

HEALTH PHYSICS REGIONAL MONITORING

Semiannual Report, January through June 1959

November 1959

E. I. du Pont de Nemours and Company Explosives Department - Atomic Energy Division Savannah River Plant

Distribution

Wilmington

- 1 J. E. Cole
- 2 J. B. Tinker
- 3 H. Worthington
- 4 W File

Savannah River Plant

5	J.	D.	Ellett -	17	W. C. Reinig
	J.	Α.	Monier, Jr.	18	H. A. McClearen
6	W.	P.	Overbeck	19	E. C. Morris
7	R.	В.	Fenninger	20	H. L. Butler
8	F.	Η.	Endorf	21	J. H. Horton
9	Κ.	W.	Millett	22	R. W. Van Wyck
10	Κ.	W.	French	23	M. H. Wahl
11	J.	Κ.	Lower	24	J. W. Morris
12	L.	G.	Ahrens	25	D. E. Waters
13	F.	Ε.	Kruesi	27	TIS File
14	Ρ.	R.	Moore	28	TPO File
15	C.	Μ.	Patterson	2 9-39	PRD Extra Copies
16	P.	В.	K'Burg	and the material description of the second	PRD Record Copy

Atomic Energy Commission

26 N. Stetson, SROO

Public Health Departments

- 41 L. F. Warrick United States Public Health Service, Washington, D. C.
- 42 W. T. Linton South Carolina Public Health Department, Columbia, S. C.
- 43 W. H. Weir State Department of Public Health, Atlanta, Georgia
- 44 H. W. Chapman U. S. Department of Health, Education, and Welfare, Atlanta, Ga.

Contents

Introduction .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Data Reportin	g			•				•		•	•	•		•	•	1
Sensitivity a	nd :	Stan	dar	d I	evi	ati	.on	of	Lal	oore	ator	ту				_
Analyses .	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Summary		•		•		•	•	•	•	•	•	•	•		•	2
Survey Results	•	•		•	•		•	•		•				•	•	3
Radioactivity	Re.	leas	ed	ру	Pla	nt	0pe	erat	cion	ns	•	•	•		•	3
Bomb Fallout				•				•				•				6
Radioactivity	in	the	At	mos	phe	re	•							•		9
Radioactivity	in	Rai	.nwe	ater	•			•		•	•					12
Radioactivity	in	Veg	eta	atic	n	• ,		•	•	•					•	12
Radioactivity	in	Mil	.k													15
Environmental	Ra	diat	ior	ı Le	evel	.s		•	•							15
Radioactivity	in	Str	ean	ns a	ınd	the	: Sa	ıvar	ınal	n Ri	Lver	:		•	•	16
Radioactivity	in	Pla	nt	Dri	nki	.ng	Wat	cer		•			•			25
Radioactivity	in	Pub	lic	e Wa	ater	์ ระ	ıpp]	Lies	5				•			25
Radioactivity	in	Gro	und	aW £	ater			•		•						26
Radioactivity	in	See	pag	ge E	Basi	ns		•		•			•			28
Radioactivity	in	Bic	108	gica	al S	spec	im∈	ens		•					•	35

Abstract

Radioactivity in the Plant environs from Plant operations and from bomb fallout was detected during this six-month period.

The six-month average concentration of nonvolatile beta activity released from the Reactor Areas to Plant streams, and from weapons test debris in air, was the highest observed to date.

Introduction

Under a program established by the Du Pont Company in June 1951, the Savannah River Plant site and surrounding region are systematically monitored for radioactivity. The regional monitoring program accumulates information that is useful both as a measure of the effectiveness of Plant controls and as an authoritative record of environmental conditions. This report, covering the period from January through June 1959 is one of a series of reports concerning the regional monitoring program.

Data Reporting

Survey data were averaged for the six-month period and compared with the previous six-month averages ("Health Physics Regional Monitoring Semiannual Report," DPSPU 59-11-23, August 1959). In reporting data, "Avg" or "Total" refers to the average or total for this six-month report period, while "Prev Avg" or "Prev Total" refers to the average or total for the preceding six-month period. Unless otherwise specified, "Max" refers to the greatest concentration observed in a single sample collected during the report period.

Sensitivity and Standard Deviation of Laboratory Analyses

Sensitivity of laboratory analyses refers to the minimum amount of radioactivity that can be detected by the procedure. It is based on statistical counting errors (90% confidence level) and is influenced by sample size, counter efficiency and counter background. No self-absorption corrections have been applied.

The standard deviations, calculated from spike recovery values, are applicable to the six-month averages of data in this report.

			Standard	
Analysis	Sample	Sensitivity	Deviation, %	Spike Value
Alpha	Water	$0.45 \pm 0.14 \times 10^{-3} d/m/ml$	11	100 × 10 ⁻³ d/m/ml
	Mud	0.45 ± 0.14 d/mg	-	-
	Vegetation	$0.23 \pm 0.07 d/m/g$	-	-
	Air	$0.035 \pm 0.011 \times 10^{-14} \mu c/cc$	-	-
Beta	Water	$7.1 \pm 0.6 \times 10^{-15} \text{ c/ml}$	_	-
	Muđ.	$7.1 \pm 0.6 \times 10^{-12} \text{ c/g}$	-	-
	Vegetation	$3.6 \pm 0.3 \times 10^{-12} \text{ c/g}$	-	-
	Biological Specimens	$3.6 \pm 0.3 \times 10^{-12} \text{ c/g*}$	_	-
	Air	$1.2 \pm 0.1 \times 10^{-14} \mu c/cc$	-	-
TBP Extraction	Water	$0.64 \pm 0.20 \times 10^{-3} \text{ d/m/ml}$	16	100 × 10 ⁻³ d/m/ml
	Mad	$0.61 \pm 0.19 d/m/g$	17	100 d/m/g
	Vegetation	$0.059 \pm 0.018 d/mg$	19	10 d/m/g
Radioiodine	Water	$12.0 \pm 0.9 \times 10^{-15} \text{ c/ml}$	10	$300 \times 10^{-15} \text{ c/ml}$
	Vegetation	$1.3 \pm 0.1 \times 10^{-12} \text{ e/g}$	14	20 × 10 ⁻¹² c/g
	Air	$3.3 \pm 0.2 \times 10^{-14} \mu c/cc$	-	-
	Milk	$150 \pm 10 \times 10^{-15} \text{ c/ml}$	26	3000×10^{-15} c/ml
Tritium	Water	$4.5 \pm 0.6 \times 10^{-12} \text{ c/ml}$	3	2500 × 10 ⁻¹² c/ml
Radiocesium	Water	$3.6 \pm 0.4 \times 10^{-15} \text{ c/ml}$	20	$400 \times 10^{-15} \text{ c/ml}$
Radiostrontium	Water	$3.6 \pm 0.4 \times 10^{-15} \text{ c/ml}$	8	400 × 10 ⁻¹⁵ c/ml

^{*} Approximate average, there was a wide variation in sample size analyzed.

Summary

RADIOACTIVITY RELEASED BY PLANT OPERATIONS. Radioactivity released to the environment as a result of Plant operations included approximately 0.3 curie alpha, 790 curies nonvolatile beta, and 76 curies radioiodine. Approximately 98,000 curies tritium were released by the 100-Area stacks and water effluents.

Fuel element failures contributed considerably to the nonvolatile beta discharged from the reactor disassembly basins. Of the radioactivity associated with the fuel element failures 90% was Np-239; the greatest releases occurred during discharges of entire reactor loads subsequent to fuel element failures. The largest single-incident release was from C Area during March, when approximately 150 curies of nonvolatile beta (primarily Np-239) were discharged to Four Mile Creek. Radiostrontium was readily detectable in the stream after the incident. Nonvolatile beta and tritium releases due to 100-Area discharges were detectable in the Savannah River at the Highway 301 crossing; it was estimated that the Plant contributed 21 curies nonvolatile beta and 42,000 curies tritium to the flow of radioactivity at this location during the six-month period.

Nonvolatile beta activity was detectable in fish collected from Par Pond, Lower Three Runs, Steel Creek, Four Mile Creek and the Savannah River. Maximum concentrations of 3080×10^{-12} c/g in bone and 985×10^{-12} c/g in flesh were detected in fish collected from Lower Three Runs, but concentrations in specimens collected from the Savannah River remained quite low.

Releases of alpha and nonvolatile beta radioactivity from the 200 Areas increased due to resumption of Purex process operations in F Area, and were coincidental with construction work in the H-Area canyon facilities. Processing of short-cooled material caused an increase in radioiodine releases from H Area. The F-Area radioiodine release was greater than expected because of a low decontamination factor across the process.

