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1.  Introduction

Rate estimation of nuclear pulses emitted from nuclear detectors has been well documented in
papers written as early as 1965 [1] to as recently as 1990 [2].  It is well known that pulses emitted
from a nuclear detector can vary with time [2] and an accurate estimate of the count rate must be
based on a sufficient number of pulse counts within a sample period as well as the recent history
of pulse counts acquired in previous sample windows to accurately estimate the current rate.

This paper will review the attributes of three popular counting methods and show the
implementation of one of these methods, the floating mean algorithm, on an embedded controller
system.  The software discussion will look at how to apply the chosen algorithm on two popular
platforms: the Motorola 68HC11 and the Intel 805X series embedded controllers.

2.  Mathematical Algorithms

2.1  Quasi-exponential algorithm

The quasi-exponential algorithm is a digital adaptation of the traditional analog RC type rate
meter [2].  The RC type rate meter was based on a detector output charge being applied to the
capacitor and then dissipating off the capacitor in a time period (T) determined by the resistor
value employed.  The resultant output is a most recent value weighted mathematical expression
in which a residual “history” of previous pulses is summed with the most recent value.
Mathematically, the output (rate) can be expressed as:
                      n             n-i

(1)  Rn =a/T ∑ (1-a)   NI

                      i=1

where a is effectively the weighting factor applied to each measurement (analogous to the time
constant of an RC circuit), T is the sample interval for a single measurement, Ni is the number of
pulses in the ith measurement, n is the total number of measurement sets being considered, and
Rn is the resultant rate.  For sufficiently small values of a, it can be shown that the expression can
be reduced to a recursive algorithm in which the current rate is a weighted function of the
previous rate and the current measurement [2].

2.2  Floating mean algorithm

The floating mean algorithm does not lend itself well to analog implementation.  The algorithm
predicts the current rate as an equally weighted mean of the last m measurements.
Mathematically, the floating mean may be expressed as:

             n
(2)  Rn = 1/(mT) ∑Ni

                      
i=q

where Rn is the current rate estimate, m is the number of measurements included in the mean, T
is the time interval for a single measurement, Ni is the number of pulses measured in the ith
measurement, n is the total number of measurements acquired (thus the nth measurement is the
most recent measurement), and q is equal to 1 when n < m and q is equal to n-m+1 when m>n
[2].
For the purposes of microprocessor implementation, the pulses may be stored in a circular buffer
with the m + 1 sample discarded as new measurements are acquired.
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2.3  Weighted moving average algorithm

The weighted moving average algorithm is a hybrid between the quasi-exponential algorithm and
the floating mean algorithm.  In simplest terms, the weighted moving average algorithm is a
weighted value version of the floating mean in which preference is shown toward more recent
measurements.  The weighted moving algorithm assumes that the more recent measurements are
closer approximations to the true rate while being bound by a finite amount of historical
measurements.  The weighted moving average algorithm can be expressed as:
                                     n
(3)  Rn = 2/((k(k+1)T) ∑ (n-k+1)Ni

                                                            
i = q

where Rn is equal to the current rate estimate, k is the number of measurement sets being
considered in the equation, n is the total number of measurements that have been acquired (thus
the nth measurement is the most recent), Ni  is the number of pulses measured in the most recent
sample period, T is the sample collection period for a single measurement, and q is equal to 1
when n<k or q is equal to n-k+1 when n > k[2].  As in the floating mean algorithm, the
microprocessor implementation of this algorithm involves a circular buffer of storage size k.  The
k+1 sample is discarded as a new sample is acquired.

2.4 Comparison of Counting Methods

Because incoming pulses conform to a Gaussian distribution, the calculated count rate actually
represents the probabilistic count rate with variations from the mean determined by the number
of points acquired [4]   An evenly weighted mean calculation of multiple measurements tends to
contain the estimated count rate and limit deviations from the mean.  A time dependent
weighting scheme, such as those employed in the quasi-exponential (1) and weighted mean
algorithms (3), produce predicted count rates that deviate more from the mean than an evenly
weighted mean calculation but less than the deviations expected from single measurement
predictions.  The exact deviations expected from weighted mean algorithms are determined by
the weighting factors employed.  Use of the floating mean algorithm (2) sacrifices response time
to transients due to prior measurements that must be factored into the mean.  For large transients
and a measurement set of size k, it will require k measurement sets to be taken before the
reported value is within the predicted standard deviation of mean.

As shown in Table 1, the steady state weighted mean and floating mean values closely
approximate each other for predicted count rates.  The method chosen to test the algorithms
involved taking two times the standard deviation for each mean, producing two numbers (mean +
2 standard deviations, mean - 2 standard deviations) and alternately using the high and low
numbers as the measured data set.  A summation of ten data sets for each mean was taken.  The
time interval was assumed to be 1 second and the weighting factor used in the quasi-exponential
algorithm was 0.2.
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            Data  Range Ca lculated Results
Mean Count Min Expected Rate Max Expected Rate
 Rate at 2Sigma at 2Sigma Quasi-exp Floating Mean Weighted

mean
10.0 9.2 10.8 9.0 10.0 10.1
20.0 18.8 21.2 18.0 20.0 20.1
30.0 28.6 31.4 26.9 30.0 30.1
40.0 38.4 41.6 35.9 40.0 40.1
50.0 48.1 51.8 44.8 50.0 50.2
60.0 58.0 62.0 53.8 60.0 60.2
70.0 67.8 72.2 63.0 70.0 70.2
80.0 77.7 82.3 71.6 80.0 80.2

100.0 97.4 102.6 89.5 100.0 100.2
200.0 196.3 203.7 178.9 200.0 200.3
300.0 295.5 304.5 268.2 300.0 300.4
400.0 394.8 405.2 357.6 400.0 400.5
500.0 494.2 505.8 446.9 500.0 500.5
600.0 593.7 606.3 536.2 600.0 600.6
700.0 693.2 706.8 625.5 700.0 700.6
800.0 792.7 807.3 714.8 800.0 800.7
900.0 892.3 907.7 804.1 900.0 900.7

1000.0 991.8 1008.2 893.4 1000.0 1000.7

TABLE 1  COMPARISON OF MATHEMATICAL ALGORITHMS

3.  Pulse Collection Methodology

It is most often assumed that the above algorithms are implemented by acquiring an unknown
number of pulses in a fixed period of time.  Acquiring measurements at a fixed time interval
produces rate meter estimates at a known frequency, however it is possible to acquire an
insufficient number of pulses in a sample window to produce accurate rate estimates.  The
statistical errors produced in fixed time sampling can be minimized by narrowly bounding the
operating range and adjusting the sample period accordingly.  This approach works well if the
operating range is sufficiently limited and the measured source is between 25% and 75 % of the
operating range.  For values outside of these bounds, the system may have insufficient
information to predict the correct rate (at the low end of the scale) or may unnecessarily sacrifice
response time for extra data points not required (at the upper end of the range).

