642342

DUPONT ST HEM

DPSP 62-25-2 (DEL

RECORD COPY

-820 0004**24**

DELETED VERSION

HEALTH PLIMINGS REGIONAL MONITORING

RECORDS ADMINISTRATION

R0139474

Semionnual Report, January through June 1981

February 1962

BEST AVAILABLE COPY

BLAUSIFIDATION EAUGERSD

BY AUTHOLOGY OF

1-25-23

HAME TITLE BATE

Report Declassified with Deletions on Pages 5, 50, 52, \$ 62.

WORKS TECHNICAL DEPARTMENT

E. I. de PONT de NEMOURS & COMPANY

EXPLOSIVES DEPARTMENT - ATOMIC ENERGY DIVISION

SAVANNAIL RIVER PLANT

E. I. de CONT de NEMOURS À COMPANY
EXPLOSIVES DEPARTMENT • ATOMIC ENERGY DIVISION
SAVANNAU DIVER DU ANT

DELETED VERSION

HEALTH PHYSICS REGIONAL MONITORING

Semiannual Report,

January through June 1961

Written and Approved - December 1961 Issued - February 1962

E. I. du Pont de Nemours and Company Explosives Department - Atomic Energy Division Savannah River Plant

Contents

Int	roduction			•	•		•	1
	Data Reporting			•		•	•	1
	Sensitivity and Standard Deviation of							
	Laboratory Analyses			•	•	٠	•	1.
Sun	mary	•	•			•		3
Rad	lioactivity Releases and Environmental	Effe	ects		•	•		5
	Atmosphere			•				5
	Gamma Radiation Levels							8
	Rainwater				•			8
	Vegetation							9
	Milk		•				•	. 9
	Radioiodine Levels During June 1961			•	•		•	12
	Plant Drinking Water			•	•			21
	Public Water Supplies						•	23
	Streams and the Savannah River				•		•	23
	Seepage Basins							27
	Ground Water		•	•			•	28
	241-H Tank Farm							33
	Biological Specimens						•	35
Che	mical Quality of Water ,		•					44
	Lower Three Runs and Savannah River		•	•			•	44
	Lower Three Runs and Wool Scouring Effi	luen	t.					45
Δης	endix							19

Abstract

Radioactivity in the Plant environs was measured during the six-month period ending June 30, 1961. Releases of alpha emitters, non-volatile beta emitters, and tritium to effluent streams increased, while such releases to the atmosphere decreased. Radioiodine released to the atmosphere - the highest six-month total observed since 1957 - was attributed almost entirely to that released from the Building 291-F stack.

Introduction

Under a program established by the Du Pont Company in June 1951, the Savannah River Plant site and surrounding region are systematically monitored for radioactivity. The environmental monitoring program accumulates information that is useful both as a measure of the effectiveness of Plant controls and as an authoritative record of environmental conditions. This report, covering the period from January through June 1961, is one of a series of reports relating to the environmental monitoring program.

Data Reporting

Survey data were averaged for the six-month period and compared with the previous six-month averages ("Health Physics Regional Monitoring Semiannual Report," DPSP 61-25-4, October 1961). In reporting data, "Avg" or "Total" refers to the average or total for this six-month report period, while "Prev Avg" or "Prev Total" refers to the average or total for the preceding six-month period. Unless otherwise specified, "Max" refers to the greatest concentration observed in a single sample collected during the report period.

Sensitivity and Standard Deviation of Laboratory Analyses

The sensitivity of laboratory analyses refers to the minimum amount of radioactivity that can be detected by the radiochemical analytical techniques in use. It is based on statistical counting error (90% confidence level) and is influenced by sample size, counter efficiency, and counter background. No self absorption corrections have been applied to the alpha and nonvolatile beta results.

The standard deviations, calculated from spike recovery values, are applicable to the six-month averages of data in this report.

Where samples were analyzed by gamma spectrometry, the lower level of detection of a given isotope varied with: (1) background of each individual channel grouping, and (2) geometry and volume of sample

SPA

analyzed. For this reason no average sensitivities are given. Furthermore, using gamma spectrometry, it is not practical to differentiate between nuclides emitting gamma rays of nearly the same energy. Thus, data are reported as Rulo3,106, Cel41,144, Fe⁵⁹/Co⁶⁰, etc; and such notation does not mean that both isotopes were necessarily present. The differentiation between numbers of most of such groupings can be made, if required, by: (1) approximate age estimates of the radioactive material at the time of release, (2) chemical separations, and (3) decay and beta absorption studies.

Sample	Sensitivity	Standard Deviation, %	Spike_Value
Water	$0.19 \pm 0.08 \times 10^{-15} \text{ c/ml}$	8.7	45×10^{-15} c/ml
Mud	$0.19 \pm 0.08 \times 10^{-12} \text{ c/g}$	-	-
Vegetation	$0.10 \pm 0.04 \times 10^{-12}$ c/g	-	•
Air	$0.03 \pm 0.01 \times 10^{-14} \mu c/cc$	-	-
Water	4.1 i 2.7 \times 10 ⁻¹⁵ c/ml	•	-
Mud	$4.1 \pm 2.7 \times 10^{-12} \text{ c/g}$	-	-
Vegetation	$2.1 \pm 1.3 \times 10^{-12} \text{ c/g}$	_ •	-
Biological			
Specimens	$2.2 \pm 2 \times 10^{-12} \text{ c/s*}$	-	-
Air	$0.69 \pm 0.45 \times 10^{-14} \mu c/ee$	-	-
Water	0.27 ± 0.12 × 10 ⁻¹⁵ c/ml	15	45 × 10 ⁻¹⁵ c/ml
Mud	$0.28 \pm 0.13 \times 10^{-12} \text{ c/g}$	17	45 × 10 ⁻¹² c/g
Vegetation	$0.035 \pm 0.18 \times 10^{-12} \text{ e/g}$	22	$4.5 \times 10^{-12} \text{ c/g}$
Water	7.8 \pm 5.1 \times 10 ⁻¹⁵ c/ml	9.3	$300 \times 10^{-15} \text{ c/ml}$
Vegetation	$0.67 \pm 0.43 \times 10^{-12} \text{ c/g}$	17	$20 \times 10^{-12} \text{ c/g}$
Air	1.8 \pm 1.2 \times 10 ⁻¹⁴ $\mu c/cc$	-	-
Milk	9.8 ± 1.5 × 10 ⁻¹⁵ μc/cc	11	$3000 \times 10^{-15} \text{ c/ml}$
Water	4×10^{-12} c/ml	5	2500 x 10 ⁻¹² c/ml
Air	0.04 × 10 ^{-θ} μc/cc**	-	-
Water	$4.3 \pm 2.8 \times 10^{-15} \text{ c/ml}$	14	$600 \times 10^{-15} \text{ c/ml}$
Water	$6.5 \pm 4.2 \times 10^{-15}$ c/ml	16	230 × 10 ⁻¹⁵ c/ml
Water	0.10 ± 0.06 × 10 ⁻¹⁵ c/ml	27	230 × 10 ⁻¹⁵ c/ml
Milk	$1.58 \pm 0.33 \times 10^{-15}$ c/ml	11	47 × 10 ⁻¹⁵ c/ml
	Water Mud Vegetation Air Water Mud Vegetation Biological Specimens Air Water Mud Vegetation Water Mud Vegetation Water Mud Vegetation Water Vegetation Air Milk Water Air Water Water Water	Water 0.19 ± 0.08 × 10 ⁻¹⁵ c/ml Mud 0.19 ± 0.08 × 10 ⁻¹² c/g Vegetation 0.10 ± 0.04 × 10 ⁻¹² c/g Air 0.03 ± 0.01 × 10 ⁻¹⁴ μc/cc Water 4.1 i 2.7 × 10 ⁻¹⁵ c/ml Mud 4.1 ± 2.7 × 10 ⁻¹² c/g Vegetation 2.1 ± 1.3 × 10 ⁻¹² c/g Biological Specimens 2.2 ± 2 × 10 ⁻¹² c/g* Air 0.69 ± 0.45 × 10 ⁻¹⁴ μc/cc Water 0.27 ± 0.12 × 10 ⁻¹⁵ c/ml Mud 0.28 ± 0.13 × 10 ⁻¹² c/g Vegetation 0.035 ± 0.18 × 10 ⁻¹² c/g Water 7.8 ± 5.1 × 10 ⁻¹⁵ c/ml Vegetation 0.67 ± 0.43 × 10 ⁻¹² c/g Air 1.8 ± 1.2 × 10 ⁻¹⁴ μc/cc Milk 9.8 ± 1.5 × 10 ⁻¹⁵ μc/cc Water 4 × 10 ⁻¹² c/ml Air 0.04 × 10 ⁻⁹ μc/cc** Water 4.3 ± 2.8 × 10 ⁻¹⁵ c/ml Water 6.5 ± 4.2 × 10 ⁻¹⁵ c/ml Water 0.10 ± 0.06 × 10 ⁻¹⁵ c/ml	Sample Sensitivity Deviation, % Water 0.19 ± 0.08 × 10 ⁻¹⁵ c/ml 8.7 Mud 0.19 ± 0.08 × 10 ⁻¹² c/g - Vegetation 0.10 ± 0.04 × 10 ⁻¹² c/g - Air 0.03 ± 0.01 × 10 ⁻¹⁴ μc/cc - Water 4.1 ± 2.7 × 10 ⁻¹² c/g - Wegetation 2.1 ± 1.3 × 10 ⁻¹² c/g - Vegetation 2.2 ± 2 × 10 ⁻¹² c/g* - Air 0.69 ± 0.45 × 10 ⁻¹² c/g* - Air 0.69 ± 0.45 × 10 ⁻¹² c/g* 15 Mud 0.28 ± 0.13 × 10 ⁻¹² c/g 17 Vegetation 0.035 ± 0.18 × 10 ⁻¹² c/g 22 Water 7.8 ± 5.1 × 10 ⁻¹⁵ c/ml 9.3 Vegetation 0.67 ± 0.43 × 10 ⁻¹² c/g 17 Air 1.8 ± 1.2 × 10 ⁻¹⁴ μc/cc - Milk 9.8 ± 1.5 × 10 ⁻¹⁵ μc/cc 11 Water 4 × 10 ⁻¹² c/ml 5 Air 0.04 × 10 ⁻⁹ μc/cc** - Water 4.3 ± 2.8 × 10 ⁻¹⁵ c/ml 16 Water 6.5 ± 4.2 × 10 ⁻¹⁵ c

^{*} Approximate average; sample size varied

^{**} Approximate average; varied with absolute humidity.

Summary

The total quantity of radioactive waste released by the Savannah River Plant into the atmosphere, effluent streams, and earthen seepage basins during the bix-month period is shown in the following table.

	Atmosphere	Effluent Stream	Seepage Basins
Alpha, mc	15.6	88	446
Nonvolatile Beta, c	4.0	230	165
Radioiodine, c	160	19	157*
Tritium, kc	412.5	27.4	12.2

* Value reflects radioiodine measured in F-Area basins on 6/14/61.

The radioiodine released to the atmosphere (the highest six-month total observed since 1957) was attributed almost entirely to the Building 291-F stack. The abnormal release occurred mostly during the period May 30 through June 3. Investigation of the source of the large amount of radioiodine in the F-Area canyon process was inconclusive but there is a probability that short-cooled uranium was unintentionally dissolved.

Atmosphere sampling yielded no evidence of Plant released alpha at any location, while filterable beta concentrations were slightly higher at F and H Areas than those at more distant locations. The Plant perimeter average concentration of filterable beta in air $(7 \times 10^{-14} \ \mu\text{c/cc})$ was, however, no higher than concentrations observed at locations approximately 100 miles from the Plant. Atmospheric radioiodine and tritium were detected at locations out to and including the 25-mile radius locations. During the period of increased radioiodine release in June, Plant perimeter samples of air, vegetation and milk contained maximum concentrations of $1.0 \times 10^{-12} \ \mu\text{c/cc}$, $56 \times 10^{-12} \ \text{c/g}$, and $5500 \times 10^{-15} \ \text{c/ml}$, respectively.

The disassembly basin discharges from the reactor areas accounted for practically all of the radioactivity released to effluent streams. Of the beta activity (247 curies, excluding tritium)

Summary

The total quantity of radioactive waste released by the Savannah River Plant into the atmosphere, effluent streams, and earthen seepage basins during the six-month period is shown in the following table.

	Atmosphere	Effluent Stream	Seepage Basins
Alpha, mc	15.6	88	446
Nonvolatile Beta, c	4.0	230	165
Radioiodine, c	160	19	157*
Tritium, kc	412.5	27.4	12.2

* Value reflects radioiodine measured in F-Area basins on 6/14/61.

The radioiodine released to the atmosphere (the highest six-month total observed since 1957) was attributed almost entirely to the Building 291-F stack. The abnormal release occurred mostly during the period May 30 through June 3. Investigation of the source of the large amount of radioiodine in the F-Area canyon process was inconclusive but there is a probability that short-cooled uranium was unintentionally dissolved.

Atmosphere sampling yielded no evidence of Plant released alpha at any location, while filterable beta concentrations were slightly higher at F and H Areas than those at more distant locations. The Plant perimeter average concentration of filterable beta in air $(7 \times 10^{-14} \ \mu\text{c/cc})$ was, however, no higher than concentrations observed at locations approximately 100 miles from the Plant. Atmospheric radioiodine and tritium were detected at locations out to and including the 25-mile radius locations. During the period of increased radioiodine release in June, Plant perimeter samples of air, vegetation and milk contained maximum concentrations of $1.0 \times 10^{-12} \ \mu\text{c/cc}$, $56 \times 10^{-12} \ \text{c/g}$, and $5500 \times 10^{-15} \ \text{c/ml}$, respectively.

The disassembly basin discharges from the reactor areas accounted for practically all of the radioactivity released to effluent streams. Of the beta activity (247 curies, excluding tritium)

released from this source, approximately 36% was due to isotopes having half lives greater than 15 days. Plant released alpha activity had negligible effects on concentrations of alpha activity in stream water and was generally detectable only in the low volume effluents from the 200 Areas, 300 Area, and 700 Area. Concentrations of alpha emitters in river water were no higher at downstream locations than those at the upstream control location. Radioiodine was occasionally detectable in river water at the Highway 301 Crossing (10 miles downstream from the Plant), and the maximum concentration observed at this location was 42 × 10⁻¹⁵ c/ml. Nonvolatile beta and tritium were detectable in the river at the Highway 301 Crossing, and the flow of Plant contributed radioactivity at this location during the six-month period was calculated to be approximately 82 curies of nonvolatile beta and 47,000 curies of tritium.

