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Abstract 
 

As the National Hydrogen Economy continues to develop and evolve the need for structural materials 
that can resist hydrogen assisted degradation will become critical.  To date austenitic stainless steel 
materials have been shown to be mildly susceptible to hydrogen attack which results in lower 
mechanical and fracture strengths.  As a result, hydrogen permeation barrier coatings may be applied to 
these ferrous alloys to retard hydrogen ingress.  Hydrogen is known to be very mobile in materials of 
construction.  In this study, the permeation resistance of bare stainless steel samples and coated stainless 
steel samples was tested.  The permeation resistance was measured using a modular permeation rig 
using a pressure rise technique.  The coating microstructure and permeation results will be discussed in 
this document as will some additional testing. 

   

Introduction 
 

With the resurgence of interest in the development of a national hydrogen economy a considerable 
increase in scientific exploration concerning hydrogen production and storage has occurred within the 
last five years.  Numerous technologies including biomass production, high temperature electrolysis, 
thermochemical cycles, advanced gaseous storage tanks, chemical hydrides, and advanced metal 
hydrides are being developed to provide competitive alternatives to fossil fuel energy technologies.  One 
issue for successful commercial implementation of these technologies is the ability of structural 
materials for process vessels and piping, storage containers, and engineered components to resist 
embrittlement from hydrogen. 

 

Hydrogen embrittlement, hydrogen induced cracking, and hydrogen corrosion cracking have long been 
studied for a wide variety of materials and operating conditions [1-8].  NASA in 1997 performed a 
comprehensive review of hydrogen compatibility data of various materials as part of a safety analysis.  
From this review NASA developed a hydrogen materials compatability matrix that identified acceptable 
and unacceptable materials for hydrogen service environments. 

 

A major structural component material for hydrogen service applications are austenitic stainless steels—
304L, 316L, etc.  These austenitic stainless steels have been previously shown to have a mild 
susceptibility to hydrogen embrittlement.  However, this susceptibility can vary with changing 
environmental conditions--temperature, pressure, surface finish—and as such these materials are often 
coated with permeation barriers to minimize the potential impact from hydrogen exposure.  Many 



permeation barrier coating materials—Al, Al2O3, TiC, TiN, W, BN, Ni, Mo, Sn, H3PO4 glass, TiO2, Cr, 
Cr2O3--have been evaluated through the years [9].  These materials have shown permeation reductions 
that range from 10-10000X during laboratory testing.  This variation is due to several factors such as the 
inherent permeation resistance of the coating material, surface preparation, coating microstructure, and 
application technique.  Of the various permeation barrier materials studied, Al/Al2O3 structures have had 
the most commercial success and implementation—as diffused aluminide coatings-- and have shown 
permeation reduction factors on the order of 10000+.  In previous applications, Al2O3 permeation 
barriers resulted from application techniques used to apply Al-rich coatings [10-12].  Aluminum rich 
coatings applied by either vapor deposition or packed bed technologies have been shown to possess 
inherent Al2O3 layers at their outermost surface.  It has long been perceived that this outer 1-2µm of 
oxide provides the majority of the permeation resistance for these Al-rich coatings [10]. Additionally, 
much attention has been given to evaluating the permeation resistance of natively grown oxides on these 
austenitic stainless steel and Ni-base alloys.  These oxides primarily consist of Fe2O3, Cr2O3, or spinel-
Cr2MO4 (M= Ni, Fe, Co).  Of these three surface oxides, Cr2O3 has been shown to be the most 
hydrogen/hydrogen isotope resistant reducing the permeation in some cases by up to 2-3 orders of 
magnitude. 

 

As a result of the previously demonstrated successes of both Al2O3 and Cr2O3 with respect to hydrogen 
permeation resistance [13-15], this study was undertaken to test whether advanced aluminide coatings 
would have improved permeation resistance since they tend to form alpha alumina more readily and 
could confer improved permeation resistance on the material.    

 

Experimental Approach 
 

Coated samples were examined using optical microscopy and scanning electron microscopy (SEM).  
The coating chemistry was determined using Energy Dispersion Spectroscopy (EDS).  