In practice, any or all of the above algorithms could be implemented by acquiring a fixed number
of pulses over a variable time period.  Using a fixed number of pulses has the advantage of
ensuring a statistically significant number of pulses is acquired for the measurement set[4].  A
fixed pulse algorithm has the disadvantages in that, for low count rates, the estimated rate update
may be unacceptably slow while for very high count rates, the device used to display the
estimated rate may vary too quickly to produce readable data.

A third approach is to use a bounded fixed pulse counting algorithm in which minimum and
maximum time limits are imposed on the pulse acquisition algorithm.  This approach attempts to
acquire a significantly number of pulses, within a bounded operating range,  while being
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confined to minimum and maximum rate estimate updates.  The bounded fixed pulse method
produces rate estimates that closely approximate those obtained with a pure fixed pulse method
while mitigating the disadvantages.

As shown in Figure 1, the constant pulse counting method produces the most statistically
accurate count rate mean value.  The figure was derived by considering the counting
requirements over the range of 10 counts per minute to 1000 counts per minute.  The collection
time for the constant pulse and the count value for the constant time methods overlap at mid-
scale (500 cpm).  The percent variance is calculated as follows:

                      (Mean CPM + 2Sigma dev) - (Mean CPM - 2 Sigma
dev)

% Variance =100 X  Mean CPM

The constant pulse method employed a fixed count acquisition of 7 pulses.  The fixed time
acquisition acquired pulses for 1 second.  The hybrid method employed a fixed pulse method that
was time constrained between 4 seconds and ¾ seconds.  While the hybrid approach didn’t
achieve the percent variance of the constant pulse algorithm, the acquisition time (at 10 cpm)
was reduced from 42 seconds (fixed pulse) to 4 seconds (hybrid).
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Figure 1 Percent Variation  from Mean Value
for Different Counting Methods
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A second advantage to the hybrid approach (as compared to a fixed time method) is that the
predicted count rate is updated based on sufficient information to produce statistically accurate
results.  In a fixed time method, the response time of the system is fixed for a given range even in
the event of a sudden increase in the level of activity.  With the hybrid method, the response time
of the system will sharply decrease (bounded  by the minimum collection time) with increasing
radiation fields.  This attribute is very desirable for health protection monitoring and other
applications where it is desirable to minimize transient response time.

4.  Floating Mean Algorithm with Hybrid Pulse Counting

4.1  Attributes of Floating Mean with Hybrid Pulse Counting

The floating mean algorithm (2) is preferred for embedded applications because the simplicity of
the algorithm minimizes the amount of floating point math involved, and has the best coefficient
of variation (variation from the mean value).  The number of floating point operations performed
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is significant on an embedded controller because of the cumulative effect of round off errors and
because of the significant amount of microprocessor time involved.  The coefficient of variation
for the floating mean is slightly better than that of the weighted mean and significantly better
than that of the quasi-exponential algorithm.  The coefficient of variation can best be thought of
as “needle wiggle” or the amount of variance in the indicating device between successive
updates.  Use of the floating mean algorithm does sacrifice the transient response time somewhat
as compared to the weighted floating mean algorithm (3).

While the transient response time of the floating mean algorithm (2) is not as fast as that of the
weighted mean (3), the response time is greatly enhanced through the use of the hybrid pulse
counting method.  The hybrid pulse counting method ensures the system responds as quickly as a
statistically significant number of pulses is available.  By bounding the counting method with
lower and upper time values, an acceptable system time response is ensured.

 
4.2  Adaptation of the Floating Mean for Microprocessor Implementation

As described in the section above, the floating mean algorithm can be expressed as follows:
                           n
(2) Rn = 1/(mT) ∑Ni

                   
i=q

The algorithm above is based on the assumption of a constant time collection value.  In order to
use this algorithm in a fixed or hybrid pulse counting method, the function must be modified to
the following expression:

                n              n

(2)  Rn = ∑Ni / ∑Ti

                         
i=q       

   
i=q

This follows from the resultant produced in the first equation (2) from mT which produces the
total sampling time.  Microprocessor implementation of this expression in its current form causes
a problem in that the summation of T is limited to either a 16 bit unsigned value (65535) or a 32
bit long unsigned value.   Since T in this implementation is derived from the microprocessor
clock, it can be expected to be quite large for lower count rates.   Implementation of a 64 bit data
type is possible, but would greatly increase the microprocessor cycle time for count rate
calculations.

It was highly desirable to reduce the expression to produce manageable lengths of data.  Even
with moderately slow count rates and few summations (small values of n), it is probable that
more than 32 bits of storage space could be required for the summation of T.  For steady state
count rates and a sufficient number of pulses acquired to predict the count rate within two
standard deviations of the mean, the average of the count rates for individual data sets closely
approximates the expected mean value (small variations in Ti between data sets).  While this
holds true, the (closely approximated) expected mean value can be expressed as follows:

                    n
(5)  Rn = 1/n∑(Ni/Ti))
                                 

i=q

This expression is not valid for transients.  However, the errors introduced in the transient
response of this method have been empirically proven to be less than the round off and scaling
errors introduced from implementing an accurate expression for the floating mean.
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The above assertion is paramount to the design proposed in this paper.  As shown in Table 2, if
estimated count rates are computed by alternately using the mean + 2 standard deviations and the
mean - 2 standard deviations for a 10 set measurement, the resultant estimated count rate
approximately equals the mean.  The estimated rate produced is not as close as those produced by
a true weighted mean (3) or floating mean calculation but is considerably better than that
produced by a quasi-exponential estimate (1).  The assertion of the above approach is that the
resultant count rate produced from averaging computed count rates is a reasonable approximation
to the mean during steady state operation (data sets are within 2 standard deviations of the
mean).

