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EXECUTIVE SUMMARY

An excessively high yield stress for size-reduced (< 125 pm) CST-Sludge-Frit DWPF melter
feed was observed in a previous study'. This may have been due to the fact that the slurry was a
year old, that it contained CST, that it contained two different frits, that it had undergone various
physical manipulations, and/or other factors.

The purpose of this study was to produce fresh melter feeds based on:

(1) Tank 8/Tank 40 Blend (Sludge-Frit-only)
(2) Fine (<30 um) CST - Tank 8/40 Blend (< 30 um CST-Sludge-Frit)
(3) Coarse (< 177 um CST) - Tank 8/40 Blend (< 177 um CST-Sludge-Frit).

Melter feeds were prepared using a prototypical bench-scale DWPF Chemical Process Cell
(SRAT/SME) simulation. All three bench-scale runs were completed between November 13-22.
Processing conditions corresponded to the nominal Tank 8/40 sludge blend case developed in
September 2000°.

Rheograms were run shortly after the completion of the SRAT/SME simulations on six different
solids concentration for each melter feed. This permitted a comparison between the three melter
feeds without the issues of variationsin processing conditions, material age, and handling
history.

The analysis of the rheograms showed the expected pattern of increasing yield stress and
consistency with increasing solids content for the different melter feeds. All the melter feeds
exceeded the DWPF design basis yield stress at approximately 42 wt. % total solids, which was
comparable to another study™. At low wt. % solids, the behavior of the Sludge-frit-only, < 177
pm CST-dudge-frit, and < 30 um CST-sludge-frit slurries were the same rheologically. Asthe
wt. % solids increased, the < 177 um CST-sludge-frit was the most viscous, followed by the < 30
pm CST-dudge-frit, and then the Sludge-frit-only slurry. The change was most notable in the
yield stress.

Theyield stresses of CST-sludge-frit melter feeds equaled the yield stresses of sludge-frit-only
melter feeds that contained higher weight % total solids. The difference in weight percent total
solids between the CST-sludge-frit and sludge-frit-only melter feeds was anywhere from 0 to 4
wt. % total solids, depending on the selected yield stress. This means that the presence of CST
in the DWPF melter feed would potentially lead to areduction in melt rate due to the additional
water in the CST-dudge-frit melter feeds.

Thiswork was in response to TTR: HLW-SDT-TTR-2000-00014.
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INTRODUCTION

One of the candidate salt processing alternatives involves using ion-exchange columns filled
with CST sorbent to remove the highly radioactive cesium from the high level salt waste. The
cesium bearing CST would then be processed through the DWPF. CST is added to the SRAT
cycleasadurry. The SRAT product containing CST, would be transferred to the Slurry Mix
Evaporator (SME), then to the Melter Feed Tank (MFT), and finally fed to the melter. The CST
would ultimately end up in the DWPF waste glass canisters.

One of the DWPF processing concerns was the impact of size-reduced CST on the rheol ogical
characteristics of DWPF melter feed. In aprevious study’, a CST (<125 pm)-Macrobatch 2
Sludge-Frit mixture of 50.5 wt. % total solids exhibited excessively high yield stress (~ 400
dynes/cm?). This yield stress was more than double the upper DWPF design basis of 150
dynes/cm?.

One of the postulated reasons for the high yield stress in the CST-Sludge-Frit melter feed was
that it was about nine months old. For thisreason it was decided that a new study was necessary
to further investigate the rheological characteristics using freshly produced melter feeds
containing CST.

If ahigh yield stress was an inherent property of CST-Sludge-Frit slurries, then it could lead to
reduced melter-processing rates from the extra water required to reduce the yield stress of the
CST-Sludge-Frit dlurry to within either the DWPF design basis limits or the DWPF real
processability limits.

Another factor that could have led to this high yield stress was the particle size distribution of the
size-reduced CST. The previous study® used a CST-water slurry, in which the CST was size
reduced to less the 125 pm, which had a volume mean diameter of 15 um 3. For this reason, it
was decided to expand this study to investigate the effects on rheology for two different size
reduced CST-Sludge-Frit melter feed dlurries.

The following differences in preparing the slurries between the previous study* and this study are
summarized below:

e The 1999 and 2000 melter feeds were "old" (many months) when the rheological
characterization was done, while thiswork used fresh melter feed.

* Thesize-reduced CST in the 1999 and 2000 melter feeds was loaded with caustic and
noble metals before SRAT processing. The CST in this study was not |oaded.

* The 1999 size-reduced CST was prepared using a pump, which produced a broad particle
sizedistribution. The CST used in this study was size-reduced by grinders.

* The 1999/2000 tests used Tank 42 (Macrobatch 2) sludge simulant. This study used
Tank 8/Tank 40 blended sludge (Macrobatch 3 sludge simulant).

* The 1999/2000 tests used frit 202 with CST, while this study used frit 200.

* The 1999 no CST melter feed was 35% sludge oxides, while the size-reduced CST melter
feed was about 26% sludge oxides and 9% CST oxides, i.e. CST solids displaced sludge
solids, while frit solids remained constant. In this study, CST solids displaced afraction
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of the frit (10 wt. % CST oxides, 64 wt. % frit), with sludge oxides remaining constant at
26%.

EXPERIMENTAL METHOD

SRAT/SME Cycle Parameters.

Three DWPF melter feed preparation simulations (SRAT/SME cycles) were conducted using
identical processing conditions, e.g. batch size, acid addition strategy, reflux periods, etc. The
baseline run produced sludge-frit-only melter feed simulant. The other two runs combined
different size-reduced CST with sludge and frit. One run produced < 30 um CST-sludge-frit
melter feed simulant, and other run produced < 177 um CST-sludge-frit melter feed simulant.

Table 1 provides the measured CST-water slurry wt. % total solids and calcine factors. The
calcine factors were used to calculate the CST batching required to obtain the correct melter feed
composition. The calcine factor here is defined as the mass of CST oxides at 900°C per gram of
starting slurry. Note the variability in the < 177 um CST was much greater than the < 30 um
CST. Thevariability inthe< 177 CST was related to the greater sampling difficulties caused by
the rapid settling of the larger-sized CST particles.

The starting sludge ssmulant used in al three runswas identical. It was ablend of 48% Tank 8
sludge simulant to 52% Tank 40 sludge ssmulant by total solids content (DWPF Macrobatch 3).
The Tank 40 sludge simulant had been determined to be low in nickel and manganese relative to
real Tank 40 waste. It was decided that there was no need to trim the simulant with additional
nickel or manganese to meet the objectives of this task, which was to determine the “relative”
rheological characteristics of the melter feeds with and without CST.

TABLE 1. CST Calcine Factors

CST in Water <30 um CST in Water <177um

Sample # Wt. % Calcine Wt. % Calcine
Total Factor Total Factor

Solids Solids

#1 21.05 0.1779 7.09 0.0591
#2 21.02 0.1783 7.46 0.0624
#3 20.97 0.1782 8.18 0.0683
Average 21.01 0.1781 7.58 0.0633

No monosodium titanate, or MST, was included in the melter feed batching calculations. This
was also the case with the melter feeds prepared for the Hydragard tests”. The noble metals basis
used an analysis of arecent sample of real Tank 40 waste performed by N. Bibler and T.
Fellinger [Ref. 3, Appendix B]. The Tank 8 noble metals were per the High Level Waste
database’. Thiswas consistent with the flowsheet study work®. Noble metals affect rheology
through their chemical action on the anion content of the slurry. The run plans used in this
study™ > © were based on 110 % of the noble metal concentrations projected for the nominal

blend of the above described sludges. Mercury was added as HgO using aweighted blend of
Tank 8 and 40 concentrations expected from the High Level Waste database.
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A batch size of 3000 grams of untrimmed sludge simulant was used for each run. The batches
were trimmed with the noble metals and mercury prior to starting the SRAT cycle. 125% of the
stoichiometric acid requirement was used. The ratio of formic acid to nitric acid was fixed by
selecting a melter feed redox target of 0.2 Fe"?/Feua. The CST-water slurries were batched
during the SRAT cycle boiling period. Several batch additions were required to obtain the
targeted CST concentration. The water in the CST-water slurry was boiled off before another
batch of CST-water slurry was added. Dry frit 200 was added to start the SME cycle, after al
the CST-water slurry had been added. This CST-dludge-frit slurry was then mixed for 5 hours,
during which the condensable vapors were primarily refluxed back into the slurry. A
conservative air sparge flow rate was chosen (based on earlier melter feed preparation
simulations) to ensure that the hydrogen concentration remained at or below 25% of the LFL.
This negated the need for operating a gas chromatograph.

FIGURE 1. Schematic of Experimental Apparatus
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The SME product target was between 50 to 52 wt. % total solids (TS) for each run. The baseline
run (no CST added) targeted a 26% sludge oxide to 74% frit oxide ratio. The melter feeds with
CST targeted a mixture containing 26% sludge oxides, 10% CST oxides, and 64% frit oxides.
Frit 200 was used in all runs. (Frit 202 was used in the 1999 runs® with CST.)
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Some of the condensate produced during each SME cycle was collected (in separate containers).
The condensate was then used to dilute aliquots of the original SME productsto wt. % TS
ranging from 40 wt. % TS up to 48 wt. % TS in increments of 2 wt. %. The original melter
feeds, ~50-52 wt. % TS, were also studied as-is. Therheological characteristics of each melter
feed sample were obtained at 25°C. Each melter feed was also analyzed for total solids, soluble
solids in the supernate, density, and pH.

Experimental Apparatus

The melter feed preparation work was controlled using the procedure for Laboratory Scale
Chemical Process Cell Simulations (Manual L27, Procedure 2.02) and the individual Run Plans®
%6 A general review for Chemical Process Cell simulations, as required by the Conduct of
Research and Development, has been completed®. A schematic diagram of the experimental
apparatusis shownin Figure 1. An actual bench-scale setup of the SRAT/SME process is shown
in Figure 2.

FIGURE 2. Actual Bench Scale SRAT/SME Setup

Basdline (Sludge-Frit-only) Run

The batching for glass make-up is described in Table 2 below. A complete description of the run
can be found in the Run Plan®.
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TABLE 2. Solids Batching Data For Baseline Run

Type Wt. % Total Solids Wt. % Calcined Solids  Density, g/mL Waste Loading, %
Untrimmed Sludge 15.6 121 111 26.0
Frit 100 100 2.5 74.0

The run used no heel. The calculation inputs for acids, anions, and redox are briefly summarized
in Table 3.

TABLE 3. Input Data For REDOX Calculation (Excluding Cations)

Sludge Hydroxide Equiv. @ pH=5.5, M 0.439
Overall Acid Stoichiometry 125.0%
Nitric Acid Molarity, M 10.14
Formic Acid Molarity, M 22.62
Initial Sludge Nitrite Conc., mg/L 8500
Initial Sludge Nitrate Conc., mg/L 3800
Assumed % Nitrite Destruction 100%
Assumed % Nitrite to Nitrate Conversion 35%
Initial Sludge Formate Conc., mg/L 0
Assumed % Formate Destruction 15%
Predicted Redox, Fe(ll)/>Fe 0.20

The starting sludge ssimulant is described in Table 4. Table 4 provides the best estimate of the
composition of the untrimmed sludge, the quantities of mercury and noble metals to be added to
meet target values (given in the Post-Trim column), and the predicted effect of these additions on
the composition of the other sludge species. The valuesin the“At” column for palladium,
rhodium, and ruthenium represent the weight per cent of elemental Pd, Rh, or Ru in their
respective supply bottles.

The datain Tables 3 and 4 was used to produce the batching summary information in Table 5 for
the sludge-frit-only slurry.



