)	5.20	2.93–6.76	6.35		
Methoxychlor (µg/L)	5.85	3.34–7.89	10.1†		
Pesticides/Herbicides (Lot 3223)					
2-sec-Butyl-4,6-dinitrophenol (µg/L)	8.08	2.65-10.5	7.04		
2,4-Dichlorophenoxyacetic acid (µg/L)	9.96	4.98–14.9	9.98		
2,4,5-TP (Silvex) (µg/L)	8.86	4.43–13.3	8.72		
otal Petroleum Hydrocarbons (Lot 8915)			0.72		
otal petroleum hydrocarbons, standard 1,	44.4	28.4–58.5	56.8		
infrared (mg/bottle)					
Toxaphene (Lot 3223)					
Γoxaphene (μg/L)	1.43	0.787-2.07	1.76		
Trace Metals (Lot 9981)					
Aluminum (µg/L)	613	503-723	637		
Antimony (µg/L)	98.9	74.2–124		ĺ	
Arsenic (µg/L)	133	99.8–157	98.6	J	
Barium (µg/L)	433		128		
		355–511	446		
Beryllium (µg/L)	112	91.8–132	112		
Boron (µg/L)	486	399-608	568	•	
Cadmium (µg/L)	92.2	75.6–109	90.4		
Chromium (µg/L)	422	346–498	424		
Cobalt (µg/L)	101	82.8–119	104		
Copper (µg/L)	113	92.7-133	113		
ron (µg/L)	506	415–597	511		
.ead (µg/L)	189	155–223	183		
Manganese (μg/L)	408	335–481	408		
Mercury (µg/L)	11.1	8.33–13.9	408 9.6		

Analyte	Certified Value	Performance Acceptance Limits	EX Result	Result Qualifier	
Molybdenum (µa/L)	444	364–524	417		
Nickel (µg/L)	389	319-459	405		
Selenium (µg/L)	122	91.5–144	405 115		
Silver (µg/L)	116	95.1–137	115		
Strontium (µg/L)	321	263-379			
Thallium (µg/L)	95.6	71.7–120	322		
Vanadium (µg/L)	304		91.0		
Zinc (µg/L)	611	249–359	308		
enic (pg/e)	011	501–721	607		
Turbidity (Lot 3423)					
Turbidity (NTU)	5.20	4.42-6.08	4.95		
Volatiles (Lot 581)					
Acetone (μg/L)	150	75.2–233	171.16		
Benzene (µg/L)	50.0	38.7–62.3	53.56		
Bromodichloromethane (µg/L)	60.0	46.1–74.8	68.22		
Bromoform (µg/L)	85.1	62.2–110	99.74		
Carbon tetrachloride (µg/L)	94.5	69.4–118	104.44		
Chlorobenzene (µg/L)	20.1	15.7–24.1	21.16		
Chloroform (µg/Ľ)	75.5	58.0–92.3	79.35		
Dibromochloromethane (µg/L)	67.3	52.4–83.0	73.92		
1,2-Dichlorobenzene (µg/L)	21.5	16.3–26.4	23.48		
1,3-Dichlorobenzene (µg/L)	119	91.0–143	127.05		
1,4-Dichlorobenzene (μg/L)	41.8	31.4–50.9	46.18		
1,2-Dichloroethane (µg/Ľ)	47.9	37.4–60.2	52.48		
I,1-Dichloroethylene (µg/L)	100	65.5–127	125.82		
Dichloromethane (methylene chloride) (µg/L)	65.3	46.2–85.1	70.12		
Ethylbenzene (µg/L)	15.3	11.4–17.9	16.32		
Methyl isobutyl ketone (µg/L)	89.9	52.0–123	101.28		
Styrene (µg/L)	24.9	17.3–30.3	25.94		
Fetrachloroethylene (μg/L)	110	81.2–133	116.21		
Γoluene (μg/L)	62.8	48.4–75.8	67.63		
I,1,1-Trichloroethane (µg/L)	40.0	28.9–47.7	41.96		
Trichloroethylene (µg/L)	19.4	14.4–23.5	19.61		
m/p-Xylene (µg/L) "	36.6	23.7–46.1	38.64		

Table 65. ES, EX, and WA Performance Evaluation, Water Pollution Study WP037

Analyte	ES Result	EX Result	WA Result	True Value	Performance Acceptance Limits
Trace Metals (μg/L)					
Aluminum	1210	1100	1190	1203	1030–1360
Antimony	813	750	797	779	606–928
Arsenic	88.4	86.2	84.4	88.0	69.6–107
Beryllium	<4.0	696	667	675	601–750
Cadmium	22.4	21.5	21.3	22.2	18.3–26.4
Chromium	141	137	135	137	120-156
Cobalt	221	212	216	220	196–244
Copper	118	116	109	115	102-128
Iron	407	407	384	393	350-445
Lead	134	131	129	130	109–147
Manganese	147	140	149	144	129–158
Mercury	0.55	0.398	0.480	0.494	0.266-0.729

[†] Result is out of range.

J The analytical result is an estimated quantity.

Analyte	ES Result	EX Result	WA Result	True Value	Performance Acceptance Limits
•			riesuit		Acceptance Limits
Molybdenum	204	210	196	190	174–220
Nickel	427	419	412	417	376-463
Selenium	141	139	133	150	113–160
Silver	507	491	520	490	455557
Strontium	149	153	147	144	129–168
Thallium	493	471	472	471	390–563
Titanium	233	235	229	226	195–253
Vanadium	3380	3240	3280	3300	2990–3600
Zinc	300	285	286	296	263–332
Minerals (mg/L, except as noted)					
Alkalinity (as CaCO₃), total	91.0	93.7	91.4	91.0	82.2–99.0
Calcium	64.3	67.6	60.6	66.0	61.0–73.2
Chloride	224	220	235	226	207–250
Fluoride	2.48	2.11	2.54	2.60	2.25-2.92
Hardness (as CaCO ₃), total	326	320	327	2.60 317	
Magnesium	36.0	37.0	327 39.9		294–344
Potassium	17.1			37.0	33.7-40.0
Sodium		17.1	18.4	17.0	14.6–19.8
	92.5	91.9	86.8	92.2	85.1–101
Specific conductance (µS/cm) Sulfate	1145	1160	1110	1132	1050–1230
	124	114	113	118	99.9–138
Total dissolved solids at 180° C	618	657	643	685	461–932
lutrients (mg/L)					
Ammonia nitrogen	0.250	0.202	0.296	0.261	0.120-0.444
Nitrate nitrogen	0.591	0.608	0.677	0.620	0.470-0.756
Nitrogen by Kjeldahl method	2.47	3.02	2.55	2.60	1.72-3.53
Orthophosphate	5.62	5.75	5.60	5.50	4.84-6.25
otal phosphorus	7.38	2.77	7.26	7.00	5.99–8.24
Demands (mg/L)					
5-day Biochemical oxygen demand	116	†	84.3	93.1	49.4–137
Carbonaceous BOD	119	†	84.9	80.0	36.4-124
Chemical oxygen demand	150	143	159	152	117–177
otal organic carbon	61.5	63.0	74.4	60.0	50.1–69.4
PCBs (µg/L)					
PCB 1254	1.74	2.45	1.90	2.33	1.04-3.29
PCB 1260	3.65	4.74	4.00	4.60	2.71–5.70
PCBs in Oil (mg/kg)					
PCB 1016/1242	25.0	30.8	17.2	27.2	4.82.20.2
PCB 1260	24.0	24.7	19.4	27.2 28.5	4.83–38.3 4.17–41.5
Pesticides (µg/L)					
Aldrin	1.28	2.22	2.29	2.54	0.714–3.51
Chlordane	7.01	7.82	8.22	8.85	4.18–12.1
,p´-DDD	5.43	6.87	5.97	6.42	2.68-9.42
,p´-DDE	2.53	3.43	3.18	3.34	
,p´-DDT	5.07	5.43 5.67	5.16 5.27		1.33-4.67
Dieldrin	3.58	5.67 4.01		5.86	2.22-8.33
leptachlor			3.66	3.87	2.06-5.39
leptachlor epoxide	2.33 2.26	2.98 2.27	3.21 2.42	3.42 2.84	0.918–4.80 1.48–3.40
olatile Halocarbons (µg/L)				. •	
romodichloromethane	54.1	52.5	45.5	48.7	24 062 1
romoform	45.7	48.0	45.5 37.1	48.7 42.8	34.9-63.1
		70.0	57.1	44.0	27.1–61.4

Analyte	ES Result	EX Result	WA Result	True Value	Performance Acceptance Limits
Carbon tetrachloride	50.0	55.3	51.0	51.3	00 7 74 0
Chlorobenzene	59.0	64.0	51.3	51.3 57.3	32.7–71.0
Chloroform	58.0	65.4	53.7	57.3 59.4	42.6-76.9
Dibromochloromethane	81.5	96.7	59.0 77.3	59.4 85.4	42.3–75.1
1.2-Dichloroethane	49.6	54.5	77.3 51.7	65.4 47.4	67.5–103
Methylene chloride	51.0	56.0			37.4–63.5
Tetrachloroethylene	41.7	49.0	53.7 37.0	53.5 44.3	35.2-72.4
1,1,1-Trichloroethane	50.8	51.3	57.0 53.2	54.2	31.1–56.0
Trichloroethylene	61.8	67.5	53.2 54.0	54.2 64.2	36.1–69.5 42.2–82.0
Volatile Aromatics (µg/L) Benzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	68.2 42.3 44.4	66.5 45.4 48.5	66.6 39.4 41.9	72.6 47.4 50.4	54.1–91.9 33.8–59.9 36.5–62.1
1,4-Dichlorobenzene	46.6	50.0	44.9	53.2	37.0-68.5
Ethylbenzene	54.9	56.9	53.6	63.3	42.7-81.7
Toluene	48.8	50.8	49.6	56.1	40.7–69.3
Miscellaneous Parameters (mg/L)					
Cyanide, total	0.075	0.066	0.081	0.080	0.0522-0.107
Nonfilterable residue	74.0	65.0	53.2	77.0	59.9–82.6
Oil and grease	27.1	29.8	26.3	32.0	20.7-33.0
pH (pH units)	9.30	9.20	9.38	9.30	9.05–9.56
Phenolics, total	0.218	3.02	2.44	2.08	1.25-2.91
Residual chlorine, total	†	2.85	3.04	2.63	2.38-3.22

[†] Result was not reported.

Note: The true value is based on gravimetric calculations or a reference value when necessary. Reported values that were out of range appear in **bold**. In cases where the laboratory was asked to check for error, the reported values appear in **bold italic**.

Table 66. ES, EX, and GE Performance Evaluation, Water Supply Study WS038

Analyte	ES Result	EX Result	GE Result	True Value	Performance Acceptance Limits
Trace Metals (µg/L)					
Antimony	5.90	†	6.37	6.48	4.54-8.42
Arsenic	78.2	74.6	82.8	83.1	71.7–88.4
Barium	1970	2010	1940	2002	1700–2300
Beryllium	10.0	9.98	10.0	10.1	8.59-11.6
Boron	1920	1890	1920	1898	1680-2110
Cadmium	2.00	1.82	2.02	2.12	1.70-2.54
Chromium	140	145	141	148	126–170
Copper	1260	1190	1200	1203	1080-1320
Lead	52.2	50.3	55.4	56.2	39.3–73.1
Manganese	400	385	395	411	372-420
Mercury	5.60	5.16	5.42	6.39	4.47-8.31
Molybdenum	15.6	16.2	16.2	16.2	13.0–19.5
Nickel	235	239	239	240	204–276
Selenium	78.1	75.5	86.3	89.3	71.4–107
Thallium	8.90	7.33	9.28	8.91	6.24–11.6
Zinc	2990	2820	88.4	2914	2620-3080

Analyte	ES Result	EX Result	GE Result	True Value	Performance Acceptance Limits
Fluoride/Nitrate/Nitrite (mg/L)					
Fluoride	4.88	4.84	4.27	4.70	4.23-5.17
Nitrate as N	4.10	4.05	3.98	4.10	3.69-4.51
Nitrite as N	1.58	1.59	1.52	1.60	1.36–1.84
Orthophosphate as P	0.419	0.500	0.503	0.530	0.462-0.675
nsecticides (µg/L)					
Alachlor	9.32	t	†	9.52	5.24–13.8
Aldrin	0.294	0.378	0.257	0.358	0.164-0.450
Atrazine	12.4	†	†	12.8	7.04-18.6
Butachlor	27.9	†	†	27.9	7.59-44.5
Chlordane, total	8.07	9.38	6.50	8.20	4.51-11.9
Dieldrin	0.648	0.796	0.550	0.683	0.466-0.896
Endrin	0.445	0.506	0.332	0.467	0.327-0.607
Heptachlor	1.06	1.10	0.856	1.20	0.660-1.74
Heptachlor epoxide	0.671	0.703	0.975	0.742	0.408-1.08
Hexachlorocyclopentadiene	1.06	0.209	ţ	1.47	0.0583-2.01
Hexachlorobenzene Lindane	0.430	0.494	†	0.538	0.213-0.683
	0.552	0.574	0.478	0.621	0.342-0.900
Methoxychlor Metolachlor	29.1	35.4	32.2	34.8	19.1–50.5
Metribuzin	23.9 16.5	<u>†</u>	†	24.8	11.2–36.6
Prometon	12.4	<u>†</u>	† †	16.9	DL-26
Propachlor	1.64	† 2.58	Ţ	12.5	4–18.1
Simazine	7.82		† +	1.46 8.77	0.823-2.19
Toxaphene	11.3	† †	† 9.80	12.7	1.87-14.2
Frifluralin	1.75	1.77	†	1.76	6.99 – 18.4 0.691 <i>–</i> 2.31
Herbicides (μg/L)					
Acifluorfen	†	13.9	t	28.2	11.5-41.7
2,4-D	14.1	11.2	43.5	35.9	18.0-53.9
Dalapon	60.8	11.7	72.9	87.2	DL-129
Dinoseb	19.8	14.0	29.8	32.6	DL-51.5
Dicamba	33.7	25.9	120	62.7	9.66-92.1
Pentachlorophenol	9.31	7.63	†	14.7	7.35-22.1
Picloram	47.8	5.39	†	56.4	DL-82.5
2,4,5-TP (Silvex)	12.7	10.6	26.0	19.5	9.75–29.3
Polynuclear Aromatic Hydrocarbons (μg/L)				
Benzo[a]pyrene	†	0.391	0.516	0.527	0.127-0.737
rihalomethanes (µg/L)					
Bromodichloromethane	35.6	30.5	32.0	32.2	25.8–38.6
Bromoform	25.0	25.3	25.9	26.5	21.2–31.8
Chlorodibromomethane	14.2	13.8	14.7	14.7	11.8–17.6
Chloroform	39.4	34.1	37.0	36.5	29.2–43.8
rihalomethane, total	114.2	103.7	110	109.9	87.0–132
/olatile Organic Compounds (μg/L)					
Benzene	14.1	15.4	16.3	15.3	12.2-18.4
Carbon tetrachloride	13.9	14.8	15.5	16.6	12.5–18.7
Chlorobenzene	24.1	20.9	25.7	24.2	19.4–29.0
,2-Dibromo-3-chloropropane	0.505	0.416	t	0.429	0.257-0.601
,2-Dichlorobenzene	15.4	13.5	18.0	16.6	13.3–19.9
,2-Dichloroethane	15.3	15.6	17.2	15.6	12.5-18.7
is-1,2-Dichloroethylene	17.4	18.0	23.0	22.3	17.8-26.8
rans-1,2-Dichloroethylene	19.9	17.7	22.2	20.6	16.5-24.7

Analyte	ES Result	EX Result	GE Result	True Value	Performance Acceptance Limits
Dichloromethane	13.6	14.2	10.0	147	11 0 17 0
1,2-Dichloropropane	16.6	15.6	16.8	14.7	11.8–17.6
2,2-Dichloropropane	12.1	10.4	18.3 14.1	18.3 14.7	14.6–22.0
cis-1,3-Dichloropropene	7.54	7.42	9.31	9.40	10.2–17.7
trans-1,3-Dichloropropene	10.3	9.58	10.4		6.85–11.9
Ethylbenzene	14.2	13.2	17.1	12.5 15.7	7.75–14.3
Ethylene dibromide (EDB)	0.372	0.338			12.6–18.8
Hexachlorobutadiene	18.9	18.4	† 27.1	0.336 18.4	0.202-0.470
Styrene	13.2	11.9	27.1 19.9		14.1–34.7
1,1,1,2-Tetrachloroethane	7.91	7.69		14.2	11.4–17.0
Tetrachloroethylene	13.0		8.40	8.40	6.16–9.66
Toluene		11.2	14.6	14.1	11.3–16.9
1,2,4-Trichlorobenzene	15.4	14.0	17.7	16.2	13.0–19.4
	7.56	7.00	10.4	8.30	4.98–11.6
1,3,5-Trimethylbenzene 1,1,1-Trichloroethane	15.7	15.2	18.5	16.4	13.0–19.6
1,1,2-Trichloroethane	15.2	16.2	17.0	17.2	13.8–20.6
•	15.9	15.5	16.5	16.3	13.0–19.6
Trichloroethylene	11.2	12.2	12.6	12.4	9.92-14.9
1,2,3-Trichloropropane	17.6	15.5	13.2	16.9	10.1–21.4
Vinyl chloride	17.1	19.6	19.6	17.9	10.7–25.1
Xylenes, total	22.3	20.1	25.1	22.9	18.3–27.5
Miscellaneous Analytes (mg/L, exc	ept as noted)				
Alkalinity (as CaCO₃)	45.0	47.4	46.1	43.5	42.4-49.9
Chlorine, residual free	†	0.940	0.850	0.820	0.662-0.963
Cyanide, total	0.113	0.120	0.107	0.120	0.090-0.150
Hardness, calcium as CaCO ₃	237	228	240	240	221–252
oH (pH units)	9.10	9.15	9.11	9.13	8.89–9.31
Residue, total filterable	421.5	448	478	419	249–622
Sodium	21.6	22.2	21.9	20.0	19.1–22.2
Sulfate	16.0	18.6	17.0	17.0	14.5–19.0
Total organic carbon	5.10	5.60	5.34	4.90	4.39–5.41
Furbidity (NTU)	5.80	5.57	5.44	5.89	4.72–6.77

[†] Result was not reported.

Note: The true value is based on gravimetric calculations or a reference value when necessary. Reported values that were out of range appear in **bold**. In cases where the laboratory was asked to check for error, the reported values appear in **bold italic**. "DL" stands for detection limit.

Table 67. ES and EX Performance Evaluation, Water Supply Study WS039

Analyte	ES Result	EX Result	True Value	Performance Acceptance Limits
Trace Metals (µg/L)				
Antimony	38.7	36.5	38.0	26.6–49.4
Arsenic	26.2	26.9	27.0	22.8-30.9
Barium	1140	1150	1100	935-1270
Beryllium	1.40	1.20	1.20	1.02-1.38
Boron	636	657	599	573-670
Cadmium	30.0	28.5	28.5	22.8-34.2
Chromium	23.2	24.9	23.9	20.3–27.5
Copper	505	515	490	441–539
Lead	14.8	16.5	16.0	11.2-20.8
Manganese	84.2	86.3	82.0	74.6–89.8
Mercury	3.35	3.41	3.80	2.66-4.94
Molybdenum	152	153	150	121-178

Analyte	ES Result	EX Result	True Value	Performance Acceptance Limits
Nickel	127	132	120	102–138
Selenium	32.1	30.8	37.0	29.6–44.4
Thallium	5.50	5.65	5.60	3.92-7.28
Zinc	781	799	760	706–824
Fluoride/Nitrate/Nitrite (mg/L)				
Fluoride	2.30	2.78	2.90	2.61-3.19
Nitrate as N	8.56	10.7	9.50	8.55-10.5
Nitrite as N	0.824	0.833	0.820	0.697-0.943
Orthophosphate as P	1.55	1.58	1.60	1.43–1.77
nsecticides (µg/L)				
Alachior	15.2	†	14.8	8.14–21.5
Aldrin	0.576	0.710	0.723	0.250-0.891
Atrazine	9.18	†	9.62	5.29-13.9
Chlordane, total	4.48	4.18	3.57	1.96-5.18
Dieldrin	1.33	1.36	1.28	0.819-1.60
Endrin	1.45	1.43	1.54	1.08-2.00
Heptachlor	0.601	0.645	0.687	0.3780.996
Heptachlor epoxide	0.308	0.286	0.340	0.1870.493
Hexachlorocyclopentadiene	2.56	2.77	3.26	DL-4.34
Hexachlorobenzene	1.56	1.45	1.68	0.800-2.21
Lindane	0.781	0.813	0.855	0.470-1.24
Methoxychlor	49.6	53.7	53.8	29.6–78.0
Propachlor	2.03	2.66	2.18	1.18–3.38
Simazine	11.6	†	23.6	8.51–30.6
Toxaphene Trifluralin	3.95	4.16	3.65	2.01-5.29
rmurain	3.04	3.15	3.46	1.07–4.54
Herbicides (µg/L)				
Acifluorfen	†	28.1	38.6	14.6-55.4
2,4-D	48.2	12.5	56.1	28.1-84.2
Dalapon	54.2	36.9	63.0	DL-111
Dinoseb	31.8	25.9	41.3	DL-62.6
Dicamba	55.1	40.3	54.9	17.5-76.0
Pentachlorophenol	40.3	35.5	43.7	21.9-65.6
Picloram	70.1	14.7	74.9	DL-112
2,4,5-TP (Silvex)	31.5	27.7	32.3	16.2–48.5
Polynuclear Aromatic Hydrocarbon	s (µg/L)			
Benzo[a]pyrene	†	2.21	2.37	DL-3.44
Trihalomethanes (μg/L)				
Bromodichloromethane	22.7	20.7	22.8	18.2–27.4
Bromoform	19.7	21.9	20.2	16.2-24.2
Chlorodibromomethane	25.9	29.4	28.6	22.9–34.3
Chloroform	15.7	14.2	16.2	13.0–19.4
Trihalomethane, total	84.0	86.2	87.8	70.2–105
Volatile Organic Compounds (μg/L)				
Benzene	9.42	8.71	9.39	5.63-13.1
Bromobenzene	18.2	16.8	17.7	13.6–20.9
Carbon tetrachloride	18.2	16.5	19.2	15.4–23.0
Chlorobenzene	14.6	14.9	15.2	12.2–18.2
1,2-Dibromo-3-chloropropane	0.230	0.283	0.246	0.148-0.344
Dibromomethane	13.1	11.1	12.3	9.51–14.0
1,2-Dichlorobenzene	13.6	13.5		

Analyte	ES Result	EX Result	True Value	Performance Acceptance Limits
1,4-Dichlorobenzene	18.5	16.8	17.0	140.044
1,2-Dichloroethane	18.6	16.2	17.8 17.6	14.2–21.4
1,1-Dichloroethylene	12.4	10.4	12.4	14.1–21.1
cis-1,2-Dichloroethylene	14.1	13.1	12.4 16.5	9.92-14.9
trans-1,2-Dichloroethylene	13.2	12.4		13.2–19.8
Dichloromethane	7.58	6.54	13.8	11.0-16.6
1,2-Dichloropropane	7.38 12.7	10.7	7.31	4.39–10.2
trans-1,3-Dichloropropene	12.6	12.5	12.2	9.76–14.6
Ethylbenzene	11.0	10.7	14.8	8.91–15.4
Ethylene dibromide (EDB)	0.208	0.643	11.6	9.28–13.9
Hexachlorobutadiene	12.5		0.227	0.136-0.318
Styrene	12.5	14.2	13.2	9.51–17.5
1,1,1,2-Tetrachloroethane	16.4	13.8	14.2	11.4–17.0
Tetrachloroethylene	7.16	15.3	16.6	13.2–19.5
Toluene	7.16 7.36	6.52	7.60	4.56–10.6
1,2,4-Trichlorobenzene	7.36 21.4	6.78	7.31	4.39–10.2
1,1,1-Trichloroethane	10.3	25.5	23.6	18.9–28.3
1,1,2-Trichloroethane	12.4	9.42	11.2	8.96–13.4
Trichloroethylene	15.5	10.5	12.3	9.84–14.8
1,2,3-Trichloropropane		14.1	16.4	13.1–19.7
Vinyl chloride	14.7	12.3	12.8	8.16–16.1
Xylenes, total	7.82	5.57	6.19	3.71–8.67
·	24.0	23.2	24.4	19.5–29.3
Miscellaneous Analytes (mg/L, exc	cept as noted)			
Alkalinity (as CaCO ₃)	36.0	34.4	31.0	30.7–36.5
Cyanide, total	0.733	0.339	0.445	0.334-0.556
Hardness, calcium as CaCO₃	162	165	170	157-184
pH (pH units)	9.07	9.00	9.13	8.86–9.32
Residue, total filterable	425	410	306	199–574
Sodium	14.8	15.1	14.2	13.6–16.4
Sulfate	475	515	490	440–538
Total organic carbon	1.10	t	0.930	0.669-1.29
Turbidity (NTU)	1.20	0.61	0.550	0.446-0.897

[†] Result was not reported.

Note: The true value is based on gravimetric calculations or a reference value when necessary. Reported values that were out of range appear in **bold**. In cases where the laboratory was asked to check for error, the reported values appear in **bold italic**. "DL" stands for detection limit.

Table 68. Laboratory Control Sample and Blank Spike Recoveries for ES

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA120.1 Specific conductance	0/1	101	_	101	101
EPA350.1 Ammonia nitrogen	0/1	100	_	100	100
EPA365.1 Total phosphates (as P)	0/2	98.0	0.99	97.3	98.7
EPA6010 Aluminum Antimony	0/4 0/7	98.0 96.7	2.92 1.46	94.0 94.6	101 97.8

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
Arsenic	0/8	96.1	4.22	00.1	
Barium	0/8			92.1	101
Beryllium		96.9	2.41	94.0	99.5
Boron	0/7	98.7	1.06	97.4	100
	0/1	95.4		95.4	95.4
Cadmium	0/8	95.2	3.67	91.0	99.4
Calcium	0/4	98.3	3.49	93.7	101
Chromium	0/8	96.6	2.33	94.0	99.0
Cobalt	0/7	97.4	2.06	94.6	99.2
Copper	0/7	98.3	3.56	94.4	102
Iron	0/4	104	6.37	96.5	
Lead	0/12	97.1			109
Magnesium	0/4		2.67	93.8	101
Manganese		98.1	1.71	95.5	99.0
	0/4	97.2	1.90	94.4	98.4
Nickel	0/7	96.0	1.88	93.4	97.6
Potassium	0/4	90.4	3.12	86.7	93.0
Selenium	0/8	95.3	1.01	93.2	96.0
Silver	0/8	99.4	6.92	92.0	107
Sodium	0/4	89.3	3.75	84.9	
Thallium	0/7	92.4	8.07		92.4
Vanadium	0/7	97.5		84.9	101
Zinc	0/7		2.69	94.0	100
	0//	96.8	1.66	94.4	97.8
EPA7470 Mercury	0/10	04.7	0.00		
viercury	0/10	94.7	3.22	91.8	99.6
EPA8010					
Carbon tetrachloride	0/2	104	16.7	92.4	116
Chloroform	0/2	107	18.1	94.4	120
Tetrachloroethylene	0/2	102	16.4	90.8	114
1,1,1-Trichloroethane	0/2	103	17.8	90.8	116
Trichloroethylene	0/2	104	20.1	89.6	118
EPA8021					
Carbon tetrachloride	0/2	89.2	4.53	86.0	00.4
Chloroform	0/2	91.0	4.81		92.4
Tetrachloroethylene	0/2	90.4		87.6	94.4
1,1,1-Trichloroethane	0/2		0.57	90.0	90.8
Trichloroethylene	0/2	89.4	1.98	88.0	90.8
	0/2	87.8	2.55	86.0	89.6
EPA8081 Aldrin	0/4	75.0			
	0/4	75.0	2.35	73.5	78.5
alpha-Benzene hexachloride	0/4	101	5.19	95.5	108
peta-Benzene hexachloride	0/7	99.9	2.39	96.5	104
delta-Benzene hexachloride	0/4	70.1	2.90	67.0	74.0
alpha-Chlordane	0/4	87.0	2.35	83.5	88.5
gamma-Chlordane	0/4	91.5	2.08	89.0	94.0
p,p´-DDD	0/4	102	3.50	98.0	
p,p'-DDE	0/4	99.4	2.72		106
p,p'-DDT	0/4	95.9		96.5	103
Dieldrin	0/4		3.12	92.5	100
Endosulfan sulfate		108	3.59	105	113
	0/4	86.4	12.5	79.0	105
ndosulfan I	0/4	118	6.18	113	127
ndosulfan II	0/4	104	2.52	101	107
Endrin	0/4	97.6	3.77	95.0	103
Endrin aldehyde	0/4	110	31.4	63.0	
Endrin ketone	0/4	82.9	4.42		129
leptachlor	0/4			77.0	87.5
leptachlor epoxide	0/4	96.3	3.52	92.5	99.5
		106	3.37	104	111
indane Methoxychlor	0/4	85.5	3.08	82.0	89.5
ACHIOX VCHIOL	0/4	99.6	5.56	91.5	104

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%,
EPA8260					
Acetone	0/15	106	40.4	55.0	050
Benzene	0/15	98.3	48.1	55.0	250
Bromodichloromethane			3.62	90.0	105
Bromoform	0/15	103	6.78	90.0	110
Bromomethane	0/15	99.0	5.73	90.0	105
	0/15	85.3	17.8	60.0	115
Carbon disulfide	5/15	106	6.87	95.0	115
Carbon tetrachloride	2/15	91.3	15.1	60.0	115
Chlorobenzene	0/15	99.3	3.72	95.0	105
Chloroethane	2/15	115	27.7	90.0	180
Chloroethene	0/15	98.3	6.99	80.0	110
2-Chloroethyl vinyl ether	0/1	100		100	100
Chloroform	0/15	96.3	8.34	85.0	110
Chloromethane	0/15	104	9.35	80.0	115
Dibromochloromethane	0/15	95.3	5.50	85.0	105
1,1-Dichloroethane	0/15	97.0	8.62	85.0	
1,2-Dichloroethane	0/15	93.0	9.22		110
1,1-Dichloroethylene	0/15	103		80.0	105
cis-1,2-Dichloroethylene	0/13	94.4	8.21 5.83	90.0	115
rans-1,2-Dichloroethylene	0/3		5.83	85.0	105
Dichloromethane		98.0	3.50	95.0	105
1,2-Dichloropropane	0/15	89.7	8.12	75.0	100
	0/15	91.7	4.88	80.0	100
cis-1,3-Dichloropropene	0/15	96.3	5.50	85.0	105
rans-1,3-Dichloropropene	0/15	99.3	5.94	90.0	110
Ethylbenzene	0/15	98.7	5.16	90.0	105
2-Hexanone	0/15	92.0	5.61	85.0	100
Methyl ethyl ketone	0/15	100	9.06	85.0	115
Methyl isobutyl ketone	0/15	91.7	6.17	80.0	100
Styrene	4/15	93.7	5.50	85.0	100
1,1,2,2-Tetrachloroethane	0/15	94.0	6.87	85.0	110
Tetrachloroethylene	2/15	79.3	11.2	60.0	95.0
Toluene	0/15	99.0	3.87	90.0	105
1,1,1-Trichloroethane	0/15	95.7	9.42	85.0	110
1,1,2-Trichloroethane	0/15	100	5.35	90.0	110
Frichloroethylene	0/15	95.3	7.67	85.0	110
Frichlorofluoromethane	0/11	116	20.5	70.0	
Vinyl acetate	1/15	107	53.2		145
Kylenes	2/16	91.9	13.7	60.0 60.0	290
	2.0	57.5	10.7	00.0	105
EPA8270 Acenaphthene	0/4	70.0	0.74		
Acenaphthylene		70.3	9.74	57.0	80.0
	0/3	72.3 75.7	9.07	62.0	79.0
Anthracene Benzidine	0/3	75.7	4.04	71.0	78.0
	0/3	45.3	10.6	34.0	55.0
Benzo[a]anthracene	0/3	77.7	5.03	73.0	83.0
Benzo[<i>b</i>]fluoranthene	0/3	73.3	2.31	72.0	76.0
Benzo[k]fluoranthene	0/3	77.3	3.06	74.0	80.0
Benzoic acid	0/3	37.0	1.73	35.0	38.0
Benzo[<i>g,h,i</i>]perylene	0/3	72.3	6.51	66.0	79.0
Benzo[a]pyrene	0/3	76.3	2.31	75.0	79.0
Benzyl alcohol	0/3	70.3	5.77	67.0	79.0 77.0
Bis(2-chloroethoxy) methane	0/3	83.3	6.81	78.0	91.0
Bis(2-chloroethyl) ether	0/3	59.3	6.03	53.0	
Bis(2-chloroisopropyl) ether	0/3	43.7	5.03		65.0
Bis(2-ethylhexyl) phthalate	0/3	85.7		39.0	49.0
			7.23	81.0	94.0
I-Bromophenyl phenyl ether	0/3	69.7	5.03	65.0	75.0
Butylbenzyl phthalate	0/3	84.3	6.11	79.0	91.0
-Chloroaniline	0/3	94.0	2.65	91.0	96.0
l-Chloro-m-cresol	0/4	80.8	4.11	77.0	86.0
2-Chloronaphthalene	1/3	68.7	12.1	56.0	80.0
-Chlorophenol	0/4	69.5	5.57		

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
4-Chlorophenyl phenyl ether	0/3	79.3	6.11	74.0	86.0
Chrysene	0/3	75.0	5.29	71.0	
m/p-Cresol	0/3	71.7	3.79		81.0
o-Cresol	0/3	71.7		69.0	76.0
Dibenz[<i>a,h</i>]anthracene	0/3		3.06	69.0	75.0
		59.3	2.52	57.0	62.0
Dibenzofuran	0/3	76.0	7.0	69.0	83.0
Di-n-butyl phthalate	0/7	86.0	4.69	78.0	91.0
,2-Dichlorobenzene	0/3	48.0	9.54	42.0	59.0
,3-Dichlorobenzene	0/3	46.0	8.72	40.0	56.0
,4-Dichlorobenzene	0/4	52.0	12.0	42.0	66.0
3,3´-Dichlorobenzidine	0/3	82.7	6.11	76.0	88.0
2,4-Dichlorophenol	0/3	78.7	3.21	75.0	81.0
Diethyl phthalate	0/3	84.0	1.73	83.0	86.0
2,4-Dimethyl phenol	0/3	65.3	8.50	57.0	74.0
Dimethyl phthalate	0/3	82.0	1.0	81.0	83.0
2,4-Dinitrophenol	0/3	59.0	1.73	58.0	
2,4-Dinitrotoluene	3/4	98.8	9.84		61.0
2,6-Dinitrotoluene	0/3	87.3		86.0	110
Di-n-octyl phthalate	0/3	87.0	5.69	81.0	92.0
			4.36	84.0	92.0
Fluoranthene	0/3	80.3	3.06	77.0	83.0
Fluorene	0/3	75.3	4.51	71.0	80.0
lexachlorobenzene	0/3	89.0	6.08	85.0	96.0
lexachlorobutadiene	0/3	55.3	17.2	43.0	75.0
lexachlorocyclopentadiene	0/3	20.1	14.3	8.30	36.0
lexachloroethane	0/3	48.3	11.2	40.0	61.0
ndeno[1,2,3- <i>c,d</i>]pyrene	0/3	70.0	2.65	68.0	73.0
sophorone	0/3	72.7	2.08	71.0	75.0
-Methyl-4,6-dinitrophenol	0/3	76.0	4.58	71.0	80.0
-Methylnaphthalene	0/3	66.3	13.3	55.0	81.0
laphthalene	0/3	55.0	9.0	46.0	64.0
n-Nitroaniline	0/3	89.0	3.61		
-Nitroaniline	0/3	80.3	3.06	86.0	93.0
-Nitroaniline	0/3	90.3		77.0	83.0
litrobenzene	0/3		2.31	89.0	93.0
		72.7	4.16	68.0	76.0
?-Nitrophenol	0/3	63.3	2.52	61.0	66.0
-Nitrophenol	1/4	69.0	11.8	53.0	81.0
I-Nitrosodiphenylamine	0/3	81.0	8.0	73.0	89.0
I-Nitrosodipropylamine	0/4	69.5	4.43	66.0	76.0
entachlorophenol	0/4	76.0	8.87	63.0	83.0
henanthrene	0/3	73.7	4.04	69.0	76.0
henol	0/4	65.8	5.91	60.0	74.0
yrene	0/4	79.0	9.49	71.0	92.0
,2,4-Trichlorobenzene	0/4	61.3	15.6	47.0	78.0
,4,5-Trichlorophenol	0/3	84.3	5.69	78.0	89.0
,4,6-Trichlorophenol	0/3	79.3	4.04	75.0 75.0	83.0
PA9010A					
Cyanide	0/3	103	1.73	101	104
PA9020A					
otal organic halogens	0/2	97.0	2.83	95.0	99.0
PA9056					
hloride	1/2	98.2	0.42	97.9	98.5
litrate as nitrogen	0/9	100	1.47	98.8	103
itrite as nitrogen	0/2	101	0.0	101	103
ulfate	1/2	98.3	0.57	97.9	98.7
PA9060M					
otal organic carbon	2/4	106	2.31	104	108

Minimum Recovery (%)	Maximum Recovery (%)
-	
400	
103	103
100	102
98.4	100
96.4	97.4
87.3	112
100	114
100	114
85.1	104
00.0	
86.8	86.8
103	114
110	110
92.6	104
83.2	100
83.5	99.1
88.5	99.5
82.4	107
89.0	98.3
93.6	100
0 <i>C</i> E	86.5
	86.5

[†] Number of laboratory control samples and blank spikes qualified due to poor recovery compared with the total number of laboratory control samples and blank spikes.

Table 69. Laboratory Control Sample and Blank Spike Recoveries for EX

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA120.1					
Specific conductance	0/2	100	0.0	100	100
EPA300.0					
Chloride	0/2	98.5	0.71	98.0	99.0
Fluoride	0/2	92.5	0.71	92.0	93.0
Nitrate as nitrogen	0/2	94.0	0.0	94.0	94.0
Nitrate-nitrite as nitrogen	0/2	94.0	0.0	94.0	94.0
Sulfate	0/2	91.0	0.0	91.0	91.0
EPA365.2					
Total phosphates (as P)	0/2	97.0	1.41	96.0	98.0
EPA415.1					
Total organic carbon	0/4	101	1.15	100	102

⁻ Standard deviation cannot be determined.

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA6010A					
Aluminum	0/2	110	E 66	106	444
Antimony	0/2	107	5.66	106	114
Arsenic			5.66	103	111
Barium	0/6	103	2.88	100	107
	0/12	105	4.71	94.0	113
Beryllium Codesium	0/2	109	6.36	104	113
Cadmium	0/4	109	3.42	105	113
Calcium	0/2	108	5.66	104	112
Chromium	0/4	108	3.59	105	113
Cobalt	0/2	112	6.36	107	116
Copper	0/2	109	6.36	104	113
Iron	0/4	108	3.50	104	112
Lead	0/14	101	6.90	87.0	113
Magnesium	0/2	107	6.36	102	111
Manganese	0/4	108	3.86	104	113
Nickel	0/10	105	5.51	93.0	112
Potassium	0/2	108	4.24	105	111
Selenium	0/12	105	5.82	88.0	110
Silver	0/4	109	3.77	106	114
Sodium	0/4	108	4.08	105	114
Thallium	0/2	113	4.95	109	116
Vanadium	0/2	108	5.66	104	112
Zinc	0/2	109	5.66	105	113
EPA7470A					
Mercury	0/6	89.0	2.19	87.0	91.0
EPA8010A					
Carbon tetrachloride	0/2	99.0	4.24	96.0	102
Chloroform	0/2	100	7.07	95.0	105
Tetrachloroethylene	0/2	99.0	4.24	96.0	102
1,1,1-Trichloroethane	0/2	109	1.41	108	110
Trichloroethylene	0/2	99.0	4.24	96.0	102
EPA8081					
beta-Benzene hexachloride	0/2	91.5	2.12	90.0	93.0
Lindane	0/2	69.0	2.83	67.0	71.0
EPA8151					
2,4-Dichlorophenoxyacetic acid	0/4	73.0	2.31	71.0	75.0
EPA8260A Benzene	0/16	94.1	5.86	85.0	108
Chlorobenzene	0/16	95.9	6.28	86.0	108
1,1-Dichloroethylene	0/16	96.3	8.32	76.0	110
Toluene	0/16	92.6	7.38	78.0 78.0	108
Trichloroethylene	0/16	95.1	5.67	85.0	108
EPA8270B					
Acenaphthene	0/2	65.0	0.0	65.0	65.0
4-Chloro-m-cresol	0/2	60.5	0.71	60.0	61.0
2-Chlorophenol	0/2	61.0	0.0	61.0	61.0
1,4-Dichlorobenzene	0/2	61.0	0.0	61.0	
2,4-Dinitrotoluene	0/2	76.0	1.41		61.0
4-Nitrophenol	0/2	36.0	1.41	75.0	77.0
N-Nitrosodipropylamine	0/2	68.0		35.0 67.0	37.0
Pentachlorophenol	0/2	70.5	1.41	67.0	69.0
Phenol	0/4		0.71	70.0	71.0
Pyrene	0/4	56.3	1.50	55.0	58.0
1,2,4-Trichlorobenzene		64.5	3.54	62.0	67.0
,,,,,, I HOHIOTODEHZEHE	0/2	62.0	0.0	62.0	62.0

ESH-EMS-980568 Page 112 First Quarter 1998

Analyte	Qualified	Mean	Standard	Minimum	Maximum
	Out of Range†	Recovery (%)	Deviation	Recovery (%)	Recovery (%)
EPA9010A Cyanide	0/6	97.8	4.36	92.0	102

[†] Number of laboratory control samples and blank spikes qualified due to poor recovery compared with the total number of laboratory control samples and blank spikes.

Table 70. Laboratory Control Sample and Blank Spike Recoveries for GE

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA160.1				***************************************	
Total dissolved solids	0/17	101	3.45	96.6	108
EPA180.1					
Turbidity	0/10	95.2	4.42	88.4	101
EPA300.0					
Bromide	0/1	104		104	104
Chloride	0/2	103	0.71	102	103
Sulfate	0/2	104	0.71	103	104
EPA310.1					
Alkalinity (as CaCO ₃)	0/1	99.3		99.3	99.3
EPA350.1					
Ammonia nitrogen	0/1	94.9		94.9	94.9
EPA353.1					
Nitrate-nitrite as nitrogen	0/22	99.7	2.85	94.0	106
EPA365.4					
Total phosphates (as P)	0/2	94.0	4.17	91.0	96.9
EPA418.1					
Total petroleum hydrocarbons	3/3	72.2	3.58	70.1	76.3
EPA6010A					
Aluminum	0/20	101	3.68	94.7	106
Antimony	0/45	101	3.34	95.1	110
Arsenic	0/45	101	3.03	95.6	107
3arium	0/45	100	3.50	91.5	107
Beryllium	0/20	100	3.47	95.8	107
Cadmium	0/45	102	3.60	94.5	110
Calcium	0/20	102	3.89	96.5	110
Chromium	0/45	101	3.37	95.2	108
Cobalt	0/44	101	3.14	96.2	107
Copper	0/44	101	3.44	92.5	106
ron	0/21	102	3.66	96.2	109
_ead	0/45	102	3.55	95.9	109
ithium	0/5	99.4	5.30	93.6	107
/lagnesium	0/20	99.0	3.91	92.9	107
Manganese	0/20	98.1	3.29	92.4	105
lickel	0/46	101	3.31	94.2	108
Potassium	0/20	98.6	3.49	94.3	106
Selenium	0/45	99.8	3.14	93.9	108

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
Silica	0/5	101	2.51	97.8	104
Silver	0/45	104			
Sodium			4.11	90.1	112
	0/20	104	3.83	96.7	110
Thallium	0/41	100	3.02	94.2	107
Tin	0/29	103	3.46	96.2	109
Vanadium	0/45	101	3.02	94.2	
Zinc	0/45	102			106
ZIIIC	0/45	102	3.12	95.4	108
EPA7041	0.10	400			
Antimony	0/3	103	2.31	100	104
EPA7060					
Arsenic	0/3	96.8	0.72	96.3	97.6
EPA7421					
Lead	0/3	98.5	4.44	93.5	102
EPA7470					
Mercury	0/38	101	9.79	81.5	116
EPA7740					
Selenium	0/3	104	5.20	101	110
EPA7841					
Thallium	0/3	96.1	1.13	94.8	96.8
EPA8081					
Aldrin	0/7	00.0	45.0		
		93.9	15.9	67.0	116
p,p´-DDT	0/7	87.5	20.0	44.0	102
Dieldrin	0/7	90.8	16.2	56.0	104
Endrin	0/7	91.1	19.0	56.0	110
Heptachlor	0/7	97.4	16.6	64.0	
Lindane					115
Linuarie	0/7	90.4	12.4	64.0	103
EPA8151	4.74	0.40			
2,4-Dichlorophenoxyacetic acid	1/1	6.18		6.18	6.18
2,4,5-T	1/1	5.59		5.59	E E0
2,4,5-TP (Silvex)	1/1	5.53		5.53	5.59 5.53
EPA8260A					
Benzene	0/54	101	9.38	82.8	124
Chlorobenzene	2/54	102	10.6	83.1	133
1,1-Dichloroethylene	0/54	99.3	12.6	77.2	
Toluene	0/54	97.5			126
Trichloroethylene	3/54	103	8.35	78.6	114
•	5/5 7	100	8.67	87.0	128
EPA8270B	1/10	00.1	0.00	70.0	
Acenaphthene	1/13	80.1	6.08	72.2	90.8
4-Chloro-m-cresol	2/13	82.5	10.4	68.5	105
2-Chlorophenol	5/13	74.4	7.69	66.2	91.8
1,4-Dichlorobenzene	8/13	68.9	6.15	61.4	
2,4-Dinitrotoluene	2/13				81.8
		77.3	4.18	70.7	82.7
4-Nitrophenol	10/13	32.2	5.95	24.4	45.1
N-Nitrosodipropylamine	4/13	83.3	14.5	66.7	119
Pentachlorophenol	1/13	82.6	8.55	66.6	95.5
Phenol	10/13	30.9	5.25	26.3	
Pyrene	0/13				45.6
	7/13	92.2	12.0	76.3	115
1,2,4-Trichlorobenzene		70.4	4.93	65.2	82.4

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA9012					
Cyanide	0/36	102	10.0	86.3	119
EPA9020B					
Total organic halogens	0/2	92.1	10.5	84.6	99.5
EPA9045C					
pН	0/34	99.8	0.41	98.8	101
EPA9050					
Specific conductance	0/20	99.8	0.49	98.8	101
EPA9056					
Chloride	0/4	100	3.90	96.4	104
Fluoride	0/4	105	0.50	104	105
Nitrate as nitrogen	0/2	102	2.12	100	103
Nitrite as nitrogen	0/1	105	_	105	105
Sulfate	0/6	103	2.19	100	106
EPA9060					
Total organic carbon	0/5	103	5.24	95.2	109
EPA9066					
Phenols	1/12	104	8.98	86.4	124
EPA9070					
Oil & grease	0/3	99.6	3.21	96.6	103

[†] Number of laboratory control samples and blank spikes qualified due to poor recovery compared with the total number of laboratory control samples and blank spikes.

Table 71. Laboratory Control Sample and Blank Spike Recoveries for WA

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%,
EPA160.1 Total dissolved solids	0/4	101	4.03	97.0	106
EPA180.1 Turbidity	0/4	102	6.89	92.7	107
EPA300.0 Chloride	0/1	93.5	<u> </u>	93.5	93.5
EPA340.2 Fluoride	0/11	101	1.10	99.2	102
EPA350.3 Ammonia	0/2	101	1.91	99.3	102
EPA353.2 Nitrate as nitrogen Nitrate-nitrite as nitrogen Nitrite as nitrogen	0/1 0/9 0/3	102 102 101	 2.55 0.0	102 98.0 101	102 106 101

⁻ Standard deviation cannot be determined.

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA365.2					
Phosphate	0/2	101	1.56	99.8	100
Total phosphates (as P)	0/1	103	1.50		102
	0/1	105		103	103
EPA375.4					
Sulfate	0/1	96.5	_	96.5	96.5
EPA376.2					
Sulfide	0/2	102	1.41	101	103
EPA418.1					
Total petroleum hydrocarbons	0/2	85.9	3.61	83.3	88.4
EPA6010					
Aluminum	0/4	101	4.54	00.0	
Antimony			1.51	99.3	103
•	0/5	101	6.06	97.4	112
Arsenic	0/5	99.7	1.34	97.8	101
Barium 	0/13	98.8	1.95	94.5	102
Beryllium	0/5	102	3.04	96.8	104
Boron	0/1	100		100	100
Cadmium	0/6	101	1.37	100	104
Calcium	0/3	101	1.27	99.8	102
Chromium	0/6	101	1.63		
Cobalt	0/6	99.0		98.3	103
			3.51	95.2	103
Copper	0/5	100	1.51	97.7	101
ron	0/3	101	2.87	97.6	103
_ead	0/12	100	2.08	96.9	104
Magnesium	0/3	101	2.46	98.1	103
Manganese	0/3	103	2.54	99.6	104
Nickel	0/13	98.7	2.75	92.7	103
Potassium	0/4	102	0.0	102	
Selenium	0/12	98.8	2.25		102
Silver	0/6			95.1	103
Sodium		100	1.23	98.5	102
	0/4	101	1.56	99.3	102
[hallium	0/4	99.6	1.80	98.0	102
Γin	0/1	99.4	,	99.4	99.4
/anadium	0/5	101	3.24	98.0	105
Zinc	0/5	102	1.64	101	105
EPA7060					
Arsenic	0/1	103		103	103
EPA7421					•
_ead	0/1	104		104	104
		• .			107
EPA7470					
Mercury	0/14	102	4.49	96.3	112
EPA7740					
Selenium	0/1	109		109	109
EPA7841					
Thallium	0/1	104		104	104
ED 4 9 0 1 0					.07
EPA8010	0.40				
Carbon tetrachloride	0/3	102	7.75	94.5	110.
hloroform	0/3	106	7.40	98.2	113
etrachloroethylene	0/3	103	3.21	101	107
,1,1-Trichloroethane	0/1	101	_	101	101
richloroethylene	0/3	101	7.71	92.4	
· · · · · · · · · · · · · · · · · · ·		. 🗸 ,	1.1.1	JC.4	107

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA8020					
Benzene	0/1	93.2		00.0	00.0
	0/1			93.2	93.2
Ethylbenzene	0/1	94.2		94.2	94.2
Toluene	0/1	92.0		92.0	92.0
Xylenes	0/1	95.0		95.0	95.0
EPA8081					
Aldrin	1/10	62.0	16.9	35.0	90.0
p,p´-DDT	0/10	99.6	6.38	90.0	110
Dieldrin	0/10	94.8			
Endrin			5.59	86.0	104
	0/10	95.4	8.33	76.0	106
Heptachlor	0/11	70.0	20.2	40.0	110
Lindane	0/11	90.5	7.23	80.0	100
PCB 1254	0/6	86.9	6.42	80.0	94.7
EPA8141					
Dimethoate	0/2	79.0	26.2	60.5	97.5
Disulfoton	0/2	91.5	6.36		
				87.0	96.0
Famphur Porothion othyl	0/2	75.8	14.5	65.5	86.0
Parathion ethyl	0/2	96.3	8.13	90.5	102
Parathion methyl	0/2	92.0	9.19	85.5	98.5
Phorate	0/2	105	7.42	99.5	110
Sulfotepp	0/2	105	7.42	99.5	110
Thionazin	0/2	106	11.0	98.5	114
O,O,O-Triethyl	1/2	141	0.71	140	141
phosphorothioate	., _	1771	5.71	140	141
ED 4 04 5 0					
EPA8150	1/1	62.0		60.0	00.0
2,4,5-T	1/1	63.0		63.0	63.0
2,4,5-TP (Silvex)	3/3	61.1	10.0	49.6	68.0
EPA8151					
2,4-Dichlorophenoxyacetic	2/6	76.6	20.6	55.0	114
acid	- ₹	. 0.0	20.0	55.0	117
EPA8260					
	0/20	100	4.07	00.0	440
Benzene	0/39	103	4.97	89.2	112
Chlorobenzene	0/39	102	5.39	90.4	114
1,1-Dichloroethylene	0/39	105	8.40	90.0	127
Toluene	0/39	102	5.21	89.0	114
Trichloroethylene	0/39	98.8	7.21	84.8	113
EPA8270					
Acenaphthene	1/12	67.7	11.7	42.2	01 /
Bis(2-ethylhexyl) phthalate	0/3	86.6			81.4
4-Chloro-m-cresol			33.9	60.8	125
	0/12	71.5	14.9	49.2	94.3
2-Chlorophenol	0/12	73.1	12.5	46.4	90.8
1,4-Dichlorobenzene	1/12	48.2	11.1	28.1	69.3
2,4-Dinitrotoluene	0/12	82.1	21.2	39.2	126
4-Nitrophenol	5/12	76.0	20.3	46.7	104
N-Nitrosodipropylamine	0/12	74.2	18.5	40.7	98.7
Pentachlorophenol	1/12				
		75.0	22.4	43.9	110
Phenol	0/15	72.9	11.8	44.7	92.2
Pyrene	0/12	79.0	18.0	36.5	98.0
1,2,4-Trichlorobenzene	1/12	52.7	11.5	30.8	70.5
EPA8280					
Hexachlorodibenzo-p-dioxins	0/1	100		100	100
Hexachlorodibenzo-p-furans	0/1	94.0		94.0	94.0
Pentachlorodibenzo-p-furans	0/2	110	2.12	108	111

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
2,3,7,8-TCDD	0/3	112	0.0	110	444
Tetrachlorodibenzo-p-dioxins	0/3	112	2.0	112	114
Tetrachlorodibenzo-p-furans	0/1	98.0		98.0	112 98.0
EPA8310					
Acenaphthene	0/2	86.6	0.71	86.1	87.1
Acenaphthylene	0/2	82.9	0.14	82.8	83.0
Anthracene	0/2	86.5	2.05	85.0	87.9
Benzo[<i>a</i>]anthracene	0/2	91.5	3.25	89.2	93.8
Benzo[b]fluoranthene	0/2	88.4	2.33	86.7	90.0
Benzo[k]fluoranthene	0/2	89.5	3.32	87.1	91.8
Benzo[g,h,i]perylene	0/2	83.0	2.40	81.3	84.7
Benzo[a]pyrene	0/2	84.8	4.74	81.4	88.1
Chrysene	0/2	89.4	2.69	87.5	91.3
Dibenz[a,h]anthracene	0/2	83.7	2.33	82.0	85.3
Fluoranthene	0/2	88.9	1.98	87.5	90.3
Fluorene	0/2	85.0	0.0	85.0	90.3 85.0
Indeno[1,2,3- <i>c,d</i>]pyrene	0/2	85.6	3.96	82.8	88.4
Naphthalene	0/2	74.0	1.13	73.2	
Phenanthrene	0/2	85.3	0.92	73.2 84.6	74.8
Pyrene	0/2	87.5	1.34	86.5	85.9 88.4
- 				33.3	00.1
EPA9010A					
Cyanide	0/60	96.9	3.71	87.0	105
EPA9020B					
Total organic halogens	0/16	101	3.93	94.6	107
EPA9050					
Specific conductance	0/10	101	1.95	98.4	104
EPA9056					
Chloride	0/3	94.8	2.84	92.9	98.1
Sulfate	0/3	96.5	0.20	96.3	96.7
EPA9060					
Total organic carbon	0/6	102	1.54	99.3	104
EPA9066					
Phenols	0/10	96.5	2.45	92.2	99.7

Number of laboratory control samples and blank spikes qualified due to poor recovery compared with the total number of laboratory control samples and blank spikes.
 Standard deviation cannot be determined.