F-Area releases accounted for approximately 79, 56, and 100% of the alpha, nonvolatile beta and radioiodine activity, respectively, discharged to the seepage basins. Radiostrontium released to the 200-Area basins was detectable in the surrounding ground water at distances up to 450 feet from the basins. All the alpha activity detectable in the ground water was attributed to uranium. As observed in the past, no movement of plutonium into the ground water was detected in either F or H Areas.

Radioactivity was detected in biclogical samples, including terrestrial animals, avian and aquatic specimens. The uptake of radioactivity by Savannah River fish was generally confined to low level concentrations of radiostrontium in the bones. However, at some locations, detectable concentrations of radiocesium and radiozinc were found in the bones and flesh. These isotopes, in higher concentrations, were found in fish in the reactor effluents. Open seepage basins served as a source of radioactivity found in terrestrial animals, while Par Pond was the source of radioactivity in waterfowl.

Radioactivity Releases and Environmental Effects

Atmosphere

301

Releases of alpha emitters, nonvolatile beta emitters, radioiodine, and tritium from individual Plant areas to the atmosphere during the report period are compared to releases during the previous sixmonth period in the following table. The individual isotopes comprising the F and H-Area beta releases are reported in Appendix A, table 1.

Radioactivity Released to the Atmosphere

	Alpha	B, mc	Nonvolat.	ile Beta, mc	Radioiod		Triti	
Area	Total	Prev Total	Total	Prev Total	<u>Total</u>	Prev <u>Total</u>	_Total_	Prev Total
F	14.2	69 •	1006	5441	160	1.1		
H	1.3	1	2923	102	0.05	•		
R	-	<i>-</i>	0.22	0,30	-	-	9,450	17,800
P		· •	0.51	0.21	• ,	→	17,600	24,400
. L	-	-	0.61	0.37	•	-	19,700	17,600
к	-	-	0.64	1.84	-	-	17,200	26,000
C	-	-	0.19	1.00	-	-	22,800	33,300
TNX	-	-	-	~	-	-	1,450	400
773 - A	0.11	0.098	S1.	47	0.33	0.01	2,300	2,000
Total -	→ 15.6	70	3992	5594	160	1.4	412,500	457,500

A substantial increase in the daily rate of release of I-131 from Building 291-F stack occurred on May 29 when 5.5 curies of I-131 were released, compared to 0.2 curie on the previous day. Release rates exceeding 10 curies/day were experienced in F Area, during the period May 30 through June 3, with a maximum daily release of 24 curies on May 30. Investigation of the source of the abnormally large amount of radioiodine in the F-Area canyon process was inconculsive but there is a probability that short-cooled granium was unintentionally dissolved (see Special Incident Report, DPSPU 61-11-21).

ATTORE STATE

Stack released radioactivity from Building 235-F, a special product facility which began operations in February 1961, was very low (0.07 mc nonvolatile beta and 0.5 μc alpha through June). Isotopes identifiable by gamma spectrometry were Fe⁵⁹/Co⁶⁰, Zn-65, Cs-137, Zr-No⁹⁵, and Ce^{141,144}.

Radionuclides identified in the Reactor Area stack releases included ${\rm Ru}^{103,106}$, Cr-51, I-131, Cs-137, Mn-54, and ${\rm Fe}^{59}/{\rm Co}^{60}$.

Samples of air were collected from 20 air monitoring stations shown in figure 1. The radioactive content in air was measured by counting 319 two-inch diameter filters for alpha and beta activity and by radiochemical analysis of 269 two-inch-diameter silver nitrate impregnated filters for radioiodine. Tritium concentrations in air moisture were converted to concentrations in air by use of appropriate humidity values. The concentrations of radioactivity in air are summarized in Apendix B, table 2.

Although Plant contributed filterable beta was detected at the F and H-Area monitoring stations (average concentrations of $13 \times 10^{-14} \, \mu \text{c/cc}$ and $18 \times 10^{-14} \, \mu \text{c/cc}$, respectively), the concentrations at the Plant perimeter $(7 \times 10^{-14} \, \mu \text{c/cc})$ average) were no higher than those at locations 100 miles distant from the Plant. Several weekly samples collected during the latter part of the report period showed concentrations as low as $2 \times 10^{-14} \, \mu c/cc$, the lowest level observed in Plant history. Gamma spectrometry of air filters identified traces of Ce¹⁴¹, 144, Ru¹⁰³, 106, and Cs-137; the previously present Zr-Nb⁹⁵ was no longer identifiable. Routine gamma pulse height analyses of air filters also revealed a 0.48 Mev photopeak not associated with previously observed radionuclides. Identification of the nuclide as naturally occurring Be-7 was made by the Chemistry Methods Group of the Health Physics Section. Previously, the low concentrations of Be-7 were effectively masked by the radioruthenium in fallout from weapons tests. The decrease in fallout and a new gamma spectrometer crystal with its improved resolution allowed the spectrometric detection.

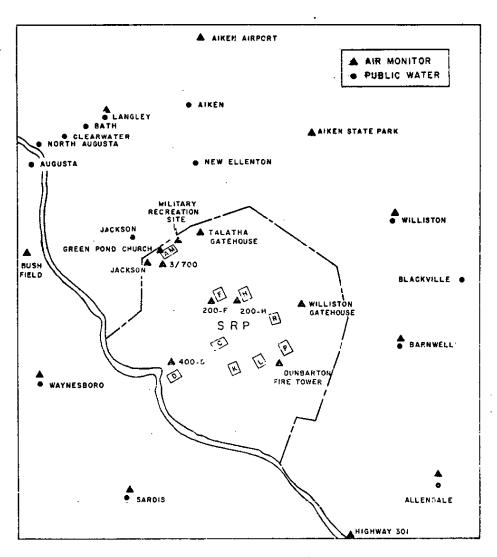


FIGURE 1. CONSTANT AIR MONITORING STATIONS AND PUBLIC WATER SAMPLING LOCATIONS

The increased radioiodine concentrations in air were due to F-Area stack releases (see "Radioiodine Levels During June 1961" in this report).

Gamma Radiation Levels

A summary of 489 readings of environmental gamma radiation, made with Landsverk L-65 pocket chambers and a modified L-60 electrometer, is given in Appendix B, table 1. The average dose rate recorded at the 25-mile radius locations (shown in figure 1) was 0.33 mr/24 hours, as compared to an average of 0.36 mr/24 hours during the previous six-month period. Slightly higher rates were measured during the first half of 1961 in the Separations Areas, the 3/700 Area, and four of the Reactor Areas. The six-month average dose rate at these locations ranged from 0.78 mr/24 hours at H Area to 0.48 mr/24 hours at P Area.

Rainwater

Results of analyses of 420 weekly samples collected continuously at each monitoring station shown in figure 1 are summarized in Appendix B, table 3. Effects of Plant released radioactivity in rainwater generally paralleled those seen in air. Radioactivity deposited on the Plant site, estimated from the analyses of rainwater samples and rainfall measurements at five monitoring stations, is shown in the following table. During weeks in which no rain occurred, nonvolatile beta deposition was estimated from radioactivity collected in an open pan of water located near Building 735-A. Total alpha radioactivity deposited on the Plant in rainwater during the six-month period was 0.93 mc/mile².

	Nonvolatile Beta, mc/mile ²	Radioiodine, mc/mile ²	Tritium, c/mile ²
January	3.6	1.5	1.9
February	6.8	-	2.5
March	2.2		2.7
April	8,6	-	5.3
May	3.4	-	2.6
June	5.5	6.7	2.4
T	Cotal → 30.1	8.2	17.4
Previous T	!otal → 40.4		22.9

Cesium and strontium fallout in rainwater at the F-Area and Green Pond Church monitoring stations were collected by an ion exchange method and analyzed. See the following table for cumulative data for the six-month period.

	Cs ¹³⁷ , mc/mile ²	Sr ^{89,90} , mc/mile ²
F Area	4.5	2.1
Green Pond Church	1.4	1.2
(Plant Perimeter)		•

Vegetation:

Concentration of alpha and nonvolatile beta activity on 168 vegetation samples, collected from locations shown in figures 2 and 5, represent negligible Plant contribution to environmental radioactivity. Analytical results of these samples are shown in Appendix B, table 4. Radioiodine became detectable on vegetation samples during the latter part of the report period as a result of I-131 releases from F Area. Numerous special vegetation samples were collected during this period of increased I-151 release, and are reported in the section, "Radio-iodine Levels During June 1961."

Milk

Samples of milk were collected weekly from Talatha, Snelling, Aiken North Augusta and Langley, S. C. In the 77 samples analyzed for

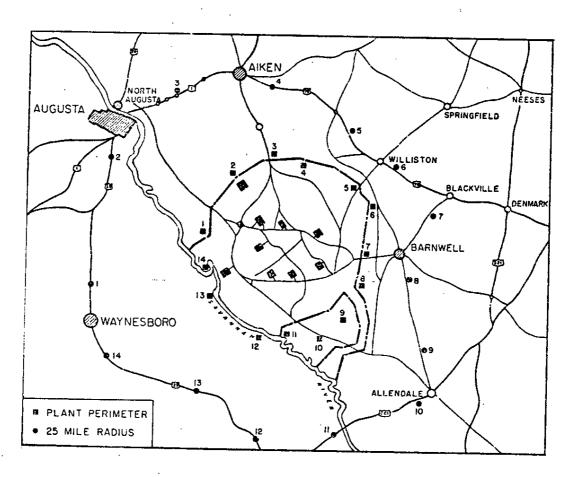


FIGURE 2. VEGETATION SAMPLE LOCATIONS

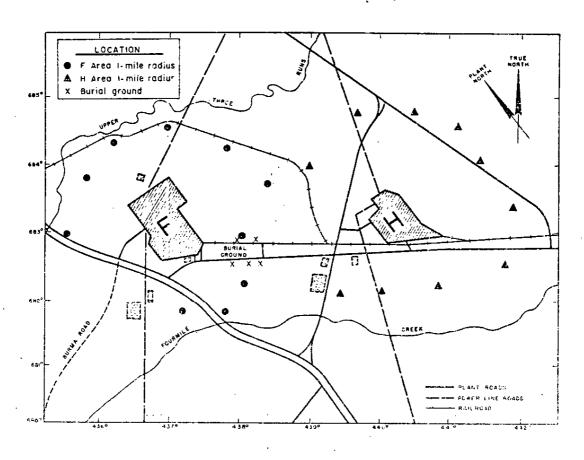


FIGURE 3. VEGETATION SAMPLE LOCATIONS IN F AND H AREAS

CHUDDA

radioiodine, the average concentration was 31×10^{-15} c/ml (maximum of 760×10^{-15} c/ml) as compared with less than 9×10^{-15} c/ml during the previous six-months as shown in Appendix B, table 5. Radioiodine levels in special milk samples collected during the period of increased I-131 release are given in the section, "Radioiodine Levels During June 1961."

Regional milk produced by dairy herds and by family-owned cows was analyzed quarterly for Sr-90 content. The average concentrations shown in Appendix B, table 5, are essentially the same as those observed during the two previous quarters. A maximum concentration of 51 $\mu\mu c/\ell$ was measured in milk collected from a family-owned cow at Snelling. The unusual Snelling result was attributed to fallout Sr-90. Analyses of soil and vegetation of pastureland where the Snelling cow grazed indicated an accumulation of Sr-90 in low lying areas because of poor drainage.

Radioiodine Levels During June 1961

The release of 154 curies of I-131 from Ruilding 291-F stack, most of which was discharged during the period May 30 through June 3, temporarily caused increased concentrations of I-131 in the vicinity of the Plant. A substantial increase in the daily rate of release occurred on May 29 when 5.5 curies of I-131 were released, compared to 0.2 curie on the previous day. Release rates exceeding 10 curies/day were experienced in F Area during the period May 30 through June 3 with a maximum daily release of 24 curies on May 30 (see Special Incident Report. DPSPU 61-11-21).

Meteorological conditions during the release period were such that the pattern of environmental radioiodine deposition extended primarily in a north-easterly direction from the point of release (see figure 4). Atmospheric inversions resulted in poor dispersion conditions and environmental concentrations were generally higher than would be expected from the amount of I-131 released.

The extent of environmental contamination is discussed in the following paragraphs.

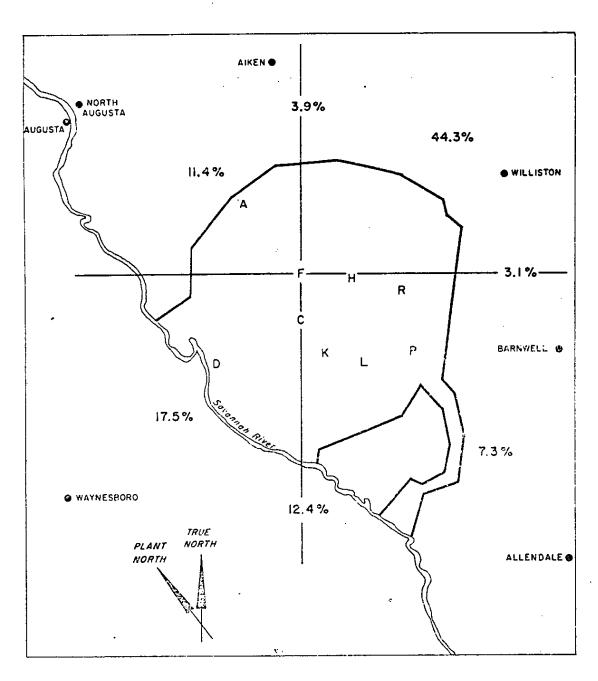


FIGURE 4. DISPERSION OF RADIOICDINE (May 29 Through June 4)

**

AIR

Concentrations of radioiodine in air observed out to the 25-mile radius circle, and projected concentrations (calculated from the amount of I-131 released and local meteorological data) are summarized in figure 5. Since the calculated and observed data compared favorably, it is assumed that the projected data are representative of actual conditions. The maximum concentrations of I-131 in air, as measured at the off and on-Plant monitoring stations, are shown in the following table:

	Week Ending	Radioiodine in Air, 1 × 10 ⁻¹⁴ µc/cc
	On Plant	
F Area H Area A Area Dunbarton Fire Tower D Area TNX	6/7 6/7 6/7 6/7 5/31 5/31	2800 660 79 20 78 180
Pl	Lant Perimeter	
Talatha Gate Williston Gate Jackson, S. C. Green Pond Church Military Recreation Site	6/7 6/7 5/31 5/31 6/7	130 110 28 14 83
55	5-Mile Radius	
Langley, S. C. Aiken Air Port Aiken State Park Williston, S. C. Allendale, S. C. Highway 301 Bridge Sardis, Ga. Waynesboro, Ga. Bush Field, Augusta, Ga.	5/31 5/31 6/7 6/7 6/7 5/31 6/7 6/7 5/31	14 64 10 100 18 20 6 4

The Radioactivity Concentration Guide (RCG) for I-131 in air for chronic exposure of off-Plant population is $10,000 \times 10^{-14}~\mu c/cc$ (based on the recommendation of the International Commission on Radiological Protection). At no location did the I-131 concentration in air exceed the RCG.