WSRC-TR-2001-00069

Page 7 of 35
TABLE 4. Cation Composition of Pre- and Post-Trimmed Sludge

Initial Trim Chemical Description Post-Trim
Total 3000.00 g 3009.14 gf
Species Trim with At Needs Species
Al 8.32% 8.29%
Ag 0.00% AgNO, 100.00% | 0.9412¢ 0.1270%,
Ba 0.20% 0.20%
Ca 2.46% 2.45%
Cd 0.00% 0.00%
Cr 0.22% 0.22%
Cu 0.13% 0.13%
Fe 27.58% 27.50%,
Hg 0.00% HgO 100.00% | 1.494g 0.29%
K 0.06% 0.06%
Mg 0.13% 0.13%
Mn 2.52% 2.51%
Na 6.04% 6.02%
Ni 1.52% 1.52%
P 0.27% 0.27%
Pb 0.24% 0.24%
Pd 0.00%]  Pd(NO,),*H,0 15.27% | 2.9993 ¢ 0.09730%
Rh 0.00%] Rh(NO,);*2H,0 493% | 1.4028¢ 0.01470%
Ru 0.00% RuCl; 41.74% 2.3062 g 0.20450%
Se 0.00% 0.00%
S 0.89% 0.89%
S 0.08% 0.08%
Ti 0.00% 0.00%
Zn 0.27% 0.27%
r 0.54% 0.54%

TABLE 5. Batching Summary for Sludge-Frit-Only

DWPF Scale Factor 8403
Initial Sludge Mass, g 3000.0
Sludge Rinse Water, ml 50.00
SRAT Nitric Acid, ml 33.79
Nitric Acid Addition Rate, ml/min 0.924
Nitric Acid Addition Time, hrs 0.60
SRAT Formic Acid, ml 85.17
Formic Acid Addition Rate, ml/min 0.938
Formic Acid Addition Time, hr 1.54
SRAT Dewater Mass, g 210.96
SRAT Dewater Time, hr 0.78
SME Frit Addition#1, g 494.274
Frit Addition #1 Water, g 60.000
Frit Addition #1 Formic Acid, ¢ 10.069
SME Frit Addition #2, g 494.274
Frit Addition #2 Water, g 60.000
Frit Addition #2 Formic Acid, ¢ 10.069
SRAT Air Purge, sccm 633.56
Scaled Boil-up Rate, g/min 4.50
SME Air Purge, sccm 222.42
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Six different wt. % TS samples were produced from this sludge-frit-only slurry. The analysis of
rheology, solids, density, and pH arein the Results section. A sample of the original melter feed
simulant produced was anayzed for composition. The ICP results for the elements were
consistent with a 26% sludge oxide — 74% frit oxide product. The sample results are given in the
Appendix and maintained in reference 16.

< 177 pm CST-Sludge-Frit Run

The batching for glass make-up is described in Table 6 below. A complete description of the run
can be found in the Run Plan®.

TABLE 6. Solids Batching Data for < 177 um CST-dudge-frit Run

Type Wt. % Total Solids Wt. % Calcined Solids Density, g/ml Waste Loading
Untrimmed Sludge 15.6% 12.1% 111 26.0%
Frit 100.0% 100.0% 25 64.0%
CST-Water Slurry 7.6% 6.3% 1.03 10.0%

Thisrun also required a CST-water slurry, where the particle size of the CST was lessthan 177
pum. The calculation inputs for acids, anions, and redox were identical to those given in Table 3,
and the starting sludge simulant was described in Table 4. The datain Tables 3, 4, and 6 was
used to produce the batching summary information in Table 7 for the < 177 um CST-sludge-frit
durry.

Six different wt. % TS samples were produced from thisthe < 177 um CST-sludge-frit slurry.
The analysis of rheology, solids, density, and pH are in the Results section. A sample of the
original melter feed ssmulant produced was analyzed for composition. The ICP results for the
elements were consistent with a 26% sludge oxide — 10% CST oxide — 64% frit oxide product.
The sample results are given in the Appendix and maintained in reference 9.
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TABLE 7. Batching Summary for Run with < 177 um CST-Sludge-Frit

DWPF Scale Factor

8403

Initial Sludge Mass, g

3000.0

SRAT Heel Mass, g

0.0

Sludge Rinse Water, ml

50.00

SRAT Nitric Acid, ml

33.79

Nitric Acid Addition Rate, ml/min

0.924

Nitric Acid Addition Time, hrs

0.60

SRAT Formic Acid, ml

85.17

Formic Acid Addition Rate, ml/min

0.938

Formic Acid Addition Time, hr

SRAT Dewater Mass, g

1.54
310.96

SRAT Dewater Time, hrs

1.15

< 177um CST Slurry, g #1

422.01

SRAT CST Dewater Mass, g #1

390.02

CST Dewater Time, hrs

1.45

< 177um CST Slurry, g #2

422.01

SRAT CST Dewater Mass, g #2

390.02

CST Dewater Time, hrs

1.45

< 177um CST Slurry, g #3

422.01

SRAT CST Dewater Mass, g #3

390.02

CST Dewater Time, hrs

1.45

< 177um CST Slurry, g #4

422.01

SRAT CST Dewater Mass, g #4

390.02

CST Dewater Time, hrs

1.45

< 177um CST Slurry, g #5

422.01

SRAT CST Dewater Mass, g #5

390.02

CST Dewater Time, hrs

1.45

SME Frit Addition #1, g

427.480

Frit Addition #1 Water, g

60.000

Frit Addition #1 Formic Acid, g

8.708

SME Frit Addition #2, g

427.480

Frit Addition #2 Water, g

60.000

Frit Addition #2 Formic Acid, g

8.708

SRAT Air Purge, sccm

633.56

Scaled Boil-up Rate, g/min

4.50

SME Air Purge, sccm

222.42

< 30 um CST-Sludge-Frit Run

The batching for glass make-up is described in Table 8. A complete description of the run can
be found in the Run Plan®.
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TABLE 8. Solids Batching Data for < 30 um CST-Sludge-Frit Run

Type Wt. % Total Solids Wt. % Calcined Solids Density, g/ml Waste Loading
Untrimmed Sludge 15.6% 12.1% 111 26.0%
Frit 100.0% 100.0% 25 64.0%
CST-Water Slurry 21.0% 17.8% 1.05 10.0%

Thisrun aso required a CST-water dlurry, where the particle size of the CST was less than 30
pm. The batch size was 3000 grams of untrimmed sludge. The calculation inputs for acids,
anions, and redox were identical to those given in Table 3, and the starting sludge simulant was
described in Table 4. The datain Tables 3, 4, and 8 was used to produce the batching summary
information given in Table 9 for the < 30 um CST-gdludge-frit slurry.

TABLE 9. Batching Summary for Run with < 30 um CST-Sludge-Frit

DWPF Scale Factor 8403
Initial Sludge Mass, g 3000.0
SRAT Heel Mass, g 0.0
Sludge Rinse Water, ml 50.00
SRAT Nitric Acid, ml 33.79
Nitric Acid Addition Rate, ml/min 0.924
Nitric Acid Addition Time, hrs 0.60
SRAT Formic Acid, ml 85.17
Formic Acid Addition Rate, ml/min 0.938
Formic Acid Addition Time, hr 1.54
SRAT Dewater Mass, g 310.96
SRAT Dewater Time, hrs 1.15
< 30 um CST Slurry, g #1 373.47
SRAT CST Dewater Mass, g #1) 295.00
CST Dewater Time, hrs 1.09
< 30 um CST Slurry, g #2 373.47
SRAT CST Dewater Mass, g # 2) 295.00
CST Dewater Time, hrs 1.09
SME Frit Addition #1, g 425.764
Frit Addition #1 Water, g 60.000
Frit Addition #1 Formic Acid, g 8.673
SME Frit Addition #2, g 425.764
Frit Addition #2 Water, g 60.000
Frit Addition #2 Formic Acid, g 8.673
SRAT Air Purge, sccm 633.56
Scaled Boil-up Rate, g/min 4.50
SME Air Purge, sccm 222.42

Six different wt. % TS samples were produced from this < 30 um CST-sludge-frit Slurry. The
analysis of rheology, solids, density, and pH are given in the Results section. A sample of the
original melter feed smulant produced was analyzed for composition. The ICP results for the
elements were not consistent with a 26% sludge oxide — 10% CST oxide —64% frit oxide
product. The results matched a roughly 26.8% sludge oxide — 7.3% CST oxide — 65.9% frit
oxide blend. (Uncertaintiesin these numbers are of order £0.5%. The primary source of the
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uncertainty being the precise composition of the sludge oxides.) The sample resultsare givenin
the Appendix and maintained in reference 9.

PHYSICAL & RHEOLOGY RESULTS

Measuring Methods and Analysis

Slurry samples were analyzed for various physical propertiesin support of the rheology work.
These included the weight percent (wt.) % total solids (TS), wt. % insoluble solids (1S), particle
size distribution, urry pH, and rheology.

Solids & pH

The weight percent solids were determined by oven-drying the samples between 105-115°C
overnight. Slurry samples were dried to determine thewt. % TS. To obtain a sample of the
supernate, a portion of the slurry was first centrifuged and then the liquid phase was filtered
through a 0.45 micron filter. The supernate was then oven-dried to determine the wt. %
dissolved solids concentration in the supernate. Duplicate samples of the slurry and supernate
were dried and averaged. Wt. % IS concentration in the slurry samples were then cal culated
using equation [1]*°:

_ Wt%, —Wt.%,,

Wt.%,, =
100% — Wt.%,,

[100% [1]

Where:  wt. % = weight percent total solids concentration in the slurry
wt. %45 = weight percent dissolved solids concentration in the supernate
wt. %;s = weight percent insoluble solids concentration in the slurry

Density measurements were made using a specific gravity cup and cap unit. The cup/cap was
first tared in a calibrated weigh scale, the sample was placed into the cup and then the cap was
used to press out excess sample and the excess sample removed. The mass of the
cup/sample/cap was then measured on the calibrated weigh scale. This mass was divided by the
known volume (8.321 cm?) of the cup to determine the density of the Slurry. The volume of the
cup was verified using water.

M easurements of pH were made using a Fisher Scientific accumet] model 15 pH meter. The
instrument was calibrated using pH 4 and pH 10 buffer solutions, and then checked against a pH
7 buffer. Indicated instrument results were within 0.1 pH unit for the pH 7 buffer. Particle size
distributions were measured using a MicroTrac-SRA 150 particle analyzer. Sampleswererunin
duplicate and averaged. The particle size distribution scans from this study are located in the
Appendix.



WSRC-TR-2001-00069
Page 12 of 35

Rheology

Slurry rheology was characterized using both Haake RV 20 (with an M5 measuring head) and
Haake RS150 rheometers. Both rheometers are considered Searle type measuring systems,
where both the speed and torque are measured at the rotating shaft.

The RV 20 rheometer is a controlled rate (where the shear rate is applied and the resulting shear
stress is measured) rheometer. A concentric cylindrical geometry was used to measure the flow
properties. The MV 2 stainless steel cylindrical rotor (36.8 mm outside diameter, 60 mm length),
with arecessed bottom to reduce end effects, was the inner cylinder. The MV 2 rotor was then
attached to the M5 measuring head driver motor. A slurry sample was placed into a cylindrical
stainless cup (42 mm inside diameter) and loaded into the heating jacket. The heating jacket
controlled the temperature of the rotor, sample and cup. A heating/cooling temperature bath was
attached to the heating jacket to provide the heat sink. All measurements were taken at 25°C.
All rheology measurements were taken using a linear shear rate ramp from 0 to 350 sec™ in five
minutes, holding the shear rate at 350 sec’™* for two minutes, and then linearly decreasing the
shear rate from 350 to 0 sec™ in five minutes.