No significant concentration of Plant-released alpha or nonvolatile beta radioactivity was detected in samples of air, vegetation or rainwater. Radioiodine concentrations near F and H Areas increased slightly, while the decrease of bomb fallout produced lower concentrations at other on-Plant and off-Plant locations. Radioactivity from H-Area seepage basins was detected in ground water a few feet from Four Mile Creek. Practically all of the radioactivity was due to isotopes of strontium and yttrium.

BOMB FALLOUT. Although no announced nuclear weapons tests have occurred since October 1958, concentrations of radioactive debris remained high through most of the report period. The average concentration of filterable beta activity in air (650 \times 10 $^{-14}$ $\mu c/cc)$ was the highest six-month average ever recorded at SRP. Deposition of nonvolatile beta on the Plant site during the report period was estimated to be 240 curies. Since the debris was rather old, the apparent half life of the radioactivity was fairly long, and ranged from 50 to greater than 100 days.

Nonvolatile beta from weapons test debris was detectable in samples of air, vegetation, rainwater, and stream water.

Survey Results

Radioactivity Released by Plant Operations

100 AREAS

The major sources of liquid waste from the 100 Areas were: (1) deionized water from reactor thermal shields, and (2) disassembly basin water. In L, K, and C Areas the thermal shield was purged at rates of 1 to 6 gpm to prevent accumulation of corrosion products; the deionized water was recirculated with no purging in R and P Areas during this report period. Disassembly basin water was purged at rates of 1000 to 2000 gpm, except during periods of abnormally high concentrations of radioactivity in the basins. Both sources of waste were diluted by spent cooling water, normally discharged at rates of approximately 150,000 gpm; however, cooling water flows were reduced during charge-discharge shutdowns.

There was a twofold increase in nonvolatile beta releases from the thermal shield, due primarily to Na-24 and other short-lived induced activities. L Area contributed 63 of the total 106 curies released by the purging of thermal shield water during the report period.

Nonvolatile beta releases from disassembly basins increased by a factor of 4 as a result of fuel element failures which occurred during the report period. The largest releases occurred during discharges of entire reactor loads subsequent to fuel element failures. Greater than 90% of the radioactive releases associated with fuel element failures was attributed to Np-239. As a result of leakage through the emergency basin stop logs, ¹ Sr-90, Cs-134 and Cs-137 continued to be released from R Area.

A summary of the nonvolatile beta released from the 100 Areas to Plant streams is shown in the following table.

							Released in ter, curies
							Total for
	Area -	→ <u>R</u>	<u>P</u>	\underline{L}	K	<u>C</u>	All Areas
Total		×	*	63	35	8	106
Previous	Total	12	1	26	4	6	49
	÷	* No	pur	ging			

		Non	vola	tile	Beta	Rele	ased in				
		Disa	Disassembly Basin Water, curies								
		Total f									
	Area -	R	<u>P_</u>	<u>L</u>	<u>K</u>	C	All Areas				
Total		134	56	138	93	258	679				
Previous	Total	89	25	20	10	9	153				

Alpha activity discharged in 100-Area effluent streams was estimated to be approximately 0.3 curie, due almost entirely to naturally occurring radioactivity in cooling water.

¹ From the experimental fuel element failure in November 1957. For details of the incident, see DPSP 58-25-17.

Tritium discharge to 100-Area effluent streams by entrainment of moderator on fuel elements during discharge operations totaled approximately 19,000 curies, as compared to the discharge of 15,000 curies during the previous six-month period.

Tritium released by moderator losses through 100-Area stacks totaled 79,000 curies, as compared to the release of 52,000 curies during the previous report period.

200 AREAS

Increases in stack released radioactivity from both chemical separations facilities were observed during this report period. Spills and construction work in H-Area canyon in March resulted in a release of 1.4 curies nonvolatile beta. Resumption of Purex process operations in F Area during the last half of the report period resulted in an increase in releases of both nonvolatile beta and alpha emitters. Radioiodine releases from H Area totaled 13 curies in January and 19 curies in February. These releases resulted from the processing of shorter-cooled material and from the operation of the caustic scrubber without caustic. A radioiodine release of 25 curies during June from F Area represented the maximum monthly release from the 200-Area stacks; the maximum daily release was 2.7 curies from F Area on June 9. Radioiodine release from F Area was higher than anticipated due to a low decontamination factor as compared with previous operations.

The 200-Area stack releases for the period are summarized in the following table.

	St	Stack-Released Radioactivity								
	F	7 Area	· I	l Area						
	Total	Prev Total	Total	Prev Total						
Nonvolatile Beta	, me									
Ru ¹⁰³ , 106	904	131	1810	211						
Sr ^{89,90}	16	5	24	14						
Rare Earths	177	71	283	151						
Cs ¹³⁷	22	6	30	6						
Zr-Nb ⁹⁵	195	42	190	81						
To	otal → 1314	255	2337	463						
Alpha, mc	14*	8	2	1						
I-131, c	42	-	34	11						
	* 65 ₉	% Pu-239.								

300 AREA

Estimated release of natural (unenriched) uranium from 300 Area to Tims Branch was 73 pounds (23 mc) as compared to 60 pounds (19 mc) during the previous six-month period.

700 AREA

Releases of radioactivity from the Building 773-A (Savannah River Laboratory) stacks during April May, and June included 6.2 mc of nonvolatile beta activity and 6.2 μc of alpha activity, as determined by chemical analyses. Air filter samples prior to April were counted in Building 773-A, but the alpha activity release was less than sensitivity (0.18 $\mu c/day$) and the nonvolatile beta activity release was obscured by the release of 197 mc I-131. Tritium released during the report period totaled approximately 2500 curies.

Bomb Fallout

The average concentration of filterable beta in air for the sixmonth period (650 \times 10⁻¹⁴) was the highest ever recorded. Except for occasional decreases due to rainfall, concentrations of filterable beta in air were continually high until May, as shown in figure 1. Although filterable beta increased, the number of discrete radioactive particles detected in air by radioautograph decreased. This anomoly was attributed to a large number of particles too small to be clearly defined by radioautograph as all radioautographs showed a general darkening over the entire area. These particles, in the atmosphere at very high altitudes and slowly settling to the earth's surface, are the results of fallout of long half life materials from weapons tests. Of the particles collected during the six-month period, 162 of the most radioactive particles were counted with GM counters. The average beta activity was 175 d/m per particle, with a maximum of 400 d/m in a particle collected at the Aiken Airport during the week ending January 27. Half life of the radioactivity in the 400 d/m particle was greater than 100 days.

Gamma pulse height analysis of air filters collected during the report period indicated the presence of $Zr-Nb^{95}$, Ru^{103} , 106 and Ce^{141} , 144 . A gamma-ray spectrograph of filters collected on May 26 is shown in figure 2.

Absence of radioiodine in weapons tests debris was reflected in decreased concentrations of this isotope in air at the stations distant from the 200 Areas, while the effect of increased stack releases could be observed on the H-Area vegetation.

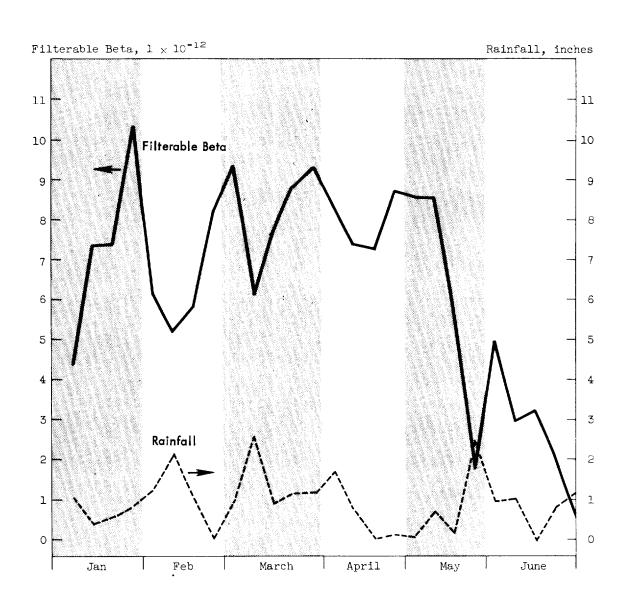


Figure 1. Effects of Rainfall on Concentrations of Filterable Beta in Air

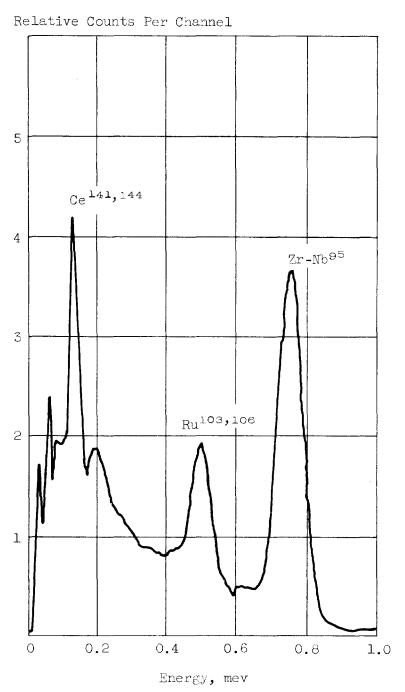


Figure 2. Gamma-Ray Spectrograph of Air Filter Collected May 26, 1959

Radioactivity in the Atmosphere

Air samples were collected weekly from 15 air monitoring stations as shown in figure 3.