Mean
Count

Min Expected Rate Max Expected
Rate

Average of CPM Weighted Mean with

Rate at 2Sigma at 2Sigma with 2 Sigmas 2 Sigmas
10.0 9.9 10.8 10.3 10.1
20.0 19.7 21.2 20.5 20.1
30.0 29.6 31.4 30.5 30.1
40.0 39.5 41.6 40.6 40.1
50.0 49.4 51.8 50.6 50.2
60.0 59.2 62.0 60.6 60.2
70.0 69.1 72.2 70.6 70.2
80.0 79.0 82.3 80.7 80.2
100.0 98.7 102.6 100.7 100.2
200.0 197.5 203.7 200.6 200.3
300.0 296.2 304.5 300.3 300.4
400.0 395.0 405.2 400.1 400.5
500.0 493.7 505.8 499.7 500.5
600.0 592.4 606.3 599.4 600.6
700.0 691.2 706.8 699.0 700.6
800.0 789.9 807.3 798.6 800.7
900.0 888.7 907.7 898.2 900.7

1000.0 987.4 1008.2 997.8 1000.7

TABLE 2 - COMPARISON OF AVERAGE OF CPM AND WEIGHTED MEAN

As mentioned earlier, the count rate averaging scheme introduces errors during transients.
Consider the effect on the calculated count rate when Ti+1  >> Ti for both the floating mean
(2)and average of count rates (5).  The floating mean algorithm, for constant pulse or hybrid
counting methods can be expressed as follows:

                             n          n

(6)  Rn = ∑Ni / ∑Ti

                         
i=q      

   
i=q

As Ti+1 approaches infinity, the resultant rate approaches zero with no restrictive bounds.  In fact,
the resultant rate can only be bounded if a limit is placed on the maximum collection time
allowed.  It follows that the floating mean algorithm responds with a minimum number of
updates to decreasing count rates (increasing time values).

Next, consider the effect of Ti+1  >> Ti  for the average of count rates method (5).  The average of
count rates can be expressed as follows:
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                                   n
(5)  Rn = 1/n∑(Nn/Tn))
                                

i=q

As Ti+1 approaches infinity, the resultant rate approaches:
                                n-1

(7)  Rn = 1/n∑(Nn/Tn))
                                

i=q

Therefore the output is bounded to n-1 summations divided by n in the case where the count rate
is decreasing.  This tends to push the transient reading higher than the true mean in cases where
the count rate is decreasing.  This bounding condition is present during the transient until all
measurement sets are within 2 standard deviations of the steady state mean.

Next consider the case where  Ti+1 approaches zero (count rate increasing) for the floating mean
algorithm.  As Ti+1 approaches zero, the small time value is insignificant compared to the other
values.  The bounding equation can be expressed as follows:
                     n            n-1

(8)  Rn = 1/n(∑Ni / ∑Ti)
                      i=q          i=q

For the average count rate algorithm (5), with Ti approaching zero (8), the single measurement
count rate computed from Ti  approaches infinity.  As this algorithm is a true average, the
resultant average count rate will also approach infinity unbounded.

For relatively slow transients in either the upward or downward direction, the average count rate
reasonably approximates the floating mean.  In cases where a sharp transient occurs for an
increasing count rate, the errors will be significant but only for a short duration of time.  As the
count rate increases, so does the system update frequency (bounded in the hybrid algorithm by the
minimum sample time) so that large upward transient errors tend to diminish very quickly.  For
quick transients in the downward direction (count rate decreasing) the average count rate
algorithm produces an upper bound in which it is known that the true mean is less than the
resultant output.

For most applications, the average count rate algorithm produces acceptable results.  Usually it is
most desirable to know the steady state count rate and to be able to track upwardly occurring
transients quickly.  In the case of upward transients, the average counting algorithm tends to
weight the resultant output in a manner similar to the weighted mean algorithm.  For downward
transients, the predicted rate of the average counting algorithm tends to perform similar to a
traditional analog RC type rate meters.

5.  Embedded Controller Requirements

Both the Motorola 68HC11 and Intel 805X families of embedded controllers contain external
interrupt lines and internal real time clocks (clock speed based on the microprocessor crystal).
The algorithms demonstrated in this paper utilize an external interrupt, the real time clock
counter, timer overflow interrupt, and near ANSI compliant “C” language.  While special
purpose input capture and counters are available on many Intel and Motorola embedded
controllers, it was decided to approach the design as generically as possible in order to facilitate
porting to other embedded controller families.  This paper does not address pulse discrimination
algorithms and assumes any hardware pulse shaping has occurred prior to introduction to the
microprocessor.  Dependent upon software requirements not addressed in this paper, it should be
expected that a minimum of 8K code storage space will be required and at least 256 bytes of
RAM.  It should also be noted that the proposed algorithms are dependent upon the
microprocessor free-running timer speed.  Adjustments to the algorithms will be required if the
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specific embedded controller timer operates at a speed different from those listed.  Finally, it
should be noted that data compression is employed on resultant values stored in volatile memory.
If sufficient data space is available and the “C” compiler being used supports long (32 bit integer)
data types, the data compression may be eliminated.

