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Appendix D - Estimation of mobile and immobile volume fractions from
conductivity distribution using mean/effective conductivity cutoff

A concept for estimating mobile and immobile volume fractions is developed in this
appendix. Theidea is to equate the immobile volume fraction with the probability of a
conductivity value being below the effective conductivity of the K field. A log-normal
distribution of conductivity is assumed below to derive a quantitative estimate. In
preparation for this analysis, key statistical properties of norma and log-normal
distributions are first presented.

1 Normal distribution

The normal distribution has the probability density function (Walpole and Myers, 1978,
p.110)
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where 1 and o are the mean and standard deviation. The latter can be verified as follows.
The mean of adistribution is computed from the probability distribution function as

E(X) = Jooxf (x)dx
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Letting
z=(x-u)lo (1.3)

we obtain
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Thefirst integral is evaluated as (Beyer, 1984, definite integral #604, p. 285)
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By direct integration, the second integral is
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Equation (1.4) becomes
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The variance is computed as
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Again using equation (1.3)
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Integrating by parts with
u=z (1.10)
2
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yields
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where the last integral was evaluated using equation (1.6). Returning to equation (1.9)

E[(X —y)z]z%;\/Z:az (1.14)

The median and mode of the normal distribution are also equal to p.

2 Transformations

If the one-to-one transformation from one variable to a second variable is known, the
probability distribution function of the second variable can be computed from knowledge
of thefirst. Let

X, f(X) 2.1)
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denote arandom variable and its distribution, and
Y,q(y) (2.2)

denote the same quantities for the second variable. Let the transformations between X
and Y be defined by

y=F(x) (2.3)

x=G(y) (2.4)

The probability distribution of the Y is defined by (Walpole and Myers, 1978, Theorem
5.3)

a(y) = f[G(y)] G'(y) (2.5)

Equation (2.5) provides a method for deriving the probability distribution functions of log
normal distributions, as shown below.

3 Natural log normal distribution

If the natural logarithm (“In") of a variable has a normal distribution, the variable is said
to have alog normal distribution. The probability distribution function of the log normal
distribution can be derived through application of equations (2.1) through (2.5). If

x=1In(y) = G(y) (3.1)
then (Aitchison and Brown, 1957, equation (2.5))

a(y) = f[G(y] G'(y)
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Themeanof Y is

E(Y)= [ya(y)dy
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1 ~@W2lny-u)/a)?
R 35
Lot e
1 7 —(1/2)[(In y—u)/d]2
=—— |e d
o2 _{o ’
Letting
z=(Iny-u)lo (36)
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Note that
(z-0)? = 2% - 207+ 0? (3.9)
= 2A2%12-02) + o
or
zz/z—oz:[(z—a)z—azj/2 (3.10)

02—22/2:[02—(2—0)2]/2

Substituting equation (3.10) into (3.8) and using equation (1.5) yields
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Jor Je (3.11)

The median of Y issimply

G(Ymedian) = IN(Ymedian) = X

(3.12)
Ymedian = e
Themode of Y is computed by setting the first derivative of the p.d.f. to zero
9'(y)=0
i{;e—a/ 2(ny-u) /]2 .1} 0
dy |ov/27 y
oW1 2)[(ny-)/ 012 i{£}+i{e—(1/ DlIny-p)/ 012 }.1 o
dy ly] dy y
o W2AIny-m101?)_ 1 +{e—a/zn(lny—u)/olz _(In y—ﬂ)/a}iz 0
y2 oy y
1+ {In y_H } =0
0_2
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(3.13)

Therefore

2
Ymode =€ ~° (3.14)
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In summary (Aitchison and Brown, 1957, p.9; Rivoirard, 1994, p 51-52)
2
Ymeen = €417 12 (3.15)
Ymedian =€ (3.16)
52
Ymode =€ (3.17)

4 Base 10 log normal distribution

The base 10 logarithm (“log”) is often more convenient than the natural logarithm (“In”)
for data plotting and analysis. Useful relationships between the two logarithms are

(Beyer, 1994, p. 157)

logx=loge-Inx

Inx=1n10-log x

Note from (4.1) and (4.2) that

In10-loge=1

Also the derivative of the base 10 logarithm is

Suppose

then

d loge 1
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(4.2)

(4.3)

(4.4

(4.5)

(4.6)
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where
M = Hiogy = E(logy) (4.7)
2_ 2
O =Ology
~ Eflogy- E(logy)?] (48)
~ Eltogy- 2]
Defining
i =ulloge=uinl0 (4.9
o’=o0lloge=01n10 (4.10)
yields
o'\2n 26"2 z '

which isthe same form as equation (3.2). Therefore

4 /2
' +0" 12
Zmean =

_ gHIn10+(cIn10)2 /2

_ e|n10[ﬂ+02 In10/2] (4.12)
:lO'LHGZ In10/2
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Zmedian = €"

= g#In10 (4.13)
=10#
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’ /2
' =0
Zmode =

_ #In10~(c1n10)?

