. 664432 DP-1006 AEC RESEARCH AND DEVELOPMENT REPORT # SAVANNAH RIVER PLANT CRITICALITY DOSIMETRY SYSTEM C. N. WRIGHT J. E. HOY W. F. SPLICHAL, JR. Savannah River Laboratory Aiken, South Carolina #### LEGAL NOTICE 1 This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor. Printed in USA. Price \$2.00 Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, U. S. Department of Commerce, Springfield, Virginia ### INTERNAL DISTRIBUTION | Copy | | | | |-----------------|--------|--------------------------|---| | 1-3. | P. J. | Hagelston | SROO, Aiken, S. C. | | ₁ †• | н. F. | Carroll | Declassification Branch USAEC, Oak Ridge, Tenn. | | 5. | G. B. | Pleat - W. R. Workinger | Div. of Prod. USAEC Wash. | | 6. | T., Sa | uires - M. H. Wahl | Wilmington AED | | | _ | McNeight | 11 | | 8. | | Smith - W. H. Holstein - | | | - • | | B. Tinker | 11 | | 9. | | Evans - C. W. J. Wende - | | | | | W. Croach | II . | | 10. | W Fil | e | 11 | | • | | | | | 11. | A. E. | Daking | Engineering Department | | 12. | J. A. | Monier - F. H. Endorf | Savannah River Plant | | 13. | W. P. | Bebbington | 11 | | | | Tyson | n | | | | K'Burg - H. L. Butler | | | 16. | E. C. | Morris - H. A. McClearen | - 11 | | | | C. Nichols | " | | 17. | PRD F | tle TOS AU | 11 | | | | | | | | | | Savannah River Laboratory | | - | | Morrison | 11 | | | | Beach | 11 | | | С. Н. | | 11 | | 22. | | Patterson | 11 | | 23. | | Marter | 11 | | 24. | | Moyer | 11 | | 25. | | essauer | 11 | | 26. | | Morris | 11 | | 27. | | Reinig | 11 | | 28. | | Wright | 11 | | 29. | J. E. | • | 11 | | 30. | | Splichal, Jr. | n . | | 31. | TIS I | File Record Copy | | # DP REPORT PROCESSING FORM (Perform last item checked) | AUTHOR: Unght, Hoy, Splicke | | |---|--| | CLASSIFICATION: | DATE: 11/17/65 | | 1. PRINT SHOP: < 1/1/19/65 | Edito FEW 11/19/65 Date | | Reproduce Copies / 2 Blackline 50 Transmitt 15 Prelimina Send to Editing: 35 Internet Approval copy of report Transmittal Lett | , Pages
al Letter
ry Distribution | | Preliminary Dist Photocopy Transmittal Letter Master This Form | Date to Editing /2/14/65 | | 2. EDITING: Review Approval Copy and prepare Send Approval Copy, Release Forms | Document Review and Release Forms. TOFROM , and this Form to Print Shop. | | 3. PRINT SHOP AND DOCUMENT SECTION: Bind and issue / 2 Prelimina Send Blackline Record Copy with t | Editor | | 4. EDITING: Collect corrections and releases. Send corrected Blackline Record C Distribution Master, Transmittal | SAM/2/2/AEC_/2/20 AuthorSWO'R_/2//J
JWH
copy, corrected photocopy, Internal
Letter Master, and this Form to Print Shop. | | 5. PRINT SHOP: < no contests. Make corrections and print copies_ | Editor_ P&W Date_1/6/66 | | Send to Editing: Approval copy of report Transmittal Lett Internal District Corrected Photocopy This Form | | | Review printed Record Copy. Forms and this Form to Print | Return printed Record Copy with Publication Shop. | |---|--| | 7. PRINT SHOP AND DOCUMENT SECTION | Editor #800 Date #6/66 | | Bind and issue report: INTERNAL DISTRIBUTION Copies | 39 with TL 2 without TL(2 SROO Suppl Spc) 15 without TL (TIS FILE) | | Send to Doc. Sec. together ———————————————————————————————————— | 4// without TL of report | | Form to Editing. | Int. Issue Date 1-18-66 Ext. Issue Date 1-18-66 Date to Editing | | 8. EDITING: Send file folder to DP Record | File, including: | | XFile Record CopyXReport Data SheetYDocument ReviewXRequest for Patent ReviewXTransmittal LetterYPreliminary Distribution | X External Release of Tech. Info. X AEC Approval Letter Y Publication Form X DP Report Processing Form X Internal Distribution Your Internal References | | X TID Distribution | Date to File 1/2//64 | EDITING: CH+ 8/17/6: ### REPORT DATA SHEET # TECHNICAL DIVISION SAVANNAH RIVER LABORATORY | HSA | 8/19/8- | |-----|---------| | | / 7:1 | | Report Number DP-1006 | S C ① Approved by | |--------------------------------------|---| | Author(s) _ C. N. Wright, J. E. Hoy | | | 2852 | | | Title Savannah River Plant Critical | lity Dosimetry System | | Division Radiological and Environmen | ntal Sciences | | Indicate known prior art | | | ** | Section Director Laboratory Director | | 8 5 6 9 11 | Author Supv. Div. Hd. | | Manuscript Approval (MS) | Cheb all | | Reproduction Copy Approval (RC) | n. Wight | | Recommended for Publication | | | Publication in | | | Presentation at | | | Category Health and Lifety | PLETED BY TIS TO 45 43 43 43 43 43 43 43 43 43 43 43 43 43 | | Classification of Abstract <u>U</u> | 11/65 CF | | Classification of Title | | | Transmittal Letter DP -/006 TL | s c 🛈 | | No. of copies for Distribution | Approved by | | Internal | Total Pages | | TID-4500 | Price | | M-3679
Special | | | AECL | | | LATOT | | TECHNICAL DIVISION SAVANNAH RIVER LABORATORY **MEMORANDUM** TO: S. W. O'REAR J. E. BEACH DOCUMENT REVIEW Document: Report DP-1006 Title: Savennah River Plant Criticality Dosimetry System Author: C. N. Wright, J. E. Hoy, W. F. Splichal, Jr. Contractual Origin: AT(07-2)-1 Present Classification: Unclassified References: No items were noted that, in my opinion, should be called to the attention of the AEC for patent consideration. ### E. I. DU PONT DE NEMOURS & COMPANY SAVANNAH RIVER LABORATORY AIKEN, SOUTH CAROLINA 29802 (TWX: 803-824-0018, TEL: 803-824-6331, WU: AUGUSTA, GA.) S. A. McNeight W. P. Overbeck - G. Desseuer -TIS File December 15, 1965 CC: L. C. Evans - C. W. J. Wende - J. W. Creach Mr. R. G. Erdley, Chief Patent Branch Savannah River Operations Office U. S. Atomic Energy Commission Post Office Box A Aiken, South Carolina Dear Mr. Erdley: #### REQUEST FOR PATENT REVIEW Please review for patent matter: DP-1006, Savenneh River Plant Criticality Dominetry System, by C. N. Wright, J. E. Roy, and V. F. Splichal, Jr. If any technical clarification is needed please call J. E. Beach whose document review is attached. Please telephone your comments to the TIS Office (Ext. 3402) and notify me by signing and returning to TIS the original of this letter. A copy is provided for your file. If you decide to pursue a patent on any development covered, I shall be happy to supply additional information required such as appropriate references and the names of persons responsible for the development. The above item is approved for release. Very truly yours, R. G. Erdley, Chief Date Patent Branch SROO, USAEC C. W. J. Wende, Director Technical Division By: J. E. Beach ### E. I. DU PONT DE NEMOURS & COMPANY SAVANNAH RIVER LABORATORY AIKEN, SOUTH CAROLINA 29802 (TWX: 803-824-0018, TEL: 803-824-6331, WU: AUGUSTA, GA.) DP-1006TL JAN 1 4 1966 C. W. J. WENDE, DIRECTOR TECHNICAL DIVISION - AED EXPLOSIVES DEPARTMENT WILMINGTON DO NOT RELEASE FROM FILE DP-1006, SAVANNAH RIVER PLANT CRITICALITY DOSIMETRY SYSTEM by C. N. Wright, J. E. Hoy, and W. F. Splichal, Jr. In September 1960, the "emergency dosimetry" capabilities of the Savannah River Plant were reported by Hoy in DP-472. This report described a criticality neutron dosimeter which was unique at that time and remains today the least expensive of several similar systems. Last year the dosimeter and our abilities to interpret its usefulness were twice tested, utilizing the Health Physics Research Reactor at Oak Ridge National Laboratory. The attached report updates the previous DF report, and includes in the appendix methods used in computing dose determinations. It shows the steps required - screening, preliminary dose estimates, and final dose determinations - in the event a nuclear incident involving personnel occurred. Q.M. Patterson C. M. Patterson, Research Manager Radiological and Environmental Sciences Division #### PRELIMINARY DISTRIBUTION | Copy | | |------|--| | No. | | - 1. H. B. Rahner - 2. I. A. Hobbs - 3. R. G. Erdley - 4. S. A. McNeight - 5. L. C. Evans C. W. J. Wende J. W. Croach - 6. W. R. Tyson - 7. P. B. K'Burg H. L. Butler - 8. W. P. Overbeck A. A. Johnson J. O. Morrison - 9. C. H. Ice C. M. Patterson - 10. W. C. Reinig C. N. Wright - 11. J. E. Hoy W. F. Splichal, Jr. - 12. TIS File Record Copy SROO, Aiken, S. C. •• 11 Wilmington AED lt - Savannah River Plant 11 Savannah River Laboratory П It " 11 DP-1006 | TID-231