6.  Software Implementation

6.1  Pulse Counting and Timer Functions

For the Motorola 68HC11 based embedded controllers, the free running 16 bit timer was utilized
to acquire time values.  There is no provision for clearing the free running timer, therefore it was
necessary to retain previous values and calculate the elapsed time.  The Intel 8051 series timers
are cleared at startup and therefore elapsed time calculations are not required.  For portability
between the two platforms, the only code discussed will utilize 16 bit elapsed time calculations.
Dependent upon the count rate range of the application and desired accuracy, it may be necessary
to capture timer overflows and append them to the elapsed time value acquired (effectively
creating a 32 bit time counter).  The interrupt code segment written to capture timer overflow
values for the Motorola can be expressed below:

#pragma interrupt_handler TOFIntr
void TOFIntr(void)
{

TFLG2 = 0x80; // reset TOF interrupt flag
tof_counts++; // increment TOF counts

}

For the Intel 805X series embedded controller, the code segment would be as follows:

#pragma interrupt_handler TOFIntr
void TOFIntr(void)
{

tof_counts++; // increment TOF counts
TCON = TCON | 0x20; // 16 bit timer 0 does not automatically restart, must

// clear and restart timer
}

The Motorola timer always runs and automatically restarts after overflow occurs.  However, it is
necessary to clear the interrupt flag as this is a software function.  The Intel timer does not
automatically restart after overflow occurs.  However, it is not necessary to clear the interrupt flag
as the hardware resets the interrupt register upon vectoring to the interrupt routine.  For the Intel,
Timer 0 is used in this application.  Dependent upon the specific 805X microcontroller used,
there may be as many as two other timers available that could be substituted for Timer 0.  Note
the software may vary slightly dependent upon the specific compiler used.  The ImageCraft HC11
“C” compiler for the Motorola 68HC11 was used in this design.

Pulse counting on the Motorola is accomplished through the Port A input capture 2 function.
There are at least two other interrupt capture pins (0 & 1) and two external interrupt lines that
may be substituted for the one chosen in this application.  The pulse capture function can be
expressed as follows:

#pragma interrupt_handler PulseIntr // digital input interrupt handler (counts incoming
void PulseIntr(void) // rad pulses)
{



WSRC-MS-98-00787

TFLG1 = 0x02; //clear interrupt flag
p_counts++; // increment pulses received counter

}

Using  the Intel 805X series embedded controller, the code segment would be as follows:

#pragma interrupt_handler PulseIntr // digital input interrupt handler (counts incoming
void PulseIntr(void) // rad pulses)
{

EXF2 = 0x40; //clear interrupt flag, not reset by hardware
p_counts++; // increment pulses received counter

}

Note that the Timer 2 is only present on the 8052 and higher derivative Intel controllers.  These
software segments do not address initialization routines.  See the attached source code listing for
complete setup and initialization routines (Motorola only).

The timer and pulse capture interrupts run until the desired number of pulses (or time
constraints) have been satisfied.  Once the constraints have been satisfied, the time, timer
overflow, and pulse counts can be saved to respective buffers.  It is then possible to set a flag to
alert the main routine of available data.  With the Motorola, this can be shown as follows:

#pragma interrupt_handler PulseIntr // digital input interrupt handler (counts
void PulseIntr(void) // incoming pulses)
{

TFLG1 = 0x02; //clear interrupt flag
p_counts++; // increment pulses received
if((p_counts  > mincounts) && mintime) // if minimum # of pulses received and

{ // and minimum sample collection time elapsed
buf_num++; // increment data buffer pointer
buf_num = buf_num % 10; // max buffer length of length 10
INTR_OFF(); // turn off interrupts
tof_vals[buf_num] = tof_counts; // store timer overflow values
time_vals[buf_num] = TCNT; // store timer values
count_numbs[buf_num] = p_counts; // save pulse counts
tof_counts = 0; // clear counters and start next counting
p_counts = mintime =0; // sequence
cnt_flag = 1; // let main know data ready to
INTR_ON(); // process, restart system interrupts
}

}

#pragma interrupt_handler TOFIntr // interrupt handler responsible for counting
TOFs
void TOFIntr(void)
{

TFLG2 = 0x80; // reset interrupt flag
tof_counts++; // increment TOF counts
if(tof_counts > 0x7a) //minimum update every 4 seconds, get whatever

{ // data is available if # of pulses not received in 4 sec
INTR_OFF(); // Also good place to implement low count rate alarm
buf_num++; // save counts, ticks, and TOFS to buffers
buf_num = buf_num % 10;
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tof_vals[buf_num]  = tof_counts;
time_vals[buf_num] = TCNT;
count_numbs[buf_num] = p_counts;
p_counts = tof_counts = 0; // reset counters
cnt_flag = 1; // flag main program that data needs processing
INTR_ON(); // turn on system interrupts
}

if(tof_counts > 0x16) // Don’t want to update any faster than ¾ seconds, acquire
{ // extra pulses if necessary
INTR_OFF();
mintime = 0xff; // set min time expired flag for pulse intr
INTR_ON();

}
else // else minimum time not satisfied, set flag to zero

mintime = 0;
}

By substituting in the Intel specific interrupt code segments listed earlier, the software segment
above is also valid for the Intel 805X series embedded controllers.  The program segment above
ensures a minimum sampling time of ¾ seconds and a maximum sampling time of 4 seconds.
The minimum time requirement ensures the output device update rate is sufficiently slow to be
useable while the maximum sampling rate ensures the output device is updated at least every 4
seconds.  Optimum count rate prediction is achieved when the number of desired pulses is
counted within the time constraints.

In the main software module, the cnt_flag variable is continuously checked to see if data is
available.  Since the data is stored in ring buffers, data will not be lost during the next pulse /
time acquisition cycle.  The main software function can be expressed as follows:

int cnt_flag

main()
{
while(1) // do forever
  {
   if(cnt_flag)  // new pulse / time information ready to process
       {
       cnt_flag = 0; // reset data ready flag
       if(buf_num) // if current buffer greater than zero

{ // get elapsed time from timer (ticks
if(time_vals[buf_num] > time_vals[buf_num - 1]) //if new greater than old
     cpm_low[buf_num] = time_vals[buf_num] - time_vals[buf_num - 1]; // save

   else // new ticks less than old ticks, have to  “borrow” from TOF
    {
     cpm_low[buf_num] = (0xffff - time_vals[buf_num-1]) +

time_vals[buf_num]; // get elapsed ticks
     if(tof_vals[buf_num])

--tof_vals[buf_num]; // "borrow" one from TOF
     }
}

      else // current buffer equals zero, special case
{
if(time_vals[0] > time_vals[11])      // same as above except must get
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      cpm_low[buf_num] = time_vals[0] - time_vals[11];      // previous time from buf #10
else
      {
      cpm_low[buf_num] = (0xffff - time_vals[11]) + time_vals[0];
      if(tof_vals[0])