The RS150 rheometer can be run using either the controlled rate or controlled stress modes. In
this study, only the controlled rate mode was used. Parallel-plate geometry was used to measure
all the flow properties. A 60 mm stainless steel measuring plate was initially attached to the
plate-heating jacket. The PP60 titanium rotor (60 mm outside diameter, flat plate) with a vapor
trap was attached to the RS150. The RS150, controlled via software, initially finds the zero
point (distance between PP60 and measuring plate is zero) and then the sample is loaded onto the
measuring plate. A gap setting (distance between the PP60 and measuring plate) of 1 mm, used
in all the measurements, was achieved using the RS150 software. Excess sample was trimmed
from the exposed edge to minimize edge effects. Water (temperature between 28 to 30°C) was
added to the vapor trap reservoir to try and maintain vapor space humidity, since these slurries
had a tendency to evaporate quickly during the measurement around the exposed edge. A
heating/cooling temperature bath was attached to the plate-heating jacket to provide the heat
sink. All measurements were taken at 25°C. Rheology measurements were taken using two
different linear rate ramp programs shown in Table 10.

TABLE 10. RS150 Measurement Job Programs

Linear shear rate ramp (up) Holding shear rate Linear shear rate ramp (down)
Program range (sec™) time (min) range (sec”) time (min) range (sec™) time (min)
A 0-400 5 400 1 400-0 5
B 0 - 1000 5 1000 1 1000-0 5

Both the RV 20 and RS150 rheometers were functionally checked using either a 102.5 or 101.9cP
silicon oil standards at 25°C on each day that the instruments were to be used for measurement.
Results for the standards were always within £5%. The RS150 measuring plate was checked on
aweekly basisto verify that the measuring surface was level.

The resulting flow curves obtained from both the cylindrical and plate-to-plate geometries have
not been corrected for dlip, viscous/thermal effects, or end/edge effects. No secondary flow
problems, such as Taylor vortices were noted in any of these measurements. Since no
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corrections were performed, the cylindrical and plate geometries do not produce identical flow
curves. Correcting the flow curves would require taking additional rheological measurements
using different size rotors and/or gaps. Flow curves corrected for non-Newtonian behavior
would indicate that the fluid would be easier to flow, in the case for the shear-thinning slurriesin
this study. Correcting for slip would cause the flow curves to become thicker, and this correction
is done after the non-Newtonian correction.

The flow curves were modeled using the Bingham Plastic rheological model, equation [2].
T=T,+ny [2]

Where: 1, = Bingham plastic yield stress (Paor dynes/cm?)
n = Bingham Plastic consistency or Bingham plastic viscosity, (Pa-sec or cP)
y = Shear rate (sec?)
T = Shear stress (Paor dynes/cm?)

The flow curves from the RV 20 were fitted, using equation [2], between 100 to 350 sec™. For
the RS150, the flow curves were fitted between 300 to 1000 sec™ but no flow curve was fitted to
the 0 to 400 sec* data. These fitting ranges were selected based on the region in which alinear
function could be fitted to al the flow curves.

The DWPF design bases limits'’, using the Bingham Plastic model, are 25 to 150 dynes/cm? for
yield stress and 10-40 centipoise (cP) for the plastic viscosity of the melter feed (SME product).

Marek™ modeled the two Bingham fluid parameters, as a function of wt. % IS content of the
slurry. The original theoretica model described the “ apparent viscosity” of a Newtonian slurry™
asafunction of the volume fraction of insoluble solids. This equation™? has been modified and
used by Marek to model both the Bingham Plastic yield stress and consistency as separate
functions of wt. % IS concentration of the slurry. The resulting equations are shown below,
equations[3] and [4]. Note that equations [3] and [4] force the solution at zero wt. % IS (or TS)
to intercept the axis at 1 (whatever units chosen). In thisreport, the wt. % TS concentration will
also be analyzed using equations [3] and [4]. The unknown parameters in equations [3] and [4]
were obtained using Table Curve 2D software 4.06.

bi*C
ex
T, = _&pr [3]
(1_ C/ Cmax,l)
by*C
ex
n=——b [4]
(1_ C/ Cmax 2)
Where: 1, = yield stress from the Bingham Plastic model (dynes/cm?)
n = plastic viscosity from the Bingham Plastic model (cP)
C = insoluble or total solids concentration (wt. %)
Cmaxi = model parameters corresponding to maximumwt. % ISor TS
b = model parameters (wt. % I1Sor TS)™
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Thewt. % TS, wt. % IS, density, pH and the averaged volume diameter (m,) of the sludges are
givenin Table 11. Thewt. % TSto wt. % IS linear relationships for the various blends are
shown in Table 12. Figure 3 contains all the density versus wt. % TS data and was fitted to the
linear equation shown in Figure 3. Figure 4 contains all the density versuswt. % IS data and was
fitted to the linear equation shown in Figure 4. The linear equationsin Tablel2, Figure 3, and
Figure 4 were obtained using the statistical package in Microsoft EXCEL. The pH for al the
blends ranged between 6.7 to 7.2, which was similar to results obtained previously?.

TABLE 11. Weight % Solids, Density, pH, and Particle Size

Sludge-frit-only <177um CST -dudge-frit <30um CST-sludge-frit
wt. % | wt. % |Density H my, wt. % | wt. % |Density H my, wt. % | wt. % |Density H m,
TS | 1S gmt | Pl qum | TS s fgmt | Pl umy | TS | 1s [ gml PT (um)
392 | 350 | 1219 | 717 393 | 354 | 1165 | 6.99 391 | 346 | 1114 [7.12
409 | 364 | 1.227 | 7.05 414 | 373 | 1211 | 6.97 410 [ 362 | 1197 | 71
433 | 386 | 1.254 | 7.17 438 | 388 | 1277 | 6.97 432 | 383 | 1.218 [7.06
461 | 411 | 1.300 | 7.06 458 | 413 | 1383 | 7.00 452 | 40.0 | 1.303 [7.06
477 | 427 | 1.379 | 7.08 484 | 438 | 1477 | 6.84 47.3 | 419 | 1.390 [7.08
521 | 46.8 | 1523 | 695 | 155 | 522 | 468 | 1.505 668 | 138 | 489 | 434 | 1486 [7.02] 132
TABLE 12. Weight % Total Solids
Equation Range (wt. % |S) R’
Sludge-frit-only (Wt.%TS),ocsr =1.20+1.089{t.%IS), s 35.0-46.8 0.9996
<177um CST-sudge-frit (WL%TS). 177, mesr = 0.26+1.1100Wt.%IS) 177 mesr 35.4-46.8 0.9954
<30pm CST-sludge-frit (WL%TS).g0,mesr =0.77 +1.1100(WE.%IS). g0, st 34.8-434 0.9998

The low tota solids content of the < 30 um CST-dludge-frit original product, 48.9%, relative to

the other two original products, 52.1 and 52.2%, appears to be due to issues related to the

addition of the < 30 um CST-water slurry during the SRAT cycle. Asmentioned in the
preparation section above, this melter feed fell short of the CST oxide target of 10%. The CST-

water slurry added during the SRAT cycle must have been thinner than expected based on the
original solids measurements. This slurry must have been closer to 15% total solids than the
21% total solidslistedin Table 1. Thisled to a CST oxide content in the neighborhood of 7.3%
(as seen in the ICP data), and equated to a 3.2% shortfall in product solids mass coupled with a
3.3% increase in product water mass (target was about 51% solids and 49% water). The total
solids content that correspond to these biases mathematically is 49.4%, which is reasonably close
to the measured value of 48.9%. (Analysisof the dilution results for total solids suggests that the
starting material was closer to 49.2-49.3% than to 48.9% as well). Problems with precise
batching of CST slurries have been encountered previously®.
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FIGURE 3. Density Versus Weight % Total Solids
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FIGURE 4. Density Versus Weight % Insoluble Solids
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Figure 5 shows a comparison of the particle size distribution of the sludge-frit-only, < 177 pm
CST-dudge-frit and < 30 um CST-dludge-frit. The micron size on the x-axisis the upper cut-off
diameter in that measuring window. For example, the 11 pum group would indicate that thisis
the volume percent of particles that passed the detector between 7.778 and 11.000 um. As
expected, the particle size distribution shifts from alarger to smaller sized particle distribution as
frit was replaced with CST. The distribution shifted further to the left when comparing the < 30
pm CST-dudge-frit to the < 177um CST-dludge-frit, as expected. This shift was also evident by
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the volume average diameter of the ludgeslisted in Table 11, where this volume average
diameter decreased from the sludge-frit-only to < 177 um CST-dludge-frit to < 30 um CST-
sludge-frit. The sludge-frit-only and < 177 um CST-sludge-frit seemed to have a more defined
bi-modal distributions compared to the < 30 um CST-sludge-frit. Compared to the other two
sludges, the < 30 um CST-dludge-frit particle size distribution was more evenly dispersed at
particle sizes < 50 pm.

FIGURE 5. Comparison of Melter Feeds— Particle Size

Particle Size Distribution
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Rheology Results

The uncorrected rheograms for Sludge-frit-only slurries are shown in Figures6 and 7. The
uncorrected rheograms for < 177 um CST-sludge-frit slurries are shown in Figures8 and 9. The
uncorrected rheograms for < 30 um CST-dudge-frit slurries are shown in Figures 10 and 11. For
each durry, the rheograms obtained using the parallel plates yielded more viscous flow curves
then were obtained with the concentric cylindrical geometry. The differences could be due to not
correcting the flow curves, as discussed in the Rheology section above, as well as to other factors
such asinertia, settling, etc.

The flow curvesin Figures 6, 8, and 10 were such that the lower curve was the shear rate up flow
curve and the top curve was the shear rate down flow curve for each durry as labeled by its wit.
% TS. The mechanism to produce a more viscous down curve was not investigated in this study
or in reference 13. Inspection of Figures 6, 8, and 10 indicate that the up flow curves have a
curvature, which, when fitted with alinear equation, would produce different results (yield stress
and consistency) depending on the shear rate range chosen. It was decided that a common shear
rate range (100 to 350 sec™') would be used for all the up curves and the curves fitted with the
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Bingham Plastic model. In two cases the down curve was curve fitted for the < 30 um CST-
sludge-frit, due to the Bingham model did not fit the data for the up curves. The Bingham Plastic
yield stress and consistency for each flow curve are shown in Table 13. Theindividual flow
curves (rheograms) are located in the Appendix.

Originally, the measurements using the RS150 were made for a shear rate of 0-400 sec’. The
basis for this original shear rate range was to closely match that of the RV20 data. The flow
curves associated with this shear rate range are shown in the Appendix, Figures A-1 through A-
3. Review of these figures indicated that a common shear rate range could not be used for fitting
the Bingham Plastic model to al the curves. It was decided to measure the rheology again and to
increase the shear rate range to 1000 sec™. These results are shown in Figures 7, 9, and 11 and
the resulting flow curves behave as expected, where the up curve and down curves almost
overlay each other. For the maximum wt. % TS flow curves, the return curve was typically
much more viscous than the up curve, due to drying around the edges. The flow curvesin Figure
7, Sludge-frit-only, exhibited a power law behavior in the lower shear rate ranges, but became
linear after approximately 150 sec’’. The flow curvesin Figure 9, < 177 pm CST-sludge-frit
exhibited a power law behavior up to approximately 400 sec®. The flow curvesin Figure 11,
Tank 8/40 <30um CST, exhibited structural breakdown (0-500 sec™) and recovery of structure
(200-0 sec™) and did not fit simplistic flow models such as the Bingham Plastic, Power Law, or
Hershel-Bulkley models. The shear rate range of 300 to 1000 sec™ was used to fit the Bingham
Plastic model and the results are shown in Table 13. The individual flow curves for the O to
1000 sec* are in the Appendix.