NDE-80 | • | TH AND SAF | ETY | 66 | | 07/VE | |-------------------|------|---------------
---|------------|-------------|--| | CFST1-100 | Ptd. | MN | Standard Distribution | Ptd. | MN | Standard Distribution | | 10 120 | 12 | | *ABERDEEN PROVING GROUND | 2 | 1 | BATTELLE MEMORIAL INSTITUTE | | LK- 119 | 1 | 1 | AEROJET-GENERAL CORPORATION | 4 | 1 | BATTELLE-NORTHWEST | | 7 Class - 2 | 1 | 1 | AEROJET-GENERAL NUCLEONICS | 1 | ٠. | BROBECK (WILLIAM M.) AND ASSOCIATES | | m. t.d - 1/10/1 | 2 | | AERONAUTICAL SYSTEMS DIVISION | 2 | • | BROOKE ARMY MEDICAL CENTER | | 118/6 | 6 | | AIR-FORGE-CAMBRIDGE-RESEARCH | 4 | i | BROOKHAYEN NATIONAL LABORATORY | | | 1 | 1 | AIR FORCE INSTITUTE OF TECHNOLOGY | 1 | | BUREAU OF MINES, ALBANY | | | . 1 | | AIR FORCE SURGEON GENERAL | 1 | • | BUREAU OF MINES, BARTLESVILLE | | | 1 | | AIR FORCE SYSTEMS COMMAND | 1 | | BUREAU OF MINES, WASHINGTON | | | 2 | | AIR FORCE WEAPONS LABORATORY | 1 | | BUREAU OF SHIPS (CODE 1500) | | | 1 | • | ALBUQUERQUE OPERATIONS OFFICE | 1/ | - Ča | BUREAU OF YARDS AND DOCKS | | | ì | | ALLIS-CHALMERS MANUFACTURING COMPANY | 1 | | CHICAGO PATENT GROUP | | | 1 | 1 | ALLIS-CHALMERS MANUFACTURING COMPANY. | 1 | | COAST GUARD | | | | • | BETHESDA | 1 | | COLUMBIA UNIVERSITY (ROSSI) | | • | 1 | | ALLISON DIVISION-GMC | j . | 1 | COMBUSTION ENGINEERING, INC. | | | 4 | | ARGONNE CANCER RESEARCH HOSPITAL | 1 | 1 | COMBUSTION ENGINEERING, INC. NO. | | | 10 | 4 | ARGONNE NATIONAL LABORATORY | 1 | 1 | DEFENSE ATOMIC SUPPORT ACCOUNTY WASHINGTON | | | 1 | 1 | ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE | 1 | | DEL ELECTRONICS CORPORATIO | | | 2 | | ARMY CHEMICAL RESEARCH AND DEVELOPMENT LABORATORIES | . 1 | | DENVER RESEARCH INSTITUTE | | | 1 | | ARMY ELECTRONICS LABORATORIES | ł | | DOW CHEMICAL COMPANY, ROCKY FLATS | | • | 1 | | ARMY ENVIRONMENTAL HYGIENE AGENCY | -3 | - | | | | | -i | ARMY-MISSILE-COMMAND- | ********* | | | | | 1 | | ARMY NATICK LABORATORIES | 1 | | EDGERTON, GERMESHAUSEN AND GRIER, INC.,
GOLETA | | | 1 | | ARMY PICATINNY ARSENAL | i | | EDGERTON, GERMESHAUSEN AND GRIER, INC., | | | 1 | | *ARMY (SEVENTH) SUPPORT COMMAND | • | | LAS VEGAS | | | 1 | | ARMY SURGEON GENERAL | 1 | | EDGEWOOD ARSENAL | | | 1 | | ARMY TANK-AUTOMOTIVE CENTER | | | FUNDAMENTAL METHODS ASSOCIATION | | | 1 | | ATOMIC BOMB CASUALTY COMMISSION | ' 1 | ł | GENERAL ATOMIC DIVISION | | | 1 | 1 | ATOMIC ENERGY COMMISSION, BETHESDA | 2 | | GENERAL DYNAMICS/FORT WORTH | | | , | | AEC DIVISION OF RAW MATERIALS | 2 | 1 | GENERAL ELECTRIC COMPANY, CINCINNATI | | | 1 | | AEC PATENT OFFICE | 1 | | GENERAL ELECTRIC COMPANY, PLEASANTON | | | 1 | | AEC SCIENTIFIC REPRESENTATIVE, ARGENTINA | 1 | 1 | GENERAL ELECTRIC COMPANY, SAN JOSE | | | ľ | | AEC SCIENTIFIC REPRESENTATIVE, BELGIUM | † | 1 | GOODY EAR ATOMIC CORPORATION | | | 1 | | AEC SCIENTIFIC REPRESENTATIVE, FRANCE | 1 | | HAZLETON NUCLEAR SCIENCE CORPORATION | | | 1 | | AEC SCIENTIFIC REPRESENTATIVE, JAPAN | 1 | | HOLMES AND MARYER, INC. | | | 3 | 1 | ATOMIC ENERGY COMMISSION, WASHINGTON | 1 | | HUGHES AIRCRAFT COMPANY | | | 1 | , | ATOMIC POWER DEVELOPMENT ASSOCIATES, INC. | Ť | | INTER-AMERICAN INSTITUTE OF FOR A FEW AND SCIENCES | | | 4 | 1 , | ATOMICS INTERNATIONAL | 1 | t | IOWA STATE UNIVERSITY | | • | 2 | 1 | BABCOCK AND WILCOX COMPANY | 1 | | KELLY AIR FORCE BASE | 1... | | MN | Standard Distribution | Ptd. | MN | Standard Distribution | |---|--------------|--|------|----------------|---| | 2 | 1 | KNOLLS ATOMIC POWER LABORATORY | 1 | | NUCLEAR MATERIALS AND EQUIPMENT | | 1 | | LING TEMOO VOUGHT, INC. | _ | _ | CORPORATION | | ı | | LOCKHEED-GEORGIA COMPANY | 1 | 1 | NUCLEAR UTILITY SERVICES, INC. | | : | | LOCKHEED MISSILES AND SPACE COMPANY | 1 | | OFFICE OF NAVAL RESEARCH, LONDON | | | | (NASA) | 1 | | OFFICE OF THE CHIEF OF ENGINEERS | | 2 | 1 | LOS ALAMOS SCIENTIFIC LABORATORY | 1 | | OFFICE OF THE CHIEF OF NAVAL OPERATIONS | | | | LOYELACE FOUNDATION | 1 | | OHIO STATE UNIVERSITY | | 1 | | M & C NUCLEAR, INC. | 1/_ | . פא | PAN AMERICAN WORLD AIRWAYS, INC. | | 1 | 1 | MALLINCKRODT CHEMICAL WORKS | 2 | 1''' | FUBLIC HEALTH SERVICE | | 1 | | MARE ISLAND NAVAL SHIPYARD | | 4 | _PUBLIC-HEAL-FH-SERVICE, CINCINNATI | | 1 | | MARITIME ADMINISTRATION | 1 | 1 | PUBLIC HEALTH SERVICE (KNAPP) | | 1 | ì | MARTIN-MARIETTA CORPORATION | 1 | | PUBLIC HEALTH SERVICE, LAS VEGAS | | | | MASSACHUSETTS INSTITUTE OF TECHNOLOGY | 1 | | PUBLIC HEALTH SERVICE, MONTGOMERY | | | į | MOUND LABORATORY | | · | PUBLIG HEALTH-SERVICE, WINCHESTER | | | 3 | NASA LEWIS RESEARCH CENTER | 1 | | PURDUE UNIVERSITY | | | -1 | -NASA-LEWIS RESEARCH-CENTER, SANDUSKY- | 1 | | RADIOPTICS, INC. | | 1 | | NASA MANNED SPACECRAFT CENTER | 1 | | RAND CORPORATION | | 2 | 1 | NASA SCIENTIFIC AND TECHNICAL | 1 | | REACTIVE METALS, INC., ASHTABULA | | | | INFORMATION FACILITY | 1 | | RESEARCH ANALYSIS CORPORATION | | 1 | 1 | NATIONAL AGRICULTURAL LIBRARY NATIONAL CANCER INSTITUTE | 1 | | REYNOLDS ELECTRICAL AND ENGINEERING COMPANY, INC. | | | } | -NATIONAL-INSTITUTES-OF-HEALTH- | 1 | | ROCKY MOUNTAIN ARSENAL | | | ì | NATIONAL LEAD COMPANY OF OHIO | 1 | | SANDIA CORPORATION, ALBUQUERQUE | | ١ | | NATIONAL LIBRARY OF MEDICINE | 1 | | SANDIA CORPORATION, LIVERMORE | | 1 | | NATIONAL MILITARY COMMAND SYSTEM SUPPORT CENTER | 1 | | SCHENECTADY NAVAL REACTORS OFFICE | | 6 | , | NATIONAL REACTOR TESTING STATION (PPCO) | 1 | | SCHOOL OF AEROSPACE MEDICINE | | 1 | | NAVAL MEDICAL RESEARCH INSTITUTE | 1 | | SECOND AIR FORCE (SAC) | | 1 | | NAVAL ORDNANCE LABORATORY | 1 | | SOUTHWEST RESEARCH INSTITUTE | | | | | . 1 | 1 | STANFORD UNIVERSITY (SLAC) | | 1 | | NAVAL POSTGRADUATE SCHOOL | 1 | ٠ | TENNESSEE VALLEY AUTHORITY | | | | NAVAL PROPELLANT PLANT | 1 | | TODD SHIPYARDS CORPORATION | | 2 | 1 | NAVAL RADIOLOGICAL DEFENSE LABORATORY | 1 | | TRW SPACE TECHNOLOGY LABORATORIES (NASA) | | 3 | | NAVAL RESEARCH LABORATORY | 1 | | TULANE UNIVERSITY | | 1 | | NEVADA OPERATIONS OFFICE | 2 | 1 | UNION CARBIDE CORPORATION (ORGDP) | | 1 | 1 | NEW BRUNSWICK AREA OFFICE | | - | | | 1 | | NEW JERSEY STATE DEPARTMENT OF HEALTH | 7 | 2 | UNION CARBIDE CORPORATION (ORNL) | | 1 | | NEW YORK OPERATIONS OFFICE | | * | UNION CARBIDE-GORPORATION-(ORNL-Y-12) | | 1 | | NEW YORK STATE DEPARTMENT OF HEALTH | | - | -UNION-CARBIDE-CORPORATION-(ORNL-Y-12-BL-) | | 1 | | NEW YORK UNIVERSITY (EISENBUD) | • | - | -UNION-CARBIDE-CORPORATION, PADUCAH- | | 1 | | NRA, INC. | 2 | 1 | UNITED NUCLEAR CORPORATION (NDA) | UC-41 Ptd. **HEALTH AND SAFETY** MN ## EXTERNAL RELEASE OF TECHNICAL INFORMATION | Description of Material | No: DP-1006 Date: 12/15/65 | |---------------------------------------|----------------------------| | Title: Savannah River Plant Critic | ality Dosimetry System | | Author: C. N. Wright, J. E. Hoy, an | d