Radioactivity in the atmosphere was determined by:

- Counting 369 two-inch-diameter air filters for alpha and beta activity.
- Chemically analyzing 374 two-inch-diameter silver nitrate impregnated air filters for radioiodine.
- Counting the number of particles collected on 345 eight-inch by ten-inch air filters.

Results of these samples are shown in the following table.

Atmospheric Radioactivity

							Ra	adioact	ive			
		Alpha	•			Beta,		article			iolod:	
	1 × 1	10-14	ic/cc*	1 × 1	0-14,	lc/cc*	part:	icles/l	000 M ²	<u>1 ×</u>	10-14	μc/cc
			Prev			Prev			Prev			Prev
Location	Max	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg
F Area	0.3	0.2	0.1	1000	700	430	280	66	100	100	24	22
H Area	• 3	.2	.2	1200	730	490	150	54	110	150	29	28
300/700 Area	• 4	.2	.2	1300	760	670	2 70	67	150	13	7	31
Talatha						,		_		0	^	
Gatehouse	• 3	.1	.2	1200	660	620	230	56	140	18	8	24
Williston	_		_			(1			_	
Gatehouse	.2	.1	.2	1100	760	600	130	45	110	21	7	25
Dunbarton						_						- 6
Fire Tower	• 3	.2	.2	1100	680	600	140	45	130	54	12	26
400 Area	• 3	.2	.2	1400	850	550	240	56	160	21	6	12
Aiken Airport	• 3	.2	.2	1300	720	600	210	48	160	21	6	22
Allendale	•5	.2	.2	1200	700	580	250	60	150	17	6	19
Waynesboro	•3	.2	.2	1000	610	5 2 0	190	51	130	14	5	24
Langley	.2	.1	.2	1000	460	380	97	26	_	12	5	9
Williston	•3	.1	.2	1200	600	530	93	29	-	16	6	18
Barnwell	.1	.1	.1	880	430	3 2 0	69	24	-	41	6	12
Sardis	.2	.1	.1	730	430	390	97	22	-	16	5	12
Bush Field	0.2	0.1	0.2	1200	650	420	64	27	-	23	5	15

^{*} Three days were allowed for decay of radon and thoron daughters.

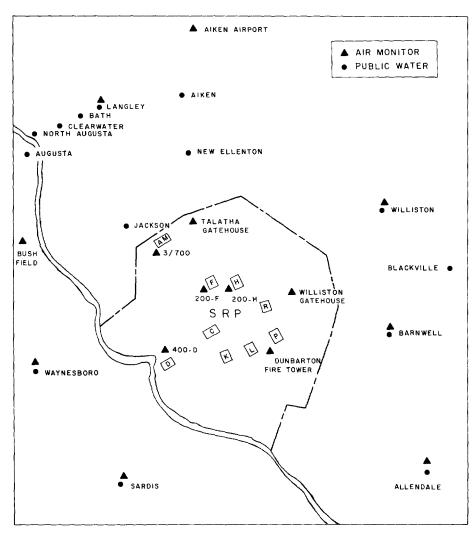


Figure 3. Constant Air Monitoring Stations and Public Water Sampling Locations

PARTICULATE FALLOUT

Adhesive papers were collected weekly and radioautographed. Results from 522 adhesive papers, and the locations from which they were collected are shown in the following table.

	Part	icles	/Ft ² /Week
Location	Max	Avg	Prev Avg
F Area	20	4	8
F Area (at 1-mile radius)	34	4	8
H Area	14	3	7
H Area (at l-mile radius)	13	2	6
Burial Ground Fence*	9	2	2

^{*} Papers placed in vertical positions to collect horizontally moving particles.

In March a program was begun to determine the contribution of the 100-Area stacks to airborne radioactivity. Results of radioautographs from 320 adhesive paper samples and the locations from which they were collected are shown in the following table.

	Deposition of Particles, part	
Location	Max Max	Avg*
R Area	13	1.5
P Area	18	1.8
K Area	14	1.5
L Area	14	1.4
C Area	22	1.4
On-Plant Air Monitor Locations** Off-Plant Air Monitor Locations**	3 1 22	1.9 1.5

^{*} A 16-week average.

^{**} Included for comparison only.

Radioactivity in Rainwater

	No. of	<u>1 ×</u>	Alpha, 1 × 10 ⁻³ d/m/ml Prev			Nonvolatile Beta, 1 × 10 ⁻¹⁵ c/m1			Radioiodine, 1×10^{-15} c/m		
Location	Samples	$\underline{\mathtt{Max}}$	Avg	Avg	Max	Avg	Prev Avg	Max	Avg	Prev Avg	
F Area	20	8.6	2.3	3.0	780	400	630	90	37	56	
H Area	22	4.9	2.2	2.2	1500	580	860	130	39	90	
300/700 Area	21	4.4	1.8	2.6	1500	660	880	23	15	87	
Talatha Gatehouse	20	3.5	1.1	1.3	940	490	540	2 9	15	55	
Williston Gatehouse	20	6.1	1.7	1.7	770	2 60	300	46	16	81	
Dunbarton Fire Tower	20	3.1	1.1	0.7	500	240	240	27	15	45	
400 Area	20	3.2	1.1	1.3	1100	400	590	82	22	120	
Aiken Airport	23	6.5	1.7	1.7	1400	600	570	29	15	80	
Allendale	20	2.2	1.1	1.3	550	25 0	250	18	13	54	
Waynesboro	2 0	2.5	1.0	1.4	840	46 0	540	15	13	130	
Langley	23	3.6	1.4	2.6	2 500	840	810	23	15	61	
Williston	21	2.9	0.8	1.6	1500	590	920	25	14	67	
Barnwell	21	1.7	0.6	1.1	1200	580	710	24	15	70	
Sardis	21	1.8	0.8	1.6	1200	550	1200	20	14	94	
Bush Field	21	1.4	0.8	1.8	1200	600	920	21	13	120	

Radioactivity deposited on the Plant site, estimated from results of analyses of rainwater samples and rainfall measurements, is shown in the following table. During weeks when no rain occurred, nonvolatile beta deposition was estimated from radioactivity collected in an open pan of water located near Building 735-A.

	Nonvolatile	Beta, c	Radioiodine,	c
January February March April May June	34 46 79 25 31 22		2 4 3 <1 <1 2	
	Total → 237	-	13	
Previous	Total → 181		15	

Radioactivity in Vegetation

There were 514 vegetation samples analyzed for alpha and nonvolatile beta activity, and 764 samples analyzed for radioiodine. Sample locations are shown in figures 4 and 5. Results of analyses are shown in the following table.

Figure 4. Vegetation Sample Locations

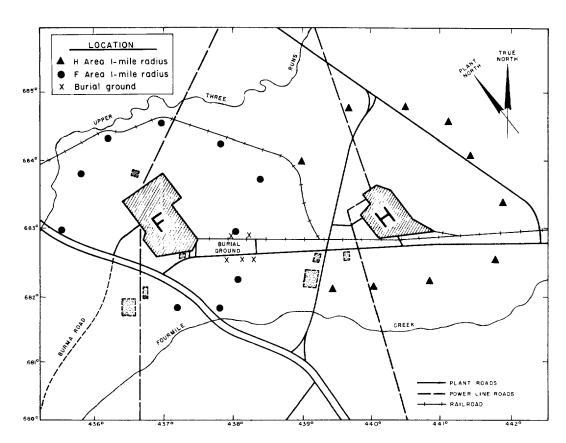


Figure 5. Vegetation Sample Locations in F and H Areas

	Alpha, d/m/g			Nonvolatile Beta, $1 \times 10^{-12} \text{ c/g}$			Radioiodine, $1 \times 10^{-12} \text{ c/g}$		
			Prev			Prev			Prev
Location	Max	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg
F Area (at 1-mile radius)	1.2	0.3	0.4	870	260	140	5.4	2.8*	-
H Area (at 1-mile radius)	1.7	• 4	•4	971	300	150	41.0	5.4	3.1
Plant Perimeter	1.8	•3	•3	948	255	130	1.8	1.0	2.0
25-Mile Radius	1.0	0.4	0.3	923	346	120	-	-	-

^{*} Average for 14 weeks only (March 25 to June 24).