Table 72. Laboratory Control Sample and Blank Spike Recoveries for GP

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPIA-001					
Gross alpha	0/30	106	7.29	92.6	120
Nonvolatile beta	1/30	104	6.75	91.8	121
EPIA-002					
Tritium	0/24	96.4	5.15	82.6	106

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EDIA 000					
EPIA-003 Carbon-14	0/18	95.9	6.20	00.0	100
Carbon-14	0/16	95.9	6.20	82.9	106
EPIA-004					
Strontium-90	5/29	95.3	13.9	74.6	117
EPIA-005					
Technetium-99	0/26	97.5	5.20	84.0	113
, , , , , , , , , , , , , , , , , , , ,	0/20	07.0	5.20	04.0	113
EPIA-006					
lodine-129	2/24	88.4	9.54	79.2	116
EPIA-008					
Radium-226	0/26	96.7	8.52	84.6	112
	5.45	00.7	0.02	04.0	112
EPIA-009					
Radium-228	5/26	103	14.2	78.7	125
EPIA-010					
Radium, total alpha-emitting	0/2	91.9	1.56	90.8	93.0
EDIA 044					
EPIA-011 Americium-241	3/32	99.7	10.0	74.0	100
Curium-243/244	4/25	94.6	12.0 12.7	74.6 77.6	123
Plutonium-239/240	2/25	97.8	10.7	77.6 78.2	123
Uranium-238	1/25	89.7	6.47		123
0141114111-230	1/23	09.7	0.47	76.7	105
EPIA-012					
Thorium-232	4/23	100	13.4	74.6	123
EPIA-013					
Cesium-137	0/25	99.3	5.23	89.2	113
	5,20	33.0	5.25	U3.2	113
EPIA-020					
Promethium-147	1/4	89.1	8.48	78.5	96.5
EPIA-022					
Nickel-63	0/13	92.0	5.47	82.9	101
	5/10	02.0	J. 4 7	02.3	101
EPIA-032					
Neptunium-237	0/4	92.2	10.1	82.4	106

[†] Number of laboratory control samples and blank spikes qualified due to poor recovery compared with the total number of laboratory control samples and blank spikes.

Table 73. Laboratory Control Sample and Blank Spike Recoveries for TM

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
3500NIEMOD Nickel-63	3/6	96.2	20.8	72.9	121
EICHROMTC1MOD Technetium-99	0/15	102	8.40	84.6	120

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EMLAM01MOD					
Americium-241	0/5	93.0	5.65	84.7	99.4
Americium-241/Curium-246	0/13	99.7	4.03	91.0	
Curium-243/244	0/13	95.9	4.25	90.5	106 105
FILL DIMOTROD					
EMLPM01MOD Promethium-147	1/3	111	18.2	91.1	127
EMLPU02MOD					
Neptunium-237	3/4	74.0	10.0	55.0	
		74.3	18.8	55.2	100
Plutonium-238	0/13	96.9	5.79	89.6	109
Plutonium-239	0/1	98.7		98.7	98.7
Plutonium-239/240	0/12	102	5.30	90.7	111
EMLSR02MOD					
Strontium-90	0/18	91.2	4.81	84.5	98.9
EMLTH01MOD					
Thorium-228	0/13	98.8	5.49	87.8	105
Thorium-230	0/13	104	5.29	89.7	113
Thorium-232	0/13	101	3.90	93.8	106
EMLU02MOD					
	0/14	100	4.40		
Uranium-234	0/14	103	4.48	96.9	111
Uranium-235	5/14	94.8	32.4	52.8	169
Uranium-238	0/14	106	5.34	96.2	114
ENICMOD					
Carbon-14	0/8	101	2.24	98.7	106
EPA900.0MOD					
Gross alpha	0/39	105	6.46	87.9	110
Nonvolatile beta					119
Nonvoiaule beta	0/37	101	5.19	87.3	112
EPA901.1MOD					
Cesium-137	0/20	103	3.15	96.2	108
Cobalt-60	0/19	98.1	2.85	93.9	108
EPA902.0MOD					
lodine-129	1/13	103	11.1	88.2	121
EPA903.0MOD					*
Radium, total alpha-emitting	0/11	104	1.60	101	107
Radium-226	0/11	99.6	5.85	91.7	107 111
				· · · ·	
EPA904.0MOD					
Radium-228	5/16	111	15.5	89.1	141
EPA906.0MOD					
Tritium	0/29	98.9	5.71	88.1	111
	0,20	50.5	J. / 1	00.1	111

 [†] Number of laboratory control samples and blank spikes qualified due to poor recovery compared with the total number of laboratory control samples and blank spikes.
 — Standard deviation cannot be determined.

Table 74. Surrogate Recoveries for ES

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA8010					
Dibromofluoromethane	3/39	94.3	7.38	82.5	113
X13CFB	0/39	92.8	8.29	73.5	111
EPA8021					
Dibromofluoromethane	0/5	94.6	2.58	92.0	98.0
X13CFB	0/5	96.9	2.48	95.0	101
EPA8081					
Decachlorobiphenyl	0/65	84.2	14.7	48.3	105
Tetrachloro-m-xylene	0/65	89.2	8.57	71.4	114
EPA8260					
p-Bromofluorobenzene	1/145	98.2	5.07	82.0	112
Dibromofluoromethane	0/145	99.1	3.66	88.0	110
1,2-Dichloroethane-d4	0/145	94.8	6.90	82.0	118
Toluene-d8	0/145	100	3.58	88.0	110
EPA8270					
2-Fluorobiphenyl	1/56	66.3	13.8	7.60	90.0
2-Fluorophenol	1/56	67.7	14.9	9.40	88.0
Nitrobenzene-d5	1/56	71.1	12.9	7.80	88.0
Phenol-d5	1/56	72.0	15.1	9.20	94.0
p-Terphenyl-d14	1/56	102	16.6	11.0	120
2,4,6-Tribromophenol (surr)	1/56	70.5	14.1	6.30	100

[†] Number of surrogates qualified due to poor recovery compared with the total number of surrogates.

Table 75. Surrogate Recoveries for EX

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA8010A					
p-Bromofluorobenzene	0/7	112	12.7	96.0	131
EPA8081					
Decachlorobiphenyl	0/11	99.0	14.4	79.0	117
Tetrachloro-m-xylene	0/11	57.1	10.3	45.0	78.0
EPA8151					
2,4-Dichlorophenylacetic acid	0/9	99.6	3.75	95.0	103
EPA8260A					
p-Bromofluorobenzene	18/77	90.0	9.84	73.0	120
1,2-Dichloroethane-d4	18/77	101	13.4	78.0	124
Toluene-d8	4/77	96.4	6.83	81.0	121
EPA8270B					
2-Fluorobiphenyl	0/11	63.2	8.58	47.0	72.0
2-Fluorophenol	0/8	51.0	7.25	41.0	60.0
Nitrobenzene-d5	0/11	58.0	8.93	43.0	67.0

Analyte	Qualified	Mean	Standard	Minimum	Maximum
	Out of Range†	Recovery (%)	Deviation	Recovery (%)	Recovery (%)
Phenol-d5	0/8	54.1	7.83	43.0	63.0
p-Terphenyl-d14	0/11	74.7	4.94	66.0	82.0
2,4,6-Tribromophenol (surr)	0/8	62.4	15.2	38.0	77.0

[†] Number of surrogates qualified due to poor recovery compared with the total number of surrogates.

Table 76. Surrogate Recoveries for GE

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA8081					
Decachlorobiphenyl	0/8	80.2	0.00		
Dibutylchlorendate	0/26	83.5	8.93	70.7	95.0
Tetrachloro-m-xylene	0/20		15.7	55.7	130
Totacinoro-III-xylene	0/36	74.7	13.8	47.3	111
EPA8151					
2,4-Dichlorophenylacetic acid	13/15	89.9	50.4	5.13	167
EPA8260A					
p-Bromofluorobenzene	192/491	96.0	9.24	68.4	133
Dibromofluoromethane	195/491	103	13.5	42.6	151
Toluene-d8	202/491	95.6	9.87	76.2	141
EPA8270					
2-Fluorobiphenyl	0/18	76.1	7.30	63.1	07.0
Nitrobenzene-d5	0/18	72.8	9.77		87.0
p-Terphenyl-d14	0/18	61.4		56.8	98.1
, , , , , , , , , , , , , , , , , , , ,	0/10	01.4	21.2	34.9	110
EPA8270B					
2-Fluorobiphenyl	5/365	80.2	39.2	13.3	804
2-Fluorophenol	3/47	43.7	11.4	0.0	
Nitrobenzene-d5	5/365	76.6	33.7	11.6	65.5
Phenol-d6	2/47	29.8	7.77	0.0	684
p-Terphenyl-d14	6/364	66.0	36.2	14.9	47.3
2,4,6-Tribromophenol (surr)	2/47	71.8	22.4	0.0	626 122

[†] Number of surrogates qualified due to poor recovery compared with the total number of surrogates.

Table 77. Surrogate Recoveries for WA

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA8010					
Bromochloromethane	0/9	102	7.89	83.6	111
EPA8020					
Fluorobenzene	0/5	95.4	2.24	92.2	97.8
EPA8081					
Decachlorobiphenyl	3/137	81.9	14.5	22.5	117
Tetrachloro-m-xylene	4/126	57.2	17.7	17.5	108

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Minimum Recovery (%)	Maximum Recovery (%)
EPA8141					
TPP	0/7	102	10.2	91.0	116
Tributyl phosphate	1/14	115	41.5	75.0	248
EPA8151					
2,4-Dichlorophenylacetic acid	41/58	69.6	8.15	44.0	81.8
EPA8260					
p-Bromofluorobenzene	5/593	98.7	5.73	75.0	118
1,2-Dichloroethane-d4	18/593	100	7.07	54.0	123
Toluene-d8	10/593	102	4.59	88.0	119
EPA8270					
2-Fluorobiphenyl	3/97	61.1	9.60	17.7	78.6
2-Fluorophenol	6/109	61.8	17.6	0.46	108
Nitrobenzene-d5	1/97	64.2	11.4	17.7	90.4
Phenol-d5	6/109	57.0	21.4	3.56	112
p-Terphenyl-d14	1/97	76.6	12.8	23.5	100
2,4,6-Tribromophenol (surr)	3/109	68.5	21.5	0.0	113
EPA8280					
Carbon 13-labeled 1,2,3,6,7,8- HXCDD	1/12	75.5	22.1	6.0	87.0
Carbon 13-labeled 2,3,7,8- TCDD	1/13	71.0	20.0	6.0	81.0
Carbon 13-labeled 2,3,7,8- TCDF	1/10	68.0	21.9	6.0	79.0
Carbon 13-labeled HPCDF	1/12	80.5	24.0	6.0	95.0
EPA8310					
Triphenylene	0/6	79.9	6.88	71.4	91.0

[†] Number of surrogates qualified due to poor recovery compared with the total number of surrogates.

Table 78. Matrix Spike Recoveries for ES

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
EPA350.1						
Ammonia nitrogen	0/2	96.1	0.42	-3.90	95.8	96.4
EPA365.1						
Total phosphates (as P)	0/2	94.2	0.92	-5.80	93.5	94.8
EPA6010						
Aluminum	0/4	101	3.94	1.0	97.0	106
Antimony	0/6	97.5	1.44	-2.50	95.8	99.6
Arsenic	0/10	95.4	2.98	-4.60	90.8	99.5
Barium	0/10	96.2	1.80	-3.80	93.0	98.5
Beryllium	0/6	98.9	2.26	-1.10	95.2	101
Boron	0/2	94.1	0.50	-5.90	93.7	94.4
Cadmium	0/10	94.7	2.07	-5.30	92.0	98.2
Calcium	0/4	99.3	1.49	-0.70	97.8	101
Chromium	0/10	96.2	2.49	-3.80	91.5	99.0
Cobalt	0/6	97.9	0.89	-2.10	96.4	98.8

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
Copper	0/6	98.4	1.92	-1.60	96.0	101
Iron	0/4	103	2.38	3.0	100	105
Lead	0/16	96.1	3.77			
	0/4			-3.90	88.7	102
Magnesium		98.9	1.17	-1.10	97.4	100
Manganese	0/4	97.8	0.70	-2.20	97.0	98.6
Nickel	0/6	96.4	1.02	-3.60	94.8	97.6
Potassium	0/4	93.0	3.38	-7.0	90.2	97.9
Selenium	0/10	94.3	2.71	-5.70	90.5	97.5
Silver	0/10	97.4	5.40	-2.60	92.0	
Sodium	0/4	91.8				107
Thallium			1.56	-8.20	90.2	93.7
	0/6	93.3	4.94	-6.70	88.1	99.5
Vanadium	0/6	97.7	1.16	-2.30	96.0	98.8
Zinc	0/6	98.0	1.60	-2.0	96.0	100
EPA7470						
Mercury	3/16	84.0	22.5	-16.0	32.8	106
EPA8010						•
Carbon tetrachloride	0/4	105	3.30	5.0	101	109
Chloroform	0/4	108	5.06	8.0	102	114
Tetrachloroethylene	0/4	102	2.82	2.0		
1,1,1-Trichloroethane	0/4				98.8	105
		103	4.33	3.0	97.6	108
Trichloroethylene	0/4	101	4.72	1.0	95.2	105
EPA8081						
Aldrin	0/5	77.6	3.13	-22.4	72.5	80.3
alpha-Benzene hexachloride	0/5	106	4.32	6.0	101	112
beta-Benzene	0/11	99.7	6.44	-0.30	88.0	106
hexachloride		00.1	0.44	-0.50	00.0	100
delta-Benzene hexachloride	0/5	74.1	2.01	-25.9	71.5	76.8
alpha-Chlordane	0/5	87.2	0.65	-12.8	86.5	88.0
gamma-Chlordane	0/5	94.3	2.26	- 5.70		
p,p'-DDD	0/5				91.3	96.5
		103	1.52	3.0	101	104
p,p´-DDE	0/5	100	0.78	0.0	99.3	101
p,p´-DDT	0/5	98.1	1.18	-1.90	96.5	99.3
Dieldrin	0/5	109	1.48	9.0	107	111
Endosulfan sulfate	0/5	86.5	1.70	-13.5	84.0	88.5
Endosulfan I	0/5	120	1.92	20.0	118	
Endosulfan II	0/5	106	1.48			123
				6.0	104	108
Endrin	0/5	99.4	1.95	-0.60	98.0	102
Endrin aldehyde	0/5	110	33.6	10.0	56.5	134
Endrin ketone	0/5	85.6	1.59	-14.4	83.0	86.8
Heptachlor	0/5	100	2.70	0.0	95.5	102
Heptachlor epoxide	0/5	108	1.10	8.0	106	109
Lindane	0/5	87.1	2.16	-12.9		
Methoxychlor	0/5	104	1.92	-12.9 4.0	85.0 101	90.0 106
EPA8260						-
	0/20	00.0	4.04			
Benzene	0/20	98.6	4.31	-1.40	92.0	108
Chlorobenzene	0/20	99.1	4.02	-0.90	92.0	108
1,1-Dichloroethylene	0/20	94.9	5.09	-5.10	88.0	102
Toluene	0/20	99.4	5.43	-0.60	92.0	110
Trichloroethylene	0/20	92.6	3.19	- 7.40	86.0	100
EPA8270						
Acenaphthene	0/5	66.2	6.72	-33.8	67.7	76.0
4-Chloro-m-cresol					57.7	76.0
	0/5	67.8	1.92	-32.2	65.0	70.0
2-Chlorophenol	0/5	64.8	10.4	- 35.2	50.0	78.0
1,4-Dichlorobenzene	1/5	46.9	8.31	-53.1	34.6	55.8

ESH-EMS-980568

First Quarter 1998

2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodipropylamine Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene EPA9010A Cyanide	2/5 0/5 0/5 0/5 0/5 0/5 0/5 1/5	94.6 53.0 67.2 58.6 55.8 80.9 55.6	8.01 6.44 3.25 3.21 9.23 3.66 8.17	-5.40 -47.0 -32.8 -41.4 -44.2 -19.1 -44.4	84.6 46.0 63.5 55.0 43.0 76.9 42.3	104 63.0 72.0 63.0 69.0 86.0 63.5
4-Nitrophenol N-Nitrosodipropylamine Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene EPA9010A	0/5 0/5 0/5 0/5 0/5 0/5 1/5	53.0 67.2 58.6 55.8 80.9 55.6	6.44 3.25 3.21 9.23 3.66	-47.0 -32.8 -41.4 -44.2 -19.1	46.0 63.5 55.0 43.0 76.9	63.0 72.0 63.0 69.0 86.0
N-Nitrosodipropylamine Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene	0/5 0/5 0/5 0/5 0/5 1/5	67.2 58.6 55.8 80.9 55.6	3.25 3.21 9.23 3.66	-32.8 -41.4 -44.2 -19.1	63.5 55.0 43.0 76.9	72.0 63.0 69.0 86.0
Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene EPA9010A	0/5 0/5 0/5 0/5 1/5	58.6 55.8 80.9 55.6	3.21 9.23 3.66	-41.4 -44.2 -19.1	55.0 43.0 76.9	63.0 69.0 86.0
Phenol Pyrene 1,2,4-Trichlorobenzene EPA9010A	0/5 0/5 1/5	55.8 80.9 55.6	9.23 3.66	-44.2 -19.1	43.0 76.9	69.0 86.0
Pyrene 1,2,4-Trichlorobenzene EPA9010A	0/5 1/5	80.9 55.6	3.66	-19.1	76.9	86.0
1,2,4-Trichlorobenzene EPA9010A	1/5	55.6				
EPA9010A			8.17	-44.4		63.5
	0/6					
Cyanide	0/6					
		96.7	4.40	-3.30	90.9	102
EPA9020A						
Total organic halogens	0/2	101	2.83	1.0	99.0	103
EPA9056						
Chloride	0/2	97.0	1.77	-3.0	95.7	98.2
Nitrate as nitrogen	0/12	100	2.82	0.0	95.7 95.7	104
Nitrite as nitrogen	0/2	102	0.71	2.0	95.7 101	
Sulfate	0/2	98.5	0.21	-1.50	98.3	102 98.6
			0.21	-1.50	90.3	90.0
EPA9060M						
Total organic carbon	0/1	95.8	_	-4.20	95.8	95.8
ESESOPM017						
Gross alpha	1/8	93.1	24.2	-6.90	39.7	100
Nonvolatile beta	1/6	89.0	19.9	-6.90 -11.0		120
	,, 0	00.0	13.3	-11.0	49.8	105
ESESOPM020						
Tritium	0/16	97.9	4.30	-2.10	91.0	103
ESESOPM041						
Carbon-14	0/2	87.3	5.66	-12.7	83.3	91.3

[†] Number of matrix spikes qualified due to poor recovery compared with the total number of matrix spikes. — Standard deviation cannot be determined.

.

Table 79. Matrix Spike Recoveries for EX

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
EPA300.0					-	
Chloride	0/1	92.0		-8.0	92.0	00.0
Fluoride	0/1	90.0	_	-10.0	90.0	92.0
Nitrate as nitrogen	0/1	96.0	_	-10.0 -4.0	96.0 96.0	90.0
Nitrate-nitrite as nitrogen	0/1	103	_	3.0	103	96.0 103
EPA365.2						
Total phosphates (as P)	0/1	94.0		-6.0	94.0	94.0
EPA415.1						
Total organic carbon	0/1	114	_	14.0	114	114
EPA6010A						
Aluminum	0/1	95.0	_	-5.0	95.0	05.0
Antimony	0/1	94.0		-6.0	94.0	95.0 94.0

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
Arsenic	0/2	93.5	3.54	-6.50	91.0	96.0
Barium	0/4	102	6.35	2.0		108
Beryllium	0/1	94.0	0.33	-6.0	93.0 94.0	94.0
Cadmium	0/1	95.0	_	-5.0 -5.0	94.0 95.0	94.0 95.0
Calcium	0/1	95.0		-5.0 -5.0	95.0 95.0	95.0 95.0
Chromium	0/2	100	5.66	0.0	96.0 96.0	104
Cobalt	0/1	98.0	5.00 —	-2.0	98.0	98.0
Copper	0/1	94.0		-2.0 -6.0		
Iron	0/2	99.5	6.36	-0.50 -0.50	94.0 95.0	94.0
Lead	0/4	96.5	1.29			104
Magnesium	0/1	93.0	1.29	-3.50 -7.0	95.0	98.0
Manganese	0/1	99.0	5.66		93.0	93.0
Nickel	0/2	100		-1.0	95.0	103
Potassium	0/4	97.0	7.35	0.0	94.0	109
Selenium	0/4	94.0	5.60	-3.0	97.0	97.0
Silver	0/4	100		-6.0	87.0	99.0
Sodium	0/2		7.07	0.0	95.0	105
Thallium	0/2	98.0 100	7.07	-2.0	93.0	103
Vanadium	0/1	94.0	_	0.0	100	100
Zinc	0/1			-6.0	94.0	94.0
LING	U/ i	95.0		-5.0	95.0	95.0
EPA7470A						
Mercury	0/1	95.0		-5.0	95.0	95.0
EPA8010A						
Carbon tetrachloride	0/2	105	5.66	5.0	101	109
Chloroform	0/2	93.5	4.95	-6.50	90.0	97.0
Tetrachloroethylene	0/2	105	5.66	5.0	101	109
1,1,1-Trichloroethane	1/2	121	7.78	21.0	115	126
Trichloroethylene	0/2	105	5.66	5.0	101	109
EPA8260A						
Benzene	0/14	95.2	4.50	4.00	00.0	
Chlorobenzene	0/14		4.58	-4.80	88.0	103
1,1-Dichloroethylene	0/14	97.6	4.78	-2.40	90.0	107
r, r-Dichioroethylene Toluene		91.9	5.52	-8.10	81.0	101
	0/14 0/14	95.9	3.79	-4.10	90.0	103
Trichloroethylene	0/14	92.4	8.44	-7.60	76.0	107

[†] Number of matrix spikes qualified due to poor recovery compared with the total number of matrix spikes. — Standard deviation cannot be determined.

Table 80. Matrix Spike Recoveries for GE

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
EPA353.1						
Nitrate-nitrite as nitrogen	3/34	91.6	13.0	-8.40	40.0	108
EPA365.4						
Total phosphates (as P)	0/2	85.0	2.83	-15.0	83.0	87.0
EPA6010A						
Aluminum	0/12	102	3.06	2.0	97.4	108
Antimony	0/38	102	3.60	2.0	92.2	109
Arsenic	0/38	101	3.53	1.0	93.0	107

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%
Barium	0/38	102	2.73	0.0	07.0	407
Beryllium	0/14	102		2.0	97.0	107
Cadmium			4.06	2.0	93.9	107
-	0/38	102	4.37	2.0	91.0	110
Calcium	0/10	103	2.91	3.0	100	109
Chromium	0/38	102	3.11	2.0	93.1	107
Cobalt	0/38	102	3.55	2.0	92.2	107
Copper	0/38	102	3.02	2.0	94.2	109
ron	0/12	105	2.27			
_ead	0/38			5.0	101	109
_eau _ithium		102	4.20	2.0	90.9	110
	0/4	102	3.11	2.0	97.7	105
Magnesium	0/12	102	4.49	2.0	98.1	110
Manganese	0/14	97.6	8.36	-2.40	77.2	106
Nickel	0/38	102	4.08	2.0	91.7	
Potassium	0/14	97.7	6.19			109
Selenium				-2.30	82.0	107
	0/38	101	3.97	1.0	91.5	108
Silica	0/4	103	1.41	3.0	101	104
Silver	0/38	105	2.70	5.0	98.8	111
Sodium	0/14	101	6.21	1.0	92.2	110
Thallium	0/21	86.2	36.2	-13.8	0.0	
Γin	0/20	105	3.24			106
√anadium				5.0	97.8	109
	0/38	102	2.95	2.0	94.3	108
Zinc	0/38	102	3.34	2.0	94.3	109
EPA7041						
Antimony	0/6	97.3	2.79	-2.70	94.3	101
,	0.0	07.0	2.73	-2.70	94.3	101
EPA7060						
Arsenic	0/6	94.7	1.59	-5.30	91.6	96.0
EPA7421						
Lead	0/6	07.0	0.70			
Leau	0/6	97.6	2.70	-2.40	95.0	101
EPA7470						
Mercury	0/32	102	13.2	2.0	78.0	122
•				2.0	70.0	122
EPA7740						
	0.10	00.4				
Selenium	0/6	90.1	4.21	-9.90	84.8	94.2
EPA7841						
hallium	2/6	86.5	15.4	-13.5	67.4	104
		00.0	10.4	-13.5	07.4	104
PA8081						
Aldrin	1/4	103	39.4	3.0	76.0	160
p,p´-DDT	1/4	105	37.6	5.0	76.0	160
Dieldrin	1/4	103	39.0	3.0	76.0	
Endrin	1/4	115	44.1			160
leptachlor	1/4			15.0	84.0	180
		110	35.8	10.0	83.0	160
indane	1/4	119	37.1	19.0	85.0	170
PA8151						
2,4-Dichlorophenoxyacetic	2/2	61.2	5.80	-38.8	E7 1	er o
acid		- 1 - 1-	5.55	-00.0	57.1	65.3
2,4,5-T	2/2	67.7	7.70	00.0		
	2/2	67.7	7.78	-32.3	62.2	73.2
2,4,5-TP (Silvex)	1/2	73.9	7.78	-26.1	68.4	79.4
EPA8260A						
	0/50	400				
Benzene	2/50	102	13.7	2.0	77.2	144
Chlorobenzene	6/50	103	15.2	3.0	72.4	134
,1-Dichloroethylene	1/50	109	17.4	9.0	59.4	132

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
Toluene	2/50	98.4	10.0	1.00		
Trichloroethylene	6/50	104	13.3 15.9	-1.60 4.0	73.6 75.2	117 143
EPA8270B					,	0
Acenaphthene	0/6	76.6	10.0	00.4		
4-Chloro-m-cresol	0/6	65.2	12.6	-23.4	63.0	94.5
2-Chlorophenol	2/6	48.8	11.9	-34.8	43.5	76.2
1,4-Dichlorobenzene	0/6	46.6 65.5	23.5	-51.2	11.2	73.0
2,4-Dinitrotoluene	0/6		14.2	-34.5	47.8	83.5
4-Nitrophenol		74.0	8.19	-26.0	62.2	81.6
	2/6	26.7	21.3	-73.3	0.0	46.0
N-Nitrosodipropylamine	2/6	85.8	27.3	-14.2	57.9	124
Pentachlorophenol	2/6	45.1	32.0	-54.9	0.0	75.6
Phenol	0/6	33.0	11.4	-67.0	12.7	45.5
Pyrene	0/6	85.2	15.3	-14.8	67.5	109
1,2,4-Trichlorobenzene	0/6	66.2	11.5	-33.8	53.6	81.6
EPA9012						
Cyanide	4/45	94.2	20.6	-5.80	0.0	131.
EPA9020B						
Total organic halogens	1/3	117	14.5	17.0	103	132
EPA9056						.02
Chloride	0/2	100				
Fluoride		102	10.7	2.0	94.9	110
Nitrite as nitrogen	0/2 0/1	97.7	2.83	-2.30	95.7	99.7
Sulfate		105		5.0	105	105
Sullate	0/2	100	3.82	0.0	97.6	103
EPA9060						
Total organic carbon	0/11	104	8.04	4.0	85.3	114
EPA9066						
Phenols	0/11	101	7.40	1.0	92.5	118

[†] Number of matrix spikes qualified due to poor recovery compared with the total number of matrix spikes. — Standard deviation cannot be determined.

Table 81. Matrix Spike Recoveries for WA

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
EPA310.1						
Alkalinity (as CaCO₃)	0/1	99.0		-1.0	99.0	99.0
EPA340.2						
Fluoride	0/6	94.8	2.86	-5.20	90.0	98.5
EPA350.3						
Ammonia	0/1	96.6		-3.40	96.6	96.6
EPA353.2						r
Nitrate as nitrogen	0/2	103	0.71	3.0	102	103
Nitrate-nitrite as nitrogen	0/8	100	2.81	0.0	95.5	105
Nitrite as nitrogen	0/4	102	2.89	2.0	99.1	105

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
EPA365.2						
Total phosphates (as P)	0/9	103	13.6	3.0	75.2	118
EPA376.2						
Sulfide	0/1	143		43.0	143	143
EPA6010						
Aluminum	0/10	102	4.50	2.0	95.6	109
Antimony	0/18	101	5.69	1.0	95.9	119
Arsenic	0/18	100	3.12	0.0	95.2	106
Barium	0/44	98.4	3.91	-1.60	92.3	110
Beryllium	0/12	102	1.32	2.0	99.0	103
Boron	0/2	99.1	0.64	-0.90	98.6	99.5
Cadmium	0/18	99.7	2.16	-0.30	95.6	103
Calcium	0/10	100	1.60	0.0	97.6	103
Chromium	0/20	99.2	1.26	-0.80	97.1	102
Cobalt	0/18	98.3	3.68	-1.70	93.7	107
Copper	0/18	98.4	1.33	-1.60	95.3	100
Iron	0/14	99.4	3.94	-0.60	95.2	108
Lead	0/44	98.9	2.83	-1.10	92.0	105
Lithium	0/2	105	0.71	5.0	104	105
Magnesium	0/10	99.5	4.46	-0.50	95.1	107
Manganese	0/14	102	1.63	2.0	99.4	104
Nickel	0/44	98.3	2.96	-1.70	90.2	104
Potassium	0/10	100	1.25	0.0	97.5	102
Selenium	0/42	99.3	2.87	-0.70	92.1	105
Silica	0/2	120	0.0	20.0	120	120
Silver	0/20	98.8	3.04	-1.20	95.4	110
Sodium	0/14	96.6	2.35	-3.40	92.4	101
Thallium	0/14	99.2	2.07	-0.80	96.8	104
Tin	0/4	97.3	1.20	-2.70	96.1	98.5
Vanadium	0/18	99.8	2.96	-0.20	95.9	106
Zinc	0/18	99.6	1.77	-0.40	97.0	103
EPA7470						
Mercury	0/26	97.4	3.43	-2.60	91.7	105
EPA7740						
Selenium	0/2	97.0	4.24	-3.0	94.0	100
EPA7841						
Thallium	0/2	115	0.0	15.0	115	115
EPA8010						
Carbon tetrachloride	0/1	96.4		-3.60	96.4	96.4
Chloroform	0/1	100		0.0	100	100
Tetrachloroethylene	0/1	90.9	_	-9.10	90.9	90.9
1,1,1-Trichloroethane	0/1	96.2	_	-3.80	96.2	96.2
Trichloroethylene	0/1	92.4	_	-7.60	92.4	92.4
EPA8020						
Benzene	0/1	91.6		-8.40	91.6	91.6
Ethylbenzene	0/1	98.1	_	-1.90	98.1	98.1
Toluene	0/1	86.6		-13.4	86.6	86.6
Kylenes	0/1	93.9	_	-6.10	93.9	93.9
EPA8081						
Aldrin	0/6	73.4	21.4	-26.6	40.0	95.0
p,p´-DDT	0/6	98.0	9.12	-2.0	88.0	112
Dieldrin	0/6	93.0	5.48	-7.0		98.0

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
Endrin	0/6	91.0	8.74	-9.0	80.0	100
Heptachlor	1/6	78.3	22.5	-3.0 -21.7	40.0	110
Lindane	0/10	97.0	11.1	-3.0	85.0	
PCB 1254	0/5	82.0	1.98	-3.0 -18.0	78.6	120 83.7
EPA8141					, 500	<i>-</i>
Dimethoate	1/2	123	62.9	23.0	78.0	167
Disulfoton	1/2	135	74.2	35.0 35.0		167
Famphur	1/2	103	40.0		82.0	187
Parathion ethyl	1/2	133	68.9	3.0	74.5	131
Parathion methyl	1/2	127	65.4	33.0	84.5	182
Phorate	1/2			27.0	80.5	173
Sulfotepp	1/2	159	104	59.0	85.5	233
		159	104	59.0	85.5	233
Thionazin	1/2	160	101	60.0	88.5	232
O,O,O-Triethy! phosphorothioate	1/2	168	150	68.0	62.5	274
EPA8150 2,4,5-TP (Silvex)	1/1	58.0	_	-42.0	58.0	58.0
	• •	20.0		72.0	50.0	30.0
EPA8151	2/5	70.0	0.05	00		
2,4-Dichlorophenoxyacetic acid	2/5	73.3	9.85	-26.7	58.6	82.6
EPA8260						
	0/00	400				
Benzene	0/20	103	6.59	3.0	85.8	110
Chlorobenzene	0/20	102	6.38	2.0	87.0	112
1,1-Dichloroethylene	0/20	105	12.6	5.0	75.8	141
Toluene	0/20	102	5.59	2.0	88.2	110
Trichloroethylene	2/20	95.7	14.4	-4.30	65.0	133
EPA8270						
Acenaphthene	1/9	62.5	12.9	-37.5	36.6	76.4
Bis(2-ethylhexyl) phthalate	0/1	62.8	_	-37.2	62.8	62.8
4-Chloro-m-cresol	0/9	58.4	13.0	-41.6	41.1	81.3
2-Chlorophenol	0/9	60.9	13.1	-39.1	40.7	
1,4-Dichlorobenzene	1/9	46.8	6.82	-53.2		76.2
2,4-Dinitrotoluene	1/9	72.9	19.5	-55.2 -27.1	34.0	52.6
4-Nitrophenol	1/9	61.3	27.0		37.6	103
N-Nitrosodipropylamine	1/9	61.8		-38.7	20.7	115
Pentachlorophenol	0/9		15.2	-38.2	37.5	81.1
Phenol		51.6	26.2	-48.4	14.3	89.0
Pyrene	0/12	57.9	15.2	-42.1	27.1	72.7
	0/9	73.3	14.2	-26.7	49.7	99.1
1,2,4-Trichlorobenzene	1/9	51.0	7.22	-49.0	35.9	56.5
EPA8280	0/4					
Hexachlorodibenzo-p- dioxins	0/1	89.0	_	-11.0	89.0	89.0
Hexachlorodibenzo-p-	0/1	92.0		-8.0	92.0	92.0
furans Pentachlorodibenzo-p-	0/0	104	7.07			
furans	0/2	104	7.07	4.0	99.0	109
2,3,7,8-TCDD	0/1	110		10.0	110	110
Tetrachlorodibenzo-p-	0/1	110		10.0		110
dioxins	•			10.0	110	110
Tetrachlorodibenzo-p-	0/1	94.0		-6.0	94.0	94.0
furans						
EPA8310						
Acenaphthene	0/1	95.7	_	-4.30	95.7	95.7
Acenaphthylene	0/1	89.7		-10.3	89.7	89.7

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
A						
Anthracene	0/1	83.3	_	-16.7	83.3	83.3
Benzo[a]anthracene	0/1	92.3		-7.70	92.3	92.3
Benzo[b]fluoranthene	0/1	87.8		-12.2	87.8	87.8
Benzo[k]fluoranthene	0/1	89.4		-10.6	89.4	89.4
Benzo[g,h,i]perylene	0/1	70.8	_	-29.2	70.8	70.8
Benzo[a]pyrene	0/1	74.6	_	-25.4	74.6	74.6
Chrysene	0/1	89.9		-10.1	89.9	89.9
Dibenz[a,h]anthracene	0/1	69.3	_	-30.7	69.3	69.3
Fluoranthene	0/1	94.3		-5.70	94.3	94.3
Fluorene	0/1	92.6		-7.40	92.6	92.6
Indeno[1,2,3-c,d]pyrene	0/1	80.5		-19.5	80.5	80.5
Naphthalene	0/1	89.0		-11.0	89.0	89.0
Phenanthrene	0/1	92.0		-8.0	92.0	92.0
Pyrene	0/1	90.7	_	-9.30	90.7	90.7
EPA9010A						
Cyanide	0/20	93.5	7.91	-6.50	78.4	106
EPA9020B						
Total organic halogens	1/4	110	17.8	10.0	94.6	134
EPA9056						
Chloride	0/6	98.0	4.09	- 2.0	90.9	102
Sulfate	0/6	94.8	6.27	-5.20	82.5	100
EPA9060						
Total organic carbon	1/5	115	12.4	15.0	100	130
EPA9066						
Phenols	0/5	98.6	6.39	-1.40	95.2	110

[†] Number of matrix spikes qualified due to poor recovery compared with the total number of matrix spikes. — Standard deviation cannot be determined.

Table 82. Matrix Spike Recoveries for GP

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
EPIA-001						
Gross alpha	0/28	105	11.1	5.0	75.3	122
Nonvolatile beta	0/27	102	8.70	2.0	82.3	117
EPIA-002						
Tritium	0/17	95.1	7.96	-4.90	77.7	111
EPIA-003						
Carbon-14	0/17	94.9	6.10	-5.10	81.8	100
	0,777	54.5	0.10	-3.10	01.0	102
EPIA-004						
Strontium-90	1/27	96.7	14.9	-3.30	63.0	124
EPIA-005						
Technetium-99	0/26	99.1	4.89	-0.90	88.0	112

Analyte	Qualified Out of Range†	Mean Recovery (%)	Standard Deviation	Bias (%)	Minimum Recovery (%)	Maximum Recovery (%)
EPIA-006						
lodine-129	2/23	85.6	11.6	-14.4	72.4	123
EPIA-008						
Radium-226	0/27	94.2	9.99	-5.80	79.2	114
EPIA-009						
Radium-228	0/25	105	11.8	5.0	78.5	122
EPIA-010						
Radium, total alpha- emitting	0/3	89.5	4.24	-10.5	86.4	94.3
EPIA-011						
Americium-241	0/29	98.1	13.7	-1.90	79.7	123
Curium-243/244 Plutonium-238	0/23 1/11	92.8	12.0	-7.20	76.7	120
Plutonium-239/240	0/12	93.7 95.7	9.86 10.7	-6.30 -4.30	74.7	112
Uranium-238	0/22	92.0	10.7	-4.30 -8.0	83.4 78.0	116 120
EPIA-012						
Thorium-232	0/23	98.4	13.0	-1.60	75.5	121
EPIA-013						
Cesium-137	0/24	95.3	8.42	-4.70	78.7	110
EPIA-020						
Promethium-147	0/5	94.0	9.95	-6.0	81.5	104
EPIA-022						
Nickel-63	0/13	91.4	6.04	-8.60	81.2	100
EPIA-032						
Neptunium-237	0/4	91.1	6.21	-8.90	85.5	100

[†] Number of matrix spikes qualified due to poor recovery compared with the total number of matrix spikes.

Table 83. Analytes Detected in Method Blanks for ES

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum.Results
EPA120.1				
Specific conductance	0/2	1.0	0.0	1.0/1.0 μS/cm
EPA350.1				
Ammonia nitrogen	0/1	50.0	_	50.0/50.0 μg/L
EPA365.1				
Total phosphates (as P)	0/2	10.0	0.0	10.0/10.0 μg/L
EPA6010				
Aluminum	0/4	20.0	0.0	20.0/20.0 μg/L
Antimony	0/7	5.0	0.0	5.0/5.0 μg/L
Arsenic	0/8	8.0	0.0	8.0/8.0 µg/L
Barium	0/8	2.0	0.0	2.0/2.0 µg/L
Beryllium	0/7	1.0	0.0	1.0/1.0 µg/L
Boron	0/1	25.0	_	25.0/25.0 µg/L

Quality Control Samples

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Codmium	2.40			
Cadmium	0/8	2.0	0.0	2.0/2.0 μg/L
Calcium	0/4	50.0	0.0	50.0/50.0 µg/L
Chromium	0/8	3.0	0.0	3.0/3.0 µg/L
Cobalt	0/7	5.0	0.0	5.0/5.0 µg/L
Copper	0/7	3.0	0.0	3.0/3.0 μg/L
ron	0/4	20.0	0.0	20.0/20.0 µg/L
Lead	0/12	5.0	0.0	5.0/5.0 μg/L
Magnesium	0/4	50.0	0.0	50.0/50.0 µg/L
Manganese	0/4	3.0	0.0	3.0/3.0 µg/L
Nickel	0/7	5.0	0.0	5.0/5.0 μg/L
Potassium	0/4	400	0.0	400/400 μg/L
Selenium	0/8	5.0	0.0	400/400 μg/L
Silver	0/8	2.0		5.0/5.0 μg/L
Sodium	0/4	100	0.0	2.0/2.0 µg/L
Thallium			0.0	100/100 μg/L
/anadium	0/7	5.0	0.0	5.0/5.0 μg/L
	0/7	2.0	0.0	2.0/2.0 μg/L
Zinc	0/7	10.0	0.0	10.0/10.0 μg/L
PA7470				
Mercury	0/7	0.20	0.0	0.20/0.20 μg/L
PA8010				
Carbon tetrachloride	0/2	0.41	0.0	0.41/0.41 μg/L
Chloroform	0/2	0.43	0.0	0.43/0.43 µg/L
etrachloroethylene	0/2	0.57	0.0	0.57/0.57 µg/L
,1,1-Trichloroethane	0/2	0.46	0.0	0.46/0.46 μg/L
richloroethylene	0/2	0.39	0.0	0.39/0.39 µg/L
EPA8021				. 0
Carbon tetrachloride	0/3	0.41	0.0	0.41/0.41//
Chloroform	0/3	0.43		0.41/0.41 μg/L
Tetrachloroethylene	0/2		0.0	0.43/0.43 μg/L
I,1,1-Trichloroethane		0.57	0.0	0.57/0.57 μg/L
	0/3	0.46	0.0	0.46/0.46 µg/L
Trichloroethylene	0/2	0.39	0.0	0.39/0.39 μg/L
EPA8081	0.40			
Aldrin	0/3	0.02	0.0	0.02/0.02 μg/L
llpha-Benzene hexachloride	0/3	0.02	0.0	0.02/0.02 μg/L
eta-Benzene hexachloride	0/6	0.02	0.0	0.02/0.02 μg/L
elta-Benzene hexachloride	0/3	0.02	0.0	0.02/0.02 μg/L
Chlordane	0/3	0.07	0.0	0.07/0.07 μg/L
lpha-Chlordane	0/3	0.02	0.0	0.02/0.02 μg/L
amma-Chlordane	0/3	0.02	0.0	0.02/0.02 μg/L
,p´-DDD	0/3	0.02	0.0	0.02/0.02 µg/L 0.02/0.02 µg/L
,p´-DDE	0/3	0.02	0.0	, 0
,p´-DDT	0/3	0.02		0.02/0.02 μg/L
ieldrin	0/3	0.02	0.0	0.02/0.02 μg/L
ndosulfan sulfate	0/3		0.0	0.02/0.02 μg/L
ndosulfan l		0.02	0.0	0.02/0.02 μg/L
	0/3	0.02	0.0	0.02/0.02 µg/L
ndosulfan II	0/3	0.02	0.0	0.02/0.02 μg/L
ndrin	0/3	0.02	0.0	0.02/0.02 μg/L
ndrin aldehyde	0/3	0.02	0.0	0.02/0.02 μg/L
ndrin ketone	0/3	0.02	0.0	0.02/0.02 μg/L
eptachlor	0/3	0.02	0.0	0.02/0.02 µg/L
leptachlor epoxide	0/3	0.02	0.0	0.02/0.02 μg/L 0.02/0.02 μg/L
indane	0/3	0.02	0.0	
fethoxychlor	0/3	0.02		0.02/0.02 μg/L
CB 1016	0/3		0.0	0.02/0.02 µg/L
CB 1016 CB 1221		0.30	0.0	0.30/0.30 μg/L
	0/3	0.30	0.0	0.30/0.30 μg/L
CB 1232	0/3	0.30	0.0	0.30/0.30 μg/L
CB 1242	0/3	0.30	0.0	0.30/0.30 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
PCB 1248	0/3	0.30	0.0	0.30/0.30//
PCB 1254	0/3	0.30		0.30/0.30 μg/L
PCB 1260	0/3		0.0	0.30/0.30 µg/L
		0.30	0.0	0.30/0.30 μg/L
Toxaphene	0/3	1.50	0.0	1.50/1.50 μg/L
EPA8260				
Acetone	17/21	7.11	2.20	3.70/10.0 μg/L
Acetonitrile	0/17	20.0	0.0	20.0/20.0 μg/L
Acrolein	0/17	10.0	0.0	10.0/10.0 μg/L
Acrylonitrile	0/17	20.0	0.0	20.0/20.0 μg/L
Allyl chloride	0/17	10.0	0.0	10.0/10.0 µg/L
3enzene	0/21	5.0	0.0	5.0/5.0 µg/L
Bromochloromethane	0/6	10.0	0.0	10.0/10.0 μg/L
Bromodichloromethane	0/21	5.0	0.0	
Bromoform	0/21	5.0	0.0	5.0/5.0 μg/L
Bromomethane	0/21	10.0	0.0	5.0/5.0 μg/L
Carbon disulfide	0/21	5.0		10.0/10.0 μg/L
Carbon tetrachloride	0/21	5.0 5.0	0.0	5.0/5.0 μg/L
Chlorobenzene	0/21		0.0	5.0/5.0 µg/L
Chloroethane		5.0	0.0	5.0/5.0 μg/L
Chloroethene	0/21	10.0	0.0	10.0/10.0 μg/L
2-Chloroethyl vinyl ether	0/21	10.0	0.0	10.0/10.0 μg/L
	0/1	10.0	_	10.0/10.0 μg/L
Chloroform	0/21	5.0	0.0	5.0/5.0 μg/L
Chloromethane	0/21	10.0	0.0	10.0/10.0 μg/L
Chloroprene	0/17	5.0	0.0	5.0/5.0 μg/L
Dibromochloromethane	0/21	5.0	0.0	5.0/5.0 μg/L
,2-Dibromo-3-chloropropane	0/17	5.0	0.0	5.0/5.0 μg/L
,2-Dibromoethane	0/17	5.0	0.0	5.0/5.0 μg/L
Dibromomethane	0/17	5.0	0.0	5.0/5.0 μg/L
,2-Dichlorobenzene	0/6	5.0	0.0	5.0/5.0 µg/L
,4-Dichlorobenzene	0/16	5.0	0.0	5.0/5.0 μg/L
rans-1,4-Dichloro-2-butene	0/17	5.0	0.0	5.0/5.0 μg/L
Dichlorodifluoromethane	0/17	5.0	0.0	5.0/5.0 µg/L
,1-Dichloroethane	0/21	5.0	0.0	5.0/5.0 µg/L
,2-Dichloroethane	0/21	5.0	0.0	5.0/5.0 μg/L
,1-Dichloroethylene	0/21	5.0	0.0	5.0/5.0 μg/L
is-1,2-Dichloroethylene	0/13	5.0	0.0	5.0/5.0 μg/L
rans-1,2-Dichloroethylene	0/14	5.0	0.0	5.0/5.0 μg/L
Dichloromethane	21/21	2.73	1.53	1.70/7.10 µg/L
,2-Dichloropropane	0/21	5.0	0.0	5.0/5.0 μg/L
is-1,3-Dichloropropene	0/21	5.0	0.0	5.0/5.0 μg/L
ans-1,3-Dichloropropene	0/21	5.0	0.0	5.0/5.0 μg/L
Ethylbenzene	0/21	5.0	0.0	5.0/5.0 μg/L
-Hexanone	0/21	10.0	0.0	10.0/10.0 μg/L
odomethane	0/17	5.0	0.0	5.0/5.0 μg/L
sobutyl alcohol	0/17	100	0.0	100/100 µg/L
fethacrylonitrile	1/17	4.84	0.66	2.30/5.0 µg/L
1ethyl ethyl ketone	0/21	10.0	0.0	10.0/10.0 μg/L
lethyl isobutyl ketone	0/21	12.0	0.0	12.0/12.0 μg/L
lethyl methacrylate	0/17	5.0	0.0	5.0/5.0 μg/L
ropionitrile	0/17	5.0	0.0	5.0/5.0 μg/L
tyrene	0/21	5.0	0.0	
,1,1,2-Tetrachloroethane	0/17	5.0	0.0	5.0/5.0 µg/L
,1,2,2-Tetrachloroethane	0/17	5.0	0.0	5.0/5.0 µg/L
etrachloroethylene	0/21	5.0	0.0	5.0/5.0 μg/L
oluene	0/21	5.0		5.0/5.0 μg/L
,1,1-Trichloroethane	0/21	5.0	0.0	5.0/5.0 μg/L
,1,2-Trichloroethane	0/21		0.0	5.0/5.0 μg/L
richloroethylene		5.0	0.0	5.0/5.0 µg/L
richlorofluoromethane	0/21	5.0	0.0	5.0/5.0 μg/L
	0/17	5.0	0.0	5.0/5.0 μg/L
,2,3-Trichloropropane	0/17	5.0	0.0	5.0/5.0 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
√inyl acetate	0/21	5.0	0.0	5 0/5 0 ····/
Kylenes	0/22	5.0	0.0	5.0/5.0 μg/L 5.0/5.0 μg/L
ED A 9270				F3-2
EPA8270 Acenaphthene	0/2	40.0	• •	
Acenaphthylene	0/3 0/3	10.0	0.0	10.0/10.0 μg/L
Anthracene	0/3	10.0 10.0	0.0	10.0/10.0 μg/L
Benzidine	0/3	10.0	0.0 0.0	10.0/10.0 μg/L
Benzo[a]anthracene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzo[<i>b</i>]fluoranthene	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
Benzo[k]fluoranthene	0/3	10.0	0.0	10.0/10.0 µg/L
Benzoic acid	0/3	50.0	0.0	50.0/50.0 μg/L
Benzo[<i>g,h,i</i>]perylene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzo[<i>a</i>]pyrene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzyl alcohol	0/3	20.0	0.0	20.0/20.0 µg/L
Bis(2-chloroethoxy) methane	0/3	10.0	0.0	10.0/10.0 µg/L
Bis(2-chloroethyl) ether	0/3	10.0	0.0	10.0/10.0 µg/L
Bis(2-chloroisopropyl) ether	0/3	, 10.0	0.0	10.0/10.0 µg/L
Bis(2-ethylhexyl) phthalate	2/3	5.20	4.33	1.60/10.0 µg/L
-Bromophenyl phenyl ether	0/3	10.0	0.0	10.0/10.0 μg/L
Butylbenzyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L
l-Chloroaniline l-Chloro-m-cresol	0/3	20.0	0.0	20.0/20.0 μg/L
	0/3	20.0	0.0	20.0/20.0 μg/L
:-Chloronaphthalene :-Chlorophenol	0/3 0/3	10.0	0.0	10.0/10.0 μg/L
-Chlorophenyl phenyl ether	0/3	10.0	0.0	10.0/10.0 μg/L
Chrysene	0/3	10.0 10.0	0.0 0.0	10.0/10.0 μg/L
n/p-Cresol	0/3	10.0	0.0	10.0/10.0 μg/L
-Cresol	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
Dibenz[a,h]anthracene	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
Dibenzofuran	0/3	10.0	0.0	10.0/10.0 μg/L
Di-n-butyl phthalate	2/7	7.40	4.45	0.87/10.0 µg/L
,2-Dichlorobenzene	0/3	10.0	0.0	10.0/10.0 µg/L
,3-Dichlorobenzene	0/3	10.0	0.0	10.0/10.0 μg/L
,4-Dichlorobenzene	0/3	10.0	0.0	10.0/10.0 μg/L
3,3'-Dichlorobenzidine	0/3	20.0	0.0	20.0/20.0 μg/L
,4-Dichlorophenol	0/3	10.0	0.0	10.0/10.0 μg/L
iethyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L
,4-Dimethyl phenol	0/3	10.0	0.0	10.0/10.0 μg/L
Dimethyl phthalate 1.4-Dinitrophenol	0/3	10.0	0.0	10.0/10.0 μg/L
,4-Dinitrophenoi ,4-Dinitrotoluene	0/3	50.0	0.0	50.0/50.0 μg/L
,6-Dinitrotoluene	0/3 0/3	10.0	0.0	10.0/10.0 μg/L
Di-n-octyl phthalate	0/3	10.0 10.0	0.0	10.0/10.0 μg/L
Juoranthene	0/3	10.0	0.0 0.0	10.0/10.0 μg/L
luorene	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
lexachlorobenzene	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
lexachlorobutadiene	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
lexachlorocyclopentadiene	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
lexachloroethane	0/3	10.0	0.0	10.0/10.0 µg/L
ndeno[1,2,3- <i>c,d</i>]pyrene	0/3	10.0	0.0	10.0/10.0 µg/L
sophorone	0/3	10.0	0.0	10.0/10.0 µg/L
-Methyl-4,6-dinitrophenol	0/3	50.0	0.0	50.0/50.0 μg/L
-Methylnaphthalene	0/3	10.0	0.0	10.0/10.0 µg/L
laphthalene	0/3	10.0	0.0	10.0/10.0 µg/L
n-Nitroaniline	0/3	50.0	0.0	50.0/50.0 μg/L
-Nitroaniline	0/3	50.0	0.0	50.0/50.0 μg/L
-Nitroaniline	0/3	50.0	0.0	50.0/50.0 μg/L
litrobenzene	0/3	10.0	0.0	10.0/10.0 μg/L
-Nitrophenol	0/3	10.0	0.0	10.0/10.0 μg/L
-Nitrophenol	0/3	50.0	0.0	50.0/50.0 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
N-Nitrosodiphenylamine	0/3	10.0	0.0	10.0/10.0 μg/L
N-Nitrosodipropylamine	0/3	10.0		10.0/10.0 µg/L
			0.0	10.0/10.0 μg/L
Pentachlorophenol	0/3	50.0	0.0	50.0/50.0 μg/L
Phenanthrene	0/3	10.0	0.0	10.0/10.0 μg/L
Phenol	0/3	10.0	0.0	10.0/10.0 μg/L
Pyrene	0/3	10.0	0.0	10.0/10.0 µg/L
1,2,4-Trichlorobenzene	0/3	10.0	0.0	10.0/10.0 µg/L
				10.0/10.0 μg/L
2,4,5-Trichlorophenol	0/3	10.0	0.0	10.0/10.0 μg/L
2,4,6-Trichlorophenol	0/3	10.0	0.0	10.0/10.0 µg/L
EPA9010A				
Cyanide	0/3	5.0	0.0	5.0/5.0 μg/L
EPA9020A				
Total organic halogens	1/2	9.19	1.15	8.37/10.0 μg/L
EPA9040A				
pH	4/4	5.69	0.06	5.64/5.77 pH
EPA9056				
	0/1	500		
Chloride	0/1	500	_	500/500 μg/L
Nitrate as nitrogen	6/7	64.3	19.9	50.0/100 μg/L
Nitrite as nitrogen	1/1	50.0		50.0/50.0 μg/L
Sulfate	0/1	5,000		5,000/5,000 µg/L
EPA9060M				
Total organic carbon	0/2	1,000	0.0	1,000/1,000 μg/L
ESESOPM008				, , , , , , , , ,
* * * *				
Actinium-228	2/2	-2.72E-09	2.23E-09	-4.30E-09/-1.14E-09 μCi/mL
Antimony-125	2/2	-1.30E - 10	5.52E-10	-5.20E-10/2.60E-10 µCi/mL
Cerium-144	2/2	-5.25E-10	1.34E-10	-6.20E-10/-4.30E-10 µCi/mL
Cesium-134	2/2	-4.65E-10	7.07E-12	-4.70E-10/-4.60E-10 µCi/mL
Desium-137	2/2			
		1.30E-10	4.81E-10	-2.10E-10/4.70E-10 μCi/mL
Cobalt-57	2/2	-3.65E-10	2.76E-10	-5.60E-10/-1.70E-10 μCi/mL
Cobalt-60	2/2	6.25E-10	8.13E-10	5.00E-11/1.20E-09 µCi/mL
Europium-152	2/2	-1.04E-09	3.55E-09	-3.55E-09/1.47E-09 µCi/mL
Europium-154	2/2	-1.16E-09	3.47E-09	-3.61E-09/1.30E-09 µCi/mL
Europium-155	2/2	1.81E-09	1.20E-10	
odine-129	1/1		1.206-10	1.72E-09/1.89E-09 μCi/mL
		1.60E-10		1.60E-10/1.60E-10 μCi/mL
_ead-212	1/2	1.31E-09	2.18E-09	-2.30E-10/2.85E-09 µCi/mL
Manganese-54	2/2	-8.35E-10	6.36E-11	-8.80E-10/-7.90E-10 μCi/mL
Potassium-40	2/2	-8.40E-10	1.39E-08	-1.07E-08/9.02E-09 µCi/mL
Promethium-144	2/2	1.35E-10	5.30E-10	-2.40E-10/5.10E-10 µCi/mL
Promethium-146	2/2	9.60E-10	4.24E-10	
Ruthenium-106			_	6.60E-10/1.26E-09 µCi/mL
	2/2	-3.24E-09	1.07E-08	-1.08E-08/4.33E-09 µCi/mL
Sodium-22	2/2	-5.35E-10	1.42E-09	-1.54E-09/4.70E-10 µCi/mL
horium-234	2/2	-6.20E-09	2.43E-08	-2.34E-08/1.10E-08 µCi/mL
/ttrium-88	2/2	-5.00E-12	6.15E-10	-4.40E-10/4.30E-10 µCi/mL
Zinc-65	2/2	1.85E-09	6.29E-10	1.40E-09/2.29E-09 μCi/mL
ESESOPM017				
Gross alpha	0/15	2 045 40	4.045.40	1.005.00/4.005.10
•	0/15	-3.84E-10	4.31E-10	-1.20E-09/1.00E-10 μCi/mL
Nonvolatile beta	0/6	2.50E-10	1.02E-09	-1.08E-09/1.75E-09 μCi/mL
ESESOPM020				
⁻ ritium	0/47	-3.00E-08	3.20E-07	-8.55E-07/5.97E-07 µCi/mL
	* *		~v.	

Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
0/4	4.00=		
			-1.30E-10/-1.30E-10 μCi/mL
0/2	-6.50E-10	2.55E-10	-8.30E-10/-4.70E-10 µCi/mL
0/1	9.00E-11		9.00E-11/9.00E-11 μCi/mL
			, , , , , , , , , , , , , , , , , , ,
			5.00E-11/1.60E-10 μCi/mL
			-3.00E-11/7.00E-11 μCi/mL
		1.45E-10	-2.00E-11/3.00E-10 µCi/mL
4/6	1.03E-10	4.63E-11	5.00E-11/1.60E-10 µCi/mL
0/3	7.00E-11	1.73E-11	6.00E-11/9.00E-11 µCi/mL
0/5	3.42E-11	2.84E-11	-9.00E-12/6.00E-11 μCi/mL
0/5	4.18E-11	2.09E-11	9.00E-12/6.00E-11 µCi/mL
2/5	9.80E-11	3.70E-11	6.00E-11/1.60E-10 µCi/mL
5/5	3.94E-10	2.86E-10	1.00E-10/7.00E-10 µCi/mL
0/5	2.68E-11		0.0/6.00E-11 µCi/mL
3/7	3.00E-11		5.00E-12/6.00E-11 μCi/mL
0/7	1.29E-11		-9.00E-12/3.00E-11 μCi/mL
0/7	6.29E-12	6.82E-12	0.0/2.00E-11 μCi/mL
			·
0/1	0.0		0.0/0.0 µCi/mL
	0/1 0/2 0/1 4/6 0/6 2/6 4/6 0/3 0/5 0/5 2/5 5/5 0/5 3/7 0/7	of Detection† Mean Result 0/1 -1.30E-10 0/2 -6.50E-10 0/1 9.00E-11 4/6 1.03E-10 0/6 1.17E-11 2/6 1.02E-10 4/6 1.03E-10 0/3 7.00E-11 0/5 3.42E-11 0/5 4.18E-11 2/5 9.80E-11 5/5 3.94E-10 0/5 2.68E-11 3/7 3.00E-11 0/7 1.29E-11 0/7 6.29E-12	of Detection† Mean Result Deviation 0/1 -1.30E-10 — 0/2 -6.50E-10 2.55E-10 0/1 9.00E-11 — 4/6 1.03E-10 4.63E-11 0/6 1.17E-11 4.36E-11 2/6 1.02E-10 1.45E-10 4/6 1.03E-10 4.63E-11 0/3 7.00E-11 1.73E-11 0/5 3.42E-11 2.84E-11 0/5 4.18E-11 2.09E-11 2/5 9.80E-11 3.70E-11 5/5 3.94E-10 2.86E-10 0/5 2.68E-11 3.05E-11 3/7 3.00E-11 1.98E-11 0/7 1.29E-11 1.61E-11 0/7 6.29E-12 6.82E-12

[†] Number of times analyte was detected compared to the total number of method blanks for the analyte. — Standard deviation cannot be determined.

Table 84. Analytes Detected in Method Blanks for EX

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA120.1				
Specific conductance	0/1	1.0		1.0/1.0 μS/cm
EPA300.0				
Chloride	0/1	200		200/200 μg/L
Fluoride	0/1	200		200/200 µg/L
Nitrate as nitrogen	0/1	100	_	100/100 µg/L
Nitrate-nitrite as nitrogen	0/1	200		200/200 µg/L
Sulfate	0/1	200	_	200/200 µg/L
EPA365.2				
Total phosphates (as P)	0/1	50.0		50.0/50.0 μg/L
EPA415.1				
Total organic carbon	0/2	5,000	0.0	5,000/5,000 µg/L
EPA6010A				
Aluminum	1/1	50.3		50.3/50.3 µg/L
Antimony	0/1	100		100/100 μg/L
Arsenic	0/3	40.0	52.0	10.0/100 μg/L 10.0/100 μg/L
Barium	2/6	3.64	2.11	0.84/5.0 μg/L
Beryllium	0/1	5.0		5.0/5.0 μg/L

of Detection†	Mean Result	Deviation	Minimum/Maximum Results
0/0			
		0.0	5.0/5.0 μg/L
			1,000/1,000 µg/L
	10.0	0.0	10.0/10.0 μg/L
	20.0		20.0/20.0 μg/L
	10.0		10.0/10.0 μg/L
1/2	56.7	61.3	13.3/100 µg/L
3/7	18.0	36.2	3.55/100 µg/L
0/1	500		500/500 μg/L
0/2		0.0	10.0/10.0 µg/L
			20.0/20.0 μg/L
			1,000/1,000 µg/L
			1,000/1,000 μg/L
			10.0/200 μg/L
			20.0/20.0 μg/L
	•	0.0	1,000/1,000 µg/L
		_	500/500 μg/L
		_	10.0/10.0 μg/L
0/1	10.0	_	10.0/10.0 μg/L
0/3	0.20	0.0	0.20/0.20 μg/L
0/1	1.0		1.0/1.0//
			1.0/1.0 μg/L
		-	1.0/1.0 µg/L
		_	1.0/1.0 μg/L
		_	1.0/1.0 µg/L
U/1	1.0		1.0/1.0 μg/L
0/1	0.05		0.05/0.05 µg/L
0/1	0.05	_	0.05/0.05 μg/L
0/2	0.50	0.0	0.50/0.50 μg/L
0/9	8 80	2 20	E 0/10 0~/I
			5.0/10.0 μg/L
			200/200 μg/L
			10.0/10.0 μg/L
			10.0/10.0 μg/L
			20.0/20.0 μg/L
		1.85	1.0/5.0 μg/L
		_	5.0/5.0 μg/L
0/8	4.0	1.85	1.0/5.0 μg/L
0/8	4.0	1.85	1.0/5.0 μg/L
0/8	4.25	1.39	2.0/5.0 μg/L
	4.11		1.0/5.0 µg/L
			1.0/5.0 µg/L
			1.0/5.0 μg/L 1.0/5.0 μg/L
			2.0/5.0 μg/L
			1.0/5.0 μg/L
			5.0/5.0 μg/L
			1.0/5.0 µg/L
			2.0/5.0 μg/L
	20.0	0.0	20.0/20.0 μg/L
0/8	4.0	1.85	1.0/5.0 μg/L
0/5	10.0		10.0/10.0 µg/L
			5.0/5.0 µg/L
			5.0/5.0 μg/L
0/5	5.0	0.0	5.0/5.0 μg/L 5.0/5.0 μg/L
	3/7 0/1 0/2 0/5 0/1 0/6 0/2 0/2 0/2 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	0/1 1,000 0/2 10.0 0/1 20.0 0/1 10.0 1/2 56.7 3/7 18.0 0/1 500 0/2 10.0 0/5 20.0 0/1 1,000 0/6 41.7 0/2 20.0 0/2 1,000 0/1 500 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/2 0.50 0/1 10.0 0/1 10.0 0/2 0.50 0/2 0.50 0/2 0.50 0/3 4.0 0/4 4.0 0/5 20.0 0/8 4.0	0/1 1,000 0/2 10.0 0.0 0/1 20.0 0/1 10.0 1/2 56.7 61.3 3/7 18.0 36.2 0/1 500 0/2 10.0 0.0 0/5 20.0 0.0 0/1 1,000 0/2 20.0 0.0 0/1 1,000 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/1 10.0 0/2 0.50 0.0 0/2 0.50 0.0 0/7 20.0 0.0 0/7

Quality Control Samples

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
1,4-Dichlorobenzene	0/6	5.0		5.0/5.0
trans-1,4-Dichloro-2-butene	0/5	20.0	0.0	5.0/5.0 μg/L
Dichlorodifluoromethane			0.0	20.0/20.0 µg/L
1,1-Dichloroethane	0/7	5.0	0.0	5.0/5.0 μg/L
1,2-Dichloroethane	0/8	4.0	1.85	1.0/5.0 μg/L
	0/8	4.0	1.85	1.0/5.0 μg/L
1,1-Dichloroethylene	0/8	4.0	1.85	1.0/5.0 μg/L
1,2-Dichloroethylene	0/8	6.25	2.31	5.0/10.0 µg/L
cis-1,2-Dichloroethylene	0/4	5.0	0.0	5.0/5.0 μg/L
trans-1,2-Dichloroethylene	0/6	5.0	0.0	5.0/5.0 μg/L
Dichloromethane	0/8	7.75	4.17	1.0/10.0 µg/L
1,2-Dichloropropane	0/8	4.0	1.85	1.0/5.0 µg/L
cis-1,3-Dichloropropene	0/8	4.0	1.85	1.0/5.0 μg/L
trans-1,3-Dichloropropene	0/8	4.0	1.85	1.0/5.0 µg/L
1,4-Dioxane	0/5	1,000	0.0	1,000/1,000 μg/L
Ethyl methacrylate	0/5	10.0	0.0	10.0/10.0 µg/L
Ethylbenzene	0/8	4.0	1.85	1.0/5.0 μg/L
2-Hexanone	0/9	8.0	3.97	1.0/10.0 µg/L
Iodomethane	0/5	5.0	0.0	5.0/5.0 µg/L
Isobutyl alcohol	0/5	1,000	0.0	1,000/1,000 μg/L
Methacrylonitrile	0/5	500	0.0	500/500 μg/L
Methyl ethyl ketone	0/9	8.89	2.20	5.0/10.0 μg/L
Methyl isobutyl ketone	0/9	8.89	2.20	5.0/10.0 μg/L 5.0/10.0 μg/L
Methyl methacrylate	0/5	50.0	0.0	
Pentachloroethane	0/5	20.0	0.0	50.0/50.0 μg/L
Propionitrile	0/5	500	0.0	20.0/20.0 μg/L
Styrene	0/9	4.11	1.76	500/500 μg/L
1,1,1,2-Tetrachloroethane	0/5	5.0	0.0	1.0/5.0 µg/L
1,1,2,2-Tetrachloroethane	0/8	4.0		5.0/5.0 μg/L
Tetrachloroethylene	0/8	4.0	1.85	1.0/5.0 μg/L
Toluene	0/8	4.0	1.85	1.0/5.0 μg/L
1,1,1-Trichloroethane	0/8		1.85	1.0/5.0 µg/L
1,1,2-Trichloroethane	0/8	4.0	1.85	1.0/5.0 μg/L
Trichloroethylene	0/8	4.0	1.85	1.0/5.0 μg/L
Trichlorofluoromethane		4.0	1.85	1.0/5.0 μg/L
	0/6	5.0	0.0	5.0/5.0 μg/L
1,2,3-Trichloropropane	0/5	5.0	0.0	5.0/5.0 μg/L
Vinyl acetate	0/9	8.0	3.97	1.0/10.0 μg/L
Xylenes	0/9	10.0	0.0	10.0/10.0 μg/L
EPA8270B				
Di-n-butyl phthalate	0/1	10.0		10.0/10.0 µg/L
Phenol	0/1	10.0	_	10.0/10.0 μg/L 10.0/10.0 μg/L
EPA9010A				
Cyanide	0/3	10.0	0.0	10.0/10.0
- James		10.0	0.0	10.0/10.0 μg/L

[†] Number of times analyte was detected compared to the total number of method blanks for the analyte. — Standard deviation cannot be determined.

Table 85. Analytes Detected in Method Blanks for GE

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA160.1			·····	
Total dissolved solids	2/13	10.700	0.040	
Total dissolved solids	2/13	10,700	2,210	10,000/18,000 μg/L
EPA180.1				
Turbidity	0/10	0.38	0.06	0.20/0.40 NTU
EPA300.0				
Bromide	0/1	250		250/250/!
Chloride	0/1	250		250/250 μg/L
Sulfate	0/1	1,000		250/250 μg/L 1,000/1,000 μg/L
		.,000		1,000/1,000 μg/Ε
EPA350.1				
Ammonia nitrogen	0/1	50.0		50.0/50.0 μg/L
EPA353.1				
Nitrate-nitrite as nitrogen	11/20	28.0	20.4	10.0/50.0 u=//
· · · · · · · · · · · · · · · · · · ·		20.0	20.4	10.0/50.0 μg/L
EPA365.4				
Total phosphates (as P)	0/2	50.0	0.0	50.0/50.0 μg/L
EPA418.1				
Total petroleum hydrocarbons	0/1	1,000	_	1,000/1,000 µg/L
EPA6010A				
Aluminum	0/16	50.0	0.0	E0.0/E0.0/I
Antimony	4/38	9.24	2.24	50.0/50.0 μg/L
Arsenic	0/38	5.0	0.0	2.14/10.0 μg/L
Barium	0/38	5.0	0.0	5.0/5.0 μg/L
Beryllium	0/16	5.0	0.0	5.0/5.0 µg/L
Cadmium	2/38	4.75	1.06	5.0/5.0 μg/L
Calcium	9/16	63.3	36.3	0.25/5.0 μg/L
Chromium	2/38	4.81	0.81	16.3/100 μg/L
Cobalt	0/37	5.0	0.0	0.99/5.0 μg/L
Copper	0/37	5.0	0.0	5.0/5.0 μg/L
ron	2/17	45.5	12.8	5.0/5.0 µg/L
.ead	9/38	4.11	1.63	10.5/50.0 μg/L
ithium	0/4	25.0		0.82/5.0 μg/L
Magnesium	10/16	8.42	0.0 2.49	25.0/25.0 μg/L
Manganese	1/16	10.2	0.70	3.55/12.0 μg/L
lickel	1/39	4.93		10.0/12.8 μg/L
otassium	9/16	56.0	0.43	2.31/5.0 μg/L
Selenium	7/38	4.44	40.8 1.22	8.60/100 μg/L
Silica	4/4	78.7	28.3	1.41/5.0 μg/L
Silver	11/38	3.84		54.1/108 µg/L
Sodium	7/16	82.0	1.85	0.65/5.0 µg/L
hallium	3/34	5.31	24.7	31.7/100 μg/L
in	1/25	9.72	1.56	2.87/10.0 μg/L
/anadium	1/38	4.88	1.41	2.95/10.0 μg/L
inc	29/38	4.88 2.95	0.74 1.47	0.46/5.0 μg/L 1.09/5.0 μg/L
D A 70.44				1.00/0.0 μg/L
PA7041	0.10			
ntimony	0/3	5.0	0.0	5.0/5.0 μg/L
PA7060				
rsenic	0/3	5.0	0.0	5.0/5.0 μg/L
PA7421				, 🗸
ead	0/3	5.0	0.0	5.0/5.0 "
	0/0	5.0	0.0	5.0/5.0 μg/L

Quality Control Samples
Page 140

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA7470				
Mercury	3/32	0.19	0.02	0.11/0.20 μg/L
ED \$ 7740				F3-
EPA7740 Selenium	2/3	2.98	1.77	1.67/5.0//
	20	2.90	1.77	1.67/5.0 μg/L
EPA7841				
Thallium	0/3	5.0	0.0	5.0/5.0 μg/L
EPA8081				
Aldrin	0/6	0.02	0.0	0.02/0.02 µg/L
alpha-Benzene hexachloride	0/6	0.02	0.0	0.02/0.02 μg/L
peta-Benzene hexachloride	0/6	0.02	0.0	0.02/0.02 μg/L
delta-Benzene hexachloride	0/6	0.02	0.0	0.02/0.02 μg/L
alpha-Chlordane gamma-Chlordane	0/6	0.02	0.0	0.02/0.02 μg/L
panima-Chlordane o,p´-DDD	0/6 0/6	0.02	0.0	0.02/0.02 μg/L
p,p -DDD p,p -DDE	0/6	0.04 0.04	0.0	0.04/0.04 μg/L
o,p'-DDT	0/6	0.04	0.0 0.0	0.04/0.04 μg/L
Dieldrin	0/6	0.04	0.0	0.04/0.04 μg/L 0.04/0.04 μg/L
Endosulfan sulfate	0/6	0.04	0.01	0.04/0.04 μg/L 0.02/0.04 μg/L
Endosulfan I	0/6	0.02	0.0	0.02/0.02 µg/L
Endosulfan II	0/6	0.04	0.0	0.04/0.04 µg/L
Endrin	0/6	0.04	0.0	0.04/0.04 µg/L
Endrin ketone	0/6	0.04	0.0	0.04/0.04 µg/L
Heptachlor	0/6	0.02	0.0	0.02/0.02 μg/L
Heptachlor epoxide	0/6	0.02	0.0	0.02/0.02 μg/L
Lindane	0/6	0.02	0.0	0.02/0.02 μg/L
Methoxychlor PCB 1016	0/6 0/6	0.20	0.0	0.20/0.20 μg/L
PCB 1221	0/6	0.13	0.0	0.13/0.13 μg/L
PCB 1232	0/7	0.12 0.13	0.01 0.0	0.10/0.13 µg/L
PCB 1242	0/6	0.13	0.0	0.13/0.13 μg/L 0.13/0.13 μg/L
PCB 1248	0/6	0.13	0.0	0.13/0.13 µg/L 0.13/0.13 µg/L
PCB 1254	0/6	0.13	0.0	0.13/0.13 μg/L
PCB 1260	0/6	0.13	0.0	0.13/0.13 μg/L
Toxaphene	0/6	1.0	0.0	1.0/1.0 µg/L
EPA8151				
2-sec-Butyl-4,6-dinitrophenol	0/1	0.10		0.10/0.10 µg/L
2,4-Dichlorophenoxyacetic acid	0/1	0.10	-	0.10/0.10 μg/L
2,4,5-T	0/1	0.10		0.10/0.10 µg/L
2,4,5-TP (Silvex)	0/1	0.10		0.10/0.10 μg/L
EPA8260A				
Acetone	5/41	6.25	7.08	2.70/50.0 µg/L
Acetonitrile	0/1	10.0		10.0/10.0 µg/L
Acrolein	0/1	20.0	_	20.0/20.0 μg/L
Acrylonitrile	0/1	50.0		50.0/50.0 μg/L
Allyl chloride	0/1	10.0	-	10.0/10.0 μg/L
Benzene	3/70	1.65	3.83	0.56/23.8 µg/L
Bis(2-chloroisopropyl) ether	0/1	20.0		20.0/20.0 μg/L
Bromodichloromethane Bromoform	0/68	1.26	1.53	1.0/10.0 μg/L
Bromotorm Bromomethane	0/68 3/68	1.26	1.53	1.0/10.0 µg/L
Carbon disulfide	0/41	1.30 6.10	1.54	0.89/10.0 µg/L
Carbon distillide	1/70	1.25	7.03 1.51	5.0/50.0 μg/L
Chlorobenzene	0/70	1.26	1.51 1.51	0.31/10.0 μg/L 1.0/10.0 μg/l
Chloroethane	0/68	1.28	1.53	1.0/10.0 μg/L 1.0/10.0 μg/L
Chloroethene	0/68	1.28	1.53	1.0/10.0 μg/L 1.0/10.0 μg/L
2-Chloroethyl vinyl ether	0/46	5.98	6.63	1.0/10.0 μg/L 5.0/50.0 μg/L
, , .	· · =	J	3.00	0.0/00.0 ду.с

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Chloroform	1/70	1.25	1 51	0.67/10.0//
Chloromethane	3/68		1.51	0.67/10.0 μg/L
		1.29	1.54	0.48/10.0 μg/L
Chloroprene	0/1	2.0	_	2.0/2.0 μg/L
Dibromochloromethane	0/68	1.26	1.53	1.0/10.0 μg/L
,2-Dibromo-3-chloropropane	0/1	2.0		2.0/2.0 μg/L
I,2-Dibromoethane	0/1	2.0		2.0/2.0 μg/L
Dibromomethane	0/1	2.0		2.0/2.0 µg/L
,2-Dichlorobenzene	0/1	1.0		1.0/1.0 µg/L
,3-Dichlorobenzene	0/1	1.0		1.0/1.0 µg/L
1,4-Dichlorobenzene				1.0/1.0 µg/L
	0/1	1.0	-	1.0/1.0 μg/L
rans-1,4-Dichloro-2-butene	0/1	2.0	***	2.0/2.0 μg/L
Dichlorodifluoromethane	0/1	2.0	_	2.0/2.0 μg/L
,1-Dichloroethane	0/68	1.28	1.53	1.0/10.0 µg/L
,2-Dichloroethane	0/68	1.26	1.53	1.0/10.0 µg/L
,1-Dichloroethylene	1/70	1.26	1.51	0.54/10.0 µg/L
,2-Dichloroethylene	0/40	1.23	1.42	1.0/10.0 µg/L
rans-1,2-Dichloroethylene	0/46	1.23		1.0/10.0 µg/L
			1.33	1.0/10.0 µg/L
Dichloromethane	46/68	3.26	7.0	0.41/55.0 μg/L
,2-Dichloropropane	0/68	1.28	1.53	1.0/10.0 μg/L
cis-1,3-Dichloropropene	0/68	1.28	1.53	1.0/10.0 µg/L
rans-1,3-Dichloropropene	1/68	1.27	1.54	0.27/10.0 μg/L
Ethylbenzene	0/68	1.26	1.53	1.0/10.0 µg/L
?-Hexanone	0/41	6.10	7.03	
odomethane	0/41	10.0		5.0/50.0 μg/L
				10.0/10.0 μg/L
sobutyl alcohol	0/1	20.0	_	20.0/20.0 μg/L
Methacrylonitrile	0/1	10.0		10.0/10.0 μg/L
Methyl ethyl ketone	0/41	6.10	7.03	5.0/50.0 μg/L
Methyl isobutyl ketone	0/41	6.10	7.03	5.0/50.0 μg/L
Methyl methacrylate	0/1	10.0	_	10.0/10.0 μg/L
Propionitrile	0/1	20.0		20.0/20.0 µg/L
Styrene	0/41	1.24	1.41	
,1,1,2-Tetrachloroethane	0/41		1.41	1.0/10.0 μg/L
		1.0		1.0/1.0 μg/L
,1,2,2-Tetrachloroethane	0/68	1.28	1.53	1.0/10.0 μg/L
etrachloroethylene	1/70	1.25	1.51	0.67/10.0 μg/L
oluene	4/70	1.25	1.51	0.60/10.0 μg/L
,1,1-Trichloroethane	1/70	1.25	1.51	0.58/10.0 μg/L
,1,2-Trichloroethane	1/68	1.27	1.54	0.27/10.0 μg/L
richloroethylene	3/70	1.32	1.93	0.65/12.5 μg/L
richlorofluoromethane	0/46	1.22		
			1.33	1.0/10.0 μg/L
,2,3-Trichloropropane	0/1	2.0	_	2.0/2.0 μg/L
/inyl acetate	0/41	6.10	7.03	5.0/50.0 µg/L
n/p-Xylene	0/1	1.0		1.0/1.0 μg/L
(ylenes	1/41	1.24	1.41	0.88/10.0 μg/L
EPA8270	-4.			
Bis(2-ethylhexyl) phthalate	0/1	10.0		10.0/10.0 μg/L
PA8270B				
cenaphthene	0/10	10.0	0.0	10.0/10.0 μg/L
cenaphthylene	0/10	10.0	0.0	10.0/10.0 μg/L
cetophenone	0/1	10.0		10.0/10.0 µg/L
-Acetylaminofluorene	0/1	10.0	_	10.0/10.0 µg/L
Aminobiphenyl	0/1	10.0	_	
			_	10.0/10.0 μg/L
niline	0/1	10.0		10.0/10.0 μg/L
Inthracene	0/10	10.0	0.0	10.0/10.0 μg/L
vramite	0/1	10.0		10.0/10.0 μg/L
Benzo[<i>a</i>]anthracene	0/10	10.0	0.0	10.0/10.0 µg/L
Benzo[b]fluoranthene	0/10	10.0	0.0	
				10.0/10.0 μg/L
Benzo[k]fluoranthene	0/10	10.0	0.0	10.0/10.0 μg/L
Benzoic acid	0/9	20.0	0.0	20.0/20.0 μg/L
Benzo[<i>g,h,i</i>]perylene	0/10	10.0	0.0	

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Benzo[a]pyrene	0/10	10.0		
Benzyl alcohol	0/10	10.0	0.0	10.0/10.0 μg/L
Bis(2-chloroethoxy) methane	0/10	10.0	0.0	10.0/10.0 μg/L
Bis(2-chloroethyl) ether	0/10	10.0	0.0	10.0/10.0 μg/L
Bis(2-chloroisopropyl) ether	0/10 0/10	10.0	0.0	10.0/10.0 μg/L
Bis(2-ethylhexyl) phthalate	1/37	10.0	0.0	10.0/10.0 μg/L
4-Bromophenyl phenyl ether	0/10	14.1	25.0	10.0/162 μg/L
Butylbenzyl phthalate	0/10	10.0 10.0	0.0	10.0/10.0 μg/L
2-sec-Butyl-4,6-dinitrophenol	0/10	20.0	0.0	10.0/10.0 μg/L
4-Chloroaniline	0/10	19.0		20.0/20.0 μg/L
Chlorobenzilate	0/1	10.0	3.16	10.0/20.0 μg/L
4-Chloro-m-cresol	0/10	10.0	0.0	10.0/10.0 μg/L
2-Chloronaphthalene	0/10	10.0	0.0	10.0/10.0 μg/L
2-Chlorophenol	0/10	10.0	0.0	10.0/10.0 µg/L
4-Chlorophenyl phenyl ether	0/10	10.0	0.0	10.0/10.0 μg/L
Chrysene	0/10	10.0	0.0	10.0/10.0 μg/L
m/p-Cresol	0/10	10.0	0.0	10.0/10.0 µg/L
o-Cresol	0/10	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
Diallate	0/1	10.0	_	10.0/10.0 µg/L 10.0/10.0 µg/L
Dibenz[<i>a,h</i>]anthracene	0/10	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L
Dibenzofuran	0/10	10.0	0.0	10.0/10.0 µg/L
Di-n-butyl phthalate	0/10	10.0	0.0	10.0/10.0 μg/L
,2-Dichlorobenzene	0/10	10.0	0.0	10.0/10.0 μg/L
,3-Dichlorobenzene	0/10	10.0	0.0	10.0/10.0 µg/L
1,4-Dichlorobenzene	0/10	10.0	0.0	10.0/10.0 μg/L
3,3'-Dichlorobenzidine	0/10	50.0	0.0	50.0/50.0 μg/L
2,4-Dichlorophenol	0/10	10.0	0.0	10.0/10.0 μg/L
2,6-Dichlorophenol	0/1	10.0		10.0/10.0 μg/L
Diethyl phthalate Dimethoate	0/10	10.0	0.0	10.0/10.0 μg/L
2,4-Dimethyl phenol	0/1	10.0	-	10.0/10.0 μg/L
Dimethyl phthalate	0/10	10.0	0.0	10.0/10.0 μg/L
-Dimethylaminoazobenzene	0/10 0/1	10.0	0.0	10.0/10.0 μg/L
7,12-Dimethylbenz[a]anthracene	0/1	10.0		10.0/10.0 μg/L
3.3 -Dimethylbenzidine	0/1	10.0	_	10.0/10.0 μg/L
,a-Dimethylphenethylamine	0/1	20.0		20.0/20.0 μg/L
,3-Dinitrobenzene	0/1	10.0 10.0		10.0/10.0 μg/L
,4-Dinitrophenol	0/10	19.0	2.16	10.0/10.0 μg/L
,4-Dinitrotoluene	0/10	10.0	3.16	10.0/20.0 μg/L
,6-Dinitrotoluene	0/10	10.0	0.0 0.0	10.0/10.0 µg/L
i-n-octyl phthalate	0/10	10.0	0.0	10.0/10.0 µg/L
,4-Dioxane	0/1	10.0	-	10.0/10.0 µg/L
iphenylamine	0/1	10.0		10.0/10.0 μg/L 10.0/10.0 μg/L
isulfoton	0/1	10.0		10.0/10.0 μg/L 10.0/10.0 μg/L
thyl methacrylate	0/1	10.0		10.0/10.0 μg/L 10.0/10.0 μg/L
thyl methanesulfonate	0/1	10.0		10.0/10.0 μg/L
amphur	0/1	10.0		10.0/10.0 μg/L 10.0/10.0 μg/L
luoranthene	0/10	10.0	0.0	10.0/10.0 μg/L
luorene	0/10	10.0	0.0	10.0/10.0 µg/L
exachlorobenzene	0/10	10.0	0.0	10.0/10.0 µg/L
exachlorobutadiene	0/10	10.0	0.0	10.0/10.0 µg/L
exachlorocyclopentadiene	0/10	10.0	0.0	10.0/10.0 µg/L
exachloroethane	0/10	10.0	0.0	10.0/10.0 µg/L
exachlorophene	0/1	500	_	500/500 μg/L
exachloropropene	0/1	10.0	_	10.0/10.0 μg/L
deno[1,2,3- <i>c,d</i>]pyrene	0/10	10.0	0.0	10.0/10.0 μg/L
odrin	0/1	10.0		10.0/10.0 µg/L
ophorone	0/10	10.0	0.0	10.0/10.0 µg/L
osafrole	0/1	10.0		10.0/10.0 µg/L
epone	0/1	10.0		10.0/10.0 μg/L
ethapyrilene	0/1	10.0		10.0/10.0 µg/L

Analyte	Frequency	Man 2 :	Standard		
Analyte	of Detection†	Mean Result	Deviation	Minimum/Maximum Results	
2-Methyl-4,6-dinitrophenol	0/10	11.0	3.16	10.0/20.0 μg/L	
Methyl methanesulfonate	0/1	10.0	-	10.0/10.0 μg/L	
3-Methylcholanthrene	0/1	10.0		10.0/10.0 μg/L 10.0/10.0 μg/L	
2-Methylnaphthalene	0/10	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L	
Naphthalene	0/10	10.0	0.0	10.0/10.0 μg/L	
1,4-Naphthoquinone	0/1	10.0		10.0/10.0 μg/L	
1-Naphthylamine	0/1	10.0		10.0/10.0 μg/L	
2-Naphthylamine	0/1	10.0		10.0/10.0 μg/L	
m-Nitroaniline	0/10	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L	
o-Nitroaniline	0/10	10.0	0.0	10.0/10.0 μg/L	
p-Nitroaniline	0/10	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L	
Nitrobenzene	0/10	10.0	0.0		
2-Nitrophenol	0/10	10.0	0.0	10.0/10.0 µg/L	
4-Nitrophenol	0/10	19.0	3.16	10.0/10.0 µg/L	
4-Nitroquinoline-1-oxide	0/1	10.0		10.0/20.0 µg/L	
N-Nitrosodi-n-butylamine	0/1	10.0		10.0/10.0 μg/L	
N-Nitrosodiethylamine	0/1	10.0		10.0/10.0 μg/L	
N-Nitrosodimethylamine	0/1	10.0	_	10.0/10.0 µg/L	
N-Nitrosodiphenylamine	0/10	10.0	0.0	10.0/10.0 μg/L	
N-Nitrosodipropylamine	0/10	10.0	0.0	10.0/10.0 μg/L	
N-Nitrosomethylethylamine	0/1	10.0	0.0	10.0/10.0 μg/L	
N-Nitrosomorpholine	0/1	10.0		10.0/10.0 μg/L	
N-Nitrosopiperidine	0/1	10.0	_	10.0/10.0 μg/L	
N-Nitrosopyrrolidine	0/1	10.0		10.0/10.0 μg/L	
5-Nitro-o-toluidine	0/1	10.0		10.0/10.0 μg/L	
Pentachlorobenzene	0/1	10.0		10.0/10.0 μg/L	
Pentachloroethane	0/1	10.0		10.0/10.0 μg/L	
Pentachloronitrobenzene	0/1	10.0		10.0/10.0 μg/L	
Pentachlorophenol	0/10	10.0	_	10.0/10.0 μg/L	
Phenacetin	0/1	10.0	0.0	10.0/10.0 μg/L	
henanthrene	0/10	10.0	_	10.0/10.0 μg/L	
henol	0/10		0.0	10.0/10.0 μg/L	
-Phenylenediamine	0/10	10.0 10.0	0.0	10.0/10.0 μg/L	
horate	0/1			10.0/10.0 μg/L	
-Picoline	0/1	10.0	_	10.0/10.0 μg/L	
Pronamid	0/1	10.0		10.0/10.0 μg/L	
Pyrene	0/10	10.0	_	10.0/10.0 μg/L	
Pyridine	0/10	10.0	0.0	10.0/10.0 μg/L	
Safrole	0/1	10.0	****	10.0/10.0 μg/L	
Sulfotepp	0/1	10.0		10.0/10.0 μg/L	
,2,4,5-Tetrachlorobenzene	0/1	10.0		10.0/10.0 μg/L	
,3,4,6-Tetrachlorophenol	0/1	10.0	_	10.0/10.0 μg/L	
hionazin		20.0		20.0/20.0 μg/L	
-Toluidine	0/1	10.0		10.0/10.0 μg/L	
,2,4-Trichlorobenzene	0/1	10.0	_	10.0/10.0 μg/L	
,4,5-Trichlorophenol	0/10	10.0	0.0	10.0/10.0 μg/L	
,4,6-Trichlorophenol	0/10	10.0	0.0	10.0/10.0 μg/L	
,4,0-Triethyl phosphorothioate	0/10	10.0	0.0	10.0/10.0 μg/L	
3,5-Trinitrobenzene	0/1	10.0		10.0/10.0 μg/L	
3,5-1 millropenzene	0/1	20.0		20.0/20.0 μg/L	
PA9012					
yanide	0/34	10.0	0.0	10.0/10.0 μg/L	
PA9020B				. •	
otal organic halogens	0/2	10.0	0.0	10.0/10.0 μg/L	
PA9056					
hloride	1/4	04.0			
uoride	0/4	84.0	32.0	36.0/100 μg/L	
itrate as nitrogen		50.0	0.0	50.0/50.0 µg/L	
wate as madgen	0/2	50.0	0.0	50.0/50.0 μg/L	

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Nitrite as nitrogen Sulfate	0/1 0/5	50.0 200	 0.0	50.0/50.0 μg/L 200/200 μg/L
EPA9060 Total organic carbon	2/6	3,480	2,360	214/5,000 µg/L
EPA9066 Phenols	0/10	5.0	0.0	5.0/5.0 μg/L
EPA9070 Oil & grease	0/1	2,000		2,000/2,000 μg/L

[†] Number of times analyte was detected compared to the total number of method blanks for the analyte.

— Standard deviation cannot be determined.

Table 86. Analytes Detected in Method Blanks for WA

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA160.1				
Total dissolved solids	0/2	47,000	0.0	47,000/47,000 μg/L
EPA180.1				
Turbidity	0/2	0.41	0.01	0.40/0.41 NTU
EPA300.0				
Chloride	0/1	210		210/210 μg/L
EPA340.2				
luoride	5/5	25.5	5.74	19.3/30.5 μg/L
PA350.3				
mmonia	1/1	37.0	_	37.0/37.0 μg/L
PA353.2				
litrate as nitrogen	0/1	20.0		20.0/20.0
litrate-nitrite as nitrogen	2/7	15.4	7.81	20.0/20.0 μg/L 4.0/20.0 μg/L
litrite as nitrogen	1/3	14.0	10.4	4.0/20.0 μg/L 2.0/20.0 μg/L
PA365.2				
hosphate	0/1	67.0	_	67.0/67.0//
otal phosphates (as P)	0/1	67.0	_	67.0/67.0 μg/L 67.0/67.0 μg/L
PA375.4				
ulfate	0/1	340		340/340 µg/L
PA376.2				540/540 μg/L
PA376.2 ulfide	0/1	6.010		
	O/ 1	6,010		6,010/6,010 μg/L
PA418.1				
otal petroleum hydrocarbons	0/2	3,210	0.0	3,210/3,210 µg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum Blood on the
		mean neoan	Deviation	Minimum/Maximum Results
EPA6010				
Aluminum	0/4	146	0.0	146/146 µg/L
Antimony	0/5	25.4	3.58	19.0/27.0 µg/L
Arsenic	0/5	40.0	0.0	
Barium	3/13	1.43	0.70	40.0/40.0 μg/L 0.20/1.80 μg/L
Beryllium	0/5	1.60	0.0	1.60/1.60 μg/L
Boron	0/1	266	-	266/266 µg/L
Cadmium	0/6	4.70	0.0	4.70/4.70 μg/L
Calcium	0/3	471	0.0	471/471 μg/L
Chromium	4/6	3.13	3.0	1.0/7.0 µg/L
Cobalt	1/5	5.10	1.34	4.50/7.50 μg/L
Copper	3/5	7.12	7.20	4.50/7.50 μg/L 1.50/15.0 μg/L
ron	3/4	57.6	57.5	1.30/13.0 µg/L 11.2/132 µg/L
_ead	0/13	47.0	0.0	
Magnesium	1/3	52.6	37.1	47.0/47.0 μg/L 9.70/74.0 μg/L
Manganese	0/3	7.80	0.0	7.80/7.80 μg/L
Vickel	0/12	26.0	0.0	
Potassium	2/4	138	56.2	26.0/26.0 μg/L 87.6/187 μg/L
Selenium	0/12	66.0	0.0	67.0/167 μg/L
Silver	1/6	4.43	1.39	66.0/66.0 µg/L
Sodium	3/3	126	38.3	1.60/5.0 µg/L
「hallium	0/4	55.0	0.0	81.8/153 μg/L
Γin	0/1	70.0		55.0/55.0 μg/L
/anadium	1/5	5.78	2.50	70.0/70.0 μg/L
Zinc .	0/5	53.0	0.0	1.30/6.90 µg/L
			0.0	53.0/53.0 μg/L
PA7060				
Arsenic	0/1	32.0		20.0/20.0/
		02.0		32.0/32.0 µg/L
PA7421				
.ead	0/1	47.0		47.0/47.0
	J	47.0		47.0/47.0 μg/L
PA7470				
Mercury	3/13	0.56	0.06	0.44/0.770 "
•	0, 10	0.50	0.26	0.11/0.70 μg/L
PA7740				
elenium	0/1	16.0		
	0/1	10.0		16.0/16.0 μg/L
PA7841				
hallium	0/1	25.0		
	0/1	25.0	-	25.0/25.0 μg/L
PA8010				
arbon tetrachloride	0/3	4.0		·
hloroform	0/3	1.0	0.0	1.0/1.0 μg/L
etrachloroethylene		1.0	0.0	1.0/1.0 μg/L
,1,1-Trichloroethane	0/3	1.0	0.0	1.0/1.0 µg/L
richloroethylene	0/3	1.0	0.0	1.0/1.0 μg/L
nomorocaryterie	0/2	1.0	0.0	1.0/1.0 μg/L
PA8020				
enzene	0/1	4.0		
thylbenzene	0/1	1.0		1.0/1.0 μg/L
oluene	0/1	1.0	_	1.0/1.0 µg/L
	0/1	1.0	_	1.0/1.0 μg/L
ylenes	0/1	1.0		1.0/1.0 µg/L
DA 90.01				, <i>y</i> -
PA8081				
ldrin	0/9	0.05	0.0	0.05/0.05 μg/L
pha-Benzene hexachloride	0/9	0.05	0.0	0.05/0.05 μg/L 0.05/0.05 μg/L
eta-Benzene hexachloride	0/9	0.05	0.0	0.05/0.05 μg/L 0.05/0.05 μg/L
elta-Benzene hexachloride	0/9	0.05	0.0	0.05/0.05 μg/L 0.05/0.05 μg/L
pha-Chlordane	0/9	0.05	0.0	0.05/0.05 µg/L
			3.0	0.05/0.05 μg/L

Quality Control Samples
Page 146

Amatosta	Frequency		Standard		
Analyte	of Detection†	Mean Result	Deviation	Minimum/Maximum Results	
gamma-Chlordane	0/9	0.05	0.0		
p,p´-DDD	0/9	0.05	0.0	0.05/0.05 μg/L	
p,p´-DDE	0/9	0.10	0.0	0.10/0.10 μg/L	
p,p´-DDT	0/9	0.10	0.0	0.10/0.10 μg/L	
Dieldrin	0/9		0.0	0.10/0.10 μg/L	
Endosulfan sulfate	0/9	0.10 0.10	0.0	0.10/0.10 μg/L	
Endosulfan I	0/9	0.70	0.0	0.10/0.10 μg/L	
Endosulfan II	0/9	0.10	0.0	0.05/0.05 μg/L	
Endrin	0/9		0.0	0.10/0.10 μg/L	
Endrin aldehyde	0/5	0.10	0.0	0.10/0.10 μg/L	
Endrin ketone	0/6	0.10 0.10	0.0	0.10/0.10 µg/L	
Heptachlor	0/9		0.0	0.10/0.10 μg/L	
Heptachlor epoxide	0/9	0.05	0.0	0.05/0.05 μg/L	
sodrin	0/9	0.05	0.0	0.05/0.05 μg/L	
Kepone		0.10	0.0	0.10/0.10 μg/L	
indane	0/2	0.50	0.0	0.50/0.50 μg/L	
Methoxychlor	0/10 0/9	0.05	0.0	0.05/0.05 μg/L	
PCB 1016		0.50	0.0	0.50/0.50 μg/L	
PCB 1221	0/14	1.0	0.0	1.0/1.0 μg/L	
PCB 1232	0/14	2.0	0.0	2.0/2.0 μg/L	
PCB 1242	0/14	1.0	0.0	1.0/1.0 μg/L	
PCB 1248	0/14	1.0	0.0	1.0/1.0 µg/L	
PCB 1254	0/14	1.0	0.0	1.0/1.0 μg/L	
PCB 1260	0/14	1.0	0.0	1.0/1.0 μg/L	
oxaphene	0/14	1.0	0.0	1.0/1.0 μg/L	
chaphene	0/9	5.0	0.0	5.0/5.0 μg/L	
PA8141					
Dimethoate	0/2	0.20	0.0	0.20/0.20 µg/L	
Disulfoton	0/2	0.20	0.0	0.20/0.20 μg/L	
amphur	0/2	1.0	0.0	1.0/1.0 µg/L	
Parathion ethyl	0/2	0.20	0.0	0.20/0.20 µg/L	
Parathion methyl	0/2	0.20	0.0	0.20/0.20 µg/L	
Phorate	0/2	0.20	0.0	0.20/0.20 µg/L	
Sulfotepp	0/2	0.20	0.0	0.20/0.20 µg/L	
hionazin	0/2	0.20	0.0	0.20/0.20 µg/L	
O,O,O-Triethyl phosphorothioate	0/2	0.20	0.0	0.20/0.20 µg/L	
PA8150					
,4,5-T	0/1	0.50		0.50/0.50 μg/L	
,4,5-TP (Silvex)	0/3	0.50	0.0	0.50/0.50 µg/L 0.50/0.50 µg/L	
PA8151			0.0	0.50/0.50 ру/с	
,4-Dichlorophenoxyacetic acid	1/6	1.0	0.0	1.0/1.0 μg/L	
PA8260				. 3	
cetone	42/45	3.62	2.26	4.4540.0 "	
cetonitrile	0/6	20.0	2.36	1.15/10.0 μg/L	
crolein	0/8		0.0	20.0/20.0 μg/L	
crylonitrile	0/8	17.5 6.25	4.63	10.0/20.0 μg/L	
llyl chloride	0/6		2.31	5.0/10.0 µg/L	
enzene	0/96	10.0	0.0	10.0/10.0 μg/L	
romodichloromethane	0/96	5.0	0.0	5.0/5.0 μg/L	
romoform	0/96	5.0	0.0	5.0/5.0 μg/L	
romomethane		5.0	0.0	5.0/5.0 μg/L	
arbon disulfide	7/99	9.57	1.81	1.13/10.0 μg/L	
arbon tetrachloride	1/42	4.93	0.45	2.10/5.0 μg/L	
nlorobenzene	0/96	5.0	0.0	5.0/5.0 μg/L	
hloroethane	0/96	5.0	0.0	5.0/5.0 μg/L	
nloroethene	0/96	10.0	0.0	10.0/10.0 μg/L	
	0/95	10.0	0.0	10.0/10.0 µg/L	
Chloroethyl vinyl ether hloroform	0/76	10.0	0.0	10.0/10.0 μg/L	
	0/95	5.0	0.0	5.0/5.0 μg/L	