W. F. Splichal, Jr. | | Type of Material | | | Classified DP Report | Classified Paper | | Unclassified DP Report 🔀 | Unclassified Paper | | Letter | | | <u> Technical Content</u> | | | Approved by /s/ C.M. Patte | rson Date: 8/17/65 | | Classification | | | Approved by SuvRes | Date: 12/15/45 | | Authority: Topic 2.2 CG-UF-1 | | | Topic 705.1 SROO Classification | Guide | | | | | | | | | | | Category if DP Report | | | Approved by S. W. O'Rear | Date: 12/15-165 | | Final Du Pont Release | | | Approved by Coordinating Organization | Date: /3/2//65 | | Released by: R. G. Erdley: 12/20/65 | | ### E. I. DU PONT DE NEMOURS & COMPANY SAVANNAH RIVER LABORATORY AIKEN, SOUTH CAROLINA 29802 (TWX: 803-824-0018, TEL: 803-824-6331, WU: AUGUSTA, GA.) CC: L. C. Evans - C. W. J. Wende - J. W. Croach S. A. McNeight W. P. Overbeck - G. Dessauer - TIS File December 15, 1965 Mr. R. G. Erdley, Chief Patent Branch Savannah River Operations Office U. S. Atomic Energy Commission Post Office Box A Aiken, South Carolina Dear Mr. Erdley: #### REQUEST FOR PATENT REVIEW Please review for patent matter: DP-1006, Savannah River Plant Criticality Dosimetry System, by C. N. Wright, J. E. Hoy, and W. F. Splichal, Jr. If any technical clarification is needed please call J. E. Beach whose document review is attached. Please telephone your comments to the TIS Office (Ext. 3402) and notify me by signing and returning to TIS the original of this letter. A copy is provided for your file. If you decide to pursue a patent on any development covered, I shall be happy to supply additional information required such as appropriate references and the names of persons responsible for the development. The above item is approved for release. Very truly yours, R. G. Erdley, Chief Date Patent Branch SROO, USAEC C. W. J. Wende, Director Technical Division By: Seach Form AEC-426(7,64) AEC Manual Chapter 3202, Appendix 064a ## UNITED STATES ATOMIC ENERGY COMMISSION PUBLICATION RELEASE FORM Document Number DP-1006 INSTRUCTIONS: This form should accompany each UNCLASSIFIED document the first time it is submitted to the USAEC Division of Technical Information Extension, Post Office Box 62, Oak Ridge, Tennessee. | Document Title Document Title Document Title | Date of Document Nov. 1965 | |--
---| | Author(s) C.N. Wright, J.E. Hoy, W.F. Spl | chal, Jr. Contract No. AT(07-2)-1 | | II or III below if Journal Publication is Intended | ion or Oral Presentation is Intended. (Use Section | | Information, National Bureau of Standards (formerly Copies specified in TID-4500 has been forwarded to the further distribution to domestic and foreign depository in Nuclear Science Abstracts. | TS) (Federal Clearinghouse sale price is \$). The number of the Division of Technical Information Extension for stock and for libraries, foreign exchange organizations, etc., and for announcement | | Division of Technical Information Extension to: a Make complete TID-4500 distribution includin | stribution has not been made. Copies are being furnished for the g copies to Federal Clearinghouse (sale price is \$) and to depos- | | distribution has been made in accordance with | depository libraries, etc. AEC and other Government agency TID-4500 (Federal Clearinghouse sale price is \$). Clearinghouse distribution. DTI may reproduce from copy enclosed | | 3. No copies have been printed for TID-4500 and reders and make TID-4500 distribution, including copies to Enclosure is: a. Printed copy b. Typed | Federal Clearinghouse for public safe, depository libraries, etc. | | (Up to 25 copies will be furnished to authors if desire | d. Indicate number) report, has been declassified with without deletions. TID-4500 distribution, including copies to Federal Clearinghouse | | 11. Document Enclosed is a TID-4500 Standard Distr
Publication: | ibution Report which is also intended for Journal | | Clearinghouse and to the domestic depository libraries 2. Copies are being furnished DTI to make TID-4500 (A | EC) distribution, and single copy distribution to redefin Creating number of the manufacture of the control | | Document enclosed has or will be submitted for publication | in the following scientific journal: | | (Name of Journal) | (Expected date of issuance) | | III. Document enclosed is intended for publication in distribution within the AEC and single copy distributory libraries. | n a journal, whose publication policy precludes advance ribution to Federal Clearinghouse and to domestic de- | | 1. Paper has been or will be submitted for publication in the | following scientific journal: | | (Name of Journal) | (Expected date of Issuance) | | (NOTE: DTI will hold this document for internal use and will unique circumstances when the report is required by present we in the journal. Such further distribution by DTI will be limited | not announce in NSA. No further distribution will be made except in rk of another AEC Contractor in advance of the paper's appearance to specific requests for this information.) | | V.□ Document enclosed is intended for O | ral Presentation. | | |--|--|--| | | | • | | Name, Location, Sponsor of Publication plans are: | | Date | | This paper will be included in the published pr This paper will not be included in published pr DTI is requested to reproduce and make | | | | libraries and announce in NCA | 111)-4500 distribution, in | acluding copies to Federal Clearinghouse density | | please transmit copies to DTI with a new | ribution, including copies PRF appropriately check | s to Federal Clearinghouse. (Note: When printed, | | c. Paper will be submitted for journal publi submit to DTI a new PRF appropriately c | cation. (NOTE: When pathecked in either Section | per is submitted for journal publication, please II or III.) | | . Document enclosed is an internal or in
Journal Publication or Oral Presentation | formal report not int | | | Journal Publication or Oral Presentation | on. | ended for TID-4500 Standard Distribution, | | EC Manual Chapter 3202 requires that informal report ontained in internal reports also appear in a distributa hapter 3202 does recognize that issuing one of the second se | ts generally be given TID ble document which rece | 0-4500 distribution, and that technical information | | hapter 3202 does recognize that issuing organizations raternal reports (subsequently distributed externally) uniginator, or DTI and the cognizant AEC Program Divide Federal Clearinghouse. Recommendations area. | may wish to recommend o | distribution limitations for informat | | 1. DTI is is not to make selected and it | - | : | | DTI is is not to make selected positive dist DTI is is not to fill requests for this docume DTI is is not to selectively distribute and fi DTI is is not to make a single copy availab | - TOTAL TIEC CONTRACTORS. | • | | 4. DTI is is not to make a single copy availab | le to Federal Clearinghor | nent from other Government agencies. use and announce in NSA. | | IF DISTRIBUTION LIMITATIONS ARE INDICATED AI
CHAPTER 3202. | 30VE, LIST JUSTIFICATION | on or reasons as required by AEC Manual | | | | | | | | | | | · · | | | | | | | | | | | ent clearance for the document cited in this | s Publication Release | Form haste has not Those start | | | | Deen obrained. | | | This release | is submitted by: (signature) | | | | James W. H211