--tof_vals[0];
       } // end time_vals if
} // end buf_num else

     cpm_high[buf_num] = tof_vals[buf_num];      // get timer overflow counts
     advalue = compute_display();                 // get D/A output value
     output_display(advalue); // send value to D/A
     } // end cnd_flg if

  } // end while(1)

} // end main

As mentioned earlier, the timer value obtained from the Motorola 68HC11 16 bit free running
timer must be converted from an absolute time to a relative time (elapsed time between
measurement sets).  This is accomplished by taking the difference between the most recent timer
value and the previous timer value.  In certain instances, the new timer value will be smaller than
the old value due to overflows.  In these instances, the timer and TOF can be viewed as a
combined 32 bit time value (TOF representing the upper 16 bits).  Therefore, “borrowing” hex
value 0x10000 (code actually “borrows” 0xffff) for the timer from the corresponding TOF count
reduces the TOF count by 1 (remember to think of the TOF as the upper 16 bits of a 32 bit timer).
In addition to timer overflow considerations, the programmer must also consider the case where
the previous data is stored in the last buffer location and the new data is stored in the first buffer
location.  In this instance, it is required to calculate elapsed time using the highest buffer location
instead of the buffer location below the current one.  If these routines are implemented with the
Intel family, the elapsed time computations need not be performed if the programmer restarts
(and clears) the timer after each measurement acquisition.

The pulse counting and timer functions discussed are valid for any of the mathematical
algorithms discussed in this paper.  In fact, with minor modifications to the code segments above,
the routines could be used for constant time or constant pulse counting.  It is important to
remember that the timer values recorded are tied to the microprocessor cycle time and not to a
unit of time.  In order to convert the values to time units, it is necessary to use the appropriate
conversion factor.  For example on the Motorola 68HC11A8 with a 2.0 MHz clock (8 MHz
crystal) and divide by 1 prescaler, each timer tick represents 500 nanoseconds.  On an Intel 8052
with a 16 MHz crystal (1.33 MHz clock), each timer tick represents 751 nanoseconds.
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6.2  Modified Floating Mean Algorithm with Hybrid Pulse Counting

The modified floating mean algorithm (average of count rates) (5) was chosen as the preferred
counting algorithm.  The average of count rates directly lends itself to 8 bit microprocessor
implementation due to the relatively small size of the numbers and the number of calculations
involved.  As the 32 bit timer cannot be readily held in a 16 bit integer and it was not desirous to
implement 32 bit long integers (not supported by the compiler used), the timer values are scaled
to 16 bit integers.

The timer scaling is based on the maximum timer value that can be expected in a given operating
range.  For example if the range being considered is 100 to 10,000 counts per minute, the largest
timer value expected is at 100 counts per minute.  With a fixed pulse count rate for this range of
60 counts, the largest timer value to be expected is 36 seconds.  With a 500 ns microprocessor
timer speed (cycle time), the value stored in the timer overflow will be hex 44A while the timer
will contain hex A64A.  In order to scale the timer value to a 16 bit integer, it is necessary to
retain the 16 most significant bits (11 from the timer overflow counter and 5 bits for the timer).
With the timer value scaled, it is then necessary to either scale the timer conversion factor (to
convert from clock ticks to minutes), to scale the counts, or to scale the output conversion factor.

In order to limit the number of mathematical operations that must be performed, the timer
scaling factor is combined with the output conversion factor.  This particular design operated a
14 bit D to A converter.  Therefore, at the highest count rate for a given operating range, the
resultant output should be hex 3fff (decimal 16383).  The final output can be expressed as follows
for a count rate within the given operating range:

D to A output = (measured count / measured time) (maximum time/ maximum counts) (D to A
                            maximum value)

The first two numbers generated (measured count rate and inverse maximum count rate) produce
a percentage of maximum output.  When this percentage is multiplied by the maximum D to A
output value, the actual D to A output is obtained.  Since each measured output is one element in
the summation of the count average algorithm the true expression becomes:

D to A output =  (1/n∑(measured count / measured time)) (maximum time/ maximum counts)
(D to A maximum value)

where n represents the number of measurement sets in the summation.  This can further be
reduced to:

D to A output = ∑(1/n(measured count / measured time) (maximum time/ maximum counts)
(D to A maximum value))

where all floating point operations are performed within the summation.  In fact, only the
measured time and counts are variables within an operating range. The maximum values can be
expressed as a constant.  Doing so limits the floating point operations to just two per update
cycle.  For a 100 to 10,000 count rate scale, the maximum time value would be hex AFC86, the
maximum counts would be 60,  the maximum D to A value would be hex 3fff.  The timer
conversion factor (to convert from clock ticks to minutes) must be applied to both the maximum
time and measured time.  Since this value is a constant, it drops from the equations (the
conversion appears in both the numerator of the maximum count rate and the denominator of the
measured count rate).  The only other item to consider is the timer scaling.
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To offset the scaling of the measured timer value, it is possible to either shift the measured counts
or the maximum timer value.  As the maximum timer value is a constant, it is the logical item to
shift.  For the 100 to 10,000 count rate example, the 32 bit measured timer value was shifted 11
bits to the right.  Therefore, the maximum timer value must be shifted in the same manner to
maintain the proper ratios.  The maximum timer value for 10,000 counts is hex AFC86.  Shifting
this value to the right eleven places produces the 16 bit shifted maximum timer value of hex 15f
(351 decimal).  Combining this with the other constants produces hex value 17660.  With the
case that n is equal to 10 (10 summations of measured sets), the constant value can be divided by
10 to produce the final conversion factor of 2570 or 9584 decimal.