Radioactivity in Milk

Milk samples were collected weekly from Talatha, Snelling, Aiken, North Augusta, and Langley. Of 126 samples analyzed for radioiodine, the average concentration was less than 170 \times 10 $^{-15}$ c/ml.

Environmental Radiation Levels

A summary of 520 readings made with Landsverk L-65 pocket chambers and a modified L-60 electrometer is given in the following table.

	Dose Rate,	mr/24 hours
Location	Avg	Prev Avg*
H Area F Area	0.94 .80	0.81 .47
R Area L Area C Area P Area K Area	.78 .77 .74 .71 .69	.62 .55 .48 .56
Aiken Airport Allendale 400 Area 300/700 Area TC Area Waynesboro Dunbarton Fire Tower	.66 .64 .63 .63 .61 .58	.54 .57 .48 .56 .40 .48
Williston Williston Gatehouse Talatha Gatehouse Bush Field Barnwell Sardis Langley	.54 .52 .49 .41 .39 .37	.36 .44 .46 .39 .27 .36

^{*} Two-month average.

Radioactivity in Streams and the Savannah River

Weekly water samples were collected at the stream sampling locations shown in figure 6. During weeks when large variations in stream flow caused difficulties with operation of the continuous samplers, weekly concentrations were determined by averaging results of analyses of daily samples. Mud samples were collected monthly through March, and weekly during the remainder of the report period. Results of analyses of 598 water samples and 322 mud samples are summarized in the following tables.

TIMS BRANCH

Radi	oacti	vitv	in	Water

	Alpha	, 1 × 10	$^{-3}$ d/m/ml	Nonvolatil	e Beta,	$1 \times 10^{-15} \text{ c/ml}$
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg
2	150	50	33	230	110	64
3	8000	1500	440	6500	1200	450
4	170	74	40	290	170	84
5	77	41	11	130	76	24

T)		• 4	•	3 /
Radioa	OT 1 77	1 T. 77	¬n	ויין דרנעו
Tractor	C U JL V .	_ U,y		riua

	110-012-01-01-01-01-01-01-01-01-01-01-01-01-01-								
	TBP Extra	ctable Al	Nonvol 1 × 1	Latile LO ⁻¹² (Beta, c/g				
			Prev			Prev			
Location	Max	<u>Avg</u>	Avg	Max	Avg	Avg			
2	520	240	570	140	81	100			
3	830	340	1400	1100	230	300			
4	68	45	48	39	23	19			
5	96	32	18	70	12	10			

Increased concentrations of radioactivity in water at locations 3, 4, and 5 were caused by increased releases of uranium from the 300 Area. Maximum alpha and nonvolatile beta concentrations at location 3 (300-Area effluent) occurred in a sample collected on March 19.

UPPER THREE RUNS

Results of analyses of water and mud samples are shown in the following tables.

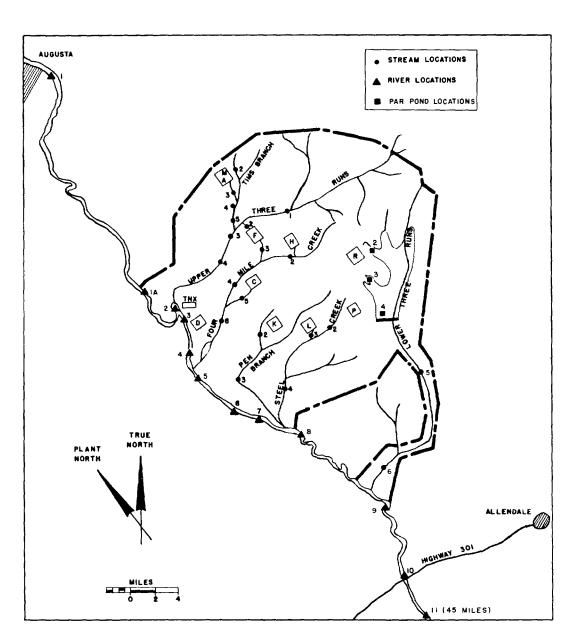


Figure 6. Stream and River Sample Locations

	Radioactivity in Water							
		Alpha	,	Nonvol	atile	Beta,		
	<u>l ×</u>	10 ⁻³	d/m/ml	1 ×	10-15	c/ml		
			Prev			Prev		
Location	Max	Avg	Avg	Max	Avg	Avg		
l (Control)	8	4	5	59	19	24		
2	23	6	6	1400	140	71		
3	13	8	5	71	26	11		
4	8	4	5	96	24	19		

	Radioactivity in Mud								
					Nonvolatile				
	Al	pha, d,	/m/g	1 ×	10-12	c/g			
			Prev			Prev			
Location	$\frac{\text{Max}}{}$	Avg	Avg	$\underline{\text{Max}}$	Avg	Avg			
l (Control)	2.3	1.1	1.0	18	12	9			
2	2.6	1.0	1.4	100	35	27			
3	4.0	1.4	2.1	29	10	12			
4	3.6	1.4	1.6	47	14	11			

Concentrations of radioactivity at location 2 (F-Area storm sewer) were influenced by spills in F Area. Maximum alpha concentration in water occurred in a sample collected on March 12 and was due to natural uranium.

Maximum nonvolatile beta concentration in water occurred in a sample collected on May 7 and was traced to a spill of canyon process waste from Building 211-F.

FOUR MILE CREEK

Analyses of water and mud samples are summarized in the following tables.

	Radioactivity in Water										
	Alpha,	1×1	$0^{-3} d/m/ml$	Nonvolatile	Beta, 1	× 10 ⁻¹⁵ c/ml					
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg					
2	4	3	3	110	53	39					
3	8	4	3	300	1.10	43					
4	1	1.	1	120	42	28					
5	3	2	1	80,000*	7100	260					
6	3	1	1	66,000*	4300	110					

^{*} Maximum weekly concentrations. Daily samples contained as much as 260,000 \times 10 $^{-15}$ c/ml at location 5, and 170,000 \times 10 $^{-15}$ c/ml at location 6.

Radioactivity in Mud

	Alp	ha, d	/m/g			
			Prev	Nonvolati1	Le Beta,	$1 \times 10^{-12} \text{ c/g}$
Location	Max	<u>Avg</u>	Avg	Max	Avg	Prev Avg
2	1.6	0.9	0.9	12	8	8
3	2.1	1.0	1.2	39	11	8
4	2.0	0.5	0.9	9	7	10
5	4.3	1.1	1.1	140	23	8
6	3.4	1.4	1.3	340	93	49

Concentrations of nonvolatile beta in water at location 3 (F-Area segregated water effluent) increased with the startup of F Area in March; the maximum concentration occurred in a sample collected on May 21. Samples of steam condensate taken from various locations within the F-Area segregated water system indicated possible leakage from dissolver 6.4 and the high activity waste system.

Approximately 80% of the average concentration of nonvolatile beta in water at location 5 (C-Area effluent) was due to samples collected during two weeks of the report period. The high concentrations during these two periods (80,000 \times 10 $^{-15}$ c/ml during the week ending March 26, and 72,000 \times 10 $^{-15}$ c/ml during the week ending May 14) were due to large releases of Np-239 from C Area. Releases of approximately 146 curies during March and 68 curies during May resulted from discharges of the reactor subsequent to fuel element failures. The half life of nonvolatile beta in samples collected from location 5 during the remainder of the report period ranged from 4 days to 100 days, with a weighted average of 15 days.

Water samples collected downstream from C Area contained greater concentrations of radiostrontium than found in any other Plant stream. Results of analysis of samples for specific isotopes are shown in the following table.

Dodi	000	H 1 37 1	+ 47	ร์หา	Water
- Ragi	oa.c:	5 1 V	1 T.V	מר	water

		Tritium,			ostro	ntium,	Radiocesium,		
	$1 \times$	10-12	c/ml	$1. \times$	10-15	c/ml	$1. \times$	10-15	c/ml
			Prev			Prev			Prev
Location	Max	<u>Avg</u>	<u>Avg</u>	$\frac{\text{Max}}{}$	<u>Avg</u>	<u>Avg</u>	$\frac{\text{Max}}{}$	<u>Avg</u>	Avg
5	-	_	-	640	150*	_	610	110*	-
6	3000	190	260	240	40	8	190	14	11

^{*} Three-month average.