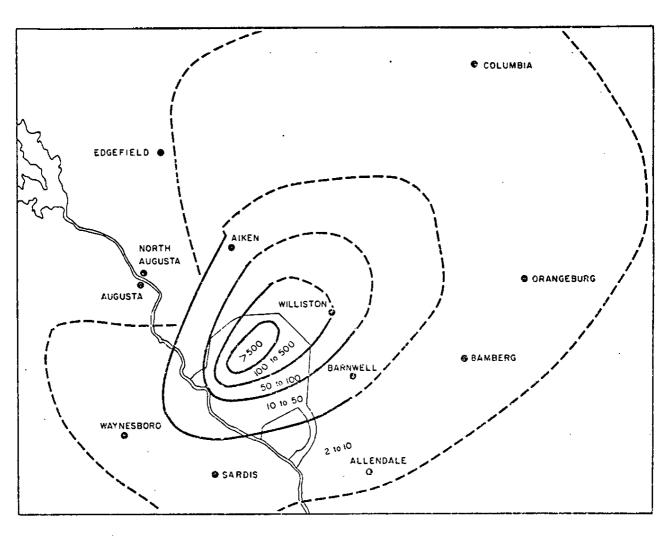


FIGURE 5. ISO-ACTIVITY MAP OF RADIOIODINE IN AIR (Period Ending June 7)

Observed
Theoretical
Multiply all values by 10⁻¹⁴ µc/cc

CONTRACTOR OF

VEGETATION AND FOOD

Special samples of Bermuda grass were collected at the Plant Perimeter and at 25-mile radius locations on June 5, in order to determine the extent of radioiodine deposition. Radioiodine concentrations in grass are shown in figure 6. The maximum public zone concentration of radioiodine in grass of 56 × 10⁻¹² c/g was detected in a sample obtained at the Plant perimeter near the Williston Gate. Activity on vegetation near the F-Area seepage basins was caused by the high I-131 concentrations in air in the vicinity of the basins (see figure 7) and this, in turn, was due to the radioiodine discharged to the seepage basin system (136 curies of I-131 was measured in the basins on June 14). Radioactivity on vegetation decreased with an apparent half life of 5 days compared to the physical half life of 8 days for I-131. This was primarily attributed to dilution of the activity by new vegetative growth. Laboratory tests indicated that little or no iodine was removed from vegetation by rainfall.

MILK

Extensive milk sampling in the vicinity of the Plant started on June 5. A total of 122 milk samples from 48 individual farms and dairies were analyzed. The maximum concentration of I-131 (5500 × 10⁻¹⁵ c/ml) was found in milk obtained from a farm one mile west of New Ellenton, S. C. Concentrations of radioiodine found in milk from the various farms and dairies are shown in figure 8. The distribution of milk samples in the various concentration ranges is shown in the following table.

Concentration Range, 1 × 10 ⁻¹⁵ c/ml	Number of Farms or Dairies Initially in Range
5000 - 6000	1
4000 - 5000	1
3000 - 4000	0
2000 - 3000	1
1000 - 2000	12
800 - 1000	. 2
600 - 800	3
400 - 600	· 5
200 - 400	13
0 - 200	10
	·Total → 48

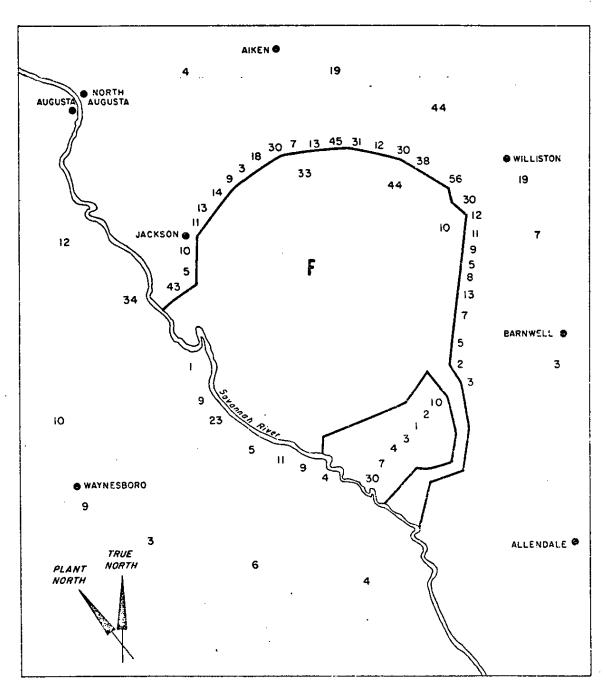


FIGURE 6. RADIOIODINE IN BERMUDA GRASS, 1 X 10^{-12} c/g (Samples Collected on June 5)

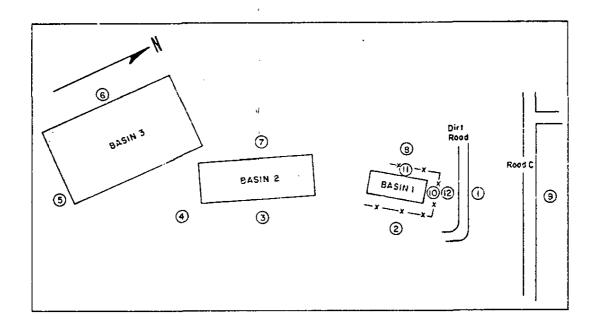


FIGURE 7. RADIOIODINE ON VEGETATION IN F-AREA SEEPAGE BASINS (June 15)

Sample Lacat	ion Rediciodine*
0	38,000
2	30,000
3	7,700
(4)	1,080
(5)	45C
6	1,090
⑦	1,800
®	16,300
9	2,890
(0)	721,000
(t)	450,000
(2)	485,000
* Multiply va	lues by 10 ⁻¹² c/g.

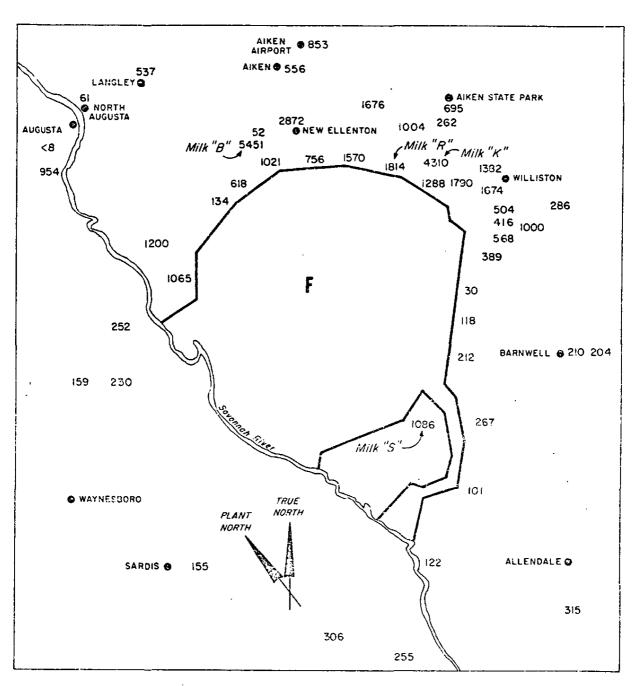


FIGURE 8. RADIOIODINE IN MILK, 1 X 10⁻¹⁵ c/ml (Samples Collected June 5 Through June 7)

The apparent half life of radioicdine in milk followed closely the decrease of I-131 in vegetation. The average value exhibited an apparent half life of 4 to 5 days.

EGGS AND PEACHES

Fresh eggs from the farm which exhibited the highest iodine activity in milk (Milk "B" in figure 8) contained an average of 33×10^{-12} c/egg, as compared to an RCG value of 1.4×10^{-10} c/egg. Peaches obtained from a farm several miles north of Aiken showed no evidence of radioiodine.

ESTIMATED EXPOSURE FROM THE 1-131 RELEASE

The maximum dose rate from external sources to the whole body or gonads due to the release was calculated to be 2.3×10^{-3} mrem/week for a person who continuously remained in this area 168 hr/week. ICRP recommends a weekly limit of 3.2 mrem/week (based on 5 rem per 30 years) for the population at large.

Approximately 30% of the radioiodine present in consumed milk is quickly concentrated in the human thyroid. This vital organ varies in size depending upon age; a 1-year-old child's thyroid will weigh about 2 grams while a mature adult's thyroid will weigh approximately 20 grams. The same quantity of I-131 in the thyroids of a child and adult will result in a radiation dose to the child which is larger by a factor of 10. The amount of radioiodine introduced into the body is primarily a function of the amount of milk consumed. In the calculations of the thyroid dose resulting from Building 291-F stack releases the following assumptions were made.

- ▶ Thyroid weights were 2 grams and 20 grams for child and adult, respectively.
- ▶ 0.9 liter and 1.0 liter of milk per day were consumed by a child and adult, respectively.
- ▶ Half-life of I-131 in milk was either that observed or 8 days.

The total thyroid dose for a child consuming Milk "B" (one mile west of New Ellenton, S. C.) which was contaminated to 5451 × 10⁻¹⁵ curie of I-131/ml was 1260 mrem. The dose to an adult consuming this milk was 140 mrem. The average concentration of radioiodine in milk collected on June 5 and June 6 was 888 × 10⁻¹⁵ c/ml. The dose to a child consuming this milk would be 205 mrem while to an adult it would be 23 mrem. Over 98% of this dose would be accumulated in the first 2 months after the release. The Federal Radiation Council recommends that the nonoccupational thyroid dose be limited to a maximum of 1500 mrem per year for individuals and 500 mrem per year to be applied to the average of suitable samples of an exposed group in the general population.

Isodose curves representing the dose received from milk consumption in the vicinity of the Plant are shown in figure 9. The values represent the total dose due to I-131 released from the F-Area stack during the period May 29 through June 19. Contributions to the total dose to man from inhaled air, drinking water, or the consumption of other foods was less than 10% of the dose resulting from radioiodine in milk.

Plant Drinking Water

Samples of drinking water were collected monthly from operating areas and quarterly from other domestic water systems. Analyses of 112 samples are summarized in Appendix B, table 9. As in previous six-month periods, higher concentrations of radioactivity were observed in F Area, H Area, and Barricade 2 drinking water. The sixmonth average concentrations at these three locations ranged from 4.4 to 28 × 10⁻¹⁵ c/ml of alpha, and 15 to 52 × 10⁻¹⁵ c/ml of non-volatile beta. These concentrations were attributed primarily to naturally occurring radioactivity. Plant drinking water samples contained no detectable tritium.

FIGURE 9. INFINITE DOSE FROM CONSUMPTION OF MILK DUE TO RADIOIODINE RELEASED MAY 29 THROUGH JUNE 19

Dose,	mrem
To Adult,	To Child
 <u>:</u>	ĝ
 70	QS
 1.00	900
 7.00	900

Public Water Supplies

Samples of public drinking water were collected monthly from the 14 surrounding towns shown in figure 1. Analytical results of 84 samples, shown in Appendix B, table 10, are essentially the same as those observed prior to the startup of the Plant. Public drinking water samples contained no detectable tritium activity.

Streams and the Savannah River

The amount of alpha emitters, nonvolatile beta emitters, radiciodine, and tritium released from individual Plant areas to effluent streams during the six-month report period are compared to releases during the previous report period in the following table. The individual isotopes comprising the releases from the Reactor Areas are reported in Appendix A, table 2.

Radioactivity Released to Effluent Streams

•	Alpha		Nonvolati	le Beta, c Prev	Radioi	odine, c Prev	Triti	lum, c Prev
Area	Total	Prev <u>Total</u>	Total	Total	Total	Total	Total	Total
F	3.7	3.4	1.13	4.9		-	5	- `
Н	4.3	2.4	0.2	0.3	-	-	710	1,100
R	*		22.44	29,20	1.43.	8.25	৬,300	3,370
P	*	-	39.47	32.97	2.20	4.45	5,880	4,870
L	*	-	71.46	25.79	6.55	3.30	7,080	4,880
K	*	-	36.52	54.80	5.04	6.02	5,630	4,580
C);	-	58.13	18,97	3.5Ĝ	2.32	4,780	4,130
300	80	30	-	-	-	-	- .	-
Total -	→ 38	36	229.4	166.9	18.76	24.34	27,385	22,930

^{*} Naturally occurring alpha emitters in Savannah River water pass through the Reactor Areas in cooling water. The total alpha discharged by way of the Reactor Area effluents during the six-month period was estimated to be 400 millicuries. Since this activity did not originate from Plant operations, it is not included in the table.

The nonvolatile beta release from F Area was associated with canyon evaporator operation and was identified as predominantly Ce¹⁴¹, ¹⁴⁴. Radiostrontium and radiocesium were also present, and the discharge of these isotopes from F Area was estimated to be 0.02 and 0.03 curie, respectively. Tritium released from H Area is attributed to movement of tritium from the H-Area seepage basins. The sources of nonvolatile beta released from the Reactor Areas was disassembly basin water, purged at a rate of 1000 to 2000 gpm. Periodic increases in activity discharged during the six-month period were associated with the discharge of fuel elements. Of the total nonvolatile beta released from all Reactor Areas approximately 39% was due to long lived isotopes (half life greater than 15 days.)

The 300 Area discharge represents approximately 230 pounds of natural uranium.

Maximum concentrations of both nonvolatile beta and tritium in Four Mile Creek, Pen Branch, and Steel Creek at the Road A locations coincided with fuel element discharge operations in the Reactor Areas. Higher concentrations of longer lived activity were evident in stream and river water following disassembly basin releases from reactors containing enriched uranium than those associated with reactors containing natural uranium.

Results of water samples collected at the Road A intersection of each reactor effluent stream showed the following curies of radio-activity passed these locations. The flow of radioactivity passing river locations 2 (Control) and 10 (10 miles below Plant) is presented for comparison.