The < 30 um CST-dludge-frit slurries, shown in Figure 11, were more thixotropic (hysteresis)
than the other slurries, at the lower end of the flow curves (shear rate < 450 sec™), when
comparing the RS150 data. As stated above < 177 um CST-sludge-frit slurries and Sludge-frit-
only slurries seemed to fit a power law fluid in the shear rate range of 0 to 450 sec*. Above the
shear rate of 450 sec’, the up and down curves were fairly similar showing very little to no
thixotropy for all the dlurries. The < 30 um CST-sludge-frit slurries seemed to have a solids
structure that broke down due to shearing and was not completely recovered when the shear was
slowly removed. The reason for this thixotropic behavior could have been due to the particles
becoming aligned in the direction of flow, hence the less viscous return flow curve. Based on
this observation, the < 30 um CST-dudge-frit slurries behaved differently than the others slurries
at lower shear rates.
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TABLE 13. Bingham Plastic Model Parameters

Sludge-Frit-Only

RV20 RS150
wt.% TS | wt. % IS | Yield Stress | Consistency R? Yield Stress | Consistency R?
(dynes/cm?) (cP) (dynes/cm?) (cP)
39.2 35.0 94 8.7 0.9896 110 4.1 0.9966
40.9 36.4 113 8.1 0.9844 155 5.6 0.9992
43.3 38.6 161 8.9 0.9859 223 7.3 0.9994
46.1 41.1 206 12.8 0.9949 295 8.3 0.9970
47.7 2.7 247 20.2 0.9982 353 11.7 0.9974
52.1 46.8 459 23.3 0.9850 722 29.4 0.9996
< 177 um CST-Sludge-Frit
RV20 RS150
wt.% TS | wt. % 1S | Yield Stress | Consistency R? Yield Stress | Consistency R?
(dynes/cm?) (cP) (dynes/'cm?) (cP)
39.3 354 120 13.90 0.9937 203 15 0.8482
414 37.3 150 18.30 0.9842 242 3.7 0.9675
43.8 38.8 203 16.00 0.9888 343 6.5 0.9667
45.8 41.3 251 19.80 0.9980 428 8.8 0.9655
48.4 43.8 328 28.10 0.9970 555 16.0 0.9986
52.2 46.8 751 56.70 0.9937 994 34.5 0.9964
< 30 pm CST-Sludge-Frit
RV20 RS150
wt. % TS | wt. % 1S | Yield Stress | Consistency R? Yield Stress | Consistency R?
(dynes/cm?) (cP) (dynes/cm?) (cP)
39.1 34.6 98 5.2 0.9296 106 7.8 0.9986
41.0 36.2 108 8.8 0.9850 138 8.2 0.9982
43.2 38.6 172 6.4 0.9423 194 9.4 0.9994
45.2 40.0 193 13.8 0.9428 294 12.6 0.9970
47.3 41.9 273 15.6 0.9882 429 16.5 0.9968
48.9 43.4 400 22.9 0.9960 576 19.8 0.9978




FIGURE 6. RV20 Rheograms, Sludge-Frit-Only
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FIGURE 7. RS150 Rheograms, Sludge-Frit-Only
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FIGURE 8. RV20 Rheograms - < 177 um CST-Sludge-Frit
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FIGURE 9. RS150 Rheograms - < 177 um CST-Sludge-Frit
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FIGURE 10. RV20 Rheograms - < 30 um CST-Sludge-Frit
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FIGURE 11. RS150 Rheograms - < 30 um CST-Sludge-Frit
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The Bingham Plastic parametersin Table 13 were fit to equations [3] and [4] for bothwt. % TS
and wt. % IS with the results shown in Table 14. The results obtained using these fitted variables
for equations [3] and [4] are only applicable for the range in which they were fitted.
Extrapolating past the maximum value used to fit the curve is not recommended, since thereis
no data to support this. Additionally, some of the calculated Cp,» values were physically
unrealistic, having values close to or exceeding 100 wt. % solids. Equations [3] and [4] were
modified to equation [5], which allowed the value of the modeled parameter at C=0 to be a new
model constant (not forced to be one), thus fitting the actual data points better. The constant A;
has the units of dynes/cm? or cP. Again, this curve fit is only applicable to the range in which
the data was fitted.

eXpbi*C
(1-C/C

max,i )

ro{or n} =A [5]

Equation [5] was applied to the RS150 data set for the < 177 um CST-sludge-frit and the results
are shown in Table 14. Because equation [5] has an additional constant compared with equations
[3] and [4], the R? value will be closer to one for all cases (except if A; =1, then the R would be
the same). If the calculated Cra Values are interpreted as the maximum solids concentration,
using equation [5] for the < 177 um CST-sludge-frit provides a physically redlistic fit. Asstated
in Shook and Roco, “Of course, since concentration is not the only relevant parameter, thereis
no apriori ‘best’ functional form of the relationship.”

Theresultsin Table 14 are shown graphically in Figures 12 through 19. Additionaly, all the
graphs have the upper DWPF design limit of 150 dynes/cm? shown on the yield stress figures
and both DWPF consistency design limits are shown in the consistency figures. Observations
from the RV20 arein Table 15 and from the RS150 in Table 16.
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Sludge-Frit-Only

Curve Fit — Total Solids

Curve Fit — Insoluble Solids

brs Crnax, TS R2 bists Crmax,IS R2
Wt. % TS | (Wt. % TS) (wt. %19 | (wt. %19)
RV20 Yield Stress (dynes/cm?) 0.0989 84.08 0.9964 0.1156 92.11 0.9965
Consistency (cP) 0.0310 65.77 0.8737 0.0360 60.24 0.8754
RS150 Yield Stress (dynes/cm?) 0.1010 71.27 0.9958 0.1161 68.76 0.9953
Consistency (cP) 0.0083 55.00 0.9961 0.0103 49.55 0.9961
<177 pm CST-Sudge-Frit
Curve Fit — Total Solids Curve Fit — Insoluble Solids
brs Cmax,TS R2 bis Crmax,IS R2
Wt. % TS | (Wt. % TS) (wt. %19 | (wt. %19)
RV20 Yield Stress (dynes/cm?) 0.0901 61.31 0.9868 0.0976 53.77 0.9746
Consistency (cP) 0.0330 57.96 0.9724 0.0353 51.56 0.9665
RS150 Yield Stress (dynes/cm?) 0.1296 439.75 0.9935 0.1398 162.27 0.9821
Consistency (cP) 0.0081 54.58 0.9657 0.0076 48.75 0.9726
RS150 Modified Equation [5] 0.0524 61.15 0.9979 0.0330 52.114 0.9937
Yield Stress (dynes/cm?) A = 9.416 (dynes/cn’) A = 21.755 (dynes/cm?)
<30um CST-Sludge-Frit
Curve Fit — Total Solids Curve Fit — Insoluble Solids
brs Crax, TS R2 bis Crmax,IS R2
Wt. % T | (Wt. % TS) (wt. %19 | (wt. %19)
RV20 Yield Stress (dynes/cm?) 0.0852 58.61 0.9799 0.0973 52.50 0.9818
Consistency (cP) 0.0119 53.04 0.9317 0.0140 47.12 0.9281
RS150 Yield Stress (dynes/cm?) 0.0903 57.00 0.9981 0.1030 50.96 0.9977
Consistency (cP) 0.0203 56.50 0.989%4 0.0235 50.31 0.9882
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TABLE 15. Observations From RV 20

Sludge-Frit-Only Figures

1 | Theyield stress starts to exceed the DWPF upper design limit around 43 wt. % TSand 39wt. % 1S. | 12,14

2 | The consistency is below the DWPF lower design limit around 43 wt. % TSand 39 wt. % IS. The 16, 18
last consistency data point seems to be very low.
<177 um CST-Sudge-Frit

1 | Theyield stress exceeds the DWPF upper design limit at 42 wt. % TSand 39 wt. % IS. 12,14

2 | The consistency exceeds the DWPF upper design limit around 50 wt. % TS and 45 wt. % IS. 16, 18
< 30 um CST-Sludge-Frit

1 | Theyield stress exceeds the DWPF upper design limit around 43 wt. % TS and 39 wt. % |S. 12,14

2 | The consistency is below the DWPF design limit around 43 wt. % TS and 38 wt. % IS. 16, 18
Comparing Sludge-Frit-Only to < 177 um CST-Sludge-Frit

1 | Theyield stressfor < 177 um CST-sludge-frit is greater than that of the Sludge-frit-only at any 12,14
given wt. % solids and this difference becomes larger as the wt. % solids increases.

2 | The consistency for < 177 pm CST-sludge-frit is greater than that of the Sludge-frit-only at any 16, 18
given wt. %.
Comparing Sludge-Frit-Only to < 30 um CST-Sudge-Frit

1 | Theyield stressfor < 30 um CST-sludge-frit startsto exceed the yield stress of the Sludge-frit-only | 12, 14
at approximately 43 wt. % TS and 38 wt. % IS and this difference becomes larger as the wt. %
solidsincreases.

2 | The consistency of the < 30 um CST-sludge-frit starts to exceed the consistency of the Sludge-frit- 16, 18
only at 47 wt. % TSand 41 wt. % IS. If thelast data point for the Sludge-frit-only isignored, the
consistency for both of these sludgesis comparable.
Comparing < 177 ym CST-Sludge-Frit to < 30 um CST-Sludge-Frit

1 | Theyield stress of the < 30 um CST-dludge-frit starts to exceed the < 177 um CST-dudge-frit 12,14
around 42 wt. % 1S.

2 | The consistency of the < 30 um CST-sludge-frit is smaller than the consistency of the 16, 18

< 177um CST given any wt. %.
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TABLE 16. Observations From RS150

Sludge-Frit-Only Figures
1 | Theyield stress starts to exceed the DWPF design limit around 41 wt. % TS and 36 wt. % IS. 13, 15
2 | The consistency is below the DWPF design limit around 47 wt. % TS and 42 wt. % IS. 17,19
<177 um CST-Sudge-Frit
1 | Theyield stress always exceeds the DWPF design limit. 13, 15
2 | Theyield stressfor < 177 um CST-sludge-frit parallels the Sludge-frit-only. 13,15
3 | Equation [5] fitsthe yield stress data better than equation [3]. 13, 15
4 | The consistency datais below the DWPF design limit around 47 wt. % TS and 42 wt. % IS. 17,19
5 | Equation [4] over-estimates the consistency at the lower wt. % TS and IS. Use of equation [5] 17,19
would have yielded a better fit.
< 30 um CST-Sludge-Frit
1 | Theyield stress exceeds the DWPF design limit around 41 wt. % TS and 36 wt. % IS. 13, 15
2 | The consistency is below the DWPF design limit around 43 wt. % TS and 38 wt. % IS. 17,19
Comparing Sludge-Frit-Only to < 177 um CST-Sludge-Frit
1 | Theyield stressfor < 177 um CST-dudge-frit is greater than that of the Sludge-frit-only at any 13,15
given wt. % solids and the difference becomes larger as the wt. % solids increases. The DWPF
upper design limit is always exceeded.
2 | Theconsistency for < 177 um CST-sludge-frit is smaller than that of the Sludge-frit-only when 17,19
the wt. % TS < 46% and wt. % IS < 44%. After that, the < 177um CST-dudge-frit is greater than
the Sludge-frit-only. Overall, the two curves are about the same.
Comparing Sludge-Frit-Only to < 30 um CST-Sudge-Frit
1 | Theyield stressfor < 30 pum CST-sludge-frit exceeds the yield stress of the Sludge-frit-only at 13,15
approximately 43 wt. % TSand 38 wt. % IS.
2 | The consistency of the < 30um CST-dudge-frit always exceeds the Sludge-frit-only consistency. | 17, 19
Comparing < 177 um CST-Sludge-Frit to < 30 ym CST-Sudge-Frit
1 | Theyield stress of the < 30 um CST-sludge-frit never exceeds the yield stress of the < 177 um 13,15
CST-dudge-frit. Thewt.% IS curves fitted with equation [5] shows that yield stressfor < 30 pm
CST-dudge-frit exceeds the < 177 um CST-dudge-frit at 43 wt. % IS.
2 | Theconsistency of the < 30pm CST-dudge-frit was greater than the consistency of the< 177 um | 17,19
CST-dudge-frit given any wt. %.
3 | The < 30um CST-dudge-frit yield stress raises increases faster than the < 177um CST-dudge-frit | 13, 15

asthewt. % TS or |Sincreases.