Concentrations of radiostrontium and radiocesium at location 6 increased sharply after the March fuel element failures. The average radiostrontium concentration increased from 6×10^{-15} c/ml during the 11 weeks before the March failures to 63×10^{-15} c/ml during the remaining 15 weeks. Similarly, the average radiocesium concentration increased from 5×10^{-15} c/ml to 19×10^{-15} c/ml.

PEN BRANCH

Results of analyses of water and mud samples are shown in the following tables.

	Radioactivity in Water									
	Alpha,	1 ×	$10^{-3} d/m/ml$	Nonvolatile	Beta,	1×10^{-15}	c/ml			
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg				
2	2	1	1	5500	470	320				
3	2	1	1	5900	640	260				

		Radioactivity in Mud									
	A	lpha,	d/m/g	Nonvolati	1 × 10 ⁻¹²	c/g					
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg					
2	3.0	1.5	1.1	74	32	29					
3	2.3	1.3	1.4	260	80	54					

The half life of nonvolatile beta in water samples collected from location 2 ranged from 4 days to 110 days, with a weighted average of 10 days. Even though location 3 is downstream from location 2, intensive sampling revealed that concentrations of nonvolatile beta at location 3 were actually higher than those at location 2. This is believed to have been caused by drainage from some unknown source.

An analysis for specific isotopes follows.

		Radioactivity in Water										
		ritiu				ntium,	Radiocesium,					
	$1 \times$	10-12	c/ml	$1 \times$	1×10^{-15} c/ml			1×10^{-15}				
			Prev			Prev			Prev			
Location	Max	Avg	<u>Ave</u>	Max	<u>Avg</u>	Avg	<u>Max</u>	Avg	Avg			
2	_	_	_	190	22 *	-	21	5 *	_			
3	3100	250	87	120	15	13	23	6	7			
		* T	hree-m	onth	avera	ge.						

STEEL CREEK

Analyses of water and mud samples are shown in the following tables.

Radioactivity in Water

	Alpha,	1×1	$10^{-3} \mathrm{d/m/ml}$	Nonvolatile	Beta, 1	× 10 ⁻¹⁵ c/ml
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg
2	2	1	2	2,400	390	370
3	3	1	1	150,000*	6400	410
4	2	1	1	4,500	300	120

* Daily samples contained as much as $480,000 \times 10^{-15}$ c/ml.

Radioactivity in Mud

	Al	pha,	d/m/g	Nonvolatile Beta, 1×10^{-12}					
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg			
2	10.	3.4	3.2	130	60	52			
3	1.8	1.3	1.9	93	64	77			
4	3.4	1.7	1.7	140	46	43			

The half life of nonvolatile beta in water samples collected from location 2 ranged from 4 days to 110 days with a weighted average of 18 days.

The maximum concentration of nonvolatile beta in water at location 3 occurred during the week ending June 4 and accounted for 90% of the six-month average concentration. High concentrations in June resulted from the release of 116 curies nonvolatile beta (primarily Np-239) from L Area during discharge of the reactor subsequent to fuel element failures. Half life of the nonvolatile beta in samples collected during the remainder of the report period ranged from 5 days to 88 days, with a weighted average of 18 days.

An analysis for specific isotopes follows.

Radioactivity in Water

		hadioactivity in water									
	Tritium,			Radi	ostro:	ntium,	Radiocesium,				
	1×10^{-12} c/ml			$1 \times$	$1 \times 10^{-15} \text{ c/ml}$			1×10^{-15}			
	*****		Prev			Prev			Prev		
Location	$\underline{\text{Max}}$	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg		
2	_	-	-	44	22	9	64	37	18*		
4	620	84	56	32	12	8	44	16	12		

^{*} Eighteen-week average.

LOWER THREE RUNS AND PAR POND

Analyses of water and mud samples are shown in the following tables.

Radioactivity	in	Water
---------------	----	-------

	Alpha,	$1 \times$	10^{-3} d/m/ml	Nonvolatil	e Beta,	1×10^{-15} c/ml
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg
2	2	1	1	1100	230	490
3	3	1	<u> 1</u> *	240	150	110*
4	2	1*	-	220	140*	-
5	2	1	1	150	110	160
6	5	1	1	120	74	130

^{*} Four-month average.

Radioactivity in Mud

	Alpha, $d/m/g$		Nonvolatile	Beta,	1 × 10 ⁻¹²	c/ml	
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg	
2	1.1	0.6	1.9	34	13	174	
3	1.0	0.4	-	14	8	-	
4	0.5	0.4	-	7	7	-	
5	1.3	0.8	0.6	36	11	36	
6	1.6	0.6	0.5	20	13	9	

Effects of the experimental fuel element failure of November 1957 continued to be observed in the Lower Three Runs - Par Pond system, and samples collected from these locations contained a greater percentage of long-lived isotopes than observed in any other reactor effluent stream. The half life of nonvolatile beta in samples collected from location 2 ranged from 6 days to 500 days, with a weighted average of 57 days.

An analysis of samples for specific isotopes follows.

	Tritium, 1×10^{-12} c/ml			Radiostrontium, 1×10^{-15} c/ml			Rad 1 ×	Radiocesium, 1×10^{-15} c/ml		
			Prev			Prev	=		Prev	
Location	Max	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg	
2	180	68	47	92	18	37	410	68	150	
3	90	70	-	25	17	-	110	56	_	
4	88	70 *	-	50	18*	-	78	51*	-	
5	-	-	-	36	19	25	85	40	65	
6	35	22	23	28	16	28	59	19	38	

^{*} Four-month average.

RADIOACTIVITY IN THE SAVANNAH RIVER

Samples of river water were collected once a week at the locations shown in figure 6, except during the period from March 18 through March 31, when rather large quantities of nonvolatile beta were discharged from C Area to Four Mile Creek. During this period, 2 to 4 daily samples were collected each week and the results averaged to give weekly concentrations. Samples from location 10 were collected by a continuous "paddle wheel" type sampler.

Monthly mud samples from locations 1 through 9 and weekly samples from locations 10 and 11 were analyzed for TBP extractable alpha. Weekly mud samples were analyzed for nonvolatile beta, except at locations 1 through 9 where monthly samples were analyzed during the period January through March.

Analyses of 342 water samples for alpha and nonvolatile beta, 119 mud samples for TBP extractable alpha, and 211 mud samples for non-volatile beta are summarized in the following tables.

	Radioactivity in Water										
	Alpha	, 1_× 1	0^{-3} d/m/ml	Nonvolatile	Beta,	1×10^{-15} c/ml					
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg					
1	2	1	1	44	21	14					
lA	2	1	1	63	25	15					
2	4	2	1	53	23	18					
3	2	1	1	52	21	17					
4	2	1	1	87	25	19					
5	3	1	1	1300*	110	19					
6	2	1	1	120*	29	17					
7	2	1	1	140*	33	16					
8	1	1	1	1600	130	26					
9	3	1	1	140	45	26					
10	1	1	1.	88	29	24					
11	2	1	1	97	33	20					

* Average of 2 to 4 daily samples. Maximum daily samples were as high as 2600×10^{-15} c/ml at location 5, 210×10^{-15} c/ml at location 6, and 220×10^{-15} c/ml at location 7.

Radioactivity in Mud

	TBP Ex		able Alpha,	1	Vonv	olati	le Beta,
		d/m	/g		_ 1_	× 10	¹² c/g
Location	Max	Avg	Prev Avg		Max	Avg	Prev Avg
1	9	5	6		46	16	18
1A	13	6	-		35	20	22
2	10	6	7		25	13	18
3	14	7	7		40	17	20
4	10	7	10		29	17	18
5	14	6	16		37	20	22
6	12	6	10		38	11	9
7	9	6	6		26	15	21
8	12	5	6		49	25	22
9	11	4	7		40	15	14
10	13	7	7		39	24	20
11	10	3	6		12	8	11

Maximum concentrations of nonvolatile beta in water at locations 5, 6, and 7 occurred during the week ending March 31, while the maximum concentration at location 8 occurred in a sample collected on June 1. In each case, the high concentrations resulted from releases of large amounts of Np-239 to Plant streams (Four Mile Creek in March and Steel Creek in June).

Calculations based on river flow rates and concentrations of non-volatile beta in river water indicated the flow of approximately 72 curies past location 1A and 93 curies past location 10, during the six-month period.

