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Nomenclature
A = area (ft2 or m2)

C = solid volume concentrations in slurry (--)

d = branch diameter or solid particle size in slurry (ft or m)

D = main pipe diameter (ft or m)

f = empirical factor

F = Force (N)

g = gravity (m/sec2)

I = turbulence intensity (--)

k = constant in eq. (2) (--)

m = particle mass flowrate (kg/sec)

P = pressure (Pa)

Pr = Prandtl number, µCp/k, (--)

R = curvature radius of elbow (ft or m)

Re = Reynolds number, dρu/µ

t = time (second)

U = slurry velocity (ft/sec or m/sec)

u = component velocity in x-direction (ft/sec or m/sec)

u’ = local turbulent velocity fluctuation in x-direction (ft/sec or m/sec)

v = local flow velocity or component velocity in y-direction (ft/sec or m/sec)

v’ = local turbulent velocity fluctuation in y-direction (ft/sec or m/sec)

V = average velocity magnitude (ft/sec or m/sec)

W = weight fraction of solids in slurry (--)

w = component velocity in z-direction (ft/sec or m/sec)

w’ = local turbulent velocity fluctuation in z-direction (ft/sec or m/sec)

x = local position along the x-direction under Cartesian coordinate system (ft or m)

y = local position along the y-direction under Cartesian coordinate system (ft or m)

z = local position along the y-direction under Cartesian coordinate system (ft or m)
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Greek

ρ = density (kg/m3)

β = impingement angle of particle against wall surface

κ = turbulent kinetic energy (= ( )avg’w’v’u 222

2

1 ++ )

ε = rate of dissipation of turbulent kinetic energy

∆  = difference

∇  = gradient operator

µ = dynamic viscosity (N sec/m2)

ν = kinematic viscosity (m2/sec)

ξ  = empirical facto for erosion rate

Subscript

avg = average

c = critical

d = incident particle

f = fluid

in = incidence

p = particle

s = solid particle

t = turbulent

wall = wall surface
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Figure 17.  Vorticity magnitudes at the cross-sectional planes of the upstream and
downstream regions of the elbow component.
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Figure 19. Particle trajectory and erosion distributions due to the impingement of
particles in a slurry.
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Table 6. Maximum shear stresses and relative maximum erosion for the elbows with
different curvature

D

C

R

D

C

R

(C/R = 2.0) (C/R = 5.0)

Elbow Curvature (C/R) 2.0 5.0

Flowrate 2400 gpm 2400 gpm

Elbow Diameter 10in 10in

Max. Wall Shear 67.2 Pa 31.6 Pa

Relative scale for erosion rate 1.0 ~0.65
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Table 7. Maximum wall shear stresses for the cases considered in the analysis
associated with erosion (D = 10 in and d= 3 in)

a

b

c

d

D
2400 gpm

leg 1

leg 2

Cases (Fig. 4) Case-b Case-c Case-d

Presence (?) of
elbows at the

downstream and
upstream regions

of the 10” pipe

Yes Yes Yes Yes Yes Yes
No (10in
diameter
and 36in

long  pipe)

Number of legs 2 1(leg 1) 1(leg 2) 1(leg1) 1(leg1) 1(leg1) 1 (leg 1)

Total length
between elbows

36in 36in 36in 33in 30in 72in 36in

a 12in 12in 12in 9in 9in 9in 12in

b 12in 12in 12in 12in 12in 12in --

c 12in 12in 12in 12in 9in 51in --

Max. wall shear
(Pa)

62.6 63.7 63.2 64.7 66.2 62.9 40
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Figure 20.  Comparison of turbulence intensity for two cases associated with particle
dispersion.
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Figure 21.  Wall shear stress and turbulence intensity distributions for the 36 in long and
10 in diameter pipe with 3in leg (case g) associated with wall erosion.
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Table 8. Maximum wall shear stresses for the models of the filter component associated
with erosion (filter tube diameter = 0.5 in)

(One-tube equivalent filter model) (7-tube equivalent filter model)

Cases One-tube equivalent model
(case-e in Fig. 4)

Seven-tube equivalent model
(case-g in Fig. 4)

Filter geometry One tube 7 tube

Filter tube diameter 0.5in 0.50in

Filter boundary diameter 7/8in 4in

Max. wall shear 185.2 Pa 171.5 Pa

Max. erosion location
due to impingement

Upstream tube sheet
(see Fig. 25)

Upstream tube sheet
(see Fig. 25)

Relative scale for erosion 1.0 ~0.7
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Figure 22. Comparison of velocity distributions at the center planes of the one-tube
models with smooth and welded tubes (case-e and case-f in Fig. 4).
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Figure 23.  Comparison of velocity distributions at the center plane of the one-tube and
seven-tube filter models to simulate the cross-flow filtration component.
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Figure 24.  Comparison of turbulence intensity distributions at the center plane of the
one-tube and seven-tube filter models to simulate the cross-flow filtration

component using flow domains and conditions shown in Figs. 7 and 8.