(name typed) | | | | | | | Organization | Savannah River Laboratory | | desired that correspondence concerning this documer indicate | Date | 1-18-65 | . بسم تراج 664432 DP-1006 Health and Safety (TID-4500, 45th Ed.) #### SAVANNAH RIVER PLANT CRITICALITY DOSIMETRY SYSTEM bу Charles N. Wright John E. Hoy William F. Splichal, Jr. Approved by C. M. Patterson, Research Manager Radiological and Environmental Sciences Division November 1965 E. I. DU PONT DE NEMOURS & COMPANY SAVANNAH RIVER LABORATORY AIKEN, SOUTH CAROLINA CONTRACT AT(07-2)-1 WITH THE UNITED STATES ATOMIC ENERGY COMMISSION #### **ABSTRACT** Fissionable materials are handled and processed
at the Savannah River Plant. Although the probability of an accidental criticality occurring is small, the possibility must be considered. This report describes the methods which would be used to segregate exposed and nonexposed personnel and to determine neutron and gamma doses received by those who were exposed. ### CONTENTS | <u>P</u> | age | |--|-----| | List of Tables and Figures | iv | | Introduction | 1 | | Summary | 1 | | Discussion | 2 | | Screening | 2 | | Preliminary Dose Estimates | 2 | | Final Dose Determination | 5 | | Description of Dosimeter | 5 | | Assessment of Neutron Fluence | 6 | | Energy Intervals of 0.0 eV to 0.5 eV, and 0.5 eV to 2 eV. | 7 | | Energy Intervals of 2 eV to 1 MeV | 7 | | Energy Interval of 1 MeV to 2.9 MeV | 8 | | Energy Interval above 2.9 MeV | 8 | | Orientation of Dosimeter | 8 | | Determination of Neutron Dose | 9 | | Gamma Dose | 10 | | Tests of Dosimeter | 11 | | Bibliography | 14 | | Appendix I - Manual Calculation of CND Results | 15 | | Appendix II - Fortran Program for Computation of Dose from | | | CND Data | 20 | #### LIST OF TABLES AND FIGURES | Table | | | | | | | | | | | Page | |--------|---------------------------------------|-----|-----|-----|-----|-----|---|---|---|---|------| | I | Dosimeter Components | | | • | • | | | • | | • | 6 | | II | Average Dose Conversion Factors | • | | | • | • | | | • | | 10 | | III | Results of Dosimeter Test at Godiva | | | • | • | | • | • | | | 11 | | IA | Results of HPRR Test | | | • | | • | • | • | • | • | 13 | | Figure | | | | | | | | | | | | | 1 | Effect of Neutron Energy on Blood Sod | Lum | Act | ive | ati | Lor | 1 | | • | • | ; 3 | | 2 | Film Badge | • | | • | • | • | ٠ | | • | • | 4 | | 3 | SRP Criticality Dosimeter | • | | | | • | • | • | • | • | 5 | | 4 | Arrangement of Components - Godiva . | | • | | | • | • | • | • | • | 11 | | 5 | Arrangement of Components - HPRR | | | | | | | | | | 12 | #### SAVANNAH RIVER PLANT CRITICALITY DOSIMETRY SYSTEM #### INTRODUCTION At any location where fissionable materials are processed, the possibility of a criticality accident must be considered. In the event of such an accident, it is desirable that the radiation dose received by personnel be quickly determined. The Savannah River Plant (SRP) system of dosimetry for use after a criticality accident may be considered in three phases. The first is separation of exposed and unexposed personnel immediately after the accident. Indium foils in the film dosimeter and identification badge would be activated by neutron exposure and provide an indicator of exposed personnel. In the second phase, a preliminary estimate of neutron dose would be made by measurement of the ²⁴Na activation in the blood and body of exposed persons; the gamma dose would be indicated from film dosimeter results. For the final phase, a more precise determination of dose would be made. This determination requires a simple, dependable dosimeter that could be worn by all employees working with fissionable material. In addition, the dosimeter would give accurate indications over a wide range of neutron and gamma doses, be lightweight, small, and convenient to wear. (Dosimeters that are mounted in fixed positions in work areas may be difficult to recover after an accident, and errors in interpretation of dose may arise because these instruments are at different locations from the exposed personnel.) The criticality neutron dosimeter (CND) was designed so that only one dosimeter would be required to determine the total dose to the wearer. Low cost was a design objective because several hundred units are required. This report describes the techniques and instruments for the three phases of dosimetry. Emphasis is placed on the more exact measurements that are made with the criticality neutron dosimeter. #### SUMMARY In the event of a criticality accident at SRP, the radiation doses received by personnel involved would be determined by use of indium foils in the identification badges and film dosimeters, from blood sodium activation, and from analysis of the SRP Criticality Neutron Dosimeter (CND). The CND contains cadmium-shielded and unshielded indium foils, a copper foil, sulfur powder, sodium fluoride powder, and thermoluminescent dosimeters (TLD). From determination of induced radioactivity in the foils and powders, the neutron fluence in five energy intervals may be determined. By comparing activity induced in the sodium fluoride with the activity induced in the blood of the wearer, the direction from which he was exposed may be estimated. The TLD's enable measurement of gamma exposure between 1R and 10^5 R. Appendices describe both manual and computer methods used in processing the data obtained. #### DISCUSSION #### **SCREENING** A basic requirement of a criticality dosimetry system is the ability to screen quickly a large number of persons, in order to segregate the exposed and unexposed individuals. At SRP this screening ability is provided by 0.005-inch-thick indium foils in the identification badges and film dosimeters. The foil in the identification badge is approximately 1/2-inch square. After activation, it will cause a response of at least 100 c/m on a GM survey instrument (when placed one centimeter from the wall of the GM tube) for every Rad of neutron exposure. The foil in the film badge has four times the area of that in the identification badge with a corresponding increase in sensitivity. Because it is almost impossible that a criticality accident at SRP will involve persons not wearing an identification badge, and highly unlikely that persons not wearing a film badge would be exposed, the health physicist is able to quickly segregate exposed and unexposed persons. No dose estimates are made from the GM instrument readings. #### PRELIMINARY DOSE ESTIMATES A rough estimate (±100%) of the neutron dose received can be made by placing the probe of a GM survey instrument against the abdomen of a person, having him bend at the waist, and using the following equation: Dose (Rads) = $$\frac{2 \times \text{cpm}}{\text{body wt in lb}}$$ where cpm is the count rate per minute (corrected for decay to time of incident) from activation of sodium in the body. Estimates by this method may be pessimistic because short-lived ³⁸Cl is also a product of neutron activation of body elements. Persons determined by these screening methods to have been exposed are checked for contamination, decontaminated if necessary (unless badly injured), and placed under medical care. A 50 ml sample of blood is obtained from each of these people for further analysis before any sodium is administered, either through food or medical treatment. Ammonium oxalate is added to the sample to prevent coagulation. The blood is centrifuged and a 10 ml sample of plasma is decanted into a standard culture tube (15 mm x 125 mm). The tube is placed horizontally on a 3" x 3" sodium iodide scintillation