FIGURE 12: Yield StressversusWt. % TS- RV20
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FIGURE 13: Yield StressversusWt. % TS—RS150
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FIGURE 14. Yield StressversusWt. % IS—RV20
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FIGURE 15. Yield StressversusWt. % IS—RS 150
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FIGURE 16. Consistency versusWt. % TS- RV20
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FIGURE 17. Consistency versusWt. % TS- RS150
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FIGURE 18. Consistency versusWt. % 1S- RV20
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FIGURE 19. Consistency versus Wt. % 1S- RS150
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The curve fitted datain Table 14 can be used together to describe the flow curves for any weight
percent solids the curves were fitted. The yield stress equation [3] and consistency equation [4]
were substituted into the Bingham Plastic equation [2], yielding a relationship between the flow
model and fitted parameters.

b1*C b2*C
. ex ex
e e

. 2
T@-ciC.Ly T@-cic,,,y” @neem) 19

Flow curves were generated between 0 to 350 sec* using the datain Table 14 for al the melter
feeds and the results are shown in Figure 20 (the Haake software uses the symbol u for n). A
lower TS of 39.4 wt. % and a upper TS of 48.9 wt.% were used, since thiswould cover the range
in which all the dataiin Table 14 had been fitted to. The minimum and maximum DWPF design
limits are also shown in Figure 20, which provides an areafor operation. The flow curves were
colored, such that each condition, wt. % TS and type of instrument used, could be compared.
Theresultsindicate at low TS, that all three melter feed behave about the same and were al
within the DWPF design limit box using either instrument. The < 177 pm CST-sludge-frit,
RS150 data does have a higher yield stress, which initially exceeded the DWPF upper design
limits, but after 100 sec™* came within the DWPF design limit. As the concentration increased to
489 wt.% TS, al the flow curves exceeded the DWPF design limit. The Sludge-frit-only was
the least viscous, followed by the < 30 um CST-dludge-frit and then by the < 177 um CST-
sludge-frit. This pattern was consistent with both the RV 20 and RS150 data. The average
differencein the shear stress at 350 sec™* was 40% greater for < 177 um CST-sludge-frit and
30% greater for < 30 um CST-dudge-frit when compared to the Sludge-frit-only, for both the
RV 20 and RS150 data.

Hydraulic calculations, using the density in Table 11, correlated datain Table 14 and equation
[6] was not performed but is recommended. The hydraulic losses would closely follow that of
the flow curves shown in Figure 20, but would take into consideration the density and piping
configuration. The hydraulic losses can be determined using the method outlined by Darby™ for
straight pipe, assuming the fluid can be treated as a Bingham Plastic. Entrance/exit and fitting
losses can be estimated using reference 15. The flow curves can then be plotted against the
pump curve to determine if there are operational issues. Asfor mixing, thisissue could be
addressed using computational fluid dynamics, where the yield stress would most likely be the
limiting factor.
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FIGURE 20. Flow Curves Using Equation [6] and wt. % TS
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CONCLUSIONS

In general, at low wt. % solids, the behavior of the Sludge-frit-only, < 177 um CST-sludge-frit
and < 30 um CST-sludge-frit slurries were similar rheologically. Asthe wt. % solids increased,
the < 177 um CST-sludge-frit was the most viscous, followed by the < 30 um CST-sludge-frit,
and then the Sludge-frit-only slurry. The change was most notable in the yield stress.

Theyield stresses of CST-sludge-frit melter feeds equaled the yield stresses of sludge-frit-only
melter feeds that contained higher weight % total solids. The difference in weight percent total
solids between the CST-sludge-frit and sludge-frit-only melter feeds was anywhere from 0 to 4
wt. % total solids, depending on the selected yield stress. This means that the presence of CST
in the DWPF melter feed would potentially lead to areduction in melt rate due to the additional

water in the CST-dudge-frit melter feeds.
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Summarizing other behaviors:

When the yield stress was less than 150 dynes/cm?, the consistency was often |ess than 10
cP; hence the data was almost never within DWPF design basis region for al the slurries.
The yield stress data seems to show the same general behavior when comparing the blends
using either the RV 20 or RS150 data.

Theyield stress data using either the RV 20 and RS150 gave approximately the same wt. %
TSand wt. % IS at which the < 30 um CST-sludge-frit crossed the Sludge-frit-only.

The consistency datavaried greatly for the RV20 data. Thiswas most likely due to the
curvature in the raw data and the selection of the range in which the data was analyzed

The results from the RS150 data seemed to produce a smoother function for the yield stress
and consistency with respect to wt. % solids as compared to the RV 20 data.

The < 30 um CST-dludge-frit yield stress was comparable to the Blend-sludge-frit yield
stress where the DWPF design limit was not exceeded.

The DWPF yield stress upper design limit was exceeded at avery low wt. % TSand IS
valuesfor al the Blends. These compare well with the same Tank 8/40 Blends studied in
Reference 13.

The < 30 um CST-dludge-frit flow curves obtained using the RS150 shows a slurry that has a
structure that recovers when the shear rate is reduced unlike the < 177 um CST-sludge-frit
and the Sludge-frit-only slurries.

The < 30 um CST-sludge-frit yield stress increases more rapidly than the < 177 um CST-
sludge-frit yield stress asthe wt. % IS or TS increases.

In general, the rheological behavior of the Tank 8/40 Blends containing CST is more viscous
than that of the Tank 8/40 Blend. After 43 wt. % TS or 39 wt. % IS solids, the yield stress
for the CST durries starts to diverge and rapidly increases from that of Tank 8/40 Blend as
the wt.% solids increases.

FUTURE WORK

The experiments were conducted with a base material that was outside of the DWPF design basis
for yield stress (25-150 dynes/cm?) starting at alow wt. % solids. It needs to be determined if
DWPF actually processes within thisrange. A rheometer with comparable measuring capabilities
to theone at TNX islocated in the Shielded Cells. A sample of real DWPF melter feed should
be submitted for rheological characterization. Additional tests such as varying the pH could
produce aslurry that can be processed using the existing DWPF slurry design basis limit.
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FIGURE A - 1: RS150 (0-400 sec™) Sludge-Frit-Only Rheograms

WSRC-TR-2001-00069
Page A-2 of A - 23

RheoWin Pro 2.70

., [Pa]

Tank 8/40 Blend - Nominal, Complete Flowcurve RS-150, 0-400 1/sec

40
3 WWW
5
MW WW&%W’W
2 s |
30 f(‘ Mw
f %X%M ] 39.2 wt% TS
[39.2 wt
251 e =1 (A)
%ﬁ 40.9 Wt% TS
- >, =f(A)
o N
20 e 46.1 wt% TS
Mw > =f(A)
el 47.7 Wt% TS
f - , =f (A)
15+
7
i pasisisad
10}
5 9
[0]
[0] 80 160 240 320 400

A [14]




WSRC-TR-2001-00069
APPENDIX Page A-30of A - 23

FIGURE A - 2: RS150 (0-400 sec’) < 177 mm CST-Sludge-Frit Rheograms
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FIGURE A - 3: RS150 (0-400 sec™) < 30 nm CST-Sludge-Frit Rheograms

WSRC-TR-2001-00069
Page A-4 of A - 23

RheoWin Pro 2.70

Page 1

Tank 8/40 Blend < 30 micron CST, Complete Flowcurve RS-150, 0-400 1/sec

¥ Al 0\ x X 1
‘ “ AN ggwwiﬁ‘@
45 X R S o

39.1 wt% TS-C

>, =1 A)
41.0 wt% TS-A

'E‘ > N =f(A)
[N 43.2 wt% TS-B

~ <, =1 (A)
’ 1452 wt% TS-A

. e < =1 (A)

e B 47.3 wt% TS
>, =1(A)

80 160 240 320 400
A [14]




FIGURE A - 4: RS150 Sludge-Frit-Only 39.2wt. % TS
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Page 1
Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <--->RS150
Date/Time 16.01.2001 / 9:45:32 AM Sensor PP60 Ti Gap 1.000 mm
Substance Base Case 40wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 30.008 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend, 39.2 wt% TS
' P
14
1
N P E)iwmjs
% = binonam @)
= % —— Bingnam (89)
4
o 200 400 600 800 1000
A K]
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\Base Case\0-1000 sec-1\39.2 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes

\ Evaluation

CR lin, 0.00 14 - 1000.00 14, t 300.00 s, #200, T prev °C
CR ,prev1k,t60.00s, #20, T prev °C

CR lin, prev 14 - 0.00 14, t300.00 s, #200, T prev °C
Notes

Bingham (88) : , ¥:10.95 {E:0.004074 C hiz:0.3235 r:0.9983
x=A[14], y=, [Pa]
Bingham (89) : , ¥:10.87 fE:0.003875 C hiz:0.7197 r:0.9959

x=A[14], y=, [Pa]
Could have slight settling effect. Very negligible.

Bingham Plastic Curves Fitted From 300 - 1000 1/4ec
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FIGURE A - 5: RS150 Sludge-Frit-Only 40.9wt. % TS
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Page 1

Company WSRC Measure device RS150

Operator vickie williams Temperature device F6/8 <---> RS150

Date/Time 16.01.2001/ 10:03:47 AM Sensor PP60 Ti Gap 1.000 mm

Substance Base Case 42wt% A-factor 23576.000 Pa/Nm

Sample no M-factor 29.996 1/s/(rad/s)

Description

Comment HLW Mixing Study

Tank 8/40 Blend, 40.9 wt% TS
e e i
oSS
R
1 = Bingham (99)
- g‘ ~—— Bingham (100)
[
I
o 200 400 600 800 1000
A e

Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\Base Case\0-1000 sec-1\40.9 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes

\ Evaluation

CR lin, 0.00 1/ - 1000.00 1/, t 300.00 s, #200, T prev °C
CR ,prev 1/, 160.00 s, #20, T prev °C

CR lin, prev 1/ - 0.00 1/, t 300.00 s, #200, T prev °C
Notes

Bingham Fit from 300 - 1000 14ec

Bingham (99) :, ¥15.5 {£:0.005559 C hi*:0.1605 r:0.9996
x=A[1K], y=, [Pa]

Bingham (100) : , ¥15.8 f £0.00506 C hi*:0.4999 r:0.9983
x=A[1K], y=, [Pa]




FIGURE A - 6: RS150 Sludge-Frit-Only 43.3wt. % TS
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Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <--->RS150
Date/Time 16.01.2001 / 11:24:45 AM Sensor PP60 Ti Gap 1.000 mm
Substance Base Case 44wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.985 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend, 43.3wt% TS
,—///
20
[FETTRH
S
— bingham (115)
= % —— singham (116)
4
|
- 1
1
o 200 400 600 800 1000
A K]
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\Base Case\0-1000 sec-1\43.3 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes \ Evaluation