 

Hydrogen permeation testing was conducted using the permeation test rig shown in Figure 1.  Tube 
samples, 19 mm diameter and 0.89 mm thick, were welded into 2.12" diameter Conflat (CF) flanges.  
Crevices were seal welded using electron beam welding to minimize the effects of virtual leaks.  The 
sample assemblies were placed in a 1" OD vacuum system fabricated with 2.12" CF flanges.  Copper 
gaskets were used to seal the samples.  The samples were evacuated to at least 1 x 10-6 Torr for a period 
of at least four hours at room temperature.  The samples were then heated to 100C for 8 to 16 hours to 
outgas the system and up to the final test temperature.  A leak rate test was conducted by closing the 
appropriate valve.  If the leak rate was not linear, the sample was evacuated for additional time, after an 
acceptable leak rate curve was obtained, the sample section valves were closed and the desired pressure 
of deuterium was introduced.  It took approximately 2-3 minutes for the pressure to reach the target 
value.  The pressure rise on the low pressure side of the system was monitored.  The data were logged at 
either a 30 or 60 second interval.  The data were reduced to estimate the diffusivity and permeability.  
The raw data were plotted as a function of time.  The data exhibit three distinct regions, the background 
in-leakage region, a transition region, and a steady state region, nearly linear region.  The diffusivity (D) 
was estimated by calculating the slope and the intercept of the linear region using a least squares 
method.  These two variables were then used to determine the lag time (tl), i.e., the time at which the line 
crossed the y-axis at zero. Lag time, tl, time was used in the equation: 

 



   tl = x2 / 6 D (1) 

 

 to determine D.  The permeability (Φ) was estimated from the slope (M) of the curve, the expansion 
volume (V), the sample area (A), and the test pressure (∆P) as shown in Eq. 2. 

 

  Φ = M * V * t / A √∆P (2) 

 

The permeability is the product of the solubility (S) and the diffusivity as shown in Eq. 3. 

 

  Φ = S * D (3) 
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Figure 1.  Photograph and schematic of test rig 



 

Results and Discussion 
 

Coatings Tested 
 

Type 304L stainless steel samples of the geometry shown in Figure 2, a deadheaded modified pipe 
nipple, were coated using a simple aluminide applied at either a low or high temperature, a platinum 
aluminide, and a palladium aluminide.  Coupons representing the samples were cut, mounted, and 
polished for optical and electron microscopy.  The optical micrographs of a simple aluminide coating are 
shown in Figure 3.  This coating sample exhibits an undesirable trait of thin spots with only the 
interdiffusion layer being present.  It is suspected that these area will have poor permeation resistance 
since they are actually ferrite stabilized regions and it is known that ferrite has higher hydrogen 
permeability than austenite.  The more typical coated areas are shown in Figure 3b and indicate three 
distinct layers.  The outer light region (A), an intermediate gray layer (B) and the interdiffusion layer 
(C).   

 

 
 

Figure 2.  Macrophotograph of simple aluminide coated sample.  Sample exhibits geometry used for all 
the samples. 
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Figure 3a.  Thin spot in simple aluminide coating as indicated by arrows. 

 
Figure 3b.  Typical simple aluminide coating, arrows indicate coating thickness. 

 

The platinum aluminide coated sample is shown in Figure 4.  This sample had a significant amount of 
surface roughness associated with the coating process.  It also exhibits thin spots and poor quality 
coating, Figure 4a.  There were areas of high quality which exhibited four layers.  These layers appear as 
a single phase white outer layer (D), a two phase mixed layer (E), a dark gray single phase layer (F) and 
the interdiffusion layer (C).  The coating thickness is larger for this complex aluminide than for the 
simple aluminide. 

 

 
Figure 4a.  Platinum aluminide coated sample exhibiting a significant amount of coating variability 
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Figure 4b.  Typical area of high quality platinum aluminide coating exhibiting four layers, as described 

in the text, coating thickness is indicated by arrows. 