SHOPET

Radicactivity in Water, curies/s:

Location	Menvolatila Beta	Tritium	Radiolodine	Radiostrontium	Radiocesium
Four Mile Greek	32.5	9,200	2.6	1.9	1.7
Pen Branch	30.6	12,200	9.0	3.3	1.1
Stock Creek	53,0	27,500	5.9	3.3	3.4
Lower Three Runs	1.2	1,120	-	0.3	0.3
Total at Road					
MA Locations	→ 117.3	50,020	17.5	8.8*	6.5
River 2	25.3	3,200			
River 10	107.2	50,000			•

Apparent Plant Contribution

Locations**	113.9	49,600
At River 10	* 81.9	46,800

- ** Includes 1.17 curies of Sr-90 distributed as follows: Four Mile Creek, 0.18 curie; Pen Branch, 0.18 curie; Steel Creek, 0.59 curie; and Lower Three Runs, 0.22 curie.
- ** Compensation was made for the estimated volume of river water used by the Plant facilities in calculating the Plant contributions at the Road A stream locations.

For measurement of radicactivity in Plant effluent streams and in the Savannah River, water and mud samples are collected weekly at 16 stream locations and 7 river locations as shown in figure 10. Continuous water sampling is maintained at all locations. Monthly river mud samples from 5 locations and weekly samples from 2 locations (10 and 11) were analyzed for TBP extractable alpha activity. Analysis results of 668 water samples and 465 mud samples are summarized in Appendix B, tables 5-8.

Increased six-month average concentrations of radioactivity (mainly natural uranium) were noted in the 300-Area effluent to the Tims Branch - Upper Three Runs system. This activity was not detected at locations further downstream. An approximate four fold decrease in nonvolatile beta activity was observed in both the F-Area storm sewer effluent draining to Upper Three Runs Creek and in the F-Area segregated cooling water effluent to Four Mile Creek. The radioactivity in the storm sewer effluent was attributed to leakage from an A-Line collection sump, while that in segregated cooling water

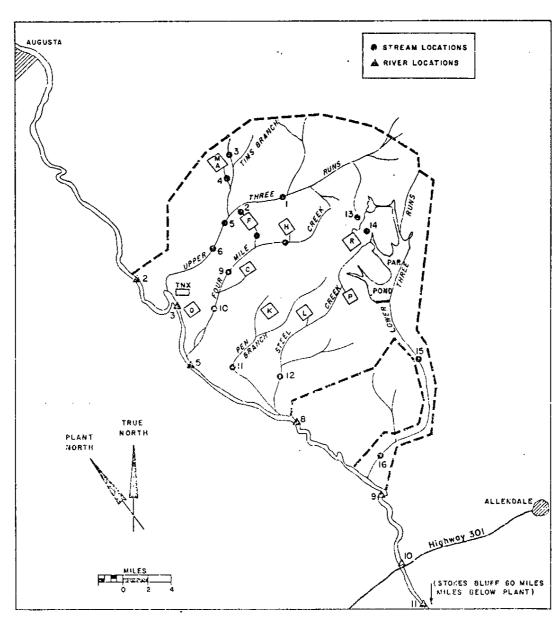


FIGURE 10. STREAM AND RIVER EDCATIONS

was associated with canyon evaporator operation. The major radio-active constituent in these effluents were ${\rm Ru}^{103}, {\rm los}$ and ${\rm Ge}^{141}, {\rm los}$, respectively.

Seepage Basins

Alpha emitters, nonvolatile beta emitters, radioiodine, and tritium discharged to earthen seepage basins during the report period are compared to the previous six-month discharges in the following table. Isotopic distribution of the nonvolatile beta discharged to the F and H-Area basins are shown in Appendix A, table 3.

Radioactivity Discharged to Seepage Basins

	Alpha, mc		Nonvolatile Buta, c		Radioiodine, c		Tritium, c	
Area	Total	Prev Total	Total	Prev Total	Total	Prev Total	Total	Prev Total
F	351	350	92.5	243.8	157	1.8		
H	85	63	36.8	10.9	0.1	0.02		
R	-	~.	. .	-	-		322	4796
P	-	-	18.0	3	-	-	1,860	∘ 9€
L	-	-	0.02	0.7	-		-	-
K	-	-	-	-	-	-	-	-
C		-	16.8	2.5	-	-	42	66
3/700	10	30	0.03	-		-	-	-
Total	→ 446	413	164.8	261	157	1.8	12,248	9898

Liquid volume inputs and seepage and evaporation rates for the F and H-Area basins are given in the following table.

	F Aroux	H Area*
Waste Input, liters/day	3,5	1.2
Rain Input, liters/day	1.0	0.8
Seepage and evaporation, liters/day	4.5	1.9
	65	

* Multiply these values by 105.

The radioactivity in Separations, 700, and THX Areas seepage basins is shown in Appendix B, table 11.

The sources of radioactivity released to the Reactor Area seepage basins included discharges from sumps in R Area, material released while vacuum cleaning disassembly basin floors in P and C Areas, and material released during the flushing of a filter charge tank in L-Area. Releases of radioactivity to the P-Area seepage basin also resulted from handling of Chalk River reactor components. No radioactivity was released to the K-Area seepage basin during the report period. The maximum concentrations of radioactivity observed in Reactor Area seepage basin water were as follows: alpha, 0.2 \times 10^{-12} c/ml in C-Area basin 2; nonvolatile beta, 144×10^{-12} c/ml in P-Area basin 1; and tritium, 231,000 \times 10^{-12} c/ml in C-Area basin 1.

Ground Water

1

Ground water was monitored by analysis of samples collected from: (1) wells surrounding seepage basins in F, H, and R Areas (see figures 11 and 12), (2) drilled, cased wells near F and H Areas (Z and ZW wells, see figures 13 and 14), and (3) wells at the burial ground (see figure 15). The maximum nonvolatile beta concentration from analyses of 65 samples collected from the R-Area seepage basin wells was 44×10^{-15} c/ml in well A-11, which is adjacent to backfilled basin 5. Radioactivity in Z, ZW, F-Area and H-Area seepage basin well water is shown in Appendix B, tables 12 and 15.

Continued high concentrations of nonvolatile beta were observed in the perched water table underneath the F-Area seepage basins. Specific chemical analyses indicated that approximately % of the nonvolatile beta activity was attributable to Sr^{89,90}. As observed in the past, seepage basin wells 1 and 5, in H Area, continued to show the most significant concentrations of radioactivity. All of the nonvolatile beta radioisotopes released in basins in F and H Areas were detectable in the seepage basin wells. All of the alpha activity detectable in the ground water was attributed to natural uranium. No movement of plutonium into the ground water was detected in either F or H Areas.

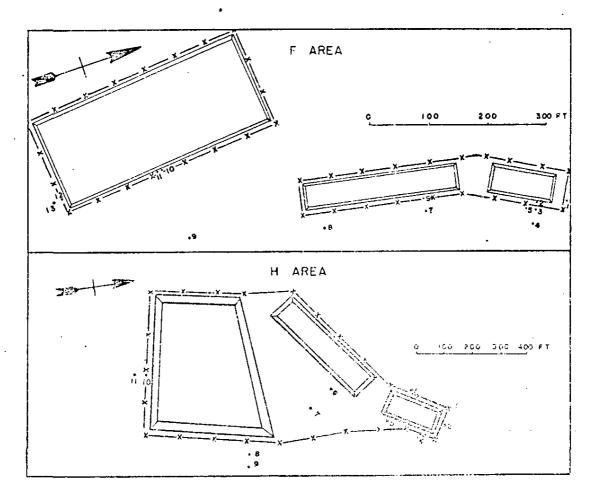


FIGURE 11. SEEPAGE-BASIN MONITORING WELLS IN F AND H AREAS

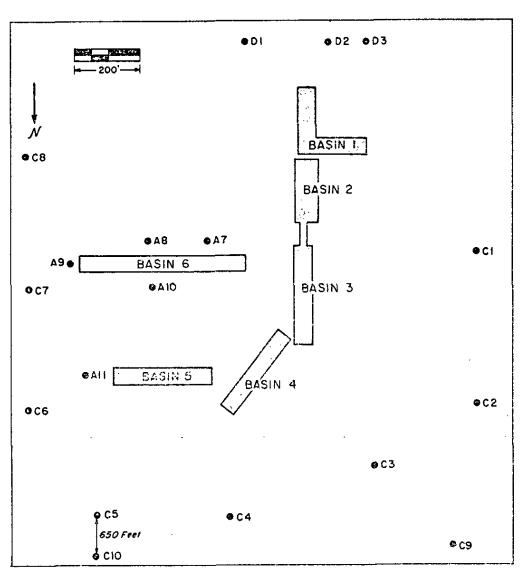


FIGURE 12. R-AREA SEEPAGE BASINS AND MONITORING WELLS

Denotes Backfilled Basins

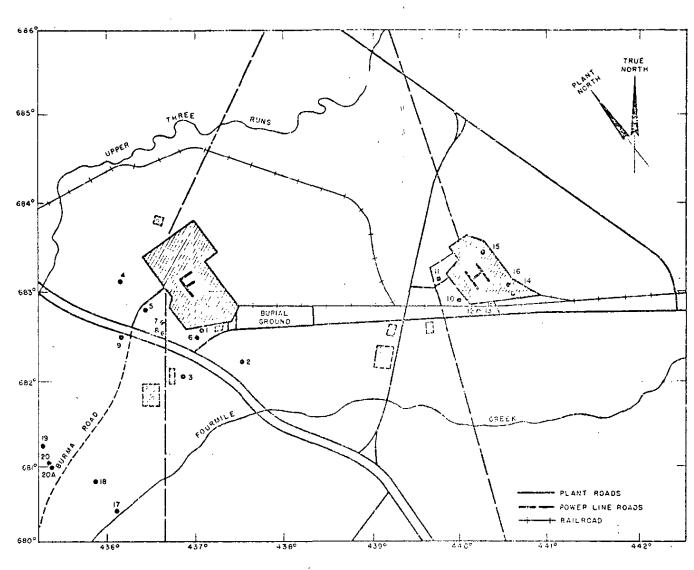


FIGURE 13. Z WELL LOCATIONS

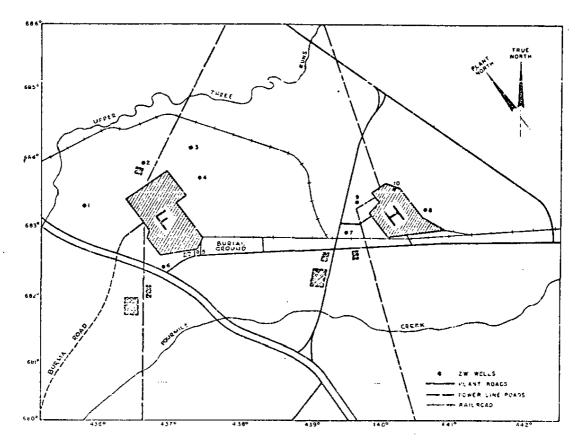


FIGURE 14. ZW WELLS, F AND H AREAS

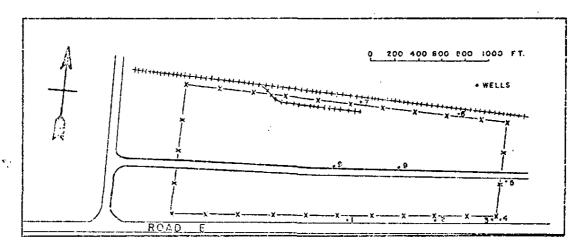


FIGURE 15. BURIAL GROUND WELLS

In April, water outcropping approximately 300' east of basin 3 in F Area and extending Sownhill for a distance of 300' (before reentering the soil) contained a tritium concentration of 3200 x 10⁻¹² c/ml. The presence of tritium in such high concentrations indicated that some basin water was present in the outcropping. Water encountered in 5 shallow holes (3' and 4' depths) dug in the vicinity of the outcrop (east of basin 3) contained radioactivity in lesser amounts. The outcrop may be attributed to an increase in the level of perched water at seepage basin 3. The water level in F-Area seepage basins 1 and 2 is constant because of the catenated basin system and probably would not cause these conditions.

Well A-37 is located in a swamp bordering the H-Area effluent. It is installed in the zone of the most rapid movement of seepage basin water into the swamp. The tritium concentration in this well averaged $34,000 \times 10^{-12}$ c/ml with a maximum of $61,000 \times 10^{-12}$ c/ml. Radiochemical analyses indicated that practically all of the non-volatile betc activity in well A-37 could be accounted for by isotopes of strontium.

241-H Tank Farm

Ground water at 241-N Upper Tank Farm was monitored from water samples collected from 17 wells shown in figure 16. No significant nonvolatile beta activity was found in the 12 wells (HPM) installed at 20-foot intervals at a distance one foot from the outer edge of the concrete pad. The weekly average nonvolatile beta concentration in these wells did not exceed 63×10^{-15} c/ml.

While the nonvolatile beta activity in two pre-existing wells (TWS and TW4) reached maximum concentrations of $46,000 \times 10^{-15}$ e/ml and 2500×10^{-15} e/ml, respectively, negligible concentrations of radioactivity were observed in water collected weekly from a pre-existing test well situated in the center of the Lower Tanh Form. Maximum nonvolatile beta concentrations observed in Wells HPL, HPS, and HPS (Upper Tank Farm) were 300×10^{-15} e/ml, 400×10^{-15} e/ml, and 900×10^{-15} e/ml, respectively. The HP wells are the initial wells

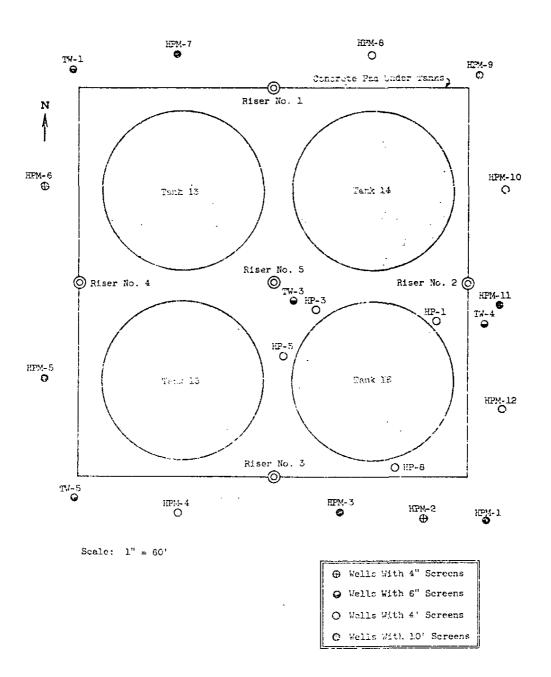


FIGURE 16. BUILDING 241-H UPPER TARK FARM

which were drilled five feet from the tank 16 encasement (down to the concrete pad) following the detection of radioactivity loss from the annulus of tank 18 in September 1960.