CR lin, 0.00 14 - 1000.00 14, t 300.00 s, #200, T prev °C
CR ,prev1k,t60.00s, #20, T prev °C

CR lin, prev 14 - 0.00 14, t300.00 s, #200, T prev °C
Notes

Binham Fit 300 - 1000 14ec

Bingham (115) :,¥:22.28 fE:0.007294 C hi?:0.1846 r:0.9997
x=A[16],y=, [Pa]

Bingham (116) : , ¥22.93 f £0.00664 C hi?:0.6517 r:0.9987
x=A[14],y=, [Pa]
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FIGURE A - 7: RS150 Sludge-Frit-Only 46.1wt. % TS
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Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 16.01.2001 / 11:43:09 AM Sensor PP60 Ti Gap 1.000 mm
Substance Base Case 46wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.987 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend, 46.1 wt% TS
e
30|
S w
f — Bingnem (1)
K ~—— singnam (112)
[
1
it
o 200 400 600 800 1000
A e
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\Base Case\0-1000 sec-1\46.1 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes \ Evaluation

CR lin, 0.00 1/ - 1000.00 1/, t 300.00 s, #200, T prev °C
CR ,prev 1/, 160.00 s, #20, T prev °C

CR lin, prev 1/ - 0.00 1/, t 300.00 s, #200, T prev °C
Notes

Bingham Fit 300 - 1000 14ec

Bingham (111) : , ¥29.53 { £0.008307 Ch#:1.228 1:0.9985
x=A[1K], y=, [Pa]

Bingham (112) : ,¥:28.88 {£:0.009206 Chi*:0.8583 r:0.9991
x=A[1K], y=, [Pa]




FIGURE A - 8: RS150 Sludge-Frit-Only 47.7 wt. % TS
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FIGURE A - 9: RS150 Sludge-Frit-Only 52.1 wt. % TS

Page 1
Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <--->RS150
Date/Time 16.01.2001 / 12:46:23 PM Sensor PP60 Ti Gap 1.000 mm
Substance <30u CST run 48 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.996 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend, 47.7 wt% TS
4
35
TR TS
i = 1(A)
- # =
= |
1
1
o 200 400 600 800 1000
A K]
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\Base Case\0-1000 sec-1\47.7 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes \ Evaluation

CR lin, 0.00 14 - 1000.00 14, t 300.00 s, #200, T prev °C
CR ,prev1k,t60.00s, #20, T prev °C

CR lin, prev 14 - 0.00 14, t300.00 s, #200, T prev °C
Notes

Bingham Fit 300 - 1000

Bingham (17) : , ¥35.26 { £0.01173 Ch#:2.012 r:0.9987
x=A[16], y=, [Pa]

Bingham (18) : , ¥36.08 f £0.01172 Chi:2.539 r:0.9984
x=A[16], y=, [Pa]
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Page 1
Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 16.01.2001 / 13:04:29 PM Sensor PP60 Ti Gap 0.999 mm
Substance Base Case 50 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 30.022 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend, 52.1wt% TS
‘ ]
it
e .l
<
_’&N )
ingham (23)
= ng«f —— singham (2
[
o 200 400 600 800 1000
A e
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\Base Case\0-1000 sec-1\52.1 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes \ Evaluation

CR lin, 0.00 1/ - 1000.00 1/, t300.00 s, #200, T prev °C

CR . prev 1/, t60.00s, #20, T prev °C

CR lin, prev 14 - 0.00 14, t 300.00 s, #200, T prev °C

Notes

Slight drying. Could this be rheopetic or could air bubble be migrating
towards the center, leaving a thicker slurry on the perimeter?

Will run again.

Bingha m Fit 300 - 1000 14ec

Bingham (23) : ,¥72.4 [ £0.02941 Ch#:1.742 r:0.9998

x=A[146], y=,[Pa]

Bingham (24) : , ¥82.88 { £0.02125 Ch#:6.597 r:0.9987

x=A[1K], y=, [Pa]
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FIGURE A - 10: RS150 < 177 mm CST Sludge-Frit 39.3wt. % TS
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Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 16.01.2001 / 15:39:00 PM Sensor PP60 Ti Gap 1.000 mm
Substance 170 micron 40 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 30.014 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend < 177 micron CST, 39.3wt% TS
25 }
|
— -~
| w*‘w
<"l w
15 ingham (166)
= f —— Bingham (161)
3
N f
o 200 400 600 800 1000
A e
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\170 micron\0-1000 sec-1139.3 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes

| [Evaluation

CR lin, 0.00 1/ - 1000.00 14, t 300.00 s, #200, T prev °C
CR,prev 1k, t60.00s, #20, T prev °C

CR lin, prev 1/ - 0.00 1/, t300.00 s, #200, T prev °C
Notes

Bingham (161) : ,¥20.31 { E0.001496 Chi22.312 r:0.921
x=A[1k6], y=.[Pa]
Bingham (166) : , ¥18.54 [ £0.002633 Chi*1.313 1:0.984

x=A[16]1, y=, [Pa]
Interesting curve. May have to run again.

Has a very power law behavior on lower in.
Bingham Fit 300-1000 sec- 1
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FIGURE A - 11: RS150 < 177 nm CST Sludge-Frit 41.4wt. % TS
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Page 1

Company WSRC Measure device RS150

Operator vickie williams Temperature device F6/8 <---> RS150

Date/Time 17.01.2001 / 9:15:44 AM Sensor PP60 Ti Gap 1.000 mm

Substance <170u CST run 44 wt% A-factor 23576.000 Pa/Nm

Sample no M-factor 30.008 1/s/(rad/s)

Description

Comment HLW Mixing Study

Tank 8/40 Blend < 177 micron CST, 43.8wt% TS
s
TSRS
§ Sl
gham (185)
= gham (186)
N F 4
1
it
o 200 400 600 800 1000
A 1K

Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\170 micron\0-1000 sec-1\43.8 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.nwj
Element definition / Notes

| [Evaluation

CR lin, 0.00 14 - 1000.00 1/, t 300.00 s, #200, T prev °C
CR ,prev1/,t60.00s, #20, T prev °C

CR lin, prev 1/ - 0.00 1/, t 300.00 s, #200, T prev °C
Notes

Bingham Fit - 300 - 1000 sec- 1

Bingham (185) : , ¥34.25 { E:0.00653 C hi:8.46 r:0.9832
x=A[16], y=, [Pa]

Bingham (186) : , ¥32.36 f£0.007779 Chi:3.112 r:0.9955
x=A[16]1, y=, [Pa]




FIGURE A - 12:
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RS150 < 177 mm CST Sludge-Frit 43.8wt. % TS

RheoWin Pro 2.70

Page 1
Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 17.01.2001/ 8:56:44 AM Sensor PP60 Ti Gap 1.000 mm
Substance <170u CST run 42 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 30.010 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend < 177 micron CST, 41.4wt% TS
25
[
§ T A TE
>l
ingham (175)
= g ~— Bingham (180)
3
- 15 f
1
o 200 400 600 800 1000
A e
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\170 micron\0-1000 sec-1\41.4 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes \ Evaluation

CR 1in, 0.00 14 - 1000.00 14, £ 300.00 s, #200, T prev °C
CR ,prev 1A, t60.00s, #20, T prev °C
CR lin, prev 1/ - 0.00 1/, £ 300.00 s, #200, T prev °C

Notes

Bingham (179) : , ¥24.18 fE0.003682 Ch:2.571 r:0.9836
x=A[16], y=, [Pa]

Bingham (180) : , ¥22.86 £0.004519 Ch#:1.435 r:0.9939
x=A[16], y=,[Pa]

Bingham Range 300- 1000 14ec
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FIGURE A - 13: RS150 < 177 nm CST Sludge-Frit 45.8 wt. % TS
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Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 01.02.2001 / 8:51:34 AM Sensor PP60 Ti Gap 1.000 mm
Substance <177u CST run 46 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.987 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend < 177 micron CST, 45.8wt% TS
——— |
e
EE —
: ss\*x
z B Snaham (43
N §
I
1
it
o 200 600 800 1000
A 1K
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\170 micron\0-1000 sec-1\45.8 wt% TS-B.rwd
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes \ Evaluation

CR lin, 0.00 14 - 1000.00 14, t 300.00 s, #200, T prev °C

CR ,prev1/,t60.00s, #20, T prev °C

CR lin, prev 14 - 0.00 1/, t 1000.00 s, #200, T prev °C

Notes

Definitely drying is a factor on the down curve. Did not use vapor
trap. Slight drying or segeration of particle? Use up curve.

Bingham (11) : , ¥42.81 fE0.008833 Ch:16.08 r:0.9826
x=A[16]1, y=, [Pa]
Bingham (12) : , ¥43.28 f£0.007747 Chi:5.357 r:0.9923
x=A[16], y=, [Pa]
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FIGURE A - 14: RS150 < 177 mm CST Sludge-Frit 48.4wt. % TS

RheoWin Pro 2.70

Company WSRC Measure device RS150

Operator vickie williams Temperature device F6/8 <---> RS150

Date/Time 17.01.2001 / 10:56:08 AM Sensor PP60 Ti Gap
Substance <170u CST run 48 wt% A-factor 23576.000 Pa/Nm

Sample no M-factor 29.987 1/s/(rad/s)

Description

Comment HLW Mixing Study

Page 1

1.000 mm

WSRC-TR-2001-00069
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FIGURE A - 15: RS150 < 177 nm CST Sludge-Frit 52.2wt. % TS

Tank 8/40 Blend < 177 micron CST, 48.4wt% TS

asawnTs
eI

Bingham (198)

. Pa)

1000
A 1151

Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\170 micron\0-1000 sec-1\48.4 wt% TS.rwd (Mod)

Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj

Element def n / Notes \ Evaluation

CR lin, 0.00 14 - 1000.00 1/, t 300.00 s, #200, T prev °C
CR ,prev1/,t60.00s, #20, T prev °C

CR lin, prev 14 - 0.00 1/, t300.00 s, #200, T prev °C
Notes

Bingham (197) :, ¥:55.47 f £:0.016 Ch:2.118 r:0.9993
x=A[16], y=, [Pa]
Bingham (198) :, ¥:54.8 f £:0.0169 Chi*:8.585 r:0.9974

x=A[1K], y=, [Pa]
Bingham fit 300 to 1000 14ec

RheoWin Pro 2.70
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Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 17.01.2001/ 12:07:03 PM Sensor PP60 Ti Gap 1.000 mm
Substance <170u CST run 50 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.991 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend < 177 micron CST, 52.2wt% TS
’ ]
g
120

zwwTs
7 =S5 aiw
¥ — Bingnam (209)
~— singham (204)

Pa]
Y

800 1000
A 1K)

Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\170 micron\0-1000 sec-1\52.2 wt% TS.rwd (Mod)

Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj

Element def ion / Notes \ Evaluation

CR lin, 0.00 1/ - 1000.00 1/, t 300.00 s, #200, T prev °C

Bingham (203) : ,¥99.35 { £0.03447 Chi%:24.82 1:0.9982
x=A[1k61, y=, [Pa]

Bingham (204) : ,¥107.7 { £:0.02672 Chi2:16.68 r:0.998
x=A[16], y=, [Pa]