The code sample that implements this for the 100 to 10,000 count rate range is shown below:

case 10: // 10K count rate maximum
// push timer overflow to top of sixteen bit integer and add in upper 5 bits of timer
cpm_high[buf_num] = cpm_high[buf_num] <<5; // timer overflow
cpm_high[buf_num] = cpm_high[buf_num] + (cpm_low[buf_num]>>11);// timer

scaling
tlow = cpm_high[buf_num]; // save scaled timer to a float
tlow = (float)( 9584/tlow); // constant conversion factor - specific to scale
tlow = tlow*count_numbs[buf_num]; // multiply by measured counts
cpm_high[buf_num] = tlow; // Save results as integer value
outval2 = 0; // sum up previous count rates
for(i = 0; i < 10; i++)

outval2 = cpm_high[i] + outval2;
break; // outval2 contains the d to a output value

In the above software segment, cpm_high initially holds the timer overflow value and at the end
of the segment contains the scaled count rate for each measurement set; cpm_low contains the
elapsed timer information; tlow is a floating point variable used to store floating numbers during
the mathematical operations;  count_numbs contains the pulse counts for each measurement set,
and  outval2 contains the resultant output value written to the D to A converter.  The timer
overflow value is pushed 5 places to the left.  This places the least 11 significant timer overflow
bits as the most significant digits in the scaled (16 bit) timer value.  Next the lower 5 bits of the
scaled timer value are filled in with the upper 5 bits of the elapsed timer value.  The resultant
number is converted to a floating point and divided into the constant conversion factor.  It is
important to perform the division before the multiplication (by the number of counts) so as not to
introduce overflow.  The next set multiplies the measured counts by the result obtained from the
division.  This number represents 1/10 of the D to A output value.  When this number is summed
with the 9 previously converted measurements, the actual output value to the D to A converter is
produced.

For compilers that implement 32 bit long data types, scaling of the timer values will most likely
not need to be performed.  It is still recommended that the number of floating point operations be
minimized to reduce round-off errors. A complete listing of the source code for the Motorola
68HC11 embedded controller is included in Appendix 1.

The software was implemented for an alpha rate counter with 1K, 3K, 10K, 30K, and 100K
scales.  The system was tested against ANSI standard N42.17B-1989 sections 5.2, 5.3, and 5.4.
The software implementation strictly addressed count rates independent of background and alarm
conditions.  The background and alarm software were outside of the scope of this design although
they will be implemented in the final product.  Of the tests performed: stability, response time,
and coefficient of variation, the software algorithm passed all ANSI acceptance criteria with no
deviations noted.
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The hybrid pulse - average count rate algorithm presented in this paper produces very accurate
and stable readings between 10% and 100% scale for most applications.  The response time of
the system can easily be tuned to optimize the tradeoff between stability, accuracy, and time
response.  Unlike time based systems, the hybrid pulse - average count rate algorithm varies the
speed of the counting system as needed to acquire statistically accurate counting information.
Additionally, the algorithm responds well to rapid increases in pulse counts.  Because of the
simplicity of the algorithm, it was possible to optimize the design for an 8 bit microcontroller
while not substantially sacrificing counting accuracy or performance.  Due to all of its strengths,
the hybrid-pulse average count rate algorithm is a strong contender for other count rate
applications utilizing microcontroller based designs.
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APPENDIX I

Source Code for Implementation of Hybrid-Pulse Average Count Rate Algorithm
on a Motorola 68HC11 Platform with ImageCraft HC11 “C” Compiler

/************************************************************************************
* Sample Implementation of hybrid-pulse average count rate algorithm for the Motorola 68HC11         *
* embedded controller.  Code drives an analog display meter through a D/A converter (maximum value  *
* hex 3fff).  Code Developed on a New Micros         *
* NMIX-0020 embedded controller with opto-isolated input, opto-isolated output         *
* Software used - ImageCraft HC11 "C" compiler, version 3         *
*   Russell Kevin Huffman, Senior Engineer         *
*   Westinghouse Savannah River Company         *
* 4/1/98         *
************************************************************************************/

#include <hc11.h> // 68HC11 specific stuff
#include <float.h> // floating point routines
#include "digio.h" // digital input and output stuff

unsigned int p_counts, time_vals[20], low_count, tof_vals[20]; // global counter values & flags
unsigned int cpm_low[20], cpm_high[20]; // global TOF & tick buffers
unsigned int test_high[20], test_high2[20], test_high3[20]; // test buffers for debugging
extern unsigned int tof_counts, buf_num, intr_num; //more global counters

int compute_display(void); // compute value to drive D/A
void output_display(int advalue); // output computed value to D/A
int get_range(void); // determine position of range selector

char cnt_flag;

unsigned int count_numbs[20];

unsigned int hflag; //maximum counting time allowed
/*********************************************************************************/
/* Main Routine for counting algorithm    */
/* Kevin Huffman 3/98        */
/* Westinghouse Savannah River Company  */
/********************************************************************************/

main()
{
int i;
int advalue;
do_ints();    /* Setup interrupts */
    init_tof(); // enable timer overflow interrupt (blink interrupt) used for TOF counting

hflag = 19; // set minimum time and count durations for initial count
INTR_OFF(); // turn off system interrupts until initialization is complete

for(i = 0; i < 20; i++) // initialize buffers for ticks, TOFs, and counts
{
time_vals[i] = tof_vals[i] = count_numbs[i] = 0;
}

p_counts = low_count = cnt_flag = buf_num = 0; // initialize flags
  INTR_ON(); // turn on system interrupts

  while(1) // do forever
  {

if(cnt_flag) // time to update display, new buffer of information ready to process
{
cnt_flag = 0; // reset buffer flag
test_high[buf_num] = tof_vals[buf_num]; // get TOF values
if(buf_num) // if current buffer greater than zero
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{ // get elapsed time from timer (ticks), do if
if(time_vals[buf_num] > time_vals[buf_num - 1])     //new ticks greater than old

cpm_low[buf_num] = time_vals[buf_num] - time_vals[buf_num - 1];
else // new ticks less than old ticks, have to "borrow" one from TOF

{
cpm_low[buf_num] = (0xffff - time_vals[buf_num-1]) +

  time_vals[buf_num]; // get elapsed ticks
if(tof_vals[buf_num])

--tof_vals[buf_num]; // "borrow" one from TOF
}

}
else // current buffer equals zero, special case

{  // same as above except must get previous time from buf #9
if(time_vals[0] > time_vals[11])

cpm_low[buf_num] = time_vals[0] - time_vals[11];
else

{
cpm_low[buf_num] = (0xffff - time_vals[11]) + time_vals[0];
if(tof_vals[0])