Biological Specimens

TERRESTRIAL

Open seepage basins served as a source of radioactivity for terrestrial animals in the vicinity of R Area until the basins were back-filled late in 1960. The primary isotopes in the basin were radiostrontium (Sr-89, Sr-Y⁹⁰) and radiocesium (Cs¹³⁴, ¹³⁷). Data obtained from the analysis of animals collected during the report period indicate a general reduction in both the bone and flesh radioactivity during the past six months. All of the animals reported below were collected within a half-mile radius of the R-Area seepage basin system.

			Nonve	platile Beta	a, 1 ×	10-12	c/g
	No. of		Bone				esh
Species	Samples	Max	Avg	Prev Avg	Mex	Avg	Prev Avg
Rabbit	2	30	25	4 0	6	5	7
Racccon	2	35	20	570	9	6	8
Fox	4,	15	10	130	8	4	10
Bobcat	2	4	4	. 50	?	5	10

AVIAN

Fifty-six specimens of aquatic waterfowl, including 26 ring-necks, 22 green-winged teals, and 8 mallards were collected from Par Pond for radioanalysis during the report period. The nonvolatile beta found in the bones and flesh of the three species during the past three years are shown in the following table. Only the green-winged teal has shown an increased uptake of radioactivity. Radiostrontium and radiocesium were the primary isotopes in the bones and flesh, respectively. Trace concentrations of radiozinc (Zn-35) were present in the fleshy tissues. Primarily vegetarians, the diets of the three species consist of from 10 to 20% animal matter. Although

the species represented generally feed along the shore in shallow water, the ring-neck is capable of diving to depths of 40 feet.

Nonvolatile Beta in Aquatic Waterfowl, 1×10^{-12} c/g

		В	one			Fle	sh		
	19	961	1960	1959	19	961	1960	1959	
Species	Мах	Avg	Avg	Avg	Max	ivg	Avg	Avg	
Ring-neck	25	10	*	20	20	7	*	30	
Teal	50	25	15	*	40	20	10	*	
Mallard	10	6	15	10	15	8	7	15	

* No samples.

AQUATIC

A total of 860 aquatic samples, including 516 fish, 310 algae samples, 14 clams, 10 crayfish and 10 shrimp were collected from the reactor effluents and the Savannah River. The algae and fish collected from the reactor effluents were radioanalyzed to determine the maximum uptake of Plant contributed radioactivity by aquatic specimens. Samples from the Savannah River were routinely collected to determine the concentrations of radioactivity contained in aquatic specimens accessible to the public.

emitter in the bones of fish collected from all four reactor effluents; no significant concentrations were found in the fleshy tissues. Radiozinc (Zn-65) and radiocesium (Cs¹³⁴, 137) were the main gamma emitters present in the bones and fleshy tissues. In fish collected from Par Pond and Lower Three Runs (R-Area effluent), radiocesium was the primary isotope in both the bones and flesh. In Lower Three Runs fish, collected 6 and 14 miles below the Par Pond dam, no significant concentrations of radiozinc were found in the bones or fleshy tissues. In Steel Creek (provides effluents for L, P, and K Areas) and Four Mile Creek (C-Area effluent), radiozinc was the predominant isotope.

The nonvolatile beta concentrations in both the bones and flesh of fish from Steel Creek and Four Mile Creek increased during the report period. Despite a decrease in bone radioactivity, the nonvolatile beta content in Par Pond fish flesh and in the bones and

flesh of fish from Lower Three Runs did not change significantly during the report period, as shown in the following table. The semianneal average concentrations of nonvolatile beta contained in the flesh and bones of fish from Par Pond, Lower Three Runs, and Steel Creek are presented graphically in figures 17 and 18.

Nonvolatile Beta in Effluent Fish, 1×10^{-12} c/g

			Bone			Flesh		
Location	Mo. of Samples	Max	Avg	Prev Avg	Max	Avg	Prev Avg	
Upper Three Runs (Control) Four Mile Creek Pen Branch Steel Creek Par Pond	16 9 32 30 149	25 250 850 615 700	10 85 150 175 115	10 15 * 113 155	7 30 110 105 80	4 10 20 30 30	4 * 15 30	
Lower Three Runs 1 Mile Below Dam 6 Miles Below Dam 14 Miles Below Dam	57 32 30	235 245 150	100 100 85	115 95 60	85 170 35	35 30 20	25 25 20	

_ * No samples collected. _

Radiostrontium (Sr-39, Sr-Y⁹⁰) was the main isotope present in the shell structures of the clams, crayfish, and shrimp collected from Lower Three Runs (6 miles below the dam) in March. Ce¹⁴¹, ¹⁴⁴, Cs¹³⁴, ¹³⁷, Co-60, and/or Fe-59 were the main gamma emitters in the fleshy tissues of clams. Radiocesium was the only isotope found in the fleshy tissues of crayfish and shrimp.

Nonvolatile Beta in Mollusks and Crustaceans, $1 \times 10^{-12} \text{ c/g}$

	C1	.am	Crayfish			Shrimp	
Isotope	Shell	Flesh	Shell	Flesh	Shell	Flesh	
Sr-89, Sr-90	175	*	15	*	5	*	
	*	4	*	24)	9	
Cs-137 Ce ¹⁴¹ , 144	*	9	*	X -	*	*	
Co-60 and/or Fe-59	*	3	*	*	*	*	

* Less than sensitivity of procedure.

The nonvolatile beta concentrations in reactor offilment algae, collected at Road A, decreased during the report period. However, the concentrations in effluent algae remained higher by a factor

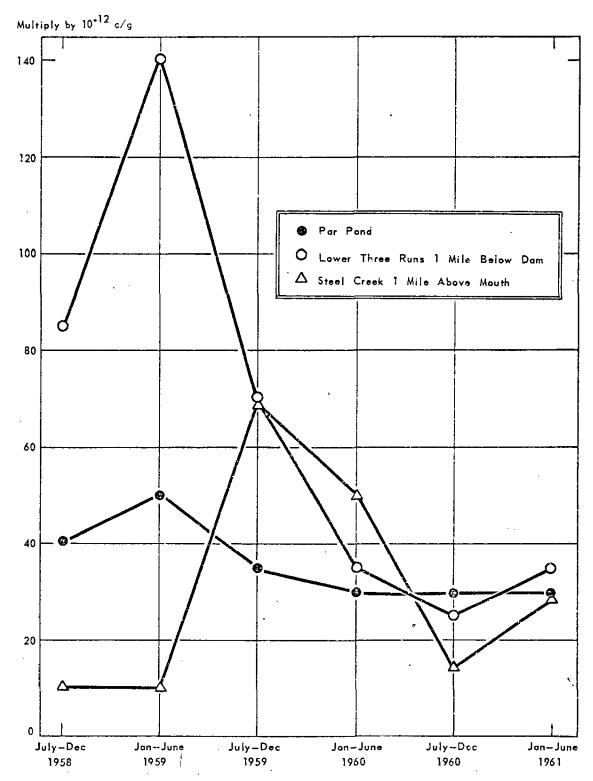


FIGURE 17. NONVOLATILE BETA IN FLESH OF REACTOR EFFLUENT FISH

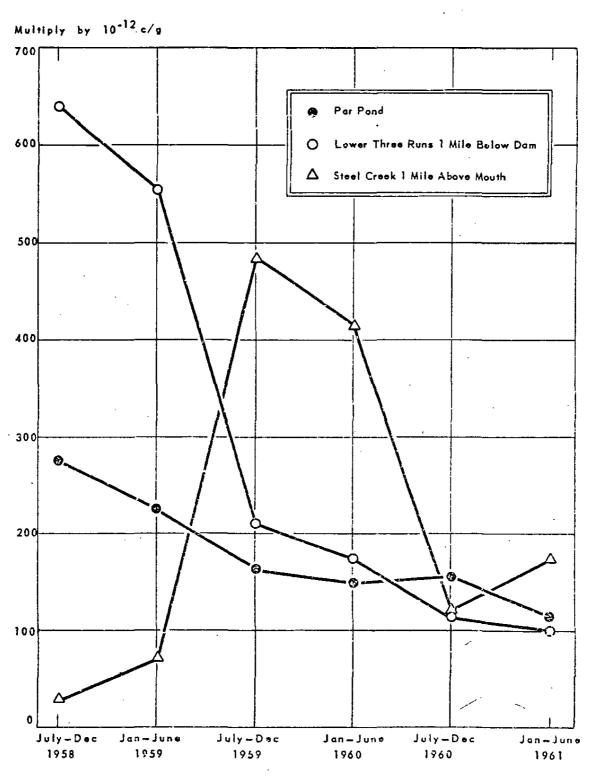


FIGURE 18. NONVOLATILE BETA IN BONES OF REACTOR EFFLUENT FISH

of 10³ than found in effluent water. The average concentrations found in weekly samples are presented in the following table.

Nonvolatile Beta in Effluent Algae,

	1 × 10 ⁻¹² c/g				
Effluent	Max	Avg	Prev Avg	_	
Upper Three Runs (Control)	50	35	35		
Four Mile Creek	755	355	920		
Pen Branch	2200	765	1335		
Steel Creek	575	300	1500		
Lower Three Runs	1.30	85	110		

Larger algae samples (3 to 15 grams dry weight) were collected from each Road A location in May and June for gamma spectrometry. The average concentrations of gamma emitters found in these samples are presented in the following table.

Nonvolatile Beta in Effluent Algae, 1×10^{-12} c/g Three Runs Par Pond Four Mile Pen Branch Steel Creek Cs-137 Z:-Nb⁹⁵ Mn-54 Zn-65 Fe⁵⁹/Co⁶⁰ 40 ·

SAVANNAH RIVER. The uptake of radioactivity by Savannah River fish, collected near the mouth of each reactor effluent, at the Highway 30l bridge, and at Stokes Bluff, was generally confined to low level concentrations in the bones with an occasional fish containing trace concentrations in the fleshy tissues. The average nonvolatile beta concentrations found in river fish during the report period are presented in the following table. Six-month average concentrations contained in the bones and flesh of river fish collected above 60 miles below the Plant site are presented graphically in figure 19.

^{*} Concentrations below the sensitivity of the procedure.

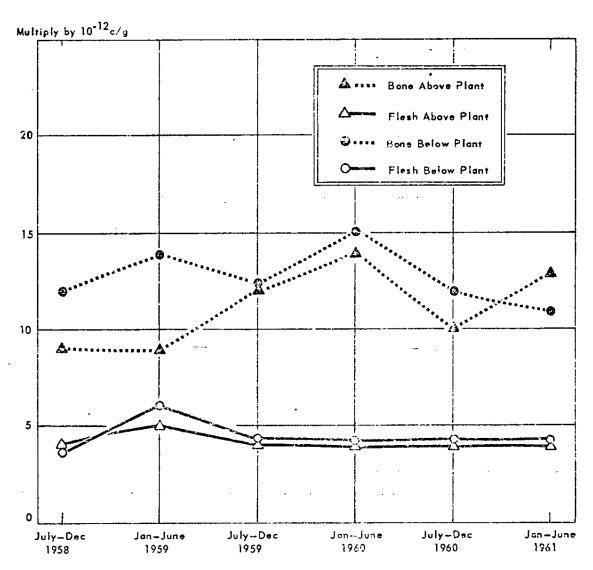


FIGURE 19. NONVOLATILE BETA IN RIVER FISH. (SIX-MONTH AVERAGES)

Nonvolatile Beta in Savannah River Fish, $1 \times 10^{-12} \text{ c/g}$

			-		Flesh			
River Location	No. of Samples	Max	Avg	Prev Avg	Max	Avg 4 4 5 5 6 4	Prev Avg	
Above Upper Three Runs								
(Control)	16	30	13	10	8	4	4	
Upper Three Runs	7	20	12	1.3	6	4	3	
Four Mile Creek	35	30	13	20	9	5	4	
Steel Creek & Pen Branch	13	55	23	21	9	5	8	
Lower Three Runs	22	135	20	16	40	6	5	
Highway 301	26	20	11	17	9	4	4	
Stokes Bluff	42	35	11	12	9	4	4	

Radiostrontium, radiozinc, and radiocesium were the main isotopes found in the bones of river fish. Radiozinc and radiocesium were the main gamma emitters in the fleshy tissues. The maximum concentrations of gamma emitters found in composite samples collected adjacent to and below the Plant site are presented in the following table.

	Nonvola	tile Beta i 1 × 10 ⁻¹²	n River I c/g	Fish,
	Adjacent	to Plant	Below	Plant
Isotope	Bone	Flesh	Bone	Flesh
Cs-137	2.0	3.7	1.3	1.8
Zn-65	3.6	1.3	2.6	×

^{*} Less than sensitivity of procedure.

The nonvolatile beta concentrations found in Savannah River algae collected near the mouth of each reactor effluent were lower than those measured during the previous report period. However, radioactivity released by Plant operations continued to be detectable in river algae as far downstream as Stokes Bluff, 60 miles below the Plant site. The radioactivity measured in river algae is shown in the following table.

Nonvolatile	Peta	in	River	Algae,
	7	~	,	_ ,

_		r × 10	
River Location	Max	Avg	Prev Avg
Above Upper Three Runs (Control)	25	20	25
Upper Three Runs	30	20	25
Four Mile Creek	250	3 5	9 5
Steel Creek & Pen Branch	755	255	550
Lower Three Runs	105	65	140
Highway 301	50	45	105
Stokes Bluff	45	35	.35

Since algae are known to concentrate radioactivity in the water by factors up to 10⁴, large algae samples (6 to 20 grams dry weight) were collected from the Savannah River in May for quantitative analysis by gamma spectrometry. The data show that Cr-51 was the predominant radionuclide found in river algae, only trace concentrations of Ce¹⁴¹, ¹⁴⁴, Cs-137, and Zn-65 were present. Samples were collected near the mouths of the reactor effluents and at distances of 10 and 60 miles below the Plant site.

	No.	onvolatile Beta	in River Algae,	1 × 10 ⁻¹²	c/g .
	Four	Steel Creek &	Lower	Highway	Stokes
Isotope	Mile	Pen Branch	Three Runs	301	Bluff
Ce ¹⁴¹ , 144	4	*	10	*	10
Jr-51	30	200	195	170	60
Cs-137	1	7	4	*	2
Zn-65	3	5	5 _	*	.5

* Concentration less than sensitivity of analysis.

Clams collected in June from the Savannah River, 10 miles below the Plant site, contained trace concentrations of radiostrontium (maximum 6×10^{-12} c/g) in the shells. The only gamma emitter found in the fleshy tissues was Zn-65 (maximum 3.6×10^{-12} c/g). The concentrations of gamma emitters in shells and flesh of clams collected above the Plant site were below the sensitivity of analysis.

