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Appendix D - Estimation of mobile and immobile volume fractions from
conductivity distribution using mean/effective conductivity cutoff

A concept for estimating mobile and immobile volume fractions is developed in this

appendix.  The idea is to equate the immobile volume fraction with the probability of a

conductivity value being below the effective conductivity of the K field.  A log-normal

distribution of conductivity is assumed below to derive a quantitative estimate.  In

preparation for this analysis, key statistical properties of normal and log-normal

distributions are first presented.

1 Normal distribution

The normal distribution has the probability density function (Walpole and Myers, 1978,

p.110)
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where µ and σ are the mean and standard deviation.  The latter can be verified as follows.

The mean of a distribution is computed from the probability distribution function as
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Letting

σµ /)( −= xz (1.3)

we obtain
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The first integral is evaluated as (Beyer, 1984, definite integral #604, p. 285)
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By direct integration, the second integral is
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Equation (1.4) becomes
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The variance is computed as
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Again using equation (1.3)
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Integrating by parts with

zu = (1.10)

dzzedv z 2/2−= (1.11)

yields

2/2zev −−= (1.12)
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where the last integral was evaluated using equation (1.6).  Returning to equation (1.9)
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The median and mode of the normal distribution are also equal to µ.

2 Transformations

If the one-to-one transformation from one variable to a second variable is known, the

probability distribution function of the second variable can be computed from knowledge

of the first.  Let

)(, xfX (2.1)
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denote a random variable and its distribution, and

)(, ygY (2.2)

denote the same quantities for the second variable.  Let the transformations between X

and Y be defined by

)(xFy = (2.3)

)(yGx = (2.4)

The probability distribution of the Y is defined by (Walpole and Myers, 1978, Theorem

5.3)

[ ] )()()( yGyGfyg ′⋅= (2.5)

Equation (2.5) provides a method for deriving the probability distribution functions of log

normal distributions, as shown below.

3 Natural log normal distribution

If the natural logarithm (“ln”) of a variable has a normal distribution, the variable is said

to have a log normal distribution.  The probability distribution function of the log normal

distribution can be derived through application of equations (2.1) through (2.5).  If

)()ln( yGyx == (3.1)

then (Aitchison and Brown, 1957, equation (2.5))
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The mean of Y is
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Letting

σµ /)(ln −= yz (3.6)
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Note that
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Substituting equation (3.10) into (3.8) and using equation (1.5) yields
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The median of Y is simply
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The mode of Y is computed by setting the first derivative of the p.d.f. to zero
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Therefore
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σµ −= ey (3.14)
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In summary (Aitchison and Brown, 1957, p.9; Rivoirard, 1994, p 51-52)

2/2
mean

σµ += ey (3.15)
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2
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4 Base 10 log normal distribution

The base 10 logarithm (“log”) is often more convenient than the natural logarithm (“ln”)

for data plotting and analysis.  Useful relationships between the two logarithms are

(Beyer, 1994, p. 157)
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where

)(loglog yEy =≡ µµ (4.7)
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Defining
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which is the same form as equation (3.2).  Therefore
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5 Summary of means, medians and modes

In summary, mean, median and mode for the normal, “ln normal” and “log normal”

distributions are

µ=meanx (5.1)

µ=medianx (5.2)

µ=modex (5.3)

2/2
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σµ += ey (5.4)

µey =median (5.5)

2
mode

σµ −= ey (5.6)

ez log2/22/10ln2
mean 1010 σµσµ ++ == (5.7)

µµ 1010ln
median == ez (5.8)

ez log/210ln2
mode 1010 σµσµ −− == (5.9)

The two log normal representations are actually equivalent,  so that ymean = zmean, ymedian =

zmedian, ymode = zmode.  The latter can be demonstrated by first noting that µ and σ are

defined differently for the two distributions. Because )log(⋅  is merely a rescaling of )ln(⋅

xex lnloglog ⋅= (5.10)
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equations (4.7) and (4.8) can be written as a rescaling of equations (3.3) and (3.4)

(Walpole and Myers, 1978, Theorem 5.11)
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The exact equivalence of the two distributions can be shown by observing from (4.6),