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
			Beviation	
Chloromethane	15/99	8.80	2.88	0.76/10.0 μg/L
Chloroprene	0/6	5.0	0.0	5.0/5.0 μg/L
Dibromochloromethane	0/96	5.0	0.0	5.0/5.0 μg/L
1,2-Dibromo-3-chloropropane	0/6	5.0	0.0	5.0/5.0 μg/L
1,2-Dibromoethane	0/5	5.0	0.0	5.0/5.0 μg/L
Dibromomethane	0/6	5.0	0.0	5.0/5.0 μg/L
1,2-Dichlorobenzene	0/2	5.0	0.0	5.0/5.0 μg/L
1,3-Dichlorobenzene	0/2	5.0	0.0	5.0/5.0 μg/L
1,4-Dichlorobenzene	0/2	5.0	0.0	5.0/5.0 μg/L
trans-1,4-Dichloro-2-butene	0/5	20.0	0.0	20.0/20.0 μg/L
Dichlorodifluoromethane	0/6	10.0	0.0	10.0/10.0 μg/L
1,1-Dichloroethane	0/96	5.0	0.0	5.0/5.0 μg/L
1,2-Dichloroethane	0/96	5.0	0.0	5.0/5.0 μg/L 5.0/5.0 μg/L
1,1-Dichloroethylene	0/96	5.0	0.0	5.0/5.0 μg/L 5.0/5.0 μg/L
1,2-Dichloroethylene	0/91	5.0	0.0	5.0/5.0 µg/L 5.0/5.0 µg/L
cis-1,2-Dichloroethylene	0/6	5.0	0.0	5.0/5.0 µg/L 5.0/5.0 µg/L
rans-1,2-Dichloroethylene	0/6	5.0	0.0	5.0/5.0 μg/L 5.0/5.0 μg/L
Dichloromethane	102/103	6.69	4.81	5.0/5.0 μg/L
1,2-Dichloropropane	0/96	5.0	0.0	0.95/22.7 μg/L
cis-1,3-Dichloropropene	0/96	5.0	0.0	5.0/5.0 μg/L
rans-1,3-Dichloropropene	0/96	5.0	0.0	5.0/5.0 µg/L
Ethylbenzene	0/96	5.0	0.0	5.0/5.0 µg/L
2-Hexanone	1/43	9.79		5.0/5.0 μg/L
odomethane	0/6	5.0	1.36	1.06/10.0 μg/L
sobutyl alcohol	0/6	100	0.0	5.0/5.0 μg/L
Methacrylonitrile	0/6	10.0	0.0	100/100 μg/L
flethyl ethyl ketone	0/43	10.0	0.0	10.0/10.0 μg/L
Methyl isobutyl ketone	0/43	10.0	0.0	10.0/10.0 μg/L
ropionitrile	0/40	50.0	0.0	10.0/10.0 μg/L
Styrene	0/43	5.0	0.0	50.0/50.0 μg/L
,1,1,2-Tetrachloroethane	0/40	5.0	0.0	5.0/5.0 μg/L
,1,2,2-Tetrachloroethane	0/96		0.0	5.0/5.0 μg/L
etrachloroethylene	1/96	5.0	0.0	5.0/5.0 μg/L
oluene	0/96	4.96	0.41	1.03/5.0 μg/L
,1,1-Trichloroethane	0/96	5.0	0.0	5.0/5.0 μg/L
,1,2-Trichloroethane	0/96	5.0	0.0	5.0/5.0 µg/L
richloroethylene	0/96	5.0	0.0	5.0/5.0 μg/L
richlorofluoromethane	0/38	5.0	0.0	5.0/5.0 μg/L
,2,3-Trichloropropane	0/6	5.0	0.0	5.0/5.0 μg/L
inyl acetate	0/40	5.0	0.0	5.0/5.0 μg/L
ylenes		10.0	0.0	10.0/10.0 μg/L
,	2/94	4.92	0.53	1.28/5.0 µg/L
PA8270				
cenaphthene	0/10	10.0	0.0	10.0/10.0
cenaphthylene	0/10	10.0		10.0/10.0 μg/L
cetophenone	0/2	10.0	0.0	10.0/10.0 μg/L
Acetylaminofluorene	0/2	10.0	0.0	10.0/10.0 µg/L
Aminobiphenyl	0/2	10.0	0.0	10.0/10.0 μg/L
niline	0/2	10.0	0.0	10.0/10.0 μg/L
nthracene	0/10		0.0	10.0/10.0 μg/L
ramite	0/10	10.0	0.0	10.0/10.0 μg/L
enzidine	0/2	20.0	0.0	20.0/20.0 μg/L
enzo[a]anthracene	0/1	50.0	_	50.0/50.0 μg/L
enzo[b]fluoranthene		10.0	0.0	10.0/10.0 μg/L
enzo[k]fluoranthene	0/10	10.0	0.0	10.0/10.0 μg/L
enzoic acid	0/10	10.0	0.0	10.0/10.0 μg/L
	0/7	32.1	12.2	25.0/50.0 µg/L
enzo[<i>g,h,i</i>]perylene	0/10	10.0	0.0	10.0/10.0 µg/L
enzo[a]pyrene	0/10	10.0	0.0	10.0/10.0 µg/L
enzyl alcohol	0/7	10.0	0.0	10.0/10.0 µg/L
s(2-chloroethoxy) methane	0/10	10.0	0.0	10.0/10.0 µg/L
s(2-chloroethyl) ether	0/10	10.0	0.0	10.0/10.0 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Bis(2-chloroisopropyl) ether	0/40	10.0		
Bis(2-ethylhexyl) phthalate	0/10	10.0	0.0	10.0/10.0 μg/L
4-Bromophenyl phenyl ether	8/15	10.3	6.93	1.08/26.9 µg/L
Butylbenzyl phthalate	0/10	9.0	2.11	5.0/10.0 µg/L
2-sec-Butyl-4,6-dinitrophenol	0/10	10.0	0.0	10.0/10.0 μg/L
Carbazole	0/2	50.0	0.0	50.0/50.0 μg/L
4-Chloroaniline	0/7	10.0	0.0	10.0/10.0 μg/L
Chlorobenzilate	0/9	10.0	0.0	10.0/10.0 μg/L
4-Chloro-m-cresol	0/2	10.0	0.0	10.0/10.0 μg/L
	0/10	10.0	0.0	10.0/10.0 μg/L
2-Chloronaphthalene	0/10	10.0	0.0	10.0/10.0 µg/L
2-Chlorophenol	0/10	10.0	0.0	10.0/10.0 µg/L
1-Chlorophenyl phenyl ether	0/10	10.0	0.0	10.0/10.0 µg/L
Chrysene	0/10	10.0	0.0	10.0/10.0 µg/L
m-Cresol	0/2	10.0	0.0	10.0/10.0 µg/L
n/p-Cresol	0/10	10.0	0.0	10.0/10.0 µg/L
o-Cresol	0/9	10.0	0.0	10.0/10.0 µg/L
Diallate	0/2	10.0	0.0	10.0/10.0 μg/L
Dibenz[a,h]anthracene	0/10	10.0	0.0	10.0/10.0 μg/L
Dibenzofuran	0/9	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
Di-n-butyl phthalate	6/10	4.91	4.42	0.52/10.0 μg/L
,2-Dichlorobenzene	0/10	10.0	0.0	10.0/10.0 μg/L
,3-Dichlorobenzene	0/10	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
,4-Dichlorobenzene	0/10	10.0	0.0	10.0/10.0 µg/L
,3´-Dichlorobenzidine	0/10	13.0	4.83	10.0/20.0 μg/L 10.0/20.0 μg/L
,4-Dichlorophenol	0/10	10.0	0.0	
,6-Dichlorophenol	0/2	10.0	0.0	10.0/10.0 µg/L
ethyl phthalate	0/10	10.0	0.0	10.0/10.0 µg/L
,4-Dimethyl phenol	0/10	10.0	0.0	10.0/10.0 μg/L
imethyl phthalate	0/10	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
-Dimethylaminoazobenzene	0/2	10.0	0.0	10.0/10.0 µg/L
,12-Dimethylbenz[a]anthracene	0/2	10.0	0.0	10.0/10.0 µg/L
,3´-Dimethylbenzidine	0/2	10.0	0.0	10.0/10.0 μg/L
,a-Dimethylphenethylamine	0/2	10.0	0.0	10.0/10.0 μg/L
,3-Dinitrobenzene	0/2	10.0	0.0	10.0/10.0 µg/L
,4-Dinitrophenol	0/10	32.5	12.1	10.0/10.0 µg/L
,4-Dinitrotoluene	0/10	10.0	0.0	25.0/50.0 μg/L
,6-Dinitrotoluene	0/10	10.0	0.0	10.0/10.0 µg/L
i-n-octyl phthalate	0/10	10.0	0.0	10.0/10.0 μg/L
4-Dioxane	0/2	10.0	0.0	10.0/10.0 μg/L
iphenylamine	0/2	10.0		10.0/10.0 µg/L
2-Diphenylhydrazine	0/1	10.0	0.0	10.0/10.0 μg/L
thyl methacrylate	0/2	10.0		10.0/10.0 µg/L
thyl methanesulfonate	0/2	10.0	0.0	10.0/10.0 µg/L
uoranthene	0/10	10.0	0.0	10.0/10.0 µg/L
uorene	0/10	10.0	0.0	10.0/10.0 µg/L
exachlorobenzene	0/10	9.0	0.0	10.0/10.0 µg/L
exachlorobutadiene	0/10		2.11	5.0/10.0 μg/L
exachlorocyclopentadiene	0/10	10.0	0.0	10.0/10.0 μg/L
exachloroethane	0/10	10.0	0.0	10.0/10.0 μg/L
exachlorophene	0/10	10.0	0.0	10.0/10.0 μg/L
exachloropropene	0/2	100	0.0	100/100 μg/L
deno[1,2,3- <i>c,d</i>]pyrene		10.0	0.0	10.0/10.0 μg/L
ophorone	0/10	10.0	0.0	10.0/10.0 μg/L
osafrole	0/10	10.0	0.0	10.0/10.0 μg/L
	0/2	10.0	0.0	10.0/10.0 μg/L
ethapyrilene Mothyl 4.6. dinitranhanal	0/2	10.0	0.0	10.0/10.0 μg/L
Methyl-4,6-dinitrophenol	0/10	32.5	12.1	25.0/50.0 μg/L
ethyl methacrylate	0/2	10.0	0.0	10.0/10.0 µg/L
ethyl methanesulfonate	0/2	10.0	0.0	10.0/10.0 µg/L
Methylcholanthrene	0/2	10.0	0.0	10.0/10.0 μg/L
Methylnaphthalene	0/9	10.0	0.0	10.0/10.0 μg/L
aphthalene	0/10	10.0	0.0	10.0/10.0 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard		
	Of Detection;	Weall Result	Deviation	Minimum/Maximum Results	
1,4-Naphthoquinone	0/2	10.0	0.0	10.0/10.0 μg/L	
1-Naphthylamine	0/2	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L	
2-Naphthylamine	0/2	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L	
m-Nitroaniline	0/9	30.6	11.0	25.0/50.0 μg/L	
o-Nitroaniline	0/9	30.6	11.0	25.0/50.0 μg/L 25.0/50.0 μg/L	
o-Nitroaniline	0/9	30.6	11.0	25.0/50.0 μg/L 25.0/50.0 μg/L	
Nitrobenzene	0/10	10.0	0.0	10.0/10.0 μg/L	
2-Nitrophenol	0/10	10.0	0.0	10.0/10.0 μg/L	
1-Nitrophenol	0/10	32.5	12.1	25.0/50.0 μg/L	
1-Nitroquinoline-1-oxide	0/2	20.0	0.0	20.0/20.0 μg/L	
N-Nitrosodi-n-butylamine	0/2	10.0	0.0	10.0/10.0 μg/L	
N-Nitrosodiethylamine	0/2	10.0	0.0	10.0/10.0 μg/L	
N-Nitrosodimethylamine	0/3	10.0	0.0	10.0/10.0 μg/L	
N-Nitrosodiphenylamine	0/10	9.0	2.11	5.0/10.0 μg/L	
N-Nitrosodipropylamine	0/10	10.0	0.0	10.0/10.0 μg/L	
N-Nitrosomethylethylamine	0/2	10.0	0.0	10.0/10.0 µg/L	
N-Nitrosomorpholine	0/2	10.0	0.0	10.0/10.0 µg/L	
Nitrosopiperidine	0/2	50.0	0.0	50.0/50.0 μg/L	
N-Nitrosopyrrolidine	0/2	10.0	0.0	10.0/10.0 µg/L	
-Nitro-o-toluidine	0/2	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L	
Pentachlorobenzene	0/2	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L	
Pentachloroethane	0/2	10.0	0.0	10.0/10.0 µg/L	
Pentachloronitrobenzene	0/2	50.0	0.0	50.0/50.0 μg/L	
Pentachlorophenol	0/10	32.5	12.1	25.0/50.0 μg/L	
henacetin	0/2	10.0	0.0	23.0/30.0 μg/L 10.0/10.0 μg/L	
henanthrene	0/10	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L	
Phenol	0/13	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L	
-Phenylenediamine	0/2	10.0	0.0	10.0/10.0 μg/L	
-Picoline	0/2	10.0	0.0	10.0/10.0 μg/L	
Pronamid	0/2	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L	
Pyrene	0/10	10.0	0.0	10.0/10.0 µg/L	
Pyridine	0/2	10.0	0.0	10.0/10.0 µg/L	
Safrole	0/2	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L	
,2,4,5-Tetrachlorobenzene	0/2	10.0	0.0	10.0/10.0 µg/L	
,3,4,6-Tetrachlorophenol	0/2	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L	
-Toluidine	0/2	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L	
,2,4-Trichlorobenzene	0/10	10.0	0.0	10.0/10.0 µg/L	
,4,5-Trichlorophenol	0/9	30.6	11.0	25.0/50.0 µg/L	
,4,6-Trichlorophenol	0/10	10.0	0.0	10.0/10.0 µg/L	
,3,5-Trinitrobenzene	0/2	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L	
D 4 0000			0.0	10.0/10.0 μg/Ε	
PA8280	0/4				
exachlorodibenzo-p-dioxins	0/1	0.00	_	0.00/0.00 μg/L	
exachlorodibenzo-p-furans	0/1	0.00	_	0.00/0.00 µg/L	
entachlorodibenzo-p-furans	0/2	0.00	0.00	0.00/0.00 μg/L	
3,7,8-TCDD	0/2	0.00	0.0	0.00/0.00 µg/L	
etrachlorodibenzo-p-dioxins etrachlorodibenzo-p-furans	0/1	0.00	_	0.00/0.00 μg/L	
strachiorodiberizo-p-turans	0/1	0.00		0.00/0.00 µg/L	
PA8310					
cenaphthene	0/1	10.0			
cenaphthylene	0/1	18.0		18.0/18.0 μg/L	
nthracene	0/1	23.0		23.0/23.0 μg/L	
enzo[a]anthracene	0/1	6.60	_	6.60/6.60 µg/L	
enzo[b]fluoranthene		0.13	-	0.13/0.13 µg/L	
enzo[k]fluoranthene	0/1	0.18	_	0.18/0.18 μg/L	
enzo[g,h,i]perylene	0/1	0.17	_	0.17/0.17 μg/L	
	0/1	0.76		0.76/0.76 μg/L	
enzo[a]pyrene	0/1	0.23	_	0.23/0.23 µg/L	
honzia bianthracene	0/1	1.50	_	1.50/1.50 µg/L	
benz[<i>a,h</i>]anthracene	0/1	0.30		0.30/0.30 μg/L	
uoranthene	0/1	2.10		2.10/2.10 µg/L	

Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
0/1	0.10		
			2.10/2.10 μg/L
			0.43/0.43 µg/L
			18.0/18.0 μg/L
			6.40/6.40 μg/L
0/1	2.70	_	2.70/2.70 µg/L
			. 5
0/30	15.2	0.04	15.0/15.2 μg/L
			10.0, 10.2 ру/с
0/8	120	0.0	
4, 5	120	0.0	120/120 μg/L
1/5	7.54	3 68	1.01/10.0 0/
		5.00	1.01/10.0 μS/cm
0/3	210	0.0	210/210/!
0/3		-	210/210 μg/L
		0.0	340/340 μg/L
0/3	1.270	462	1.000/1.000 //
	.,	702	1,000/1,800 μg/L
0/5	36.2	0.0	36.2/36.2 μg/L
	0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/30 0/8 1/5 0/3 0/3 0/3	of Detection† Mean Result 0/1 2.10 0/1 0.43 0/1 18.0 0/1 6.40 0/1 2.70 0/30 15.2 0/8 120 1/5 7.54 0/3 210 0/3 340 0/3 1,270	of Detection† Mean Result Deviation 0/1 2.10 — 0/1 0.43 — 0/1 18.0 — 0/1 6.40 — 0/1 2.70 — 0/30 15.2 0.04 0/8 120 0.0 1/5 7.54 3.68 0/3 210 0.0 0/3 340 0.0 0/3 1,270 462

[†] Number of times analyte was detected compared to the total number of method blanks for the analyte. — Standard deviation cannot be determined.

Notes: A value of 0 is reported as 0.0.

Numbers less than 0.004 are reported as 0.00.

Table 87. Analytes Detected in Method Blanks for GP

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPIA-001				
Gross alpha Nonvolatile beta	3/30 1/30	1.38E-10 2.96E-10	2.57E-10 4.58E-10	-1.79E-10/1.00E-09 μCi/mL -4.57E-10/1.47E-09 μCi/mL
EPIA-002 Tritium	0/24	-2.45E-08	2.38E-07	-6.32E-07/3.75E-07 μCi/mL
E PIA-003 Carbon-14	1/20	1.87E-09	5.86E-09	-1.08E-08/1.45E-08 μCi/mL
E PIA-004 Strontium-90	1/29	2.83E-10	6.11E-10	-9.71E-10/1.87E-09 μCi/mL
EPIA-005 echnetium-99	0/28	-9.50E-09	1.28E-08	-4.20E-08/6.28E-09 μCi/mL
EPIA-006 odine-129	0/24	1.91E-10	3.16E-10	-4.03E-10/8.67E-10 μCi/mL

EPIA-008 Radium-226	Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Radium-226	EPIA-008				
EPIA-009 Radium-228 3/26 4.54E-10 4.30E-10 -2.76E-10/1.21E-09 μCi/mL EPIA-010 Radium-241 Δurium-242 Δurium-242 Δurium-242 Δurium-243/224 Δurium-243/224 Δurium-245/2246 Δurium-248/2241 Δurium-238 Δurium-239/240 Δurium-239/240 Δurium-239/240 Δurium-239/240 Δurium-239/25 Δurium-239/25 Δurium-239/260 Δurium-239/275 Δurium-230/276 Δurium-230 Δurium-230/276 Δurium-230/27		1/06	1 445 40		
Radium-228 3/26 4.54E-10 4.30E-10 -2.76E-10/1.21E-09 μCi/mL EPIA-010 Radium, total alpha-emitting 0/2 -1.00E-10	220	1/20	1.44E-10	5.73E-11	4.90E-11/2.95E-10 μCi/mL
## PIA-010 Radium, total alpha-emitting 0/2 -1.00E-10 1.41E-10 -2.00E-10/0.0 μCi/mL					•
Repla-010 Radium, total alpha-emitting 0/2 -1.00E-10 1.41E-10 -2.00E-10/0.0 μCi/mL	Radium-228	3/26	4.54E-10	4.30E-10	-2.76E-10/1.21E-09 µCi/mL
EPIA-011 Americium-241 6/32 9.45E-11 1.96E-10 -8.40E-11/8.23E-10 μCi/mL Curium-249/244 2/25 5.66E-11 9.89E-11 -1.72E-10/1.39E-10 μCi/mL Curium-249/246 0/25 2.26E-11 5.99E-11 -3.50E-11/8.23E-10 μCi/mL Curium-249/246 0/25 2.26E-11 5.59E-11 -9.00E-11/2.07E-10 μCi/mL Curium-233/240 1/25 1.59E-10 1.82E-10 -3.00E-12/6.68E-10 μCi/mL Curium-233/240 1/25 1.59E-10 1.82E-10 -3.00E-12/6.68E-10 μCi/mL Curium-233/244 2/25 5.81E-11 1.00E-10 -8.00E-12/4.45E-10 μCi/mL Curium-233/244 2/25 5.81E-11 1.00E-10 -8.00E-12/4.45E-10 μCi/mL Curium-233/244 2/25 5.81E-11 1.00E-10 -8.00E-12/4.45E-10 μCi/mL Curium-238 3/25 5.66E-11 1.59E-10 -1.70E-11/7.66E-10 μCi/mL Curium-230 4/23 6.94E-11 8.08E-11 -1.10E-11/2.91E-10 μCi/mL Curium-230 4/23 6.94E-10 4.89E-09 -5.34E-09/1.94E-08 μCi/mL Curium-230 4/23 6.94E-10 2.09E-09 -4.31E-09/3.56E-09 μCi/mL Curium-230 4/23 6.94E-10 1.99E-09 -4.31E-09/3.56E-09 μCi/mL Curium-230 4/23 6.94E-10 2.09E-09 -4.31E-09/3.56E-09 μCi/mL Curium-230 4/23 6.94E-10 6.64E-09 -8.95E-09/1.04E-09 μCi/mL Curium-230 4/23 6.94E-10 6.64E-09 -4.31E-09/3.56E-09 μCi/mL Curium-230 4/25 2.05E-10 7.91E-10 1.92E-09/1.42E-09 μCi/mL Curium-230 4/25 2.05E-10 7.91E-10 1.92E-09/1.42E-09 μCi/mL Curium-240 4/25 3.48E-10 3.28E-09 6.04E-09/2.23E-09 μCi/mL Curium-240 4/25 3.48E-10 3.28E-09 6.04E-09/2.23E-09 μCi/mL Curium-240 4/25 3.12E-10 3.28E-09 6.04E-09/2.23E-09 μCi/mL Curium-240 4/25 4.48E-09 4.28E-09/2.28E-09 4.21E-09/6.68E-09 μCi/mL Curium-240 4/25 4.					,
EPIA-011 Americium-241	Radium, total alpha-emitting	0/2	-1.00E-10	1.41E-10	-2.00E-10/0.0 μCi/mL
Curium-242 0/25 6.05E-12 5.23E-11 1.76E-17/8.29E-10 μC/mL 249/244 2/25 5.66E-11 9.89E-11 -3.50E-11/3.65E-10 μC/mL 249/245 40/25 5.66E-11 9.89E-11 -3.50E-11/3.65E-10 μC/mL 249/246 0/25 2.26E-11 5.59E-11 -9.00E-11/2.07E-10 μC/mL 249/246 0/25 1.59E-10 1.82E-10 -3.00E-12/6.68E-10 μC/mL 27enium-239/240 1/25 1.47E-11 2.82E-11 -3.00E-12/6.68E-10 μC/mL 27enium-239/240 1/25 1.47E-11 2.82E-11 -3.00E-12/6.68E-10 μC/mL 27enium-239/234 2/25 5.81E-11 1.00E-10 -8.00E-12/4.45E-10 μC/mL 27enium-238 3/25 5.66E-11 2.98E-11 -2.00E-12/1.33E-10 μC/mL 27enium-238 3/25 5.66E-11 1.59E-10 -1.70E-11/7.66E-10 μC/mL 27enium-238 3/25 5.66E-11 1.59E-10 -1.70E-11/7.66E-10 μC/mL 27enium-239 4/23 6.94E-11 8.08E-11 -1.10E-11/2.91E-10 μC/mL 27enium-230 4/23 6.94E-11 8.08E-11 -1.10E-11/2.91E-10 μC/mL 27enium-232 0/23 6.78E-12 2.15E-11 -2.30E-11/6.40E-11 μC/mL 27enium-232 0/23 6.78E-12 2.15E-11 -2.30E-11/6.40E-11 μC/mL 27enium-234 4/25 5.84E-10 6.64E-09 -8.95E-09/1.94E-08 μC/mL 27enium-144 0/25 5.84E-10 2.09E-09 -5.34E-09/1.94E-08 μC/mL 27enium-134 0/25 5.84E-10 6.64E-09 -8.95E-09/1.65E-09 μC/mL 27enium-134 0/25 5.84E-10 6.64E-09 -8.95E-09/1.65E-09 μC/mL 27enium-134 0/25 3.76E-10 9.98E-10 -1.92E-09/1.34E-09 μC/mL 27enium-137 0/25 3.76E-10 9.98E-10 -1.92E-09/1.34E-09 μC/mL 27enium-134 0/25 3.12E-10 8.98E-09 -1.19E-09/2.31E-09/2.01E-09/2	EPIA-011				·
Curium-242 0/25 6.05E-12 5.23E-11 1.76E-17/8.29E-10 μC/mL 249/244 2/25 5.66E-11 9.89E-11 -3.50E-11/3.65E-10 μC/mL 249/245 40/25 5.66E-11 9.89E-11 -3.50E-11/3.65E-10 μC/mL 249/246 0/25 2.26E-11 5.59E-11 -9.00E-11/2.07E-10 μC/mL 249/246 0/25 1.59E-10 1.82E-10 -3.00E-12/6.68E-10 μC/mL 27enium-239/240 1/25 1.47E-11 2.82E-11 -3.00E-12/6.68E-10 μC/mL 27enium-239/240 1/25 1.47E-11 2.82E-11 -3.00E-12/6.68E-10 μC/mL 27enium-239/234 2/25 5.81E-11 1.00E-10 -8.00E-12/4.45E-10 μC/mL 27enium-238 3/25 5.66E-11 2.98E-11 -2.00E-12/1.33E-10 μC/mL 27enium-238 3/25 5.66E-11 1.59E-10 -1.70E-11/7.66E-10 μC/mL 27enium-238 3/25 5.66E-11 1.59E-10 -1.70E-11/7.66E-10 μC/mL 27enium-239 4/23 6.94E-11 8.08E-11 -1.10E-11/2.91E-10 μC/mL 27enium-230 4/23 6.94E-11 8.08E-11 -1.10E-11/2.91E-10 μC/mL 27enium-232 0/23 6.78E-12 2.15E-11 -2.30E-11/6.40E-11 μC/mL 27enium-232 0/23 6.78E-12 2.15E-11 -2.30E-11/6.40E-11 μC/mL 27enium-234 4/25 5.84E-10 6.64E-09 -8.95E-09/1.94E-08 μC/mL 27enium-144 0/25 5.84E-10 2.09E-09 -5.34E-09/1.94E-08 μC/mL 27enium-134 0/25 5.84E-10 6.64E-09 -8.95E-09/1.65E-09 μC/mL 27enium-134 0/25 5.84E-10 6.64E-09 -8.95E-09/1.65E-09 μC/mL 27enium-134 0/25 3.76E-10 9.98E-10 -1.92E-09/1.34E-09 μC/mL 27enium-137 0/25 3.76E-10 9.98E-10 -1.92E-09/1.34E-09 μC/mL 27enium-134 0/25 3.12E-10 8.98E-09 -1.19E-09/2.31E-09/2.01E-09/2	Americium-241	6/32	0.455.44	4.00=	
Curium-243/244 2/25 5.66E-11 9.89E-11 -1.72E-10/1.32E-10 μCi/mL 245/246 0/25 2.26E-11 9.89E-11 -3.50E-11/3.65E-10 μCi/mL 245/246 0/25 2.26E-11 5.59E-11 -9.00E-11/2.07E-10 μCi/mL 245/246 0/25 1.59E-10 1.82E-10 -3.00E-12/6.68E-10 μCi/mL 246/1040 1/25 1.47E-11 2.82E-11 -9.00E-11/2.07E-10 μCi/mL 246/1040 1/25 1.47E-11 2.82E-11 -9.00E-11/2.07E-10 μCi/mL 246/1040 1/25 1.81E-11 1.00E-10 -8.00E-12/6.68E-10 μCi/mL 246/1040 1/25 1.66E-11 2.88E-11 -2.00E-12/4.45E-10 μCi/mL 246/1040 1/25 1.66E-11 1.59E-10 -1.70E-11/7.66E-10 μCi/mL 246/1040 1/25 1.66E-11 1.59E-10 μCi/mL 246/1040 1/25 1.66E-11 1.59E-10 μCi/mL 246/1040 1/25 1.66E-11 1.06E-11 1.10E-11/2.91E-10 μCi/mL 246/1040 1/25 1.66E-11 1.06E-11 1.10E-11/2.91E-10 μCi/mL 246/1040 1/25 1.66E-10 1.92E-09/1.65E-08 μCi/mL 246/1040 1/25 1.81E-10 9.69E-10 1.92E-09/1.42E-09 μCi/mL 246/1040 1/25 1.81E-10 9.69E-10 1.92E-09/1.42E-09 μCi/mL 246/1040 1/25 1.81E-10 9.69E-10 1.92E-09/1.42E-09 μCi/mL 246/1040 1/25 1.81E-10 9.69E-10 1.92E-09/1.34E-09 μCi/mL 246/1040 1/25 1.81E-10 9.69E-10 1.92E-09/1.34E-09 μCi/mL 246/1040 1/25 1.81E-10 9.69E-10 1.92E-09/1.34E-09 μCi/mL 246/1040 1/25 1.81E-10 1.81E-09/1.85E-09 μCi/mL 246/1040 1/25 1.81E-10 1.85E-09/1.85E-09 μCi/mL 246/1040 1/25 1.83E-10 1.86E-09/1.86E-09/1.86E-09 μCi/mL					-8.40E-11/8.23E-10 μCi/mL
Curium -245/246	· · ·				-1.72E-10/1.32E-10 uCi/mL
Plutonium-238 6/25 1.59E-10 1.82E-10 -9.00E-1/2.07E-10 μCi/mL Plutonium-239/240 1/25 1.59E-10 1.82E-10 -3.00E-1/2.68E-10 μCi/mL Jranium-233/234 2/25 5.81E-11 1.00E-10 -8.00E-1/2/4.5E-10 μCi/mL Jranium-238 0/25 1.66E-11 2.98E-11 -4.10E-11/9.50E-11 μCi/mL Jranium-238 0/25 1.66E-11 1.59E-10 -1.70E-11/7.66E-10 μCi/mL Jranium-238 0/25 5.66E-11 1.59E-10 -1.70E-11/7.66E-10 μCi/mL Plutonium-238 0/25 1.66E-11 1.59E-10 -1.70E-11/7.66E-10 μCi/mL Plutonium-238 0/23 -1.04E-11 1.59E-10 -1.70E-11/7.66E-10 μCi/mL Plutonium-230 4/23 6.94E-11 8.08E-11 -1.10E-11/2.91E-10 μCi/mL Plutonium-232 0/23 6.78E-12 2.15E-11 -2.30E-11/6.40E-11 μCi/mL Plutonium-232 0/23 6.78E-12 2.15E-11 -2.30E-11/6.40E-11 μCi/mL Plutonium-232 0/23 6.78E-12 2.15E-11 -2.30E-11/6.40E-11 μCi/mL Plutonium-238 1/25 4.48E-09 4.89E-09 -5.34E-09/1.94E-08 μCi/mL Plutonium-238 1/25 4.48E-09 4.89E-09 -5.34E-09/1.94E-08 μCi/mL Plutonium-238 1/25 4.48E-09 4.89E-09 -5.34E-09/1.94E-08 μCi/mL Plutonium-238 1/25 5.84E-10 6.64E-09 -8.95E-09/1.56E-08 μCi/mL Plutonium-134 0/25 5.84E-10 6.64E-09 -8.95E-09/1.42E-09 μCi/mL Plutonium-137 0/25 3.76E-10 9.98E-10 -1.92E-09/1.42E-09 μCi/mL Plutonium-137 0/25 3.76E-10 9.98E-10 -1.92E-09/1.42E-09 μCi/mL Plutonium-152 0/25 1.81E-10 8.19E-10 -1.19E-09/2.31E-09 μCi/mL Plutonium-154 0/25 3.12E-10 8.19E-10 -1.39E-09/2.76E-09 μCi/mL Plutonium-155 0/25 3.12E-10 2.92E-09 -5.25E-09/7.80E-09 μCi/mL Plutonium-155 0/25 3.12E-10 2.92E-09 -4.21E-09/2.04E-09 μCi/mL Plutonium-155 0/25 3.12E-10 2.92E-09 -4.21E-09/6.16E-09 μCi/mL Plutonium-164 0/25 2.49E-108 1.55E-09 -4.21E-09/6.16E-09 μCi/mL Plutonium-166 0/25 1.33E-10 1.55E-09 μCi/mL Plutonium-166 0/25 1.33E-10 1.55E-09 μCi/mL Plutonium-166 0/25 1.33E-10 1.06E-09 -4.29E-09/3.60E-09 μCi/mL Plutonium-166 0/25 1.33E-10 1.06E-09 -1.86E-09/3.92E-09 μCi/mL Plutonium-166 0/25 1.33E-10 1.06E-09 -1.86E-09/3.92E-09 μCi/mL Plutonium-166 0/25 1.33E-10 1.06E-09 -1.86E-09/3.60E-09 μCi/mL Plutonium-167 0/4 2.55E-11 2.24E-10 -1.33E-10/3.44E-10 μCi/mL Plutonium-167 0/4 2.55E-11 2.24E-10 -1.33E-10/3.44E-10 μCi/mL Pluton				9.89E-11	-3.50E-11/3.65F-10 uCi/ml
1.89E-10			2.26E-11	5.59E-11	-9.00F-11/2 07F-10 uCi/ml
1.47E-1.1			1.59E-10	1.82E-10	-3.00F-12/6.68F-10.uCi/ml
1		1/25	1.47E-11		-4 10F-11/0 FOE 11 10:/ml
		2/25	5.81E-11		-8.00E 12/4.45E 100:/
1.59E-10 1.59E-10 1.59E-10 1.59E-10 1.59E-10 1.59E-10 μCi/mL	Jranium-235	0/25			-0.00E-12/4.45E-10 μCl/mL
FPIA-012 horium-228 horium-230	Jranium-238	3/25			-2.00E-12/1.33E-10 μCi/mL
Thorium-228	ERIA 010		0.002 11	1.59E-10	-1.70E-11/7.66E-10 μCi/mL
Thorium-230					
4/23 6,94E-11 8.08E-11 -1.10E-11/2.91E-10 μCi/mL 2.15E-11 -2.30E-11/6.40E-11 μCi/mL 2.15E-10 -2.30E-10 -2.09E-09 -4.31E-09/1.34E-08 μCi/mL 2.09E-09 -4.31E-09/1.5E-08 μCi/mL 2.09E-10 -4.31E-09/1.65E-08 μCi/mL 2.09E-10 -7.91E-10 -1.92E-09/1.65E-08 μCi/mL 2.09E-10 -7.91E-10 -1.92E-09/1.42E-09 μCi/mL 2.09E-10 -1.92E-09/1.42E-09 μCi/mL 2.09E-10 -1.92E-09/1.34E-09 μCi/mL 2.00E-16 -0 0/25 1.81E-10 9.69E-10 -1.45E-09/1.34E-09 μCi/mL 2.00E-16 -0 0/25 1.81E-10 9.69E-10 -1.39E-09/2.76E-09 μCi/mL 2.00E-10 3.28E-09 -6.04E-09/5.29E-09 μCi/mL 2.00E-10 3.28E-09 -5.25E-09/7.80E-09 μCi/mL 2.00E-09			-1.04E-11	1.13E-10	-4.37E-10/1.63E-10.uCi/ml
1/25		4/23	6.94E-11		-1 10E-11/2 01E 10 μC//IIL
PIA-013 ctrinium-228	horium-232	0/23	6.78E-12		-2.30E-11/6.40E-11 µCi/mL
Antimony-125	PIA-013				,
Antimony-125	Actinium-228	1/25	4.48F-00	4 90E 00	F 0.4F 0044 5 :
1.0 1.0	Intimony-125				-5.34E-09/1.94E-08 µCi/mL
1.0 1.0	Cerium-144				-4.31E-09/3.56E-09 μCi/mL
1.92E-09/1.42E-09 μCi/mL 1.92E-09/1.42E-09 μCi/mL 1.92E-09/1.42E-09 μCi/mL 1.92E-09/2.31E-09 μCi/mL 1.92E-09/2.31E-09 μCi/mL 1.92E-09/2.31E-09 μCi/mL 1.92E-09/2.31E-09 μCi/mL 1.92E-09/2.31E-09 μCi/mL 1.92E-09/2.76E-09 μCi/mL 1.92E-09/2.92E-09/	Cesium-134				-8.95E-09/1.65E-08 µCi/mL
Sobalt-57	Cesium-137				-1.92E-09/1.42E-09 µCi/mL
Sobalt-60					-1.19E-09/2.31E-09 uCi/mL
1.81E-10 3.69E-10 -1.39E-09/2.76E-09 μCi/mL -2.05E-10 3.28E-09 -6.04E-09/5.29E-09 μCi/mL -6.04E-09/5.29E-09 μCi/mL -6.04E-09/5.29E-09 μCi/mL -6.04E-09/5.29E-09 μCi/mL -6.04E-09/5.29E-09 μCi/mL -6.04E-09/5.29E-09 μCi/mL -6.04E-09 μCi/mL					-1.45E-09/1.34E-09 uCi/ml
1.				9.69E-10	-1.39E-09/2.76F-09 uCi/ml
uropium-155	•			3.28E-09	-6.04E-09/5 29F-09 µCi/ml
9.26E-10				2.92E-09	-5.25F-09/7 80F-09 uCi/ml
Size			9.26E-10	2.69E-09	-4 21F-09/6 16F-09 uCi/ml
otassium-40			4.16E-09		8 68E-10/9 06E-09 uCi/ml
otassium-40 romethium-144			7.04E-11		-1 57F-09/2 04E 00 10:/
romethium-144 0/25 -2.93E-11 7.52E-10 -1.81E-09/1.55E-09 μCi/mL romethium-146 1/25 -6.66E-11 1.55E-09 -2.28E-09/5.92E-09.μCi/mL uthenium-106 0/25 -9.96E-10 6.04E-09 -9.48E-09/1.76E-08 μCi/mL diffurm-88 0/25 1.23E-10 1.06E-09 -1.86E-09/2.80E-09 μCi/mL diffurm-88 0/25 2.40E-10 8.70E-10 -1.53E-09/1.76E-09 μCi/mL diffurm-65 0/25 -3.96E-10 2.14E-09 -4.29E-09/3.60E-09 μCi/mL diffurm-147 0/4 2.55E-11 2.24E-10 -1.33E-10/3.44E-10 μCi/mL diffurm-147 0/4 2.55E-11 2.24E-10 -1.33E-10/3.44E-10 μCi/mL diffurm-147 0/4 2.55E-11 2.24E-10 -1.33E-08/1.46E-07 μCi/mL diffurm-147 0/4 2.55E-11 0/		2/25			2.64E.00/6.9EE.00.000
romethium-146 uthenium-106 0/25 -9.96E-10 0/25 1.23E-10 1.06E-09 -9.48E-09/1.55E-09 μCi/mL 0/25 1.23E-10 1.06E-09 -1.86E-09/1.76E-08 μCi/mL 0/25 1.23E-10 1.06E-09 -1.86E-09/2.80E-09 μCi/mL 0/25 2.40E-10 8.70E-10 -1.53E-09/1.76E-09 μCi/mL 0/25 -3.96E-10 2.14E-09 -4.29E-09/3.60E-09 μCi/mL 0/25 0/25 -3.96E-10 2.14E-09 -1.33E-10/3.44E-10 μCi/mL 0/4 2.55E-11 2.24E-10 -1.33E-10/3.44E-10 μCi/mL 0/4 0/4 0/4 0/4 0/5 0/4 0/4 0/5 0/4 0/4 0/4 0/5 0/4 0/4 0/4 0/5 0/4 0/4 0/4 0/5 0/4 0/4 0/4 0/5 0/4 0/4 0/4 0/5 0/4 0/4 0/4 0/5 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6					1.04E-09/0.05E-08 µCI/mL
uthenium-106					-1.01E-09/1.55E-09 μCi/mL
odium-22 0/25 1.23E-10 1.06E-09 -9.48E-09/1.76E-08 μCi/mL ttrium-88 0/25 2.40E-10 8.70E-10 -1.53E-09/1.76E-09 μCi/mL inc-65 0/25 -3.96E-10 2.14E-09 -4.29E-09/3.60E-09 μCi/mL PIA-020	uthenium-106				-2.28E-09/5.92E-09.μCi/mL
ttrium-88 0/25 2.40E-10 8.70E-10 -1.53E-09/2.80E-09 μCi/mL 1.05E-05 0/25 2.40E-10 8.70E-10 -1.53E-09/1.76E-09 μCi/mL -1.53E-09/3.60E-09 μCi/mL -1.53E-09/3.60E-09 μCi/mL -1.53E-09/3.60E-09 μCi/mL -1.33E-10/3.44E-10 μCi/mL -1.33E-10/3.44E-10 μCi/mL -1.33E-10/3.44E-10 μCi/mL -1.33E-10/3.44E-10 μCi/mL -1.07E-09 6.12E-08 -8.23E-08/1.46E-07 μCi/mL -1.07E-09 6.12E-08 -8.23E-08/1.46E-09 6.12E-08 -8					-9.48E-09/1.76E-08 μCi/mL
inc-65 0/25 2.40E-10 8.70E-10 -1.53E-09/1.76E-09 μCi/mL -3.96E-10 2.14E-09 -4.29E-09/3.60E-09 μCi/mL -4.29E-09/3.60E-09 μCi/mL -4.29E-09/3.60E-09 μCi/mL -4.29E-09/3.60E-09 μCi/mL -4.29E-09/3.60E-09 μCi/mL -4.29E-09/3.60E-09 μCi/mL -1.33E-10/3.44E-10 μCi/mL -1.33E-10/3.44E-10 μCi/mL -1.33E-10/3.44E-10 μCi/mL -1.07E-09 6.12E-08 -8.23E-08/1.46E-07 μCi/mL -1.07E-09 -	ttrium-88				-1.86E-09/2.80E-09 µCi/mL
PIA-020 romethium-147 0/4 2.55E-11 2.24E-10 -1.33E-10/3.44E-10 μCi/mL PIA-022 ickel-63 0/13 -1.07E-09 6.12E-08 -8.23E-08/1.46E-07 μCi/mL PIA-032			2.40E-10		-1.53E-09/1.76E-09 µCi/mL
romethium-147 0/4 2.55E-11 2.24E-10 -1.33E-10/3.44E-10 μCi/mL PIA-022 ickel-63 0/13 -1.07E-09 6.12E-08 -8.23E-08/1.46E-07 μCi/mL PIA-032		5/25	-3.30E-10	2.14E-09	-4.29E-09/3.60E-09 μCi/mL
PIA-022 ickel-63 0/13 -1.07E-09 6.12E-08 -8.23E-08/1.46E-07 μCi/mL					
PIA-022 ickel-63 0/13 -1.07Ε-09 6.12Ε-08 -8.23Ε-08/1.46Ε-07 μCi/mL PIA-032	romethium-147	0/4	2.55E-11	2.24E-10	-1.33E-10/3.44E-10 µCi/ml
ickel-63 0/13 -1.07E-09 6.12E-08 -8.23E-08/1.46E-07 μCi/mL	PIA-022				
PIA-032		0/13	-1.07E-09	6 12F-08	-8 225 00/1 465 07 07 1
ontunion 007	PIA-032		· · — • •	5.722 00	-0.23E-00/1.46E-0/ μCI/mL
eptunium-237 0/4 6.79E-12 6.54E-12 0.0/1.40E-11 µCi/mL	eptunium-237	0/4	6.705.40		

[†] Number of times analyte was detected compared to the total number of method blanks for the analyte.

Table 88. Analytes Detected in Method Blanks for TM

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
3500NIEMOD				
Nickel-63	0/6	-5.58E-09	1.08E-08	-2.30E-08/8.58E-09 μCi/mL
EICHROMTC1MOD				•
Technetium-99	1/15	1.94E-09	7.26E-09	-7.91E-09/2.01E-08 μCi/mL
EMLAM01MOD				,
Americium-241	3/5	2.38E-10	2.15E-10	1 00E 11/E 10E 10 ·· Ci/ml
Americium-241/Curium-246	8/13	1.86E-10	1.10E-10	-1.00E-11/5.10E-10 μCi/mL 2.00E-11/3.30E-10 μCi/mL
Curium-242	0/13	2.00E-11	1.96E-11	0.0/5.00E-11 μCi/mL
Curium-243/244	0/13	4.23E-11	3.61E-11	0.0/1.00E-10 µCi/mL
EMLPM01MOD				·
Promethium-147	2/3	4.82E-09	2.52E-09	1.94E-09/6.61E-09 µCi/mL
EMLPU02MOD				·
Neptunium-237	1/4	7.50E-11	4.80E-11	2.00E-11/1.20E-10 μCi/mL
Plutonium-238	0/13	1.08E-11	2.66E-11	2.00E-171.20E-10 µC//mL
Plutonium-239	0/10	3.00E-11	Z.UUL*11	0.0/8.00E-11 μCi/mL
Plutonium-239/240	1/12	3.58E-11	 3.40E-11	3.00E-11/3.00E-11 µCi/mL 0.0/1.20E-10 µCi/mL
	<u>-</u>	5.002 11	0.402-11	o.o/ 1.20E-10 HOVINE
EMLSR02MOD Strontium-90	3/18	3.37E-10	2.005.40	0.0/4.045.00
	3/10	3.37E-10	3.83E-10	0.0/1.31E-09 μCi/mL
EMLTH01MOD				
Thorium-228	0/13	6.15E-11	4.39E-11	2.00E-11/1.70E-10 μCi/mL
horium-230	9/13	2.68E-10	2.47E-10	1.00E-11/8.00E-10 µCi/mL
horium-232	1/13	4.85E-11	4.83E-11	0.0/1.70E-10 μCi/mL
MLU02MOD				
Jranium-234	2/14	5.43E-11	7.12E-11	0.0/2.70E-10 μCi/mL
Jranium-235	0/14	2.21E-11	2.64E-11	-1.00E-11/7.00E-11 µCi/mL
Jranium-238	1/14	4.57E-11	5.36E-11	0.0/2.00E-10 μCi/mL
ENICMOD				
Carbon-14	0/8	-3.51E-08	9.93E-08	-2.67E-07/6.05E-08 µCi/mL
				σ. σ. σ. σου σο μον πιε
PA900.0MOD				
Gross alpha	2/39	1.35E-10	1.59E-10	-2.20E-10/5.30E-10 μCi/mL
lonvolatile beta	0/37	-2.34E-10	4.98E-10	-1.40E-09/6.40E-10 μCi/mL
PA901.1MOD				
Cesium-137	0/20	4.88E-10	1.83E-09	-3.78E-09/5.25E-09 μCi/mL
Cobalt-60	0/20	8.45E-10	1.08E-09	-1.76E-09/3.43E-09 μCi/mL
PA902.0MOD				
odine-129	1/13	9.78E-10	7.91E-10	-1.90E-10/2.63E-09 μCi/mL
PAGG GMOD				
PA903.0MOD Radium, total alpha-emitting	7/11	0.505.40	4.005 ::	
ladium, total alpha-emitting ladium-226	7/11	3.50E-10	4.68E-10	-2.00E-11/1.58E-09 μCi/mL
auiui11-220	6/16	1.89E-10	9.89E-11	6.00E-11/4.30E-10 μCi/mL
PA904.0MOD				
adium-228	2/16	5.16E-10	6.27E-10	-4.20E-10/1.77E-09 µCi/mL
				

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA906.0MOD				
Tritium	3/30	1.20E-07	7.13E-07	-7.30E-07/3.56E-06 μCi/mL

[†] Number of times analyte was detected compared to the total number of method blanks for the analyte. — Standard deviation cannot be determined.

Table 89. Analytes Detected in Field Blanks for ES

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
A. HA		***		Teguns
EPA120.1				
Specific conductance	0/1	1.0		1.0/1.0 μS/cm
EPA350.1				
Ammonia nitrogen	1/1	29.0	_	29.0/29.0 μg/L
EPA365.1				
Total phosphates (as P)	0/2	10.0	0.0	10.0/10.0 μg/L
EPA6010				
Aluminum	0/3	20.0	0.0	20.0/20.0//
Antimony	0/4	5.0	0.0	20.0/20.0 μg/L
Arsenic	0/4	8.0		5.0/5.0 μg/L
Barium	0/6	2.0	0.0	8.0/8.0 μg/L
Beryllium			0.0	2.0/2.0 μg/L
Boron	0/4	1.0	0.0	1.0/1.0 μg/L
Cadmium	0/1	25.0	_	25.0/25.0 μg/L
	0/6	2.0	0.0	2.0/2.0 μg/L
Calcium	1/3	52.3	4.04	50.0/57.0 μg/L
Chromium	0/6	3.0	0.0	3.0/3.0 µg/L
Cobalt	0/4	5.0	0.0	5.0/5.0 µg/L
Copper	0/4	3.0	0.0	3.0/3.0 μg/L
ron	1/3	14.7	9.12	4.20/20.0 µg/L
_ead	0/8	5.0	0.0	5.0/5.0 μg/L
Magnesium	0/3	50.0	0.0	50.0/50.0 μg/L
Manganese	0/3	3.0	0.0	3.0/3.0 µg/L
Nickel	0/4	5.0	0.0	5.0/5.0 μg/L
Potassium	0/3	400	0.0	400/400 μg/L
Selenium	0/6	5.0	0.0	
Silver	0/6	2.0	0.0	5.0/5.0 µg/L
Sodium	1/3	139	68.1	2.0/2.0 μg/L
Thallium	0/4	5.0		100/218 μg/L
/anadium	0/4		0.0	5.0/5.0 μg/L
Zinc	2/4	2.0	0.0	2.0/2.0 μg/L
_IIIO	4 14	9.73	1.30	7.90/11.0 μg/L
EPA7470				
Mercury	1/7	0.18	0.05	0.06/0.20 μg/L
EPA8081				
Aldrin	0/3	0.02	0.0	0.02/0.02 µg/L
alpha-Benzene hexachloride	0/3	0.02	0.0	0.02/0.02 μg/L 0.02/0.02 μg/L
eta-Benzene hexachloride	0/4	0.02	0.0	
delta-Benzene hexachloride	0/3	0.02	0.0	0.02/0.02 μg/L
Chlordane	0/3	0.02	0.0	0.02/0.02 μg/L
alpha-Chlordane	0/3	0.07		0.07/0.07 μg/L
gamma-Chlordane	0/3		0.0	0.02/0.02 μg/L
p,p'-DDD	0/3	0.02	0.0	0.02/0.02 μg/L
,,p 000	U/S	0.02	0.0	0.02/0.02 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
p,p´-DDE	0/3	0.02	0.0	0.00/0.00 //
p,p'-DDT	0/3	0.02	0.0	0.02/0.02 μg/L
Dieldrin	0/3	0.02	0.0	0.02/0.02 μg/L
Endosulfan sulfate		-	0.0	0.02/0.02 μg/L
Endosulfan I	0/3	0.02	0.0	0.02/0.02 μg/L
Indosulfan II	0/3	0.02	0.0	0.02/0.02 μg/L
Endrin	0/3	0.02	0.0	0.02/0.02 μg/L
	0/3	0.02	0.0	0.02/0.02 μg/L
Endrin aldehyde	0/3	0.02	0.0	0.02/0.02 μg/L
ndrin ketone	0/3	0.02	0.0	0.02/0.02 μg/L
leptachlor	0/3	0.02	0.0	0.02/0.02 μg/L
leptachlor epoxide	0/3	0.02	0.0	0.02/0.02 μg/L
indane	0/3	0.02	0.0	0.02/0.02 µg/L
Methoxychlor	0/3	0.02	0.0	0.02/0.02 μg/L
PCB 1016	0/3	0.30	0.0	0.30/0.30 µg/L
PCB 1221	0/3	0.30	0.0	0.30/0.30 µg/L
PCB 1232	0/3	0.30	0.0	0.30/0.30 µg/L
CB 1242	0/3	0.30	0.0	0.30/0.30 µg/E
PCB 1248	0/3	0.30	0.0	0.30/0.30 μg/L
CB 1254	0/3	0.30		0.30/0.30 μg/L
PCB 1260	0/3		0.0	0.30/0.30 μg/L
oxaphene	0/3	0.30	0.0	0.30/0.30 μg/L
·	0/3	1.50	0.0	1.50/1.50 μg/L
EPA8270 Acenaphthene	0/3	10.0	0.0	4
cenaphthylene	0/3	10.0	0.0	10.0/10.0 μg/L
Inthracene		10.0	0.0	10.0/10.0 μg/L
denzidine	0/3	10.0	0.0	10.0/10.0 μg/L
Benzo[a]anthracene	0/3	10.0	0.0	10.0/10.0 μg/L
	0/3	10.0	0.0	10.0/10.0 μg/L
Benzo[b]fluoranthene	0/3	10.0	0.0	10.0/10.0 μg/L
lenzo[k]fluoranthene	0/3	10.0	0.0	10.0/10.0 μg/L
enzoic acid	0/3	50.0	0.0	50.0/50.0 μg/L
enzo[<i>g,h,i</i>]perylene	0/3	10.0	0.0	10.0/10.0 μg/L
enzo[a]pyrene	0/3	10.0	0.0	10.0/10.0 μg/L
enzyl alcohol	0/3	20.0	0.0	20.0/20.0 μg/L
is(2-chloroethoxy) methane	0/3	10.0	0.0	10.0/10.0 μg/L
is(2-chloroethyl) ether	0/3	10.0	0.0	10.0/10.0 µg/L
is(2-chloroisopropyl) ether	0/3	10.0	0.0	10.0/10.0 µg/L
is(2-ethylhexyl) phthalate	1/3	23.3	17.4	10.0/43.0 μg/L
-Bromophenyl phenyl ether	0/3	10.0	0.0	10.0/10.0 µg/L
utylbenzyl phthalate	0/3	10.0	0.0	10.0/10.0 µg/L
-Chloroaniline	0/3	20.0	0.0	10.0/10.0 μg/L 20.0/20.0 μg/L
-Chloro-m-cresol	0/3	20.0	0.0	20.0/20.0 µg/L
-Chloronaphthalene	0/3	10.0		20.0/20.0 µg/L
-Chlorophenol	0/3		0.0	10.0/10.0 µg/L
Chlorophenyl phenyl ether	0/3	10.0	0.0	10.0/10.0 μg/L
hrysene		10.0	0.0	10.0/10.0 μg/L
/p-Cresol	0/3	10.0	0.0	10.0/10.0 μg/L
Cresol	0/3	10.0	0.0	10.0/10.0 μg/L
	0/3	10.0	0.0	10.0/10.0 μg/L
ibenz[<i>a,h</i>]anthracene	0/3	10.0	0.0	10.0/10.0 µg/L
benzofuran	0/3	10.0	0.0	10.0/10.0 μg/L
i-n-butyl phthalate	0/4	5.36	5.36	0.63/10.0 µg/L
2-Dichlorobenzene	0/3	10.0	0.0	10.0/10.0 µg/L
3-Dichlorobenzene	0/3	10.0	0.0	10.0/10.0 µg/L 10.0/10.0 µg/L
4-Dichlorobenzene	0/3	10.0	0.0	10.0/10.0 μg/L
3'-Dichlorobenzidine	0/3	20.0	0.0	10.0/10.0 μg/L
4-Dichlorophenol	0/3	10.0		20.0/20.0 μg/L
iethyl phthalate	0/3		0.0	10.0/10.0 μg/L
4-Dimethyl phenol	0/3	10.0 10.0	0.0 0.0	10.0/10.0 µg/L
	1.1/ 5	1 (1 ()	11 (1)	10.0/10.0 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Dimethyl shthelete		4.0.0		
Dimethyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L
2,4-Dinitrophenol	0/3	50.0	0.0	50.0/50.0 μg/L
2,4-Dinitrotoluene	0/3	10.0	0.0	10.0/10.0 μg/L
2,6-Dinitrotoluene	0/3	10.0	0.0	10.0/10.0 µg/L
Di-n-octyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L
luoranthene	0/3	10.0	0.0	10.0/10.0 µg/L
Iuorene	0/3	10.0	0.0	10.0/10.0 µg/L
Hexachlorobenzene	0/3	10.0	0.0	10.0/10.0 µg/L
Hexachlorobutadiene	0/3	10.0	0.0	10.0/10.0 µg/L
lexachlorocyclopentadiene	0/3	10.0	0.0	10.0/10.0 µg/L
łexachloroethane	0/3	10.0	0.0	10.0/10.0 µg/L
ndeno[1,2,3- <i>c,d</i>]pyrene	0/3	10.0	0.0	10.0/10.0 µg/L
sophorone	0/3	10.0	0.0	10.0/10.0 μg/L
-Methyl-4,6-dinitrophenol	0/3	50.0	0.0	
-Methylnaphthalene	0/3	10.0	0.0	50.0/50.0 μg/L 10.0/10.0 μg/L
laphthalene	0/3	10.0	0.0	
n-Nitroaniline	0/3	50.0	0.0	10.0/10.0 μg/L
-Nitroaniline	0/3	50.0	0.0	50.0/50.0 μg/L
-Nitroaniline	0/3	50.0		50.0/50.0 µg/L
litrobenzene	0/3	10.0	0.0	50.0/50.0 μg/L
-Nitrophenol	0/3		0.0	10.0/10.0 μg/L
-Nitrophenol	0/3	10.0	0.0	10.0/10.0 μg/L
I-Nitrosodiphenylamine	0/3	50.0	0.0	50.0/50.0 μg/L
I-Nitrosodiprienylamine		10.0	0.0	10.0/10.0 μg/L
entachlorophenol	0/3	10.0	0.0	10.0/10.0 μg/L
henanthrene	0/3	50.0	0.0	50.0/50.0 μg/L
henol	0/3	10.0	0.0	10.0/10.0 μg/L
	0/3	10.0	0.0	10.0/10.0 μg/L
yrene	0/3	10.0	0.0	10.0/10.0 μg/L
,2,4-Trichlorobenzene	0/3	10.0	0.0	10.0/10.0 μg/L
,4,5-Trichlorophenol	0/3	10.0	0.0	10.0/10.0 μg/L
,4,6-Trichlorophenol	0/3	10.0	0.0	10.0/10.0 μg/L
PA9010A				
Syanide	0/3	5.0	0.0	5.0/5.0 μg/L
PA9020A				
otal organic halogens	0/1	10.0		10.0/10.0 μg/L
PA9040A	0.40			
H	2/2	5.67	0.01	5.66/5.67 pH
PA9056	1			·
hloride	0/1	500		500/500 μg/L
itrate as nitrogen	0/3	73.3	40.4	50.0/120 μg/L
itrite as nitrogen	1/1	50.0		50.0/50.0 µg/L
ulfate	0/1	5,000	_	5,000/5,000 µg/L
PA9060M				
otal organic carbon	2/2	1,100	566	700/1,500 μg/L
SESOPM008				
ctinium-228	2/2	2.34E-09	2.50E-09	5.70E-10/4.11E-09 µCi/mL
ntimony-125	2/2	-9.00E-10	2.55E-10	-1.08E-09/-7.20E-10 μCi/mL
erium-144	2/2	-2.87E-09	2.98E-09	-4 97F-09/-7 60E 10 μC//mL
esium-134	2/2	-2.40E-10	4.38E-10	-4.97E-09/-7.60E-10 μCi/mL
esium-137	2/2	-1.85E-10	4.95E-11	-5.50E-10/7.00E-11 μCi/mL
obalt-57	2/2	-5.10E-10		-2.20E-10/-1.50E-10 µCi/mL
obalt-60	2/2	-2.35E-10	5.09E-10	-8.70E-10/-1.50E-10 μCi/mL
uropium-152	2/2		4.74E-10	-5.70E-10/1.00E-10 μCi/mL
uropium-154	2/2	4.88E-09	1.90E-09	3.53E-09/6.22E-09 µCi/mL
uropium-155	2/2	2.36E-09	1.41E-10	2.26E-09/2.46E-09 µCi/mL
P. WIII 100	CIC	-3.50E-11	1.07E-09	-7.90E-10/7.20E-10 μCi/mL

Quality Control Samples
Page 156

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
lodine-129	2/2	-1.65E-09	0.075.00	0.005.0010.007.11.007.1
Lead-212	2/2	-1.30E-09	2.37E-09	-3.32E-09/3.00E-11 μCi/mL
Manganese-54	2/2	-3.05E-10	2.83E-10	-1.50E-09/-1.10E-09 μCi/mL
Potassium-40	2/2	8.15E-09	7.28E-10	-8.20E-10/2.10E-10 μCi/mL
Promethium-144	2/2	-8.00E-11	3.61E-09	5.59E-09/1.07E-08 μCi/mL
Promethium-146	2/2 2/2		3.11E-10	-3.00E-10/1.40E-10 μCi/mL
Ruthenium-106	2/2 2/2	-5.90E-10	2.83E-10	-7.90E-10/-3.90E-10 μCi/mL
Sodium-22		-2.86E-09	3.17E-09	-5.10E-09/-6.10E-10 μCi/mL
Thorium-234	2/2	9.25E-10	1.63E-10	8.10E-10/1.04E-09 μCi/mL
Yttrium-88	2/2	2.51E-08	2.22E-08	9.45E-09/4.08E-08 μCi/mL
	2/2	1.77E-10	2.60E-10	-7.00E-12/3.60E-10 μCi/mL
Zinc-65	2/2	1.14E-09	4.17E-10	8.40E-10/1.43E-09 μCi/mL
ESESOPM017				
Gross alpha	0/9	-5.14E-10	5.45E-10	-1.04E-09/3.90E-10 μCi/mL
Nonvolatile beta	1/4	1.47E-09	2.77E-09	-1.40E-10/5.62E-09 μCi/mL
ESESOPM020				
Tritium	0/6	7.46E-08	2.47E-07	-2.22E-07/3.99E-07 μCi/mL
ESESOPM030				, , , , , , , , , , , , , , , , , , ,
	0/4			
Radium-226	0/1	-2.20E-10		-2.20E-10/-2.20E-10 μCi/mL
Radium-228	0/1	1.80E-10		1.80E-10/1.80E-10 µCi/mL
ESESOPM031				
Strontium-90	1/1	5.37E-09	_	5.37E-09/5.37E-09 μCi/mL
ESESOPM032				
Americium-241	0/3	4.67E-11	2.08E-11	3.00E-11/7.00E-11 µCi/mL
Ourium-242	0/3	-1.67E-12	2.57E-11	-3.00E-11/2.00E-11 μCi/mL
Ourium-243	0/3	9.00E-11	1.18E-10	-1.00E-11/2.20E-10 μCi/mL
Curium-246	0/3	4.67E-11	2.08E-11	
Neptunium-237	2/3	2.47E-10	1.80E-10	3.00E-11/7.00E-11 µCi/mL 6.00E-11/4.20E-10 µCi/mL
Plutonium-238	0/3	2.67E-11	2.52E-11	0.0/5.00E-11 µCi/mL
Plutonium-239/240	0/3	2.00E-11	3.61E-11	
Thorium-228	0/3	2.33E-11	8.62E-11	-2.00E-11/5.00E-11 μCi/mL
Thorium-230	0/3	4.83E-10	2.11E-10	-7.00E-11/1.00E-10 μCi/mL
Thorium-232	1/3	2.00E-11	2.11E-10 2.00E-11	2.60E-10/6.80E-10 μCi/mL
Jranium-234	0/3	4.67E-11		0.0/4.00E-11 μCi/mL
Jranium-235	0/3	4.67⊑-11 0.0	2.08E-11	3.00E-11/7.00E-11 μCi/mL
Jranium-238	1/3	1.67E-11	5.00E-12 5.77E-12	-5.00E-12/5.00E-12 μCi/mL 1.00E-11/2.00E-11 μCi/mL
ESESOPM041				The state of the s
= : :	0/4	4.45.00		
Carbon-14	0/1	-1.11E-08		-1.11E-08/-1.11E-08 μCi/mL

[†] Number of times analyte was detected compared to the total number of field blanks for the analyte.