Chemical Quality of Water

Lower Three Runs and Savannah River

The chemical quality of the Savannah River both upstream (location 2) and downstream (location 10) from the Plant site during the past six months is presented in the following table. Water quality analyses at location 3 on Lower Three Runs Creek are also presented. All data except those for dissolved oxygen and EOD represent the average analyses of composite water samples which are collected weekly. The dissolved oxygen and BOD values reflect the average of weekly determinations of the oxygen at the time of collection.

The data indicate that SRP operations have almost undetectable effect on the health of the river.

	Chemical Quality of Water								
	Lower Three Runs			R1	ver Upstr	ean	River Downstream		ream
	Max	Min	Avg	Мах	Min	Avg	Max	Min	Avg
Color (APHA)	45	15	29	80	15	35	70	15	33
PH	9.0	7.0	7.9	7.7	€.3	7.1	7.7	6.6	7.1
Methyl Orange, ppm CaCos	60	18	31	60	12	18	22	9	16
Dissolved Oxygen, ppm	13	7	10	12	7	9.7	12	6	10
Sulfide, ppm S	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Hardness, ppm CaCO3	34	19	26	19	8	13	21	11	14
Conductivity, umhos	85	39	6€	61	37	47	65	32	50
Total Dissolved Solids,				•					
ppm	97	26	50	52	31	43	70	24	43
BOD, ppm	3.4	0	0.80	3.7	0	0.87	3.6	0	0.81
Lignin, ppm	6.1	1.7	3.3	4.4	1.0	2.6	3.7	0.9	2.2
Surfactant, pum	<0.02	<0.02	<0.02	0.03	<0.01	<0.02	<0.02	<0.02	<0.02
Total Iron, ppm Fe	0.86	0.05	0.38	1.6	0.11	0.77	1.7	0.20	0.85
Chloride, ppm Cl	3.6	0.7	1.5	2.2	0.8	1.3	3.0	0.3	1.1
Nitrite, ppm N	0.004	0,001	0.001	0.004	0.001	0.002	0.003	0.001	0.002
Nitrate, ppm N	0.04	0.01	0.03	0.10	0.02	0.05	0.09	0.02	0.04
Sulfate, ppm SO4	3.2	<2.0	<2.0	3.5	<2.0	<2.4	4.0	<2.0	<2.6

Lower Three Runs and Wool Scouring Effluent

The Allendale wool scouring mill began discharging waste on January 9 into Lower Three Runs Creek approximately one-half mile above the Road A sampling location. Special chemical quality surveys of water were made on May 12 and June 15 to determine the nature of the woolen mill waste and its effect on the chemical quality of Lower Three Runs water during periods of high and low flow. The data show that the woolen mill waste had no apparent deleterious effect on the chemical quality of water at the Road A sampling location during either instance.

• ,	Chemical Quality of Water								
	Lower Th	ree Runs*	Woolen Waste E		Lower Thr	ee Runs**			
	<u> </u>	Low	Fl	ow	Fl	.ow			
	High	Low	High	Low	High	Low			
Dissolved Oxygen, ppm	7.2	7.4	2.9	13	6.7	6.2			
Color (APHA)	40.0	25.0	80.0	100.0	50.0	30.0			
рH	6.9	7.0	7.0	6.5	7.0	6.9			
Methyl Orange, ppm CaCO3	21.1	34.7	45.5	121.0	23.9	40.0			
Sulfide, ppm S	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			
Hardness, ppm CaCO3	20.0	34.3	22.0	79.0	21.2	28.4			
Conductivity, µmhos	58.8	80.0	200.0	390.0	62.5	84.0			
Total Dissolved Solids, ppm	39.0	53.8	193.4	372.2	53.4	57.4			
BOD, ppm	0.2	<0.01	4.3	<0.01	1.2	0.05			
Lignin, ppm	4.9	2.3	12.5	36.6	4.7	2.8			
Total Iron, ppm Fe	0.9	0.5	1.9	0.3	0.9	0.6			
Chloride, ppm Cl	1.1	1.0	2.7	5.0	0.9	1.1			
Nitrite, ppm N	<0.001	<0.001	<0.001 "	<0.001	<0.001	<0.001			
Nitrate, ppm N	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01			
Sulfate, ppm SO4	<2.0	<2.0	12.3	111.2	<2.0	<2.0			
Surfactant, ppm	<0.02	<0.02	4.4	<0.02	<0.02	<0.02			
		_							

^{* 2.5} miles above waste effluent.

^{** 0.5} miles below waste effluent.

from Butler Creek entry to the Highway 301 bridge (see figure 20) are made each quarter to obtain dissolved exygen profiles of the river during seasonal variations of flow and temperature. This report compares data obtained on March 15, 1961, under conditions of high river flow and low water temperature with data obtained on June 14, 1961, under conditions of normal river flow and median water temperature.

The data show that the dissolved oxygen content of river water was depressed slightly during each period as it flowed past the Plant site due to increased water temperature. The data also show that the oxygen content of river water near Augusta, Georgia was depressed slightly, during the period of normal river flow and median temperature (June 14, 1961), due to the discharge of sewage and industrial wastes. However, the river recovered its oxygen content approximately 20 miles upstream from the Plant site. The minor depressions noted above and adjacent to the Plant site are not deleterious to the general health of the river. Compensation for water temperature variation was made in calculating the percent saturation data presented in the following table.

River Location	River	Water 1		Dissolved (Oxygen, ppm		cent ation
Butler Creek	<u>Mile</u>	<u>3/15</u>	$\frac{6/14}{}$	3/15	6/14	3/15	6/14
	203	13	22	9.8	7.4	92	84
Spirit Creek	198	13	24	10.2	6.1	96	
Silver Bluff	189	12	23	10.9		_	72
Grays Landing	184	12	23		8.3	100	96
	-51	12	20	10.6	8.3	98	93
SR-2	175	13	24	10.1	8.2	95	0.0
Hancock Landing	165	13	24	9.8			96
Griffin's Landing	160	13	25		7.2	92	84
Brigham's Landing	157			10.1	7.4	95	88
- Committee	107	1.3	25	10.2	7.7	96	92
Steel Creek	155	15	27	9.0	6.2		
Little Hell Landing	144	23	28	• -		89	77
Lower Three Runs	140			8,2	6.9	94	87
	_	1.5	28	9.6	7.2	95	91
Johnson's Landing	139	15	27	9.8	7.0	97	87
Highway 301	129	15	27	9.1	7.4	90	85
							~ L.

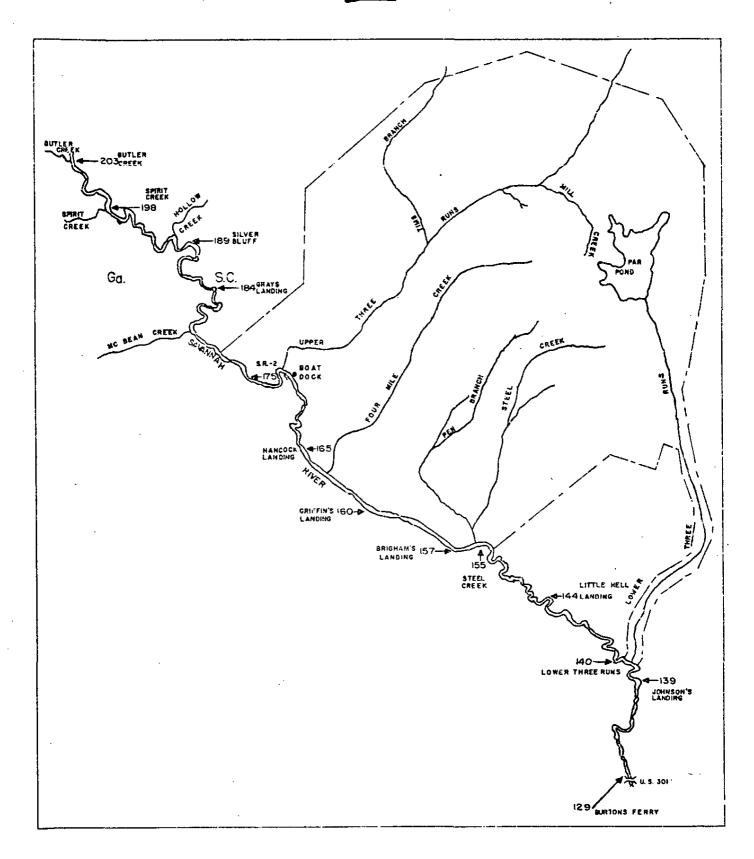


FIGURE 20. DISSOLVED OXYGEN SAMPLING LOCATIONS ALONG THE SAVANNAH RIVER. Numerical designations associated with sampling locations are number of river miles from Savannah, Georgia.

.

of each Plant effluent is measured weekly at the Road A sample location to determine the minimum dissolved caygen content of water returned to the river. Upper Three Runs, which is not a reactor effluent, is sampled as a control. Compensation for water temperature variation was made in calculating the percent saturation. Data obtained during the report period are presented in the following table.

	Dissolved O	xygen, ppm	Percent S	aturation
Effluent	Minimum	Average	Minimum	Average
Upper Three Runs	7.6	9,5	85	90
Four Mile Creek	4.5	6.1	82	, 92
Pen Branch	4.9	6.1	92	95
Steel Creek	4.9	6.0	88	92
Lower Three Runs	6.1	9.3	79	88

Appendix

		Page
Appendix A.	Radioactive Releases	
Table 1.	Separations Areas Stack Releases	50
2.	Reactor Areas Disassembly Basin Releases to Effluent Streams	51
3.	Separations Areas Releases to Seepage Basin System	52
Appendix B.	Environmental Radioactivity	
Table 1.	Gamma Radiation Levels	53
2.	Radioactivity in Air	54
3.	Radioactivity in Rainwater	55
4.	Radioactivity in Vegetation	56
5.	Redioactivity in Milk	. 56
6.	Radioactivity in Plant Stream Water	57
, 7.	Radioactivity in Plant Stream Mud	.58
8.	Radioactivity in Savannah River Water and Mud	59
9.	Radioactivity in Plant Drinking Water	60
2.0.	Radioactivity in Public Drinking Water	61
11.	Radioactivity in Seepage Basin Water	62
. 12.	Radioactivity in Ground Water	63
13.	Radioactivity in 200-Area Seepage Basin Wells	64

APPENDIX A

Table 1. Separations Areas Stack Releases

	Alpha,	·	Nonv	olatile Pe	eta. mo	•		.	
	mc_	Rulwino	Sr ⁶³ ,90	Zr-Mb ⁹⁵	Cs-137	Ce ^{141,134}	Total	Radiolodine,	Tritium _curies
				E	Area				
Jenuary	5.12	4.87	0.41	2.48	0.75	4.49	13.0	_	
ebruar y	1.00	13.40	0.05	0.67	0.17	2.84	17.1	<u> </u>	
larch	0.73	49.60	0.43	86.25	0.38	6.03	142.9	4.99	
pril	1.17	35.64	4.39	13.4	6.52	32.77	92.7	51.30	
lay	2.33	270.8	19.71	117.4	5.39	95.1	508.4	47,100	
une	3.82	218.8	1.23	1.20	2.59	8.59	232.4	113,000	
Total →	14.2	597.3	26.2	221.4	15.8	149.8	1006.5	160,156	
		•		H	Area				•
anuary	0.17	1103	6,22	24.99	1.81	30.60	1167	30.0	
ebruary	.10	771 '	0.22	0.65	0.67	5.14	778	16.6	37,800
arch	.26	551	.18	0.79	0.31	6.11	228	20.6	50,300
pril	.19	236	.50	3.44	1.35	7.94	249	10.5	74,600
ay	.23	159	.39	1.09	0.25	7.14	168	•	60,100
ıne	0.34	329	0.14	0.51	0.84	2.88	333	-	56,100
Total →	1.29	2819	7.65	31.5	5.2	59.8	2923	47.7	43,100 322,000*

Jenu Feb; Març Apri May!

Jun

Jan Feb: Mar

Apr Mag Jun

> Jan. Feb Man

> > Ma; Jur

APPENDIK A

Table 2. Reactor Areas Disassembly Basin Releases to Effluent Streams, curies

			Long-Lin	red <u>Isoto</u> g	os Excl	usive s	of Tribium				Short-I	ived Ja			
	Ce-141	<u>Cr-51</u>	Ru-103	Zr-175 ^{2/5}	<u> In-65</u>	<u> 30 - 50</u>	gr ^{ad} , da	<u>Cs-137</u>	Total	Mb-99	<u> 15-233</u>	7-131	Pu-LA40	Total	Tritium
								R Area							
January	0.15	0.53	0.03	0.05	0.28	0.07	0.52	1.61	3.24	0.04	1.84	0.68	0.10	2.65	930
February	.04	.02	.02	.03 :	J.07	.04	.05	0.43	0.71		0.03	.02	-	0.05	31
March	.24	, 13	.03	.11	0.35	.17	.11	.37	1.51	-	1.34	.05	.04	1.43	68 0
April	.36	.48	.03	.22	1.81	.34	.07	.24	3.61	-	1.91	.18	.14	2.23	341
May	. 42	. 44	.09	-14	ö.95	.20	.08	.28	. 2.60	0.01	2.44	.35	.61	3.40	1245
June	0.23	0.19	0.05	0.09	0.51	0.14	0.08	0.18	1.47	0.01	0.54	0.13	0.26	0.94	75
Total -	1.44	1.79	0.31	0.64	3.97	0.96	0.92*	3.11	13.14	0.06	8.10	1.41	1,15	10.71	3303
P Area															
January	0.09	0.67	0.04	0.04	0.10	0.07	0.14	0.32	1.47	-	3.06	0,26	0.07	3.39	1592
February	.08	.18	•	.03	. 10	.08	.09	.21	0.77		0.10	.03	.01	0.14	24
March	.21	. 89	.09	.06	.33	.08	.05	- 15	1.26	0.08	11.75	.e1	.53	13.17	1733
April	.13	.23	.05	.04	.18	.04	.04	.08	0.79	.05	3.98	.22	. 35	4.60	1345
May	. 17	.69	.07	.07	. 49	.08	.10	.19	1.86	.14	5.97	, 37	.46	6.94	419
June	0.25	0.46	0.13	0.11	0.54	0.14	0.03	0.18	1.84	0.04	5.57	0.51	0.72	4.94	764
Total -	• 0.93	3.12	0.38	C.35	1.74	0.49	0.45**	1.13	8.59	0.31	26.43	2.20	2,14	33.08	5879
	•						[L Area							
January	0.03	0.31	_	•	0.06	0.07	0.15	0.16	0.46	_	0.03	0.05	0.01	0.06	. 25
February	-	-	_	_	0.08	.03	-	.06	0.17	_	-	*	0.01	0.01	935]
March	15.03	0.81	1.70	0.93	2.47	.26	1.40	.05	23.80	5.93	18.37	4.54	3.17	32.57	2436
April	0.56	.07	0.15	.20	0.57	.13	0.15	.02	1.85	-	3.09	0.08	0.31	3.48	170
May	0.30	0.05	.05	. 10	0.32	.08	.08	.03	1.02		0.94	0,08	0.27	1.29	204
June	1.58	1.17	0.20	0.37	1.18	0.19	0.26	0.10	5.06	0.28	4.31	1.83	2.02	8.41	3311
Total -	→ 16.15	2.11	2.10	1.60	4.68	1.06	2.04†	0.42	Z2.16	6.27	27.24	6.55	5.70	45.85	7061
							٦	K Area							
January	0.07	J.38	0.02	0.07	0.14	0.05	0.02	0.17	-2.34	_	1.36	ა.36	0.09	1.65	2423
February	1.00	.55	.07	.24	.17	,17	.24	.05	2.49	0.14	0.98	.30	.13	1.45	578
March	0.47	.11	.06	,13	.29	, 14	. 89	.06	2.14	•	.41	.03	.09	0.53	45
April	0.14	0.04	0.04	.04	.11	.06	0.07	.04	0.54	-	0.30	0.05	. 1.3	0.54	28
May	3.28	4.96	1.89	.13	.27	.21	1.50	.07	12.31	_	11.21	4,27	.29	15.76	1923
June	0.46	0.11	0.04	0.10	0.12	0.02	0.07	0.08	1.00	-	0.66	0.03	0.12	0.81	633
Total -	• 6.05	5.15	2.12	0.71	1.10	0.65	3.59††	0.47	20.82	0.14	14.82	5.04	0.20	20.74	5628
				•			[C Area							
January	0.29	0.30	0.03	0.06	0.20	0.05	0.22	0.19	1.35		0.15	0.08	0.64	0.27	555
February	.30	1.73	.07	,09	.28	.09	.05	.09	2.72	_	6.63	.61	21	7.45	2714
March	.12	0.28	.03	,04	. 29	.07	.02	.05	0.89	_	0.40	.08	.14	0.62	704
April	.08	0.05	.03	,06.	. 33	.06	.02	.03	0.67		0.53	.04	0.16	0.73	9
May	0.74	0.23	.24	.33	.64	.48	0,03	.06	2.74		2.06	0.28	1,34	3.68	5
June	3.55	1.37	0.30	0.26	0.21	0.08	1.11	. 0.03	6.90		29.48	2.47	1.72	33,67	. 792
Total -		3.96	0.70	0.84	1.95	0.84	1.45	0.14	15.27	-	35.25	3.56	3.61	46.42	4779