CR ,prev 14, 160.00s, #20, T prev °C

CR lin, prev 14 - 0.00 14, t 300.00 s, #200, T prev °C
Notes

Slight drying. Use up curve

Bingham Fit 300 - 1000
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FIGURE A - 16: RS150 < 30 nm CST Sludge-Frit 39.1wt. % TS
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FIGURE A - 17: RS150 < 30 nm CST Sludge-Frit 41.0wt. % TS
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Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 17.01.2001/ 12:26:28 PM Sensor PP60 Ti Gap 1.000 mm
Substance <30u CST run 40 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 30.000 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend < 30 micron CST, 39.2wt% TS
1
£
- it
o 200 400 600 800 1000
A s
Filename: C:\WINDOWS\Desktop\Munsom\DWPF-CST work - New Haake\30 micron\0-1000 sec-1\39.1 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj
Element definition / Notes \ Evaluation
CR lin, 0.00 1/ - 1000.00 14, t300.00 s, #200, T prev °C

Bingham (89) : , ¥11.69 f £0.006694 Ch:3.859 1:0.9926
x=A[1k], y=, [Pa]

Bingham (90) : , ¥10.56 f £0.00775 Chiz:0.5056 r:0.9993
x=A[16]1, y=, [Pa]

CR ,prev 1A, t60.00s, #20, T prev °C

CR lin, prev 14 - 0.00 1/, t300.00 s, #200, T prev °C
Notes

Binham Fit 300 - 1000 14ec
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Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 17.01.2001/ 13:13:06 PM Sensor PP60 Ti Gap 1.000 mm
Substance <30u CST run 42 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.987 1/s/(rad/s)
Description
Comment HLW Mixing Study

Tank 8/40 Blend < 30 micron CST, 41.0wt% TS

g
\

TLown TS
250

ham (103)
ham (104)

. [Pa]

1000
A 11k]

Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\30 micron\0-1000 sec-1\41.0 wt% TS.rwd (Mod)

Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.nwj
Element definition / Notes \ Evaluation
CR lin, 0.00 1/ - 1000.00 14, t300.00 s, #200, T prev °C
CR ,prev 1/, 160.00's, #20, T prev °C
CR lin, prev 1/ - 0.00 14, t 300.00 s, #200, T prev °C
Notes
Bingham Fit 300 - 1000

Bingham (103) : , ¥15.79 f £0.005992 Ch#:8.223 1:0.9811
x=A[141, y=, [Pa]

Bingham (104) :,¥:13.77 f£:0.008222 Chi#:0.7002 r:0.9991
x=A[1k], y=. [Pa]
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FIGURE A - 18: RS150 < 30 nm CST Sludge-Frit 43.2wt. % TS

RheoWin Pro 2.70

Page 1
Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 17.01.2001 / 13:30:51 PM Sensor PP60 Ti Gap 1.000 mm
Substance <30u CST run 44 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.995 1/s/(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend < 30 micron CST, 43.2wt% TS
- ]
e
T
[
- 15
1
o 200 400 600 800 1000
A e
Filename: C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\30 micron\0-1000 sec-1\43.2 wt% TS.rwd (Mod)
Job:

C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj

Element definition / Notes

CR lin, 0.00 1/ - 1000.00 14, t300.00 s, #200, T prev °C

Evaluation

CR ,prev 14, t60.00 s, #20, T prev °C

CR lin, prev 1/ - 0.00 14, t300.00 s, #200, T prev °C

Notes

Bingham Fit 300 - 1000

Bingham (109) : , ¥21.45 f £E0.007104 Ch#:10.59 r:0.9823
x=A[1K], y=, [Pa]

Bingham (110) : , ¥:19.41 {E:0.009398 Chi2:0.2792 r:0.9997

x=A[1K], y=, [Pa]

WSRC-TR-2001-00069
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FIGURE A - 19: RS150 < 30 nm CST Sludge-Frit 45.2wt. % TS

RheoWin Pro 2.70

Page 1
Company WSRC Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150
Date/Time 17.01.2001 / 14:00:03 PM Sensor PP60 Ti Gap 1.000 mm
Substance <30u CST run 46 wt% A-factor 23576.000 Pa/Nm
Sample no M-factor 29.987 1/sl(rad/s)
Description
Comment HLW Mixing Study
Tank 8/40 Blend < 30 micron CST, 45.2wt% TS
o R
£
it
it
o 200 400 600 800 1000
A 14
Filename:

C:\WINDOWS\Desktop\Munson\DWPF-CST work - New Haake\30 micron\0-1000 sec-1\45.2 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.rwj

Element definition / Notes \ Evaluation

CR lin, 0.00 1/ - 1000.00 14, t300.00 s, #200, T prev °C Bingham (123) : ,¥29.38 f £0.01204 Ch#:1.126 :0.9993
CR ,prev 1/, 160.00s, #20, T prev °C x=A[1A6],y=, [Pa]

CR lin, prev 1/ - 0.00 14, t 300.00 s, #200, T prev °C Bingham (124) :,¥%29.41 f £0.01264 Ch#:2.286 :0.9988

Notes x=A[141, y=, [Pa]
Bingham Fit 300- 1000 1/&ec
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FIGURE A - 20: RS150 < 30 mm CST Sludge-Frit 47.3wt. % TS FIGURE A - 21: RS150 < 30 mm CST Sludge-Frit 48.9 wt. % TS

RheoWin Pro 2.70 Page 1 RheoWin Pro 2.70 Page 1
Company WSRC Measure device RS150 Company WSBC . Measure device RS150
Operator vickie williams Temperature device F6/8 <---> RS150 Operalvov vickie williams o Temperature device F6/8 < - RS150
Date/Time 15.01.2001 / 16:01:56 PM Sensor PP60 Ti Gap 1.000 mm Date/Time 16.01.2001/ 8:43:30 AM Sensor PPGOTI Gap 1.000 mm
Substance <30u CST run 48 wt% A-factor 23576.000 Pa/Nm Substance <30u CST run 50 wt% A-factor ;g?gg(ioeol Pat/j;\lm
Sample no M-factor 29.995 1/s/(rad/s) Samp!e V_WO M-factor .987 1/s/(rad/s)
Description Running to 1000 1/sec Description
Comment HLW Mixing Study Camment HLW Mixing Study
i 9
Tank 8/40 Blend < 30 micron CST, 47.3wt% TS Tank 8/40 Blend < 30 micron CST, 48.9wt% TS
b [
i 60
4 i T
s 7 B2
i e, ‘ ey
ngham (135) = nam (152)
= i —— singnam 136) g ,
&
1
1
o 200 400 600 800 1000
o 200 400 600 800 1000
A k]
A [15]
Filename: C:AWINDOWS\Desktop\MunsomDWPF-CST work - New Haake\30 micron\0-1000 sec-1\47.3 wt% TS.rwd (Mod) Filename: Efixgz(x;\gf:ggmggﬁma‘g;;cSGTO";‘;"E' New Haakel30 micron\0-1000 sec-1148.9 wt% TS.rwd (Mod)
Job: C:\PROGRAM FILES\RHEOWIN\JOBS\pp60-25 C sweep.nj Job: : PPe0- S‘W“p"‘”’
" Element definition / Notes Evaluation
Element definition / Notes | [Evaluation CR lin, 0.00 14 - 1000.00 14, t300.00 s, #200, T prev °C Bingham (151) :,¥56.79 f £:0.01911 Ch#:5.29 r:0.9987
CR lin, 0.00 1/ - 1000.00 1/5, t300.00 s, #200, T prev °C Bingham (135) : ,¥%41.03 f £0.01649 Ch#:5.509 r:0.9983
CR ,prev 1A, t60.00s, #20, T prev °C x=A[1&1], y=, [Pa]
CR ,prev1/,t60.00s, #20, T prev °C x=A[16], y=, [Pa]
" . i i CR lin, prev 14 - 0.00 1/, t300.00 s, #200, T prev °C Bingham (152) : ,¥57.55 { £0.01982 Ch#:5.034 r:0.9989
CR lin, prev 1/ - 0.00 14, t300.00 s, #200, T prev °C Bingham (136) : ,¥%42.64 f £E0.01608 Ch#:4.309 r:0.9986 N
. Notes x=A[141, y=, [Pa]
Notes x=A[1K]1, y=, [Pa]
5 ) . OK. Bingham Fit 300 - 1000
Slight drying on the edge. This sample came from 48 w%A, hence this
woud be the 2nd run. Do not be lieve that this slurry is rheopetic. Will
run a clean sample
Bingham Fit 300 - 1000 sec- 1
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FIGURE A - 22: RV20 Sludge-Frit-Only 39.2wt. % TS
d Studge-Frit-Only 39 wt. % TS, HK 356, MV2 E
——up-39 29 % TS down-39 2wt % TS
— = up-BF-39 3wt % TS —— down-BF-39 2wt % T3
15
[2x]
5 = . . T ||
£ 5y T 9_4|+ 0.00869 T 100 < 'y:il 350, B ?.9395
Tamw= 5.6 +0.01174 3, 100 < § < 350, B = 0.9602
I:I T T T T
0 50 100 150 200 250 300 350
P Shear Rate (sec™) y.
FIGURE A - 23: RV20 Sludge-Frit-Only 40.9 wt. % TS
4 Sudge-Frit-Only 409 wt. % T3, HI 001, MV 2 o
— up A0 DA % TE down-40 Swt % TS
— = up-BF-40 9wt % TS - down-BF-40 9wt % T3
15 E—
| I—
_..-.-r"-"‘_'_'_"_ﬁ_'_ﬂ_# _H-i
— w‘ﬁ_’ﬂ
w 10 5
i ,
L .
g 5 Tap =113 +0.00810 §, 100 < § <350, R* = 0.9844 |
[2r]
| [ [ I
Tdomm = 11.0 +0.01400 4, 100 < § < 350, R* = 0.921
0 f f f i
0 50 100 150 00 250 300 330
i Shear Rate (sec™) y.
FIGURE A - 24: RV20 Sludge-Frit-Only 43.3wt. % TS
4 Shudge-Feit-Only 43.3 wt. % TS, HE 354, MV 2 i
wp-43 3wt TS down-d3 3wt 7 TS
—=—up-BF-433wt % TS —— down-BF-43 3wt % TS
2 | o ——
L
& 10 4f
g Top = 160 +0.00894 4, 100 < < 350, B* = 09850
25 i i i i
Tdomm = 16.1 +0.00863 4, 100 < § < 350, B = 0.3667
n f f f f
0 50 100 150 00, 250 300 350
o Shear Rate (sec™) p.
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FIGURE A - 25: RV20 Sludge-Frit-Only 46.1wt. % TS
Sludge-Frit-Crdy 46.1 wi. i T3, HE 324, WIV2 )
up-46. 1wt 0TS -dowr-d6 . 1at TS
—=—up-BF-46 1wt % T3 —+— down-BF-46 1wt %% TS
25 I . — o
=
£ rFal
w15
L |
10 2
E Tap = 206 +EIEIIETE'5-',1EIEI::?-::35EIR =[05949
[er]
5
Tdomm = 21 9 +0. 00859 ¥, 100 < ¢« 330, R2 = 08476
0 ! ! ! !
1] a0 100 150 200 250 300 350
Shear Rate {sec'I]l
-
FIGURE A - 26: RV20 Sludge-Frit-Only 47.7wt. % TS
Sludge-Frit-COnly 477 wi. i T3, HE 352, WIV2 ™
up-47 Tt TS down-47 Tat TS
—a— up-BF-47 Tat % TS —— down-BF-47 Tt % TS
L= l——:“—*-—_.\_.—-—i
=
2
2
Ly
E 10 T = 24? +IZII]2EIE 4,100 < ¢« 350, RE-DDQEE_
[5r] |
Tdomm = 2? 6 +0. 0184 T, 100 = *y-:: 350, R2 = 08434 [
0 a0 100 150 200 250 300 3450
Shear Fate l{sec'ljl .
FIGURE A - 27: RvV20 Sludge-Frit-Only 52.1wt. % TS
Sladge-Frit-Only 409 wt. 26 T3, HE 3464, MIV2 N
—up-52.1 wt.%T3 down-52.1 wt % Ta
—m—up-EF-52.1 wt.% T3 —+— down-BF-32.1 wt.% T2
] _J;
E S0 = — —_—
o
E F
& 30 r’r
E n Ty =459 + 002334 4, 100 < ¢ < 330, RY=095850 |
[2r]
0 | | | |
" Taemm = 968 + 001675 f, 100 < ¥ < 350, R* = 09606
0 50 100 150 200 250 300 350
i Shear Rate {sec'lf.l y.
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FIGURE A - 28: RV20 < 177 mm CST-Sludge-Frit 39.3wt. % TS

=< 17T pen C3T-5lndgze-Frit 39.3 wt. i TS, HE 3624

up-39 3wt 3 TS - down-39 Swt 0TS

Shear Stress (Fa)

20

—8— up-BF-39 3wt 4 TS —— down-BF-39 3wt % TS

15 B il

10 f—=
]T' T =120 +0.0130 ?,IDD{?{35D,R2=D.993T
e f f f f
Tamm = 136 +00127 ¥ 100 < < 350, B = 08890
I:I T T T T T
] a0 100 150 200 250 300 350
Shear Hate l{sec'ljl p.