Table 90. Analytes Detected in Field Blanks for GE

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA160.1 Total dissolved solids	2/6	9,330	1,030	8,000/10,000 μg/L

⁻ Standard deviation cannot be determined.

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA180.1				
Turbidity	0/5	0.40	0.0	0.40/0.40 NTU
EPA353.1	0/47	47.4		
Nitrate-nitrite as nitrogen	2/17	47.1	56.1	10.0/210 μg/L
EPA365.4				
Total phosphates (as P)	0/2	50.0	0.0	50.0/50.0 μg/L
EPA6010A				. 5
Aluminum	1/6	48.4	0.00	40.4/50.0
Antimony	1/17	9.51	3.92 2.02	40.4/50.0 μg/L 1.66/10.0 μg/L
Arsenic	0/17	5.0	0.0	5.0/5.0 μg/L
Barium	2/17	4.46	1.53	0.38/5.0 μg/L
Beryllium	1/6	4.21	1.94	0.25/5.0 μg/L
Cadmium	2/17	4.17	1.85	0.24/5.0 μg/L
Calcium	2/6	54.4	36.1	22.1/100 μg/L
Chromium Cobolt	1/17	4.98	0.78	2.66/7.06 μg/L
Cobalt	2/17	4.50	1.42	0.69/5.0 μg/L
Copper ron	3/17	4.53	1.18	1.41/5.0 μg/L
Lead	1/6 3/17	38.2	18.3	13.0/50.0 μg/L
_ithium	0/2	3.95 25.0	1.74 0.0	0.69/5.0 μg/L
Magnesium	1/6	6.50	2.35	25.0/25.0 µg/L
Manganese	1/6	8.49	3.70	3.81/10.0 μg/L 0.93/10.0 μg/L
Nickel	1/17	5.74	3.06	5.0/17.6 μg/L
Potassium	1/6	73.1	42.4	7.35/100 µg/L
Selenium	1/17	4.83	0.71	2.07/5.0 μg/L
Silica	0/2	164	46.0	131/196 µg/L
Silver	2/17	3.29	1.78	0.74/5.0 μg/L
Sodium	1/6	104	9.80	100/124 μg/L
Thallium	0/10	4.78	0.71	2.75/5.0 µg/L
Tin Vanadium	0/7	10.0	0.0	10.0/10.0 μg/L
Zinc	3/17 3/17	4.24 2.79	1.70 1.44	0.47/5.0 μg/L 1.12/5.60 μg/L
		2.70	1.44	1.12/3.00 рус
EPA7041 Antimony	0/1	F 0		
Antimony	0/1	5.0		5.0/5.0 μg/L
EPA7060				
Arsenic	0/1	5.0	_	5.0/5.0 μg/L
EPA7421				
_ead	0/1	5.0	_	5.0/5.0 μg/L
				9.0/0.0 ру/С
EPA7470	A / -			
Mercury	3/17	0.27	0.16	0.20/0.64 μg/L
EPA7740				
Selenium	0/1	5.0		5.0/5.0 μg/L
				ο.ο/ο.ο μg/L
EPA7841				
「hallium	0/1	5.0	_	5.0/5.0 μg/L
EPA8081				
Aldrin	0/3	0.02	0.0	0.03/0.03~"
lipha-Benzene hexachloride	0/3	0.02	0.0	0.02/0.02 μg/L
eta-Benzene hexachloride	0/3	0.02	0.0	0.02/0.02 μg/L 0.02/0.02 μg/L
lelta-Benzene hexachloride	0/3	0.02	0.0	0.02/0.02 μg/L 0.02/0.02 μg/L
alpha-Chlordane	0/3	0.02	0.0	0.02/0.02 μg/L 0.02/0.02 μg/L

Quality Control Samples

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
gamma-Chlordane	0/3	0.02	0.0	0.02/0.02//
p,p'-DDD	0/3	0.02	0.0	0.02/0.02 μg/L
o,p´-DDE	0/3	0.04	0.0	0.04/0.04 μg/L
o,p´-DDT	0/3	0.04	0.0	0.04/0.04 μg/L
Dieldrin	0/3	0.04	0.0	0.04/0.04 μg/L
Endosulfan sulfate	0/3	0.04	0.0	0.04/0.04 μg/L
Endosulfan I	0/3	0.02	0.0	0.04/0.04 µg/L
Endosulfan II	0/3	0.02		0.02/0.02 μg/L
Endrin	0/3	0.04	0.0	0.04/0.04 μg/L
Endrin ketone	0/3	0.04	0.0	0.04/0.04 μg/L
Heptachlor	0/3		0.0	0.04/0.04 μg/L
Heptachlor epoxide	0/3	0.02	0.0	0.02/0.02 μg/L
indane	0/3	0.02	0.0	0.02/0.02 μg/L
Methoxychlor		0.02	0.0	0.02/0.02 μg/L
PCB 1016	0/3	0.20	0.00	0.20/0.20 µg/L
PCB 1221	0/3	0.13	0.00	0.12/0.13 μg/L
	0/3	0.13	0.00	0.12/0.13 μg/L
PCB 1232	0/3	0.13	0.00	0.12/0.13 μg/L
PCB 1242	0/3	0.13	0.00	0.12/0.13 μg/L
PCB 1248	0/3	0.13	0.00	0.12/0.13 μg/L
PCB 1254	0/3	0.13	0.00	0.12/0.13 μg/L
PCB 1260	0/3	0.13	0.00	0.12/0.13 µg/L
oxaphene	0/3	1.0	0.01	0.99/1.01 μg/L
EPA8151	0/0	0.40		
2,4-Dichlorophenoxyacetic acid	0/2	0.10	0.00	0.10/0.10 μg/L
2,4,5-T	0/1	0.10		0.10/0.10 μg/L
2,4,5-TP (Silvex)	0/2	0.10	0.00	0.10/0.10 μg/L
EPA8270B	0/0	10.0		
Acenaphthene	0/3	10.0	0.0	10.0/10.0 µg/L
Acenaphthylene	0/3	10.0	0.0	10.0/10.0 μg/L
Anthracene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzo[a]anthracene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzo[b]fluoranthene	0/3	10.0	0.0	10.0/10.0 µg/L
Benzo[k]fluoranthene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzoic acid	0/3	20.0	0.0	20.0/20.0 μg/L
Benzo[<i>g,h,i</i>]perylene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzo[<i>a</i>]pyrene	0/3	10.0	0.0	10.0/10.0 μg/L
Benzyl alcohol	0/3	10.0	0.0	10.0/10.0 μg/L
Bis(2-chloroethoxy) methane	0/3	10.0	0.0	10.0/10.0 μg/L
Bis(2-chloroethyl) ether	0/3	10.0	0.0	10.0/10.0 μg/L
Bis(2-chloroisopropyl) ether	0/3	10.0	0.0	10.0/10.0 μg/L
Bis(2-ethylhexyl) phthalate	13/14	19.9	14.2	6.0/54.0 μg/L
-Bromophenyl phenyl ether	0/3	10.0	0.0	10.0/10.0 μg/L
Butylbenzyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L
-Chloroaniline	0/3	20.0	0.0	20.0/20.0 μg/L
-Chloro-m-cresol	0/3	10.0	0.0	10.0/10.0 μg/L
2-Chloronaphthalene	0/3	10.0	0.0	10.0/10.0 μg/L
-Chlorophenol	0/3	10.0	0.0	10.0/10.0 µg/L
-Chlorophenyl phenyl ether	0/3	10.0	0.0	10.0/10.0 µg/L
Chrysene `	0/3	10.0	0.0	10.0/10.0 μg/L
n/p-Cresol	0/3	10.0	0.0	10.0/10.0 µg/L
-Cresol	0/3	10.0	0.0	10.0/10.0 µg/L
Dibenz[a,h]anthracene	0/3	10.0	0.0	10.0/10.0 µg/L
Dibenzofuran	0/3	10.0	0.0	10.0/10.0 µg/L
Di-n-butyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
,2-Dichlorobenzene	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
,3-Dichlorobenzene	0/3	10.0	0.0	
,4-Dichlorobenzene	0/3	10.0		10.0/10.0 μg/L
,3´-Dichlorobenzidine	0/3	49.0	0.0	10.0/10.0 μg/L
2,4-Dichlorophenol	0/3	10.0	0.0	49.0/49.0 μg/L 10.0/10.0 μg/L
, · Pioriloropriorioi	0/0	10.0	0.0	10 0/10 0 U a /l

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Diethyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L
2,4-Dimethyl phenol	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
Dimethyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L 10.0/10.0 μg/L
2,4-Dinitrophenol	0/3	20.0	0.0	20.0/20.0 μg/L
,4-Dinitrotoluene	0/3	10.0	0.0	
,6-Dinitrotoluene	0/3	10.0	0.0	10.0/10.0 μg/L
Pi-n-octyl phthalate	0/3	10.0	0.0	10.0/10.0 μg/L
Tuoranthene	0/3	10.0		10.0/10.0 μg/L
luorene	0/3	10.0	0.0	10.0/10.0 μg/L
lexachlorobenzene	0/3		0.0	10.0/10.0 μg/L
lexachlorobutadiene		10.0	0.0	10.0/10.0 μg/L
	0/3	10.0	0.0	10.0/10.0 μg/L
exachlorocyclopentadiene	0/3	10.0	0.0	10.0/10.0 μg/L
exachloroethane	0/3	10.0	0.0	10.0/10.0 μg/L
ndeno[1,2,3- <i>c,d</i>]pyrene	0/3	10.0	0.0	10.0/10.0 μg/L
sophorone	0/3	10.0	0.0	10.0/10.0 μg/L
-Methyl-4,6-dinitrophenol	0/3	10.0	0.0	10.0/10.0 μg/L
-Methylnaphthalene	0/3	10.0	0.0	10.0/10.0 μg/L
laphthalene	0/3	10.0	0.0	10.0/10.0 μg/L
n-Nitroaniline	0/3	10.0	0.0	10.0/10.0 μg/L
-Nitroaniline	0/3	10.0	0.0	10.0/10.0 μg/L
-Nitroaniline	0/3	10.0	0.0	10.0/10.0 μg/L
itrobenzene	0/3	10.0	0.0	10.0/10.0 μg/L
-Nitrophenol	0/3	10.0	0.0	10.0/10.0 μg/L
-Nitrophenol	0/3	20.0	0.0	20.0/20.0 μg/L
-Nitrosodiphenylamine	0/3	10.0	0.0	10.0/10.0 µg/L
-Nitrosodipropylamine	0/3	10.0	0.0	10.0/10.0 µg/L
entachlorophenol	0/3	10.0	0.0	10.0/10.0 µg/L
henanthrene	0/3	10.0	0.0	10.0/10.0 µg/L
henol	0/3	10.0	0.0	10.0/10.0 µg/L
yrene	0/3	10.0	0.0	10.0/10.0 µg/L
,2,4-Trichlorobenzene	0/3	10.0	0.0	10.0/10.0 µg/L
,4,5-Trichlorophenol	0/3	10.0	0.0	10.0/10.0 µg/L
4,6-Trichlorophenol	0/3	10.0	0.0	10.0/10.0 µg/L
•	0/0	10.0	0.0	10.0/10.0 μg/L
PA9012 yanide	1/21	10.0	0.01	9.97/10.0 μg/L
PA9020B				0.077 10.0 µg/L
	0/2	10.0	0.0	10.0/10.0
otal organic halogens	U/2	10.0	0.0	10.0/10.0 μg/L
PA9045C				
⊣	22/22	6.75	2.04	5.66/12.7 pH
PA9050				
pecific conductance	13/13	1.84	0.54	1.20/2.63 μS/cm
PA9056				
hloride	0/2	86.0	19.8	72.0/100 µg/L
luoride	0/2	50.0	0.0	50.0/50.0 μg/L
ulfate	0/2	141	83.4	82.0/200 μg/L
PA9060				
otal organic carbon	1/7	4,310	1,820	172/5,000 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA9066 Phenols	0/6	5.0	0.0	5.0/5.0 µg/L

[†] Number of times analyte was detected compared to the total number of field blanks for the analyte.

- Standard deviation cannot be determined.

Notes: A value of 0 is reported as 0.0.

Numbers less than 0.004 are reported as 0.00.

Table 91. Analytes Detected in Field Blanks for WA

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
		V-15		Tiesuns
EPA340.2				
Fluoride	0/4	19.3	4.51	13.4/24.0 µg/L
EPA353.2				
Nitrate-nitrite as nitrogen	0/5	20.0	0.0	20.0/20.0 µa/L
Nitrite as nitrogen	0/1	20.0	-	20.0/20.0 μg/L 20.0/20.0 μg/L
EPA365.2				
Total phosphates (as P)	3/4	30.4	24.7	13.7/67.0 μg/L
EPA6010				, 3
Aluminum	1/2	84.8	96 E	00.0/4.40 "
Antimony	0/3	6 4 .8 27.0	86.5	23.6/146 μg/L
Arsenic	-		0.0	27.0/27.0 μg/L
Barium	0/6 1/16	40.0	0.0	40.0/40.0 µg/L
Beryllium	··· -	1.67	0.42	0.18/1.80 µg/L
•	0/2	1.60	0.0	1.60/1.60 μg/L
Cadmium	0/3	4.70	0.0	4.70/4.70 μg/L
Calcium	0/2	260	298	49.9/471 μg/L
Chromium	3/6	3.31	2.91	0.82/7.0 μg/L
Cobalt	0/2	4.50	0.0	4.50/4.50 μg/L
Copper	1/2	3.10	2.12	1.60/4.60 µg/L
ron	3/5	49.9	35.2	10.4/78.9 μg/L
_ead	0/16	47.0	0.0	47.0/47.0 µg/L
Magnesium	1/2	27.7	18.1	14.9/40.5 μg/L
Manganese	0/5	7.80	0.0	7.80/7.80 µg/L
Vickel	0/15	26.0	0.0	26.0/26.0 μg/L
Potassium	0/2	149	54.4	110/187 µg/L
Selenium	0/16	66.0	0.0	66.0/66.0 μg/L
Silver	0/6	4.29	1.73	
Sodium	0/5	81.1	37.1	0.76/5.0 μg/L
Thallium	0/2 -	55.0		42.1/137 μg/L
/anadium	0/2		0.0	55.0/55.0 μg/L
Zinc	0/2	6.90	0.0	6.90/6.90 µg/L
_1110	0/2	53.0	0.0	53.0/53.0 μg/L
EPA7470				
Mercury	0/6	0.70	0.0	0.70/0.70 µg/L
EPA8081				•
Aldrin	0/2	0.05	0.00	0.05/0.05 μg/L
alpha-Benzene hexachloride	0/2	0.05	0.00	0.05/0.05 μg/L 0.05/0.05 μg/L
peta-Benzene hexachloride	0/2	0.05	0.00	
delta-Benzene hexachloride	0/2	0.05	0.00	0.05/0.05 μg/L
	V. L	0.00	0.00	0.05/0.05 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
alpha-Chlordane	0/2	0.05	0.00	0.05/0.05//
gamma-Chlordane	0/2	0.05	0.00	0.05/0.05 μg/L
p,p'-DDD	0/2	0.03	0.00	0.05/0.05 μg/L
			0.00	0.10/0.11 μg/L
o,p´-DDE	0/2	0.11	0.00	0.10/0.11 μg/L
p,p'-DDT	0/2	0.11	0.00	0.10/0.11 μg/L
Dieldrin	0/2	0.11	0.00	0.10/0.11 μg/L
Endosulfan sulfate	0/2	0.11	0.00	0.10/0.11 μg/L
Endosulfan I	0/2	0.05	0.00	0.05/0.05 μg/L
Endosulfan II	0/2	0.11	0.00	0.10/0.11 μg/L
Endrin	0/2	0.11	0.00	0.10/0.11 µg/L
Endrin aldehyde	0/1	0.11		0.11/0.11 μg/L
Endrin ketone	0/2	0.11	0.00	0.10/0.11 μg/L
Heptachlor	0/2	0.05	0.00	0.05/0.05 μg/L
Heptachlor epoxide	0/2	0.05	0.00	0.05/0.05 μg/L
indane	0/5	0.05	0.00	
Methoxychlor	0/2	0.53	0.00	0.05/0.05 μg/L 0.51/0.54 μg/l
PCB 1016	0/2	1.05	0.02	0.51/0.54 μg/L
PCB 1221	0/2			1.02/1.08 µg/L
PCB 1232	0/2	2.10	0.08	2.04/2.16 μg/L
		1.05	0.04	1.02/1.08 µg/L
PCB 1242	0/2	1.05	0.04	1.02/1.08 µg/L
PCB 1248	0/2	1.05	0.04	1.02/1.08 μg/L
PCB 1254	0/2	1.05	0.04	1.02/1.08 µg/L
PCB 1260	0/2	1.05	0.04	1.02/1.08 µg/L
oxaphene	0/2	5.25	0.21	5.10/5.40 μg/L
PA8151				
2,4-Dichlorophenoxyacetic acid	0/4	1.03	0.01	1.02/1.04 μg/L
EPA8260				
Benzene	0/1	5.0		5.0/5. 0 μg/L
Bromodichloromethane	0/1	5.0	_	5.0/5.0 µg/L
Bromoform	0/1	5.0		5.0/5.0 µg/L
Bromomethane	0/1	10.0		10.0/10.0 μg/L
Carbon tetrachloride	0/1	5.0		5.0/5.0 μg/L
Chlorobenzene	0/1	5.0		5.0/5.0 μg/L
Chloroethane	0/1	10.0		10.0/10.0 µg/L
Chloroethene	0/1	10.0		10.0/10.0 μg/L
-Chloroethyl vinyl ether	0/1	10.0		10.0/10.0 µg/L
Chloroform	0/1	5.0		10.0/10.0 µg/L
Chloromethane	0/1	10.0		5.0/5.0 µg/L
Dibromochloromethane	0/1	5.0	_	10.0/10.0 μg/L
,1-Dichloroethane	0/1		-	5.0/5.0 μg/L
,2-Dichloroethane		5.0		5.0/5.0 μg/L
	0/1	5.0	_	5.0/5.0 µg/L
,1-Dichloroethylene	0/1	5.0	_	5.0/5.0 μg/L
,2-Dichloroethylene	0/1	5.0	_	5.0/5.0 μg/L
Dichloromethane	0/1	9.98	_	9.98/9.98 µg/L
,2-Dichloropropane	0/1	5.0		5.0/5.0 μg/L
is-1,3-Dichloropropene	0/1	5.0	_	5.0/5.0 μg/L
ans-1,3-Dichloropropene	0/1	5.0	_	5.0/5.0 μg/L
thylbenzene	0/1	5.0		5.0/5.0 μg/L
,1,2,2-Tetrachloroethane	0/1	5.0		5.0/5.0 μg/L
etrachloroethylene	0/1	5.0		
oluene	0/1	5.0	_	5.0/5.0 µg/L
,1,1-Trichloroethane	0/1	5.0	_	5.0/5.0 µg/L
,1,2-Trichloroethane	0/1			5.0/5.0 μg/L
		5.0		5.0/5.0 μg/L
richloroethylene	0/1	5.0	_	5.0/5.0 μg/L
richlorofluoromethane	0/1	5.0	_	5.0/5.0 μg/L
(ylenes	0/1	5.0		5.0/5.0 μg/L
PA8270 cenaphthene	0/0	40.4	• • •	
.cenaoninene	0/2	10.4	0.28	10.2/10.6 μg/L

Analyte	Frequency	Mean Passell	Standard	Reiminum
mayte	of Detection†	Mean Result	Deviation	Minimum/Maximum Results
Acenaphthylene	0/2	10.4	0.28	10.2/10.6 μg/L
Anthracene	0/2	10.4	0.28	10.2/10.6 µg/L
Benzo[a]anthracene	0/2	10.4	0.28	10.2/10.6 μg/L
Benzo[<i>b</i>]fluoranthene	0/2	10.4	0.28	10.2/10.6 μg/L
Benzo[<i>k</i>]fluoranthene	0/2	10.4	0.28	10.2/10.6 μg/L
Benzoic acid	0/2	26.0	0.71	25.5/26.5 μg/L
Benzo[<i>g,h,i</i>]perylene	0/2	10.4	0.28	10.2/10.6 µg/L
Benzo[a]pyrene	0/2	10.4	0.28	10.2/10.6 μg/L
Benzyl alcohol	0/2	10.4	0.28	10.2/10.6 µg/L
Bis(2-chloroethoxy) methane	0/2	10.4	0.28	10.2/10.6 μg/L
Bis(2-chloroethyl) ether	0/2	10.4	0.28	10.2/10.6 µg/L
Bis(2-chloroisopropyl) ether	0/2	10.4	0.28	10.2/10.6 µg/L
Bis(2-ethylhexyl) phthalate	1/2	26.2	10.9	18.5/33.9 µg/L
-Bromophenyl phenyl ether	0/2	10.4	0.28	10.2/10.6 µg/L
Sutylbenzyl phthalate	0/2	10.4	0.28	10.2/10.6 µg/L
arbazole	0/2	10.4	0.28	10.2/10.6 µg/L
-Chloroaniline	0/2	10.4	0.28	10.2/10.6 µg/L
-Chloro-m-cresol	0/2	10.4	0.28	10.2/10.6 µg/L
-Chloronaphthalene	0/2	10.4	0.28	10.2/10.6 µg/L
-Chlorophenol	0/2	10.4	0.28	10.2/10.6 µg/L
-Chlorophenyl phenyl ether	0/2	10.4	0.28	10.2/10.6 µg/L
Chrysene	0/2	10.4	0.28	10.2/10.6 µg/L
n/p-Cresol	0/2	10.4	0.28	10.2/10.6 μg/L
-Cresol	0/2	10.4	0.28	10.2/10.6 μg/L
ibenz[a,h]anthracene	0/2	10.4	0.28	10.2/10.6 μg/L
Dibenzofuran	0/2	10.4	0.28	10.2/10.6 μg/L
i-n-butyl phthalate	0/2	10.4	0.28	10.2/10.6 μg/L
,2-Dichlorobenzene	0/2	10.4	0.28	10.2/10.6 μg/L
,3-Dichlorobenzene	0/2	10.4	0.28	10.2/10.6 μg/L
,4-Dichlorobenzene	0/2	10.4	0.28	10.2/10.6 μg/L
,3 -Dichlorobenzidine	0/2	10.4	0.28	10.2/10.6 μg/L
,4-Dichlorophenol	0/2	10.4	0.28	10.2/10.6 μg/L
ethyl phthalate	0/2	10.4	0.28	10.2/10.6 μg/L
,4-Dimethyl phenol	0/2	10.4	0.28	10.2/10.6 μg/L
imethyl phthalate	0/2	10.4	0.28	10.2/10.6 μg/L
,4-Dinitrophenol	0/2	26.0	0.71	25.5/26.5 μg/L
,4-Dinitrotoluene	0/2	10.4	0.28	10.2/10.6 μg/L
,6-Dinitrotoluene	0/2	10.4	0.28	10.2/10.6 μg/L
i-n-octyl phthalate	0/2	10.4	0.28	10.2/10.6 μg/L
luoranthene	0/2	10.4	0.28	10.2/10.6 μg/L
luorene	0/2	10.4	0.28	10.2/10.6 μg/L
exachlorobenzene	0/2	10.4	0.28	10.2/10.6 μg/L
lexachlorobutadiene	0/2	10.4	0.28	10.2/10.6 μg/L
exachlorocyclopentadiene exachloroethane	0/2	10.4	0.28	10.2/10.6 μg/L
	0/2	10.4	0.28	10.2/10.6 μg/L
ndeno[1,2,3- <i>c,d</i>]pyrene	0/2	10.4	0.28	10.2/10.6 μg/L
sophorone -Methyl-4 6-dinitrophonol	0/2	10.4	0.28	10.2/10.6 μg/L
-Methyl-4,6-dinitrophenol -Methylnaphthalene	0/2	26.0	0.71	25.5/26.5 μg/L
aphthalene	0/2	10.4	0.28	10.2/10.6 μg/L
aprimalerie i-Nitroaniline	0/2	10.4	0.28	10.2/10.6 μg/L
-Nitroaniline -Nitroaniline	0/2	26.0	0.71	25.5/26.5 μg/L
-Nitroaniline -Nitroaniline	0/2	26.0	0.71	25.5/26.5 μg/L
itrobenzene	0/2	26.0	0.71	25.5/26.5 μg/L
Nitrophenol	0/2	10.4	0.28	10.2/10.6 μg/L
	0/2	10.4	0.28	10.2/10.6 μg/L
-Nitrophenol	0/2	26.0	0.71	25.5/26.5 μg/L
-Nitrosodiphenylamine	0/2	10.4	0.28	10.2/10.6 μg/L
-Nitrosodipropylamine	0/2	10.4	0.28	10.2/10.6 μg/L
entachlorophenol	0/2	26.0	0.71	25.5/26.5 μg/L
henanthrene	0/2	10.4	0.28	10.2/10.6 μg/L
henol	0/5	10.4	0.22	10.2/10.6 μg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Pyrene	0/2	10.4	0.28	10.2/10.6 μg/L
1,2,4-Trichlorobenzene	0/2	10.4	0.28	10.2/10.6 μg/L 10.2/10.6 μg/L
2,4,5-Trichlorophenol	0/2	26.0	0.71	25.5/26.5 µg/L
2,4,6-Trichlorophenol	0/2	10.4	0.28	10.2/10.6 μg/L
EPA9010A				•
Cyanide	1/15	14.5	2.81	4.33/15.2 μg/L
EPA9020B				
otal organic halogens	1/4	94.2	51.6	16.9/120 μg/L
EPA9040A				
H	1/1	5.78	<u></u>	5.78/5.78 pH
PA9056	0.40			
Chloride	3/3	183	8.08	174/190 μg/L
Sulfate	0/3	340	0.0	340/340 μg/L
PA9060				
otal organic carbon	2/4	563	505	125/1,000 μg/L

[†] Number of times analyte was detected compared to the total number of field blanks for the analyte.

Notes: A value of 0 is reported as 0.0.

Numbers less than 0.004 are reported as 0.00. If the analyte was not detected in the field blank(s), detection limit information appears in the *Mean Result* and Minimum/Maximum Results columns.

Table 92. Analytes Detected in Field Blanks for GP

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPIA-001				
Gross alpha Nonvolatile beta	2/21 1/21	7.63E-11 2.53E-10	2.86E-10 4.71E-10	-1.82E-10/9.07E-10 μCi/mL -2.14E-10/1.88E-09 μCi/mL
EPIA-002 Tritium	0/18	-1.86E-07	2.64E-07	-6.07E-07/2.64E-07 _. µCi/mL
EPIA-003 Carbon-14	0/10	5.51E-10	3.01E-09	-4.23E-09/4.40E-09 μCi/mL
EPIA-004 Strontium-90	0/16	-4.30E-11	2.56E-10	-5.44E-10/3.28E-10 μCi/mL
EPIA-005 Technetium-99	0/17	-3.40E-09	5.01E-09	-1.21E-08/7.02E-09 μCi/mL
EPIA-006 lodine-129	0/15	3.41E-10	3.54E-10	-1.75E-10/9.33E-10 μCi/mL
EPIA-008 Radium-226	4/14	4.17E-10	2.87E-10	5.90E-11/1.04E-09 μCi/mL

⁻ Standard deviation cannot be determined.

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPIA-009				
Radium-228	12/15	2.76E-09	1.30E-09	7.29E-10/5.83E-09 µCi/mL
EPIA-011				
Americium-241	0/16	1.63E-10	2.25E-10	-2.30E-11/8.59E-10 μCi/mL
Curium-242	0/16	2.94E-12	8.12E-11	-2.65E-10/1.15E-10 µCi/mL
Ourium-243/244	0/16	9.43E-11	1.02E-10	-1.02E-10/3.49E-10 µCi/mL
Curium-245/246	1/16	5.64E-11	5.56E-11	-2.00E-11/1.83E-10 µCi/mL
Plutonium-238	4/16	3.55E-10	3.16E-10	3.70E-11/1.04E-09 µCi/mL
Plutonium-239/240	1/16	3.53E-11	5.30E-11	-2.10E-11/2.14E-10 μCi/mL
Jranium-233/234	0/16	9.53E-11	1.12E-10	-2.40E-11/3.66E-10 µCi/mL
Jranium-235	0/16	-2.31E-12	4.54E-11	-8.00E-11/1.40E-10 µCi/mL
Jranium-238	0/16	1.46E-11	6.28E-11	-2.50E-11/1.91E-10 µCi/mL
EPIA-012				·
Thorium-228	0/15	8.45E-11	1.78E-10	1.645 10/4.065 1003/1
Thorium-230	2/15	1.59E-10	1.78E-10 1.05E-10	-1.64E-10/4.26E-10 μCi/mL
Thorium-232	0/15	0.0	3.29E-11	3.90E-11/3.75E-10 µCi/mL
Hondin-202	0/13	0.0	3.296-11	-3.40E-11/1.03E-10 μCi/mL
EPIA-013				
Actinium-228	1/18	7.74E-09	9.95E-09	4.40E-11/3.99E-08 μCi/mL
Antimony-125	0/18	-1.23E-10	2.78E-09	-4.55E-09/5.07E-09 μCi/mL
Cerium-144	0/18	-1.42E-10	5.56E-09	-1.20E-08/9.78E-09 μCi/mL
Cesium-134	0/18	-5.46E-10	1.14E-09	-3.74E-09/1.33E-09 μCi/mL
Cesium-137	1/18	7.32E-10	1.86E-09	-3.22E-09/5.32E-09 µCi/mL
Cobalt-57	1/18	4.68E-10	1.00E-09	-7.63E-10/2.98E-09 µCi/mL
Cobalt-60	1/18	2.80E-10	1.00E-09	-1.58E-09/2.96E-09 μCi/mL
uropium-152	0/18	-5.61E-10	2.98E-09	-5.60E-09/4.56E-09 μCi/mL
uropium-154	0/18	-4.61E-10	3.07E-09	-5.05E-09/6.60E-09 μCi/mL
Europium-155	0/18	4.86E-10	3.35E-09	-7.96E-09/5.19E-09 μCi/mL
.ead-212	2/18	3.97E-09	3.75E-09	3.50E-11/1.68E-08 µCi/mL
Manganese-54	0/18	2.35E-10	8.92E-10	-1.27E-09/1.81E-09 μCi/mL
otassium-40	2/18	1.77E-08	1.28E-08	3.35E-09/4.45E-08 µCi/mL
romethium-144	0/18	-2.08E-10	1.03E-09	-2.21E-09/1.90E-09 μCi/mL
Promethium-146	0/18	-2.21E-10	1.72E-09	-2.09E-09/5.50E-09 μCi/mL
Ruthenium-106	0/18	6.62E-11	8.56E-09	-2.37E-08/1.48E-08 µCi/mL
Sodium-22	0/18	-1.84E-10	1.11E-09	-1.82E-09/2.37E-09 µCi/mL
′ttrium-88	1/18	1.31E-10	1.72E-09	-2.00E-09/4.47E-09 µCi/mL
Zinc-65	0/18	-9.72E-10	2.61E-09	-5.84E-09/6.68E-09 μCi/mL
PIA-020				
Promethium-147	0/4	5.98E-11	6.77E-10	-5.18E-10/9.98E-10 μCi/mL
PIA-022				
Nickel-63	0/8	-2.56E-08	7.87E-08	-1.23E-07/7.97E-08 μCi/mL
EPIA-032				·
Veptunium-237	0/4	6 FOE 40	1 605 44	1.005.44/0.005.44007.1
reptulliulii-23/	0/4	6.50E-12	1.63E-11	-1.60E-11/2.30E-11 μCi/mL

[†] Number of times analyte was detected compared to the total number of field blanks for the analyte.

Table 93. Analytes Detected in Field Blanks for TM

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EICHROMTC1MOD			· · · · · · · · · · · · · · · · · · ·	
Technetium-99	0/1	7.40E-10		7.40E-10/7.40E-10 µCi/mL
EPA900.0MOD				·
Gross alpha	1/8	2.84E-10	3.90E-10	-2.70E-10/1.04E-09 μCi/mL
Nonvolatile beta	0/7	-7.41E-10	1.36E-09	-2.91E-09/5.10E-10 μCi/mL
EPA901.1MOD				
Actinium-228	0/1	2.08E-09	_	2.08E-09/2.08E-09 µCi/mL
Antimony-124	0/1	7.80E-09		7.80E-09/7.80E-09 µCi/mL
Antimony-125	0/1	-4.28E-09		-4.28E-09/-4.28E-09 μCi/mL
Barium-133	0/1	1.44E-09		1.44E-09/1.44E-09 μCi/mL
Cerium-144	0/1	-2.09E-08		-2.09E-08/-2.09E-08 µCi/mL
Cesium-134	0/1	6.24E-09		6.24E-09/6.24E-09 μCi/mL
Cesium-137	0/1	1.70E-10		1.70E-10/1.70E-10 µCi/mL
Cobalt-57	0/1	-1.12E-09	_	-1.12E-09/-1.12E-09 µCi/mL
Cobalt-58	0/1	2.90E-09	_	2.90E-09/2.90E-09 μCi/mL
Cobalt-60	0/1	-2.34E-09	_	-2.34E-09/-2.34E-09 μCi/mL
Europium-152	0/1	-1.24E-08	_	
Europium-154	0/1	-3.72E-09		-1.24E-08/-1.24E-08 μCi/mL -3.72E-09/-3.72E-09 μCi/mL
Europium-155	0/1	-2.33E-09		-3.72E-09/-3.72E-09 µCi/mL -2.33E-09/-2.33E-09 µCi/mL
Lead-212	0/1	1.62E-09		1.62E-09/1.62E-09 µCi/mL
Manganese-54	0/1	-4.37E-09		-4.37E-09/-4.37E-09 μCi/mL
Potassium-40	0/1	3.05E-08	****	3.05E-08/3.05E-08 µCi/mL
Promethium-144	0/1	-2.27E-09	_	-2.27E-09/-2.27E-09 µСi/mL
Promethium-146	0/1	1.00E-11		1.00E 11/1.00E 11C:/!
Ruthenium-106	0/1	-1.55E-08	<u> </u>	1.00E-11/1.00E-11 μCi/mL
Sodium-22	0/1	-5.50E-10		-1.55E-08/-1.55E-08 μCi/mL
Tin-113	0/1	-4.60E-09	_	-5.50E-10/-5.50E-10 μCi/mL
Yttrium-88	0/1	7.10E-10		-4.60E-09/-4.60E-09 μCi/mL
Zinc-65	0/1	-1.32E-09		7.10E-10/7.10E-10 µCi/mL
Zirconium-95	0/1	-3.20E-09	_	-1.32E-09/-1.32E-09 μCi/mL -3.20E-09/-3.20E-09 μCi/mL
EPA903.0MOD				= ::: ::=== :: Fo # L
Radium, total alpha-emitting	0/4	9.005.44	0.075.44	4.00******
Radium-226	0/4 1/2	8.00E-11	3.27E-11	4.00E-11/1.20E-10 μCi/mL
TAGIUHFZZU	1/2	5.35E-10	6.15E-10	1.00E-10/9.70E-10 μCi/mL
EPA904.0MOD				
Radium-228	0/2	8.55E-10	2.81E-09	-1.13E-09/2.84E-09 µCi/mL
EPA906.0MOD				
Tritium	0/3	-2.87E-07	3.25E-07	-5.40E-07/8.00E-08 µCi/mL

[†] Number of times analyte was detected compared to the total number of field blanks for the analyte. — Standard deviation cannot be determined.

Table 94. Analytes Detected in Trip Blanks for ES

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EDAGOCO				
EPA8260	4/40	0.04	7.00	0.0/00.0
Acetone	1/19	8.31	7.90	3.0/39.0 μg/L
Benzene	0/19	5.0	0.0	5.0/5.0 μg/L
Bromodichloromethane	0/19	5.0	0.0	5.0/5.0 μg/L
Bromoform	0/19	5.0	0.0	5.0/5.0 μg/L
Bromomethane	0/19	10.0	0.0	10.0/10.0 μg/L
Carbon disulfide	0/19	5.0	0.0	5.0/5.0 μg/L
Carbon tetrachloride	0/19	5.0	0.0	5.0/5.0 μg/L
Chlorobenzene	0/19	5.0	0.0	5.0/5.0 μg/L
Chloroethane	0/19	10.0	0.0	10.0/10.0 μg/L
Chloroethene	0/19	10.0	0.0	10.0/10.0 μg/L
Chloroform	0/18	5.0	0.0	5.0/5.0 μg/L
Chloromethane	0/19	10.0	0.0	10.0/10.0 μg/L
Dibromochloromethane	0/19	5.0	0.0	5.0/5.0 μg/L
1,1-Dichloroethane	0/19	5.0	0.0	5.0/5.0 μg/L
1,2-Dichloroethane	0/19	5.0	0.0	5.0/5.0 μg/L
1,1-Dichloroethylene	0/19	5.0	0.0	5.0/5.0 μg/L
cis-1,2-Dichloroethylene	0/19	5.0	0.0	5.0/5.0 µg/L
trans-1,2-Dichloroethylene	0/19	5.0	0.0	5.0/5.0 µg/L
Dichloromethane	0/19	2.43	0.34	2.0/3.50 µg/L
1,2-Dichloropropane	0/19	5.0	0.0	5.0/5.0 µg/L
cis-1,3-Dichloropropene	0/19	5.0	0.0	5.0/5.0 µg/L
trans-1,3-Dichloropropene	0/19	5.0	0.0	5.0/5.0 µg/L
Ethylbenzene	0/19	5.0	0.0	5.0/5.0 µg/L
2-Hexanone	0/19	10.0	0.0	10.0/10.0 μg/L
Methyl ethyl ketone	0/19	10.0	0.0	10.0/10.0 µg/L
Methyl isobutyl ketone	0/19	12.0	0.0	12.0/12.0 µg/L
Styrene	0/19	5.0	0.0	5.0/5.0 μg/L
1,1,2,2-Tetrachloroethane	0/19	5.0	0.0	5.0/5.0 µg/L
Tetrachloroethylene	0/19	5.0	0.0	5.0/5.0 µg/L
Toluene	0/19	5.0	0.0	5.0/5.0 µg/L
1,1,1-Trichloroethane	0/19	5.0	0.0	5.0/5.0 µg/L
1,1,2-Trichloroethane	0/19	5.0	0.0	5.0/5.0 μg/L
Trichloroethylene	1/19	4.79	0.90	1.10/5.0 µg/L
Vinyl acetate	0/19	5.0	0.0	5.0/5.0 µg/L
Xylenes	0/19	5.0	0.0	5.0/5.0 μg/L

[†] Number of times analyte was detected compared to the total number of trip blanks for the analyte.

Table 95. Analytes Detected in Trip Blanks for EX

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA8260A				
Acetone	0/15	10.0	0.0	10.0/10.0 µg/L
Benzene	0/15	5.0	0.0	5.0/5.0 µg/L
Bromodichloromethane	0/15	5.0	0.0	5.0/5.0 µg/L
Bromoform	0/15	5.0	0.0	5.0/5.0 µg/L
Bromomethane	0/15	5.0	0.0	5.0/5.0 µg/L

[—] Standard deviation cannot be determined.

	Frequency		Standard	
Analyte	of Detection†	Mean Result	Deviation	Minimum/Maximum Results
Carbon disulfide	0/15	5.0	0.0	5.0/5.0 µg/L
Carbon tetrachloride	0/15	5.0	0.0	5.0/5.0 µg/L
Chlorobenzene	0/15	5.0	0.0	5.0/5.0 µg/L
Chloroethane	0/15	5.0	0.0	5.0/5.0 µg/L
Chloroethene	0/15	5.0	0.0	5.0/5.0 µg/L
Chloroform	0/15	5.0	0.0	5.0/5.0 µg/L
Chloromethane	0/15	5.0	0.0	5.0/5.0 μg/L
Dibromochloromethane	0/15	5.0	0.0	5.0/5.0 μg/L
1,1-Dichloroethane	0/15	5.0	0.0	5.0/5.0 µg/L
1,2-Dichloroethane	0/15	5.0	0.0	5.0/5.0 µg/L
1,1-Dichloroethylene	0/15	5.0	0.0	5.0/5.0 μg/L
1,2-Dichloroethylene	0/15	5.0	0.0	5.0/5.0 μg/L
Dichloromethane	0/15	10.0	0.0	10.0/10.0 μg/L
1,2-Dichloropropane	0/15	5.0	0.0	5.0/5.0 μg/L
cis-1,3-Dichloropropene	0/15	5.0	0.0	5.0/5.0 µg/L
trans-1,3-Dichloropropene	0/15	5.0	0.0	5.0/5.0 µg/L
Ethylbenzene	0/15	5.0	0.0	5.0/5.0 μg/L
2-Hexanone	0/15	10.0	0.0	10.0/10.0 μg/L
Methyl ethyl ketone	0/15	10.0	0.0	10.0/10.0 µg/L
Methyl isobutyl ketone	0/15	10.0	0.0	10.0/10.0 µg/L
Styrene	0/15	5.0	0.0	5.0/5.0 µg/L
1,1,2,2-Tetrachloroethane	0/15	5.0	0.0	5.0/5.0 μg/L
Tetrachloroethylene	0/15	5.0	0.0	5.0/5.0 µg/L
Toluene	0/15	5.0	0.0	5.0/5.0 μg/L
1,1,1-Trichloroethane	0/15	5.0	0.0	5.0/5.0 µg/L
1,1,2-Trichloroethane	0/15	5.0	0.0	5.0/5.0 μg/L
Trichloroethylene	0/15	5.0	0.0	5.0/5.0 μg/L
Vinyl acetate	0/15	10.0	0.0	10.0/10.0 μg/L
Xylenes	0/15	10.0	0.0	10.0/10.0 μg/L

[†] Number of times analyte was detected compared to the total number of trip blanks for the analyte.

Note: If the analyte was not detected in the trip blank(s), detection limit information appears in the *Mean Result* and *Minimum/Maximum Results* columns.

Table 96. Analytes Detected in Trip Blanks for GE

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
EPA8260A				
Acetone	5/42	4.79	0.76	2.33/6.67 µg/L
Benzene	0/42	1.0	0.0	1.0/1.0 µg/L
Bromodichloromethane	0/42	1.0	0.0	1.0/1.0 µg/L
Bromoform	0/42	1.0	0.0	1.0/1.0 µg/L
Bromomethane	0/42	1.0	0.0	1.0/1.0 µg/L
Carbon disulfide	0/42	5.0	0.0	5.0/5.0 µg/L
Carbon tetrachloride	0/42	1.0	0.0	1.0/1.0 µg/L
Chlorobenzene	1/42	0.99	0.06	0.59/1.0 µg/L
Chloroethane	0/42	1.0	0.0	1.0/1.0 µg/L
Chloroethene	0/42	1.0	0.0	1.0/1.0 µg/L
Chloroform	0/42	1.0	0.0	1.0/1.0 µg/L
Chloromethane	0/42	1.0	0.0	1.0/1.0 µg/L
Dibromochloromethane	0/42	1.0	0.0	1.0/1.0 µg/L
1,1-Dichloroethane	0/42	1.0	0.0	1.0/1.0 µg/L
1,2-Dichloroethane	0/42	1.0	0.0	1.0/1.0 µg/L
1,1-Dichloroethylene	1/42	1.02	0.14	1.0/1.90 µg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
1,2-Dichloroethylene	0/42	1.0	0.0	1.0/1.0 µg/L
Dichloromethane	3/42	2.33	1.59	1.0/10.1 µg/L
1,2-Dichloropropane	0/42	1.0	0.0	1.0/1.0 μg/L
cis-1,3-Dichloropropene	0/42	1.0	0.0	1.0/1.0 µg/L
trans-1,3-Dichloropropene	0/42	1.0	0.0	1.0/1.0 µg/L
Ethylbenzene	0/42	1.0	0.0	1.0/1.0 µg/L
2-Hexanone	0/42	5.0	0.0	5.0/5.0 µg/L
Methyl ethyl ketone	0/42	5.0	0.0	5.0/5.0 µg/L
Methyl isobutyl ketone	0/42	5.0	0.0	5.0/5.0 μg/L
Styrene	0/42	1.0	0.0	1.0/1.0 µg/L
1,1,2,2-Tetrachloroethane	0/42	1.0	0.0	1.0/1.0 µg/L
Tetrachloroethylene	0/42	1.0	0.0	1.0/1.0 µg/L
Toluene	1/42	1.02	0.10	1.0/1.64 µg/L
1,1,1-Trichloroethane	0/42	1.0	0.0	1.0/1.0 µg/L
1,1,2-Trichloroethane	0/42	1.0	0.0	1.0/1.0 µg/L
Trichloroethylene	0/42	1.0	0.0	1.0/1.0 µg/L
Vinyl acetate	0/42	5.0	0.0	5.0/5.0 µg/L
Xylenes	0/42	1.0	0.0	1.0/1.0 µg/L

[†] Number of times analyte was detected compared to the total number of trip blanks for the analyte.

Note: If the analyte was not detected in the trip blank(s), detection limit information appears in the *Mean Result* and *Minimum/Maximum Results* columns.

Table 97. Analytes Detected in Trip Blanks for WA

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
			- Deviation	William Waxiii diii nesult
EPA8260				
Acetone	0/42	7.14	3.17	1.87/12.5 μg/L
Benzene	0/42	5.0	0.0	5.0/5.0 µg/L
Bromodichloromethane	0/42	5.0	0.0	5.0/5.0 µg/L
Bromoform	0/42	5.0	0.0	5.0/5.0 μg/L
Bromomethane	0/42	10.0	0.0	10.0/10.0 µg/L
Carbon disulfide	7/42	4.40	1.36	1.11/5.0 µg/L
Carbon tetrachloride	0/42	5.0	0.0	5.0/5.0 µg/L
Chlorobenzene	0/42	5.0	0.0	5.0/5.0 μg/L
Chloroethane	0/42	10.0	0.0	10.0/10.0 µg/L
Chloroethene	0/42	10.0	0.0	10.0/10.0 µg/L
Chloroform	0/42	5.0	0.0	5.0/5.0 µg/L
Chloromethane	0/42	10.0	0.0	10.0/10.0 μg/L
Dibromochloromethane	0/42	5.0	0.0	5.0/5.0 μg/L
1,1-Dichloroethane	0/42	5.0	0.0	5.0/5.0 µg/L
1,2-Dichloroethane	0/42	5.0	0.0	5.0/5.0 µg/L
1,1-Dichloroethylene	0/42	5.0	0.0	5.0/5.0 µg/L
1,2-Dichloroethylene	0/42	5.0	0.0	5.0/5.0 µg/L
Dichloromethane	3/42	8.54	5.06	1.52/22.1 µg/L
1,2-Dichloropropane	0/42	5.0	0.0	5.0/5.0 μg/L
cis-1,3-Dichloropropene	0/42	5.0	0.0	5.0/5.0 µg/L
trans-1,3-Dichloropropene	0/42	5.0	0.0	5.0/5.0 μg/L
Ethylbenzene	0/42	5.0	0.0	5.0/5.0 µg/L
2-Hexanone	0/42	10.0	0.0	10.0/10.0 μg/L
Methyl ethyl ketone	2/42	9.58	1.88	1.06/10.0 µg/L
Methyl isobutyl ketone	0/42	10.0	0.0	10.0/10.0 µg/L
Styrene	0/42	5.0	0.0	5.0/5.0 µg/L
1,1,2,2-Tetrachioroethane	0/42	5.0	0.0	5.0/5.0 µg/L
Tetrachloroethylene	0/42	5.0	0.0	5.0/5.0 µg/L

Analyte	Frequency of Detection†	Mean Result	Standard Deviation	Minimum/Maximum Results
Toluene	0/42	5.0	0.0	5.0/5.0 µg/L
1,1,1-Trichloroethane	0/42	5.0	0.0	5.0/5.0 µg/L
1,1,2-Trichloroethane	0/42	5.0	0.0	5.0/5.0 µg/L
Trichloroethylene	0/42	5.0	0.0	5.0/5.0 µg/L
Vinyl acetate	0/42	10.0	0.0	10.0/10.0 µg/L
Xylenes	0/42	5.0	0.0	5.0/5.0 µg/L

[†] Number of times analyte was detected compared to the total number of trip blanks for the analyte.

Note: If the analyte was not detected in the trip blank(s), detection limit information appears in the Mean Result and Minimum/Maximum Results columns.