--tof_vals[0];
} // end time_vals if

} // end buf_num else
cpm_high[buf_num] = tof_vals[buf_num];
advalue = compute_display(); // get D/A output value
output_display(advalue); // send value to D/A
} // end cnd_flg if

} // end while(1)

} // end main

/****************************************************************/
/* main interrupt setup function                           */
/* Kevin Huffman   */
/* 11/12/97   */
/* Westinghouse Savannah River Company   */
/*  This function calls most of the interrupt          */
/* Setup Functions                     */
/****************************************************************/
void do_ints(void)
{
  INTR_OFF(); // turn off system interrupts
  InitDigInt (); /* Turn on digital input capture interrupt */
  INTR_ON(); // turn on system interrupts

}

/********************************************************************************/
/* Compute_Display function */
/* Kevin Huffman */
/* 3/98 */
/* Equipment Engineering Section - WSRC */
/* This function takes the raw time and counts produced from */
/* interrupts and converts it to the D/A output value for display        */
/* updates.  The output is an average of 10 points  */
/*     All scales are 10 point averages  */
/*******************************************************************************/

int compute_display(void)
{
unsigned int range, i, outval, outval2, h_val, l_val;
float tlow;
int ohvalue, l_count, h_count;

range = get_range(); // get range selector switch position
switch(range)

{
case 100:    // on 100k scale, throw away 8 most significant bits of TOF
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cpm_high[buf_num] = cpm_high[buf_num] <<8; //throw away bottom 8 bits of
cpm_high[buf_num] = cpm_high[buf_num] + (cpm_low[buf_num]>>8); // tick
test_high2[buf_num] = cpm_high[buf_num]; // debug only
tlow = cpm_high[buf_num]; // convert time to float
tlow = (float)(468/tlow); // get ratio of measured CPM to max CPM for range
tlow = tlow*count_numbs[buf_num];
 cpm_high[buf_num] = (float)(tlow*10.0);   // scale ratio by 10 and save to integer
outval2 = 0;
for(i = 0; i < 10; i++) // sum 10 most recent ratios

{
test_high3[i] = cpm_high[i];
outval2 = cpm_high[i] + outval2;
}

tlow = outval2; // convert to a float
tlow = tlow*1.638; // multiply ratio by max D/A value
outval = tlow; // save D/A value as int
break;

case 30:
// same as 100k scale, except 30k scale

cpm_high[buf_num]= cpm_high[buf_num]<<7;  // shifts are different for TOF and ticks
cpm_high[buf_num] = cpm_high[buf_num] + (cpm_low[buf_num]>>9);
test_high2[buf_num] = cpm_high[buf_num];
tlow = cpm_high[buf_num];
tlow = (float)(780/tlow);
tlow = (float)(tlow*count_numbs[buf_num]);
 cpm_high[buf_num] = (float)(tlow*10.0);
outval2 = 0;
for(i = 0; i < 10; i++)

{
test_high3[i] = cpm_high[i];
outval2 = cpm_high[i] + outval2;
}

tlow = outval2;
tlow = tlow*1.638;
outval = tlow;

break;

case 10:
// same as 100K scale, except 10K scale

cpm_high[buf_num] = cpm_high[buf_num] <<5;   // shifts are different for TOF & ticks
cpm_high[buf_num] = cpm_high[buf_num] + (cpm_low[buf_num]>>11);
test_high2[buf_num] = cpm_high[buf_num];
tlow = cpm_high[buf_num];
tlow = (float)(60/tlow);
tlow = tlow*count_numbs[buf_num];

    cpm_high[buf_num] = (float)(tlow*100.0);
outval2 = 0;

for(i = 0; i < 10; i++)
{
test_high3[i] = cpm_high[i];
outval2 = cpm_high[i] + outval2;
}

tlow = outval2;
tlow = tlow*1.638;
outval = tlow;

break;
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case 3: // same as 100K scale, except 3K scale

cpm_high[buf_num] = cpm_high[buf_num] <<5;
cpm_high[buf_num] = cpm_high[buf_num] + (cpm_low[buf_num]>>11);
test_high2[buf_num] = cpm_high[buf_num];
tlow = cpm_high[buf_num];
tlow = (float)(200/tlow);
tlow = tlow*count_numbs[buf_num];
 cpm_high[buf_num] = (float)(tlow*100.0);
outval2 = 0;
for(i = 0; i < 10; i++)

{
test_high3[i] = cpm_high[i];
outval2 = cpm_high[i] + outval2;
}

tlow = outval2;
tlow = tlow*1.638;
outval = tlow;

break;

case 1: // Same as 100K scale with different scaling factors
cpm_high[buf_num] = cpm_high[buf_num] <<4;
cpm_high[buf_num] = cpm_high[buf_num] + (cpm_low[buf_num]>>12);
test_high2[buf_num] = cpm_high[buf_num];
tlow = (float)cpm_high[buf_num];
 tlow = (292/tlow);
 tlow = tlow*count_numbs[buf_num];
 tlow = tlow*100;

    cpm_high[buf_num] = (int)tlow;
outval2 = 0;
h_val = 0; // initialize high and low values
l_val = 0xffff;
for(i = 0; i < 10; i++)

outval2 = cpm_high[i] + outval2;
tlow = outval2;
tlow = tlow*1.638;
outval = tlow;

break;
}

if(outval > 0x3fff)  // if value greater than max D/A, set to max val
outval = 0x3fff;

return(outval);
}

/********************************************************************************/
/* Output_Display function       */
/* Kevin Huffman */
/* 3/98 */
/* Equipment Engineering Section - WSRC */
/* This function outputs the D/A value to the D/A circuit. */
/*******************************************************************************/

void output_display(int advalue)
{
static int ohvale;
int totval;

OTBD1 = (advalue&0xff); // write lower 8 bits to output board
OTBD2 = (advalue>>8)&0x3f; // write upper 6 bits to output board