FIGURE A - 29: RV20 < 177 nm CST-Sludge-Frit 41.4wt. % TS

Shear Stregs (Fa)

= 177 pra C5T-Slndge-Frit 41 4wt %% T, HE 361

up-41 dart TS -down-4 dwt 34 TS
—=—up-BF-41 4wt 3% TS —+— down-BE-41 dwat i T3

]
o

]
=

K
\

—
o
1
.y

Tp =150 +00183 §, 100 < §< 350, R2 = 09842 [ |

o

Taomm = 122 +00129 4, 100 < § < 350, B* = 0.2034 B

0 ] 100 150 200 250 300 350
Shear Fate {sec’l} y.

=

FIGURE A - 30: RV20 < 177 nm CST-Sludge-Frit 43.8wt. % TS

Shear Stress (Fa)

= 177 prn C53T-Elndge-Frit 43.8 wt %% T3, HE 360

up-43 Bat 0TS down-43 Bt 0TS
—a—up-BF-43 5wt % TS ——down-BE-43 Bat i T3

L
[}

|

7
|

—_
Ln

Ty =203 +0.0160 ¢, 100 < ¢ < 350, Ri=(9ses |

I I I I
Tagmm = 21.7 +0.0132 v, 100 < ¢ < 350, F2=09383 [ |
1] i 100 150 200 250 300 350
Shear Rate l{sec'ljl y.
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L]
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FIGURE A - 31: RV20 < 177 mnm CST-Sludge-Frit 45.8 wt. % TS

= 177 mm CST-Sludge-Frit 45 8 wt. % TS, HK 350 3
up-43 2wt % TS - down-45 2wt % TS
—=— up-BF-45 2wt % TS —— down-BF-45 wt % TS
i | —
20 —e—
= a5 & — I s i
8 20 7
15 4 - - p -
E i Tp =251 +0.0192 {, 100 < §< 350, R¥ = 09980 | |
L | | | |
Tagmn = 274 + 00157 4, 100 < ¥< 350, R® = 0.9371 [
| | | |
0 30 100 130 200 250 300 350
Shear Hate l{sec'ljl p.
FIGURE A - 32: RV20 < 177 nm CST-Sludge-Frit 48.4wt. % TS
= 177 mm CST-Sludge-Frit 48 4 wt. % TS, HK 3584 kS
up-4% dwt TS dowm-48 dwt T3
—=— up-BF-42 4wt % TS —— down-BF-48 4wt % TS
jé | 1 e
I — e |
& 1 ';_-—: |
& 25 o |
L |
i 20 1 -
i i + < = .- |
p 13 | vp =328 +00321 {, 100 'y 350, B* = 0.9970
5 Tarmm = 364+|:||:|2|:|9 ¥, 100 < § < 350, RE—IIIQSEIE_
0 ! ! | |
0 50 100 130 200 250 300 350
Shear Fate (sec'ljl P,
FIGURE A - 33: RV20 < 177 nm CST-Sludge-Frit 52.2wt. % TS
= 177 mm CST-Sludge-Frit 522 wt. % TS, HK 004 R
up-32 2wt % TS -down-52 2wt Y TS
—=— up-BF-52 2wt % TS —— down-BF-52 2wt % TS
100 ,
gl:l ——
e ———
IR ——
Al
g 30
T a e
g 3] T = ?51 +IIIEI§6'F?,1EIEI-::'5M:35EIR —n993?_
s 90 .
10 Taomm = T6.7 +0.0430 ¥, 100 < § < 330, Rﬂ—nssgn_
0 ! ! ! !
0 50 100 150 200 250 300 350
Shear Hate l{sec'ljl P
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FIGURE A - 34: RV20 < 30 mm CST-Sludge-Frit 39.1wt. % TS
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Shear Stress (Pa)

=30 pm C5T-5ludge-Frit 301 wt. % T5, HEZ 374

1p-39. 1wt 4TS
—=— up-BF-39 1wt % T5

down-39 1wt 4T3
—+— down-BF-39 1wt % TS

M

Typ = 9.8 +0.0052 ¥, 100 < ¢ = 350, R = 09296

Taomm = 7.0 +0.0140 4, 100 < § < 350, B* = 0.9944

1] 50 100

150 200 250 300
Shear Fate (sec'ljl

350

FIGURE A - 35: RV20 < 30 nm CST-Sludge-Frit 41.0wt. % TS

Shear Stress (Fa)

=30 prn C5T-5ludge-Frit 41.0 wt. %% TS, HE 373

wp-al Dt % TS
—=— up-BF-41 Dwt % TS

down-41 0wt 32 T3
—+— down-BE-41 Ot 2 TS
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Tdomm = 108 + 000882 ¥, 100 < < 350, R2—0985EI I
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350
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FIGURE A - 36: RV20 < 30 mm CST-Sludge-Frit 43.2wt. % TS

Shear Stress (Pa)

=30 prn C5T-5Sludge-Frit 43.2 wt. % T3, HE 372

np-43 2wt % TS
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FIGURE A - 37: RV20 < 30 mm CST-Sludge-Frit 45.2wt. % TS

=30 prn C5T-5udge-Frit 45 2wt 24 T5, HE 371 ™

up-45 Jurt % TS
—=— up-BF-45 2wt % TS

down-45 2wt 0 TE
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FIGURE A - 38: RV20 < 30 nm CST-Sludge-Frit 47.3wt. % TS
<30 pzn CST-Shudge-Frit 47.3 wi. % TS, HK 370
up-47 3wt TS downdT 3wt % TS
— = up-BF-47 3wt % T5 —— down-BF-47 3wt % TS
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FIGURE A - 39: RV20 < 30 nm CST-Sludge-Frit 48.9wt. % TS
=300 purn CST-Sludge-Frit 43 9 wt. % TS, HE 336
up-4% St % TS down-d8 9wt % TS
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FIGURE A - 40: Particle Size Distribution Sludge-Frit-Only #1
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FIGURE A - 41: Particle Size Distribution Sludge-Frit-Only #2
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FIGURE A - 42: Particle Size Distribution < 177 mm CST-Sludge-Frit #1
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FIGURE A - 43: Particle Size Distribution < 177 mm CST-Sludge-Frit #2
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FIGURE A - 44: Particle Size Distribution < 30 nm CST-Sludge-Frit #1
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FIGURE A - 45: Particle Size Distribution < 30 nm CST-Sludge-Frit #2
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TABLE A - 1: Analytical Results—ICP-ES

SRTC Mobile Laboratory

Customer: Erich Hansen

Date: 02/08/01

Preparation: LiB

Samples: Tk8/40 Blend, Tk8/40 Nominal, SME Final L30 CST

Preparation: LiBO2 and Na202 prepartions

Note: Samplesrun in duplicate

Elemental Wt% - vitrified at 1100C

Al B Fe Li Si Na | Ba | Ca Cr Cu K Mg | Mn | Nb Ni Ti Zn Zr

TK 8/40 Blend L177 CST

A) 2.82 215 | 836 | 1.34 | 22.7 | 7.85 | 0.078|0.887|0.150 | 0.038 | 0.094 | 0.955| 0.626 | 1.57 | 0.425| 2.23 | 0.105| 1.52

TK 8/40 B"(eg‘; LIZTCST) 565 | 219 | 845 | 1.44 | 226 | 7.85 | 0.080|0.889 | 0.232 | 0.032 | 0.097 | 0.966 | 0.628| 1.59 |0.428| 2.26 | 0.105| 1.55

Tk 8/40 Nominal (A) 2.92 270 | 864 | 170 | 26.1 | 832 | 0.083|0.900|0.096 | 0.016 | 0.099| 1.09 | 0.627|0.021 | 0.432 | 0.020 | 0.108 | 0.238

Tk 8/40 Nominal (B) 294 268 | 878 | 172 | 258 | 8.40 |0.084|0.904|0.094|0.015|0.102| 1.12 | 0.635|0.017 | 0.439 | 0.019 | 0.110 | 0.229

SME Final 130 CST (A) 3.03 234 | 913 | 151 | 234 | 828 | 0.084|0.932|0.085|0.020 | 0.095| 1.01 | 0.667| 1.16 | 0.456 | 1.55 |0.113| 1.16

SME Final 130 CST (B) 2.99 229 | 927 | 150 | 23.1 | 8.04 | 0.083|0.965|0.166 | 0.023 | 0.101 | 0.988 | 0.659 | 1.07 |0.451| 1.56 |0.111| 1.13

Oxided Wt% - vitrified at 1100C

A|203 B,O; |Fe04 leo S|Oz Na,O | BaO | CaO |Cr,0O5| Cu,O | K,O MgO MnO Nb203 NiO T|02 Zn0O | ZrO, Totals

TK 8/40 Blend L177 CST

A) 5.33 9.08 | 120 | 2.88 | 48.6 | 10.6 |0.087| 1.24 | 0.219|0.043|0.113| 1.59 [ 0.808 | 2.25 | 0.540| 3.92 |0.130| 2.05 | 101

TK 8/40 BI?S(; Lirrcst 5.39 918 | 121 | 3.10 | 484 | 10.6 |0.090| 1.24 | 0.339|0.036|0.116| 1.60 |0.810| 2.27 | 0.544| 3.98 | 0.130| 2.09 | 102

Tk 8/40 Nominal (A) 5.52 940 | 124 | 3.65 | 55.9 | 11.2 | 0.093| 1.26 | 0.141|0.018 | 0.118 | 1.81 | 0.809 | 0.029 | 0.549 | 0.036|0.134 | 0.321| 103

Tk 8/40 Nominal (B) 5.56 947 | 126 | 3.70 | 55.2 | 11.3 |0.094 | 1.27 | 0.137|0.016|0.122 | 1.86 | 0.819| 0.025| 0.558 | 0.034 | 0.136 | 0.309 | 103

SME Final 130 CST (A) 5.73 976 | 131 | 3.24 | 50.1 | 11.2 | 0.094| 1.30 | 0.124 | 0.023 | 0.114 | 1.68 | 0.860| 1.66 |0.579| 2.73 |0.140| 1.57 | 104

SME Final 130 CST (B) 5.65 963 | 133|322 | 494 | 109 |0.093| 1.35 | 0.242|0.026|0.121 | 1.64 |0.850| 1.53 | 0.573| 2.75 |0.138| 1.53 | 103

% Total Solids | % Vitrified

TK 8/40 Blend L177 CST 52.6 47.7

Tk 8/40 Nominal 52.5 47.9

SME Final 130 CST 49.2 44.6
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