counter, and the gamma ray activity between 2.6 and 3.0 MeV is determined. This energy interval is chosen to avoid interference from ³⁸Cl. Test exposures to neutron spectra, ranging from an unmoderated fission spectrum at the ORNL Health Physics Research Reactor (HPRR)⁽¹⁾ to a thermal spectrum at the Standard Pile (SP) reactor at the Savannah River Plant,⁽²⁾ have provided factors for converting ²⁴Na activity in blood plasma to a Rad dose (Figure 1). For first estimates of dose, an assumption of the neutron spectrum must be made from knowledge of the type of critical assembly involved. The broad characterizations used are "Fast," "Semimoderated," and "Thermal." Conversion factors used for these cases are: Fast $1.65 \times 10^5 \text{ Rad/}\mu\text{c/cc}$ Semimoderated $1.00 \times 10^5 \text{ Rad/}\mu\text{c/cc}$ Thermal $0.75 \times 10^5 \text{ Rad/}\mu\text{c/cc}$ FIG. 1 EFFECT OF NEUTRON ENERGY ON BLOOD SODIUM ACTIVATION After the CND is processed, a better definition of the spectrum will be available and the dose estimate can be refined. Preliminary gamma dose measurements are obtained from the film dosimeter. The front face, containing the indium foil is removed from the film badge (Figure 2) as soon as practicable after the accident so that the film will not be exposed excessively by the indium. The film from the badge is pencil-marked in the darkroom to retain identity, in case the X-rayed identification has been obliterated by the exposure, and then is processed normally. Because of silver activation and other neutron effects, the indicated gamma reading may be high. Experimental data indicate that Du Pont type 1290 dosimeter film is not more than 7 percent sensitive to fast neutrons. (If the film is exposed to 100 Rad of fast neutrons, the indicated gamma reading will be not more than 7 Rad.) DPSPF-6341-1 FIG. 2 FILM BADGE #### FINAL DOSE DETERMINATION The most accurate determination of dose received would be made from the evaluation of the components contained in the Criticality Neutron Dosimeter. #### DESCRIPTION OF DOSIMETER The original model of the dosimeter and its early development were described by Hoy⁽³⁾ in 1960. A diagram of the current model dosimeter is given in Figure 3. The components are housed in a "Mylar"* tube, 4-1/2 inches long and 1/2 inch in diameter, with a pocket clip attached. Indium, copper, and cadmium foils are shaped into hollow cylinders to reduce directional effects. These foils, and specific amounts of sodium fluoride and sulfur, are contained in three small polystyrene vials. ^{*} Du Pont trademark for polyester film. FIG. 3 SRP CRITICALITY DOSIMETER To expedite processing of the components after an accident, all activation materials are preweighed; the exact weights are listed in each dosimeter during assembly. The thermoluminescent lithium fluoride powder is contained in three smaller polyethylene vials. Table I describes the components. Cost of the dosimeter is approximately \$15. TABLE I Dosimeter
Components | Material | Size or Weight | | | | |-------------------------------|----------------------------------|--|--|--| | Cadmium (3 pieces) | 1" x 5/8" x 1/32" | | | | | | 3/8" diameter x 1/32" (2 pieces) | | | | | Indium (2 pieces) | 15/16" x 5/8" x 0.005" | | | | | | 1-7/16" x 5/8" x 0.005" | | | | | Copper | 15/16" x 5/8" x 0.005" | | | | | Sulfur | 1.00 gram | | | | | Sodium fluoride | 1.50 grams | | | | | Lithium fluoride
(3 vials) | 40 mg per vial | | | | #### ASSESSMENT OF NEUTRON FLUENCE The dosimeter measures the neutron fluence (time-integrated flux density) in five energy intervals across the fission neutron spectrum. Evaluation of fluence is based on activation of indium, copper, and sulfur. These were selected primarily because they have useful activation cross-section characteristics over a desired range of neutron energies. The neutron fluence, n/cm^2 , in each energy range is obtained from the following expression: $$n/cm^2 = \frac{d/s}{\sigma_{act} NG\lambda e^{-\lambda t}}$$ where, N = the number of nuclei with an activation cross section, $\sigma_{\mbox{act}}$ G = a constant to correct the observed counting rate, d/s, to the absolute disintegration rate of the target material t = the elapsed time in seconds between exposure and counting. This equation assumes that exposure was short, because a criticality alarm system causes immediate evacuation of personnel from work areas. An average activation cross-section is assigned to each energy interval. All foils and powders are counted in a lead-shielded $\beta-\gamma$ GM Counter, for which a Ra D&E conversion factor has been obtained. The GM tube is an end-window type with a window thickness of ~2 mg/cm². All foils are centered on the planchet with the outside surface facing the tube window. Powders are evenly spread over the surface of the planchet before counting. #### Energy Intervals of 0.0 eV to 0.5 eV, and 0.5 eV to 2 eV Bare and cadmium-shielded indium foils are used to determine neutron fluence in these energy intervals. Indium has two stable isotopes: $^{113}{\rm In}$ (4.28% abundance) and $^{115}{\rm In}$ (95.72% abundance). $^{115}{\rm In}$ (n, γ) $^{116}{\rm In}$ is the reaction of interest. $^{116}{\rm In}$ has three isomers, two of which have very short half-lives (2 seconds and 14 seconds); the third isomer, with a 54-minute half-life, is the principal source of radioactivity for a few hours after neutron irradiation. $^{114}{\rm In}$, resulting from the $^{113}{\rm In}$ (n, γ) $^{114}{\rm In}$ reaction, has an isomer with a 50-day half-life which is useful when a considerable delay occurs before counting. The cross section of indium approximates a 1/v relationship from 0.025 eV to 0.3 eV, that is, the cross section decreases as neutron velocity increases. Above 0.3 eV, resonances occur, with the principal peak at 1.4 eV. Cadmium of the thickness used in the dosimeter (0.03 inch) absorbs essentially all neutrons with energies less than 0.5 eV, the cadmium cutoff. Therefore, the difference between the activities of the bare and the cadmium-shielded indium foils is caused by neutrons in the energy interval from 0.0 eV to 0.5 eV. A factor of 1.15 is used to correct for the resonant absorption of neutrons by the cadmium shield. (4) The effective activation cross section for this interval is 145 barns. Activation of cadmium-shielded indium is used to measure the fluence in the energy interval from 0.5 eV to 2 eV. A resonance integral (corrected for flux depression) of 650 barns is assigned to this interval. #### Energy Interval of 2 eV to 1 MeV The reaction of interest for this energy interval is 63 Cu (n,γ) 64 Cu. 64 Cu has a 12.8-hour half-life. A competing activity resulting from 66 Cu (5-minute half-life) can be minimized by counting the copper no sooner than 1 hour after irradiation. The average activation cross section for 63 Cu in this energy range is 0.300 barn. $^{(5)}$ Above 1 MeV the inelastic neutron scattering cross section becomes dominant. The copper is shielded by indium and cadmium to minimize the effect of neutrons below 2 eV. #### Energy Interval of 1 MeV to 2.9 MeV The inelastic scattering reaction of fast neutrons with ¹¹⁵In is used to determine fluence above 1 MeV. While the threshold for this reaction is about 450 keV, its cross section becomes significant at 1 MeV. The average cross section above 1 MeV is 0.180 barn. The ^{115m}In isomer has a 4.5-hour half-life. Gamma