 

The palladium aluminide coating exhibited similar coating characteristics to the platinum aluminide 
coating.  The sample was coated at least twice since the first time the coating failed and spalled off.  The 
surface of the sample is shown in Figure 5. 

 

The coating process was not optimized during this study and the samples were tested as received.  The 
samples were rinsed with alcohol and dried to remove an residue prior to permeation testing.   

 

 
Figure 5.  Surface of palladium aluminide sample.  Note the rough surface.  Arrow indicates 19 mm. 

Permeation Testing 
 
Bare 304L SS tube samples were tested between 250 and 400˚C and at pressures of 20 to 400 Torr.  The 
effect of pressure on permeation of deuterium in bare 304L SS sample at a thickness of 0.889 mm (0.035 
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in.) is shown in Figure 6.  In this figure, the time lag and slope data that are used to determine the 
diffusivity and permeability are indicated.  As expected, the time lag is largely independent of the test 
pressure as can be seen, in particular for the 400C tests at the three pressures reported.  The reduced data 
are shown Table 1 for bare 304L SS tested at the three temperatures and pressure ranges.  There is 
significant scatter in the data at low temperature and pressure but the 300 and 400C data are within a 
factor of 2 which is typical of diffusivity data.  
 

Table 1.  Reduced data for bare 304L SS samples tested under a variety of conditions. 
  

ID 
250C 
200T 

250C 
400T 

300C 
20T 

300C 
200T 

300C 
400T  

300C 
200T 

400C 
20T   

400C  
200T  

400C 
400T  

Slope (T/s) 
1.9x10-

7 
1.4x10-

6 
6.0x10-

7 
4.7x10-

6 
6.7x10-

6 
3.4x10-

6 
7.0x10-

6 
3.0x10-

5 
4.2x10-

5 
Lag time (s) 565174 58213 204796 16321 16376 27974 3353 3255 3614 
Diffusivity 

(cm2/s) 
2.2x10-

9 
2.1x10-

8 
6.0x10-

9 
7.5x10-

8 
7.5x10-

8 
4.4x10-

8 
3.6x10-

7 
3.8x10-

7 
3.4x10-

7 
Permeabilit

y 
(atm1/2*cm2/

s) 
8.2x10-

9 
4.1x10-

8 
8.1x10-

8 
2.0x10-

7 
2.0x10-

7 
1.4x10-

7 
9.3x10-

7 
1.3x10-

6 
1.3x10-

6 
Solubility 

(cc/cc*atm1/

2) 3.79 1.96 13.50 2.65 2.67 3.26 2.55 3.38 3.75 
 

The data from the bare and coated 304L SS samples tested at 400˚C and 400 Torr are shown in Figure 7.  
Contrary to expectation that the precious metal aluminide samples would exhibit reduced permeation 
rates relative to the simple aluminide samples, they exhibited enhanced permeation and diffusion results.  
Since they contain precious metals near the surface is it possible that enhanced surface recombination is 
occurring.  This possibility has not been tested though. The reduced data from the tests are presented in 
Table 2 which shows that the samples exhibit similar diffusivities and large differences in the 
permeability.  The ratio between the coated and bare samples range from a factor of two to three for the 
precious metal coated samples to 16 and 43 for the simple aluminide coated samples.  As indicated 
above, the difference is apparently attributable to the reduction in net solubility between the coated and 
bare since the diffusivities are comparable.   



Bare 304L Stainless Steel Permeation Testing 
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Figure 6.  Pressure rise data for  bare 304L stainless steel at three pressures and one replicate. 

 

Bare and Coated 304L Stainless Steel
Tested at 400C and 400 Torr 
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Figure 7.  Permeation test results for bare and coated 304L stainless steel at 40˚0C and 400 Torr. 



 

Table 2.  Reduced data for bare and coated 304L SS tested at 400˚C and 400 Torr. 