Report: WSRC-TR-2001-00591 Rev 0 WESTINGHOUSE SAVANNAH RIVER COMPANY
SRT-RPP-2001-00227 Rev 0

Date: 04/05/02 DESIGN ANALYSIS FOR A SCALED EROSION TEST

Page:       46 of 60                                                                                                                                                          

Z
Y X

C
on

to
ur

s 
of

 W
al

l S
he

ar
 S

tr
es

s 
(p

as
ca

l)
F

LU
E

N
T

 5
.5

 (
3d

, s
eg

re
ga

te
d,

 k
e)

N
ov

 1
6,

 2
00

1

1.
95

e+
02

1.
80

e+
02

1.
65

e+
02

1.
50

e+
02

1.
35

e+
02

1.
20

e+
02

1.
05

e+
02

8.
99

e+
01

7.
49

e+
01

6.
00

e+
01

4.
50

e+
01

3.
00

e+
01

1.
51

e+
01

1.
31

e-
01

(Wall shear distributions for the one-tube model)

Z
Y

X

C
on

to
ur

s 
of

 W
al

l S
he

ar
 S

tr
es

s 
(p

as
ca

l)
F

LU
E

N
T

 5
.5

 (
3d

, s
eg

re
ga

te
d,

 k
e)

N
ov

 1
6,

 2
00

1

1.
71

e+
02

1.
57

e+
02

1.
44

e+
02

1.
31

e+
02

1.
18

e+
02

1.
05

e+
02

9.
18

e+
01

7.
87

e+
01

6.
56

e+
01

5.
25

e+
01

3.
94

e+
01

2.
62

e+
01

1.
31

e+
01

2.
22

e-
03

(Wall shear distributions for the 7-tube model)

Figure 25. Comparison of wall shear distributions between one-tube model and 7-tube
model to simulate the cross-flow filtration system.
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Figure 26. Comparison of erosion distributions for the two filter models.



Report: WSRC-TR-2001-00591 Rev 0 WESTINGHOUSE SAVANNAH RIVER COMPANY
SRT-RPP-2001-00227 Rev 0

Date: 04/05/02 DESIGN ANALYSIS FOR A SCALED EROSION TEST

Page:       48 of 60                                                                                                                                                          

(Geometry representing case-e
      component in Fig. 4)

(Geometry representing case-g
      component in Fig. 4)

Potential max. erosion location

Max. turbulence intensity location

Figure 27. Potential maximum erosion locations at the middle planes of one-tube (case-
e) and seven-tube filter (case-g) components of the cross-flow filtration

facility predicted by the present model.
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Figure 28. Velocity vector plot at the center plane of the 7-tube model.



WESTINGHOUSE SAVANNAH RIVER COMPANY Report: WSRC-TR-2001-00591 Rev 0
SRT-RPP-2001-00227 Rev 0

DESIGN ANALYSIS FOR A SCALED EROSION TEST Date: 04/05/02
                                                                                                Page:                           49 of 60

Z
YX

C
on

to
ur

s 
of

 S
ta

tic
 P

re
ss

ur
e 

(p
as

ca
l)

F
LU

E
N

T
 5

.5
 (

3d
, s

eg
re

ga
te

d,
 k

e)
N

ov
 1

6,
 2

00
1

 1
.1

8e
+

04

 9
.2

8e
+

03

 6
.7

9e
+

03

 4
.2

9e
+

03

 1
.8

0e
+

03

-6
.9

9e
+

02

-3
.1

9e
+

03

-5
.6

9e
+

03

-8
.1

8e
+

03

-1
.0

7e
+

04

-1
.3

2e
+

04

-1
.5

7e
+

04

-1
.8

2e
+

04

-2
.0

7e
+

04

Figure 29. Pressure distributions at the center plane of the 7-tube model.
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predicted by the particle impingement model.
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Figure 32. Potential maximum erosion locations at the middle planes of key components
of the cross-flow filtration facility selected by the present model.