spectrometric analysis is used to distinguish the activation due to the inelastic reaction from the activation by the epithermal neutrons. The cadmium-shielded indium foil is used for this measurement. The cross section for this reaction remains significant to values above 5 MeV. Therefore, the fluence of neutrons above 2.9 MeV, as determined from the activation of sulfur, must be subtracted from the fluence calculated from indium activation. The difference represents the fluence in the range from 1 MeV to 2.9 MeV. #### Energy Interval above 2.9 MeV The threshold reaction, ³²S (n,p) ³²P, is used to measure fluence above 2.9 MeV. Sulfur has a relatively high and constant cross section, and ³²P has a conveniently long half-life. #### ORIENTATION OF DOSIMETER Since the dosimeter is worn on the front of a person and the activation of the dosimeter is affected by the body's moderation and shielding, it is necessary to determine whether or not the wearer faced the neutron source in order to correct the fluence values. The correction is made by comparing the ²⁴Na in the wearer's blood with that in the sodium fluoride of the dosimeter. Blood sodium activation is relatively independent of body orientation to the source but is influenced by the energy of the neutrons. Activation of the sodium in the dosimeter is affected by both the body orientation and the neutron spectrum. To determine the relationship between the activation of the sodium (in the dosimeter and blood), the neutron energy, and the orientation of the dosimeter, polyethylene phantoms were exposed to neutrons from a graphite-moderated reactor and an unmoderated critical assembly. The phantoms contained sodium chloride solution of the same concentration as in human blood. Dosimeters were attached to the front (surface facing the source), side, and back of the phantom. From these experiments, the following relationships were empirically established: #### Case 1. When the source is to the side of the wearer $$Y = \frac{24 \text{Na per gram of sodium in NaF}}{24 \text{Na per gram of sodium in blood}} = 0.14$$ $\left[\frac{\text{thermal fluence}}{\text{fast fluence}}\right]^{0.61}$, where the thermal fluence and the fast fluence (greater than 2.9 MeV) were those values determined by the dosimeter (uncorrected for direction). Case 2. When the wearer is facing the source Case 3. When the wearer is facing away from the source $$\frac{24}{\text{Na}}$$ per gram of sodium in NaF < Y - 0.3Y The following factors are used to correct the fluence for the effects of body moderation and shielding. | Energy Range | Side
Exposure | Wearer
Facing Source | Wearer Facing
Away from Source | |-----------------|------------------|-------------------------|-----------------------------------| | 0.0 eV - 0.5 eV | 1 | 0.23 | 0,64 | | 0.5 eV - 2 eV | 1 | 0.35 | 1.6 | | 2 eV - 1 MeV | 1 | 0.45 | 2.0 | | 1 MeV - 2.9 MeV | 1 | 0.79 | 5.4 | | Above 2.9 MeV | 1 | 0.72 | 6.7 | #### DETERMINATION OF NEUTRON DOSE The dose equivalent is the product of absorbed dose (Rad), quality factor, dose distribution factor, and other modifying factors. The quality factor for criticality neutron exposures has not been established. For this reason the neutron dose is given in Rads. Snyder's (8) calculations were used to determine the tissue dose at a 5 cm depth, the depth of blood-forming organs. From these calculations, the relationship between $Rad/(n)(cm^2)$ and neutron energy was established. An average dose conversion factor was selected for each neutron energy interval (Table II). #### TABLE II #### Average Dose Conversion Factors | Energy Interval | $Rad/(n)(cm^2)$ | |-------------------|-------------------------| | Thermal to 0.5 eV | 0.16 x 10 ⁻⁹ | | 0.5 eV to 2.0 eV | 0.22 x 10 ⁻⁹ | | 2.0 eV to 1 MeV | 1.25 x 10 ⁻⁹ | | 1 MeV to 2.9 MeV | 2.87×10^{-9} | | 2.9 MeV and above | 4.80 x 10 ⁻⁹ | Manual calculation of the dose is lengthy and involved (see Appendix I); however, an electronic computer program which accepts counting data, decay and exposure times, and weights of activated materials is available (see Appendix II). The computer calculates the orientation of the dosimeter, fluence and dose in the five energy intervals, and total dose. If a dose value other than that at 5 cm depth is desired, suitable factors for converting fluence to dose for each spectrum segment may be applied to the fluence values which are obtained. #### GAMMA DOSE Lithium fluoride is used to measure the gamma dose from 25 mR to 10^6 R. Three polyethylene vials, each containing 40 mg of LiF, are included in the dosimeter. One of the LiF vials is used to establish the correct range setting for the electronic reader, and the other two vials are used for duplicate dose measurements. LiF, enriched to 99.91% ⁷Li, is relatively insensitive to neutrons. A 100 Rad neutron dose, primarily fast neutrons, resulted in an apparent gamma dose of 7 R. Gamma dose results are corrected for the direction of exposure as follows: Front Exposure 0.7 Side Exposure 1.0 Back Exposure 2.1 #### Tests of Dosimeter Several tests of the dosimetry system have been made to determine the quality of performance. The first of the tests was made at Los Alamos using the Godiva critical assembly as the neutron source. In this test, pairs of dosimeters were mounted on the outside of a 6-1/2 gallon cylindrical polyethylene container filled with an aqueous solution of sodium chloride having the same sodium concentration as human blood.
Arrangement of the components around the Godiva assembly is shown in Figure 4. Data in Table III indicate that the maximum deviation of the dosimeter from the calculated neutron doses was 12%, with an average deviation of 6.8%. The orientation or position of the dosimeter was correctly calculated for over 80% of the dosimeters. TABLE III Results of Dosimeter Test at Godiva (a) | Position
on Phantom | Computer Calculated Position | Dosimeter Results (Neutron Dose), Rad | |------------------------|------------------------------|---------------------------------------| | Front | Front | 659 | | Front | Front | 683 | | Side | Side | 759 | | Side | Front | 747 | | Back | Back | 752 | | Back | Back | 792 | | Not on } Phantom } | | { 746
779 | | Not on } Phantom } | | { 757
{ 669 | (a) LASL calculated neutron dose was 708 Rad. FIG. 4 ARRANGEMENT OF COMPONENTS - GODIVA Another test of the system was made at the Health Physics Research Reactor (HPRR) at Oak Ridge National Laboratory. Its primary purpose was to investigate the validity of using salt-solution-filled polyethylene containers as phantoms. In this test pigs were used as phantoms. The thickness of their bodies and the salt content of their blood closely approximates these characteristics in man. Pigs and containers were paired as shown in Figure 5. The average deviation between the doses was 13%, as measured by the dosimeters attached to the containers and pigs. FIG. 5 ARRANGEMENT OF COMPONENTS - HPRR The entire dosimetry system was tested at HPRR. The dosimeters were exposed, quickly returned to the Savannah River Plant, and processed according to procedures. The people who evaluated the doses had no knowledge of the test conditions. There was close agreement between the results of duplicate dosimeters at each position, and the correct orientation was calculated in the majority of the cases (Table IV). Where errors were made in the calculation of orientation, a front exposure was selected instead of a side exposure. The difference in dose correction factors for these two positions is usually comparatively small. These tests showed that the dosimetry system can evaluate doses received by up to 20 workers within six hours after exposure, and can provide a preliminary estimate within one hour. TABLE IV Results of HPRR Test | | | Computer Calcu | lated Position | | eter Results