Table 98. Bailed Wells

Well	Date	Well	Date	
FTF 3	03/12/98	HTF 5	03/25/98	
FTF 12	03/11/98	HTF 6	03/25/98	
FTF 15	03/11/98	HTF 10	03/24/98	
FTF 16	03/11/98	HTF 11	03/24/98	
FTF 17	03/11/98	HTF 17	03/19/98	
FTF 18	03/11/98	HTF 18	03/24/98	
FTF 19	03/11/98	HTF 19	03/24/98	
FTF 20	03/11/98	HTF 20	03/24/98	
FTF 21	03/11/98	HTF 21	03/24/98	
FTF 22	03/11/98	HTF 25	03/19/98	
FTF 23	03/11/98	HTF 26	03/19/98	
FTF 24A	03/12/98	HTF 27	03/19/98	
FTF 25A	03/12/98	HTF 28	03/19/98	
FTF 26	03/12/98	HTF 31	03/19/98	
FTF 27	03/12/98	HTF 32	03/19/98	
HTF 2	03/25/98	HTF 34	03/19/98	
HTF 3	03/25/98	MSB 48D	03/11/98	

Table 99. Sampled Wells with Metal Casings

Well	Casing	Well	Casing	
AC 1A	Steel	MSB 42TA	Carbon steel	
AC 1B	Steel	MSB 43TA	Carbon steel	
ASB 8TA	Carbon steel	MSB 48TA	Carbon steel	
FTF 3	Steel	MSB 54TA	Carbon steel	
FTF 12	Steel	MSB 55TA	Carbon steel	
HTF 1	Steel	MSB 82TA	Carbon steel	
HTF 2	Steel	MSB 85TA	Steel	
HTF 3	Steel	RWM 1	Carbon steel	
HTF 5	Steel	RWM 3	Carbon steel	
HTF 6	Steel	RWM 4	Carbon steel	
HTF 10	Steel	RWM 5	Carbon steel	
HTF 11	Steel	RWM 6	Carbon steel	
HTF 15	Steel	RWM 7	Carbon steel	
MSB 12TA	Steel	RWM 8	Carbon steel	
MSB 23TA	Steel	RWM 9	Carbon steel	
MSB 29TA	Carbon steel	RWM 10	Carbon steel	
MSB 34TA	Steel	RWM 11	Carbon steel	

Well	Casing	Well	Casing	
MSB 35TA	Carbon steel	RWM 13B	Carbon steel	
MSB 36TA	Carbon steel	RWM 13C	Carbon steel	
MSB 37TA	Carbon steel	RWM 14B	Carbon steel	
MSB 39TA	Carbon steel	RWM 14C	Carbon steel	
MSB 41TA	Carbon steel	RWM 15B	Carbon steel	

Table 100. Wells That Had Turbidity Greater Than 15 NTU

ABP 8C AMB 14D O3/11/98 72.6 AMB 15D O3/06/98 150 FBP 6D O3/31/98 FBP 9D O3/31/98 FBP 1DD O3/31/98 FBP 11D O3/31/98 FSB 94C O1/13/98 FSB 16D O1/07/98 FSB 116D O1/07/98 FSB 119D O1/20/98 FSB 120D O1/13/98 FTF 3 O3/12/98 FTF 15 O3/11/98 FTF 16 O3/11/98 FTF 17 O3/11/98 TTF 18 O3/11/98 TTF 18 O3/11/98 TTF 19 FTF 20 O3/11/98 FTF 20 O3/11/98 FTF 21 O3/11/98 FTF 22 O3/11/98 FTF 23 O3/11/98 FTF 20 O3/11/98 FTF 21 O3/11/98 FTF 22 O3/11/98 FTF 23 O3/11/98 FTF 24A O3/12/98 FTF 25A O3/12/98 FTF 25A O3/12/98 FTF 26A	
AMB 14D 03/11/98 72.6 AMB 15D 03/06/98 150 FBP 6D 03/31/98 189 FBP 9D 03/31/98 49.2 FBP 10D 03/30/98 73.1 FBP 11D 03/31/98 24.9 FSB 94C 01/13/98 17.3 FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 77.5 FTF 16 03/11/98 170 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 81.4 FTF 21 03/11/98 81.4 FTF 22 03/11/98 81.4 FTF 23 03/11/98 81.4 FTF 24A 03/12/98 47.4 FTF 24A 93/12/98 874 FTF 25A 03/12/98 874	
AMB 15D 03/06/98 150 FBP 6D 03/31/98 189 FBP 9D 03/31/98 49.2 FBP 10D 03/30/98 73.1 FBP 11D 03/31/98 24.9 FSB 94C 01/13/98 17.3 FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 77.5 FTF 16 03/11/98 170 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 281 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 74.5 FTF 24A 03/12/98 874 FTF 25A 03/12/98 874	
FBP 6D 03/31/98 189 FBP 9D 03/31/98 49.2 FBP 10D 03/30/98 73.1 FBP 11D 03/31/98 24.9 FSB 94C 01/13/98 17.3 FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 24.1 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 175 FTF 17 03/11/98 175 FTF 18 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 81.4 FTF 23 03/11/98 81.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 874 FTF 25A	
FBP 9D 03/31/98 49.2 FBP 10D 03/30/98 73.1 FBP 11D 03/31/98 24.9 FSB 94C 01/13/98 17.3 FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 15 03/11/98 17.0 FTF 16 03/11/98 17.5 FTF 17 03/11/98 17.5 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 221 FTF 22 03/11/98 81.4 FTF 23 03/11/98 74.5 FTF 24A 03/12/98 874 FTF 25A 03/12/98 874 FTF 25A	
FBP 10D 03/30/98 73.1 FBP 11D 03/31/98 24.9 FSB 94C 01/13/98 17.3 FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 221 FTF 22 03/11/98 81.4 FTF 23 03/11/98 74.5 FTF 24A 03/12/98 874 FTF 25A 03/12/98 874 FTF 25A	
FBP 11D 03/31/98 24.9 FSB 94C 01/13/98 17.3 FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 81.4 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 874	
FSB 94C 01/13/98 17.3 FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 81.4 FTF 23 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FSB116D 01/07/98 40.6 FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FSB119D 01/20/98 44.5 FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 81.4 FTF 23 03/11/98 47.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FSB120D 01/13/98 22.5 FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 3 03/12/98 241 FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 12 03/11/98 72.2 FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 15 03/11/98 170 FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 16 03/11/98 71.5 FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 17 03/11/98 175 FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 18 03/11/98 283 FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 20 03/11/98 221 FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 21 03/11/98 81.4 FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 22 03/11/98 74.5 FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 23 03/11/98 47.4 FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 24A 03/12/98 874 FTF 25A 03/12/98 428	
FTF 25A 03/12/98 428	
	•
FTF 27 03/12/98 >1,000	
HAA 3D 01/14/98 188	
HAA 3D 02/06/98 29.0	
HAA 6A 01/30/98 56.6	
HAA 6D 02/02/98 153	
HSB115D 01/07/98 21.9	
HSB147D 01/23/98 19.8	
HSB152D 01/21/98 97.2	
HSL 3D 01/28/98 41.6	
HSL 7D 01/30/98 81.0	
HTF 10 03/24/98 95.8	
HTF 15 03/25/98 181	
HTF 17 03/19/98 42.7	
HTF 28 03/19/98 165	
HXB 6D 01/21/98 25.0	
KDB 1 01/08/98 19.5	
KDB 4 01/08/98 24.6	
KDB 5 01/08/98 71.3	
· · · · · · · · · · · · · · · · · · ·	
LFW 77 02/06/98 205 MSB 39TA 02/25/98 25.2	
MSB 70D 02/25/98 15.2	
RPC 5DL 01/15/98 39.6	
RPC 6DL 01/14/98 23.9	

Wel	Date	Results (in NTU)	
RPC 6DU	01/14/98	83.0	
RPC 6DU	01/28/98	505	
RPC 10DL	01/19/98	58.8	
RPC 10DL	02/05/98	23.8	
RPC 11DL	01/26/98	44.1	
RPC 11DL	02/11/98	230	
RWM 14C	01/23/98	23.0	
RWM 14C	02/04/98	38.1	
ZBG 1A	02/02/98	1,000	

Table 101. Analyses Not Performed by ES

Well	Analyte	Reason	
KRP 8	Gamma PHA	Not reported by laboratory	
KRP 8	Gamma PHA	Not reported by laboratory	
KRP 9	Gamma PHA	Not reported by laboratory	
KRP 9	Gamma PHA	Not reported by laboratory	
LFW 6R	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 28	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 30	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 32	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 32C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 34	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 41R	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 45D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 47D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 56D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 63B	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 63C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 64C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 64D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 65C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 65D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 67B	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 67C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 67D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 68D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 69C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 69D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 71B	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 71C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 71D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 74C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 74D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 75C	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 75D	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 76	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 77	trans-1,2-Dichloroethylene	Not reported by laboratory	
LFW 78	trans-1,2-Dichloroethylene	Not reported by laboratory	
QA 77A	trans-1,2-Dichloroethylene	Not reported by laboratory	
QA 79A	Gamma PHA	Not reported by laboratory	
QA 80A	Gamma PHA	Not reported by laboratory	
QA 82A	Gamma PHA	Not reported by laboratory	

Site Index

Table 102 provides information about sites, locations, and well series. Some site names and locations were not available.

Table 102. Sites and Locations by Well Series

		Location
ABW	A-Area Metals Burning Pit A Area near Firing Range A-Area Cluster Perimeter Wells and M-Area Plume Definition	South of the burning/rubble pits North of Road D-1 and east of Road 1-7
ACD	Wells A-Area Coal Pile Runoff Containment Basin	Southeast of A Area
AMB	Metallurgical Laboratory Seepage Basin Motor Shop Oil Basin	At the eastern edge of A Area At the south edge of A Area near NPDES Outfall A-14
	A-Area Burning/Rubble Pits and A-Area Ash Pile Savannah River Laboratory Seepage Basins	West of Road D, south of A Area Across the road from the Savannah River Technology Center (formerly the Savannah River Laboratory)
BGO	Burial Grounds Perimeter	Southern E Area
BGX	E-Area Vaults/Burial Ground Expansion	Northern E Area
BRD BRR	Road A Chemical Basin (Baxley Road) Burma Road Rubble Pit	East of D Area Southwest of F Area
CBR	N-Area (Central Shops) Burning/Rubble Pit south of the Ford	Southeast of N Area
COR	Building Seepage Basin	Southeast of C Area
CCB CDB	C-Area Coal Pile Runoff Containment Basin C-Area Disassembly Basin	Southeast of C Alea
CDS	108-3C Bioremediation Facility	Near the C-Area reactor building
CMP	Chemicals, Metals, and Pesticides Pits	West of Road C, approximately two miles southeast of N Area
CRP	C-Area Burning/Rubble Pit	
CSB	C-Area Reactor Seepage Basins	Southern C Area, west of the reactor building
CSO	Fire Department Training Facility D-Area Coal Pile Runoff Containment Basin and Ash Basins	Southeast portion of N Area South (containment basin) and southwest
DCB	D-Area Coal Pile Runoit Containment basin and Ash basins	(ash basins) of D Area
DIW	D-Area Coal Pile Runoff Containment Basin and Ash Basins	
DOB	D-Area Oil Seepage Basin	North of D Area
DOL	D-Area Oil Seepage Basin	North of D Area
FAB	F-Area Ash Basin 288-1 Groundwater Quality Assessment	East of F Area and south of the F-Area acid/caustic basin
FAL	F-Area A Line	Adjacent to the F-Area canyon building
FBP	F-Area Burning/Rubble Pits	North of Road C and west of F Area
FCA	F-Area Canyon Building	Could and of E Area
FCB	F-Area Coal Pile Runoff Containment Basin	Southeast of F Area South of F Area
FET FEX	F-Area Effluent Treatment Cooling Water Basin F-Area Seepage Basins Remediation Extraction Wells	South of FAIea
FIN	F-Area Seepage Basins Remediation Injection Wells	South of Road C
FNB	Old F-Area Seepage Basin	North of F Area
FRB	F-Area Retention Basin	
FSB	F-Area Seepage Basins	
FSL	F-Area Pludge Land Application Site	
FSS FST	F-Area Sludge Land Application Site Savannah River Ecology Laboratory Flowing Springs Site	
FTF	F-Area Tank Farm	

Well Series	Site	Location
GBW	Background Well near Hawthorne Fire Tower	West of Road 2-1.1F
HAA HAP	H-Area Tank Farm Groundwater Operable Unit H-Area Auxiliary Pump Pit	At the east end of H Area near the coal pile runoff containment basin
HCA HCB HET HEX HHP	H-Area Canyon Building H-Area Coal Pile Runoff Containment Basin H-Area Effluent Treatment Cooling Water Basin H-Area Seepage Basins Remediation Extraction Wells HP-52 Outfall Area	East of H Area Southwest of H Area East of Road 4
HIN HIW HMD HR3	H-Area Injection Tank H-Area Injection Wells Hazardous Waste/Mixed Waste Disposal Facility Old H-Area Retention Basin	South of Road E Near the H-Area seepage basins Northwest of the burial ground expansion Southeast of the intersection of Roads 4 and E
HR8	H-Area Retention Basin	Southeast of the intersection of Roads 4 and E
HSB	H-Area Seepage Basins	Southwest of H Area and the intersection of Roads 4 and E
HSL	H-Area Inactive Process Sewer Line	Extends from the southwest portion of H Area to north of the H-Area seepage basins
HSS HTF HWP	H-Area Sludge Land Application Site H-Area Tank Farm Warner's Pond Outfall Area	Southeast of H Area At the south end of H Area
HWS HXB	Hazardous Waste Storage Facility Ford Building Seepage Basin	Northwest of N Area In the southeast portion of N Area
IDB IDP IDQ	Interim Waste Technology Site Characterization Wells, Site B Interim Waste Technology Site Characterization Wells, Site P Interim Waste Technology Site Characterization Wells, Site Q	Two miles northeast of H Area South of B Area North of Highway 125
KAB KBP	K-Area Ash Basin K-Area Bingham Pump Outage Pit	Southwest of K Area
KCB KDB	K-Area Coal Pile Runoff Containment Basin K-Area Disassembly Basin	West of K Area, between the K-Area ash basin and reactor seepage basin
KDT	K-Area Disasseribly Basin K-Area Diesel Tank	Central K Area, north of the disassembly basin
KRB KRP KSB	K-Area Retention Basin K-Area Burning/Rubble Pit K-Area Reactor Seepage Basin	Northwest of K Area West of K Area
KSM KSS	K-Area Tritium Sump K-Area Sludge Land Application Site	Near the K-Area process water storage tank Southeast of K Area
LAC LAW LBP	L-Area Acid/Caustic Basin L-Area Research Wells L-Area Bingham Pump Outage Pit	North of Road B and east of Road B-2.13
LCO LDB LDS	L-Area Oil and Chemical Basin L-Area Disassembly Basin 108-3L Bioremediation Facility	South of L Area
LFW LRP	Sanitary Landfill L-Area Burning/Rubble Pit	South of Road C Northwest of L Area
LSB	L-Area Reactor Seepage Basin	Southeast of L Area, adjacent to the L-Area oil and chemical basin
MCB	Miscellaneous Chemical Basin	West of Road D near the A-Area metals burning pit
MSB	M-Area Hazardous Waste Management Facility (HWMF) and M-Area Plume Definition Wells	South of A Area and M Area and west of Road D (HWMF)
NBG	Wells between the F-Area Canyon Building and the Naval Fuel Material Facility	Between the canyon building and the Naval Fuel Material Facility

Well Series	Site	Location
P	SRS Baseline Hydrogeologic Investigation: Observation Well Clusters	
PB	B-Area Microbiology Wells (P 29 Cluster) East of H-Area Perimeter Fence (P 27 Cluster) R-Area Bedrock Exploration Hydrology Wells (P 20 Cluster) T-Area (TNX) Background Wells (P 26 Cluster) L-Area Cooling Pond Dam Piezometers	East of the H-Area perimeter fence
PBP PCB PDB	P-Area Bingham Pump Outage Pit P-Area Coal Pile Runoff Containment Basin P-Area Disassembly Basin	Southeast of the coal pile and south of P Area
PRP	P-Area Burning/Rubble Pit	West of P Area
PSB	P-Area Reactor Seepage Basins	Southwest of the reactor building
PSS PW	Par Pond Sludge Land Application Site Production Wells	South of Par Pond
RAC RBP	R-Area Acid/Caustic Basin R-Area Bingham Pump Outage Pit	South of R Area, just south of Road G
RBW	R-Area Reactor Seepage Basins	Northwest of R Area
RCP	R-Area Coal Pile	West of the R-Area reactor building
RDB	R-Area Disassembly Basin	
RGW RPC	Cone Penetration at R-Area Reactor Seepage Basins	Northwest of R Area
RRP	R-Area Reactor Seepage Basins R-Area Burning/Rubble Pits	Northwest of R Area Southeast of R Area and Road G
RSA	Series A, R-Area Reactor Seepage Basins	Northwest of R Area
RSB	Series B, R-Area Reactor Seepage Basins	Northwest of R Area
RSC	Series C, R-Area Reactor Seepage Basins	Northwest of R Area
RSD	Series D, between R-Area Reactor Seepage Basins and R-Area Disassembly Basin	Northwest of R Area
RSE	Series E, R-Area Reactor Seepage Basins	Northwest of R Area
RSF	Series F, R-Area Reactor Seepage Basins	Northwest of R Area
RSL RSP	R-Area Reactor Seepage Basins	Northwest of R Area
RWM	R-Area Reactor Seepage Basins M-Area Recovery Wells	Northwest of R Area
SBG SCA	S-Area Defense Waste Processing Facility S-Area Vitrification Building	
SLP	S-Area Low-Point Pump Pit	At the south end of S Area
SRW	Silverton Road Waste Site	South of Silverton Road
TBG	T-Area (TNX) Burying Ground	Within the T-Area fence
TCM	TNX-Area Operable Unit	
TIR	TNX Intrinsic Remediation Piezometers	
TNX TRW	T-Area (TNX) Assessment Wells T-Area (TNX) Test Recovery Wells	
WTU	Waste Treatment Unit	
XSB	Old T-Area (TNX) Seepage Basin	In the southwest comer of T Area
YSB	New T-Area (TNX) Seepage Basin	In the east section of T Area, across Road A-4.7 miles from the TNX process area
YSC	Y-Area Waste Solidification and Disposal Facility	North of the intersection of Roads F and 4
ZBG	Z-Area Saltstone Facility	
ZDT	Z-Area Low-Point Drain Tank	Southeastern S Area

SITE HISTORY

Geographical descriptions in the text are based on true north rather than SRS grid coordinates.

The following sections describe facilities at approximately 100 locations within designated areas at SRS. The sections are arranged in the following order:

- acid/caustic basins
- burning/rubble, rubble, and metals burning pits
- coal pile runoff containment basins, ash basins, and coal piles
- disassembly basins
- · seepage and retention basins
- · operating buildings and facilities
- plume monitoring
- radioactive waste storage and disposal facilities
- sanitary landfill and interim sanitary landfill
- sludge application sites
- other sites

Acid/Caustic Basins

The acid/caustic basins in F Area, H Area, K Area, L Area, P Area, and R Area are unlined earthen pits (approximately 50 by 50 by 7 feet deep). These pits received dilute sulfuric acid and sodium hydroxide solutions used to regenerate ion-exchange units in power plant water purification processes at the reactor and separations areas in the center of SRS. The basins allowed mixing and neutralization of the dilute solutions before their discharge to nearby streams.

The basins were constructed between 1952 and 1955. They are uncovered, and most are dry except during periods of prolonged precipitation. The R-Area and L-Area basins were abandoned in 1964 and 1968, respectively. The other basins remained in service until 1982, when the water purification systems either were shut down or modernized. However, the H-Area basin continued to receive steam condensate from a hose box and drainage from a chemical pad until the basin was abandoned in 1985. During July through September 1993, the F-, H-, K-, and P-Area basins were dewatered, vegetation was removed and disposed of, the basins were filled with compacted soil from the Burma Road clay pit, a grass cover was established, and the fences were reinstalled.

Burning/Rubble, Rubble, and Metals Burning Pits

From 1951 to 1973, burnable wastes—such as paper, wood, plastics, rubber, oil, degreasers, and drummed solvents—were received and burned monthly in one or more of the burning/rubble pits in the following areas: A, C, D, F, K, L, N, P, and R. In 1973, waste no longer was burned at the pits, which were covered with a layer of soil. Rubble wastes—including paper, wood, cans, concrete, and empty galvanized-steel barrels and drums—then were disposed of in the pits until they reached capacity and were covered with soil. All burning/rubble pits were inactive by 1981, and all are covered except the R-Area pit, which has not been backfilled. Lithium-aluminum alloy, aluminum pieces, metal drums, other metal scraps, and plastic pipe were deposited and burned periodically in the A-Area metals burning pit, beginning about 1952. In 1974, the solid materials remaining on the site were covered with soil, and the pit was regraded. The site is inactive.

Site Index
ESH-EMS-980568 Page 176 First Quarter 1998

The Burma Road rubble pit consists of two excavated earthen pits that may contain paint cans, fluorescent light fixtures, metal, concrete, lumber, poles, and glass. Unknown quantities of refuse were deposited here from approximately 1973 through 1983. The pit is inactive and has been covered with soil.

Coal Pile Runoff Containment Basins, Ash Basins, and Coal Piles

Electricity and steam at SRS are generated by burning coal. Coal piles originally existed in the following areas: A, C, D, F, H, K, L, P, and R. The facilities generally contained a 90-day reserve of coal that was not rotated. During long-term exposure to the environment, chemical and biological oxidation of sulfur compounds in coal resulted in the formation of sulfuric acid.

The R-Area coal pile was removed in 1964, and the L-Area coal pile was removed in 1968. To achieve compliance with the National Pollutant Discharge Elimination System (NPDES) permit issued in 1977, coal pile runoff containment basins in A Area and D Area were completed in October 1978, and basins in C Area, F Area, H Area, K Area, and P Area were completed in March 1981. The coal piles in C Area and F Area were removed in 1985. In 1991, the K-Area coal pile was reduced to a 2-inch base, and 75 percent of the P-Area coal pile was removed.

Currently, rainwater runoff from the remaining coal piles in A, D, H, K, and P Areas flows into the coal pile runoff containment basins via gravity flow ditches and sewers. The basins allow mixing of the runoff and its seepage into the subsurface, thus preventing the entry of large surges of low-pH runoff into surface streams. The basins in C and F Areas also still collect runoff, although no coal remains at either location. Ash sluice water from the D-Area and K-Area powerhouses has been discharged to the D-Area ash basins and the K-Area ash basin, respectively, since 1951.

F-Area Ash Basin

The F-Area ash basin was monitored for the first time during second quarter 1994.

R-Area Coal Pile

Two wells were installed in 1990 inside the boundaries of the former coal storage area, originally for groundwater assessment in relation to the R-Area coal pile.

Disassembly Basins

The disassembly basins, also called fuel and target storage basins, are concrete-lined, open tanks of water next to the reactor rooms inside the reactor buildings in C, K, L, P, and R Areas. Irradiated assemblies (reactor fuel and target rods) were rinsed and stored in the basins prior to their shipment to the separations areas. Some radioactivity was transferred to the basin water from leaks in porous components and as a liquid or oxide corrosion film on the irradiated components.

Sand filters were used to remove radioactive particulates from the disassembly basin water. The filtered water was circulated through deionizers to remove additional constituents and was purged periodically through regenerated deionizers to the reactor seepage basins.

Seepage and Retention Basins

Seepage, retention, and settling basins have been used at SRS to store or dispose of wastewater from various operations. Seepage and retention basins in the following areas are monitored: A, C, F, H, K, L, M, N, P, R, T, and the Savannah River Laboratory.

C-Area Reactor Seepage Basins

These basins have received low-level radioactive purge water from the disassembly basin since 1957.

F-Area Seepage Basins and Inactive Process Sewer Line

Beginning in 1955, the F-Area seepage basins received F-Area wastewater containing low-level radioactivity and chemicals, including chromium, mercury, nitric acid, and sodium hydroxide. Clay caps were completed in 1991 when the basins were closed.

Ford Building Seepage Basin

The Ford Building seepage basin received low-level radioactive wastewater from Ford Building operations (repairing heat exchangers) from 1964 to January 1984.

H-Area Retention Basins

A small, unlined earthen retention basin (the old H-Area retention basin) was used from 1955 to 1973 to provide temporary emergency storage for cooling water from the chemical separations process that contained radio-nuclides and possible trace quantities of chemicals.

A larger, rubber-lined retention basin replaced the original basin in 1973 and still is in use for receipt of diverted cooling water or tank farm stormwater runoff.

H-Area Seepage Basins and Inactive Process Sewer Line

Starting in 1955, the H-Area seepage basins received wastewater from H Area containing low-level radioactivity and chemicals, including nitric acid, mercury, and sodium hydroxide. Basin 3 has been inactive since 1962. Basins 1, 2, and 4 operated from 1980 until they were taken out of service in the fourth quarter of 1988. Clay caps were completed early in 1991 when the basins were closed.

K-Area Reactor Seepage Basin

This basin has received low-level radioactive purge water from the disassembly basin since 1957.

L-Area Reactor Seepage Basin

This basin has received low-level radioactive purge water from the disassembly basin since 1957.

M-Area Hazardous Waste Management Facility

The unlined M-Area settling basin, in operation from 1958 until 1985, received wastewater containing metal-cleaning solvents, depleted uranium, and other chemicals and metals from fuel fabrication processes in M Area. Because surface water flowed from this basin, it is classified as a settling basin rather than a seepage basin. Water from the basin flowed through an overflow ditch to Lost Lake, a shallow upland depression. A seepage area formed adjacent to the ditch and Lost Lake. The M-Area hazardous waste management facility comprises the settling basin, overflow ditch, seepage area, and Lost Lake. A closure cap was completed on the basin during 1989/1990.

Since the beginning of a full-scale recovery system for groundwater remediation in April 1985, groundwater flow has changed markedly near this facility, and changes over time in concentrations of analytes are difficult to interpret. See the **Plume Monitoring** section of this chapter for more information on remediation.

Metallurgical Laboratory Seepage Basin

The Metallurgical Laboratory seepage basin received wastewater effluent from the Metallurgical Laboratory building from 1956 until 1985. Wastewater released to the basin consisted of small quantities (5 to 10 gallons per day) of laboratory wastes—mostly rinse water—from metallographic sample preparation (degreasing, cleaning, etching) and corrosion testing of stainless steel and nickel-based alloys. Noncontact cooling water (approximately 900 gallons per day) also was discharged. The basin has been dewatered, backfilled, and capped with low-permeability clay.

New T-Area (TNX) Seepage Basin

The new TNX seepage basin replaced the old TNX seepage basin and operated from 1980 to 1988.

Site Index
Page 178

Old F-Area Seepage Basin

The old F-Area seepage basin, the first seepage basin constructed in F Area, was used for disposal of waste-water from the canyon building from November 1954 until May 1955, when it was abandoned. During operation, the seepage basin received a variety of wastewaters, including evaporator overheads, laundry wastewater, and an unknown amount of chemicals. For three months in 1969, spent nitric acid solutions used to etch depleted uranium were discharged to the basin. In 1984, low-level contaminated water was released to the basin.

Old T-Area (TNX) Seepage Basin

The old TNX seepage basin received waste from pilot-scale tests conducted at TNX from 1958 to 1980. In 1981, the basin wall was breached and the impounded water was drained into the adjacent wetlands. The basin then was backfilled with a sand and clay mixture, and the top was capped with clay.

P-Area Reactor Seepage Basins

These basins have received low-level radioactive purge water from the P-Area disassembly basin since 1957.

R-Area Reactor Seepage Basins

On November 8, 1957, an experimental fuel element failed during a calorimeter test in the emergency section of the R-Area disassembly basin. Following this incident, the original seepage basin received approximately 2,700 Ci of nonvolatile beta activity, including strontium-90 and cesium-137, each of which has a half-life of about 30 years. Much of the released radioactivity was contained in that basin, which was backfilled in December 1957. Five more basins were put into operation in 1957 and 1958 to assist in containing the radioactivity.

In 1960, Basins 2 through 5 were closed and backfilled. The ground surface above Basins 1 through 5 was treated with herbicide and covered with asphalt. In addition, a kaolinite cap and dike were constructed over and around Basin 1 and the northwest end of Basin 3 to minimize lateral movement of the radioactive contamination. Basin 6, which received water directly from the disassembly basin from 1960 until 1964, was backfilled in 1977.

Savannah River Laboratory Seepage Basins

The Savannah River Laboratory seepage basins received low-level radioactive laboratory wastewater through underground drains until they were taken out of service in October 1982. Two basins were put into operation in 1954; one more was added in 1958 and another in 1960 to provide additional holding capacity.

An exception to the practice of discharging only low-level alpha or beta-gamma wastewater was made in 1971, when 0.68 Ci of curium from a leaking separator pit in the Savannah River Laboratory radioactive waste tanks was disposed of in the basins. Approximately 34 million gallons of wastewater were discharged to the basins during their operating life.

Operating Buildings and Facilities

Defense Waste Processing Facility (S-Area Vitrification Building)

The DWPF, also known as the S-Area vitrification building or S-Area canyon, contains the process and auxiliary equipment to incorporate high-level radioactive waste into leach-resistant glass. The facility began radioactive operations in 1996.

F-Area Canyon Building and A-Line Uranium Recovery Facility

At the canyon building, irradiated product from the reactors is dissolved using nitric acid, and the desired radionuclides are separated from fission products. At the A-Line uranium recovery facility, adjacent to the canyon building, uranium oxide is produced from uranyl nitrate.

F-Area Effluent Treatment Cooling Water Basin

The F-Area effluent treatment cooling water basin receives diverted cooling water from the separations processes. The cooling water is sent from the basin to the F-Area and H-Area effluent treatment facility (ETF) if contaminated or to a permitted outfall if uncontaminated. The ETF, on the south side of H Area, was placed in service in 1988 to treat wastewater formerly sent to the F-Area and H-Area seepage basins. In addition to cooling water, it also receives separations area stormwater runoff and condensed overheads from the evaporators in the tank farms. The treatment facility removes hazardous and radioactive contaminants from these low-level liquid wastes and concentrates them for immobilization as saltstone.

H-Area Auxiliary Pump Pit

The H-Area auxiliary pump pit facility will pump high-level radioactive sludge and precipitate from the H-Area tank farm to the S-Area low-point pump pit en route to the vitrification facility. When the pumps are shut down, this facility will collect the solution in a temporary holding tank via gravity flow lines.

H-Area Canyon Building

As in F Area, materials from the reactors are dissolved at the canyon building, and the desired radionuclides are separated from waste products.

H-Area Effluent Treatment Cooling Water Basin

For more information, see the F-Area Effluent Treatment Cooling Water Basin section.

K-Area Tritium Sump

A single well, installed in 1992, monitors the water table just west of the K-Area reactor. The well was placed near the K-Area process water storage tank, which stores water collected in sumps within the K-Area reactor building. Tritium activity in this sump water has been reported at greater than 5 Ci/mL.

N-Area Hazardous Waste Storage Facility

Building 645-N of the hazardous waste storage facility has been in service since 1983, 645-2N since 1987, and 645-4N since 1984. Buildings 645-N and 645-4N contain hazardous waste, and building 645-2N contains mixed waste (a mixture of low-level radioactive waste and hazardous waste). Wastes are stored inside the buildings in drums placed on diked concrete floors designed to contain liquid spills.

Naval Fuel Material Facility

The Naval Fuel Material Facility was used to produce HEU (highly enriched uranium) for naval reactors until shutdown in 1989. Monitoring wells in the NBG series are located between the canyon building and the Naval Fuel Material Facility.

S-Area Facilities

S-Area contains several facilities for processing high-level radioactive waste from the F-Area and H-Area tank farms into borosilicate glass solidified within stainless steel canisters. The glass is stored temporarily in specially designed storage buildings within S Area. Eventual permanent disposal is expected to be in an offsite federal geologic repository.

S-Area Low-Point Pump Pit

The S-Area low-point pump pit receives high-level radioactive sludge and precipitate from the H-Area tank farm and pumps it to the defense waste processing facility (DWPF) vitrification building; it also receives waste being recycled from the vitrification building back to the tank farm. As at the H-Area auxiliary pump pit, when the pumps are shut down, the sludge and precipitate remaining in the line drain back into a temporary holding tank via gravity flow lines.

Site Index
Page 180

Z-Area Low-Point Drain Tank

The Z-Area low-point drain tank facility receives low-level radioactive salt solution from the H-Area tank farm and pumps it to the Z-Area salt solution holding tank. When the H-Area pump is shut down, the low-point drain tank can collect the solution remaining in the lines via gravity flow.

Z-Area Saltstone Manufacturing and Disposal Facility

The Z-Area saltstone manufacturing and disposal facility processes and permanently disposes of low-level radioactive salt solution supernatant from the underground storage tanks at F Area and H Area and from ETF concentrate.

The facility began radioactive operations in June 1990. In November 1992, a tank in the Z-Area saltstone manufacturing and disposal facility overflowed, and a portion of the liquid leaked from the building into a storm drain. Approximately 2 gallons of solution reached a drainage pipe that flows into a series of sedimentation basins and eventually into McQueen Branch. Sediment samples showed small amounts of cesium-137 exceeding those amounts observed in the Savannah River, but within the activity ranges in site streams.

Plume Monitoring

A Area and M Area

In addition to the groundwater monitoring conducted at specific locations in A Area and M Area, numerous plume definition wells also monitor a 5-square-mile area to assess the extent of volatile organic contamination. The first plume definition wells were installed soon after discovery of the contamination in June 1981.

The plume definition well network extends from the region north of SRTC, between Road 1 and the SRS boundary, south to wells near the miscellaneous chemical basin and the metals burning pit, and from Tims Branch in the east toward the Silverton Road waste site in the west. The plume encompasses approximately three square miles and consists primarily of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane.

Separations and Waste Management Areas

A number of wells were installed in the separations areas in 1951 and 1952. These wells, which range from approximately 15 to 90 feet in depth, are used to measure water table elevations and monitor for radioactive constituents (gross alpha, nonvolatile beta, and tritium) in the groundwater in and around F Area and H Area. They have steel casings that could affect the metal concentrations in the water.

Radioactive Waste Storage and Disposal Facilities

Burial Grounds

The burial grounds have been used for storage and disposal of radioactive solid waste produced at SRS or shipped from other facilities since 1952. The original area, known as the old burial ground, contains low-level alpha and beta-gamma trenches, intermediate-level beta-gamma trenches, and alpha waste trenches. As the trenches were filled, they were covered with soil. When the old burial ground was filled in 1974, operations moved to the adjacent low-level radioactive waste disposal facility (LLRWDF).

The sections of the LLRWDF currently being operated, known as the Solid Waste Disposal Facility (SWDF), contain trenches for only radioactive waste. Concrete vaults, known as the E-Area vaults, have been constructed east and north of the LLRWDF for disposal of solid radioactive waste. The first waste was placed there in September 1994.

Mixed waste storage building 643/29E, within the boundaries of the LLRWDF, has been in use since March 1987. The adjacent mixed waste storage building, 643/43E, was completed in July 1995, and the facility began receiving waste later that same month.

Until 1965, transuranic (TRU) waste was placed in plastic bags and cardboard boxes and buried in earthen trenches. Between 1965 and 1974, lower level TRU waste was buried unencapsulated in trenches, and higher level TRU waste was buried in retrievable concrete containers or encapsulated in concrete. Since 1974, TRU

wastes contaminated with greater than 0.01 Ci/g have been stored in watertight containers on concrete pads with monitoring sumps. TRU waste storage pads 1–19 are on the FFA's list of RCRA-regulated units.

Since mid-1984, newly generated low-level beta-gamma waste has been placed in metal boxes or metal drums. Currently, it is disposed of in engineered trenches and covered with at least 4 feet of soil. Some wastes that do not have forms that are easily placed in containers are disposed of in shallow land-burial slit trenches.

Mixed wastes stored or disposed of within the old burial ground and portions of the LLRWDF include cadmium, lead, mercury, and tritiated pump oil. Some of the waste is contained in welded stainless steel containers or metal drums and stored within concrete cylinders. Degraded radioactive organic solvents and tritiated pump oil have been stored in 22 underground storage tanks in the old burial ground. In addition, two areas of the old burial ground were used for incineration of solvents.

The burial ground complex, comprising the old burial ground, solvent storage tanks S01–S22, and portions of the LLRWDF, is monitored by the following:

Burial Ground Expansion (E-Area Vaults)—This site is located in the northern section of E Area and is monitored by the BGX well series.

Hazardous Waste/Mixed Waste Disposal Facility—This site is northwest of the burial ground expansion and is monitored by the HMD well series.

Old Burial Ground—The old burial ground is in the southern portion of E Area and is monitored by wells in the BG and BGO well series.

Radioactive Waste Burial Ground—The LLRWDF, which includes the mixed waste management facility (MWMF), is monitored by wells in the BGO well series.

Tank Farms

Liquid radioactive wastes are stored and processed at the tank farms, which comprise subsurface tanks containing high-level aqueous radioactive wastes in the form of sludges, supernatant liquid of varying salt concentrations, and saltcake. Approximately 129 million liters of waste are stored in the tanks.

The high-level liquid waste volume is reduced in the tank farm evaporators. Certain tanks are used for pretreatment of the wastes before they are processed at the DWPF into saltstone (low-level waste) or a glass form (high-level waste). As described earlier, saltstone manufacturing and disposal is ongoing; vitrification was tested during 1995, and the DWPF began production operations in 1996. Pretreatment processes at the tank farms include in-tank precipitation and extended sludge processing.

More information about the function of the tank farms may be found in previous sections of this chapter, including the discussions of the F-Area effluent treatment cooling water basin, the H-Area auxiliary pump pit, S Area, the S-Area low-point pump pit, the DWPF, the Z-Area low-point drain tank, and the Z-Area saltstone manufacturing and disposal facility.

Because of restrictions on the disposal of purge water, monitoring wells at the tank farms are bailed and not purged.

F-Area Tank Farm—The F-Area tank farm comprises 22 subsurface tanks. In 1961, Tank 8 was overfilled, causing soil and possible groundwater contamination.

H-Area Tank Farm—The H-Area tank farm comprises 29 subsurface tanks. In 1960, Tank 16 leaked an unknown quantity (a few tens of gallons to a few hundred gallons) of waste into the soil. The tank's remaining waste was removed by 1972.

Several other releases of waste from H-Area tanks have occurred, including a spill of approximately 100 gallons at Tank 13 in 1983. In 1989, approximately 500 pounds of volume-reduced waste leaked from a transfer line at

Site Index
Page 182

Tank 37. The leak sites have been cleaned up or stabilized to prevent the spread of contamination. Both the F-Area and H-Area sites are being monitored for gross alpha, nonvolatile beta, and tritium.

Sanitary Landfill and Interim Sanitary Landfill

The sanitary landfill began receiving waste from office, cafeteria, and industrial activities during 1974. Materials such as paper, plastics, rubber, wood, cardboard, rags, metal debris, pesticide bags, empty cans, carcasses, asbestos in bags, and sludge from the site's wastewater treatment plant are placed in unlined trenches and covered daily with soil or a fabric substitute. The original section of the landfill and its southern expansion, with a total area of approximately 54 acres, have been filled. Operations at the portion of approximately 16 acres known as the northern expansion, or the interim sanitary landfill, were discontinued in November 1994.

Sanitary landfills are intended to receive only nonradioactive, nonhazardous waste. However, until October 1992, some hazardous wastes (specifically, solvent-laden rags and wipes used for cleaning, decontamination, and instrument calibration) were buried in portions of the original 32-acre landfill and its southern expansion.

Sludge Application Sites

These sites originally were the subject of a research program using domestic sewage sludge to reclaim borrow pits and to enhance forest productivity at SRS. In 1980, sludge was applied to the following application sites: K Area, Kato Road, Lower Kato Road, Orangeburg, PAR Pond, Road F, Sandy (Lucy), Second PAR Pond Borrow Pit, and 40-Acre Hardwood. After sludge was applied to the sites, hardwoods and pines were planted to quantify the effectiveness of the sludge as a fertilizer and soil conditioner.

Sludge from Aiken and Augusta municipal wastewater treatment plants was applied to the following sites: F Area, H Area, Kato Road, Lower Kato Road, Orangeburg, Road F, Sandy (Lucy), Second PAR Pond Borrow Pit, and 40-Acre Hardwood. Wastewater sludge was applied to the K Area and PAR Pond sites in 1981 and 1988. Revegetating of the sites is continuing.

In November 1993, groundwater monitoring was discontinued at the Kato Road, Lower Kato Road, Orangeburg, Road F, Sandy (Lucy), and 40-Acre Hardwood sites because they have not received applications of sewage sludge since 1981, and historical monitoring results show no impact from sludge applications. Monitoring was canceled after first guarter 1994.

H-Area Sanitary Sludge Land Application Site

Sewage sludge from SRS sanitary wastewater treatment plants was disposed of at this 13-acre site southeast of H Area from November 1990 to May 1992.

K-Area and PAR Pond Sludge Land Application Sites (Formerly K-Area Borrow Pit and PAR Pond Borrow Pit Sites)

In 1981, sludge from Aiken and Augusta municipal wastewater treatment plants was applied to the K-Area and PAR Pond borrow pits. In 1988, the N-Area sanitary sewage sludge lagoon was closed, and the lagoon sludge was applied to the K Area and PAR Pond borrow pits. In 1989, the K-Area location (now called the K-Area sludge land application site) was declared a RCRA/CERCLA unit because of the presence of chlordane in the lagoon sludge applied to the site.

Other Sites

B-Area Gas Station

Elevated benzene, which could be the result of old underground gasoline or diesel storage tanks, has been detected near B Area. EMS has inspected the area and believes there may be two underground storage tanks southeast of B Area. The first suspected tank appears to be at an abandoned gas station between Kato Road and Road C-2. The second appears to be an old diesel tank in front of a storage and laboratory facility.

Site Index
ESH-EMS-980568 Page 183 First Quarter 1998

Baseline Hydrogeologic Investigation Observation Well Clusters

Wells in the P series that provide baseline hydrogeologic investigation data are located in numerous locations across SRS.

Chemicals, Metals, and Pesticides Pits

The chemicals, metals, and pesticides pits were used from 1971 to 1979 to dispose of oil in drums, organic solvents, and small amounts of pesticides and metals. In 1984, the pits were excavated to form two trenches, backfilled, and capped. During excavation, most of the contaminated material (liquid in original drums, free liquid placed in drums during excavation, and contaminated soil) was moved to the hazardous waste storage facility.

D-Area Oil Disposal Basin

The D-Area oil disposal basin was constructed in 1952 and received waste oil products from D Area that were unacceptable for incineration in the powerhouse boilers. These waste oils may have contained hydrogen sulfide, chlorinated organics, or other chemicals. In 1975, the oil basin was removed from service and backfilled with soil.

Interim Waste Technology Site Characterization Wells

Characterization wells monitor interim waste technology sites B, L, Q, and P.

K-Area Diesel Tank Spill

Following the discovery in 1989 of a leaking buried diesel supply line, most of the diesel-contaminated soil was removed from this area except where continued excavation would have jeopardized the structural integrity of an underground storage tank.

L-Area Acid/Caustic Basin and L-Area Oil and Chemical Basin

From 1961 to 1979, the L-Area oil and chemical basin received small quantities of radioactive oil and chemical waste that could not be discharged to effluent streams, regular seepage basins, or the 200 Areas' waste management systems. The waste came from throughout SRS, primarily from the reactor areas and the contaminated-equipment workshop through a pipeline known to have leaked. The basin has been inactive since 1979.

M-Area Recovery Wells

The RWM well series identifies the M-Area recovery wells. The first wells were installed in 1982 and 1983, with pumps added in 1985. Additional wells were installed in 1985, 1990, 1993, and 1996. The RWM wells pump contaminated groundwater to air strippers, which remove volatile organic compounds from the water before it is returned to the ground.

Miscellaneous Chemical Basin

The miscellaneous chemical basin, in operation by 1956, was closed and graded in 1974. No records document the materials disposed of at this location. However, soil gas investigations revealed volatile organics in the near-surface soils at the basin. It is assumed that the site was used for disposal of waste solvents, liquid chemical wastes, and possibly waste oil. The basin is inactive.

Motor Shop Oil Basin

This unlined basin was placed in service in 1977 to receive liquid effluent from the Motor Shop, including trace quantities of engine oil, grease, kerosene, ethylene glycol, and soap. All waste passed through an oil skimmer prior to discharge into the basin. All discharges to the basin were terminated in August 1983. The basin is inactive but collects rainwater during periods of heavy precipitation.

N-Area Diesel Spill Hazardous Waste Storage Facility

The tanks have been filled with inert material, and the pipelines have been disconnected at this site.

Site Index
Page 184

N-Area Fire Department Training Facility

The fire department training facility, also known as the N-Area burnable-oil basin, is a shallow pit surrounded by an 18-inch-high asphalt dike. It was used from 1979 to 1982 by the SRS Fire Department to train personnel in the use of firefighting equipment. After this time, the area was excavated and backfilled.

N-Area Hydrofluoric Acid Spill

It is uncertain whether a spill occurred at the hydrofluoric acid spill area or if contaminated soil or containers were buried there. The spill or burial occurred prior to 1970, and an identification sign is the only evidence that material was released.

Production Wells

The PW series wells are production wells scattered across SRS.

Road A (Baxley Road) Chemical Basin

The Road A chemical basin is reported to have received miscellaneous radioactive and chemical aqueous waste, but no records of the materials disposed of at the basin are available. The basin was closed and backfilled in 1973. The BRD well series is being monitored for environmental-screening constituents only.

Silverton Road Waste Site

The Silverton Road waste site, south of Silverton Road, was used for disposal of metal shavings, construction debris, tires, drums, tanks, and miscellaneous other items. The startup date is unknown, and no records of waste disposal activities were kept. Operations at this location ended in 1974, and the waste material is covered with soil and vegetation.

TNX Burying Ground

The TNX burying ground was created to dispose of debris from an experimental evaporator that exploded at T Area in 1953. The buried material included contaminated conduit, tin, drums, structural steel, and depleted uranium. Although most of this material was excavated and sent to the LLRWDF between 1980 and 1984, an estimated 27 kg of uranyl nitrate remains buried at this location. See the **New TNX Seepage Basin** section for more information on the unit.

NOTES

Site Index Page 186

Glossary

Also see p. B-1 for abbreviations and qualifiers used in the results tables in Appendix B.

2,4-D. 2,4-Dichlorophenoxyacetic acid.

absolute difference. The unsigned result of the subtraction of any two numbers.

accuracy. The degree of agreement between an observed value and an accepted reference value or a measure of the over- or underestimation of reported concentrations.

advisory range. A range of acceptable analytical results established by the provider of known samples.

aerated sample. Groundwater sample supplied or charged with air. Aeration can occur naturally or during well pumping.

aliquot. A portion of a sample being used for analysis.

analysis qualifier. See qualifier.

analyte. Analyzed constituent.

analytical detection limit. The lowest reasonably accurate concentration of an analyte that can be detected. This value varies depending on the method, instrument, and dilution used.

APHA. American Public Health Association.

Appendix IX. A list of constituents specified by Appendix IX in the *Code of Federal Regulations*, Title 40, Part 264 (EPA, 1991d). Analysis for Appendix IX constituents is required by the Resource Conservation and Recovery Act (RCRA) under specified conditions.

associated samples. Samples analyzed by a laboratory in the same batch with field or laboratory blanks.

ASTM. American Society for Testing and Materials.

bail. To remove water from a well by lowering a container into the water, allowing it to fill with water, and removing it from the well.

bias qualifier. See qualifier.

blank. Aliquot of deionized water generated by laboratory or sampling personnel and analyzed like a groundwater sample. See **equipment blank**, **field blank**, **laboratory blank**, and **trip blank**.

blank spike. An organic-free water sample spiked with target analytes, extracted, and analyzed with the regular samples for organic parameters to monitor the performance of all steps in the analysis process.

blind replicate. A second sample taken from a well at the same time as the primary sample and sent to the laboratory for analysis as an unknown.

BNA. Base/neutral and acid extractables. Groups of organic compounds analyzed as part of the Appendix IX and Priority Pollutants suites; also, a group of compounds that can be analyzed by EPA Method 8270.

Bq/L. Becquerels per liter. A measurement of radioactivity.

cation. Positively charged ion.

CERCLA. Comprehensive Environmental Response, Compensation, and Liability Act, commonly known as Superfund.

certified value. The known concentration of an analyte in a referenced sample.

CFR. Code of Federal Regulations. Sections of this annual document contain EPA standards and regulations for environmental monitoring.

chain-of-custody record. A form that documents the collection, transport, analysis, and disposal of well samples.

common analyses. Common parameters tested for, and generally found, in drinking water.

comparability. An evaluation made by confirming that the laboratories used the same standardized procedures for sample preparation and analysis, that the reporting units are the same, and that similar detection and quantitation limits were obtained.

completeness. An evaluation based on a comparison of the wells scheduled for sampling to the wells sampled, also a comparison of the requested analyses to the analytical data received.

deionized water. Water from which all charged species or ionizable organic and inorganic salts have been removed.

detection limit. See analytical detection limit.

dilution factor. The mathematical factor by which a sample is diluted to bring the concentration of an analyte in the sample within the analytical range of an instrument (e.g., 1 mL sample + 9 mL solvent = 1:10 dilution, or a dilution factor of 10).

DL. See analytical detection limit.

DNAPL. Dense nonaqueous phase liquid.

DOE. U.S. Department of Energy.

drinking water standards. Federal primary and secondary drinking water standards, as set forth by the EPA.

duplicate. Duplicate sample; an aliquot of a primary sample.

duplicate result. A result obtained from identical analyses performed on more than one aliquot of a primary sample.

DWS. See drinking water standards.

E. A code letter used in the analytical data tables that signifies exponential notation (e.g., $3.4E+03 = 3.4 \times 10^3 = 3,400$).

EM. EPD/EMS Laboratory at SRS.

EMAX Laboratories. EMAX Laboratories, Inc., of Torrance, CA.

EMS. The Environmental Monitoring Section of the Environmental Protection Department at SRS.

Environmental Physics. Environmental Physics, Inc., of Charleston, SC (subcontractor for General Engineering).

environmental-screening analyses. A group of analyses that forms the core of the EPD/EMS Groundwater Monitoring Program each quarter. See the **Sample Scheduling** section of this report for a complete list of constituents.

EPA. U.S. Environmental Protection Agency.

EPD. Environmental Protection Department at SRS.

EPD/EMS. Environmental Protection Department's Environmental Monitoring Section at SRS.

EQL. See estimated quantitation limit.

equipment blank. A sample of deionized water that is opened at the sampling location and poured or pumped through the sampling device. Equipment blanks are used to identify possible contaminants in the sampling equipment.

ES. See QST Environmental.

estimated quantitation limit (EQL). The lowest concentration reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The EQL is generally 5x to 10x the method detection limit (MDL); however, it may be nominally chosen within these guidelines to simplify data reporting. For many analytes, the EQL analyte concentration is selected as the lowest nonzero standard in the calibration curve.

EX. See EMAX Laboratories.

Fibers/L. Fibers per liter. A unit of measurement for asbestos.

field blank. A sample container of deionized water sent to a laboratory under an alias as a quality control check.

field qualifier. See **sample interference field qualifier**. Due to space limitations, sample interference field qualifiers are referred to as *field qualifiers* in the analytical results tables in **Appendix B**.

flagging criteria. Criteria established to help determine the relative concentration and testing frequency for analytes. See the Flagging Criteria section of this report for further information.

gamma PHA. A group of analyses performed to determine activities of gamma-emitting radionuclides.

GC VOA. Gas chromatographic volatile organics analyses. Also used to refer to a group of volatile organic compounds that can be analyzed by gas chromatography.

GCMS VOA. Gas chromatograph/mass spectrometer volatile organics analyses. Also used to refer to a group of volatile organic compounds analyzed by gas chromatography and mass spectrometry methods.

GE. See General Engineering.

General Engineering. General Engineering Laboratories of Charleston, SC.

GP. See Environmental Physics.

halogen. Any of the elements of the halogen family, which consists of fluorine, chlorine, bromine, iodine, and astatine.

herbicides/pesticides. A suite of analyses. See the Sample Scheduling section of this report for further information.

holding time. The length of time during which an analysis of a sample can be reliably performed. Holding times vary depending on which constituents are being analyzed.

interlaboratory comparisons. Comparisons conducted between two or more laboratories.

intralaboratory comparisons. Comparisons conducted within a single laboratory.

ion. An isolated electron or positron or an atom or molecule that has acquired a net electric charge by the loss or gain of one or more electrons.

laboratory blank. Deionized water or solvent sample generated by the laboratory. One blank is analyzed with each batch of samples as an in-house check of analytical procedures and equipment.

laboratory control sample. A deionized water sample that is spiked with the target analyte, digested, and analyzed with the regular samples for inorganic parameters to monitor the performance of all steps in the analysis process.

MA. See Microanalytical Laboratories.

major ions. A group of analyses performed in the EPD/EMS Groundwater Monitoring Program to determine the concentrations of calcium, magnesium, potassium, and silica ions and the alkalinity of a sample.

matrix spike. A known quantity of a target analyte added to at least 5% of the samples prior to sample preparation to evaluate the effect of the sample matrix on the analytical procedure.

MDL. See method detection limit.

mean. The arithmetic mean; a single number that typifies a set of numbers.

method detection limit (MDL). A reproducible analyte- and method-specific detection limit: the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.

mg/L. Milligrams per liter.

 μ Ci. Microcurie; unit of radioactivity equivalent to 3.7 \times 10⁴ disintegrations per second.

μCi/mL. Microcuries per milliliter.

μg/L. Micrograms per liter.

μS/cm. Microsiemens per centimeter, equivalent to micromhos per centimeter. The unit of conductance across two points, used as the measure of specific conductance in analytical data tables.

Microanalytical Laboratories. Microanalytical Laboratories, Inc., of Gainesville, FL (subcontractor for QST Environmental).

modifier. See qualifier.

MRD. Mean relative difference. See the Quality Control Samples section of this report for further information.

msl. Mean sea level.

NTU. Nephelometric turbidity units. The standard unit of turbidity measurement.

Glossary
Page 190

ESH-EMS-980568

null hypothesis. A statement, which can be tested statistically, of no difference in a characteristic of a population or distribution.

organic. A chemical compound based on carbon chains or rings and containing hydrogen with or without oxygen, nitrogen, or other elements.

PCB. Polychlorinated biphenyl.

pCi. Picocurie; a unit of radioactivity equivalent to 3.7×10^{-2} disintegrations per second.

pCi/L. Picocuries per liter.

pCi/mL. Picocuries per milliliter.

piezometer. An instrument used to measure the potentiometric surface of groundwater. Also, a well designed for this purpose.

plume. A volume of contaminated air or water originating at a point-source emission (e.g., a smokestack) or a waste source (e.g., a hazardous-waste disposal site).

potentiometric surface. The surface to which water in an aquifer would rise by hydrostatic pressure if unconfined.

precision. A measure of the repeatability of a measurement, evaluated from the results of duplicate samples and splits.

primary laboratory. A laboratory having a contract with EPD/EMS to perform a specific set of analyses; a primary laboratory may subcontract this work to other laboratories.

purge. To remove water from a well prior to sampling, generally by pumping or bailing. Under the EPD/EMS Groundwater Monitoring Program, two well volumes generally are purged before sampling.

QA. Quality assurance.

QC. Quality control.

QST Environmental. QST Environmental, of Gainesville, FL.

qualifier. A code used to convey additional information about an analytical result. Also called a modifier. Specific types include analysis, bias, and result qualifiers. See **Appendix B** for additional information.

radioisotopes. Radioactive isotopes.

radionuclide. A nuclide at an unstable, high-energy level that seeks a more stable, low-energy level by emitting particles of energy. Through these emissions, the nuclear configuration decays to simpler nuclides.

RCRA. See Resource Conservation and Recovery Act.

RCRA site. Solid-waste management unit under RCRA regulation.

RDL. See reference detection limit.

Recra LabNet Philadelphia. Recra LabNet Philadelphia, of Lionville, PA.

reference detection limit (RDL). The detection limit chosen to allow comparison of several analyses with different detection limits. For the purposes of this report, the individual detection limits of at least 90% of the analyses are

less than the reference detection limit. See the Quality Control Samples section of this report for further information.

relative percent difference (RPD). A commonly used estimate of precision when only two samples are available. Precision is the agreement among a set of replicate measurements without assumption of the true value. Precision is estimated by means of duplicate analyses.

replicate. Replicate sample. Used in this report to mean only those duplicate samples sent to the laboratory as unknowns. See **blind replicate**.

representativeness. The quality of exhibiting the average properties of the population being sampled.

Resource Conservation and Recovery Act (RCRA). Federal legislation that regulates the transport, treatment, and disposal of solid and hazardous wastes.

result qualifier. See qualifier.

RFI Program. RCRA Facility Investigation Program. EPA-regulated investigation of a solid-waste management unit with regard to its potential impact on the environment.

RFI/RI Program. RCRA Facility Investigation/Remedial Investigation Program. At SRS, an expansion of the RFI Program that includes CERCLA and hazardous-substance regulations.

RPD. See relative percent difference.

run date. The calendar date denoting when an analysis is performed.

sample interference field qualifier. See also field qualifier. This describes interferences encountered during sample collection that could affect analytical results. It is used to qualify analytical data based on field condition.

sample quantitation limit (SQL). The sample-specific EQL, which is the EQL multiplied by factors of concentration, dilution, aliquot size, and percent solids.

sample-specific EQL (ssEQL). The EQL multiplied by factors of concentration, dilution, aliquot size, and percent solids. Also called the SQL.

sample-specific MDL (ssMDL). The MDL multiplied by factors of concentration, dilution, aliquot size, and percent solids. For radiological analyses it is known as the sample-specific minimum detectable concentration.

sampling device. Anything used in sampling, especially portable (nondedicated) pumps and bailers. Possible source of sample contamination if not cleaned thoroughly between uses.

SCDHEC. South Carolina Department of Health and Environmental Control.

seepage basin. An excavation that receives wastewater. Designed to prevent overflow or surface runoff.

settling basin. A temporary holding basin (excavation) that receives wastewater.

significance of probability. The probability of observing a statistical value as significant as, or more significant than, the value actually observed.

site custodian. WSRC employee responsible for a site being monitored.

SQL. See sample quantitation limit.