Results of analyses of water samples for specific isotopes are summarized in the following table.

Radioactivity in Water

	Redicated Vivio III Water											
	T	ritiu	m,	Radi	ostro	ntium,	Radiocesium,					
	$1 \times$	10-12	c/ml	$1 \times$	10 - 15	c/ml	$1 \times$	10 - 15	c/ml			
			Prev			Prev			Prev			
Location	Max	Avg	Avg	$\frac{\text{Max}}{}$	$\frac{Avg}{}$	Avg	Max	Avg	Avg			
9	-	-	-	16	4	9	9	4	8			
10	44	14	10	9	4	9	7	3	8			
11	42	10	9	16	5	9	5	3	6			

Tritium concentrations observed at location 10 indicated a flow of approximately 42,000 curies past that location during the six-month period.

Radioactivity in Plant Drinking Water

Samples of drinking water were collected monthly from operating areas and quarterly from other domestic water systems. Analyses of 91 samples are summarized in the following table.

		Rad	dioacti	vity in	Wate	r
	1 🗸	Alpha 10 ⁻³ c	a, l/m/ml	Nonvo	lati <u>l</u> e 10 ⁻¹⁵	e Beta, c/ml
	<u> </u>	10 (Prev		10	Prev
Location	Max	Avg	Avg	Max	Avg	Avg
Barricade 2* H Area TC-1* F Area Barricade 4*	20 15 14 12 9	17 9 9 8 6	23 15 11 13 6	22 28 21 22 7	18 16 9 13 7	18 22 14 23 8
Barricade 1* 300/700 Area 400 Area P Area Pump House 2*	4 7 5 3 3	3 2 2 2	3 3 2 1 1	8 13 14 7 10	8 9 9 7 9	8 9 7 7
TNX L Area Classification Yards C Area K Area	2 1 2 1 1	2 1 1 1	2 1 2 1 1	14 19 13 12 11	9 11 9 9	9 8 8 8 9
R Area Central Shops* Pump House 1* Barricade 3* Barricade 5* Par Pond - Pump House	1 1 1 1	1 1 1 1	1 1 1 1 1 1 -	10 8 7 7 7 7	7 7 7 7 7	9 7 7 7 7

^{*} Quarterly samples.

Analyses of 88 of the samples in the preceding table showed no detectable tritium concentrations.

Radioactivity in Public Water Supplies

Samples of public drinking water were collected monthly from the 14 surrounding towns shown in figure 3. Analyses of 98 samples collected during the report period are summarized in the following table.

Alpha, Nonvolatile Be 1×10^{-3} d/m/ml 1×10^{-15} c/m	,
	i
Prev	
Location Max Avg Avg Max Avg Avg	
Jackson 11 9 8 13 9 13 Aiken 10 8 4 16 9	3 7
Bath 5 3 5 10 8	Э
Langley 4 3 3 44 17	9
-	3
	3 3
Sardis 1 1 1 16 9	3
Allendale 1 1 1 11 8	3 7 3

Bomb fallout caused increased concentrations of nonvolatile beta activity at all locations which secure water from streams or open reservoirs. These include Aiken, Langley, North Augusta, Clearwater, Waynesboro, and Augusta.

Radioactivity in Ground Water

Ground water was monitored by analyses of water samples collected from drilled, cased wells near F and H Areas (ZW and Z wells) and at the burial ground. Locations of the wells are shown in figures 7 and 8. By "Tri-Carb" analysis, tritium was detected in all groups of wells.

ZW WELLS, F AND H AREAS

Analyses of 58 samples are summarized in the following table.

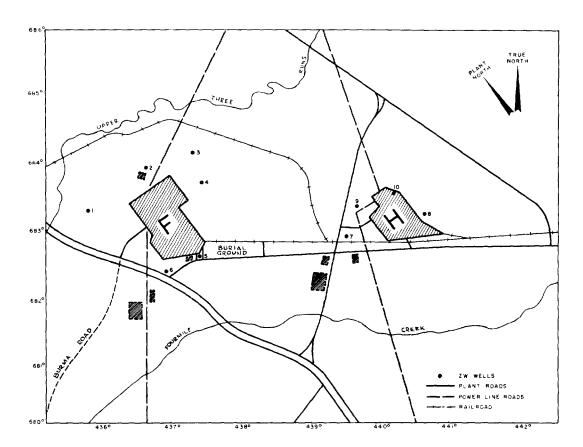


Figure 7. ZW Wells, F and H Areas

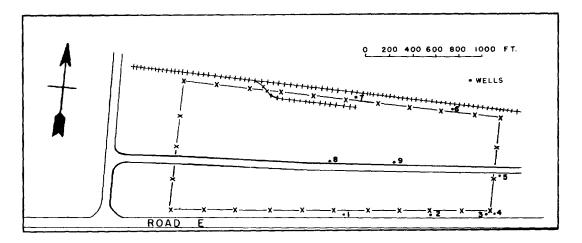


Figure 8. Burial Ground Wells

		Radioactivity in Water						
			Alph	a, ,	Nonvol	atile	Beta,	
		<u>1 × </u>	10 ⁻³ (d/m/ml	1×1	.0-15	c/ml	
	Depth to			Prev			Prev	
Location	Water, ft	Max	<u>Avg</u>	Avg	Max	$\underline{\text{Avg}}$	Avg	
1	84.0 - 86.6	2	1	2	12	9	10	
2	83.2 - 84.5	2	2	1	15	10	20	
3	59.2 - 60.5	3	2	3	10	8	9	
4	33.7 - 36.0	3	3	4	34	12	14	
5	49.1 - 50.5	3	2	2	12	8	15	
6	49.1 - 50.5	3	2	3	13	9	10	
7	5.1 - 9.5	2	1	1	25	12	8	
8	4.4 - 4.9	2	1	2	14	10	13	
9	35.3 - 39.5	2	1	2	8	8	11	
10	49.9 - 53.2	2	2	2	16	9	9	

BURIAL GROUND WELLS

Analyses of 63 samples are summarized in the following table.

	Radioactivity in Water							
	Alpha,	1 ×	10 ⁻³ d/m/ml	Nonvolati.	le Beta,	1×10^{-15} c/ml		
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg		
1	3	1	1	15	11	11		
2	3	2	1	39	14	11		
3	1	1	1	14	8	13		
4	3	2	2	20	10	16		
5	2	1	1	31	14	10		
6	1	1	1	17	11	8		
7	1	1	1	16	9	9		
8	3	2	2	26	13	14		
9	2	1	2	13	10	15		

Radioactivity in Seepage Basins

100 AREAS

Alpha activity discharged to the 100-Area seepage basins was negligible. Results of analyses of nonvolatile beta discharged to the basins are shown in the following table.

		Non	volatile	Beta	Discha	rged
		to	Seepage	Basi	ns, cur	ies
	Area →	R	Р	L	K	C
Total		32	22	-	3	84
Previous	Total	26	0.08	-	-	-

 ${\tt RAREA}.$ The R-Area seepage basins and monitoring wells are shown in figure 9.

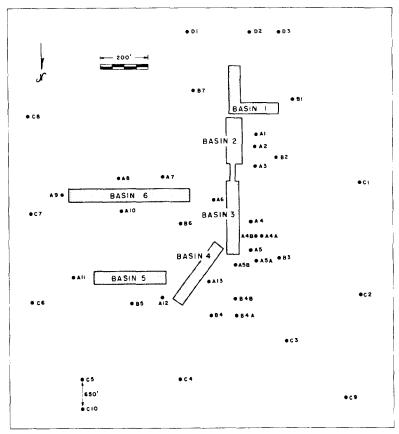


Figure 9. 100-R Seepage Basins and Monitoring Wells

Water was pumped from the emergency basin to the seepage basin system intermittently during the report period to prevent leakage from the emergency basin to the disassembly basin. Of the 32 curies non-volatile beta released to the basins, 26 curies of Cs^{134} , and $\mathrm{Sr-Y}^{90}$ were pumped to the basins during June.

Nonvolatile beta concentration in basin water is shown in the following table.

	Nonvola	tile Beta	in Water	, 1 × 10	9 c/ml
	Basin 2	Basin 3	Basin 4	Basin 5	Basin 6
Average	2.7	1.3	1.4	1.0	0.4*
Previous Average	3.2	3.4	3.2	1.0	1.0

^{*} No samples taken during May and June because water level was too low.

Radiostrontium concentration in seepage basins is shown in the following table.