}

/********************************************************************************/
/* Get_range function */
/* Kevin Huffman */
/* 3/98 */
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/* Equipment Engineering Section - WSRC */
/* This function gets the range switch position setting */
/*******************************************************************************/

int get_range(void)
{

char range;

range = INBD1; // get switch value from input board
switch(range)

{
case 0x0e: // set minimum count and time values for interrupts based on range

hflag = 19;
return(1); // return range value

case 0x0d:
hflag = 19;
return(3);

case 0x0c:
hflag = 59;
return(10);

case 0x0b:
hflag = 59;
return(30);

case 0x0a:
hflag = 99;
return(100);

default:
hflag = 99;
return(100);

}
}
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/*  This module processes all of the interrupt based functions (timer overflow and pulse capture)                         *
* & digital input & output routines                                       *
* Hardware:  NMIX-0020 embedded board (New Micros), opto-input card, opto-output card   *
* Kevin Huffman - Westinghouse Savannah River Company   *
* 3/1998   *
*****************************************************************************************/

#include <hc11.h> // 68HC11 specific stuff, port addresses, registers, etc
#include "digio.h" // digital I/O stuff

unsigned int tof_counts, buf_num, buf_num; //global counters

extern unsigned int p_counts, time_vals[20], low_count, tof_vals[20]; // global counters & buffers
extern unsigned int cpm_low[20], cpm_high[20];
extern unsigned int count_numbs[20];
extern char cnt_flag;
extern unsigned int hflag, min_num;
unsigned int mintime, max_time;

/*  This routine is the interrupt driver that captures incoming pulses RKH 1998 */
#pragma interrupt_handler DigInIntr // digital input interrupt handler (counts incoming pulses)
void DigInIntr(void)
{

 TFLG1 = 0x06; //clear interrupt flag
p_counts++; // increment pulses received
if(p_counts  > hflag) // if minimum # of pulses received

{
if(mintime > 1) // if minimum counting time filled
{
buf_num++; // increment buffer
buf_num = buf_num % 12; // circular of length 12
INTR_OFF(); // turn off interrupts
tof_vals[buf_num] = tof_counts; // get timer overflow value
time_vals[buf_num] = TCNT; // timer counter register (ticks)
count_numbs[buf_num] = p_counts; // save pulse counts
tof_counts = 0; // clear counters and start next counting sequence
p_counts = mintime = max_time =0;
cnt_flag = 1; // let main know info ready to process
INTR_ON();
}

}
}

/* Interrupt handler for timer overflow counter RKH 1998 */
#pragma interrupt_handler TOFIntr // interrupt handler responsible for counting TOFs
void TOFIntr(void)
{

TFLG2 = 0x80; // reset interrupt flag
tof_counts++; // increment TOF counts
if(tof_counts > 0x7a)           // never run longer than 32.77ms X hex 7a seconds (I think the value is 4 seconds)

{
max_time = 0xff; // set max time flag (I don't think this is used)

INTR_OFF();
buf_num++; // save counts, ticks, and TOFS to buffers
buf_num = buf_num % 12;
tof_vals[buf_num]  = tof_counts;
time_vals[buf_num] = TCNT;
count_numbs[buf_num] = p_counts;
p_counts = tof_counts = 0; // reset counters
cnt_flag = 1; // flag main program that data needs processing
INTR_ON();
}

if(tof_counts > 0x16) // if minimum time has expired (I believe 3/4 seconds)
{
INTR_OFF();
mintime = 0xff; // set min time expired flag
INTR_ON();

}
else
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mintime = 0;
}

void enable_dig_int(void) // enables digital input interrupt, received through Port A capture interrupt
{

TCTL2 = TCTL2 | 0x28; // Activate PA bit 1, 2 for input captures
TMSK1 = TMSK1 | 0x06; // activate PA bit 1,2 for input captures

}

void disable_dig_int(void) // disables digital input interrupt
{

TCTL2 = TCTL2 & ~0x14; // turn off digital interrupts
TMSK1 = TMSK1 & ~0x06;

}

void InitDigInt (void) // setup routine for TOF interrupt and digital input interrupt
{

INTR_OFF ();
/*  Port A bit 1 Input Capture (IC2) used for incoming pulse captures*/
   *(unsigned char *)0x00e5 = 0x7e;  /* ASM Jump cmd  */
   *(unsigned char *)0x00e6 = (((int)DigInIntr & 0xFF00)>>8);
   *(unsigned char *)0x00e7 = ((int)DigInIntr & 0x00FF);
/* TOF used for capture upper 16 bits of timer indicators */

*(unsigned char *)0x00d0 = 0x7e;
*(unsigned char *)0x00d1 = (((int)TOFIntr & 0xFF00)>>8);
*(unsigned char *)0x00d2 = ((int) TOFIntr & 0x00ff);

enable_dig_int(); // turns on interrupt enable bits
INTR_ON ();

}

void init_tof(void) // turns on TOF interrupt
{

INTR_OFF();
TMSK2 = TMSK2 | 0x80; // turn on TOF enable interrupts
TFLG2 = 0x80; // clear any pending interrupts
INTR_ON();

}
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/*  Digital Input / Output Header File */

#ifndef __DIG_H
#define __DIG_H

#define INBD2 *(unsigned char *)0x8020 // reversed order of boards
#define INBD1 *(unsigned char *)0x8021 // (bd2 & 1 on i/o to
#define OTBD2 *(unsigned char *)0x8010 // match swapped i/o cables
#define OTBD1 *(unsigned char *)0x8011 // rkh 10/20/97

void enable_dig_int(void); // turn on digital interrupts
void disable_dig_int(void); // turn off digital interrupts
void InitDigInt (void); // set interrupt vectors
void DigInIntr(void); // digital interrupt handler
void TOFIntr(void); // blinking indicator interrupt handler
void dig_out(unsigned int bit, unsigned char val); // output digital value
int dig_in(int board); // digital input handler (alarm / process status panel)
#endif



WSRC-MS-98-00787

References

[1]  G.F. Knoll, Radiation Detection and Measurement, Second Edition (Wiley, New York,
1989).

[2]  G. White, Nuclear Instruments and Methods 125 (1975) p. 313