2

zlo/t—azlnlO
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5 Summary of means, medians and modes

In summary, mean, median and mode for the normal, “In norma” and “log normal”
distributions are

Xmedian = 4 (5.2
Xmode = X (5.3)
2
Ymean = et /2 (5.4)
Ymedian = € (5.5)
Ymode = €' (5.6)
,u+02In10/2 ,u+02/2loge
Zmean =10 =10 (5.7
Zmegian = €49 =104 (5.8)
,u—azlnlo ,u—azlloge
Zmode =10 =10 (5.9

The two log normal representations are actually equivalent, so that Ymean = Zmean, Ymedian =
Zmedians Ymode = Zmode- 1he latter can be demonstrated by first noting that 4 and o are
defined differently for the two distributions. Because log(:) is merely arescaling of In(-)

logx =loge-Inx (5.10)
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equations (4.7) and (4.8) can be written as a rescaling of equations (3.3) and (3.4)

(Walpole and Myers, 1978, Theorem 5.11)
Hiogx =l0ge- tnx

2

2 _ 2
Ologx — (loge) "Olnx

Substituting (5.11) and (5.12) into (5.7) through (5.9) yields
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(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

The exact equivalence of the two distributions can be shown by observing from (4.6),

1

(5.11) and (5.12) that
-1 exp_(logz—mogz)zjoge
OlogzV 2% 2 2
logz i Olog z
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6 Application to dual media transport

Suppose that the (relatively) mobile and immobile regions are defined according to
whether the conductivity is above or below the average (mean), and that conductivities
are log-normally distributed. Then the volume fraction occupied by each region can be
computed from the cumulative probability of the conductivity distribution at the mean
value of conductivity. The volume fraction of the immobileregionis

i =10~ P(K < 1) (6.1)
where
s = E(K) 62)

The volume fraction of the mobile region becomes

Vim

=1 i =1 P(K < 1) (63)

Pm =
As arefinement, the effective conductivity value for the media could be used in place of
the arithmetic mean. For example, the effective conductivity of a three-dimensional,
statistically homogeneous, but anisotropic, random In K field subjected to a uniform mean
flow was derived analyticaly by Gelhar and Axness (1983). The three-dimensional
anisotropy of the heterogeneous medium is defined in terms an exponentia
autocovariance function with distinct correlation scales for each coordinate direction, A;,
A2 and Az. When the mean flow is aligned with the bedding (41 = A2 > A3), the non-zero
components of the conductivity tensor are

o 1
Kll = K22 = Kh = Kg|:l+ 0-2(5_ gll):| (64)

_ 1
Kaz =K, = Kg[1+ 02(5— 033 )] (6.5)

where

)
>
Il

= effective horizontal conductivity

o)
<
1l

effective vertical conductivity



D-12 WSRC-TR-2002-00291, Rev. 1, Dual-Media Contaminant Transport Models

Ky = exp[E(INK)]=e*; geometric mean of point conductivity field

u = E(InK); mean of the natural logarithm of point conductivities

o’ = variance of the natural logarithm of point conductivities

and g;1 and gsz are functions of the correlation scales. For case being considered here,
they are defined in terms of the ratio of horizontal to vertical correlation, p = AW/A, > 1, as
follows:

2
=3 { - 1,Ztan‘l(pz—l)l’z—l] 66)
p--1[(p” -1
2
P 1 1, 2 a1/2
033 = tan " (p” -1) } (6.7)
pz_l{ (p2 -1)2

The above analytical results are based on a first-order perturbation analysis, and strictly
speaking, only exact in the limit as the variance approaches zero. Accurate results can be
expected for small variances. For large variances, the predictions may become
increasingly inaccurate, or even nonphysical. For example, K, is negative when An/Ay
— o and the variance of InK exceeds 2. To remedy such nonphysical results and
hopefully extend the range of applicability of effective conductivity predictions, Gelhar
and Axness (1983) proposed the following generalization of equations (6.4) and (6.5)

_ 1 \
Kh =Ky exp[az(a— 911) (6.8)

L -
Ky =Kg exp[az(i— 933) (6.9)

The generdization is motivated by the observation that a Taylor series expansion of
equations (6.8) and (6.9) contains equations (6.4) and (6.5), respectively, as the first two
terms. Subsequent comparison of equation (6.8) to numerical simulations indicates that
the exponential generalization is accurate for isotropic systems and variances up to 7, but
overpredicts effective conductivity for anisotropic systems (Gelhar, 1997, p. 161).

By defining the constants

Ph =1-29;13 (6.10)
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Py =1-2033 (6.11)

and incorporating the definition of Ky, equations (6.8) and (6.9) can be rewritten as

_ 2 2

Ky, = expl i+ phza _ gHtPho /2 (6.12)
7d pVO'Z +pyol /2

Ky =exp u+ > =eHTPv (6.13)

Assuming dual-media transport occurs under horizontal flow conditions,
+p 212
Kegi =€/ 7Ph (6.14)
For an anisotropic mediawith A, = 104, p, = 0.86 (and p, =-0.72) and (6.14) becomes
2
In comparison, the mean value of K used in equation (6.3) is
2 2
S :eﬂan‘*‘(O'an) /2:e,u+0' /2 (6.16)
from equation (5.4). Criteria(6.2) and (6.3) can be generalized as

¢im = P(K < Kgff ) (6.17)
$m =1-¢im =1-P(K < Kg) (6.18)

where K denote an effective conductivity value, such as from equation (6.14). Equation
(6.14) can be rewritten in terms of log base 10 using equations (5.11) and (5.12)
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- _ MINK +Ph(0InK)*/2
2
:e/llogK/Ioge+ph(0logK/Ioge) /12

2
:1ologe[ﬂ|ogK/Ioge+ Ph(TlogK /loge) /2] (6.19)

_ 10,Ulog K +PhOlog K 2 /(2loge)

— oMt pha2 /2loge

where i and o are based on log K.

Other estimates of effective conductivity could be used. Through numerical modeling
Desbarats (1992) generated an equivalent conductivity estimate of p, = 0.59 for an
anisotropic mediawith A, = 104, and finite block dimensions of Ly/I, =L/, = 3.
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