	Radiostron	tium in W	ater, 1 ×	10 ⁻⁹ c/ml
	Basin 2	Basin 3	Basin 4	Basin 5
Average	1.3	0.8	0.6	0.4
Previous Average	1.8	2.5	2.1	0.6

Greater than 90% of the total radioactivity in the basins was $Sr-Y^{90}$.

The maximum nonvolatile beta concentration observed in the analysis of 275 water samples collected from wells near the seepage basins was 81×10^{-12} c/ml in well A-5, located 50 feet from Basin 3. Seepage was detected as far as 90 feet from the basins. The highest concentration at this distance was 3.1×10^{-12} c/ml in a sample collected from well A-11 which is adjacent to Basin 5.

PAREA. Releases of radioactivity to the P-Area seepage basins resulted from the handling and transfer of Chalk River fuel elements. Specific analyses of liquid from this cask indicated that approximately 80% of the activity released to the basin was Cs-137; the remainder was $Sr-Y^{90}$.

 κ AND C AREAS. Releases of radioactivity to the seepage basins in K and C Areas were associated with fuel element failures. Analyses of waste discharged to the basins indicated that 80 to 90% of the activity was Np-239.

700 AREA

Waste discharged to the 700-Area seepage basins during the report period was approximately 9 mc alpha and 20 mc nonvolatile beta in 800,000 gallons of water.

Analyses of 6 water samples collected from Basin 1 are summarized in the following table.

Al	pha,	d/m/ml	Nonvolatile	Beta,	1×10^{-12} c/ml
Max	Avg	Prev Avg	Max	Avg	Prev Avg
12.9	1.6	4.7	6.5	3.7	5.0

TNX

TNX and CMX discharge waste to a seepage basin which overflows to the Savannah River swamp. Results of analyses of 25 water samples collected from the basin are summarized in the following table.

A	lpha,	d/m/ml	Nonvolatile	e Beta,	1×10^{-12} c/ml
Max	Avg	Prev Avg	Max	Avg	Prev Avg
20	10	21	20	9	50

200 AREAS

The F and H seepage basins and monitoring well systems are shown in figure 10.

FAREA. During the report period, the average liquid input to the basin system was 4.9×10^4 gal/day of waste and 2.1×10^4 gal/day of rain. The average seepage and evaporation rate was 3.9×10^4 gal/day.

Waste released to the system is shown in the following table.

Radioactivity Released* in 8.9×10^6 Gallons of Water

1100	.100001	TO TOTOTOGO	III 0.0 / IO	GGETOIL	01 114001
	Alpha	Emitters, mc		Beta	Emitters, c
	Total	Prev Release		Total	Prev Release
Uranium	344	124	Ru ¹⁰³ ,108	20	6.2
Pu-239	101	156	Sr ⁸⁹ ,90	0.6	2.4
	-	-	Zr-Nb ⁹⁵	7.4	2.6
	-	-	Rare Earths	4.8	7.9
	-	-	Cs - 137	0.4	0.5
			I-131	5.0	0.7
Total -	→ 445	280		38.2	20.3

* In addition 1700 curies of tritium were discharged to the basins.

Results of analyses of 4l samples collected from the basins during the report period are summarized in the following table. The effects of increased releases to the seepage basins were not observed in all basins due to changes in sample locations.

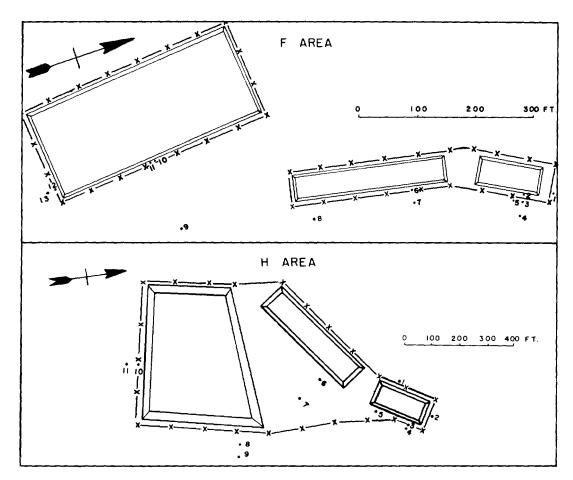


Figure 10. Seepage-Basin Monitoring Wells in F and H Areas

Radioactivity in Water

	Alı	pha, d/	m/ml		Latile 10 - 12 (Beta, c/ml	Ra 1 ×	dioio 10 ⁻¹²	dine, c/ml
Basin			Prev			Prev			Prev
No.	Max	Avg	Avg	Max	Avg	Avg	Max	<u>Avg</u>	Avg
1	127	3 3	32	1320	572	1300	240	82	-
2	33	25	20	740	510	550	13	8	-
3	12	8.5	15	510	380	200	6	4	_

HAREA. During the report period, the average liquid input to the basin system was 4.0×10^4 gal/day of waste and 1.4×10^4 gal/day of rain. The average seepage and evaporation rate was 3.9×10^4 gal/day.

Waste released to the system is shown in the table below.

Radioactivity Released* in 7.3×10^6 Gallons of Water

TUULL		of refeabear i	11 1 0 // 10	GGTTOITE	OI MADEI
	Alpha	Emitters, mc		Beta	Emitters, c
	Total	Prev Release		Total	Prev Release
Uranium	85	27	Ru ¹⁰³ ,106	60	11.1
Pu-239	104	45	Sr ^{89,90}	0.1	0.1
	-	-	Zr-Nb ⁹⁵	2.8	19.3
	-	-	Rare Earths	1.6	0.7
	-	-	Cs-137	0.3	0.2
		-	I-131	_37	<u>13</u>
Total →	189	72		101.8	44.4

* In addition, 1500 curies of tritium were discharged to the basins.

Analyses of 57 water samples collected from the basins during the report period are summarized below. The effects of increased releases to the seepage basins were not observed in all basins due to changes in sample locations.

Podi.	oget:	iara tar	in	Water
DOLU I	UCLU U	I V I. U V	1.11	Marcol

	Alph	a, d/m	/ml	Nonvol 1 × 1		Beta, c/ml	Ra 1 ×	Radioiodine, 1 × 10 ⁻¹² c/ml		
Basin			Prev			Prev			Prev	
No.	<u>Max</u>	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg	
1	27	11	11	3500	880	1000	580	175	210	
2	6.3	4.2	3.0	610	440	140	140	54	13	
3	2.5	2.0	1.9	160	120	42	40	13	3	

MONITORING WELLS, FAREA. Analyses of 75 samples are summarized in the following table.

			Radioactivity in Water							
		Distance		pha,	l/m/m1					
Well	Depth to	from			Prev			× 10 ⁻¹⁵ c/ml		
No.	Water, ft	Basin, ft	Max	Avg	Avg	Max	Avg	Prev Avg		
1	22.0 - 23.3	34	6 2 0	200	150	140,000	62,000	44,000		
2	65.4 - 66.4	5	12	6	9	500	360	480		
3	64.0 - 65.3	29	3	2	2	20	17	25		
4	64.3 - 66.0	73	4	3	10	81	29	65		
5	13.7 - 16.8	24	2	1	Dry	5,800	1,300	Dry		
6	7.2 - 11.1	6	2300	400	34	130,000	29,000	12,000		
7	9.1 - 12.5	46	200	52	Dry	44,000	13,000	Dry		
8	64.1 - 66.1	63	3	2	2	18	13	14		
9	56.9 - 59.0	150	2	1	2	19	13	13		
10	5.6 - 7.5	9	170	59	580	180,000	89,000	31,000		
11	65.9 - 67.2	9	2	1	5	400	110	39		
12	9.3 - 11.2	2 9	71	30	38	170,000	74,000	21,000		
13	11.2 - 13.4	58	2 6	14	11	320,000	71,000	15,000		

A sharp drop in the pH of the basin water occurred during April. A correspondingly sharp rise in nonvolatile beta activity in ground water followed.

MONITORING WELLS, HAREA. Analyses of 166 samples are summarized in the following table.