Table 9. Maximum wall shears for the models of the key components considered in the
analysis associated with erosion (filter tube diameter = 0.5 in)

7-tube filterCases Isolated
elbow

(case-a*)

Two elbows
with branch

(case-c*) Inlet
(case-g*)

Exit
(case-h*)

Pipe with
bluff body
(case-i*)

Max. wall shear
(Pa)

72.0 66.2 171.5 115.8 51.0

Max. erosion
location due to
impingement
(see Fig. 31)

Outer
elbow

Outer elbow Upstream
tube sheet

Downstream
tube sheet

Front bluff

Relative** scale
for max.

erosion rate

~0.4 ~0.9 1.0 ~0.1 ~0.3

Note: * Each case is identified in Fig. 4.
** The scale is relative to the maximum erosion rate of case-g.
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Figure 33.  Comparison of the erosion distributions due to particle impingement under
three different scaled elbow components
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Figure 34. Nondimensional erosion ratio of scale-down (3 in and 1in) to 10 in prototypic
elbow for various slurry velocities
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Figure 35. Nondimensional erosion ratio of scale-down (3 in and 1in) to 10 in prototypic
S-type pipings for various slurry velocities
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Figure 36. Nondimensional erosion ratio of scale-down (3 in and 1 in) to 10 in prototypic
bluff body for various slurry velocities
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5.  Conclusions

This report presents the application of computational fluid dynamics (CFD) methods to
ensure that the test facility design would capture the erosion phenomena expected in
the full-scale cross-flow ultrafiltration facility.  The present models assume that there are
two manners in which a wall surface is worn.  The first is based on the homegeneous
solid-fluid model, and its basic mechanism is that wall friction of the mixed slurry on the
abraded surface can cause wear.  The other is that some particles impinged on the wall
surface are able to cut chips out of the impacted surface.  For the present work,
Eulerian continuous transport equations and Lagrangian momentum balance for the
solid phase dispersed in the slurry flow were used to estimate wall shear and particle-
impinged erosions.  For typical operating conditions of the facility, Reynolds number is
about 105 corresponding to fully-turbulent flow regime.  Two-equation turbulence model
was used to consider the dispersion effect of particles due to turbulent eddies.  In the
present calculations, solids content of the working fluid, the regions of high wall shear,
and particle impingement with the walls were considered as major mechanisms
associated with the erosion.

Three sets of representative experiments were chosen to test the CFD models
presented in this work.  All these tests were performed using sand-water slurry.  The
benchmarking results against the literature data for hydraulic transport and erosion tests
are reasonably good taking into account the complex nature of fluid-solid two-phase
phenomena.

The CFD analyses were then designed to characterize slurry-flow profiles, wall shear,
and particle impingement distributions in key pipe bends and fittings representative of
the filtration system.  Pipe diameters, lengths, the locations of pipe fittings, and slurry
velocities were scaled with the CFD calculations to ensure that the erosion drivers in the
test facility were representative of the full-scale facility.   To be conservative, the highest
velocity over full-scale value (9.8 ft/sec) will be used, that is, 3.4 m/sec (11.2 ft/sec) for
the 3 in test loop (14% over full-scale) and 3.7 m/sec (12.1 ft/sec) for the 1 in test loop
(24% over full-scale).  The results are also shown in Fig. 34.

From the present analysis results, main conclusions are drawn as follows:

• The prediction results show that when the slurry velocity increases, wall shear stress
closely related to the abrasive erosion is more sensitive to the scaling of pipe size,
compared to that of particle impingement behavior.

• The analysis results show that erosion decreases with increasing turbulence
intensity, leading to the increased radial dispersion of slurry.  This is consistent with
the literature information.

• All the main loop components of the cross-flow filtration facility were studied to
simplify the components without losing key erosion phenomena and slurry flow
characteristics expected in the full-scale facility.  Key components selected by the
present analysis are isolated elbow, two-elbow connected closely with single branch,
seven-tube filter arrangement, and bluff body attached to the inner wall of horizontal
pipe.

• The present computational models determined operating flow conditions for the
scaled test facility to ensure that the erosion behaviors expected at the full-scale
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facility are properly captured in the scale-down test facility.  In this case, three
different component configurations were applied for the scaling considerations under
three different size conditions, including 10 in prototypic scale, 3 in and 1 in test
scales.

• The locations of high erosion, which were predicted by the particle impingement
model for each of the selected components, provided the guidance for erosion
measurement under scaled test facility.

• From the benchmarking of the present CFD models against the literature data, the
model predictions agree with the test data within about 15%.

When the test results from the scaled experiment facility at SRTC are available, the
present models will be benchmarked in more detail. This results in a validation of those
calculations, and will allow the test results to be applied to a quantitative estimation of
erosion over the entire plant lifetime of the full-scale filtration facility.
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