ID Bare AlSi Al-2 PtAl PdAl 

Slope (T/s) 4.2x10-5 
9.9x10-

7 
2.5x10-

6 
2.3x10-

5 
1.4x10-

5 
Lag time (s) 3614 1710 7167 4029 4075 
Diffusivity 

(cm2/s) 3.4x10-7 
7.2x10-

7 
1.7x10-

7 
3.0x10-

7 
3.0x10-

7 

Permeability 
(atm1/2*cm2/s) 1.3x10-6 

3.0x10-

8 
7.5x10-

8 
6.9x10-

7 
4.3x10-

7 
Solubility 

(cc/cc*atm1/2) 3.75 0.04 0.44 2.26 1.42 
Ratio 1.00 42.82 16.98 1.85 2.97 

 

Conclusions 
 

The consistency of the precious metal coated 304L microstructure was poor.  The coating exhibited 
some thin spots and some areas with up to four distinct layers.  
 
Permeation testing of bare 304L SS revealed rates consistent with previously published data, however, 
the permeability of the samples measured at lower temperatures exhibited more scatter in the data than 
desired.   
 
The composite permeability measured for the precious metal aluminide coated 304L samples was only 
slightly different than the measured permeability of the bare.  The reason for the poor performance could 
be attributed to the inconsistent coating quality, the presence of more active surfaces for recombination 
of the monotonic hydrogen at the low pressure surface, etc. 
 
The simple aluminide coated samples exhibited lower composite permeability values by factors of 17 to 
43.  The diffusivity values for both bare and coated samples were similar.  The calculated solubility was 
lower for the coated compared to the bare samples.  

 
Acknowledgements 

 
The authors would like to acknowledge metallography that was conducted by C. Foreman and D.Z. 

Nelson. 
 

We would also like to acknowledge the U.S. Department of Energy for support of this work under 
contract DE-AC09-96SR18500. 

 
 
 

References 
 

 

1. H. H. McCoy, Jr. USAEC Report ORNL-3600 June (1964). 



2. M. R. Louthan, Jr., in Hydrogen in Metals, ASM, Metals Park, OH, p.53, (1964). 

3. M. R. Louthan and A. H. Dexter, Metallurgical Transactions, 6A, 1655, (1975). 

4. M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl, Materials Science and 
Engineering, 10, 357, (1972). 

5. M. Mohitpour and H. Solansky, Proceedings of ASME PVP Conference 2004, La Jolla, CA July 
2004. 

6. K. N. Ankhurst and T. J. Baker, Metallurgical Transactions, 12A, 1059-1070, (1981). 

7. G. Yu, B. Jiang, and L. Qiao, Scripta Materialia, 36, 1467-1470, 1997. 

8. D. Burwell, M. Brongiers, and J. Beavers, Proceedings of ASME PVP Conference 2004, La 
Jolla, CA, July, 2004. 

9. G. W. Hollenberg, E. P. Simonen, G. Kalinin, and A. Terlain, Fusion Engineering and Design 
28, 190-208, (1995). 

10. K. Forcey, D. Ross, C. Wu, Journal of Nuclear Materials, 182, 36-51, (1991). 

11. A. Perujo, E. Serra, H. Kolbe, and T. Sample, Journal of Nuclear Materials, 233-237, 1102-1106, 
(1996). 

12. C. Fazio, K. Stein-Fechner, E. Serra, H, Glasbrenner, and G. Benamati, Journal of Nuclear 
Materials, 273, 233-238, (1999). 

13. Y. Ishikawa, T. Yoshimura, and M. Arai, Vacuum, 47(6-8), 701-704, (1996). 

14. W. Song, J. Du, Y. Xu, and B. Long, Journal of Nuclear Materials, 246, 139-143, (1997). 

15. Y. Yamada-Takamura, F. Koch, H. Maier, and H. Bolt, Surface Coatings & Technology, 153, 
114-118, (2002). 

16. G. Betz, G. Wehner, L. Toth, and A. Joshi, Journal of Applied Physics, 45, 5312, (1974). 

17. G. Hultquist and C. Leygraf, Materials Science and Engineering, 42, 199, (1980). 

 


	disclaimer.pdf
	INLINE MONITORS FOR THE SRS SMALL COLUMN ION EXCHANGE PROCES
	INTRODUCTION
	SYSTEM DESCRIPTION



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