			Radioactivity in Water								
			Alpha,			Nonvolatile Beta,					
		Distance	<u>1 ×</u>	10 0	d/m/ml	1 ×	10-15	c/ml	1 ×	10-15	c/ml
Well	Depth to	from			Prev			Prev			Prev
No.	Water, ft	Basin, ft	Max	Avg	Avg	Max	Avg	Avg	Max	Avg	Avg
1	22.6 - 26.1	24	48	24	58	1700	1200	2500	5 50	200	57
2	21.4 - 25.1	2 5	2	1	2	51	2 6	14			
3	18.6 - 22.0	15	1	1	1	480	280	49			
4	18.3 - 21.6	45	3	2	1	41	28	20			
5	20.5 - 23.7	13	1	1	1	1200	650	700	2700	1100	380
6	22.8 - 26.3	6	1	1	1	43	24	49			
7	21.8 - 24.4	66	2	1	1	27	15	18			
8	18.8 - 20.5	18	2	1	1	69	47	21			
9	13.9 - 17.0	78	2	1	1	27	15	16			
10	20.7 - 22.4	19	2	1	1	120	3 6	36			
11	13.0 - 15.1	79	1	1	1	320	200	130			
A-37	-	-	-	-	-	1200	950	-	-	-	-
A - 38	-		-	-	-	2200	1500	-	-	-	-
A-39	-	-	-	-	-	1600	1300	-	-	-	-
A-40	-	-	-	-	-	1200	930	-	-	-	-
A-41	-	-	-	-	-	500	240	-	-	-	-

Wells A-37 through A-41 are located about $12\frac{1}{2}$ feet apart, a few feet uphill from a swamp bordering the H-Area effluent, and approximately 500 feet east of the seepage basins. These five test wells were installed in the zone of the most rapid movement of seepage basin water into the swamp, determined by using tritium present in the basin as a tracer. Tritium was detected in water from all of these wells. The average concentration from analyses of 90 samples was 2.2×10^{-8} c/ml with a maximum of 4.5×10^{-8} c/ml. Gamma pulse height analyses and specific chemical analyses of 16 water samples collected from February 19 to March 11 indicated that practically all of the nonvolatile beta activity could be accounted for by isotopes of strontium and yttrium. Alpha activity was negligible.

Radioactivity in Biological Specimens

TERRESTRIAL AND AVIAN SPECIMENS

Five terrestrial and three avian specimens including 3 turtles, 1 rabbit, 1 squirrel, 2 quail and 1 duck were collected at random from the Plant site. (Fifty ducks collected from Par Pond are reported in the aquatic section.) Radioiodine concentrations in the thyroids and nonvolatile beta concentrations in the bones and flesh were less than 10×10^{-12} c/g.

AQUATIC SPECIMENS

A total of 663 aquatic specimens including 607 fish, 50 ducks, 3 turtles, 2 clams, and 1 frog were collected and radioanalyzed. The turtles, clams and frog were collected from Lower Three Runs and all contained radiostrontium in the bones and radiocesium in the flesh. Par Pond, fed by R-Area effluent which discharges to Steel Creek and Lower Three Runs, was the main contributor of long-lived radioisotopes to Plant streams; therefore, primary emphasis was placed on the collection of samples from this system. Because of high water temperatures fish were collected at only one location in both Steel Creek and Four Mile Creek; none were collected from Pen Branch.

PAR POND. Compared to the previous report period, nonvolatile beta in the bones of Par Pond fish decreased 20% while the concentrations in flesh increased 25%. The main isotopes in the bones were Sr-89 and Sr- Y^{90} , while the main isotopes in the flesh were Cs-134, Cs-137 and Zn-65.

Specific radiochemical analyses showed that the bones and flesh of Par Pond fish concentrated the radiostrontium and radiocesium from the water by factors of 10^4 and 10^3 , respectively. Nonvolatile beta found in fish from this location for the past two report periods are shown in the following table.

	Nonv	olati	le Beta	in	Fish,	1 ×	10 ⁻¹² c/g	
		Во	ne	Flesh				
Samples	Max	Avg	Prev Av	g	Max	Avg	Prev Avg	
145	865	225	280		165	50	40	

Sampling of migratory waterfowl at Par Pond began on January 6 and continued until the ducks left the pond in April. During this period 50 specimens were collected including 43 ring-necks, 2 mallards, 2 gadwalls, 2 grebes and 1 coot. The main radioisotopes present in the bones and flesh were $\mathrm{Sr^{89,90}}$ and $\mathrm{Cs^{134,137}}$; Zn-65 was the secondary isotope in the fleshy tissues. Nonvolatile beta found in the bones and flesh of each species during this period is shown in the following table.

	Nonvolatile	Beta i	n Ducks,	1 × 10 ⁻¹²	c/g
	Boı			esh.	
Species	Max	Avg	Max	Avg	
Grebe	35	25	80	50	
Ring-Neck	35	20	80	30	
Coot	-	25	•••	45	
Mallard	15	10	20	15	
Gadwall	20	15	30	20	

LOWER THREE RUNS. There were no changes in the concentrations of radioactivity in Lower Three Runs fish which were evident throughout the stream; changes were noted but were confined to segments of the stream. At upstream locations nonvolatile beta in the bones generally decreased while flesh concentrations remained essentially the same. At downstream locations the nonvolatile beta concentration increased in both bones and flesh. The bones of Lower Three Runs fish concentrated the radiostrontium from the water by factors that ranged from 9×10^3 to 3×10^4 ; the flesh concentration factor was 3×10^4 . A fish collected in April at Highway 28, 14 miles below Par Pond dam, contained 600×10^{-12} c/g of nonvolatile beta in the flesh, the highest flesh concentration found this far downstream to date. Concentrations of nonvolatile beta found in these fish are summarized in the following table.

Location,	Nonvo	latil	e Beta in	Fish,	1 ×	10 ⁻¹² c/g	
Miles Downstream from		Во	ne	Flesh			
Par Pond Dam	Max	Avg	Prev Avg	Max	Avg	Prev Avg	
0.2	940	440	805	495	115	100	
1	3080	555	940	985	140	120	
6	835	450	550	440	135	160	
11	895	255	205	515	80	40	
14	370	160	145	615	65	25	

STEEL CREEK. Radioactivity in Steel Creek fish was higher than that reported during the previous six-month period. Slight increases in the nonvolatile beta concentration in fish bones occurred as a result of the discharge of Par Pond water to Steel Creek and further increases occurred due to fuel element failures in L and P Areas. Barely detectable concentrations of nonvolatile beta were also found in fish flesh. The main isotope present in the bones was $Sr^{89,90}$; $Cs^{134,137}$ and Zn-65 were the main isotopes found in the flesh. The bones and flesh of Steel Creek fish concentrated the radiostrontium and radiocesium from the water by factors of 5×10^3 and 7×10^2 , respectively. A summary of the nonvolatile beta concentrations in Steel Creek fish is shown in the following table.

Nonv	olati	le Beta	in Fish	, 1 ×	10-12	c/g
	Во	ne		F	lesh	
Max	Avg	Prev Av	g Max	Avg	Prev	Avg
165	50	30	20	10	<	10

FOUR MILE CREEK. Fish collected 6 miles downstream from C Area during the beginning of the report period contained low level concentrations of nonvolatile beta in the bones and barely detectable concentrations in the flesh. As a result of fuel element failures in C Area in March, the nonvolatile beta in the bones of fish collected in April and May increased by a factor of 2 with no significant changes in the flesh concentrations. The main radioisotopes present in the bones and flesh were Sr^{89,80} and Zn-65, respectively. Gamma pulse height analyses of several fish collected after the failures occurred revealed the presence of the short-lived isotope Np-239 in the intestinal tracts. No fish were collected from this stream last period; nonvolatile beta found in fish collected this period are shown in the following table.

Nonv	rolatile	Beta	in	Fish,	1	\times 10	- 12	c/g
		one			le			
	Max	Avg		Max		Avg		
	370	65		15		10		

SAVANNAH RIVER. A total of 140 fish were collected from the Savannah River this period; only two contained significant concentrations of radioactivity in the flesh. The flesh of single fish collected near the mouth of Lower Three Runs and at Stokes Bluff had nonvolatile beta concentrations of $35\times 10^{-12}~\rm c/g$ and $25\times 10^{-12}~\rm c/g$, respectively. Nonvolatile beta in the bones of fish collected near the mouth of Four Mile Creek increased but decreased near the mouth of Lower Three Runs. The main radioisotopes present in the bone and flesh were $\rm Sr^{89,80}$ and $\rm Cs^{134,137}$, respectively. Nonvolatile beta found in these fish for the past two periods are shown in the following table.

		Nonv	olati	le Beta in	Fish,	1 ×	10 ⁻¹² c/g		
	No. of			ne		Flesh			
Location	Samples	Max	Avg	Prev Avg	Max	Avg	Prev Avg		
Upper Three Runs	33	15	10	10	10	5	4		
Four Mile Creek	16	115	25	10	5	4	4		
Steel Creek	22	50	15	15	10	5	4		
Lower Three Runs	11	110	25	45	35	7	3		
Highway 301	8	30	15	-	10	4	_		
Stokes Bluff	52	35	15	10	25	6	4.		