SRL. Savannah River Laboratory at SRS; now Savannah River Technology Center (SRTC).

Glossary Page 192 SRP. Savannah River Plant; now Savannah River Site (SRS).

SRS. Savannah River Site.

SRTC. Savannah River Technology Center.

STORET. EPA national database for <u>sto</u>rage and <u>ret</u>rieval of water quality information and monitoring data; some of the qualifiers listed in the **Analytical Results** section of this report (**Appendix B**) are based on STORET codes.

surrogate. An organic compound similar in composition and test performance to one of the analytes of interest; known quantities are used in an analysis as a quality assurance measure.

tank farm. An installation of interconnected underground tanks used for storage of high-level radioactive liquid wastes.

Thermo NUtech. Thermo NUtech, of Oak Ridge, TN (subcontractor for Recra LabNet Philadelphia).

TL. See Triangle Laboratories.

TM. See Thermo NUtech.

TOC. Top of casing. The elevation of the casing at the top of a well; used as a reference for water-level measurements.

Triangle Laboratories. Triangle Laboratories, Inc., of Durham, NC (subcontractor for Environmental Science & Engineering).

trip blank. A sample container of deionized water that is transported to the well sample location, treated as a well sample, and sent to the laboratory for analysis; trip blanks are used to check for contamination resulting from transport, shipping, and site conditions.

t-test. Statistical method used to determine if the means of groups of observations are equal.

turbidity. A measure of the concentration of sediment or suspended particles in solution.

U. Unclassified.

USDWS. U.S. Public Health Service drinking water standard.

volatile organic compounds. A broad range of organic compounds, commonly halogenated, that vaporize at ambient, or relatively low, temperatures (e.g., acetone, benzene, chloroform, and methyl alcohol).

WA. See Recra LabNet Philadelphia.

well volume. The volume of water between the well water surface and the bottom of the screen; the volume of water standing inside the well casing.

wellhead. The top of a well.

WSRC. Westinghouse Savannah River Company.

NOTES

Glossary Page 194

References

American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 1985. Standard Methods for the Examination of Water and Wastewater, 16th edition. Washington, DC.

American Society for Testing and Materials. 1992. Annual Book of ASTM Standards, Volume 11.02. Philadelphia, PA.

Environmental Protection Agency. 1977. *National Interim Primary Drinking Water Regulations*, EPA-570/9-76-003. Washington, DC.

Environmental Protection Agency. 1980. *Prescribed Procedures for Measurement of Radioactivity in Drinking Water*, EPA-600/4-80-032 (method 901.1). Cincinnati, OH.

Environmental Protection Agency. 1982. *Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater*, PB83-201798 (method 625). Cincinnati, OH.

Environmental Protection Agency. 1983. *Methods for Chemical Analysis of Water and Wastes*, PB84-128677 (methods 200.7, 282.2, 310.1, 350.1, 351.2, 413.1, 418.1, and 420.1). Cincinnati, OH.

Environmental Protection Agency. 1986a. *RCRA Ground-Water Monitoring Technical Enforcement Guidance Document*, OSWER-9950.1. Washington, DC: Office of Waste Programs Enforcement.

Environmental Protection Agency. 1986b. *Test Methods for Evaluating Solid Waste,* Volumes 1A, 1B, and 1C, third edition, SW-846 (methods 6010, 8080, 8150, 8240, 8270, 8280, 9020, 9030, and 9060). Washington, DC.

Environmental Protection Agency. 1988a. *Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses*. Washington, DC: Office of Solid Waste and Emergency Response.

Environmental Protection Agency. 1988b. *Laboratory Data Validation Functional Guidelines for Inorganics Analyses*, Draft. Washington, DC: Office of Solid Waste and Emergency Response.

Environmental Protection Agency. 1990. "National Primary and Secondary Drinking Water Regulations; Synthetic Organic Chemicals and Inorganic Chemicals; Proposed Rule" in *Federal Register*, July 25, 1990, pp. 30369–30448. Washington, DC.

Environmental Protection Agency. 1991a. "Guidelines Establishing Test Procedures for the Analysis of Pollutants" in *Code of Federal Regulations*, Title 40, Part 136, pp. 293–575. Washington, DC.

Environmental Protection Agency. 1991b. *National Functional Guidelines for Organic Data Review*, Draft. Washington, DC: Office of Solid Waste and Emergency Response.

Environmental Protection Agency. 1991c. "National Primary Drinking Water Regulations; Radionuclides; Proposed Rule" in *Federal Register*, July 18, 1991, pp. 33052–33127. Washington, DC.

Environmental Protection Agency. 1991d. "Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities" in *Code of Federal Regulations*, Title 40, Part 264, App. IX, pp. 310–316. Washington, DC.

Environmental Protection Agency. 1991e. *Test Method: The Determination of Inorganic Anions in Water by Ion Chromatography Method 300.0*, Revised August 1991. Cincinnati, OH.

Environmental Protection Agency. 1991f. USEPA Contract Laboratory Program, Statement of Work (CLP SOW) for Organics Analysis, Multi-Media, Multi-Concentration, ILM03.0. Washington, DC.

Environmental Protection Agency. 1996a. "National Primary Drinking Water Regulations" in *Code of Federal Regulations*, Title 40, Part 141. Washington, DC.

Environmental Protection Agency. 1996b. "National Secondary Drinking Water Regulations" in *Code of Federal Regulations*, Title 40, Part 143. Washington, DC.

Keith, L.H. 1991. Environmental Sampling and Analysis: A Practical Guide. Chelsea, MI: Lewis Publishers.

South Carolina Department of Health and Environmental Control. 1981. State Primary Drinking Water Regulations, R.61–58.5. Columbia, SC.

- U.S. Department of Energy. 1986. Savannah River Plant Environmental Report for 1985, Volumes I and II, DPSPU-86-30-1. Aiken, SC.
- U.S. Department of Energy. 1987. Savannah River Plant Environmental Report for 1986, Volumes I and II, DPSPU-87-30-1. Aiken, SC.
- U.S. Department of Energy. 1988a. *Geohydrology Program Report*. Aiken, SC: Environmental Division, Savannah River Operations Office.
- U.S. Department of Energy. 1988b. Savannah River Plant Environmental Report for 1987, Volumes I and II, DPSPU-88-30-1. Aiken, SC.
- U.S. Department of Energy. 1989a. *Geoscience Implementation Plan.* Aiken, SC: Environmental Division, Savannah River Operations Office.
- U.S. Department of Energy. 1989b. Savannah River Site Environmental Report for 1988, Volumes I and II, WSRC-RP-89-59-1. Aiken, SC.

Appendix A. Water-Level Data

During first quarter 1998, water-level measurements were obtained for hydrogeologic projects. Most of the data presented on the following pages were obtained as concurrent data for hydrogeologic interpretation in the A/M and F/H areas. Only water levels were measured for this project; no field tests of water characteristics were conducted. RCS Corporation of Aiken, SC, collected the data.

NOTES

WELL ABP 1A		WELL ABP 4DD	
MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0.317/98 Depth to water: 140.1 ft (42.70m) below TOC Water elevation: 219.8 ft (67.00m) msl	Time: 8:48	MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 145.2 ft (44.26m) below TOC Water elevation: 219.8 ft (67.00m) msl	Time: 8.26
WELL ABP 1DD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 138.9 It (42.34m) below TOC Water elevation: 221.2 It (67.42m) msl	Time: 8:49	WELL ABP 6D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 146.3 ft (44.59m) below TOC Water elevation: 219 ft (86.75m) msl	Time: 8:35
WELL ABP 2A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 152.88 if (46.60m) below TOC Water elevation: 219.02 ft (66.76m) mst	Time: 8:40	WELL ABP 7D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 144.35 ft (44.00m) below TOC Water elevation: 219.85 ft (67.01m) msl	Time: 8:17
WELL ABP 2DD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 151.6 ft (46.21m) below TOC Water elevation: 219 ft (66.75m) msl	Time: 8:41	WELL ABP 8C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 177.4 ft (54.07m) below TOC Water elevation: 194.7 ft (59.35m) msi	Time: 8:31
WELL ABP 3 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 140 if (42.67m) below TOC Water elevation: 213.7 it (65.14m) msi	Time: 8:43	WELL ABP 8D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 152.3 ft (46.42m) below TOC Water elevation: 218.6 ft (66.63m) ms!	Time: 8:32
WELL ABP 3C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 159.3 ft (48.56m) below TOC Water elevation: 195.2 ft (59.50m) mst	Time: 8:44	WELL ABP 9B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 161.15 ft (49.12m) below TOC Water elevation: 191.05 ft (58.23m) msl	Time: 8:13
WELL ABP 4 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 145.95 ff (44.49m) below TOC Water elevation: 218.35 ft (66.55m) msl	Time: 8:25	WELL ABP 9C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 161.25 ft (49.17m) below TOC Water elevation: 191.08 ft (58.24m) msl	Time: 8:12

			ייתובח-נבעבר עאי
WELL ABP 9D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 031/7/98 Sample date: 031/3/48 Water elevation: 219.7 if (66.97m) msl	Time: 8:11	WELL AC 3A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 95,18 if (29.01m) below TOC Water elevation: 207.12 if (63.13m) mst	Time: 14:11
WELL ABP 10D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 139.35 ft (42.47m) below TOC Water elevation: 214.05 ft (65.24m) msl	Time: 9.22	WELL AC 3B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 93.47 ft (28.49m) below TOC Water elevation: 209.03 ft (63.71m) msl	Time: 14:12
WELL ABW 1 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 101.8 ft (31.03m) below TOC Water elevation: 223 ft (67.97m) msl	Time: 9:46	WELL ACB 2A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 117.1 ft (35.69m) below TOC Water elevation: 232.7 ft (70.93m) msi	Time: 8:14
WELL AC 1A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/18/98 Deph to water: 50.81 ft (15.49m) below TOC Water elevation: 2.11.29 ft (64.40m) msl	Тіте: 14:22	WELL ACB 3A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 127.69 ff (38.92m) below TOC Water elevation: 220.61 ft (67.24m) msl	Time: 8:11
WELL AC 1B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 49.76 ft (15.17m) below TOC Water elevation: 212.24 ft (64.69m) msl	Time: 14:21	WELL ACB 3A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 115.2 ft (35.11m) below TOC Water elevation: 233.1 ft (71.05m) ms/	Time: 8:43
WELL AC 2A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 126.67 it (38.61m) below TOC Water elevation: 218.03 it (66.46m) msl	Time: 14:45	WELL ACB 4A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 125.65 ft (38.30m) below TOC Water elevation: 233.45 ft (71.16m) msl	Time: 8:45
WELL AC 2B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 119,74 ft (36.50m) below TOC Water elevation: 225.06 ft (68.60m) mst	Time: 14:46	WELL AMB 4A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 164.2 ft (55.05m) below TOC Water elevation: 216.3 ft (65.93m) ms!	Time: 10:38

First Quarter 1998

WELL AMB 4B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0320/08 Depth to water: 159.3 ft (46.56m) below TOC Water elevation: 221.1 ft (67.39m) mst	Time: 10.37	WELL AMB 8D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 139.6 if (2.55m) below TOC Water elevation: 230 if (70.10m) mst	Time: 9:06
WELL AMB 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 150.55 ft (45.89m) below TOC Water elevation: 229.75 ft (70.03m) msl	Time: 10:39	WELL AMB 9D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/88 Depth to water: 137.9 ff (42.03m) below TOC Water elevation: 230 ft (70.10m) msl	Time: 9:04
WELL AMB 5 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depht to water: 143.55 ft (45.58m) below TOC Water elevation: 230.05 ft (70.12m) msl	Time: 10:40	WELL AMB 10A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/38 Depth to water: 150.9 ft (45.99m) below TOC Water elevation: 215.6 ft (85.72m) msi	Тіте: 9:00
WELL AMB 6 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 147 ff (481m) below TOC Water elevation: 230.2 ft (70.17m) msl	Time: 10:42	WELL AMB 10B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 146.25 ft (44.58m) below TOC Water elevation: 220.15 ft (67.10m) msl	Time: 9:01
WELL AMB 7 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/20/98 Depth to water: 139.5 ft (42.52m) below TOC Water elevation: 230.4 ft (70.23m) msl	Time: 9:17	WELL AMB 10D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 134.65 ft (41.04m) below TOC Water elevation: 230.85 ft (70.36m) msl	Time: 8:59
WELL AMB 7A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 157.35 ft (47.96m) balow TOC Water elevation: 216.25 ft (65.91m) msl	Time: 9:15	WELL AMB 10DD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 7.9 ft (2.41m) below TOC Water elevation: 357.5 ft (108.97m) mst	Time: 8:58
WELL AMB 7B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 151.4 ft (46.15m) below TOC Water elevation: 221.6 ft (67.54m) msl	Time: 9:16	WELL AMB 11B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 144.1 ft (43.92m) below TOC Water elevation: 220.5 ft (67.21m) mst	Time: 9:22

			ייין דייין דייין דייין דייין
WELL AMB 11D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 032/20/98 Depth to water: 132.55 ft (40.40m) below TOC Water elevation: 231.45 ft (70.55m) msl	Time: 9:21	WELL AMB 18A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 161.15 ft (49.12m) below TOC Water elevation: 216.15 ft (65.88m) msl	Time: 9:10
WELL AMB 12D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Sample water: 138.95 ft (42.35m) below TOC Water elevation: 230.85 ft (70.36m) msl	Time: 9:25	WELL AMB 18C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 146.25 ff (14.58m) below TOC Water elevation: 229.75 ff (70.03m) msl	Тітле: 9:11
WELL AMB 13AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 148.7 ft (45.32m) below TOC Water elevation: 216.4 ft (65.96m) msi	Time: 8:55	WELL AMB 19C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 136.45 ft (41.59m) below TOC Water elevation: 227.25 ft (69.27m) msl	Time: 8:49
WELL AMB 14D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 154.2 it (47.00m) below TOC Water elevation: 228.2 it (69.56m) msl	Time: 8:40	WELL AOB 1 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 109 ft (33.22m) below TOC Water elevation: 232.1 ft (70.74m) msi	Time: 13:54
WELL AMB 15D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 153 ft (46.63m) below TOC Water elevation: 230.4 ft (70.23m) msl	Time: 8:41	WELL AOB 2 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 113.65 ft (34.64m) below TOC Water elevation: 231.75 ft (70.64m) msl	Тлпе: 13:58
WELL AMB 16D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 150.5 ft (45.87m) below TOC Water elevation: 229.9 ft (70.07m) msl	Time: 8:38	WELL AOB 3 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 119.3 ft (36.36m) below TOC Water elevation: 233.3 ft (71.11m) msi	Time: 14:07
WELL AMB 17A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 162.8 ft (49.62m) below TOC Water elevation: 216.3 ft (65.93m) msl	Time: 10:41	WELL ARP 1A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	Time: 9:51

WELL ARP 2 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 122 ft (37.19m) below TOC Water elevation: 215.3 ft (65.62m) msl	Time: 9:49	WELL ASB 3CR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0320/98 Depth to water: 122.75 ft (37.41m) below TOC Water elevation: 218.75 ft (66.68m) msi	Time: 9:49
WELL ARP 3 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 12: 35 ft (37.17m) below TOC Water elevation: 217.85 ft (66.40m) msl	Time: 9:47	WELL ASB 4 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 99.25 ft (30.25m) below TOC Water elevation: 236.35 ft (72.04m) mst	Time: 9.58
WELL ARP 4 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0317/98 Deph to water: 133.36 ft (40.65m) below TOC Water elevation: 215.04 ft (65.54m) msl	Time: 9:54	WELL ASB 5AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 112.2 ft (34.20m) below TOC Water elevation: 234.8 ft (71.57m) mst	Tine: 9:35
WELL ASB 1A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/23/98 Depth to water: Not available Water elevation: Not available	Time: 14:46	WELL ASB 5C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 128.2 ft (39.08m) below TOC Water elevation: 219.1 ft (66.78m) msi	Time: 9:36
WELL ASB 2AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 119 ft (36.27m) below TOC Water elevation: 236.6 ft (72.12m) msl	Time: 9:44	WELL ASB 6AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/88 Depth to water: 139 ft (42.37m) below TOC Water elevation: 215.2 ft (65.59m) msl	Time: 9.40
WELL ASB 2CR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 136.2 ft (41.51m) below TOC Water elevation: 219.4 ft (66.87m) msl	Time: 9:43	WELL ASB 6C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 133.2 ft (40.50m) below TOC Water elevation: 220.4 ft (67.18m) msi	Time: 9:39
WELL ASB 3AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 104.15 ft (72.38m) msl	Time: 9.48	WELL ASB 6TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 141.6 ft (43.15m) below TOC Water elevation: 211.3 ft (64.41m) msl	Time: 9:38

			אוריו דפעבר מאוריי
WELL ASB 8 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 117.9 ft (35.94m) below TOC Water elevation: 231.1 ft (70.44m) msl	Time: 12:26	WELL ASB 9C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/96 Depth to water: 92.2 ft (28.10m) below TOC Water elevation: 217.7 ft (66.36m) mst	Time: 9:07
WELL ASB 8A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 134.15 ft (40.89m) below TOC Water elevation: 215.15 ft (65.58m) msi	Типе: 12:29	WELL ASB 10CR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 130.1 ft (38.65m) below TOC Water elevation: 219.1 ft (66.78m) msl	Time: 9:46
WELL ASB 8B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 135.8 it (41.39m) below TOC Water elevation: 214 ft (65.23m) msl	Time: 12:30	WELL BGO 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/99 Depth to water: 54.7 ft (16.67m) below TOC Water elevation: 240.4 ft (73.27m) msl	Time: 12:12
WELL ASB 8C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 132.9 ft (40.51m) below TOC Water elevation: 216.8 ft (66.08m) msl	Time: 12:30	WELL BGO 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: Not available Water elevation: Not available	Time: 15:40
WELL ASB 8TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 137.62 ft (41.95m) below TOC Water elevation: 211.98 ft (64.61m) msl	Time: 12:28	WELL BGO 3A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 127.95 ft (39.00m) below TOC Water elevation: 163.95 ft (49.97m) msl	Time: 11:19
WELL ASB 9 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 68.95 ft (21.02m) below TOC Water elevation: 240.05 ft (73.17m) mst	Time: 9:04	WELL BGO 3C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 65.7 ft (20.03m) below TOC Water elevation: 226.2 ft (88.95m) msl	Тіте: 11:20
WELL ASB 9B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 91.5 ft (27.89m) below TOC Water elevation: 217.5 ft (66.29m) msl	Time: 9:06	WELL BGO 3DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 60 it (18.29m) below TOC Water elevation: 231.5 it (70.56m) msi	Time: 11:21

Time: 14:01	Тіте: 14:12	Time: 14:10	Time: 14:11	Time: 8:05	Time: 14:21	Time: 14:50
WELL BGO 7D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 56.6 ft (17.25m) balow TOC Water elevation: 230.4 ft (70.23m) msl	WELL BGO 8AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 126.19 ft (38.46m) below TOC Water elevation: 160.41 ft (48.89m) msl	WELL BGO 8C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 65.55 ff (19.98m) below TOC Water elevation: 222.35 ft (67.77m) msl	WELL BGO 8D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 57.24 ft (17.45m) below TOC Water elevation: 230.56 ft (70.28m) msl	WELL BGO 9AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 126.3 ft (38.50m) below TOC Water elevation: 158.5 ft (48.31m) mst	WELL BGO 9D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 56.45 ft (17.21m) below TOC Water elevation: 228.65 ft (69.69m) msl	WELL BGO 10A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 130.08 ft (39.65m) below TOC Water elevation: 170.82 ft (52.07m) msi
Time: 11:22	Time: 11:29	Time: 11:28	Time: 14:00	Time: 13:53	Time: 13:57	Time: 13:55
WELL BGO 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 66.85 ft (20.38m) below TOC Water elevation: 230.65 ft (70.30m) msl	WELL BGO 5C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 79.4 ft (24.20m) below TOC Water elevation: 216.7 ft (66.05m) msl	WELL BGO 5D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 66.6 ft (20.30m) below TOC Water elevation: 229.7 ft (70.01m) msi	WELL BGO 6A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 125.6 if (38.28m) below TOC Water elevation: 160 ft (48.77m) msl	WELL BGO 6B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 68.18 if (20.78m) below TOC Water elevation: 218.62 it (66.64m) msl	WELL BGO 6C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 65.98 it (20.11m) below TOC Water elevation: 219.62 it (66.94m) msl	WELL BGO 6D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 55.65 ff (16.96m) below TOC Water elevation: 229.85 ft (70.06m) msl

ESH-EMS-980568

			WATER-LEVEL DA:
WELL BGO 10AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 159.19 ft (48.52m) below TOC Water elevation: 141.51 ft (43.13m) msl	Time: 8:12	WELL BGO 12AX MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 154.91 ft (47.22m) below TOC Water elevation: 157.89 ft (48.13m) msl	Time: 8:55
WELL BGO 10AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 141.55 ft (43.14m) below TOC Water elevation: 158.35 ft (48.45m) mst	Time: 14:47	WELL BGO 12CX MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 84.06 ft (25.62m) below TOC Water elevation: 229.24 ft (69.87m) msl	Time: 8:50
WELL BGO 10B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 109.26 ft (33.30m) below TOC Water elevation: 191.74 ft (58.44m) msi	Time: 8:10	WELL BGO 12DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 94.14 ft (28.69m) below TOC Water elevation: 219.46 ft (66.89m) ms	Time: 8:45
WELL BGO 10C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 81.99 ft (24.99m) below TOC Water elevation: 219.31 ft (66.85m) msl	Time: 14:51	WELL BGO 13DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 90.11 ft (27.47m) below TOC Water elevation: 229.19 ft (69.86m) msl	Time: 9:00
WELL BGO 10D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 71.38 # (21.76m) below TOC Water elevation: 230.12 ft (70.14m) msl	Time: 14:55	WELL BGO 14AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 140.92 ft (42.95m) below TOC Water elevation: 159.78 ft (48.70m) msi	Time: 9:05
WELL BGO 10DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 70.2 it (21.40m) below TOC Water elevation: 230.2 it (70.17m) msl	Time: 14:45	WELL BGO 14CR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 78.09 ft (23.80m) below TOC Water elevation: 222.41 ft (67.79m) msi	Time: 9:10
WELL BGO 11DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 76.2 ft (23.23m) below TOC Water elevation: 229 ft (69.80m) msl	Time: 7.55	WELL BGO 14DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 71.22 ft (21.71m) below TOC Water elevation: 229.08 ft (69.82m) msl	Time: 9:15

Time: 9:59	Time: 10:02	Time: 10:05	Time: 9:45	Time: 9.47	Time: 9:50	Time: 10:10
WELL BGO 27C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 55.76 if (17.00m) below TOC Water elevation: 220.24 it (67.15m) msi	WELL BGO 27D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 49.15 # (14.98m) below TOC Water elevation: 227.15 # (69.24m) msl	WELL BGO 28D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 50.76 ft (15.47m) below TOC Water elevation: 226.64 ft (69.08m) ms!	WELL BGO 29A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 103.8 ft (31.64m) below TOC Water elevation: 160.4 ft (48.89m) msi	WELL BGO 29C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 42.15 ft (12.85m) below TOC Water elevation: 222.65 ft (67.86m) msi	WELL BGO 29D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 39 ft (11.89m) below TOC Water elevation: 226.5 ft (69.04m) msi	WELL BGO 30C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 55.05 it (16.78m) below TOC Water elevation: 219.45 ft (66.89m) msl
Time: 11:08	Time: 11:05	Time: 11:07	Time: 11:10	Time: 9:28	Time: 9:58	Time: 9:50
WELL BGO 21D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 51.06 ft (15.56m) below TOC Water elevation: 234.34 ft (71.45m) msi	WELL BGO 22DX MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 51:65 ft (15.74m) below TOC Water elevation: 234.05 ft (71.34m) msl	WELL BGO 23D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Deph to water: 53,72 ft (16.37m) below TOC Water elevation: 235.48 ft (71.78m) mst	WELL BGO 24D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 56.05 ft (17.08m) below TOC Water elevation: 237.15 ft (72.28m) msl	WELL BGO 25A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 134.72 ft (41.06m) below TOC Water elevation: 161.78 ft (49.31m) msl	WELL BGO 26A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 127.1 ft (38.74m) below TOC Water elevation: 160.1 ft (48.80m) msl	WELL BGO 26D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 58.8 ff (17.92m) below TOC Water elevation: 226.7 ft (89.10m) msl

			7717717171
WELL BGO 45A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 117.75 ft (35.89m) below TOC Water elevation: 161.15 ft (49.12m) msi	Time: 9:36	WELL BGO 47A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 103.85 ft (31.65m) below TOC Water elevation: 163.05 ft (49.70m) msl	Time: 11:22
WELL BGO 45B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 60.35 ft (18.39m) below TOC Water elevation: 218.25 ft (66.52m) msl	Time: 9:38	WELL BGO 47C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 44.45 ft (13.55m) below TOC Water elevation: 223.15 ft (86.02m) msl	Time: 11:18
WELL BGO 45C MEASUHEMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Dopth to water: 56.65 ft (17.27m) below TOC Water elevation: 221.35 ft (67.65m) msl	Time: 9:41	WELL BGO 47D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/88 Depth to water: 40,23 ft (12.26m) below TOC Water elevation: 227.17 ft (69.24m) msl	Time: 11:19
WELL BGO 45D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 51.41 ft (15.67m) below TOC Water elevation: 227.19 ft (69.25m) msl	Time: 9:43	WELL BGO 48C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/88 Depth to water: 52.81 ft (16.10m) below TOC Water elevation: 223.79 ft (68.21m) msl	Time: 11:28
WELL BGO 46B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 47.4 ft (14.45m) below TOC Water elevation: 218 ft (66.45m) msl	Time: 11:12	WELL BGO 48D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/38 Depth to water: 49.45 ft (15.07m) below TOC Water elevation: 227.45 ft (69.33m) msl	Time: 11:30
WELL BGO 46C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Bepth to water 45,42 ft (13.84m) below TOC Water elevation: 219.68 ft (66.96m) msi	Time: 11:13	WELL BGO 49A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	Time: 10:42
WELL BGO 46D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 38.69 ft (11.79m) below TOC Water elevation: 226.41 ft (69.01m) msl	Time: 11:14	WELL BGO 49C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 41.4 ft (12.62m) below TOC Water elevation: 229.7 ft (70.01m) msi	Time: 10:45

Time: 12:18	Time: 12:17	Time: 10:15	Time: 10:17	Time: 10:14	Time: 10:12	Time: 10:11
WELL BGO 51C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/19/98 Depth to water: 56.7 ft (17.28m) below TOC Water elevation: 232.4 ft (70.84m) msl	WELL BGO 51D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 53.7 ft (16.37m) below TOC Water elevation: 235.6 ft (71.81m) msl	WELL BGO 52A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0319/98 Depth to water: 119.65 ft (36.47m) below TOC Water elevation: 164.78 ft (50.22m) msl	WELL BGO 52AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 120.52 tt (36.73m) below TOC Water elevation: 163.98 tt (49.98m) msi	WELL BGO 52B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 54.9 ft (16.9.95m) msi	WELL BGO 52C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 53.86 ft (16.42m) below TOC Water elevation: 23.06 ft (70.30m) mst	WELL BGO 52D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 51.32 ft (15.64m) below TOC Water elevation: 233.48 ft (71.17m) ms1
Time: 10:49	Time: 11:10	Time: 11:06	Time: 11:03	Time: 12:20	Time: 12:15	Time: 12:19
WELL BGO 49D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 73.5 it (11.43m) below TOC Water elevation: 234 ft (71.32m) msl	WELL BGO 50A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 94.3 ft (28.74m) below TOC Water elevation: 161.1 ft (49.10m) msl	WELL BGO 50C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 37 ft (11.28m) below TOC Water elevation: 218.5 ft (66.60m) msl	WELL BGO 50D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/1798 Depth to water: 29 8 ft (9.08m) below TOC Water elevation: 226.2 ft (68.95m) msl	WELL BGO 51A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/36 Depth to water: 122.85 ft (37.45m) below TOC Water elevation: 166.45 ft (50.73m) msl	WELL BGO 51AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/95 Depth to water: 120.15 ft (36.62m) below TOC Water elevation: 169.05 ft (51.53m) msl	WELL BGO 51B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 57.58 if (17.55m) below TOC Water elevation: 231.52 if (70.57m) msi

			WAIEN-LEVEL DAIA
WELL BGO 53A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 131.5 ft (40.08m) below TOC Water elevation: Not available	Time: 10:02	WELL BGX 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 62.74 ft (19.12m) below TOC Water elevation: 228.56 ft (69.67m) msl	Time: 13:45
WELL BGO 53AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 132.35 ft (40.34m) below TOC Water elevation: Not available	Time: 10:00	WELL BGX 2B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 79.39 ft (24.20m) below TOC Water elevation: 211.91 ft (64.59m) mst	Time: 13:40
WELL BGO 53B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 70.3 ft (21.43m) below TOC Water elevation: 220.8 ft (67.30m) msl	Time: 10:04	WELL BGX 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 76.64 ft (23,36m) below TOC Water elevation: 214.46 ft (65.37m) msl	Time: 13:42
WELL BGO 53C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 68.7 ft (20.94m) below TOC Water elevation: 222.2 ft (67.73m) msl	Time: 10:05	WELL BGX 3D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 77.5 ft (23.62m) below TOC Water elevation: 213.7 ft (65.14m) msl	Time: 13:26
WELL BGO 53D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 62.9 ft (19.17m) below TOC Water elevation: 228.7 ft (69.71m) msl	Time: 10:08	WELL BGX 4A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 135.1 ft (41.18m) below TOC Water elevation: 155.8 ft (47.49m) msl	Time: 13:25
WELL BGX 1A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 132.49 ft (40.38m) below TOC Water elevation: 158.71 ft (48.38m) msl	Time: 13:51	WELL BGX 4C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 77.56 ft (23.64m) below TOC Water elevation: 213.24 ft (65.00m) msl	Time: 13:21
WELL BGX 1C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 75/28 ft (22.95m) below TOC Water elevation: 216.02 ft (65.84m) msl	Time: 13:48	WELL BGX 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: .03/17/98 Depth to water: 76.68 ft (23.37m) below TOC Water elevation: .214.22 ft (65.30m) mst	Time: 13:18

WELL BGX 11D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 39:75 ft (12.12m) below TOC Water elevation: 236.55 ft (72.10m) msl	WELL BGX 10D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 50.98 ft (15.54m) below TOC Water elevation: 225.92 ft (88.86m) msl	WELL BGX 9D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 51.75 ft (15.77m) below TOC Water elevation: 227.65 ft (69.39m) msl	WELL BGX 8DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 70.35 ft (21.44m) below TOC Water elevation: 207.85 ft (63.35m) msl	WELL BGX 7D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 73.65 ft (22.45m) below TOC Water elevation: 205.55 ft (62.65m) msl	WELL BGX 6D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 7.1.1 ft (21.67m) below TOC Water elevation: 205.9 ft (62.76m) msl	WELL BGX 5D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 76.79 ft (23.41m) below TOC Water elevation: 208.21 ft (63.46m) msl
Time: 12:02	Time: 12:00	Time: 11:55	Time: 11:50	Time: 11:39	Time: 11:34	Time: 13:15
WELL FIW 2MC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 73.15 ft (22.30m) below TOC Water elevation: 212.65 ft (64.82m) msl	WELL FIW 2MA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 140.05 ft (42.69m) below TOC Water elevation: 152.65 ft (46.53m) msl	WELL FIW 2IC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 77.6 ft (23.65m) below TOC Water elevation: 212.9 ft (64.89m) ms!	WELL FIW 1MC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 80.35 ft (24.49m) below TOC Water elevation: 213.35 ft (65.03m) msl	WELL FIW 1ID MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/88 Depth to water: 76.15 ft (23.21m) below TOC Water elevation: 217.75 ft (66.37m) msl	WELL BGX 12D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 31.76 ft (9.68m) below TOC Water elevation: 243.44 ft (74.20m) msl	WELL BGX 12C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 37/87 ft (11.54m) below TOC Water elevation: 237/23 ft (72.31m) msl
Time: 15:02	Time: 7:20	Time: 7:24	Time: 13:45	Time: 13:49	Time: 13:10	Time: 13:05

WELL FIW 2MD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 73.88 if (22.52m) below TOC Water elevation: 216.92 if (66.12m) msl	Time: 7:22	WELL FOB 7C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 88.22 ft (26.89m) below TOC Water elevation: 209.68 ft (65.91m) msl	Time: 13:55
WELL FOB 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 18.95 ft (5.78m) below TOC Water elevation: 206.45 ft (62.93m) msl	Time: 12:28	WELL FOB 7D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 84.7 it (25.82m) below TOC Water elevation: 213.2 it (64.98m) msl	Time: 13:52
WELL FOB 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 20.5 ft (6.25m) below TOC Water elevation: 208.1 ft (83.43m) msl	Time: 11:05	WELL FOB 8D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 75.88 it (23.16m) below TOC Water elevation: 212.42 it (64.75m) msl	Time: 9:18
WELL FOB 3D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/99 Depth to water: 18.41 ft (5.61m) below TOC Water elevation: 208.59 ft (63.58m) msl	Time: 8:45	WELL FOB 9C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 82.3 it (25.27m) below TOC Water elevation: 211.9 it (64.59m) msl	Time: 9:27
WELL FOB 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 43.05 ft (13.12m) below TOC Water elevation: 209.15 ft (63.75m) msl	Time: 14:40	WELL FOB 9D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 79.7 ft (24.29m) below TOC Water elevation: 215 ft (55.53m) msl	Time: 9.29
WELL FOB 5C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 52.56 if (16.02m) below TOC Water elevation: 205.94 it (62.77m) msl	Тіте: 8:08	WELL FOB 10D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 71:69 ft (21.85m) below TOC Water elevation: 216.01 ft (65.84m) msl	Time: 7:54
WELL FOB 7A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 145.89 it (44.47m) below TOC Water elevation: 151.61 ft (46.21m) msl	Time: 14:00	WELL FOB 11C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 48.9 ft (14.90m) below TOC Water elevation: 214.8 ft (65.47m) msl	Time: 11:10

WELL FOB 11D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 44.4 ft (13.53m) below TOC Water elevation: 219 ft (66.75m) msl	Time: 11:12	WELL FSB 77 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 59.16 if (18.03m) below TOC Water elevation: 214.14 if (65.27m) msl	Time: 14:10
WELL FOB 12D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 66.58 ft (20.29m) below TOC Water elevation: 211.82 ft (64.56m) msl	Tíme: 8:21	WELL FSB 78 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 61.3 ft (18.68m) below TOC Water elevation: 211.3 ft (64.4fm) msl	Time: 9:00
WELL FSB 50PD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water 47,58 ft (14,50m) below TOC Water elevation: 210.42 ft (64.14m) msl	Time: 8:03	WELL FSB 78A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 115.35 ft (35.16m) below TOC Water elevation: 157.25 ft (47.93m) msl	Time: 9:02
WELL FSB 76 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/99 Depth to water: 75.6 ft (23.35m) below TOC Water elevation: 217.6 ft (66.33m) msl	Time: 13:36	WELL FSB 78B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 117.25 ft (35.74m) below TOC Water elevation: 155.55 ft (47.41m) msl	Time: 9:04
WELL FSB 76A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 137 & ft (41,94m) below TOC Water elevation: 156.3 ft (47,64m) msl	Time: 13:38	WELL FSB 78C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 63.81 it (19.45m) below TOC Water elevation: 209.69 it (63.91m) msl	Time: 9:06
WELL FSB 76B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 141.25 ft (43.05m) below TOC Water elevation: 152.55 ft (46.50m) msl	Time: 13:39	WELL FSB 79 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 16.25 ft (4.95m) below TOC Water elevation: 201.55 ft (61.43m) mst	Time: 12:34
WELL FSB 76C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 80.35 ft (24.49m) below TOC Water elevation: 213.25 ft (65.00m) msl	Time: 13:42	WELL FSB 79A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 58.9 if (17.95m) below TOC Water elevation: 159.2 it (48.52m) msi	Time: 12:31

Time: 14:02	Time: 14:42	Time: 14:40	Time: 14:04	Time: 14:05	Time: 14:07	Time: 14:08
WELL FSB 88D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/09 Depth to water: 64.9 ft (19.78m) below TOC Water elevation; 217.5 ft (66.29m) msi	WELL FSB 89C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 68.58 ft (20.90m) below TOC Water elevation: 212.72 ft (64.84m) insi	WELL FSB 89D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 64.3 ft (19.60m) below TOC Water elevation: 216.9 ft (66.11m) msl	WELL FSB 90C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 66.8 if (20.36m) below TOC Water elevation: 211.6 if (64.50m) msl	WELL FSB 90D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 62.6 if (19.08m) below TOC Water elevation: 216 ft (65.84m) msl	WELL FSB 91C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/88 Depth to water: 67.2 ft (20.48m) below TOC Water elevation: 212.1 ft (64.65m) mst	WELL FSB 91D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 64.15 ft (19.55m) below TOC Water elevation: 215.05 ft (65.55m) msl
Time: 12:32	Time: 12:33	Time: 9:34	Time: 9:36	Time: 9:38	Time: 9:40	Time: 14:00
WELL FSB 79B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 58.8 ft (17.92m) below TOC Water elevation: 159.4 ft (48.59m) msl	WELL FSB 79C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 20.08 it (6.12m) below TOC Water elevation: 198.32 it (60.45m) msl	WELL FSB 87A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 132.85 ft (40.49m) below TOC Water elevation: 154.95 ft (47.23m) msl	WELL FSB 87B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 135.77 ft (41.38m) below TOC Water elevation: 151.73 ft (46.25m) msl	WELL FSB 87C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 77.85 ft (23.73m) below TOC Water elevation: 209.65 ft (63.90m) msl	WELL FSB 87D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: Not available Water elevation: Not available	WELL FSB 88C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 69.75 if (21.26m) below TOC Water elevation: 213.25 ft (65.00m) msl

			MAIEN-LEVEL DAIA
WELL FSB 92C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 64.9 it (19.78m) below TOC Water elevation: 210.8 it (64.25m) msi	Time: 14:15	WELL FSB 95DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/08 Depth to water: 72.8 ft (22.19m) below TOC Water elevation: 211.3 ft (64.41m) msl	Time: 8:46
WELL FSB 92D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03.19,19,98 Depth to water: 62.35 ft (19.00m) below TOC Water elevation: 213.55 ft (65.09m) msi	Time: 14:20	WELL FSB 96AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 127/08 ff (38.73m) below TOC Water elevation: 154.12 ft (46.98m) ms	Time: 8:11
WELL FSB 93C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 65.3 it (19.90m) below TOC Water elevation: 210.9 it (64.28m) msl	Time: 14:35	WELL FSB 97A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 132.98 ff (40.53m) below TOC Water elevation: 153.12 ft (46.67m) msi	Time: 8:26
WELL FSB 93D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water 63.4 ft (19.32m) below TOC Water elevation: 212.7 ft (64.83m) msl	Time: 14:37	WELL FSB 97C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 76.99 ft (23.47m) below TOC Water elevation: 209.11 ft (63.74m) msl	Тіте: 8:28
WELL FSB 94C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 71.81 ft (21.89m) below TOC Water elevation: 209.29 ft (63.79m) msi	Time: 8:53	WELL FSB 97D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 74.28 ft (22.64m) below TOC Water elevation: 211.72 ft (64.53m) mst	Time: 8:30
WELL FSB 94DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 68.7 tt (20.94m) below TOC Water elevation: 211.8 ft (64.56m) mst	Time: 8:55	WELL FSB 98AR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 131.5 ft (40.08m) below TOC Water elevation: 152.5 ft (46.48m) msl	Time: 8:34
WELL FSB 95CR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 75.61 ft (23.05m) below TOC Water elevation: 208.39 ft (63.52m) msl	Time: 8:44	WELL FSB 98C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 74,7 ff (22.77m) below TOC Water elevation: 209.9 ft (63.95m) msl	Time: 8:38

Time: 14:43	Time: 8:46	Time: 8:49	Time: 8:15	Time: 8:17	Time: 13:00	Time: 12:55
WELL FSB103C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 38 ft (11.58m) below TOC Water elevation: 204.4 ft (62.30m) msl	WELL FSB104C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 15.95 ft (4.86m) below TOC Water elevation: 203.15 ft (61.92m) msl	WELL FSB104D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 11.27 ft (3.44m) below TOC Water elevation: 207.93 ft (63.38m) msl	WELL FSB105C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 77.3 ft (23.55m) below TOC Water elevation: 208.5 ft (63.55m) msl	WELL FSB105DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 74.19 ft (22.61m) below TOC Water elevation: 211.41 ft (64.44m) msl	WELL FSB106C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 31,7 ft (9.66m) below TOC Water elevation: 203.4 ft (62.06m) ms/	WELL FSB106D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 25.8 ft (7.86m) below TOC Water elevation: 209.1 ft (83.73m) msi
Time: 8:36	Time: 9:10	Time: 9:12	Time: 9:14	Time: 14:57	Time: 14:59	Time: 12:52
WELL FSB 98D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 72.06 ft (21.96m) below TOC Water elevation: 212.44 ft (64.75m) mst	WELL FSB 99A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 136 ft (41.45m) below TOC Water elevation: 151.6 ft (46.21m) msl	WELL FSB 99C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 77.4 ft (23.59m) below TOC Water elevation: 210.3 ft (64.10m) msl	WELL FSB 99D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water; 74,47 it (22.70m) below TOC Water elevation: 213.13 ft (64.96m) msl	WELL FSB100A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 133.55 ft (40.71m) below TOC Water elevation: 152.45 ft (46.47m) msl	WELL FSB101A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to waiter 132.5 ft (40.39m) below TOC Water elevation: 152.7 ft (46.54m) msi	WELL FSB102C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 4.75 ft (1.45m) below TOC Water elevation: 196.35 ft (59.85m) msl

WELL FSB107C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 59.5 if (18.14m) below TOC Water elevation: 211.4 it (64.44m) msi	Time: 11:30	WELL FSB111D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0318/98 Depth to water: 59.5.ft (18.14m) below TOC Water elevation: 217.1 ft (66.17m) msi	Time: 11:26
WELL FSB107D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03.18/08 Depth to water: 55.3 if (16.86m) below TOC Water elevation: 215.7 if (65.75m) msi	Time: 11:31	WELL FSB112A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 74.98 ft (22.85m) below TOC Water elevation: 154.12 ft (46.98m) msl	Time: 8:35
WELL FSB108D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 81.17 it (24.74m) below TOC Water elevation: 216.83 it (66.09m) msl	Time: 13:50	WELL FSB112C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 24,75 ft (7.54m) below TOC Water elevation: 204,35 ft (62,29m) msi	Time: 8:40
WELL FSB109D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 79,47 it (24,22m) balow TOC Water elevation: 213.63 ft (65,12m) msl	Time: 9:23	WELL FSB112D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/88 Depth to water: 20.95 ft (6.39m) below TOC Water elevation: 208.65 ft (63.60m) msi	Time: 8:41
WELL FSB110C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 31.59 it (9.63m) below TOC Water elevation: 202.91 ft (61.85m) msl	Time: 12:42	WELL FSB113A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 62.5 ft (19.05m) below TOC Water elevation: 160.7 ft (48.98m) msl	Time: 13:14
WELL FSB110D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 26, 16 it (7.97m) below TOC Water elevation: 208,34 it (63.50m) msl	Time: 12:40	WELL FSB113C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 18.1 ft (5.52m) below TOC Water elevation: 204.8 ft (62.42m) msi	Time: 13:12
WELL FSB111C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 63.5 it (19.36m) below TOC Water elevation: 212.8 it (64.86m) msl	Time: 11:25	WELL FSB113D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 11.7 if (3.57m) below TOC Water elevation: 210.8 if (64.25m) msl	Time: 13:10

			WAIEK-LEVEL DA
WELL FSB114A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 95.75 ft (29.18m) below TOC Water elevation: 156.25 ft (47.63m) msi	Time: 11:19	WELL FSB117D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 22:95 ft (7.00m) below TOC Water elevation: 207.75 ft (83.32m) msl	Time: 12:46
WELL FSB114C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 38.4 ff (11,70m) below TOC Water elevation: 213.8 ft (65.17m) msl	Time: 11:20	WELL FSB118D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0.318/98 Depth to water: 28.65 ft (8.73m) below TOC Water elevation: 214.65 ft (65.43m) msl	Time: 13:17
WELL FSB114D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 33.2 ft (10.12m) below TOC Water elevation: 219 ft (66.75m) msl	Time: 11:21	WELL FSB119D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/88 Depth to water: 42.9 ft (13.08m) below TOC Water elevation: 211.2 ft (64.37m) msl	Time: 13:05
WELL FSB115C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 22.35 ft (6 81m) below TOC Water elevation: 185.45 ft (56.53m) msl	Time: 13:30	WELL FSB120A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 108.8 ft (33.16m) below TOC Water elevation: 171.3 ft (52.21m) msl	Time: 14:10
WELL FSB115D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 14.15 ft (4.31m) below TOC Water elevation: 194.35 ft (59.24m) msl	Time: 13:32	WELL FSB120C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 73.7 if (22.46m) below TOC Water elevation: 206 if (82.79m) msl	Time: 14:13
WELL FSB116C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 11.76 ft (3.58m) below TOC Water elevation: 190.74 ft (58.14m) msl	Time: 13:42	WELL FSB120D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 714 ft (21,76m) below TOC Water elevation: 209.1 ft (63,73m) msi	Time: 14:16
WELL FSB116D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 9.04 ft (2.76m) below TOC Water elevation: 193.86 ft (59.09m) msl	Time: 13:40	WELL FSB121C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 51.76 ft (15.78m) below TOC Water elevation: 204.74 ft (62.4fm) msi	Time: 14:23

			WATER-LEVEL DATA
WELL FSB121DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/89 Depth to water: 48.3 ff (14.72m) below TOC Water elevation: 207.2 ft (63.16m) msl	Time: 14:19	WELL FSL 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/24/98 Depth to water: 88 ft (26.82m) below TOC Water elevation: 222.8 ft (67.91m) msl	Time: 13:40
WELL FSB122C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 15.85 ft (4.83m) below TOC Water elevation: 202.15 ft (61.62m) msl	Time: 8:52	WELL FSL 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 82.26 ft (25.07m) below TOC Water elevation: 223.54 ft (88.14m) msl	Time: 10:04
WELL FSB122D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 10.4 ft (3.17m) below TOC Water elevation: 207.2 ft (63.16m) msl	Time: 8:55	WELL FSL 3D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 81.5 ft (24.84m) below TOC Water elevation: 220.5 ft (67.21m) msl	Time: 9:56
WELL FSB123C MEASUREMENT'S CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 26.58 ft (8.10m) below TOC Water elevation: 211.52 ft (64.47m) msl	Time: 13:20	WELL FSL 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 78.04 ft (23.79m) below TOC Water elevation: 216.06 ft (65.86m) msl	Time: 9:54
WELL FSB123D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 22 8 ft (6 95m) below TOC Water elevation: 215.3 ft (65.62m) msl	Time: 13:25	WELL FSL 5D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 72.87 it (22.21m) below TOC Water elevation: 218.93 it (66.73m) mst	Time: 10:11
WELL FSB150PC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 36.55.ft ((1.1.08m) below TOC Water elevation: 200.45 ft (61.10m) msi	Time: 12:37	WELL FSL 6D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 67.69 ft (20.63m) below TOC Water elevation: 218.51 ft (66.60m) msi	Time: 10:57
WELL FSB150PD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 49.24 ft (15.01m) below TOC Water elevation: 210.16 ft (64.06m) msl	Time: 8:06	WELL FSL 7D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 69/95 ft (21.32m) below TOC Water elevation: 217.65 ft (66.34m) msl	Time: 13:35

WELL FSL 8D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 73.4 ft (22.37m) below TOC Water elevation: 217.4 ft (66.26m) mst	Time: 13:52	WELL HIW 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/21 (13.22m) below TOC Water elevation: 234.42 tt (71.45m) msl	Time: 7:44
WELL FSL 9D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 68.75 ft (20.96m) below TOC Water elevation: 217:15 ft (66.19m) msl	Time: 13:57	WELL HIW 2IC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 40.63 ft (12.38m) below TOC Water elevation: 236.37 ft (72.05m) msl	Time: 7:45
WELL FSS 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 40.9 ft (12.47m) below TOC Water elevation: 225.1 ft (88.61m) msl	Time: 10.24	WELL HIW 2MC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: Not available Water elevation: Not available	Time: 11:45
WELL FSS 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 44,08 ft (13.44m) below TOC Water elevation: 217.52 ft (66.30m) msl	Time: 10:26	WELL HIW 3MC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 37.32 ft (11.38m) below TOC Water elevation: 236.68 ft (72.14m) msl	Time: 7:41
WELL FSS 3D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Water elevation: 218.05 ft (66.46m) msl	Time: 10:29	WELL HIW 4MC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: Not available Water elevation: Not available	Time: 11:48
WELL FSS 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Water elevation: 219.5 ft (66.90m) mst	Time: 10:37	WELL HIW 5MC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 36.73 it (11.20m) below TOC Water elevation: 231.47 it (70.55m) msi	Time: 14:14
WELL HIW 2A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 109.77 ft (33.46m) below TOC Water elevation: 168.23 ft (51.28m) msl	Time: 7.43	WELL HMD 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 54.66 ft (16.66m) below TOC Water elevation: 209.84 ft (63.96m) msi	Time: 13:02

			WATER-LEVEL DATA
WELL HMD 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 57.62 ft (17.56m) below TOC Water elevation: 203.48 ft (62.02m) msl	Time: 13:10	WELL HOB 6D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 4.92 ft (1.50m) below TOC Water elevation: 209.08 ft (63.73m) msl	Time: 12:46
WELL HMD 3D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 56.58 it (17.25m) below TOC Water elevation: 202.92 it (61.85m) msl	Time: 12:43	WELL HOB 7D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 15.5 ft (4.72m) below TOC Water elevation: 224 ft (68.28m) msi	Time: 14:30
WELL HMD 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 48.66 ff (14.83m) below TOC Water elevation: 202.24 ft (61.64m) msl	Time: 12:49	WELL HSB 50PC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 10.3 ft (3.14m) below TOC Water elevation: 221.4 ft (67.48m) msi	Time: 8:28
WELL HOB 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 51.52 ft (15.70m) below TOC Water elevation: 234.78 ft (71.56m) msl	Time: 13:54	WELL HSB 66 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/88 Depth to water: 52.65 ft (16.05m) below TOC Water elevation: 227.55 ft (69.36m) msi	Time: 14:00
WELL HOB 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 55.44 if (16.90m) below TOC Water elevation: 232.36 it (70.82m) msi	Time: 13:48	WELL HSB 67 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 11.41 ft (3.44m) below TOC Water elevation: 226.39 ft (69.00m) ms1	Time: 10:31
WELL HOB 3D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 36.17 if (1,02m) below TOC Water elevation: 233.63 it (71.21m) msi	Time: 14:06	WELL HSB 68 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/18/98 Depth to water: 25.83 ft (7.87m) below TOC Water elevation: 224.27 ft (68.36m) msl	Тіте: 8:19
WELL HOB 5D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 29.28 it (33.10m) msl	Time: 13:41	WELL HSB 68A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/18/98 Deph to water: 76.47 ft (52.71m) below TOC Water elevation: 172.93 ft (52.71m) msl	Time: 8:18

ESH-EMS-980568

WELL HSB 68B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 30.91 if (9.42m) below TOC Water elevation: 219.09 if (66.78m) msl	Time: 8:17	WELL HSB 83D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 9.32 if (2.84m) betow TOC Water elevation: 227.68 if (69.40m) msl	Time: 10.25
WELL HSB 68C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 30,07 ft (9.17m) below TOC Water elevation: 220.03 ft (67.07m) msl	Time: 8:16	WELL HSB 85A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 124.51 ft (37.95m) below TOC Water elevation: 169.89 ft (51.78m) msl	Time: 12:45
WELL HSB 71 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 12.37 ft (3.77m) below TOC Water elevation: 229.03 ft (69.81m) msl	Time: 8:45	WELL HSB 85B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 59.6 ft (18.17m) below TOC Water elevation: 234.9 ft (71.60m) msl	Time: 12:40
WELL HSB 71C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 14.91 ft (4.54m) below TOC Water elevation: 226.69 ft (69.10m) msl	Time: 8:46	WELL HSB 85C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 53.28 ft (16.24m) below TOC Water elevation: 240.82 ft (73.40m) msl	Time: 12:41
WELL HSB 83A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0318/38 Depth to water: 63.83 ft (19.46m) below TOC Water elevation: 173.47 ft (52.87m) msl	Time: 10:22	WELL HSB 86A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 92.78 it (28.28m) below TOC Water elevation: 169.62 it (51.70m) msi	Time: 12:24
WELL HSB 83B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 11.29 ft (3.44m) below TOC Water elevation: 225.71 ft (68.80m) msl	Time: 10:23	WELL HSB 86B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 37.43 ft (11.41m) below TOC Water elevation: 224.47 ft (88.42m) msl	Time: 12:23
WELL HSB 83C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 9.38 ft (2.86m) below TOC Water elevation: 227.72 ft (69.41m) msl	Time: 10:24	WELL HSB 86C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 36.64 ft (11.17m) below TOC Water elevation: 226.26 ft (68.96m) msl	Time: 12:21

200 201			Y I TO
WELL HSB 86D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 36.81 ft (11.22m) below TOC Water elevation: 226.19 ft (86.94m) mst	Time: 12:22	WELL HSB102C MEASUREMENTS CONDUCTED IN THE FIELD Sample date; 03/17/98 Depth to water: 31.53 ft (9.61m) below TOC Water elevation: 227.47 ft (69.33m) msl	Time: 15:08
WELL HSB100C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 30.5 ft (9.30m) balow TOC Water elevation: 229.7 it (70.01m) msl	Time: 15.15	WELL HSB102D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 25.92 ft (7.90m) below TOC Water elevation: 232.68 ft (70.92m) msl	Time: 15:09
WELL HSB100D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 20.84 ft (6.35m) below TOC Water elevation: 239.26 ft (72.93m) msl	Time: 15:16	WELL HSB103C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 21.02 it (6.41m) below TOC Water elevation: 226.38 it (69.00m) msl	Time: 15:05
WELL HSB100PC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 9.57 ft (2.92m) below TOC Water elevation: 220.43 ft (67.19m) msl	Time: 14:46	WELL HSB103D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 18.66 ft (5.69m) below TOC Water elevation: 228.94 ft (69.78m) mst	Time: 15:06
WELL HSB100PD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/99 Dephi to water: 6.81 if (2.08m) below TOC Water elevation: 219.19 it (66.81m) msl	Time: 14:34	WELL HSB104C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 24.63 ft (7.51m) below TOC Water elevation: 223.27 ft (88.05m) msi	Time: 15:02
WELL HSB101C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 30.07 ft (9.17m) below TOC Water elevation: 228.43 ft (69.63m) msf	Time: 15:12	WELL HSB104D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 19.25 ft (5.87m) below TOC Water elevation: 228.35 ft (69.66m) msl	Time: 15:01
WELL HSB101D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 22.96 ft (7.00m) below TOC Water elevation: 235.74 ft (71.85m) msl	Time: 15:13	WELL HSB105C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 27:32 ft (8:33m) below TOC. Water elevation: 222.18 ft (67:72m) msl	Time: 14:58