⁻ We significant release.

* Includes 0.43 curie Sr-90 with a maximum monthly release of 0.16 curie.

** Includes 0.44 curie Sr-90 with a maximum monthly release of 0.16 curie (March Sr^{69,80} results were the loss than Sr-90 recults).

† Includes 0.55 curie Sr-90 with a maximum monthly release of 0.21 curie.

† Includes 0.19 curie Sr-90 with a maximum monthly release of 0.05 curie.

† Includes 0.21 curie Sr-90 with a maximum monthly release of 0.05 curie.

APPENDIX A

Table 3. Separations Areas Releases to Seepage Basin System, curies

•	Alpha,		•	Nonvolati	le Beta, cu				Radioiodine,	Tritium,	
	mc_	Sr-90*	Sr ^{89,90}	Cs ¹³⁴ ,137	Ce ^{141,144}	Ru ^{103,106}	Zr-Nb ⁹⁵	Total	curies	curies	
				F	'Area			. •			
January	44.5	0.21	1.89	1.31	14.2	4.2	13.2	34.8	-		
February	30.6	.09	0.23	0.18	3.7	2.0	4.7	10.8	- '		
March	52	.41	.89	.83	5.6 -	3.8	4.2	15.3	- ,		
April .	66	:27	.40	.39	. 3.1	3.9	1.4	9.2	-		
May	116	.09	47	.33	2.9	- 12.2	0.9	16.8	4		
June	42	0.07	0.17	. 0.12	0.4	-3.8	1.1	5.6	153		÷
Total -	→ 351	1.14	4.05	3.16	29.9	29.9	25. 5	92.5	157		
				H	Area						
January	25	0.37	1.83	0.15	4.1	5.8	11.3	23.2	0:05		
February	. 8	.06	٠0.13	.04	0.3	0.8	5.9	7.2	0.04		
March	8	.05	.05	.01	.09	.21	0.24	0.6	-		
April	13	. 58	.74	.02	.09	.32	.24	1.6	-		
May	:12	.52	.59	.08	0.49	.26	.15	1.6	-		
June	19	0.93	0.86	0.18 -	1.16	0.21	0.22	2.6			
Total -	→ 8 5	2.51	4.20	0.48	6.23	7.60	18.0	36.8	0.09		

^{*} Results included in Sr^{89,90} column.

Table 1. Gamma Radiation Levels

	Dose Rate,	mr/24 hours
		Previous
	Average	Average
F Area	0.64	1.22
H Area	.78	0.66
R Area	.33	.52
P Area	.48	.51
L Area	.49	.60
K Area	.56	.43
C Area	.57	.52
TC Area	.44	.54
300/700 Area	.63	.67
Talatha Gatehouse	.26	.36
Williston Gatehouse	.31	.33
Dunbarton Fire Tower	.28	.36
400 Area	. 42	. 46
Green Pond Church	.30	.34
Military Recreation Site	.28	.29
Jackson	.26	. 43
Aiken Airport	.43	.36
Allendale	.32	.38
Waynesboro	.35	.39
Bush Field	.29	.31
Langley	.29	.30
Williston	.32	.36
Barnwell	.35	.40
Sardis	.30	0.36
Aiken State Park	.30	
Highway 301	0.34	-

Table 2. Radioactivity in Air

	1 × 1	lpha, 0 ⁻¹⁴ μ	c/cc Prev	Filte	erable 10 ⁻¹⁴ u	Betz, ic/cc Prev	Redi 1×1	oiodi 0-14	ne, uc/cc Prev	1 × 1	itium, O ^{-S} uc	/cc Prev
Location	Max	Arg_	Avg	Max	Avg	Avg	Max	<u> </u>	AVE	Max	<u> 175</u>	Avg.
F Area H Area 3/700 Area	0.23 .19 .12	0.10 .07 .06	0.27	130 140 11	13 18 6	20 11 8	2800 660 79	160 36 S	5 6	0.57 11.5 1.97	0.21 2.64 0.25	0.47 2.87 0.30
Talatha Gatehouse	.15	.08	.10	14	7	9	130	8	2	0.40	.15	.33
Williston Gatehouse Dunbarton Fire	,14	.07	.07	19	8	. 7,	110	6	*	1.16	.26	.24
Tower	.18	.08	.10	15	7	8	20	2	2	0.41	.20	.29
400 Area Aiken Airport Allendale	.20 .15 .14	.11 .07	.11 .11	16 18 32	7 7 8	8 7 7	78 78 8	7 4 3	2 * *	.40 .39 .39	.41 .08 .07	.35 .14 .10
Waynesboro Langley Williston	.14 .12 .15	.06 .06	.09 .08 .05	17 24 14	7 6 ?	8 6 6	11 6 24	2 * 5	5 5	.19 .13 .43	.06 .06 .11	.13 .19 .11
Barnwell Sardis Bush Field	.17 .12 .14	.08 .04 .05	.08 .03 .09	25 10 15	8 5 7	6 4 6	18 7 47	* * 3	2 2 2	.26 .28 .21	.07 .04 .05	.17 .08 .13
Green Pond Church	.15	.07	.06	14	6	6	14	2	*	. 43	.13	.31
Military Recres- tion Site Jeckson	.10	.05 .06	.07 .09	12 13	5	8 10	8 3 28	5 4	*	.40 .76	.12 .13	.32 0.30
Aiken State Park Highway 301 Columbia, S. C.	.11 .15 .18	.06 .07 .10	- .12	15 26 13	6 7 5	- 6	10 6 -	*	-	.18 0.17 -	.07 0.05 -	-
Greenville, S. C. Macon, Ga. Savannah, Ga.	.22 .19 0.18	.10 .11 0.07	.13 .12 0.08	18 19 15	8 8 6	6 7 7	- -	- - -	. - . -	- - -	-	- - -

⁻ Sample not taken.
* Less than sensitivity of analysis.

Table 3. Radioactivity in Rainwater

	<u>1</u> ×	Alpha 10 ⁻¹⁵	c/ml	Nonv	olatile 10-15	e Beta,	Radi 1×1	oiodi O- ¹⁵	c/ml	$\frac{1}{1} \times 1$	itium O-12	c/ml
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg	Max	Avg	Prev Avg	Max	Avg	Prev Avg
F Area	6.2	1.2	0.8	970	180	135	3400	270	6	180	2:2	29
H Area	1.4	0.7	1.0	230	54	35	1100	110	5	8200	430	167
3/700 Area	1.2	.5	0.6	47	24	38	34	9	6	56	13	21
Talatha Gatehouse	1.0	.4	.5	37	19	24	43	8	6	130	11	13
Williston Gatehouse	0.9	.6	.6	32	15	24	23	6	7	13	6	12
Dunbarton Fire Tower	1.1	.5	.4	49	18	20	170	14	5	22	9	25
400 Area	0.7	.4	.4	54	18	18	170	16	4	. 31	9	12
Aiken Airport	1.0	.4	.4	44	22	26	76	9	6	17	4	4
Allendale	0.7	.4	.7	30	16	28	100	8	5	13	*	5
Waynesboro	0.7	.3	.3	30	18	21	34	5	4	14	4	4
Langley	1.4	.4	.7	20	13	21	10	4	8	12	*	8
Williston	1.1	.3	.3	90	18	13	120	8	7	11	. 4	6
Barnwell Sardis Bush Field	0.8 0.9 0.8	.3 .3	.2 .3 .3	73 78 38	24 20 22	16 24 27	18 21 11	5 4 3	7 5 5	17 8 27	4 * 5	6 5 8
Green Pond Church	1.6	.5	.5	43	17	18	21	4	8	150	18	24
Military Recreation Site	1.1	.3	.3	47	22	14	11	3	8	70	7	14
Jackson	1.5	.3	0.3	38	18	13	8	3	5	28	7	16
Aiken State Park Highway 301	0.6 0.5	.2	-	29 27	14 14	-	9 10	3 3	-	9 8	4 *	-

⁻ Sample not taken.
* Less than sensitivity of analysis.

APPENDIX B
Table 4. Radioactivity in Vegetation

				Non	volat	ile			
	Alpha, 1 × 10 ⁻¹²			c/g 1×10^{-12}				iciodin (10 ⁻¹²	c/g
Location	Max	Avg	Prev Avg	Max	Avg	Prev Avg	Max	Avg	Prev Avg
F Area (at 1 mile radius)	0.6	0.2	0.1	39	15	17	1000	250*	1.0
H Area (at 1 mile radius)	0.7	0.3	0.1	40	14	14	35	12*	0.6
Plant Perimeter	1.0	0.2	0.1	56	13	15	56	1.9	0.4
25-Mile Radius	1.0	0.2	0.1	20	11	15	44	1.5	0.5

^{*} Samples analyzed for radioiodine only in June.

Table 5. Radioactivity in Milk

ŧ	Radioiodine, 1 × 10 ⁻¹⁵ c/ml Prev			Tritium, 1×10^{-12} c/m				
					Prev			
	Max	<u>Avg</u>	<u>Avg</u>	<u>Max</u>	Avg	Avg		
Talatha	760	62	*	10	4	7		
Snelling	16	10	*	64	11	6		
Aiken	370	33	*	7	*	4		
North Augusta	76	13	*	11	4	4		
Langley	470	35	*	7	*	4		

Average Sr-90 in Milk, puc/&

	19	960	196	31
Type Sample	October	December	March	June
Family Cow	37	20	20	30
Local Dairy	15	12	1.2	12
Major Distributor	13	11	12	13

^{*} Less than sensitivity of analysis.

Table 6. Radioactivity in Plant Stream Water

		Alpna, 1 × 10 ⁻¹⁵ c/ml			Nonvolatile Be 1 × 10 ⁻¹⁵ c/z			ml 1 × 10 1				
Sample No.	Location	Мах	Avg_	Prev Avg	М	ex	Avg	Prev Avg	_	ax.	Avg	Prev Avg
		Tribus F		- Upper	. On	e Rue						
1	Control	2.4	1.5	1.9		1.5		1	.0	_	_	_
2	F Area Storm Sewer	230	32	350	50.	J00	4600	19,50		-	_	-
3	700 Area Effluent	69	20	64		300	120	29		17	*	4
4	300 Area Effluent	1700	220	160	4,	800	980	56		_	-	-
5	Road C	5.2	1.4	1.6	•	19	6		8	-	-	
6	Road A	1.6	0.8	0.7		11	4		7	10	5	6
			Four	· Mile C	reek							
7	F Area Effluent	56	7.6	7		300	2300	10,00	0	76	11.	13
8	H Area Effluent	2.1	1.1	0.6	•	140	50	-		00	180	250
9	Road 3	1.4	0.6	1.0		820	270	1,50	0	_	-	-
10	Road A	0.7	0.4	0.2	4,	200	260	26	o a	90	65	67
			Pe	n Branc	h							
11	Road A	0.5	0.1	0.3	_	600	190	26	0 6	30	53	80
			St	eel Cre	ek							
12	Road A	1.3	0.4	0.2		600	220	20	0 3	80	110	62
			F	ar Pond	7							
13	R Area Effluent	1.1	0.6	0.4	_	670	170	18	0 5	20	110	120
14	Pump House	0.6	0.2	0.2		170	6.5	12	0 1	20	94	120
			Lover	Three	Runs							
15	Patterson's Mill	0.5	0.2	0.2		74	38	7	8 1	40	37	65
16	Road A	0.4	0.1	0.1		42	24	4	0	58	17	39
		Đọi.	المنمطن		Podi	cat no		Dod		4		
		1 ×	liniodi 10 ⁻¹⁵	c/ml			ntium, c/ml	1 ×	ioces 10 - 15	2/:	<u> </u>	
		Ма.х	Avg	Prev Avg	Max	Avg	Prev Avg	Max	Avg	Pro Ava		
										-	-	
8	F Area Effluent	[4	our Mi	le Cree	380	46	840	1000	58	280	,	
9	Road 3	220	26	_	300	40	340	1000	-	250	,	
10	Road A	320		26	130	13	11	220	14	Ξ,	7	
		,										
10	Pond 4	1000		ranch	150	22	,,	70	6		7	
10	Road A	1000		83	150	22	14	30	o		,	
			L	Creek								
10	Road A	330		14	58	12	S	1:10	14	,	9	
			Par	Pond								
13	R Area Effluent	550	19	6		9 **	12†	58	24 **	5	3 †	
14	Pump House	-	-		55	9	9	38	14	23	2	
		IA	wer Th	ree Run	s							
15	Patterson's Mill	-	-	-	23	3	9	54	13	2:	3	
16	Road A	-	-	-	16	8	9	14	9	.13	2	

^{*} Less than sensitivity of analysis. ** Five month average. † Three month average.