on Dose), rad | | | |-----------|----------|----------------|----------------|-----|-------------------------------|--|--| | Dosimeter | Position | Dosimeter A(a) | Dosimeter B(a) | A · | В | | | | Phantom | No. 1 | | | | | | | | Front | | Front | Front | 904 | 862 | | | | Side | | Side | Front | 722 | 753 | | | | Back | | Back | Back | 856 | 864 | | | | Phantom | No. 2 | | | | | | | | Front | | Front | Front | 598 | 568 | | | | Side | | Front | Front | 396 | 498 | | | | Back | | Back | Back | 624 | 554 | | | | Phantom | No. 3 | | | | | | | | Front | | Front | Front | 391 | 400 | | | | Side | | Side | Front | 373 | 461 | | | | Back | | Back | Back | 410 | 484 | | | ⁽a) Two dosimeters were located at each position. In a more recent test, the criticality dosimeters used at seven nuclear energy facilities in the USA were compared. The dosimeters were exposed to a burst from the HPRR, and the air dose was measured. The SRP results for neutron dose were within three percent $^{(7)}$ of the average of all results. #### **BIBLIOGRAPHY** - 1. J. A. Auxier. "The Health Physics Research Reactor." Health Physics. 11, 89-93 (1965). - 2. R. C. Axtmann, et al. <u>Initial Operation of the Standard Pile</u>. USAEC Report DP-32, E. I. du Pont de Nemours and Company, Savannah River Laboratory, Aiken, S. C. (1953). - 3. J. E. Hoy. An Emergency Neutron Dosimeter. USAEC Report DP-472, E. I. du Pont de Nemours and Company, Savannah River Laboratory, Aiken, S. C. (1960). - 4. C. W. Tittle. "Slow-Neutron Detection by Foils I." <u>Nucleonics</u>. 8, No. 6, 5-9 (1951); and "Slow-Neutron Detection by Foils II." <u>Nucleonics</u>. 9, No. 1, 60-67 (1951). - 5. Lowell L. Anderson. "Cross Section of Copper-63 for Nuclear Accident Dosimetry." Health Physics. 10, 315-322 (1964). - 6. W. S. Snyder. "Protection Against Neutron Radiation Up to 30 Million Electron Volts." National Bureau of Standards Handbook 63, 39-61, Washington, D. C. (1957). - 7. "Health Physics Division Annual Progress Report for Period Ending July 31, 1965." USAEC Report ORNL-3849, Oak Ridge National Laboratory, Oak Ridge, Tennessee, p. 172 (1965). #### APPENDIX I #### MANUAL CALCULATION OF CND RESULTS In the calculations that follow, the same identifying terminology is used in both the computer and manual methods to facilitate comparing the methods. If the indium foils are counted less than 10 hours after activation, the 54-minute 118 In is used for determination. The correction factors used in this case are: DK = $$(1 - e^{(-2.16 \times 10^{-4}T_1)})$$ 60 (Buildup Correction) DK1 = $$e^{(-0.0128 \times T_{21})}$$ (Decay Correction for Bare Indium Foil) DK2 = $$e^{(-0.0128 \times T_{22})}$$ (Decay Correction for Cd-In Foil) CONST = 0.648 (Counter Factor) ECON = 0.102 (Counter Factor) where, T_1 = estimated exposure time in seconds T_{21} = decay time in minutes from time of exposure to time bare indium foil was counted. T_{22} = decay time in minutes from time of exposure to time cadmium-covered indium foil was counted. If the indium foils are counted after more than 20 hours have elapsed since activation, the 50-day ¹¹⁴In is used for the determination. In the interval between 10 hours after exposure and 20 hours after exposure, a mixture of the two isotopes is present, and inaccurate results may be obtained if the foils are counted during this time interval. The constants used for the 114 In calculations are: DK = $$(1 - e^{(-1.6 \times 10^{-7})T_1})$$ 60 $$DK1 = e^{(-9.62 \times 10^{-6})}T_{21}$$ $$DK2 = e^{(-9.62 \times 10^{-6})}T_{22}$$ CONST = 0.0112 ECON = 7.1 #### Thermal The thermal flux is calculated using the disintegration rates of the cadmium-shielded indium and bare indium foils as follows: $$FXTH = Thermal flux, = \frac{\frac{\text{(DPM1)}}{\text{(WTBI)}} - \frac{\text{(DPM2)}}{\text{(DK)}}}{\frac{\text{(DK)}}{\text{(CONST)}}} = \frac{\frac{\text{(DPM2)}}{\text{(DK2)}}}{\frac{\text{(DK2)}}{\text{(CONST)}}}$$ where, DPM1 = net activity (d/m) of the bare indium foil, not corrected for decay. DPM2 = net activity (d/m) of the cadmium-covered indium foil, not corrected for decay. WTBI = weight of bare indium foil in grams. WTCI = weight of cadmium-covered indium foil in grams. #### Epithermal (0.4 eV to 2 eV) The epithermal flux is calculated from the activity of the cadmium-covered indium foil as follows: EPTHF = Epithermal flux, = $$\frac{\text{(DPM2) (ECON)}}{\text{(WTCI) (DK) (DK2)}}$$ #### Resonance (2 eV to 1 MeV) The resonance flux is calculated from the activity of the copper foil as follows: FXCU = Resonance flux, = $$\frac{\text{(DPM4) (61.3)}}{\text{n/(cm}^2)(\text{sec})} = \frac{\text{(WTCU)(1-e}^{(-1.5 \times 10^{-8})}T_1)(e^{(-9.02 \times 10^{-4})}T_{24})}$$ where, DPM4 = net activity (d/m) of copper foil, not corrected for decay. WTCU = weight of copper foil in grams. T^{24} = decay time in minutes from time of exposure to time copper foil was counted. $T_1 = exposure time in seconds.$ #### Fast (3.0 to 10 MeV) The fast flux is determined from activation of the sulfur powder in the CND as follows: FXS = Fast Flux = $$\frac{\text{(DPM5) (4.30)}}{\text{(WTS) (1-e}^{(-0.561 \times 10^{-8})T_1}) (e^{(-3.37 \times 10^{-8})T_{25}})}$$ where, DPM5 = net activity (d/m) of sulfur powder, not corrected for decay. WTS = weight of sulfur powder in grams. $T_1 = exposure time in seconds.$ T_{25} = decay time in minutes from time of exposure to time sulfur was counted. #### Medium Energy (1 - 3 MeV) The medium and high energy flux is calculated from the activation of the ^{115M}In isomer (4.5-hour half-life) in the cadmium-covered indium foil, as determined by pulse height analysis. The calculation below determines the total flux above 1 MeV. FXINM = Medium and high energy flux = (DPM6) (192.0) (WTBI) $$(1-e^{(-4.28 \times 10^{-8})T_1}) (e^{(-0.154)T_{26}})$$ where DPM6 = c/m in channels 31-36 not corrected for decay, but corrected for interference by other indium isotopes. T_{26} = Decay time in hours from time of exposure to time foil was counted. To determine the medium energy flux, subtract the fast flux (above 3 MeV) as obtained by sulfur counting from the fast and medium flux (above 1 MeV), as obtained above. The resulting difference is the medium energy flux. #### **Determination of Directional Corrections** Since the activity of the foils is influenced by the relative positions of the wearer's body and the exposing source, i.e., whether he had his back to the source or was facing it, it is necessary to determine this relationship so that appropriate correction factors may be applied. This is done by calculating the ratio of the ²⁴Na activation in the sodium fluoride powder of the CND and the ²⁴Na activity in a sample of the wearer's blood as follows: $$DPGNF = \frac{(DPM3) (1.82)}{(WTNAF) (e^{(-0.75 \times 10^{-3})T_{23}})}$$ (1) where, DPM3 = net activity (d/m) of sodium fluoride powder not corrected for decay. WTNAF = weight of the sodium fluoride powder in grams. T₂₃ = decay time in minutes from time of exposure to time sodium fluoride was counted. DPGBS = (UCPCC) $$(0.694 \times 10^9)$$ (2) where, UCPCC = $\mu c/cc$ of ²⁴Na found in the serum of the wearer's blood - corrected for decay. $$RATIO = \frac{DPGNF}{DPGBS}$$ (3) Ideally, this ratio would be unity if the sodium fluoride vial was exposed to the same flux as the body of the wearer (side exposure); the vial activity would be higher if it were closer to the source than the wearer (front exposure); and would be lower if the vial were on the opposite side of the person from the source (rear exposure). In actuality, this ratio is also affected by the