			WAIEK-LEVEL DAI
WELL HSB105D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/88 Deph to water: 20.58 if (62.7m) below TOC Water elevation: 228.92 it (69.78m) msi	Time: 14:59	WELL HSB109C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 40.49 ft (12.34m) below TOC Water elevation: 221.11 ft (67.40m) msl	Time: 12:43
WELL HSB106C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 28.62 if (8.72m) below TOC Water elevation: 224.28 it (68.36m) msl	Time: 14:57	WELL HSB109D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 36.23 ft (11,04m) below TOC Water elevation: 224.97 ft (88.57m) msl	Time: 12:44
WELL HSB106D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03.17/98 Depth to water: 23.74 ft (7.24m) below TOC Water elevation: 229.16 ft (69.85m) msl	Time: 14:56	WELL HSB110C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 34.29 ft (10.45m) below TOC Water elevation: 221.41 ft (67.49m) msl	Time: 12:40
WELL HSB107C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 35.55 ft (10.93m) below TOC Water elevation: 225.75 ft (68.81m) msl	Time: 14:53	WELL HSB110D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 31.51 ft (9.60m) below TOC Water elevation: 224.09 ft (68.30m) mst	Time: 12:41
WELL HSB107D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 03.38 ft (10.48m) below TOC Water elevation: 227.92 ft (69.47m) msl	Time: 14:54	WELL HSB111C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 33.41 ft (10.18m) below TOC Water elevation: 222.59 ft (67.85m) msl	Time: 12:36
WELL HSB108C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Dopph to water: 45,43 ft (13.85m) below TOC Water elevation: 220.77 ft (67.29m) msl	Time: 12:47	WELL HSB111D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 32.33 ft (9.85m) below TOC Water elevation: 223.67 ft (68.18m) msl	Time: 12:37
WELL HSB108D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 40.13 ft (12.23m) below TOC Water elevation: 226.17 ft (68.94m) msl	Time: 12:48	WELL HSB111E MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 32.26 ft (9.83m) below TOC Water elevation: 223.64 ft (88.17m) mst	Time: 12:39

			WAIER-LEVEL DA
WELL HSB112C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/88 Depth to water: 30.88 ft (9.41m) below TOC Water elevation: 224.02 ft (68.28m) msl	Time: 12:34	WELL HSB117A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 69.98 ft (21.33m) below TOC Water elevation: 167.32 ft (51.00m) msl	Time: 8:37
WELL HSB112D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 30.57 ft (9.32m) below TOC Water elevation: 224.53 ft (68.44m) msl	Time: 12:33	WELL HSB117C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 12.224 if (3.75m) below TOC Water elevation: 225.11 if (68.61m) msl	Time: 8:38
WELL HSB112E MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0317798 Depth to water: 30.62 ft (9.33m) below TOC Water elevation: 224.48 ft (68.42m) msl	ТІте: 12:32	WELL HSB117D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 9.6 ft (2.93m) below TOC Water elevation: 228 ft (69.56m) msl	Time: 8:39
WELL HSB113D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 36.14 ft (11.02m) below TOC Water elevation: 224.76 ft (68.51m) msi	Time: 12:29	WELL HSB125C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/09 Depth to water: 5.75 ft (1.75m) below TOC Water elevation: 226.15 ft (68.93m) ms1	Time: 10:28
WELL HSB114C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 38.18 ft (11.64m) below TOC Water elevation: 225.62 ft (68.77m) msl	Time: 12:27	WELL HSB125D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/1808 Depth to water: 9.41 ft (2.87m) below TOC Water elevation: 222.29 ft (67.75m) msl	Time: 10:29
WELL HSB114D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03171788 Depth to water: 38.33 ft (11.68m) below TOC Water elevation: 225.67 ft (68.79m) ms	Time: 12:28	WELL HSB126C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 7.52 ft (2.29m) below TOC Water elevation: 205.08 ft (62.51m) msl	Time: 8:02
WELL HSB115D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/88 Depth to water: 42.4 ft (12.92m) below TOC Water elevation: 226.7 ft (69.10m) msl	Time: 12:19	WELL HSB126D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 7.05 ft (2.15m) below TOC Water elevation: 205.65 ft (62.68m) msl	Time: 8:03

Time: 12:54	Time: 9:21	Time; 9:20	Time: 10:14	Time: 10:15	Time: 10:35	Time: 10:34
WELL HSB131D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 4.87 ft (1,48m) below TOC Water elevation: 207.23 ft (63.16m) msl	WELL HSB132C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 17.67 ft (5.39m) below TOC Water elevation: 222.83 ft (67.32m) msi	WELL HSB132D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 17,89 ft (5,45m) below TOC Water elevation: 222,81 ft (67.9/m) msi	WELL HSB133C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 21.71 ft (6.62m) below TOC Water elevation: 233.89 ft (71.29m) msl	WELL HSB133D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 15.08 ft (4.50m) below TOC Water elevation: 240.22 ft (73.22m) msi	WELL HSB134C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 14.91 ft (4.54m) below TOC Water elevation: 223.49 ft (68.12m) msl	WELL HSB134D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 12.55 ft (3.83m) below TOC Water elevation: 225.55 ft (68.75m) msl
Time: 8:13	Time: 8:14	Time: 8:30	Time: 8:31	Time: 13:09	Тіте: 13:10	Time: 12:53
WELL HSB127C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/18/98 Depth to water: 13.87 it (4.23m) below TOC Water elevation: 211.83 it (64.57m) msl	WELL HSB127D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 7.92 it (2.41m) below TOC Water elevation: 218.18 ft (66.50m) msf	WELL HSB129C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 7.98 it (2.43m) balow TOC Water elevation: 207.12 ft (63.13m) msl	WELL HSB129D MEASUHEMENTS CONDUCTED IN THE FIELD Sample date: 0318/98 Depth to water: 5.52 ft (1.60m) below TOC Water elevation: 209.45 ft (63.84m) msl	WELL HSB130C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 17.13 ft (5.22m) below TOC Water elevation: 201.17 ft (61.32m) msl	WELL HSB130D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 15.83 ft (4.83m) below TOC Water elevation: 202.77 ft (61.81m) msl	WELL HSB131C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03719/98 Depth to water: 6.76 ft (2.06m) below TOC Water elevation: 204.94 ft (62.47m) msf

			WAIEK-LEVEL DATA
WELL HSB136C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/80 Bepth to water: 8.34 if (2.54m) below TOC Water elevation: 219.56 it (66.92m) msl	Time: 14:39	WELL HSB139D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 8.12 it (2.48m) below TOC Water elevation: 225.68 it (88.79m) msl	Fime: 8:06
WELL HSB136D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 4,33 it (1,50m) below TOC Water elevation: 223.07 ft (67.99m) mst	Time: 14:40	WELL HSB140A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 59.23 ft (18.05m) below TOC Water elevation: 176:67 ft (53.85m) msi	Time: 12:56
WELL HSB137C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 13 ft (3.96m) below TOC Water elevation: 223 ft (67.97m) msl	Tme: 8.25	WELL HSB140C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 27.28 ft (8.32m) below TOC Water elevation: 208.32 ft (63.50m) msi	Time: 12:57
WELL HSB137D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 11,78 ft (3.55m) below TOC Water elevation: 224.82 ft (68.53m) msl	Time; 8:26	WELL HSB140D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 14.93 ff (4.55m) below TOC Water elevation: 221.27 ft (67.44m) msi	Time: 12:58
WELL HSB138D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 24.3 it (7.41m) betow TOC Water elevation: 228.1 it (69.53m) msl	Time: 8:58	WELL HSB141A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 76.35 ft (23.27m) below TOC Water elevation: 178.25 ft (54.35m) msl	Time: 9.17
WELL HSB139A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 58.89 ft (17.95m) below TOC Water elevation: 174.81 ft (53.28m) msi	Time: 8:08	WELL HSB141CR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 22.16 if (6.75m) below TOC Water elevation: 232.14 if (70.76m) msl	Time: 9:18
WELL HSB139C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 17.3 ft (5.27m) below TOC Water elevation: 216.5 ft (65.99m) msl	Time: 8:07	WELL HSB141D MEASUREMENTS CONDUCTED IN THE FIELD Sample data: 02/18/08 Depth to water: 5.71 it (1.74m) below TOC Water elevation: 249.09 ft (75.92m) msl	Time: 9:15

00:	65:	£:	8	<u> </u>	0	50
Time: 15:00	Time: 14:59	Time: 15:13	Time: 13:18	Time: 13:19	Time: 8:10	Time: 10:20
WELL HSB146C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 40.37 ft (12.30m) below TOC Water elevation: 211.93 ft (64.60m) msl	WELL HSB146D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 21.28 ft (6.49m) below TOC Water elevation: 231.82 ft (70.66m) msl	WELL HSB147D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/89 Depth to water: 33/74 ft (10.28m) below TOC Waler elevation: 233.56 ft (71.19m) msl	WELL HSB148C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/88 Depth to water: 47.94 ft (14.61m) below TOC Water elevation: 202.96 ft (61.86m) msl	WELL HSB148D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 32.81 ft (10.00m) below TOC Water elevation: 218.29 ft (66.54m) msl	WELL HSB149D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 13.58 ft (4,14m) below TOC Water elevation: 226.42 ft (69.01m) msl	WELL HSB150D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 6.64 ft (2.02m) betow TOC Water elevation: 232.36 ft (70.82m) msl
Time: 9:09	Time: 9:08	Time: 10:57	Time: 10:58	Time: 7:58	Time: 7:59	Time: 15:01
WELL HSB142C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 4.75 ft (1.45m) below TOC Water elevation: 199,25 ft (60.73m) msi	WELL HSB142D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 4.93 ft (1.50m) below TOC Water elevation: 199.27 ft (60.74m) msl	WELL HSB143C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 10.67 if (325m) below TOC Water elevation: 211.53 it (64.48m) msl	WELL HSB143D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 6.97 if (2.12m) below TOC Water elevation: 215.93 if (65.82m) msl	WELL HSB145C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/99 Depth to water: 20.14 ft (6.14m) below TOC Water elevation: 215.56 ft (65.70m) msl	WELL HSB145D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 12,75 ft (3.88m) below TOC Water elevation: 223.45 ft (68.11m) msl	WELL HSB146A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 74.55 ft (22.72m) below TOC Water elevation: 177.05 ft (53.97m) msl

			WATER-LEVEL DATA
WELL HSB150PC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 9.83 ff (3.00m) below TOC Water elevation: 22 1.87 ft (67.63m) msi	Time: 8:34	WELL HSL 3D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 13.42 ft (4.09m) below TOC Water elevation: 254.18 ft (77.48m) mst	Time: 11:35
WELL HSB151C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 3.92 if (1.19m) below TOC Water elevation: 209 68 ft (63.91m) msl	Time: 9:06	WELL HSL 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 8.18 ft (2.4m) below TOC Water elevation: 265.02 ft (80.78m) msl	Time: 11:26
WELL HSB151D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 4.25 ft (1.30m) below TOC Water elevation: 209.35 ft (63.81m) msl	Time: 9:05	WELL HSL 5D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 7.46 ft (2.27m) below TOC Water elevation: 269.14 ft (82.03m) msl	Time: 11:21
WELL HSB152C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 14.31 ft (4.36m) below TOC Water elevation: 199.79 ft (60.90m) msl	Time: 15:00	WELL HSL 6D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 14.32 ft (4.36m) below TOC Water elevation: 265.68 ft (80.98m) msl	Time: 11:17
WELL HSB152D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 7,43 ft (2.26m) below TOC Water elevation: 206.67 ft (62,99m) msl	Time: 15:01	WELL HSL 7D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/23/98 Depth to water: 19.19 ff (5.85m) below TOC Water elevation: 264.61 ft (80.65m) msl	Time: 11:13
WELL HSL 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 23.62 if (72.20m) below TOC Water elevation: 240.38 if (73.27m) msl	Time: 15:18	WELL HSL 8D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/88 Depth to water: 24.5 ft (7.47m) below TOC Water elevation: 264.2 ft (80.53m) msl	Time: 15:27
WELL HSL 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 19.09 ff (5.82m) below TOC Water elevation: 246.41 ft (75.11m) msl	Time: 10:17	WELL MCB 2 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 107/3 ft (32.71m) below TOC Water elevation: 221.1 ft (67.39m) msl	Time: 9:01

			יותובח-גבעבר טי
WELL MCB 4 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 139.6 if (42.55m) below TOC Water elevation: 210.8 if (64.25m) msl	Time: 9.15	WELL MCB 9D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 123.42 ft (37.62m) below TOC Water elevation: 219.48 ft (66.90m) msl	Time: 9:10
WELL MCB 5 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 118.2 ft (36.03m) below TOC Water elevation: 221.4 ft (67.48m) msl	Time: 8:58	WELL MSB 1B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 144.5 ft (44.04m) below TOC Water elevation: 210.3 ft (64.10m) msl	Time: 8:40
WELL MCB 5C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 145.8 ft (44.44m) below TOC Water elevation: 193.3 ft (58.92m) msi	Time: 8:59	WELL MSB 1C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/99 Depth to water: 140.3 ft (42.76m) below TOC Water elevation: 214.8 ft (65.47m) msl	Тіте: 8.42
WELL MCB 6 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 118.8 ft (65.01m) below TOC Water elevation: 213.3 ft (65.01m) ms/	Time: 9:06	WELL MSB 1CC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0371994 ft (42.18m) below TOC Water elevation: 216.5 ft (65.99m) msl	Time: 8:41
WELL MCB 6C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 138.25 ft (42.14m) below TOC Water elevation: 193.85 ft (59.09m) msl	Time: 9:05	WELL MSB 1D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03419/98 Depth to water: 126,6 ft (38.59m) below TOC Water elevation: 228.2 ft (69.56m) msi	Time: 8:38
WELL MCB 7C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Dephh to water: 145,2 ft (44.26m) below TOC Water elevation: 192.5 ft (58.67m) msl	Time: 8:55	WELL MSB 2B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/88 Depth to water: 143.8 ff (43.83m) below TOC Water elevation: 210.8 ff (64.28m) msl	Time: 8:48
WELL MCB 8D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 130.6 ft (39.81m) below TOC Water elevation: 210.1 ft (64.04m) msl	Time: 8:52	WELL MSB 2C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 139 ft (42.37m) below TOC Water elevation: 215.7 ft (65.75m) msi	Time: 8:47

			WAIER-LEVEL DI
WELL MSB 2D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0.501998 Depth to water: 125,15,11 (38,15m) below TOC Water elevation: 228,65 ft (69,69m) msl	Time: 8:49	WELL MSB 5B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 139.3 ft (42.46m) below TOC Water elevation: 205.7 ft (62.70m) msl	Time: 9:15
WELL MSB 3B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water Not available Water elevation: Not available	Time: 8:53	WELL MSB 5C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/19/98 Depth to water: 124.9 ft (38.07m) below TOC Water elevation: 220.3 ft (67.15m) msl	Time: 9:16
WELL MSB 3C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 143.7 ft (43.80m) below TOC Water elevation: 217.1 ft (66.17m) msl	Time: 8:54	WELL MSB 6A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 119-85 ft (36.53m) below TOC Water elevation: 223.95 ft (68.26m) mst	Time: 9:24
WELL MSB 4B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 144.95 ft (44.18m) below TOC Water elevation: 210.35 ft (64.12m) msl	Time: 9:00	WELL MSB 6B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 139.75 ft (42.60m) below TOC Water elevation: 204.15 ft (62.23m) msl	Time: 9.25
WELL MSB 4C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 140.4 ft (42.79m) below TOC Water elevation: 214.8 ft (65.47m) msl	Time: 9:01	WELL MSB 6C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 122.75 ft (37.41m) below TOC Water elevation: 221.05 ft (67.38m) mst	Time: 9:26
WELL MSB 4D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 128.15 ft (39.06m) balow TOC Water elevation: 227.35 ft (69.30m) msl	Time: 8:59	WELL MSB 7A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 119.1 ft (36.30m) below TOC Water elevation: 225.2 ft (88.64m) msi	Time: 9:28
WELL MSB 5A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 9:14	WELL MSB 7B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/99 Depth to water 139.2 if (42.43m) below TOC Water elevation: 204.9 if (62.45m) msi	Time: 9:29

Time: 10:23	Time: 10:26	Time: 10:24	Time: 10:25	Time: 10:16	Time: 10:17	Time: 10:18
WELL MSB 10A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 147.7 ft (45.02m) below TOC Water elevation: 209.5 ft (63.86m) mst	WELL MSB 10B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 145.7tt (44.41m) below TOC Water elevation: 211.9 ft (84.59m) msl	WELL MSB 10C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 130.6 ft (39.81m) below TOC Water elevation: 226.5 ft (89.04m) msl	WELL MSB 10D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	WELL MSB 11A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 155 ft (47.24m) below TOC Water elevation: 210.4 ft (64.18m) msl	WELL MSB 11B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 150.95 ft (46.01m) below TOC Water elevation: 214.45 ft (65.37m) msi	WELL MSB 11C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 148.5 ft (45.26m) below TOC Water elevation: 217 ft (65.14m) msl
Time: 9:30	Time: 11:26	Time. 11:27	Time: 11:28	Time: 9:04	Time: 9:05	Time: 9:06
WELL MSB 7C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 124.72 ft (38.02m) below TOC Water elevation: 219.78 ft (66.99m) msl	WELL MSB 8A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: Not available Water elevation: Not available	WELL MSB 8B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 137.65 ft (41.96m) betow TOC Water elevation: 206.25 ft (62.87m) msl	WELL MSB 8C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 128.65 ft (38.60m) below TOC Water elevation: 217.35 ft (66.25m) msl	WELL MSB 9A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 148.1 if (45.45m) below TOC Water elevation: 210 ft (64.01m) msi	WELL MSB 9B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 132 ft (40,23m) below TOC Water elevation: 227.3 ft (69,28m) msl	WELL MSB 9C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available

			WATER-LEVEL DATA
WELL MSB 11D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 138.6 ft (42.25m) below TOC Water elevation: 227.2 ft (69.25m) msl	Time: 10:19	WELL MSB 12TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 158.5 ft (48.31m) below TOC Water elevation: 190.4 ft (58.03m) msi	Time: 10:33
WELL MSB 11E MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 10:20	WELL MSB 12TB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 158.75 ff (48.38m) below TOC Water elevation: 190.55 ff (58.08m) msl	Time: 10:32
WELL MSB 11F MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 10:15	WELL MSB 13A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 141.1 ft (43.01m) below TOC Water elevation: 205.6 ft (62.67m) msi	Time: 9:11
WELL MSB 12A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 142.77 ft (43.52m) below TOC Water elevation: 206.13 ft (62.83m) ms1	Time: 10:29	WELL MSB 13B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0319/98 Depth to water: 128.1 ft (39.05m) below TOC Water elevation: 219 ft (66.75m) msl	Тгме: 9:11
WELL MSB 12B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 134.42 ft (40.97m) below TOC Water elevation: 215.08 ft (65.56m) msl	Time: 10:32	WELL MSB 13C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 9:10
WELL MSB 12C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 128.75 ft (39.24m) below TOC Water elevation: 220.25 ft (67.13m) msi	Time: 10:30	WELL MSB 13CC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 124/85 ft (38.05m) below TOC Water elevation: 222.05 ft (67.68m) msi	Time: 9:12
WELL MSB 12D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 10:31	WELL MSB 13D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 122 ft (37.19m) below TOC Water elevation: 225.6 ft (68.76m) msl	Time: 9:09

Time: 12:34	Time: 12:33	Time: 10:40	Time: 10:43	Time: 10:45	Time: 10:42	Time: 10:43
WELL MSB 16A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 15186 ft (46.29m) below TOC Water elevation: 215.64 ft (65.73m) msl	WELL MSB 16C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/8 Depth to water: 139.8 ft (42.61m) below TOC Water elevation: 227.8 ft (69.43m) msl	WELL MSB 17A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 145.45 ft (44.33m) below TOC Water elevation: 213.85 ft (65.18m) msi	WELL MSB 17B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 136.6 ft (41.64m) below TOC Water elevation: 222.6 ft (67.85m) ms!	WELL MSB 17BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 149.1 ft (45,45m) below TOC Water elevation: 209.9 ft (53.96m) msl	WELL MSB 17C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	WELL MSB 17D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 136 ft (41.45m) below TOC Water elevation: 223.9 ft (68.25m) msl
Time: 8:32	Time: 8:33	Time: 8:34	Time: 12:38	Time: 12:40	Time: 12:37	Time: 12:39
WELL MSB 14A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 134.6 ft (41.03m) below TOC Water elevation: 214.1 ft (65.26m) msl	WELL MSB 14B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 13.25 ft (40,62m) below TOC Water elevation: 215.65 ft (65.73m) msl	WELL MSB 14C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 117.3 ft (35.75m) below TOC Water elevation: 231.9 ft (70.68m) msl	WELL MSB 15A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 150.65 ft (45.92m) below TOC Water elevation: 217.05 ft (66.16m) mst	WELL MSB 15AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 158.35 ft (48.27m) below TOC Water elevation: 210.85 ft (64.27m) mst	WELL MSB 15C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 02/19/98 Depth to water: 120.9 ft (36.85m) below TOC Water elevation: 245.8 ft (74.92m) mst	WELL MSB 15D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 130.35 ft (39.73m) betow TOC Water elevation: 238.15 ft (72.59m) msl

			WATER-LEVEL DA
WELL MSB 18A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 132.3 ft (40.33m) below TOC Water elevation: 209.6 ft (83.89m) msi	Time: 11:21	WELL MSB 20C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 130.01 ft (139.63m) below TOC Water elevation: 224.69 ff (68.49m) msl	Time: 15:10
WELL MSB 18B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 123.5 ft (37.64m) below TOC Water elevation: 218.6 ft (66.63m) msl	Time: 11:22	WELL MSB 21A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/99 Depth to water: 136.62 ft (41,54m) below TOC Water elevation: 218.18 ft (66.50m) msl	Time: 10:55
WELL MSB 18C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 118.45 ft (36.10m) below TOC Water elevation: 224.05 ft (68.29m) msl	Time: 11:23	WELL MSB 21B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 137.7 ft (41.97m) below TOC Water elevation: 217.3 ft (66.23m) msl	Time: 10:57
WELL MSB 19A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 87.9 ff (26.79m) below TOC Water elevation: 212.4 ft (64.74m) msl	Time: 8:25	WELL MSB 21C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 128.55 ff (39.18m) below TOC Water elevation: 226.25 ff (88.96m) msi	Time: 10:56
WELL MSB 19B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/38 Depth to water: 58.3 if (26.15m) below TOC Water elevation: 214.6 it (55.41m) msl	Time: 8.26	WELL MSB 21TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0.37,19/98 Depth to water: 162,7 ft (45,59m) below TOC Water elevation: 191.9 ft (38,49m) msi	Time: 10:54
WELL MSB 19C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Sample date: 66.65 ft (20,32m) below TOC Water elevation: 234.15 ft (71.37m) msl	Time: 8:27	WELL MSB 23 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 12:45
WELL MSB 20A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 139.62 ft (42.56m) below TOC Water elevation: 215.68 ft (65.74m) msi	Time: 15:08	WELL MSB 23B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 152.29 ft (46.42m) below TOC Water elevation: 219.31 ft (66.85m) msl	Time: 12:44

WELL MSB 23TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 175 ft (53.34m) below TOC Water elevation: 197.9 ft (60.32m) msl	Time: 12:43	WELL MSB 26A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 149.95 ff (45.71m) below TOC Water elevation: 211.85 ff (64.57m) msl	Time: 12:25
WELL MSB 23TR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 176.8 ft (53.89m) below TOC Water elevation: 195.9 ft (59.71m) msl	Time: 12:30	WELL MSB 26B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 147.55 ft (44.97m) below TOC Water elevation: 215.25 ft (65.61m) msi	Time: 12:27
WELL MSB 24 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 146.55 ft (44.67m) below TOC Water elevation: 233.65 ft (71.22m) msi	Time: 12:59	WELL MSB 27 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 12:50
WELL MSB 24A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 159.7 ft (48.68m) below TOC Water elevation: 221:9 ft (67.64m) msi	Time: 12:58	WELL MSB 27A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 149 ft (45.42m) below TOC Water elevation: 226.2 ft (68.95m) msl	Time: 12:51
WELL MSB 25 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 13:23	WELL MSB 27B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 154.8 ft (47.18m) below TOC Water elevation: 222 ft (67.67m) mst	Time: 12:53
WELL MSB 25A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/9/9/8 Doph to water: 153/85 ft (46.89m) below TOC Water elevation: 212.55 ft (64.79m) msl	Time: 13:24	WELL MSB 27TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 178.85 ft (54.51m) below TOC Water elevation: 197.75 ft (60.27m) msl	Тіте: 12:52
WELL MSB 26 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: Not available Water elevation: Not available	Time: 12:26	WELL MSB 28 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water 127.32 ft (38.81m) below TOC Water elevation: 227.48 ft (59.34m) msl	Time: 15:02

			WAIEN-LEVEL DA
WELL MSB 28A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 134.38 ft (40.96m) below TOC Water elevation: 220.62 ft (67.25m) msi	Time: 15:01	WELL MSB 30A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 159.4 ft (48.59m) below TOC Water elevation: 195.6 ft (59.62m) msl	Time: 14:57
WELL MSB 29A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 146.2 ft (45.17m) below TOC Water elevation: 217 ft (66.14m) msl	Time: 8:15	WELL MSB 30AA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 131.55 ff (40,10m) below TOC Water elevation: 221.45 ff (67,50m) msi	Time: 14:51
WELL MSB 29B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 143.4 ft (43.71m) below TOC Water elevation: 221.6 ft (67.54m) msl	Time: 8:14	WELL MSB 30B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 130.87 ft (39.89m) below TOC Water elevation: 222.63 ft (67.86m) msi	Time: 14:52
WELL MSB 29C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 137 ft (41.76m) below TOC Water elevation: 228 ft (69.50m) msl	Time: 8:12	WELL MSB 30C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 122.65 ft (39.60m) below TOC Water elevation: 227.95 ft (69.48m) msi	Time: 14:55
WELL MSB 29D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 134.9 ft (41.12m) below TOC Water elevation: 230 ft (70.10m) msl	Time: 8:14	WELL MSB 30CC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 131,6 ft (40,11m) below TOC Water elevation: 222.4 ft (67,79m) mst	Time: 14:53
WELL MSB 29DD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 134.2 ft (40.90m) below TOC Water elevation: 230.2 ft (70.17m) msi	Time: 8:11	WELL MSB 31A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 154.4 ft (47.06m) below TOC Water elevation: 193.7 ft (59.04m) msi	Time: 13:47
WELL MSB 29TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 155.1 ft (47.28m) below TOC Water elevation: 209.9 ft (63.98m) msl	Time: 8:16	WELL MSB 31B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water 138.6 if (42.25m) below TOC Water elevation: 209.7 if (63.92m) msi	Time: 13:48

			WATER-LEVEL DAT
WELL MSB 34TB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 186.3 ft (56.78m) below TOC Water elevation: 197.3 ft (60.14m) msl	Time: 12:53	WELL MSB 36C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 128.5 ft (39.17m) below TOC Water elevation: 212.4 ft (64.74m) msi	Time: 10:08
WELL MSB 35A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 136.75 ft (41.68m) below TOC Water elevation: 214.15 ft (65.27m) mst	Time: 14:02	WELL MSB 36D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depht to water: 109.75 ff (73.45m) below TOC Water elevation: 231.85 ff (70.67m) msl	Тіте: 10:09
WELL MSB 35B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 134.9 ft (41.12m) below TOC Water elevation: 216.7 ft (66.05m) msi	Time: 14:04	WELL MSB 36TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 148.35 ft (45,22m) below TOC Water elevation: 192.25 ft (58,60m) msl	Time: 10:04
WELL MSB 35D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	Time: 14:06	WELL MSB 37A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 180.65 ft (55.06m) below TOC Water elevation: 202.35 ft (61.68m) msl	Time: 13:07
WELL MSB 35TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 154.75 ft (47.17m) below TOC Water elevation: 195.55 ft (59.60m) msi	Time: 14:01	WELL MSB 37B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 167.25 ft (50.98m) below TOC Water elevation: 215.45 ft (65.67m) msl	Time: 13:04
WELL MSB 36A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 132.6 ft (40.42m) below TOC Water elevation: 208 ft (53.40m) msl	Time: 10:06	WELL MSB 37C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 158.25 ft (48.24m) below TOC Water elevation: 224.75 ft (68.50m) msi	Time: 13:08
WELL MSB 36B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 128.4 ft (39.14m) below TOC Water elevation: 212.4 ft (54.74m) mst	Time: 10:07	WELL MSB 37D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0317/98 Depth to water: 154 ft (46.94m) below TOC Water elevation: 228.7 ft (69.71m) msl	Time: 13:09

First Que-4r 1998

WELL MSB 37TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 180 ft (54,85m) below TOC	Time: 13:06	WELL MSB 39C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/38 Depth to water: 128.25 ft (39.09m) below TOC	Time: 10:55
WELL MSB 38B		Water elevation: 213.25 ff (65.00m) msl WELL MSB 39D	
MEASUNEMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Bobh to water: 147 ft (44,81m) below TOC Water elevation: 212 ft (64,62m) msl	Time: 13:40	MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 112.85 ft (34.34m) below TOC Water elevation: 229.15 ft (69.85m) msl	Time: 10:56
WELL MSB 38C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 143.64 ft (43.78m) below TOC Water elevation: 215.16 ft (65.58m) msl	Time: 13:39	WELL MSB 39TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 151.6 ft (46.21m) below TOC Water elevation: 190.2 ft (57.97m) msl	Time: 10:52
WELL MSB 38D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: Not available Water elevation: Not available	Time: 13:38	WELL MSB 40A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Deph to water: 119.55 ft (36.44m) below TOC Water elevation: 201.65 ft (61.46m) msl	Time: 10:43
WELL MSB 38TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 164,73 ft (59.24m) msl	Time: 13:37	WELL MSB 40B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 118.4 ft (36.09m) below TOC Water elevation: 203.3 ft (61.97m) msl	Time: 10:43
WELL MSB 39A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 134.6 ft (41.03m) below TOC Water elevation: 207 ft (63.09m) msl	Time: 10:53	WELL MSB 40C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 118,7 ft (36,18m) below TOC Water elevation: 203.3 ft (61,97m) msl	Ттме: 10:42
WELL MSB 39B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 132 ft (40.23m) below TOC Water elevation: 209.8 ft (63.95m) msl	Time: 10:54	WELL MSB 40D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 99.3 ft (30.27m) below TOC Water elevation: 223.6 ft (68.15m) msl	Time: 10:41

AIEN-LEVEL DAI							
	Time: 13:16	Time: 13:15	Time: 13:14	Time: 13:18	Time: 8:04	Time: 8:04	Time: 8:05
	WELL MSB 42B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 154.2 ft (47.00m) below TOC Water elevation: 222.2 ft (67.73m) msl	WELL MSB 42C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 148.3 it (45.20m) below TOC Water elevation: 228.1 it (69.53m) msl	WELL MSB 42D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 146.86 ft (44.76m) below TOC Water elevation: 229.54 ft (69.96m) msl	WELL MSB 42TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 176.2 ft (53.71m) below TOC Water elevation: 200.4 ft (61.08m) mst	WELL MSB 43A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 130.55 ft (39.79m) below TOC Water elevation: 227.15 ft (69.24m) msl	WELL MSB 43B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 130.5 ft (39.78m) below TOC Water elevation: 227.3 ft (69.28m) msl	WELL MSB 43D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 128/25 ft (79.09m) below TOC Water elevation: 229.75 ft (70.03m) msi
	Time: 10:44	Time: 8:58	Time: 8:58	Time: 8:56	Time: 8:56	Time: 8:59	Time: 13:17
	WELL MSB 40TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03718/98 Deph to water: 132.75 ft (40.46m) below TOC Water elevation: 188.15 ft (57.35m) msi	WELL MSB 41A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Sample water: 108.7 ft (33.13m) below TOC Water elevation: 215.1 ft (65.56m) msi	WELL MSB 41B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0318/98 Depth to water: 108.7 ft (33.13m) below TOC Water elevation: 215.3 ft (65.62m) msl	WELL MSB 41C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 108.8 ft (35.16m) below TOC Water elevation: 215.8 ft (65.78m) msi	WELL MSB 41D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 84.1 ft (25.63m) below TOC Water elevation: 240.9 ft (73.43m) msl	WELL MSB 41TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 119,75 ft (36.50m) below TOC Water elevation: 203.95 ft (62.16m) msl	WELL MSB 42A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 160.75 ff (49.00m) below TOC Water elevation: 215.75 ff (65.76m) msl

THE PART OF THE PA						
Time: 13:35	Time: 13:28	Time: 13:31	Time: 13:29	Time: 12:37	Time: 12:34	Time: 12:38
WELL MSB 45C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	WELL MSB 46A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 164.75 ft (50.22m) below TOC Water elevation: 207.85 ft (63.35m) msl	WELL MSB 46B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/08 Depth to water: 148.75 ft (45.34m) below TOC Water elevation: 224.85 ft (68.54m) mst	WELL MSB 46C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	WELL MSB 47B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 147.2 ft (44.87m) below TOC Water elevation: 221.5 ft (67.51m) msl	WELL MSB 47BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 153.15 ft (46.68m) below TOC Water elevation: 215.65 ft (65.73m) msl	WELL MSB 47C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 139.7 ft (42.58m) below TOC Water elevation: 229.3 ft (69.89m) msl
Time: 8:06	Time: 8:03	Time: 13:23	Time: 13:25	Time: 13:24	Time: 13:34	Time: 13:36
WELL MSB 43DD MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 128.4 ft (39,14m) below TOC Water elevation: 229.5 ft (69,95m) msl	WELL MSB 43TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 156.52 ft (47.71m) below TOC Water elevation: 200.98 ft (61.26m) msl	WELL MSB 44A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 162.5 ft (49.53m) below TOC Water elevation: 214.4 ft (65.35m) msl	WELL MSB 44B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 156.1 ft (47.58m) below TOC Water elevation: 220.9 ft (67.33m) msl	WELL MSB 44C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 146.4 ft (44.62m) below TOC Water elevation: 230.4 ft (70.23m) msl	WELL MSB 45A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 168.9 if (51.48m) below TOC Water elevation: 211.9 ft (64.59m) msl	WELL MSB 45B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 159.15 ft (48.51m) below TOC Water elevation: 221.75 ft (67.59m) msl

Time: 11:13	Time: 11:14	Time: 11:15	Time: 12:50	Time: 12:51	Time: 13:20	Time: 13:20
WELL MSB 49A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 139.45 ft (42.50m) below TOC Water elevation: 195.25 ft (59.51m) mst	WELL MSB 49B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 133.6 ft (40.72m) below TOC Water elevation: 200.5 ft (61.11m) msl	WELL MSB 49D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 108 ft (32.92m) below TOC Water elevation: 226.3 ft (58.98m) ms/	WELL MSB 50B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/96 Depth to water: 20/24 ft (6.17m) below TOC Water elevation: 203.46 ft (62.02m) msl	WELL MSB 50D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 19:33 ft (5.89m) below TOC Water elevation: 203.87 ft (62.14m) msl	WELL MSB 51B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 57/92 ft (17.65m) below TOC Water elevation: 205.28 ft (62.57m) msl	WELL MSB 51D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/96 Depth to water: 51.13 ft (15.58m) below TOC Water elevation: 211.07 ft (64.33m) msi
Time: 12:39	Time: 12:36	Time: 12:20	Time: 12:19	Time: 12:22	Time: 12:23	Тіте: 12:21
WELL MSB 47D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 138.3 ft (42.15m) below TOC Water elevation: 230.5 ft (70.26m) msl	WELL MSB 47TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 155.95 ft (47.53m) below TOC Water elevation: 212.75 ft (64.85m) msl	WELL MSB 48A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 142.5ft (43.43m) below TOC Water elevation: 219.1 ft (66.78m) msl	WELL MSB 48B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 140.6 ft (42.86m) below TOC Water elevation: 220.8 ft (67.30m) msl	WELL MSB 48C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 14.1/5 ft (43.02m) below TOC Water elevation: 221.15 ft (67.41m) msl	WELL MSB 48D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 132.8 ft (40.48m) below TOC Water elevation: 229.8 ft (70.04m) msl	WELL MSB 48TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 142.8 ft (43.53m) below TOC Water elevation: 219.1 ft (66.78m) msl

WELL MSB 51DD		011 0011 11111	77 11 11 11 11 11 11 11 11 11 11 11 11 1
MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: Not available Water elevation: Not available	Тіте: 13:19	WELL MSB 54C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 149/85 ft (45.67m) below TOC Water elevation: 223.55 ft (68.14m) ms1	Time: 11:00
WELL MSB 52B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 104.9 ft (31.97m) below TOC Water elevation: 216.8 ft (66.08m) msi	Time: 8:50	WELL MSB 54D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 143.35 ff (43.69m) below TOC Water elevation: 230.25 ff (70.18m) msl	Time: 10:57
WELL MSB 52D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 85 if (25.91m) below TOC Water elevation: 236.6 if (72.12m) msl	Time: 8:51	WELL MSB 54TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 157 ft (47.85m) below TOC Water elevation: 216.5 ft (65.99m) ms/	Time: 10:58
WELL MSB 53B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 125.3 ft (38.19m) below TOC Water elevation: 219 ft (66.75m) msl	Time: 9:39	WELL MSB 55B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 150.1 ft (45.75m) below TOC Water elevation: 218.6 ft (66.63m) mst	Time: 10:50
WELL MSB 53C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 125.2 ft (38.16m) below TOC Water elevation: 220 ft (67.06m) msl	Time: 9:37	WELL MSB 55C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 143.2 ft (43.65m) below TOC Water elevation: 226.2 ft (88.95m) msi	Time: 10:47
WELL MSB 53D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 114.1 ft (34.78m) below TOC Water elevation: 230.7 ft (70.32m) msl	Time: 9.38	WELL MSB 55D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 135 ff (41.15m) below TOC Water elevation: 232.7 ft (70.93m) msl	Time: 10:52
WELL MSB 54B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 154.36 it (47.05m) below TOC Water elevation: 219.04 ft (66.76m) msi	Time: 10:59	WELL MSB 55HC MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 138.75 ft (42.29m) betow TOC Water elevation: 229.95 ft (70.09m) msi	Time: 10:49

			VAIEN-LEVEL DAI
WELL MSB 55TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 157.6 ft (48.04m) below TOC Water elevation; 211.1 ft (64.34m) msl	Time: 10:48	WELL MSB 61D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 94.85 ft (28.91m) below TOC Water elevation: 222.95 ft (67.96m) msl	Time: 9:42
WELL MSB 56D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 59.8 if (18.23m) below TOC Water elevation: 219.7 if (66.97m) msl	Time: 10:21	WELL MSB 62B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 14.1.1 ft (43.01m) below TOC Water elevation: 208 ft (63.40m) msl	Time: 11:36
WELL MSB 57D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 127.4 ft (38.83m) below TOC Water elevation: 228.8 ft (69.74m) msl	Time: 8:45	WELL MSB 62C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 128.3 ft (39.11m) below TOC Water elevation: 220.8 ft (67.30m) msi	Time: 11:37
WELL MSB 58D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 129.5 ff (39.47m) below TOC Water elevation: 228.4 ft (69.62m) msl	Time: 8:51	WELL MSB 62D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 122.55 ft (37.35m) below TOC Water elevation: 226.95 ft (69.18m) msl	Time: 11:38
WELL MSB 59D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 131,72 ft (40.15m) below TOC Water elevation: 227.58 ft (69.37m) msl	Time: 8:57	WELL MSB 63B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0371809 (42.64m) below TOC Water elevation: 207 ft (63.09m) msl	Time: 11:31
WELL MSB 60D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 126.55 ft (38.57m) below TOC Water elevation: 227.95 ft (69.48m) msl	Time: 8:36	WELL MSB 63C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 129.1 ft (39.35m) below TOC Water elevation: 217.9 ft (66.42m) msl	Time: 11:32
WELL MSB 61C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 96.3 ft (29,35m) below TOC Water elevation: 221 ft (67,36m) mst	Tine: 9.43	WELL MSB 63D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 031-395 ft (36.56m) below TOC Depth to water: 119-95 ft (69.14m) msl	Time: 11:33

			WAIER-LEVEL DAI
WELL MSB 64B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03719/98 Depth to water: 142.95 ft (62.59m) msl	Time: 9:19	WELL MSB 66TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Deph to water: 180:55 ft (55.03m) below TOC Water elevation: 202.15 ft (61.62m) mst	Time: 12:47
WELL MSB 64C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Sample date: 128.65 ft (39.21m) below TOC Water elevation: 219.75 ft (66.98m) msl	Time: 9:20	WELL MSB 67B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 149.3 ft (45.51m) below TOC Water elevation: 215.8 ft (65.78m) mst	Time: 8:29
WELL MSB 64D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 124.5 ft (37.95m) below TOC Water elevation: 224.1 ft (68.31m) msl	Time: 9:22	WELL MSB 67C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 141.4 ft (43.10m) below TOC Water elevation: 223.4 ft (68.09m) mst	Тіте: 8.26
WELL MSB 65D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 118.37 it (36.08m) below TOC Water elevation: 230.83 ft (70.36m) msf	Time: 13:50	WELL MSB 67D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 134.35 ft (40.95m) below TOC Water elevation: 230.65 ft (70.30m) msi	Time: 8:28
WELL MSB 66B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 168,15 ft (51,25m) below TOC Water elevation: 215,25 ft (65,61m) mst	Time: 12:45	WELL MSB 68B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 141 ft (42.98m) below TOC Water elevation: 215.9 ft (55.81m) msi	Time: 8:22
WELL MSB 66C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 156.26 ft (48.24m) below TOC Water elevation: 225.14 ft (68.62m) msl	Time: 12:44	WELL MSB 68C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 135 ff (41.15m) below TOC Water elevation: 221.7 ft (67.57m) mst	Time: 8:23
WELL MSB 66D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 155.15 ft (47.29m) below TOC Water elevation: 228.05 ft (69.51m) msl	Time: 12:43	WELL MSB 68D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/20/98 Depth to water: 175.7 ft (38.31m) below TOC Water elevation: 231.3 ft (70.50m) msl	Time: 8:24

Time: 10:35	Time: 11:09	Time: 10:14	Time: 10:13	Time: 10:12	Time: 10:48	Time: 10:49
WELL MSB 72B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 129.5 ft (39.47m) below TOC Water elevation: 198.7 ft (60.56m) msi	WELL MSB 73B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 140.3 ft (42.76m) below TOC Water elevation: 199.3 ft (60.75m) msl	WELL MSB 74B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 104.9 ft (31.97m) below TOC Water elevation: 209.6 ft (63.89m) ms1	WELL MSB 74C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 104.9 ft (31.97m) below TOC Water elevation: 210.1 ft (64.04m) msl	WELL MSB 74D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 848 ff (25,85m) below TOC Water elevation: 230.3 ff (70.20m) msl	WELL MSB 75B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 118.45 ft (36.10m) below TOC Water elevation: 208.25 ft (53.48m) msi	WELL MSB 75C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 119.35 ft (36.38m) below TOC Water elevation: 208.15 ft (63.44m) msl
Time: 11:11	Time: 11:12	Time: 11;13	Time: 11:10	Time: 10:48	Time: 10:49	Time: 14:29
WELL MSB 69B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 164.26 ft (50.07m) below TOC Water elevation: 217.24 ft (66.22m) msl	WELL MSB 69C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 157.6 ft (48.04m) below TOC Water elevation: 224 ft (68.28m) msl	WELL MSB 69D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 151.6 ft (46.21m) below TOC Water elevation: 230.4 ft (70.23m) msl	WELL MSB 69TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 169.5 if (51.66m) below TOC Water elevation: 211.9 if (64.59m) msl	WELL MSB 70C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 147.1 ft (44.84m) below TOC Water elevation: 214.7 ft (65.44m) msl	WELL MSB 70D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/19/98 Depth to water: 143.8 ft (43.83m) below TOC Water elevation: 218.4 ft (66.57m) msl	WELL MSB 71B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 130.66 ft (39.83m) below TOC Water elevation: 214.04 ft (65.24m) msl

WELL MSB 76C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 134.66 ft (41.04m) below TOC Water elevation: 217.74 ft (66.37m) msl	Time: 14:35	WELL MSB 79C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 140 ft (42.67m) below TOC Water elevation: 207.8 ft (63.34m) msl	Time: 11:05
WELL MSB 77B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 138.95 ft (42.35m) below TOC Water elevation: 218.25 ft (66.52m) msi	Time: 9:18	WELL MSB 81B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 49.2 ft (15.00m) below TOC Water elevation: 217.8 ft (66.39m) msl	Time: 9:12
WELL MSB 77C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 136.45 ft (41.59m) below TOC Water elevation: 220.75 ft (67.29m) mst	Time: 9:17	WELL MSB 82A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 174.7 ft (53.25m) below TOC Water elevation: 199.6 ft (60.84m) msl	Time: 10:38
WELL MSB 77D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 126.45 ft (38.54m) below TOC Water elevation: 230.35 ft (70.39m) msl	Time: 9:16	WELL MSB 82B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 157.85 ff (48.11m) below TOC Water elevation: 216.35 ff (65.94m) msl	Time: 10:39
WELL MSB 77TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 138.75 ft (42.29m) below TOC Water elevation: 218.15 ft (66.49m) msi	Time: 9:19	WELL MSB 82C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 149.2 ft (45.48m) below TOC Water elevation: 224.7 ft (68.48m) msl	Time: 10:36
WELL MSB 78DR MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 143.16 ft (43.64m) below TOC Water elevation: 220.54 ft (67.22m) msl	Тіте: 14:38	WELL MSB 82D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 143.4 ft (43.71m) below TOC Water elevation: 230.2 ft (70.17m) ms1	Time: 10.35
WELL MSB 79B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 142.55 ft (43.45m) below TOC Water elevation: 205.35 ft (62.59m) msl	Time: 11:04	WELL MSB 82TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/88 Depth to water: 162.8 ft (49.62m) below TOC Water elevation: 210.9 ft (64.28m) msl	Time: 10:37

			WATER-LEVEL DATA
WELL MSB 83B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 153.25 ft (46.71m) below TOC Water elevation: 218.55 ft (66.61m) mst	Time: 11:04	WELL MSB 85C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 159.6 ft (48.65m) below TOC Water elevation: 221.3 ft (67.45m) msl	Time: 11:21
WELL MSB 83C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 146.75 ft (14.73m) below TOC Water elevation: 225.25 ft (68.66m) msl	Time: 11:07	WELL MSB 85D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 0317/98 Depth to water: 150.8 if (45.96m) below TOC Water elevation: 230 if (70.10m) msi	Time: 11:17
WELL MSB 83D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 14.1.2 ft (73.04m) below TOC Water elevation: 230.4 ft (70.23m) msl	Time: 11:06	WELL MSB 85TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 162.8 ft (49.62m) below TOC Water elevation: 217.6 ft (66.33m) msi	Time: 11:19
WELL MSB 83TA MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 159.15 ft (48.51m) below TOC Water elevation: 212.55 ft (64.79m) msl	Time: 11:05	WELL MSB 86C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 134.95 ft (41.13m) below TOC Water elevation: 222.05 ft (67.68m) msi	Time: 11:24
WELL MSB 84A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 195.4 ft (59.56m) below TOC Water elevation: 166.1 ft (50.63m) msl	Time: 10:43	WELL MSB 87B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 119.95 ff (36.56m) below TOC Water elevation: 216.05 ff (85.85m) msl	Time: 8:20
WELL MSB 84C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 134.9 ft (41.12m) below TOC Water elevation: 227 ft (69.19m) msl	Time: 10:44	WELL MSB 87C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: Not available Water elevation: Not available	Time: 8:18
WELL MSB 85B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 162.3 ft (49.47m) below TOC Water elevation: 218 ft (66.45m) msl	Time: 11:18	WELL MSB 88B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 36.95 ft (11.26m) below TOC Water elevation: 201.15 ft (61.31m) msi	Time: 10:28

			17 13 13 13 13 13 13 13 13 13 13 13 13 13
WELL MSB 88C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Sample date: 03/18/1 (9.99m) below TOC Water elevation: 204.45 ft (62.32m) msl	Time: 10:29	WELL SRW 2A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Seph to water: 115.55 ft (35.22m) below TOC Water elevation: 205.05 ft (62.50m) msl	Time: 8:52
WELL MSB 88D MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 30.7 ft (9.36m) below TOC Water elevation: 206.2 ft (62.85m) msl	Time: 10:30	WELL SRW 2B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 114.5 ft (34.90m) below TOC Water elevation: 206.1 ft (62.82m) msl	Time: 8:55
WELL MSB 89B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 134,15 ft (40,89m) below TOC Water elevation: 205,25 ft (62,56m) msl	Тіте: 11:01	WELL SRW 3A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 160.15 ff (48.81m) below TOC Water elevation: 171.95 ff (52.41m) mst	Time: 7:58
WELL MSB 89C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/18/98 Depth to water: 113,75 ft (34.67m) below TOC Water elevation: 226.05 ft (68.90m) msl	Time: 11:00	WELL SRW 3BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 125.49 ft (38.25m) below TOC Water elevation: 206.81 ft (63.04m) msi	Time: 7:55
WELL SRW 1 MEASUREMENTS CONDUCTED IN THE FIELD Sample date; 03/17/98 Water elevation: 209.1 ft (63.73m) msl	Time: 8:45	WELL SRW 4 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 109.6 ft (33.41m) below TOC Water elevation: 210.5 ft (64.16m) msl	Time: 8:00
WELL SRW 1BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date; 03/17/98 Sph to water: 110,25 ft (33.60m) below TOC Water elevation: 206.05 ft (62.80m) msl	Time: 8:41	WELL SRW 4BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/89 Depth to water: 114.86 ft (35.01m) below TOC Water elevation: 205.74 ft (82.71m) msi	Time: 8:05
WELL SRW 2 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 109.95 ft (33.51m) below TOC Water elevation: 210.65 ft (64.21m) msl	Time: 8:50	WELL SRW 5 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Deph to water: 106.77 ft (32.54m) below TOC Water elevation: 202.63 ft (61.76m) msl	Time: 8:12

			WAIER-LEVEL DA
WELL SRW 6 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 99.8 ft (30.42m) below TOC Water elevation: 207.9 ft (63.37m) msl	Time: 8:35	WELL SRW 10 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	Time: 8:19
WELL SRW 7 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 93.25 ft (28.42m) below TOC Water elevation: 205.85 ft (62.74m) msl	Time: 8:25	WELL SRW 10BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/89 Depth to water: 98.6 ft (30.05m) below TOC Water elevation: 204.2 ft (62.24m) mst	Time: 8:18
WELL SRW 8 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03477/98 Depth to water: Not available Water elevation: Not available	Time: 9:15	WELL SRW 11 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	Тіте: 8.29
WELL SRW 8BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 79.69 ft (24.29m) below TOC Water elevation: 209.81 ft (63.95m) msl	Time: 9:18	WELL SRW 11BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 91.89 ft (28.01m) below TOC Water elevation: 204.61 ft (62.37m) mst	Time: 8:27
WELL SRW 9 MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available	Time: 9:45	WELL SRW 12A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 40,75 ff (12,42m) below TOC Water elevation: 195.55 ft (59.60m) msi	Time: 9:30
WELL SRW 9A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 54.55 ft (16.63m) below TOC Water elevation: 198.75 ft (60.58m) msl	Time: 9:48	WELL SRW 12B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 43.8 ft (13.35m) below TOC Water elevation: 192.5 ft (58.67m) msl	Time: 9:35
WELL SRW 9B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 53.95 ft (16.44m) below TOC Water elevation: 199.45 ft (60.79m) msl	Time: 9:52	WELL SRW 12C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 36.65 ft (11.17m) below TOC Water elevation: 199.65 ft (60.85m) msl	Time: 9:40

WELL SRW 13A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Dephi to wester: 96.91 ft (51.20m) msl	Time: 10:00	WELL SRW 15B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 111.25 ft (33.91m) below TOC Water elevation: 207.85 ft (63.35m) msl	Time: 7:48
WELL SRW 13B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 95.1 ft (28.99m) below TOC Water elevation: 202.6 ft (61.75m) msi	Time: 10:03	WELL SRW 15C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 109.8 ft (33.47m) below TOC Water elevation: 209.3 ft (63.80m) msl	Time: 7:45
WELL SRW 13C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 92.32 ft (28.14m) below TOC Water elevation: 205.38 ft (82.60m) msl	Time: 10:10	WELL SRW 16A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 136.25 ft (41.53m) below TOC Water elevation: 210.55 ft (64.18m) msi	Time: 10;20
WELL SRW 14A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 124.9 ft (38.07m) below TOC Water elevation: 202.1 ft (61.60m) msi	Time: 9:00	WELL SRW 16B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/39 Depth to water: 135,4 ft (41.27m) below TOC Water elevation: 211.4 ft (64.44m) msl	Time: 10:15
WELL SRW 14B MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 123.16 ft (37.54m) below TOC Water elevation: 203.74 ft (62.10m) msl	Time: 9:11	WELL SRW 16C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/1735,1 ft (41.18m) below TOC Water elevation: 211.5 ft (64.47m) msl	Time: 10:23
WELL SRW 14C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 109.85 it (33.48m) below TOC Water elevation: 217.05 ft (66.16m) msi	Time: 9:05	WELL SRW 17BB MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 123.7 ft (37.70m) below TOC Water elevation: 209.7 ft (63.92m) msl	Time: 10:28
WELL SRW 15A MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/88 Depth to water: 11.42 ft (33.96m) below TOC Water elevation: 207.68 ft (63.30m) msi	Time: 7:42	WELL SRW 17C MEASUREMENTS CONDUCTED IN THE FIELD Sample date: 03/17/98 Depth to water: 123.8 ft (37.73m) below TOC Water elevation: 209.8 ft (63.95m) msl	Time: 10:35

Ø-₩

MEASUREMENTS CONDUCTED IN THE FIELD

Sample date: 03/17/98 Depth to water: Not available Water elevation: Not available

Time: 10:38