(5.11) and (5.12) that
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6 Application to dual media transport

Suppose that the (relatively) mobile and immobile regions are defined according to

whether the conductivity is above or below the average (mean), and that conductivities

are log-normally distributed.  Then the volume fraction occupied by each region can be

computed from the cumulative probability of the conductivity distribution at the mean

value of conductivity.  The volume fraction of the immobile region is

)( K
im

im KP
V

V µφ <=≡ (6.1)

where

)(KEK ≡µ (6.2)

The volume fraction of the mobile region becomes

)(11 Kim
m

m KP
V

V µφφ <−=−=≡ (6.3)

As a refinement, the effective conductivity value for the media could be used in place of

the arithmetic mean.  For example, the effective conductivity of a three-dimensional,

statistically homogeneous, but anisotropic, random ln K field subjected to a uniform mean

flow was derived analytically by Gelhar and Axness (1983).  The three-dimensional

anisotropy of the heterogeneous medium is defined in terms an exponential

autocovariance function with distinct correlation scales for each coordinate direction, λ1,

λ2 and λ3.  When the mean flow is aligned with the bedding (λ1 = λ2 > λ3), the non-zero

components of the conductivity tensor are














 −+=== 11

2
2211 2

1
1 gKKKK gh σ (6.4)














 −+== 33

2
33 2

1
1 gKKK gv σ (6.5)

where

hK ≡ effective horizontal conductivity

vK ≡ effective vertical conductivity
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Kg ≡ [ ] µeKE =)(lnexp ; geometric mean of point conductivity field

µ ≡ )(ln KE ; mean of the natural logarithm of point conductivities

σ2 ≡ variance of the natural logarithm of point conductivities

and g11 and g33 are functions of the correlation scales.  For case being considered here,

they are defined in terms of the ratio of horizontal to vertical correlation, ρ = λh/λv > 1, as

follows:
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The above analytical results are based on a first-order perturbation analysis, and strictly

speaking, only exact in the limit as the variance approaches zero.  Accurate results can be

expected for small variances.  For large variances, the predictions may become

increasingly inaccurate, or even nonphysical.  For example, vK  is negative when λh/λv

→ ∞ and the variance of lnK exceeds 2.  To remedy such nonphysical results and

hopefully extend the range of applicability of effective conductivity predictions, Gelhar

and Axness (1983) proposed the following generalization of equations (6.4) and (6.5)
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1
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The generalization is motivated by the observation that a Taylor series expansion of

equations (6.8) and (6.9) contains equations (6.4) and (6.5), respectively, as the first two

terms.  Subsequent comparison of equation (6.8) to numerical simulations indicates that

the exponential generalization is accurate for isotropic systems and variances up to 7, but

overpredicts effective conductivity for anisotropic systems (Gelhar, 1997, p. 161).

By defining the constants

1121 gph −= (6.10)
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3321 gpv −= (6.11)

and incorporating the definition of Kg, equations (6.8) and (6.9) can be rewritten as
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Assuming dual-media transport occurs under horizontal flow conditions,

2/2σµ hp
eff eK += (6.14)

For an anisotropic media with λh = 10λv, ph = 0.86 (and pv = -0.72) and (6.14) becomes

2/286.0 σµ += eKeff (6.15)

In comparison, the mean value of K used in equation (6.3) is

2/22/2)ln(ln σµσµµ ++ === eeK KK
Kmean (6.16)

from equation (5.4).  Criteria (6.2) and (6.3) can be generalized as

)( effim KKP <=φ (6.17)

)(11 effimm KKP <−=−= φφ (6.18)

where Keff denote an effective conductivity value, such as from equation (6.14).  Equation
(6.14) can be rewritten in terms of log base 10 using equations (5.11) and (5.12)
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where µ and σ2 are based on log K.

Other estimates of effective conductivity could be used. Through numerical modeling

Desbarats (1992) generated an equivalent conductivity estimate of ph = 0.59 for an

anisotropic media with  λh = 10λv and finite block dimensions of Lh/lh = Lv/lv = 3.
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