relative "hardness," energy-wise, of the spectrum, so that the predicted "ideal" ratio for the spectrum being measured must be calculated from the thermal and fast fluxes as follows: $$Y = 0.14 \left(\frac{\text{Thermal flux}}{\text{Fast flux}} \right)^{0.61}$$ where, Y =the predicted ratio. To determine direction, compare the RATIO previously computed with $(Y \pm 0.3Y)$. If the RATIO falls within these limits, the exposure is called a "side" exposure, and no directional corrections will be made in calculating dose, i.e., all correction factors are 1.0. If the RATIO is greater than (Y + 0.3Y), the majority of the dose was received from the front. The following correction factors will be used in dose computation in this case: CT = Thermal correction = 0.23 CET = Epithermal correction = 0.35 CCU = Resonance correction = 0.45 CM = Medium energy correction = 0.79 CS = Fast correction = 0.72 If the RATIO is less than (Y - 0.3Y), the majority of the dose was received from the rear. In this case, the correction factors are: CT = Thermal correction = 0.64 CET = Epithermal correction = 1.6 CCU = Resonance correction = 2.0 CM = Medium energy correction = 5.4 CS = Fast correction = 6.7 #### Dose Calculation Thermal dose (THRAD) = (Thermal flux) (CT) (0.17 x 10^{-9}) (T₁) Epithermal dose (ETRAD) = (Epithermal flux) (CET) (0.22 x 10^{-9}) (T₁) Resonance dose (CURAD) = (Resonance flux) (CCU) (1.25 x 10^{-9}) (T₁) Medium Energy dose (RADIN) = (Medium energy flux) (CM) (2.87 x 10^{-9}) (T₁) High Energy dose (SRAD) = (Fast flux) (CS) (3.6 x 10^{-9})(T₁) TOTAL = THRAD + ETRAD + CURAD + RADIN + SRAD = entire neutron dose in Rads. #### APPENDIX II # FORTRAN PROGRAM FOR COMPUTATION OF DOSE FROM CND DATA | SEQ | STMNT | FURTRAN STATEMENT | |----------|-------|--| | 1 | | PRINT 60 | | 2 | | PRINT 61 | | 3 | | PRINT 66 | | 4 | | PRINT 67 | | 5 | | PRINT 64 | | 6 | 82 | IND=O | | 7 | | PRINT 81 | | 8 | 1 | READ 50. IDEN | | 9 | | IF(IDEN)83,83,84 | | 10 | 84 | READ 74,T1 | | 11 | | READ 72,WTBI | | 12 | | READ 51,T21 | | 13
14 | | READ 74, DPM1 | | 15 | | READ 72,WTCI
READ 51,T22 | | 16 | | READ 74.DPM2 | | 17 | | READ 72.WTNAF | | 18 | | READ 51, T23 | | 19 | | READ 74, DPM3 | | 20 | | READ 72.WTCU | | 21 | | READ 51,T24 | | 22 | | READ 74, DPM4 | | 23 | | READ 72, WTS | | 24 | | READ 51, T25 | | 25 | | READ 74, DPM5 | | 26 | | READ 74, UCPCC | | 27 | | READ 72, T26 | | 28 | | READ 74, DPM6 | | 29 | | READ 72, WTINM | | 30
31 | 5 | IF(SENSE SWITCH 2) 5,6 | | 32 |) | CAMS=1.6E+07
CAMM=9.62E-06 | | 33 | | CONST=.0112 | | 34 | | ECON=7.1 | | 35 | | GO TO 7 | | 36 | 6 | CAMS=2.16E-04 | | 37 | | CAMM=.0128 | | 38 | | CONST=+648 | | 39 | | ECON=.102 | | 40 | 7 | DK=(1(1./EXPF(CAMS*T1)))*60. | | 41 | | DKI=1./EXPF(CAMM*T21) | | 42 | | DK2=1./EXPF(CAMM*T22) | | 43 | | FXTH=((DPM1*WTCI/(DK*DK1*WTBI))-(DPM2*1.15/(DK*DK2)))/(CONST*WTCI) | | 44 | | DKS=(11./EXPF(.561E-06*T1))*(1./EXPF(3.37E-05*T25)) | | 45 | | FXS=DPM5*4.30/(WTS*DKS) | ``` FORTRAN STATEMENT SEQ STMNT EPTHE=DPM2*ECON/(WTCI*DK*DK2) 46 DKCU=(1.-1./EXPF(1.5E-05*T1))*(1./EXPF(.000902*T24)) 47 48 FXCU=DPM4*61.3/(DKCU*WTCU) DKINM={1.-(1./EXPF([4.28E-05]*T1)))*(1./EXPF([1.54E-01)*T26)) 49 FXINM=DPM6 * 192 . O/(WTINM * DKINM) 50 DPGNF=DPM3*1.82/(WTNAF*(1./EXPF(.77E+03*T23))) 51 52 DPGBS=UCPCC*.694F09 RATIO=DPGNF/DPGBS 53 Y=(0.14)*((FXTH/FXS)**.61) 54 55 PRINT 53, IDEN PRINT 80, RATIO, Y 56 Y1=Y+0.3*Y 57 Y2=Y-0.3*Y 58 IF(RATIO-Y1)3,3,13 59 3 IF (RATIO-Y2)11,11,12 60 61 11 CT=.64 CET=1.6 62 CCU=2.0 63 CM=5.4 64 CS=6.7 65 PRINT 54 66 67 GO TO 20 12 CT=1.0 68 CET=1.0 69 70 CCU=1.0 CS=1.0 71 72 CM=1.0 PRINT 55 73 GO TO 21 74 75 CT=.23 13 76 CET=.35 77 CCU=.45 CM=.79 78 79 CS=.72 PRINT 56 80 20 IF(SENSE SWITCH1)12,21 81 TFXTH=FXTH*CT*T1 21 82 TFXS=FXS*CS*T1 83 84 THTFR=TFXTH/TFXS TFXTH=FXTH*T1 85 TEPTH=EPTHF*T1 86 TFXS=FXS*T1 87 TFXCU=FXCU*T1 88 TFINM=FXINM*T1 89 TINMS=TFINM-TFXS 90 TFLUX=TFXTH+TEPTH+TFXCU+TINMS+TFXS 91 THRAD=TEXTH*CT*0.16E-09 92 ETRAD=TEPTH*CET*0.22E-09 93 94 CURAD=TFXCU*CCU*1.25E-09 RADIN=TINMS*CM*2.87E-09 95 SRAD=TFXS*CS*4.8E-09 96 97 TOTAL = THRAD+ETRAD+CURAD+RADIN+SRAD ``` ``` SEQ SIMNI FORTRAN STATEMENT PRINT 30,TEXTH,THRAD PRINT 31, TEPTH,ETRAD PRINT 32,TEXCU,CURAD 98 99 100 PRINT 33, TINMS, RADIN 101 PRINT 34, TFXS, SRAD 102 PRINT 35, TFLUX, TOTAL 103 PRINT 36, THTFR 104 105 IND=IND+1 IF(IND-3)1,82,82 106 83 PRINT 85 107 PRINT 81 108 109 PAUSE ,E9.2,F9.3) 30 FORMAT(15H THERMAL 110 ,E9.2,F9.3) 31 FORMAT(15H EPITHERMAL 111 112 FORMAT(15H 2EV TO 1MEV ,E9.2,F9.3) 32 113 33 FORMAT(15H 1MEV TO 3MEV ,E9.2,F9.3) 114 34 FORMAT(15H ABOVE 3MEV ,E9-2,F9-3) ,E9.2,F9.3) 115 35 FORMAT(1X/15H TOTAL FORMAT(1X//16H THERMAL/FAST ,F9.2) 116 36 117 50 FORMAT (14) 118 51 FORMAT(F6.0) 119 53 FORMAT(1X///15H PAYROLL NO. ,15) 54 FORMAT(1X/14H REAR EXPOSURE) 120 55 FORMAT(1X/14H SIDE EXPOSURE) 121 56 FORMAT(1X/15H FRONT EXPOSURE) 122 FORMAT (30HICND DOSE CALCULATOR NOV. 1965) 123 60 124 FORMAT(21H PROGRAM INSTRUCTIONS) 61 FORMAT(45H INDIUM DECAY MORE THAN 20 HOURS SWITCH C ON) 125 64 126 66 FORMAT(45H SWITCH B ON TO IGNORE DIRECTIONAL CORRECTION) FORMAT (39H (CALCULATED DIRECTION WILL BE PRINTED)) 127 67 FORMAT(F8.2) 128 72 FORMAT(E9.3) 129 74 130 80 FORMAT(7H RATIO E10.3,3X2HY E10.3) 131 81 FORMAT(IH1) 132 133 85 FORMAT (4H1 EOJ) ``` #### INPUT DATA TO FORTRAN PROGRAM FOR COMPUTATION OF DOSE FROM CND DATA | Entry
No. | Fortran
Format | Description | Example | |----------------------------------|--|---|--| | 1 | I4 | Identification or badge No. Exposure time, seconds (may be an estimate) Weight of bare indium foil, gram Decay time before counting bare In foil, minutes Net activity of bare indium foil, (a) d/m | 0028 | | 2 | E9.3 | | 4.320E+02 | | 3 | F8.2 | | 00000.49 | | 4 | F6.0 | | 00462. | | 5 | E9.3 | | 1.040E+05 | | 6 | F8.2 | Weight of Cd-covered In foil, gram Decay time before counting Cd-In foil, minutes Net activity of Cd-In foil, (a) d/m Weight of sodium fluoride powder, gram Decay time before counting NaF, minutes | 00000.34 | | 7 | F6.0 | | 00465. | | 8 | E9.3 | | 2.140E+04 | | 9 | F8.2 | | 00000.99 | | 10 | F6.0 | | 00507. | | 11 | E9.3 | Net activity of NaF powder, (a) d/m Weight of copper foil, gram Decay time before counting copper foil, minutes Net activity of copper foil, (a) d/m Weight of sulfur powder, gram | 3.570E+04 | | 12 | F8.2 | | 00000.44 | | 13 | F6.0 | | 00599. | | 14 | E9.3 | | 2.330E+03 | | 15 | F8.2 | | 00001. | | 16
17
18
19
20
21 | F6.0
E9.3
E9.3
F8.2
E9.3
F8.2 | Decay time before counting sulfur powder, minutes Net activity of sulfur powder, (a) d/m ²⁴ Na in blood sample at $t = 0$, $\mu c/cc$ Decay time (b) before counting for ^{115m} In, hours Net activity of ^{115m} In, channels 31-36, c/m Weight of In foil used for ¹¹⁵ In measurement, gram | 01313.
9.400E+02
4.721E-04
000025.92
7.920E+01 | ⁽a) (d/m = net c/m X CF (Ra D&E), not corrected for decay.(b) Decay time for this item only is in HOURS; all others are in minutes.