Table 7. Radioactivity in Plant Stream Mud

		c/g	Nonvolatile Beta, $1 \times 10^{-12} \text{ c/g}$				
Sample				Prev		_	Prev
No.	Location	Max	AVS	<u>Ave</u>	Max	Δyg	Avg
	Upper	Three	Runs				
1	Control	5.0	0.6	0.5	12	7	10
2	F Area Storm Sewer	2.5	0.9	1.8	1000	370	1200
3	700 Area Effluent	96 *	38 *	20*	180	29	40
4	300 Area Effluent	340 *	140*	110*	480	120	71
5	Road C	4.0	1.1.	1.3	44	13	16
6	Road A	1.3	0.3	0.6	16	7	9
	Four	Mile C	reek				
7	F Area Effluent	0.7	0.4	0.6	1100	170	860
8	H Area Effluent	1.3	0.2	0.2	18	6	14
9	Road 3	1.1	0.4	0.2	99	48	200
10	Road A	2.0	0.9	0.5	210	56	47
	Per	n Branc	h		•		
11	Road A		'	0 0	750	47	4.7
T-1-	Road A	0.9	0.3	0.5	350	43	47
	Ste	eel Cre	ek				
12	Road A	0.9	0.5	0.6	240	45	73
	Pa	ar Pond					
13	R Area Effluent	0.5	0.2	0.2	16	6	26
14	Pump House	0.4	0.2	0.1	10	4	6
		_					-
	Lower	Three	Runs			•	
15	Patterson's Mill	0.6	0.2	0.2	12	4	20
16	Road A	0.6	0.2	0.2	42	7	6
	¥ mpp		1				

^{*} TBP extractable alpha.

Table 8. Radioactivity in Savannah River Water

	Alpha, 1×10^{-15} c/ml			Nonvolatile Beta, 1×10^{-15} c/ml			Tritium, 1×10^{-12} c/ml			
			Prev	1.		Prev			Prev	
Location	<u>Max</u>	<u>Avg</u>	<u>Avg</u>	Max	<u>Avg</u>	A.S	Max	Avg	Avg	
2	0.5	0.2	0.1	11	5	4	7	2	5	
3	0.7	0.3	0.2	23	6	5	-	-	-	
5	0.5	0.2	0.2	530	39	10	-	-	-	
8	1.8	0.3	0.2	260	47	64	-	-	-	
9	0.8	0.2	0.2	100	27	22	-	-	-	
10 .	0.8	0.2	0.1	110	26	28	34	13	11	
11	0.7	0.3	0.3	110	25	26	29	11	10	

		ioiod 10 ⁻¹⁵			ostron 10 ⁻¹⁵	tium, c/ml	Rad 1 ×	Radiocesium, $1 \times 10^{-15} \text{ c/ml}$			
			Prev			Prev			Prev		
Location	Max	$\underline{\text{Avg}}$	<u>Avg</u>	Max	<u>Avg</u>	Avg	Max	Avg	<u>Avg</u>		
2	-	_	-	7	2	-	-	-	-		
8	-	-	-	50	12	5	22	6	7 .		
9	-	-	-	39	9	5	24	6	5		
10	42	7	6	52	8	5	13	4	6		
11	-	-	-	44	9	4	20	5	5		

Radi	090	+ 1 1	+ + + + r	in	Mud
naur	uau	しエV	1. L. V	1 1 1	171 1 1

			le Alpha,	Nonvo	Nonvolatile Beta,			
	1_×	10-12	c/g	<u> 1 ></u>	(10-12	c/g_		
-			Prev			Prev		
Location	Max	Avg	Avg	Max	Avg	Avg		
2	4	2	1	22	15	10		
3	4	2	2	22	1.5	15		
5	10	4	3	40	18	17		
8	5 .	3	3	24	16	17		
9	6	3	1	21	10	8		
10	4	2	3	23	13	15		
1.1	4 ·	l	1	17	6	6		

: (5)

Table 9. Radioactivity in Plant Drinking Water

	1 ×	Alpha, 10 ⁻¹⁵	c/ml_	Nonvolatile Beta, 1 × 10 ⁻¹⁵ c/ml			
			Prev			Prev	
Location	<u>Max</u>	Avg	Avg	Max	Avg	<u>Avg</u>	
F Area H Area 3/700 Area	16.5 6.2 1.6	7.8 4.4 1.1	4.3 4.8 1.4	48 22 4	25 15 *	26 24 8	
400 Area . TNX Pump House 1 Pump House 2	1.6 2.7 0.3 0.2	1.3 1.7 *	1.1 0.7 0.6 0.5	9 10 6 6	7 7 5 5	8 7 5 5	
R Area P Area L Area K Area C Area	0.6 5.9 0.3 0.3	0.3 1.5 * * 0.2	0.3 0.5 * *	4 4 5 4	* * * 4 *	* 8 6 5 4	
Par Pond - Pump House TC Area Classification Yards Central Shops	0.6 1.7 0.9 0.7	0.4 1.4 0.7 0.6	0.2 3.1 0.6 0.5	10 7 7 4	4 4 4	5 10 4 6	
Barricade 1 Barricade 2 Barricade 3 Barricade 4 Barricade 5	1.7 37 0.5 7.1 0.3	1.2 28 ∙0.3 4.0 *	0.8 33 0.2 2.9	5 66 4 7 5	* 52 * 6 *	* 52 4 6 *	
Donora Station Well	0.2	*	*	7	*	5	

^{*} Less than sensitivity of analysis.

Table 10. Radioactivity in Public Drinking Water

•	Alpha, 1 × 10 ⁻¹⁵ c/m				Nonvolatile Bo			
			Prev			Prev		
-Location	Max	<u>Avg</u>	<u>Avg</u>	<u>Max</u>	<u>Avg</u>	Ave		
Allendale	0.4	0.1	0.1	10	3.0	4.1		
Sardis	1.1	0.2	*	,5	2.7	4.8		
Waynesboro	0.2	0.1	0.1	7	1.6	3.7		
Augusta	0.1	*	0.1	8	2.4	3.7		
North Augusta	0.2	0.1	0.2	10	4.6	4.4		
Clearwater	0.2	0.2	0.2	17	3.3	4.5		
Bath	2.7	1.7	1.6	12	6.1	7.0		
Langley	2.0	1.7	1.6	9	5.8	7.5		
Jackson	4.7	3.4	3.2	16	10.6	6.9		
New Ellenton	1.6	0.9	0.5	12	5.4	4.8		
Aiken	4.5	2,2	1.1	9	4.4	2.6		
Williston	1.9	1.4	0.9	7	4.3	4.6		
Blackville	0.3	0.2	0.2	4	1.9	3.2		
Barnwell	0.3	0.2	0.2	8	4.2	3.9		

^{*} Less than sensitivity of analysis.

Table 11. Radioactivity in Seepage Basin Water

												• •
	1 × 1	lpha, 0 ⁻¹²	c/ml_	Nonvo	latile 10 ⁻¹²	Beta, c/ml		ioiod 10 ⁻¹²	c/ml	1 ×	ritium, 10 ⁻¹² c/r	
Basin No.	Max	Avg	Prev Avg	Max	Avg	Prev Avg	Max	Avg	Prev Avg	Max	Avg	Prev Avg
•					·	FA	rea	-				
1	13	5.3	7.9	8700	3000 -	860	170	38	25			
2 -	3.6	2.9	5.2	1500	1200	490	50	20	5	<u>.</u> !		
3	4	2.5	4.2	5 90	380	280	6	5	4	; 		
						НА	rea	•				· .
1	7	1.4	4	5500	700	860	8	4	4			
2	1 .	0.4	0.2	410	290	70	5	4	2 .	! :		
3	1	0.4	0.2	94	34	27	5	3	0.4	1.	•	•
						A A	rea			!		
1	5.3	1.4	0.3	73	15	2		-	-	2,600	1,200	290
						TN	х					
1	11.8	5.7	3.2	33	16	12	-	-	-	400	80	24

APPENDIK B

Radicactivity in Ground Water Table 12.

<u>1 ×</u>	Alpha 10 ⁻¹ 5	c/ml Frev	Nonv	clatile 10-15	e Beta, c/ml Prev
Max	Avg	Avs	Max	Avg	Avg
		ZW W	ells		
0.24.05.05.00.30.00.0	0.2 .1 .1 .1 0.2 * 0.1 0.0 0.2	0.6 .2 .5 .4 .3 .4 0.0 .3 0.2	13 7 4 29 20 11 19 13 8	13 4 2 15 20 6 10 7 6	5966442569
	Bur	ial Gr	ound W	ells	
0.7 1.1 0.7 1.0 0.6 .4 .4	0.2 3.2 6.2 2.2 4.	0.3	18 25 83 24 11 20 34 16	9 10 16 15 7 9 10	10 5 5 8 6 7 12 6
	Max 0.22.52.20 * 0.100.3 0.71.10.7 0.66 44	Max Avg 0.2 0.2 .5 .4 .2 .1 0.2 0.2 * 0.1 0.1 0.0 0.0 0.3 0.2 Bur 0.7 0.2 1.1 .3 0.7 0.2 1.1 .3 0.7 .2 1.0 .6 0.6 .2 .4 .2 .5 .4	Max Avg Avs ZW W	1 × 10 ⁻¹⁵ c/nl 1 × Max Avg Avg Max CW Wells 0.2 0.6 13 2 7 .5 .4 .5 4 3 20 .2 .1 .4 29 2 .1 .3 20 .2 .1 .3 20 12 .1 .3 20 0.2 0.2 .4 11 11 .3 13 * * 0.0 19 0.1 0.1 .3 13 0.0 0.0 0.2 8 3 13 0.7 0.2 0.3 18 1.1 .3 .3 25 0.7 0.2 3 83 3.0 6 .8 24 0.6 .2 .3 11 4 .2 .3 20 .4 .2 .3 20 3 34 .5 .4 .6 16	1 × 10 ⁻¹⁵ c/ml 1 × 10 ⁻¹⁵ Prev Max Avg Avg Max Avg 0.2 0.2 0.6 13 13 .2 .1 .2 7 4 .5 .4 .5 4 2 .2 .1 .3 20 20 0.2 0.2 .4 11 6 .2 .1 .3 20 20 .2 .1 .3 20 20 0.2 0.2 .4 11 6 .4 9 15 .2 .1 .3 7 0.0 0.2 .4 11 9 6 .6 6 .8 6 0.3 0.2 1.1 9 6 Burial Ground Wells 0.7 0.2 0.3 18 8 .8 1.1 .3 .3 .3 25 10 0.7 0.2 3 93 16 .0 .6 .8 24 15 0.6 .2 .3 11 7 .4 .2 .3 20 9 .4 .2 .3 3 34 10 .5 .4 .6 16 7

Tritium in Ground Water, 1×10^{-12}

	_ Ż	Wells		_ 21	/ Wells	5	Burial	. Grow	Ground Wells		
Well	·		Frev			Prev			Prev		
No.	Max	<u>Avg</u>	Avg	<u>Max</u>	Avg	AVE	Max	<u>Avg</u>	Avg		
l	19	19	14	6	3	4	5	1	10		
2 3	24	18	4	1	1	5	45	9	12		
3	15	10	-4	36	24	27	30	8	4		
4	××	**	**	111	76	35	310	220	128		
5	**	* *	**	38	30	31	60	40	37		
6	31	31	**	32	17	40	9	3	11		
7	* *	* *	**	140	95	28	4	1	4		
8	33	28	12	7	4	17	52	26	76		
9	25	24	20	205	182	58	12	3	8		
10	**	**	**	114	104	15					
11	54	53	25								
12	36	33	32								
13	7	6	4								
14	X-X	××	**								
15	108	102	94								
16	* *	**	* *								
17	2	2	3								
18	30	29	23								
19	3	2	64								
20	2	2	4								
20A	, × ×	* *	**								

^{*} Less than sensitivity of analysis.
** Water sample unobtainable.

SECT

Table 13. Radioactivity in 200-Area Seepage Basin Wells

Distance from		Alpha,	1 × 10 ⁻¹	s c/ml	Nonvolatile Beta, 1 × 10 ⁻¹⁵ c/ml				Radiostrontium, 1 × 10 ⁻¹⁵ c/ml			
Distance Basin,		Max	Avg	Prev Avg	хеМ	Avg	Prev Ave	Max	Ανæ	Prev Avg		
·					F Area	•						
1*	34	7000	2100	1800	210,000	130,000	300,000	690	190	1,600		
2	5	0.9	0.5	0.7	190	95	93			,		
3	29	1.3	0.6	0.2	890	580	700					
4	73	0.5	0.2	0.2	2,000	1,100	350					
5*	24	3.0	1.5	0.1	42,000	9,300	9,800					
6 *	ô	1300	460	1100	169,000	66,000	100,000	44,000	3,600	900		
7 *	46	390	220	500	13,000	9,100	19,000	4,900	2,300	600		
8	63	0.9	0.6	0.6	490	130	10	,	,			
9	150	1.0	0.6	0.6	59	24	29					
10*	9	1300	580	410	216,000	143,000	110,000	73,000	14,000	14,000		
11	9	1.2	0.9	1.1	48	29	33	·	•	ŕ		
12*	29	3000	900	320	118,000	69,000	66,000	970	720	14,000		
13*	58	50	43	440	64,000	41,000	56,000	1,830	760	11,000		
					T7 . 3mag.							
1	24	40	15	20	H Area	390	6,000					
2	25	1	0.8	0.5	700 540	120	16					
3	25 15	1.1	1.0	0.4	710	290	130					
4	45	1.6	0.8	0.4	23	17	3					
, * 5	13	137	41	20	230,000	76,000	15,000	43,000	13,000			
6	6	0.6	0.4	0.4	460	220	130	40,000	13,000			
7	66	0.8	0.4	0.4	57	24	130			٠.		
8	18	0.6	0.3	0.4	152	91	43					
9	78											
		0.2	0.2	0.2	103	35 100	17					
10 11	19 79	1.0 0.6	0.4 0.2	0.4	290	120	15					
11 A-37	15	4.0	2.0	0.1 2.5	230 680	100 250	170 440					

^{*} Wells in perched water table.